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1 Navier-Stokes Equations

The equations governing the motion of an incompressible Newtonian fluid are known as Navier-
Stokes equations. For homogeneous fluid, they can be written in vector notation as:

ρ
D~v

Dt
= ρ {∂~v

∂t
+ (~v · ∇)~v} = −∇p̂ + µ ∇2~v (1)

where D/Dt denotes material or total derivative. It is decomposed into a local or temporal deriva-

tive, related to local acceleration, and an advective component, related to spatial changes of velocity.
In (1), ρ and µ are fluid properties denoting density and dynamic viscosity, respectively, ~v denotes

the velocity vector and p̂ denotes piezometric pressure, including pressure and gravitational force
terms:

p̂ = p + ρ g h (2)

where p is the thermodynamic pressure, g denotes gravity acceleration and h is a vertical axis

defined positive upwards, against the direction of gravity.
All terms in (1) are linear, with the exception of the advective acceleration. The first two

terms in the right hand side represent the balance between mass forces and normal surface forces
associated with the thermodynamic pressure. The last term of the right hand side represents the

effect of viscous forces and, since it is linear, is valid only for Newtonian fluid. This term represents
the diffusion of momentum due to the molecular action of viscosity.

The left hand side of (1), and the advective acceleration in particular, gives the equation a
hyperbolic character, while the viscous term corresponds to a parabolic character. The definite
character of the equation depends on which term is more relevant in a particular situation. Gen-

erally, in laminar flows the dominant character is parabolic (or even elliptic, if the flow is steady),
because viscous diffusion dominates over the non-linear term associated to the advective acceler-

ation. On the contrary, in turbulent flows the advective term becomes dominant as it is able to
generate a generalized flow instability against the stabilizing effect of viscosity.

Equation (1) contains four unknowns, one for each velocity component of ~v and an additional
one corresponding to the thermodynamic pressure p. To close the number of equations required to

solve a given flow problem, the continuity equation derived from the mass conservation principle
needs also to be considered. For an incompressible fluid, the continuity equation reduces to a

condition expressing that ~v is solenoidal:
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∇ · ~v = 0 (3)

This is a linear equation.

Tensor notation is conveniently used to better visualize the different terms composing the gov-
erning equations. Three coordinates are considered: (x1, x2, x3), such that the velocity vector has

three components: (u1, u2, u3). The component of equation (1) in direction xi, for homogeneous
fluid, can be written as:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p̂

∂xi
+ ν

∂2ui
∂xj∂xj

(4)

where ν = µ/ρ denotes kinematic viscosity.
In tensor notation, the continuity equation reduces to:

∂uj
∂xj

= 0 (5)

In (4) and (5) the repeated subindex j implies summation over j = 1, 2, 3.

2 Reynolds averaged equations

Navier-Stokes equations, including the continuity equation, are valid in both laminar and turbulent
flows. It is known, however, that in the case of turbulent flow the velocity becomes unstable,

presenting quasi-random characteristics, with significant variations of flow properties in time, even
in the case of a steady flow, that is, one with constant discharge. The unsteady fluctuations of
flow velocity are driven mainly by the non-linear terms of the equations of motion, that is, those

associated to the advective acceleration. It is known that the flow velocity fluctuations arise due to
the presence of eddies or vortices in the flow, which have a variety of sizes. In general, the largest

eddies have a size that scales with the dimensions of the conduit that contains the flow. In the case
of river flow, for instance, the largest eddies have a size that is commensurate with the flow depth.

Due to the action of the non-linear terms, these large eddies transfer their energy to smaller eddies,
and these, in turn, transfer their energy to even smaller eddies. This energy transfer mechanism

occurs effectively, on average, from the large to the small scales, and is very efficient, in the sense
that very little energy is lost or dissipated in the process. This energy transfer from the large to

the small eddies is called turbulent energy cascade.
The energy dissipation is negligible at the largest scales, nonetheless, at sufficiently small ones

the fluid viscosity dominates the energy dissipation process, transforming the turbulent kinetic

energy of the flow into heat. This energy dissipation occurs at the Kolmogorov’s scale, which
represents the smallest eddy size in a turbulent flow. Kolmogorov’s scale decreases as the Reynolds

number of the flow increases and can be easily smaller than 1 mm in environmental surface water
flows.

