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Consider a stratified water body such as that shown in Fig. 1, with a surface layer of constant
temperature and density, T1 and ρ1, respectively, (the epilimnion) and a bottom layer of constant

temperature and density, T2 and ρ2, respectively, (the hypolimnion). The free surface is located
at an elevation zs measured with respect to the bottom of the water basin. Consider that the

metalimnion, the region of large density and temperature gradients in between the surface and
bottom layers, is rather narrow and located at an elevation zT with respect to the bottom.

Vertical mixing in this system implies increasing the density of the upper layer, which is caused

by an upwards mass flux of hypolimnetic water created by the deepening of the metalimnion
region. Two different vertical mixing processes are considered in the following analysis: Penetrative

Convection and Wind Mixing.

1 Penetrative Convection

During cooling phases, heat is released from the water body to the atmosphere. This tends to

decrease the potential energy of the water body due to the shrinkage of the epilimnetic volume.
The release of potential energy is transformed into turbulent kinetic energy that creates mixing

within the metalimnion region. This occurs in the form of thermals that sink throughout the
epilimnion, due to excess weight, and erode the metalimnion. In fact, as heat is released from the

surface, colder and heavier water lays on top of the lighter and warmer water of the epilimnion.
Thermals are created due to the instability of this surface cold layer.
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Figure 1: Stratified water basin.

1



CI 71Q Hidrodinámica Ambiental

1.1 Heat balance

To analyze mixing due to penetrative convection, it is convenient to start by establishing heat and

mass balances within the system. Consider the release of some amount of heat to the atmosphere
due to cooling effects. This occurs, for example, when the temperature of the water body is in
excess of the equilibrium temperature. Call H0 the heat flux released to the atmosphere. The heat

balance within the epilimnion reads:

ρ1 Cp V1
dT1

dt
= −H0 As − ρ1 Cp ∆T At ue (1)

where Cp denotes the specific heat of the water, V1 is the volume of the epilimnion, t denotes time,
As and At denote cross sectional areas at the free surface and at the elevation of the metalimnion,

respectively, ∆T = T1 − T2 denotes the temperature difference between the epilimnion and the
hypolimnion and ue represents the rate of deepening of the metalimnion due to mixing associated

with the thermal erosion process. The latter is also known as entrainment velocity. The first term
of the right hand side represents the heat released to the atmosphere through the free surface. The
second term of the right hand side represents the amount of heat taken from the epilimnion to

warm up water from the hypolimnion that is being mixed with that of the epilimnion due to the
erosion of the metalimnion.

Equation (1) can be rewritten as:

dT1

dt
= − H0

ρ1 Cp h1
− At
As

∆T

h1
ue (2)

where h1 = V1/As denotes the mean height of the epilimnion.

Heat balance within the hypolimnion leads to the condition:

dT2

dt
= 0 (3)

when heat transfer with the bottom of the water basin is neglected.
Invoking the linearized equation of state of water density:

ρ = ρ0 (1− α T ) (4)

where ρ0 is a reference density, T represents temperature and α is a contraction coefficient. From

this equation it is concluded that:

dρ1

dt
= −α ρ0

dT1

dt
;

dρ2

dt
= −α ρ0

dT2

dt
; ∆ρ = ρ2 − ρ1 = α ρ0 ∆T (5)

Replacing (5) in (2) and (3) yields:

dρ1

dt
= α ρ0

H0

ρ1 Cp h1
+
At
As

∆ρ

h1
ue (6)

dρ2

dt
= 0 (7)

Both the temperature and density of the hypolimnion are conserved during the mixing process.
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1.2 Mass balance

Consider now mass balance in both epilimnion and hypolimnion.

d(ρ1 V1)

dt
= ρ2 At ue (8)

d(ρ2 V2)

dt
= −ρ2 At ue (9)

which obviously indicate that the total mass of the system (ρ1 V1 + ρ2 V2) is conserved.

Since dρ2/dt = 0, then:

dV2

dt
= −At ue (10)

Expanding (8) yields:

V1
dρ1

dt
+ ρ1

dV1

dt
= ρ2 At ue (11)

or, since V1 = As h1:

h1
dρ1

dt
+ ρ1

dh1

dt
= ρ2

At
As

ue (12)

and using (6):

dh1

dt
=
At
As

ue − α
ρ0

ρ1

H0

ρ1 Cp
(13)

1.3 Closure for the entrainment velocity

To predict the temperature and volume changes in the epilimnion due to penetrative convection

a closure for the entrainment velocity is needed. For that, an energy balance is to be considered
next.

