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1 Heat Transport Equation

One of the basic transport processes of heat in fluids corresponds to molecular conduction, which

can be modeled by means of Fourier’s law. This law states that the diffusive heat flux in a fluid is
proportional to the temperature gradient.

Calling T the temperature, then Fourier’s law can be written as:

~fh = −k ∇T (1)

where ~fh denotes the diffusive heat flux vector, expressed as heat per unit area per unit time, k

denotes the thermal conductivity of the fluid, and the negative sign indicates that the flow of heat
is from zones of high temperature towards zones of lower temperature.

The heat conservation equation applied onto a control volume of fluid, considering both ad-
vective heat fluxes due to the instantaneous velocity field and diffusive fluxes due to molecular
transport of heat, and also the presence of a heat source per unit time per unit volume, W , can be

written in vector form as:

ρ Cp {
∂T

∂t
+ (~v · ∇)T} = −∇ · ~fh + W (2)

where ρ denotes fluid density and Cp specific heat. Invoking Fourier’s law this equation can be
rewritten as:

ρ Cp {
∂T

∂t
+ (~v · ∇)T} = k ∇2 T +W (3)

The same equation expressed in tensor notation is:

ρ Cp {
∂T

∂t
+ uj

∂T

∂xj
} = k

∂2 T

∂xj∂xj
+ W (4)

Assuming that the fluid is incompressible: ∇·~v = 0, multiplying this condition by T and adding

the result to equation (4), the conservative form of the heat conservation equation is obtained:

ρ Cp {
∂T

∂t
+
∂(uj T )

∂xj
} = k

∂2 T

∂xj∂xj
+ W (5)

or, dividing by ρ Cp:
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∂T

∂t
+
∂(uj T )

∂xj
= α

∂2 T

∂xj∂xj
+

W

ρ Cp
(6)

where α = k/(ρ Cp) is the thermal diffusivity of the fluid, with dimensions of length square over
time.

This equation is valid for instantaneous conditions, in both laminar and turbulent flows. To
analyze the turbulent flow case, characterized by fluctuations of velocity and temperature, Reynolds

decomposition of both of these flow properties is introduced:

ui = ūi + u′i (7)

T = T̄ + T ′ (8)

Introducing these decompositions in (6) and taking the ensemble average over the turbulence

yields:

∂T̄

∂t
+
∂(ūj T̄ )

∂xj
= α

∂2 T̄

∂xj∂xj
−
∂(u′j T

′)

∂xj
+

W

ρ Cp
(9)

The second term of the right hand side represents turbulent heat fluxes, associated to the
turbulent diffusion process. This process is analogous to molecular conduction of heat, but much
more effective in terms of heat transport, since length scales of turbulent motion are much larger

than those associated to molecular motion.
As with the Navier-Stokes and mass transport equations, the ensemble averaging process to

eliminate fluctuating terms from the analysis leads to a closure problem, this time for the turbulent
heat fluxes. Just as in the case of the Reynolds stresses, an external model is required to close

the turbulent heat fluxes. By analogy with Fourier’s law, a gradient model can be used, based
on coefficients for turbulent diffusion of heat, αtj . Such coefficients are analogous to α, but of

larger magnitude, since turbulent diffusion is much more effective than molecular diffusion, as
already discussed. The molecular diffusivity α is independent of direction, since molecular activity

is isotropic. Turbulent diffusivities, αtj , on the other hand, are direction dependent, as turbulent
heat flows are typically anisotropic. The gradient model for turbulent heat fluxes is:

u′j T
′ = −αtj

∂T̄

∂xj
(10)

where, in this particular case, the repeated subindex in the right hand side of the equation does
not imply summation.

Replacing this model in (9) yields:

∂T̄

∂t
+
∂(ūj T̄ )

∂xj
= α

∂2 T̄

∂xj∂xj
+

∂

∂xj
{αtj

∂T̄

∂xj
}+

W

ρ Cp
(11)

or, neglecting the effect of a variable density on α, assuming the they are small (in analogy with
the Boussinesq approximation discussed in previous notes):

∂T̄

∂t
+
∂(ūj T̄)

∂xj
=

∂

∂xj
{(α+ αtj)

∂T̄

∂xj
}+

W

ρ Cp
(12)
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where α can be neglected in comparison with αtj .