There exists a theorem, called Nyquist criterion, stating that to unequivocally resolve a wave of
length L, it is necessary to know at least three points of it. This implies that to adequately resolve

a wavelength L with a discretization grid of size ∆x, then it is required that ∆x < L/2. This
requirement, in terms of the numerical modeling of a turbulent flow using Navier-Stokes equations,

imposes a very strong restriction on the discretization grid to be used in the numerical simulation:
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the grid size must be smaller than half of Kolmogorov’s scale, which, as discussed, is already

very small, much smaller than the dimensions of the conduit that contains the flow. In practice,
this restriction makes it impossible to numerically solve the complete Navier-Stokes equations for

turbulent flow modeling, a method known as Direct Numerical Simulation (DNS), given the present
computing power, except in cases of flows of rather small dimensions. This, because of two reasons.

Firstly, because in order to simulate turbulent flows, an unsteady problem in three dimensions must
be solved; secondly because the dimensions of the flow system relevant to any engineering problem
are much larger than Kolmogorov’s scale, and therefore the three dimensional discretization grid of

the spatial domain required to adequately solve the problem implies computer memory requirements
that easily exceeds those of today’s more advanced computers. Presently, DNS is successfully used

to study turbulent flows, however the possible solutions are limited to rather low Reynolds number
flows in small spatial domains, comparable, at most, with certain laboratory situations.

Because of the above reasons, many other simulation models for turbulent flows have been
developed. A method less restrictive than DNS, in terms of computer memory requirements, is

that known as Large Eddy Simulation (LES). This method is based in the following idea. Since
the largest flow scales have dimensions comparable to those of the spatial domain in which the flow

occurs, they are modulated by the boundary conditions specific to such spatial domain. They are
not universal. On the contrary, the smallest flow scales, eddies with sizes close to or even larger than
the Kolmogorov scale, because of their size, tend to be independent of the boundary conditions of

the flow. Their behavior is, or at least tends to be, universal. In fact, it has been shown empirically
that the smallest scales of any turbulent flow have an universal behavior that is independent of

the particular flow situation analyzed. From this point of view, it seems appropriate to try to
model the small scales based on empirical information, since they behave similarly in any flow. On

the other hand, it does not seem to be a good idea to model the large scales based on empirical
information, as those models would be valid only for the particular conditions for which they were

derived. Taking into account these arguments, the LES method was developed to numerically
resolve the behavior of the large scales of the flow (the large eddies), using empirical models of

universal validity to simulate the behavior of the unresolved scales (the small eddies). Since the
spatial scales that must be resolved in this case are larger than Kolmogorov’s, the discretization
grid of the spatial domain does not result to be as expensive, in terms of memory requirements, as

in the case of DNS. In spite of this, the computational requirements are still large, as the problem
to be solved is still three dimensional and unsteady. The LES method is currently being applied to

the analysis of several different engineering problems, however its use is not yet generalized.
An alternative method to DNS and LES is that called RANS or Reynolds averaged Navier-

Stokes equations. This method is based on the idea that a turbulent flow undergoes quasi- or
pseudo-random fluctuations that can be analyzed statistically. In fact, it is always possible to

distinguish between the behavior of the mean flow and that of the velocity fluctuations about the
mean flow. Since, in general, the fluctuations are a minor fraction of the mean flow velocity (for

instance, the standard deviation of velocity fluctuations of a turbulent open channel flow is about
15 % of the mean flow velocity), then it can be argued that it is more interesting to know the
behavior of the mean flow rather than that of the fluctuations. This leads to the need for a method

to average the Navier-Stokes equations over the turbulence, in order to extract the behavior of
the mean flow velocities, eliminating the turbulent fluctuations from the computation. To perform

this average, a statistical procedure known as ensemble averaging is followed. The repetition of a
large number of realizations of a given turbulent flow, subject to the same initial and boundary
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conditions is considered, in order to average flow properties over all realizations, for every time

instant considered.
Taking into account the ensemble averaging procedure, the instantaneous flow velocity in the xi

direction can be decomposed into a mean value, ūi, where the overbar denotes ensemble average,
plus a fluctuation, u′i:

ui = ūi + u′i (6)

Similarly, for the pressure:

p̂ = ¯̂p + p̂′ (7)

The idea is to introduce this decomposition into the Navier-Stokes equations and then to en-
semble average them over the turbulence. For that, it is convenient to modify (4), multiplying (5)

by ui and adding the resulting equation to (4). This results in:

∂(ūi + u′i)
∂t

+
∂((ūj + u′j) (ūi + u′i))

∂xj
= −1

ρ

∂(¯̂p + p̂′)
∂xi

+ ν
∂2(ūi + u′i)

∂xj∂xj
(8)

Then, taking the ensemble average of this equation, considering that: ¯̄a = ā and ā′ = 0, for any

variable a, yields:

∂ūi
∂t

+
∂(ūj ūi + u′ju

′
i)

∂xj
= −1

ρ

∂¯̂p

∂xi
+ ν

∂2ūi
∂xj∂xj

(9)