Potential energy change due to cooling

As heat is released from the epilimnion, its temperature decreases as predicted by (2). This has
the effect of lowering the center of mass of the water body as a whole, due to the contraction of the

water volume, and of decreasing the potential energy of the system. Part of the released potential
energy goes to the kinetic energy associated with the thermals, which is then used to erode the

metalimnion.
The potential energy of the water basin is given by:

P =

∫ zT

0
ρ2 g z A(z) dz +

∫ zs

zT

ρ1 g z A(z) dz (14)

where A(z) denotes the cross sectional area of the water basin at an elevation z. Assuming that ρ1

and ρ2 are constant within the respective surface and bottom layers and that dρ2/dt = 0 according

to (7), the rate of change of the potential energy is then:
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dP

dt
= g {ρ2 zT At

dzT
dt

+
dρ1

dt

∫ zs

zT

z A dz + ρ1 zs As
dzs
dt
− ρ1 zT At

dzT
dt
} (15)

Using (10), zT is defined such that V2 = zT At and:

dzT
dt

= −ue (16)

Besides, V1 =
∫ zs
zT

A dz, therefore:

dV1

dt
= As

dzs
dt
−At

dzT
dt

= As
dzs
dt

+At ue (17)

and:

zv1 =
1

V1

∫ zs

zT

z A dz (18)

denotes the center of volume of the epilimnion.
Replacing (6), (13), (16), (17) and (18) in (15) yields the rate of change of the potential energy

as:

dP

dt
= g ∆ρ At (zv1 − zT ) ue − α ρ0 g As

H0

ρ1 Cp
(zs − zv1) (19)

which represents a balance between the gain in potential energy due to mixing (first term in the

right hand side) and the decrease of potential energy due to the release of heat from the surface
water to the atmosphere (second term in the right hand side). Obviously, if penetrative convection

is to create mixing through the development of thermals, the second term is more important than
the first one and the potential energy decreases as a consequence of cooling.

Equation (19) can be rewritten in terms of the temperature difference ∆T instead of the density
difference ∆ρ:

dP

dt
= α ρ0 g ∆T At (zv1 − zT ) ue − α ρ0 g As

H0

ρ1 Cp
(zs − zv1) (20)

Kinetic energy of the thermals

The potential energy released due to cooling is partially used to increase the kinetic energy of

the thermals that erode the metalimnion. The energy balance can be expressed as (Fisher et al.,
1979):

dK

dt
= −dP

dt
− Φ (21)

where K denotes the kinetic energy of the thermals and Φ denotes rate of viscous dissipation of
energy within the system.

A bulk estimate of K is proposed by Fisher et al. (1979) as:

K =
1

2
ct ρ1 V1 u

2
t (22)
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Figure 2: Thermal eroding the metalimnion.

where ct is a coefficient and ut represent the fall velocity of the thermals (Fig. 2).
To estimate ut another energy balance can be considered. Near the surface the energy of the

colder water that will form the thermal is proportional to g′zs, where g′ = g (∆ρ)t/ρ1 is the
reduced gravity affecting the thermals, where (∆ρ)t represents the density difference between the

colder water in the thermal and the warmer water of the epilimnion. Near the metalimnion, where
mixing takes place, the energy of the thermal is proportional to g′zT + u2

t /2. Therefore, with
reference to Fig. 2:

m g′ zs = m g′ zT +m
u2
t

2
(23)

where m denotes the mass of a fluid parcel that falls within the thermal. Hence:

u2
t = 2 g′ (zs − zT ) = 2 g

(∆ρ)t
ρ1

(zs − zT ) (24)

From (4), the density difference in the thermal can be expressed in terms of temperature dif-

ference between the thermal and the epilimnetic water:

(∆ρ)t = α ρ0 (∆T )t (25)

This temperature difference can be estimated in terms of the equilibrium between the heat flux

extracted by the thermal from the epilimnion and the heat flux released to the atmosphere:

ρ1 Cp (∆T )t ut = H0 (26)

from where the temperature difference of the thermal results to be:

(∆T )t =
H0

ρ1 Cp ut
(27)