The so called Prandtl coefficient, σh, is defined as the ratio between the kinematic viscosity of
the fluid, ν, and the thermal diffusion coefficient, α. Similarly, a turbulent Prandtl number, σht
can be introduced in (46) to represent the ratio between the kinematic eddy viscosity, νt, and the
turbulent or eddy thermal diffusivity, αt:

∂T̄

∂t
+
∂(ūj T̄)

∂xj
=

∂

∂xj
{( ν
σh

+
νt
σht

)
∂T̄

∂xj
}+

W

ρ Cp
(13)

where νt can be estimated using any of the zero-, one-, or two-equation models described in previous
notes. As it happens in the case of mass transport, turbulent thermal diffusivities resulting from

this procedure are isotropic. To improve this aspect of the heat transport model requires the use
of non-isotropic eddy viscosity models. Another very important aspect of modeling turbulent heat

transport has to do with the fact that temperature controls fluid density, causing buoyancy effects
associated with temperature variations within the flow field. Since the turbulent kinetic energy

balance is affected by buoyancy, which can act as a sink or source of this energy, closure models for
the eddy viscosity and the eddy thermal difussivity must be modified to take into account buoyancy

effects associated to a variable density. This is discussed below.

2 Vertical Heat Transport in Lakes and Reservoirs

Vertical heat fluxes are the most important components of heat transport in lakes and reservoirs

because they control temperature and hence density stratification of the water column.
In many lakes a reasonable assumption is that heat transport in horizontal planes can be

neglected due to temperature homogeneity. This leads to the idea of developing an equation
governing vertical variations of the horizontally averaged temperature < T̄ >, defined as:

< T̄ > (z) =
1

A

∫

A
T̄ dA (14)

where A(z) denotes the horizontal area of the water body which varies with depth, and z is a
vertical downwards coordinate with origin at the free surface (Fig. 1).

To obtain a governing equation for < T̄ >, equation (13) could be surface-averaged as in (14).
An alternative route is to do a bulk balance of heat in a control volume defined by a horizontal slice

of the lake, of area A(z) and thickness dz (Fig. 1). Dropping the angular brackets and the overbar
to simplify notation, T now represents the surface-averaged value of the Reynolds-averaged tem-
perature. If fh denotes the total vertical diffusive flux of heat (molecular and turbulent) averaged

over A and W denotes a heat source term as in (2), then the heat conservation equation applied
over the control volume considered yields:

ρ Cp A
∂T

∂t
= −∂(A fh)

∂z
+W A (15)

Assuming that the vertical diffusive flux of heat is dominated by turbulence and invoking the
gradient hypothesis (10), introducing a surface-averaged vertical thermal eddy diffusivity αtz , yields:

∂(A fh)

∂z
= ρ Cp

∂(A w′T ′)
∂z

= −ρ Cp
∂

∂z
(A αtz

∂T

∂z
) (16)
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z

V

A(z)
dz

Figure 1: Element of volume of lake, dV = A(z) dz, for 1-D vertical heat balance.

where w′T ′ denote the surface-averaged vertical turbulent heat flux, associated to vertical velocity
fluctuations w′. Replacing (16) in (15) gives:

ρ Cp A
∂T

∂t
= ρ Cp

∂

∂z
(A αtz

∂T

∂z
) +W A (17)

or:

∂T

∂t
=

1

A

∂

∂z
(A αtz

∂T

∂z
) +

W

ρ Cp
(18)

3 The Nature of the Source Term

The heat source term per unit time, per unit volume, W , is given by the short wave solar radiation
that penetrates the water column. In previous notes the heat flux due to penetrative short wave

radiation was estimated as:

Hsw(z) = Hsw0 exp (−kez) (19)

where Hsw0 represents the heat flux due to short wave radiation at the free surface and ke is the
light extinction coefficient.