On the other hand, the ensemble averaged continuity equation results to be:

∂ūj
∂xj

= 0 (10)

such that multiplying this equation by ūi and adding the result to (9) it finally yields:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂¯̂p

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂u′iu

′
j

∂xj
(11)

Note that the term u′iu
′
j is not zero, since, in general, the velocity fluctuations are correlated. In

particular, the fact that the cross-correlations, u′iu
′
j , with i 6= j, are different from zero implies that

turbulence is not totally random, but it has structure. These correlations represent turbulent fluxes

of momentum, hence they are associated to effective flow stresses. They are known as turbulent or
Reynolds stresses :

τtij = −ρ u′iu
′
j (12)

Since the viscous stresses of the mean flow, according to Stokes law for Newtonian fluid, are
given by:

τvij = 2µ εij = µ (
∂ūi
∂xj

+
∂ūj
∂xi

) (13)

where εij represents the deformation tensor, then it is possible to express the total stress in a

turbulent flow as:
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τij = τvij + τtij = µ (
∂ūi
∂xj

+
∂ūj
∂xi

)− ρ u′iu
′
j (14)

Thus, (11) can also be written as:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂¯̂p

∂xi
+

1

ρ

∂τij
∂xj

(15)

It can be concluded, from this result, that averaging Navier-Stokes equations over the turbulence
does not really solve the problem of the fluctuations, as they continue to appear in the resulting

RANS equations in the form of Reynolds stresses. The attempt to obtain one set of equations
describing the behavior only of the mean flow fails, as unknowns other than mean flow properties

appear in the RANS equations, exceeding the number of available equations. This is the well known
turbulence closure problem. It is relatively easy to show that further averaging the Navier-Stokes
equations in order to obtain equations governing higher order moments of flow properties, always

yields new unknowns in the form of even higher order moments, and the problem never closes.
The RANS method thus requires introducing additional (external) equations to close the prob-

lem. This closure consists of models for the Reynolds stresses. One of the most used hypothesis is
to assume that they follow a behavior similar to that of the viscous stresses. That is, it is assumed

that the turbulent fluxes of momentum (i.e., the Reynolds stresses) are proportional to the rate of
deformation of the mean flow, just as the molecular flux of momentum is proportional to such rate.

The proportionality factor, in analogy to viscous stresses, is called eddy viscosity. This is known as
Boussinesq hypothesis and can be expressed as:

τtij = 2µt εij = µt (
∂ūi
∂xj

+
∂ūj
∂xi

) (16)

where µt denotes eddy viscosity.

It is important to note that µt, is not a fluid property, such as the dynamic viscosity µ, but
a property of the flow, and therefore it is a variable that depends on the flow velocity. Defining

νt = µt/ρ as the kinematic eddy viscosity, it is possible to rewrite RANS equations as:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂¯̂p

∂xi
+

∂

∂xj
{(ν + νt) (

∂ui
∂xj

+
∂uj
∂xi

)} (17)

This result does not really contribute to solve the turbulence closure problem, since it is nec-
essary to specify how the eddy viscosity νt is estimated. Nonetheless, the Boussinesq hypothesis

has proved adequate to solve a large number of practical problems, despite the fact that there exist
many cases for which the gradient hypothesis is simply not valid.

There exist several different methods to model νt. They are termed zero-, one- and two-equation
models, depending on the number of differential equations used to estimate the eddy viscosity. All

of them consider that this variable can be expressed as the product of a velocity scale, v, and a
length scale, l, both representing turbulence:

νt = v l (18)

Different models determine v and l in different ways. For instance, the most basic model

considers v and l as constants, which yields a constant value of νt. A less basic model is that known
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as mixing length model, which assumes that the length scale l corresponds to a mixing length

that determines the amplitude of the displacements of fluid parcels driven by turbulent velocity
fluctuations. For example, for a one-dimensional flow in the x1 direction, with mean velocity ū1(x2),

the mixing length hypothesis gives:

v = |∂ū1

∂x2
| l (19)

and therefore:

νt = |∂ū1

∂x2
| l2 (20)

In wall bounded flows, it is generally assumed that the mixing length increases linearly with
the distance from the wall, such that:

l = κ x2 (21)

where x2 represents a normal coordinate with origin on the wall. In this equation, κ is a coefficient
called von Karman’s constant. Generally, it is considered that l reaches a maximum value at a

certain distance from the wall and remains constant in the outer region of the flow.
The mixing length model is also termed zero-equation model, because the eddy viscosity is

estimated from an algebraic equation, and no differential equation is invoked with this aim. More
sophisticated models are one- and two-equation models, which make use of one or two differential

equations, respectively, on top of the RANS equations, to determine the eddy viscosity.
In one-equation models, the length scale, l, is estimated from an algebraic equation, for instance,

using a model such as that given by (21). However, the turbulence velocity scale, v, is determined
from the turbulent kinetic energy of the flow, K, defined as:

K =
1

2
u′iu
′
i (22)

such that:

v ≈
√

K (23)

and with this assumption:

νt = α
√

K l (24)

where α is a coefficient.