Replacing (27) in (24) leads to:

ut = {2 α ρ0

ρ1

H0

ρ1 Cp
g (zs − zT )}1/3 (28)
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Using the same arguments Fisher et al. (1979) propose the following equation for ut, which is

slightly different to (28):

ut = {α g H0

ρ1 Cp
(zs − zT )}1/3 (29)

Entrainment velocity

The rate of change of the kinetic energy of the thermals is given from (22) as:

dK

dt
=

1

2
ct
d(ρ1 V1)

dt
u2
t =

1

2
ct ρ2 ue At u

2
t (30)

Replacing this result in (21) yields:

1

2
ct ρ2 ue At u

2
t = −α ρ0 g ∆T At (zv1 − zT ) ue + α ρ0 g As

H0

ρ1 Cp
(zs − zv1)− Φ (31)

and since:

H0

ρ1 Cp
=

u3
t

α g (zs − zT )
(32)

the following expression is obtained:

{ct u2
t + α g ∆T 2 (zv1 − zT )} ue = u3

t {2
zs − zv1
zs − zT

As
At
− 2 Φ

ρ0 At u
3
t

} (33)

It is easy to see that the first term inside the parenthesis of the right hand side is of order one.

Fisher et al. (1979) argue that the second term inside the parenthesis of the right hand side can
be approximated as a constant coefficient. They propose the following approximation:

2
zs − zv1
zs − zT

As
At
− 2 Φ

ρ0 At u
3
t

≈ 1− 2 Φ

ρ0 At u
3
t

= ck (34)

where ck is a constant coefficient. Equation (33) can then be rearranged as:

ue
ut

= ck {ct +
α g ∆T

u2
t

2 (zv1 − zT )}−1 (35)

Now rewrite the dimensionless term in the right hand side:

α g ∆T

u2
t

2 (zv1 − zT ) = g
∆ρ

ρ0

2 (zv1 − zT )

u2
t

=
g′ h
u2
t

=
1

Fr2
d

= Ri (36)

where g′ = g ∆ρ/ρ0 = g (ρ2 − ρ1)/ρ0 denotes the reduced gravity of the stratified water body and
h = 2 (zv1− zT ) is a length scale representing the thickness of the epilimnion. In this equation Frd
represents a Densimetric Froude Number and Ri is the corresponding Richardson Number.

From (35), the dimensionless entrainment velocity is finally given by:

ue
ut

=
ck

(ct +Ri)
(37)
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which predicts that the dimensionless entrainment velocity increases as the Richardson number

decreases, that is, as the heat released to the atmosphere, H0, increases. On the contrary, when H0

vanishes, Ri goes to infinity and the entrainment velocity vanishes. Based on field measurements,

Fisher et al. (1979) propose the values ck = 0.13 and ct = 0.5.
Pedersen (1986) argues that ck represents actually a Bulk Flux Richardson Number. Its value

should be in a rather narrow range: 0.04 < cw < 0.18, with the upper limit corresponding to mixing
processes associated to the phenomenon of vortex formation and pairing at the interface and the
lower limit corresponding to entrainment caused by internal wave breaking mechanisms. According

to Pedersen a proper value of ck for entrainment by penetrative convection would be the upper
limit, ck = 0.18.

2 Wind Mixing

Consider now that the surface layer is at the equilibrium temperature so that the heat exchange
with the atmosphere is negligible, but there is wind blowing over the free surface. In this case, it is

the momentum transfer by the wind what is relevant in terms of the vertical mixing processes in the
system. The input of momentum by the wind creates turbulent kinetic energy in the surface water

which is diffused down towards the metalimnion. Turbulent mixing within this region increases the
potential energy of the water body, as its center of mass is displaced upwards due to the increased

density (and reduced temperature) of the epilimnion resulting from the mixing with colder and
heavier water from the hypolimnion.

2.1 Heat balance

Since in this problem heat exchange with both the atmosphere and the bottom of the water body
can be neglected, the heat balance expressed by the already deduced equations (2) and (3) reduces

to:

dT1

dt
= −At

As

∆T

h1
ue (38)

dT2

dt
= 0 (39)

which predict that the temperature of the hypolimnion remains constant, while that of the epil-
imnion decreases as wind mixing proceeds. Here, ue denotes the entrainment velocity associated

to the latter process.
In terms of density variations, these equations are expressed as:

dρ1

dt
=
At
As

∆ρ

h1
ue (40)

dρ2

dt
= 0 (41)

which indicate that as the temperature of the epilimnion decreases its density increases, while that
of the hypolimnion remains constant.
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Figure 3: Wind mixing by diffusion of turbulent kinetic energy (TKE) within the epilimnion.