The amount of heat transferred by short wave radiation to the control volume of Fig. 1, per
unit time, is given by the net influx associated to Hsw, such that:

W A dz = −∂(Hsw A)

∂z
dz (20)

or:

W A = −∂(Hsw A)

∂z
(21)

Expanding this equation yields:

W A = −A Hsw {
1

Hsw

∂Hsw

∂z
+

1

A

∂A

∂z
} (22)

However, it is obvious that the rate of light extinction in the water column is generally much larger

than the rate of change of the transverse area of the lake. With this consideration, (22) simplifies
to:

Departamento de Ingenieŕıa Civil 4 Universidad de Chile



CI 71Q Hidrodinámica Ambiental

W = −∂Hsw

∂z
(23)

or, using (19):

W = ke Hsw = ke Hsw0 exp (−ke z) (24)

Replacing this result in (18) gives:

∂T

∂t
=

1

A

∂

∂z
(A αtz

∂T

∂z
) +

ke Hsw0

ρ Cp
exp (−ke z) (25)

4 Eddy Diffusivity

Equation (25) can be used to predict vertical temperature profiles in lakes and reservoirs, provided

meteorological data is used to evaluate Hsw and a closure for αtz is selected.
As in previous sections, a turbulent Prandtl number, σht can be introduced to specify:

αtz =
νt
σht

(26)

In many cases a value σht = 1 is a good approximation, which is called Reynolds analogy. Nonethe-

less, when buoyancy effects caused by density variations associated to temperature gradients in the
water column are important, this approximation does not hold, and a more sophisticated closure

is needed.
As already discussed, buoyancy can affect the balance of turbulent kinetic energy in the water

column, creating or destroying it depending on the sign of the density gradients. If the stratification
is stable, vertical transport of fluid against gravity due to velocity fluctuations creates a sink of

turbulent kinetic energy.
Buoyancy effects can be taken into account into the equation for the turbulent kinetic energy

by considering density fluctuations. Reynolds decomposition applied to the density yields:

ρ = ρ̄+ ρ′ (27)

where ρ̄ and ρ′ denote mean and fluctuating components of the instantaneous density ρ, respectively.
The density fluctuations modify the instantaneous equations for the velocity fluctuations presented

in the notes of Chapter 1, (obtained by making the difference between the instantaneous and
Reynolds-averaged Navier-Stokes equations), which results in additional terms that contribute to

the kinetic energy balance. The resulting equation for the turbulent kinetic energy is:

∂K

∂t
+ ūj

∂K

∂xj
= − ∂

∂xj
{1

ρ̄
u′j p̂
′ +

1

2
u′iu
′
iu
′
j − 2ν u′iε

′
ij} − u′iu′j εij +

gj
ρ̄
u′jρ
′ − 2ν ε′ijε

′
ij (28)

The left hand side of this equation represent the total change of turbulent kinetic energy. The
first term of the right hand side can be interpreted (and modeled) simply as turbulent diffusion

of turbulent kinetic energy, the second one denotes production, P , the third one is a sink/source
term, G, taking into account buoyancy effects (associated to turbulent fluxes of fluid density) and

the fourth one denotes the rate of dissipation ε.
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In the case of heat transport in the water column, density fluctuations are caused by temperature

fluctuations, however, in a more general analysis, they can also be induced by fluctuations of
dissolved mass concentration. Consider a linear equation of state relating fluid density and the

concentration of a given dissolved species or temperature, φ:

ρ = ρ0 (1 + β φ) (29)

where ρ denotes instantaneous density, ρ0 is a reference density, and β is a constant coefficient,
which takes different values depending on the nature of φ. It is easy to show that:

ρ′ = ρ0 β φ
′ (30)

and therefore the buoyancy term in (28) can be written as:

G =
gj
ρ̄
u′jρ
′ =

gj
ρ̄
ρ0 β u

′
jφ
′ (31)