To determine the eddy viscosity, a differential equation for K must be solved. This equation
is obtained from the Navier-Stokes equations. For that, consider the equation for the velocity

fluctuations, which results from the difference between the instantaneous equations (8) and the
RANS equations (9):

∂u′i
∂t

+
∂

∂xj
(u′iu

′
j + u′iūj + ūiu

′
j − u′iu

′
j) = −1

ρ

∂p̂′

∂xi
+ ν

∂2u′i
∂xj∂xj

(25)

Multiplying the equation by u′i and ensemble averaging over the turbulence, a transport equation

for K is obtained, which is given by:
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∂K

∂t
+ ūj

∂K

∂xj
= − ∂

∂xj
{1
ρ

u′j p̂
′ +

1

2
u′iu
′
iu
′
j − 2ν u′iε

′
ij} − u′iu

′
j εij − 2ν ε′ijε

′
ij (26)

where:

ε′ij =
∂u′i
∂xj

+
∂u′j
∂xi

(27)

denotes the deformation tensor associated to the velocity fluctuations.

The last term in the right hand side of equation (26), represents the rate of dissipation of
turbulent kinetic energy, ε:

ε = 2ν ε′ijε
′
ij (28)

The previous to last term in the right hand side of equation (26), represents the rate of pro-
duction of turbulent kinetic energy from the mean flow due to its interaction with the Reynolds
stresses, P :

P = −u′iu
′
j εij (29)

Introducing the eddy viscosity concept, and considering equations (12) and (16), the production
term can be rewritten as:

P = 2 νt (εij)
2 = νt (

∂ūi
∂xj

+
∂ūj
∂xi

)2 (30)

The three first terms in the right hand side of equation (26) are related to molecular and
turbulent diffusion of turbulent kinetic energy and with the contribution of the pressure fluctuations

to the transfer of such energy. The following, simplified, transport equation for K is usually used:

∂K

∂t
+ ūj

∂K

∂xj
=

∂

∂xj
{ νt
σK

∂K

∂xj
}+ P − ε (31)

where σK is the Schmidt coefficient, relating the turbulent diffusivity of K with the eddy viscosity νt.
In this equation, molecular diffusion has been neglected, and the pressure term has been somehow

included in the turbulent diffusion term.
In one-equation models, the dissipation rate of turbulent kinetic energy is modeled as:

ε = CD
K3/2

l
(32)

where CD represents an empirical constant.
In two-equation models, v is determined from K just as in (23), and l is related to ε. It can be

shown that the latter is determined by v and l, such that:

ε ∝ v3

l
(33)

which yields:

l ∝ (
√

K)3

ε
(34)
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and then:

νt = α
K2

ε
(35)

where α is a coefficient. Just as in the case of the one-equation model, K is determined from

equation (26), however in the case of two-equation models an extra equation for ε is needed. It is
not possible to formally obtain such equation from Navier-Stokes equations, as it was done for K.

However, it is accepted that the following model transport equation for ε is valid:

∂ε

∂t
+ ūj

∂ε

∂xj
=

∂

∂xj
{ νt
σε

∂ε

∂xj
}+ c1ε

ε

K
P − c2ε

ε2

K
(36)

where c1ε and c2ε are empirical constants.

The two-equation model resulting from (31), (35) and (36) is called K−ε model. The coefficients
in the model have been calibrated using empirical data and are assumed to be rather universal.

This is not the only two-equation model that exists, but it is one of the best known and, despite its
limitations, it has produced good results when compared with experimental observations in several
engineering applications.

The problems to be solved using the K − ε model can be steady or unsteady in one, two or
three dimensions. Due to the complexity of the resulting equations, it is common, in the majority

of the engineering applications, to introduce a number of approximations in order to simplify the
system of equations to solve. Among them, the boundary layer approximation is usually invoked in

the case of environmental flows, in which vertical gradients of the flow properties are much larger
than the corresponding longitudinal gradients. This means that longitudinal diffusion terms can be

neglected in comparison to vertical diffusion terms and, at the same time, vertical advection terms
can be neglected in comparison to longitudinal advection terms.