2.2 Mass balance

Just as in the case of penetrative convection, the mass balance is expressed by:

d(ρ1 V1)

dt
= ρ2 At ue (42)

d(ρ2 V2)

dt
= −ρ2 At ue (43)

which indicate that the total mass of the system (ρ1 V1 + ρ2 V2) is conserved.

Replacing (40) in (42) and (41) in (43) gives:

dh1

dt
=
At
As

ue (44)

dzT
dt

= −ue (45)

where h1 = V1/As and zT = V2/At. These two equations are just two equivalent ways to understand
the rate of deepening of the density interface due to wind mixing. Changes in h1 are only generated

by the mixing process and there are no volume changes associated to heat exchange with the
atmosphere involved as in the previous case analyzed.

2.3 Closure for the entrainment velocity

A closure for the entrainment velocity associated with wind mixing requires a different energy
balance with respect to that used in the analysis of penetrative convection. In this case the turbulent
kinetic energy input at the free surface is diffused down towards the metalimnion (Fig. 3). The rate

at which this energy becomes available for mixing dictates the rate at which the potential energy
of the water body increases due to mixing.
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Potential energy increase due to mixing

Using the result given by (20) and imposing a vanishing heat flux exchange with the atmosphere,

H0 = 0, yields:

dP

dt
= g ∆ρ At (zv1 − zT ) ue (46)

which indicates that the rate at which the potential energy of the water body increases is propor-
tional to the entrainment velocity.

The rate of change of P is dictated by the rate of change of the turbulent kinetic energy available
for mixing in the metalimnion:

dP

dt
=
dK

dt
(47)

where the right hand side represents the rate at which turbulent kinetic energy is made available

for the mixing process.

Diffusion of turbulent kinetic energy in the epilimnion

Turbulent kinetic energy, K, is transferred by the wind to the surface water and then diffused
down to the metalimnion. A transport equation forK within the epilimnion can be simply expressed
as:

∂K

∂t
= −∂(w′K ′)

∂z
− Φ (48)

where w′K ′ represents the vertical flux of turbulent kinetic energy associated with turbulent diffu-

sion and Φ is a bulk rate of viscous dissipation. In this equation, production of turbulent kinetic
energy within the epilimnion is neglected for simplicity, however this term may be an important

contribution to the energy balance if high velocity gradients are present in the surface region asso-
ciated with drift currents induced by the wind.

To model the diffusion term, the following approximation is introduced:

−∂(w′K ′)
∂z

' w′ K
h1

(49)

where w′ is a velocity scale representing the vertical component of the RMS of the turbulent velocity

fluctuations within the epilimnion, K is an estimation of the turbulent kinetic energy content in
the epilimnion and h1 = V1/As is a measure of the epilimnion height.

A value of K can be estimated as:

K ∝ 3

2
(ρ1 V1) (w′)2 (50)

On the other hand, w′ can be modelled by assuming that it scales with the surface shear velocity
induced by the wind, u2

∗s = τs/ρ1, where τs denotes the wind induced surface shear stress. This

quantity is usually estimated as a function of the wind speed as:

τs = ρa CDw u
2
w (51)
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Figure 4: Wind drag coefficient as a function of wind velocity (after Wüest and Lorke, 2003). The
expressions for the curves plotted with solid lines are: CDw = 0.0044 u−1.15

w for uw < 5m/s; and
CDw = (1/κ ln (g 10/CDw/u

2
w) + 11.3)−2 for uw > 5m/s, where κ denotes von Karman’s constant.