Now assuming that the density variations, ρ̃, due to φ, with respect to the reference value ρ0, are

small (Boussinesq approximation), then:

ρ = ρ0 + ρ̃ = ρ0 (1 + β φ) (32)

and:

ρ̄ = ρ0 (1 +
¯̃ρ

ρ0
) ≈ ρ0 (33)

which finally gives:

G = β gj u
′
jφ
′ (34)

A flux Richardson number, Rf can be defined as minus the ratio between the rate at which

turbulent kinetic energy is being spent by buoyancy and the rate of production of such energy:

Rf = −G
P

=
β gj u

′
jφ
′

u′iu
′
j εij

(35)

Considering a simple steady, uniform wall-bounded flow with streamwise mean velocity ū(z)
and vertical distribution of the species φ̄(z), where z is now a vertical coordinate with origin on

the wall, then production and buoyancy terms reduce to:

P = −u′w′ (∂ū
∂z

) (36)

G = −β g w′φ′ (37)

where w′ denotes the fluctuation of the vertical component of the velocity. The flux Richardson

number is therefore:

Rf = −G
P

= −β g w′φ′

u′w′ ∂ū∂z
(38)
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Introducing standard closures for the Reynolds stress and buoyancy fluxes:

u′w′ = −νt
∂ū

∂z
(39)

w′φ′ = −Dt
∂φ̄

∂z
(40)

where Dt represents the eddy diffusivity of species φ, yields:

Rf = −β g Dt

νt

(∂φ̄/∂z)

(∂ū/∂z)2
(41)

and since from (29):

∂φ̄

∂z
=

1

β ρ0

∂ρ̄

∂z
(42)

then the flux Richardson number reduces to:

Rf = − g

ρ0

Dt

νt

(∂ρ̄/∂z)

(∂ū/∂z)2
(43)

which can be simply rewritten as:

Rf =
Dt

νt
Ri (44)

since the gradient Richardson number, Ri, has been defined as:

Ri = − g

ρ0

(∂ρ̄/∂z)

(∂ū/∂z)2
(45)

Note that Rf is always positive for stable stratification.

Assuming the existence of an equilibrium region in the flow considered, such that diffusion and
advection can be neglected, then production of turbulent kinetic energy must balance buoyancy

and dissipation:

P +G− ε = 0 (46)

or, introducing the definition for Rf :

Rf +
ε

P
= 1 (47)

In the flow considered, the energy extracted from the mean flow goes directly to the streamwise
turbulent intensity, u′2, and gets redistributed among all three components due to pressure fluc-

tuations. The loss to buoyancy of the turbulent kinetic energy affects only w′2 directly, whereas
viscosity affects all three components of the turbulent kinetic energy. From this analysis it is appar-

ent that while buoyancy has a small effect on the energy dissipation, it may have a major impact
on the turbulence structure of the stratified flow. This means also, that even in a stratified flow
the rate of dissipation, ε, remains the dominant term in (47), from which it is concluded that the

maximum possible value of Rf in a given flow is much smaller than unity. In fact, the existence of
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a critical value of the flux Richardson number, Rfcrit, has been proposed, above which the collapse

of turbulence occurs. This means that vertical turbulent fluxes of the species φ must drop before
buoyancy forces have much effect on the overall energy balance.

Ellison (1957) proposed:

Rf
Ri

=
Dt

νt
= b

(1− Rf/Rfcrit)
(1−Rf)2

(48)

where b is a constant with a value of about unity and Rfcrit ≈ 0.15. This equation predicts that the

effect of buoyancy is to reduce the value of the ratio of the eddy transport coefficients, Dt/νt, such
that this ratio tends to zero as Rf tends to Rfcrit ≈ 0.15. This means that turbulent transport of
the species φ is damped due to buoyancy effects, and that the damping is stronger as Rf increases.

Interestingly, Ellison predicts that it is the correlation w′ρ′ that tends to zero as Rf tends to
Rfcrit, and not necessarily the velocity and density fluctuations themselves. This is the case, for

example, of pure internal wave motions, for which ρ′ and w′ are exactly 90o out of phase, and the
correlation w′ρ′ vanishes.