In the case of flows in water bodies of large dimensions, usually denoted as geophysical flows,
it is necessary to include the effect of Coriolis force, associated with the rotation of the earth, into
the mass force terms of Navier-Stokes equations.

3 Transport equations

These equations govern the transport of dissolved or suspended species in water flows and are based

on the principle of mass conservation. One of the basic transport processes of dissolved mass in
fluids corresponds to molecular diffusion, which can be modeled by means of Fick’s law. This law
states that the diffusive mass flux in a fluid is proportional to the mass concentration gradient.

Calling C the concentration, expressed as the ratio between the solute mass and the total mass,
then Fick’s law can be written as:

~fm = −ρ D ∇C (37)

where ~fm denotes the diffusive mass flux vector, expressed as mass per unit area per unit time,
ρ denotes fluid density, D denotes the coefficient of molecular diffusion of mass in the fluid (with

dimensions of length squared over time) and the negative sign indicates that the flow of mass is
from zones of large mass concentration towards zones of lower mass concentration.
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The solute mass conservation equation applied onto a control volume of a constant density fluid,

considering both advective fluxes due to the instantaneous velocity field and diffusive fluxes due to
molecular action, can be written in vector form as:

ρ (
∂C

∂t
+ (~v · ∇)C) = −∇ · ~fm (38)

or, invoking Fick’s law:

∂C

∂t
+ (~v · ∇)C = D ∇2 C (39)

This equation expressed in tensor notation is:

∂C

∂t
+ uj

∂C

∂xj
= D

∂2 C

∂xj∂xj
(40)

The conservative form of the mass conservation equation is obtained by taking the fluid conti-

nuity equation (5) multiplied by C and adding the result to equation (40):

∂C

∂t
+

∂(uj C)

∂xj
= D

∂2 C

∂xj∂xj
(41)

This equation is valid for instantaneous conditions, in both laminar and turbulent flows. To
analyze the turbulent flow case, Reynolds decomposition of flow velocities (6) is introduced. This

is also applied to the instantaneous concentration, such that it can also be expressed as the sum of
a mean value and a fluctuation:

C = C̄ + C ′ (42)

Introducing these decompositions in (41) and taking the ensemble average over the turbulence
yields:

∂C̄

∂t
+

∂(ūj C̄)

∂xj
= D

∂2 C̄

∂xj∂xj
−

∂(u′j C ′)

∂xj
(43)

The last term of the right hand side represents turbulent mass fluxes, associated to the so
called turbulent diffusion process. This process is analogous to molecular diffusion, but much more

effective in terms of mass transport, since length scales of turbulent motion are much larger than
those associated to molecular motion.

As with the Navier-Stokes equations, the ensemble averaging process to eliminate fluctuating
terms from the analysis leads to a closure problem, this time for the turbulent mass fluxes. Just as

in the case of the Reynolds stresses, an external model is required to close the turbulent fluxes. By
analogy with Fick’s law, a gradient model can be used, based on coefficients for turbulent diffusion,

Dtj . Such coefficients are analogous to molecular diffusion coefficients, but of larger magnitude,
since turbulent diffusion is much more effective than molecular diffusion, as already discussed. The
molecular diffusivity D is independent of direction, since molecular activity is isotropic. Turbulent

diffusivities, Dtj , on the other hand, are direction dependent, as turbulent flows are typically
anisotropic. The gradient model for turbulent mass fluxes is:
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u′j C ′ = −Dtj
∂C̄

∂xj
(44)

where, in this particular case, the repeated subindex in the right hand side of the equation does
not imply summation.

Replacing this model in (43) yields:

∂C̄

∂t
+

∂(ūj C̄)

∂xj
= D

∂2 C̄

∂xj∂xj
+

∂

∂xj
{Dtj

∂C̄

∂xj
} (45)

or:

∂C̄

∂t
+

∂(ūj C̄)

∂xj
=

∂

∂xj
{(D + Dtj)

∂C̄

∂xj
} (46)

where D can be neglected in comparison with Dtj .
The so called Schmidt coefficient, σ, is defined as the ratio between the kinematic viscosity of

the fluid, ν, and the molecular diffusion coefficient, D. Similarly, a turbulent Schmidt number, σt
can be introduced in (46) to represent the ratio between the kinematic eddy viscosity, νt, and the

turbulent diffusivity, Dt:

∂C̄

∂t
+

∂(ūj C̄)

∂xj
=

∂

∂xj
{(ν

σ
+

νt
σt

)
∂C̄

∂xj
} (47)

where νt can be estimated using any of the zero-, one-, or two-equation models described in the

previous section. It is worth noting that the turbulent diffusivities resulting from this procedure are
isotropic. This points out an important feature of the eddy viscosity models discussed so far, they

all consider νt as an isotropic property. It is left to the reader to investigate about non-isotropic
eddy viscosity models.