The dashed line represents CDw = 0.0013.

where ρa denotes the density of air (approximately equal to 1.2 kg/m3), CDw is a wind drag

coefficient, and uw denotes the wind speed. A typical value of CDw = 0.0013 is used when uw
represents the wind speed at a reference height of 10 m above the free surface, which is valid when

uw > 5m/s. For lower values of the wind speed, CDw tend to increase as uw decreases (Fig. 4).
With this assumptions the diffusion term in (48) is estimated as:

−∂(w′K ′)
∂z

= cw
3

2
ρ1 As u

3
∗ (52)

where cw is a coefficient. The rate at which turbulent kinetic energy is made available for mixing

at the metalimnion is then:

dK

dt
= cw

3

2
ρ1 As u

3
∗ − Φ (53)

Entrainment velocity due to wind mixing

Replacing this result in (47) and using (46) yields:

g ∆ρ At (zv1 − zT ) ue = cw
3

2
ρ1 As u

3
∗ − Φ (54)

or rearranging terms:

{∆ρ
ρ0

g
2 (zv1 − zT )

u2∗s
} ue
u∗s

= 3cw
ρ1

ρ0

As
At
− 2 Φ

ρ0 At u3∗s
(55)

The dimensionless term in brackets in the left hand side can be written as:

∆ρ

ρ0
g
2 (zv1 − zT )

u2∗s
=
g′h
u2∗s

= Ri (56)
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where g′ = g ∆ρ/ρ0 denotes reduced gravity, h = 2 (zv1 − zT ) is a length scale representing the

thickness of the epilimnion and Ri is the Richardson number of the wind induced flow.
It can be argued that the right hand side of (55) represents a sort of bulk flux Richardson number

(this parameter is related to the concept of mixing efficiency as is discussed in the next section),
and therefore with arguments similar to those used in the previous section, can be considered as a

constant coefficient. Defining:

3cw
ρ1

ρ0

As
At
− 2 Φ

ρ0 At u3∗s
= ce (57)

and replacing this result in equation (55) gives:

ue
u∗s

=
ce
Ri

(58)

Entrainment relationships such as that given by (58) have been proposed in the literature coming
from different sources, including experimental and numerical research. It has been argued that the

entrainment mechanism is different for a situation where the presence of endwalls of the water basin
is not yet noticeable, and the situation where wind set-up has already created streamwise pressure

gradients.
To avoid unwanted endwall effects, Kato and Phillips (1969), Kantha et al. (1977) and Deardorff

and Willis (1982) carried out experiments in annular tanks to simulate one-dimensional entrain-

ment processes of large horizontal extent. However, channel curvature induces secondary flow
that affects the entrainment process (Scranton and Lindberg, 1983). Because of this, Kranenburg

(1984) avoided the use of annular tanks, using instead an experimental technique consisting in
re-circulating the excess water resulting from wind set-up in a wind flume, thus precluding longi-

tudinal pressure gradients to build up. Experiments that include endwall effects on vertical mixing
due to surface shear stress have also been conducted. Kranenburg (1985) carried out experiments

in a wind flume, while Monismith (1986), Stevens and Imberger (1996) and Niño et al. (2002)
applied the surface shear by means of a conveyor belt.

Kranenburg’s (1984) experimental results gave the following entrainment relationship during the
fully developed phase of the mixing process, in the zero longitudinal pressure gradient situation:

ue
u∗s

=
0.6

(Ri)1/2
(59)

This relationship is similar to that obtained by Price (1979) and Thompson (1979), extrapolating
Kantha et al.’s (1977) results to zero aspect ratio of their annular flume.

In the case when endwalls effects are present, the entrainment rate is reduced with respect to
that of the zero pressure gradient case. Kranenburg (1985) obtained, based on Wu’s (1973) and

his own experiments, the following entrainment relationship, which was also confirmed later by
Monismith (1986) and Niño et al. (2002), through experimental research, and Chu and Soong

(1997), through numerical modeling:

ue
u∗s

=
0.07

Ri
(60)

This result validates the analysis presented in this section and equation (58), giving a value

ce = 0.07. However, results by Chu and Soong (1997) and Niño et al. (2002) have indicated that
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the length to height ratio of the flow, L/H where L denotes the fetch of the wind and H is the

total flow depth, may play an important role on the entrainment process, affecting the value of ce
in (58).

3 Other sources of mixing

It can be shown that the entrainment velocity resulting from penetrative convection, for typical heat
fluxes associated to the cooling of lakes and reservoirs, is generally of the same order of magnitude

as that resulting from wind mixing, for typical values of wind velocity in lakes and reservoirs.
Metalimnion mixing associated to these processes is of an intermittent nature. Strong mixing in

this region is rare and associated, mainly, to strong wind events or strong cooling events. In any
case, both processes contribute to maintaining a well mixed epilimnion.