Munk and Anderson (1948) proposed empirical formulae to estimate the effects of buoyancy
on the eddy transport coefficients. These formulae use the gradient Richardson number as the

parameter accounting for buoyancy and predict the damping of those coefficients as Ri increases:

νt
νt0

= (1 + 10 Ri)−0.5 (49)

Dt

Dt0
= (1 + 3.33 Ri)−1.5 (50)

where νt0 and Dt0 represent eddy viscosity and eddy diffusivity for neutral stratification (Ri = 0),
respectively. The Prandtl/Schmidt number is thus given by:

σt
σt0

=
(1 + 3.33 Ri)1.5

(1 + 10 Ri)0.5
(51)

which increases as Ri increases. Here σt0 denotes the value of the Prandtl/Schmidt number for

neutral stratification.
These algebraic (zero-equation) relationships for the eddy transport coefficients are commonly

used in connection with the mixing length model. The application of such model to estimate
turbulent transport of mass or heat, however, is not recommended, because the gradient hypothesis
fails even in simple cases. One of those cases corresponds, for example, to the flow in a pipe, for

which the mean velocity gradient vanishes at the pipe centerline. The mixing length model predicts
zero eddy viscosity and therefore no transport across this region, however, in reality, the reduction

of νt at the centerline is much less severe than predicted by this model.
A version of the K − ε model corrected for buoyancy effects can be used to obtain a a better

estimation of the eddy transport coefficients. The equations for K and ε in this case are:

∂K

∂t
+ ūj

∂K

∂xj
=

∂

∂xj
{ νt
σK

∂K

∂xj
}+ P + G− ε (52)

∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj
{ νt
σε

∂ε

∂xj
}+ c1ε

ε

K
(P + G) (1 + c3ε Rf)− c2ε

ε2

K
(53)
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where P is the production term estimated using the eddy viscosity, νt, as indicated in the notes of

Chapter 1, G is defined as:

G = β gj
νt
σt

∂φ̄

∂xj
(54)

σt is the Prandtl/Schmidt number and c3ε is an empirical constant of the model.
Rodi (1984) proposed redefining the flux Richardson number in (53) such that:

Rf = − G

P +G
(55)

to enforce the use of a unique value of c3ε for different flow configurations.

To close this discussion it must be said that in many real applications, particularly in lakes and
reservoirs, closures such as those given by the K−ε model do not necessarily work, in the sense that
they do not totally capture the real nature of the turbulent mixing processes occurring in the water

column. It is well known that in the interior of strongly stratified fluids, turbulence occurs only
sporadically and in isolated patches. These patches are mainly created by the breakdown of internal

waves as the result of a cascade of energy, which is transferred from the long-wave seiching of the
main density interfaces within the water body, to shorter and shorter waves through non-linear

interaction mechanisms. Even though the internal waves can distort the density distribution, they
cannot permanently change the stratification unless they break creating turbulence and mixing.

Internal waves, however, transfer energy more rapidly than turbulence, propagating the effects of
boundaries to the interior of the stratified fluid. Patches of turbulence in the interior of lakes and

reservoirs, therefore, can result from the superposition of motions from many sources and on many
scales, the mean shear making and essential contribution to the internal breakdown mechanism.

It has been argued that models such as K− ε are not able to resolve the patchiness of turbulent

mixing processes within water bodies such as lakes and reservoirs, mainly because of the large
dimensions of the discretization grids that must be used in such domains. Besides, the model for

the mean flow needs to capture internal seiching and eventually the energy cascade from large
to short internal waves, something that may demand large computing efforts, making a complex

turbulence closure model such as K − ε not viable.
A different, and somewhat heuristic, approach to the turbulent mixing problem within stratified

water bodies has been proposed by Hodges et al. (2000). Their 3-D model focuses mainly in
resolving internal waves and internal motions, created for example by density currents, using simple

algebraic closures to account for turbulent mixing.
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