4 Saint-Venant equations

As already discussed, several approximations to the Navier-Stokes equations are usually introduced
to overcome their complexity in typical engineering applications. One of those approximations leads

to what is known as Saint-Venant equations or shallow water wave equations. These equations can
be used to analyze one- or two-dimensional flow situations. Open-channel and river flows are

typically one-dimensional and in this case the main interest usually is to determine the longitudinal
variation of flow properties in the longitudinal direction. The one-dimensional version of Saint-

Venant equations is obtained by integrating Navier-Stokes and continuity equations in the flow
cross-section, assuming hydrostatic pressure in the direction normal to the bottom wall. The two-

dimensional version of these equations is obtained by depth averaging Navier-Stokes and continuity
equations, such that the resulting equations describe the fluid motion in a plane parallel to the
bottom wall.

Information regarding the vertical structure of the flow is lost when the cross-section averaging
or depth averaging procedures are applied. This is not important, in as much as such information

is less relevant than longitudinal (1-D case) or transverse variations (2-D case) of flow properties
in a given flow situation. Saint-Venant equations are used in many engineering applications, since
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flow and transport phenomena in rivers, estuaries and shallow water bodies are usually resolved by

them with sufficient accuracy.
Consider the two-dimensional case first. Integrating the Reynolds averaged continuity equation

in the direction normal to the bottom wall, z, between the bottom (z = η) and the free surface
(z = η + H), yields:

∫ η+H

η
{∂ū

∂x
+

∂v̄

∂y
+

∂w̄

∂z
} dz = 0 (48)

where H is the local flow depth.
According to Leibnitz’s integration rule:

∂

∂r
{
∫ b

a
f ds} =

∫ b

a

∂f

∂r
ds + f(b)

∂b

∂r
− f(a)

∂a

∂r
(49)

equation (48) can be rewritten as:

∂

∂x
{
∫ η+H

η
ū dz} − ū(η + H)

∂(η + H)

∂x
+ ū(η)

∂η

∂x
+

∂

∂y
{
∫ η+H

η
v̄ dz} − v̄(η + H)

∂(η + H)

∂y
+ v̄(η)

∂η

∂y
+

w̄(η + H)− w̄(η) = 0 (50)

The kinematic boundary condition is invoked now, which states that if F (x, y, z, t) is a function
that describes the free surface, then:

∂F

∂t
+ (~v · ∇)F = 0 (51)

where ~v represents, in this case, the velocity vector at the free surface.
Describing the free surface with the equation:

F (x, y, z, t) = z − (η(x, y) + H(x, y, t)) = 0 (52)

and using (51) yields:

∂H

∂t
+ ū(η + H)

∂(η + H)

∂x
+ v̄(η + H)

∂(η + H)

∂y
− w̄(η + H) = 0 (53)

The no-slip and no-penetration boundary conditions at the bottom wall are: ū(η) = v̄(η) =

w̄(η) = 0. Replacing these conditions and equation (53) in (50), finally yields:

∂(< ū > H)

∂x
+

∂(< v̄ > H)

∂y
+

∂H

∂t
= 0 (54)

which represents the depth averaged continuity equation. Here, the following definitions have been
introduced:

∫ η+H

η
ū dz =< ū > H (55)
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∫ η+H

η
v̄ dz =< v̄ > H (56)

where the triangular brackets denote depth-average. In this way, < ū > and < v̄ > denote the
depth-averaged velocities, parallel to the bottom wall, in the x and y directions, respectively.

Following similar procedures it is possible to obtain the depth-averaged version of Reynolds
equations in the x and y directions, for which the momentum equation in the z direction must be
replaced by the hydrostatic law:

¯̂p = p̄ + ρ g z = constant in z (57)

Evaluating this equation at the free surface (z = η + H) where the relative pressure p̄ vanishes,
yields:

¯̂p = ρ g (η + H) (58)

With these considerations, it is easy to obtain:

∂(< ū > H)

∂t
+

∂(βx < ū >2 H)

∂x
+

∂(βxy < ū >< v̄ > H)

∂y
=

−g H
∂(η + H)

∂x
+

1

ρ
{∂(< τxx > H)

∂x
+

∂(< τxy > H)

∂y
+ τxz(η + H)− τxz(η)} (59)

∂(< v̄ > H)

∂t
+

∂(βxy < ū >< v̄ > H)

∂x
+

∂(βy < v̄ >2 H)

∂y
=

−g H
∂(η + H)

∂y
+

1

ρ
{∂(< τxy > H)

∂x
+

∂(< τyy > H)