The metalimnion, however, can also be subject to other mixing processes. One of them, as-
sociated with the breaking of internal gravity waves. Different mechanisms create the conditions
for wave steepening and breaking. A recent review of these mechanisms can be found in Staquet

and Sommeria (2002). Nonetheless, it is important to recognize the importance of the internal
seiching motion set up by the wind. The energy stored in this motion is then transferred to shorter

and shorter waves, and then to turbulence and mixing, through the wave breaking mechanisms
just noted. Also, the energy contained in relatively short internal waves is radiated towards the

boundary where is partially dissipated due to shoaling induced breaking and other mechanisms.
These processes energize the benthic boundary layer as is discussed below.

Within the metalimnion, turbulence is affected by buoyancy effects, which creates a rather
stable environment. A simple turbulent kinetic energy budget within this region can be expressed

as:

P +G− ε = 0 (61)

where P denotes the production rate of turbulent kinetic energy, G the rate of turbulent kinetic
energy used to overcome buoyancy effects, and ε is the rate of turbulent kinetic energy dissipation.

Dividing (61) by this latter term, yields:

P

ε
= 1− G

ε
(62)

Defining the mixing efficiency, γmix, as:

γmix = −G
ε

(63)

then, from (62):

P

ε
= 1 + γmix (64)

Now, the definitions for the production, P , and buoyancy, G, terms in a system with mean flow
velocity ū in the horizontal direction, with only vertical gradient ∂ū/∂z, are:

P = −u′w′ ∂ū
∂z

; G = − g

ρ0
w′ρ′ (65)
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where u′w′ and w′ρ′ represent the horizontal Reynolds shear stress and the vertical turbulent mass

flux, respectively. Thus, introducing usual closures in terms of the eddy viscosity, νt, and eddy
diffusivity, Dt:

−u′w′ = νt
∂ū

∂z
; −w′ρ′ = Dt

∂ρ̄

∂z
(66)

yields:

G =
g

ρ0
Dt

∂ρ̄

∂z
= −N2 Dt (67)

where, N denotes the buoyancy frequency defined as:

N2 = − g

ρ0

∂ρ̄

∂z
(68)

and:

P = νt (
∂ū

∂z
)2 (69)

Replacing (67) in (63) finally yields:

γmix =
N2 Dt

ε
(70)

or:

Dt = γmix
ε

N2
(71)

which provides an estimation of the eddy diffusivity in the metalimnion, given measured values of
the rate of dissipation, ε, and the buoyancy frequency, N , in this region. Equation (71) is known

as Osborn (1980) relation. A value of γmix = 0.15 is proposed by Wüest and Lorke (2003), which
would be consistent with field observations.

Replacing (69) in (64) gives:

νt =
(1 + γmix) ε

(∂ū/∂z)2
(72)

which is a less useful result than (71) because it needs the velocity gradient as input, which is

always difficult to estimate.
Note that it is easy to show that the mixing efficiency γmix is related with the concept of flux

Richardson number, Rf = −G/P , introduced in previous lecture notes:

1 + γmix =
1

1−Rf
(73)

Very little turbulent kinetic energy leaks below the metalimnion, and this region, the hy-
polimnion, remains quiescent and therefore very stable, almost laminar, except for some turbulent

patches and fossil turbulent structures distributed randomly in the water column.
In contrast, the benthic boundary layer (BBL) has much higher levels of turbulent kinetic energy,

comparable with those of the epilimnion (Wüest and Lorke, 2003). Mixing in the BBL, is therefore
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much more important than that in the hypolimnion. Sources for the turbulent kinetic energy in the

BBL come from density currents, triggered by inflows, and large scale internal seiches. In the latter
case, the large scale motion created by the internal seiches in the hypolimnion, generates currents

with near-bed velocity gradients that are large enough to produce turbulent kinetic energy. Strong
mixing and turbulence in the BBL is responsible for energizing mass transfer between the sediments

and the water column, and therefore has a major importance in modulating chemical and biological
processes that determine water quality within the hypolimnion and the water body as a whole.