∂y
+ τyz(η + H)− τyz(η)} (60)

Equations (54), (59) and (60) constitute the Saint-Venant two-dimensional equations. The
following definitions have been used in (59) and (60):

∫ η+H

η
(ū)2 dz = βx < ū >2 H (61)

∫ η+H

η
(v̄)2 dz = βy < v̄ >2 H (62)

∫ η+H

η
ū v̄ dz = βxy < ū >< v̄ > H (63)

where βx, βy and βxy are Boussinesq coefficients, which have values that depend on the vertical
structure of the flow velocities. It is usually assumed that these coefficients can be set to a value

of 1.0 without much error, so they disappear from the formulation.
Equations (59) and (60) can take different forms depending on the assumptions and closures

used for the terms in their right hand side. For instance, the terms τxz(η + H) and τyz(η + H)
correspond to surface shear stresses in the x and y directions, respectively, which are determined

by the wind velocity blowing over the free surface. On the other hand, the terms τxz(η) and τyz(η)
correspond to the bed shear stresses in the x and y directions, respectively. To estimate them it is
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necessary to introduce a closure for resistance, relating shear stress with depth-averaged velocity.

Using the friction slopes in the x and y directions, Jx and Jy , respectively, yields:

τxz(η) = ρ g H Jx (64)

τyz(η) = ρ g H Jy (65)

Manning’s equation can be used as resistance closure:

Jx = (
< ū > n

H2/3
)2 (66)

Jy = (
< v̄ > n

H2/3
)2 (67)

where n denotes Manning’s coefficient, to obtain a simple estimation of the bed shear stresses.

The terms < τxx >, < τxy > and < τyy >, which represent different components of the total
depth-averaged stress (viscous and turbulent), also need closures. They can be obtained by depth-

averaging the zero-, one-, or two-equation models discussed previously.
To close this discussion, the one-dimensional version of the Saint-Venant equations are derived

next. This is probably the most well known version of these equations, and has been extensively used

in flood routing applications, both in open channel and river flows, for which the one-dimensional
approximation is appropriate. In this case, the Reynolds equations are averaged over the cross

section of the flow.
A more direct way to obtain the one-dimensional Saint-Venant equations is to consider a mass

and momentum balance over an infinitesimal control volume of length dx and cross sectional area
Ω, which can vary both in time and space. Here x represents a longitudinal coordinate in the

direction of the flow discharge, Q.
For an incompressible liquid, mass conservation requires that a net volume inflow must be

balanced by a corresponding increase of volume:

∂Ω

∂t
+

∂Q

∂x
= q (68)

where q represents a lateral inflow discharge per unit length in the x direction.

In the case of conservation of longitudinal momentum, the net variation of momentum (consid-
ering both the unsteady and spatial variations), must be balanced by the total external force acting

on the control volume. The total force is composed of: gravity, hydrostatic pressure forces acting
on the upstream and downstream flow cross sections, surface shear stress acting on the surface area

(of width B and length dx) and bottom shear stress acting on the wetted perimeter, χ, over the
whole length of the control volume. The momentum balance can be written as:

∂Q

∂t
+

∂(β Q2/Ω)

∂x
= −g Ω

∂(η + H)

∂x
+

1

ρ
{τxz(η + H) B − τxz(η) χ} (69)

where β denotes the Boussinesq coefficient, which depends on the velocity structure within the flow
cross section (usually taking values close to unity), τxz(η +H) denotes the wind shear stress acting

on the free surface and τxz(η) denotes the bottom shear stress. Here z = η is the local bottom
elevation and z = η + H is the local elevation of the free surface, where H is the flow depth and z

a coordinate normal to the bottom wall.
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To estimate τxz(η) a resistance closure is needed, just as in the two-dimensional case. For that

the following equation can be used:

τxz(η) = ρ g Rh J (70)

where Rh = Ω/χ denotes the hydraulic radius of the flow cross section and J is the friction slope,
which can be estimated using Manning’s equation:

J = (
Q n

ΩR
2/3
h

)2 (71)

where n is Manning’s coefficient.

The momentum transfer of the lateral inflow, q, has been neglected in equation (69), assuming
that this discharge is small enough, or that the inflow is perpendicular to the x direction. It is easy

to incorporate an additional term in (69) to take into account the momentum transfer from the
lateral flow, in case it becomes important.

5 The case of Heterogeneous fluid

Environmental flows usually exhibit density variations in the water column as well as in the longi-

tudinal direction. Flows in lakes and reservoirs, estuaries and coastal zones are typically stratified
due to temperature variations, salinity, or both. In these cases, density differences are typically

small, and the Boussinesq approximation is usually introduced, which neglects density variations
in the inertial terms of the momentum equations, while keeping them in the mass force terms. In

these cases, production or reduction of turbulent kinetic energy due to density differences in the
flow must be included as extra source terms in the equations for K and ε.

A common assumption regarding heterogeneous fluids is that of incompressibility. Considering
the complete continuity equation:

Dρ

Dt
+ ρ (∇ · ~v) = 0 (72)

and imposing the incompressibility condition: ∇·~v = 0, an equation governing the density variations
is obtained:

Dρ

Dt
=

∂ρ

∂t
+ (~v · ∇)ρ = 0 (73)

Consider again Navier-Stokes equation (1), but this time with a variable density, ρ:

ρ
D~v

Dt
= −∇p + ρ ~g + µ ∇2~v (74)

where ~g denotes the gravity acceleration vector. If ρ is expanded about a constant reference value

ρ0, such that:

ρ = ρ0 + ρ̃ (75)

where ρ̃ is a small density variation, and it is assumed that this variation is associated with a small
deviation of the pressure, p̃, with respect to a reference state of hydrostatic equilibrium represented

by a pressure p0, such that:
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p = p0 + p̃ (76)

then, for the reference hydrostatic state: ∇p0 = ρ0 ~g, and equation (74) can be rewritten as:

(1 +
ρ̃

ρ0
)

D~v

Dt
= − 1

ρ0
∇p̃ +

ρ̃

ρ0
~g + ν ∇2~v (77)

where ν = µ/ρ0 represents the kinematic viscosity. It is interesting to note that only density

differences with respect to a reference value are relevant in determining the effect of gravity in an
heterogeneous fluid. The overall effect is that of a reduced gravity: g′ = (ρ̃/ρ0) g.

If ρ̃ is indeed small compared to ρ0, then the term ρ̃/ρ0 can be neglected in the left hand
side of the equation, since it produces only a small correction to the inertia compared to a fluid of
density ρ0. On the contrary, the density variation is of primary importance in the gravity term, also

called buoyancy term in this context. Boussinesq approximation consists of neglecting variations
in density in so far as they affect inertia, but retaining them in the buoyancy terms. Variations in

fluid properties due to ρ̃ are also neglected in this approximation. Equation (77) then reduces to:

D~v

Dt
= − 1

ρ0
∇p̃ +

ρ̃

ρ0
~g + ν ∇2~v (78)

Consider again Navier-Stokes equation with variable density (74). Taking the curl of this
equation leads to an equation for the vorticity, ~ω = ∇× ~v:

D~ω

Dt
= ~ω · ∇~v + ν ∇2~ω +∇p× ∇(

1

ρ
) (79)

Again, ν = µ/ρ ≈ µ/ρ0 is the kinematic viscosity, which is taken to be a constant, neglecting the

effect of ρ̃ on this property. The last term of the right hand side vanishes in the case of a fluid of
constant density. In such a case, vorticity is produced by vortex stretching (first term of the right

hand side) or by molecular diffusion of vorticity from the boundaries of the flow, where the no-slip
boundary condition applies (second term of the right hand side). In a heterogeneous fluid, vorticity

will also be produced whenever the fluid is displaced from a state in which ∇p and ∇ρ are parallel
(condition for which the vector product is zero). In the simple case of a stably stratified fluid in

hydrostatic equilibrium, vorticity can be produced by displacement of density surfaces away from
the horizontal. The vorticity will oscillate in magnitude and direction with the density surfaces, so

that internal waves are in fact rotational flow (in the sense that ~ω 6= 0). In the case of unstable
stratification, the last term of the right hand side of equation (79) will cause the vorticity to increase
monotonically during the development of convection.

The production of vorticity also implies the production of circulation Γ:

Γ =

∫

C
~v · d~l =

∫

S
~ω · d~S (80)

where d~l is a line element of a closed curve in fluid space C, and d~S is a surface element of the

corresponding surface S bounded by C. Considering the simple case of an inviscid fluid (so that
the second term of the right hand side of (79) vanishes) then :

DΓ

Dt
= −

∫

C

1

ρ
∇p · d~l =

∫

S
(∇p× ∇(

1

ρ
)) · d~S (81)
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In the case of a homogeneous fluid, the right hand side of this equation vanishes and Kelvin’s

theorem is obtained, which states that in an inviscid fluid of constant density the circulation is
conserved. When ρ is variable along the path of integration, circulation is generated unless density

and pressure iso-surfaces coincide.
When vorticity and circulation are generated due to variable density effects (∇p×∇(1/ρ) 6= 0)

the resulting flow is called baroclinic, as opposed to a barotropic flow, which is driven by pressure
gradients.
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