Within the BBL, the scaling appropriate for wall bounded flows is valid. This leads to a loga-

rithmic velocity profile. For example, assuming local equilibrium, so production equals dissipation
(P ≈ ε), and also a constant stress layer near the bed, the eddy viscosity can be estimated as:

νt = κ u∗b z (74)

where κ is von Karman’s constant, z is the distance from the bed and u∗b is the bed shear velocity.
Assuming Reynolds analogy, i.e., νt = Dt, leads therefore to:

Dt = κ u∗b z (75)

and it is concluded that the eddy diffusivity increases linearly with the distance from the bed,

within the wall region of the BBL. The same scaling leads to the following expression for the rate
of dissipation of turbulent kinetic energy in the same region:

ε =
u3
∗b
κ z

(76)

The flow velocity within the wall region is, therefore, logarithmic:

ū

u∗b
=

1

κ
ln (

z

z0
) (77)

where, z0 is a length scale appropriate to the type of wall in the BBL: hydraulically smooth or

rough. Measurements in the field indicate values of u∗b that are larger than expected for a smooth
wall. This may indicate that the bottom of lakes and reservoirs are actually rough, not because of

sediment size but because of irregular bed relief, possibly related to biological activity (Wüest and
Lorke, 2003). Other possible source for the enhanced resistance can be related to the existence of

an oscillatory boundary layer, forced by internal seiches (Wüest and Lorke, 2003).
In low forced lakes, ambient turbulence may not be able to mix the BBL. Continuous release of

dissolved solids from the sediment (by mineralization and other sediment processes) can stabilize
the BBL (N2 > 0) and suppress mixing. In this case, Turner’s (1973) ideas can be used to modify

the near-bed scaling due to buoyancy effects. According to Turner, in the presence of a buoyancy
flux, G, defined as in (67), the near-bed turbulence length scale, l = κ z, typically used in the
non-stratified case, should be modified to:

l̃ =
l

φm
=
κ z

φm
(78)

where φm is a dimensionless function of a dimensionless distance from the bed: φm = f(z/L),
where L denotes the Monin-Obukov length, defined as:

Departamento de Ingenieŕıa Civil 14 Universidad de Chile



CI 71Q Hidrodinámica Ambiental

L =
ρ u3
∗b

κ g w′ρ′
= − u

3
∗b

κ G
=

u3
∗b

κ N2 Dt
(79)

Turner suggests that a simple expansion truncated at a linear level allows estimation of φm as:

φm ≈ 1 + α
z

L
(80)

where α is a constant with a value of about 5.
Using the modified length scale, l̃, the near-bed eddy viscosity in the stratified BBL is given by:

νt =
κ z u∗b
φm

(81)

which leads to the buoyancy affected log-linear velocity profile:

ū

u∗b
=

1

κ
{ln (

z

z0
) + α

z

L
} (82)

Using (72), (81) and (82), it can be shown that the dissipation rate, affected by buoyancy, in

the near-bed region is given by:

ε = (
1

1 + γmix
)
u3
∗b
κ z

φm = (1− Rf)
u3
∗b
κ z

φm (83)

However, it can be demonstrated that in the near-bed region, the flux Richardson number is reduced
to:

Rf =
νt

κ L u∗b
=
z/L

φm
(84)

so replacing this result in (83) yields:

ε = (φm −
z

L
)
u3
∗b
κ z

= (1 + (α− 1)
z

L
)
u3
∗b
κ z

(85)

Neglecting the buoyancy correction and using Osborn relation (71), Wüest and Lorke (2003)

maintain that the buoyancy affected eddy diffusivity in the near-bed region of the BBL can be
estimated as:

Dt = γmix
u3
∗b

κ z N2
(86)

It is easy to see from (73) and (84) that γmix decreases to zero as the bed is approached. This
means that buoyancy effects are not important in the very near bed region and that the eddy

diffusivity there is then given by (75). This result indicates that the eddy diffusivity first tends to

increase away from the bed, governed by (75), up to a distance z ≈ γ
1/2
mix u∗b/(κ N), obtained by

equating equations (75) and (86). Above this elevation, buoyancy effects become important and
the eddy diffusivity decreases as z increases, according to (86).

As a final summary of the material presented in the present notes, most of the mixing processes
observed in lakes and reservoirs discussed previously are represented schematically in Fig. 5, which

was adapted from Fischer et al. (1979).
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Figure 5: Sources of mixing in lakes and reservoirs. Adapted from Fischer et al. (1979)
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