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Consider a fluid of density ρ, intruding along an inclined plane, with slope S, underneath a

stagnant ambient fluid of lesser uniform density, ρ0 (Fig. 1). The local density of the underflow or
density current is given by:

ρ = ρ0 (1 + β) ; β =
∆ρ

ρ0
=

(ρ− ρ0)

ρ0
(1)

where β(x, z, t) is the instantaneous value of the relative density difference between the heavier
fluid of the underflow or and the lighter ambient fluid. This variable fluctuates in time due to

turbulence, nonetheless it is always positive, on the mean, for submerged density currents.

1 Governing Equations

If h is a measure of the thickness of the density current and H denotes the total depth of the
ambient fluid, it is assumed in the following analysis that h/H << 1. With this assumption,
boundary layer approximations are invoked to simplify the equations governing the motion of the

density current. It is also assumed that β is small and the Boussinesq approximation can be used
in the analysis.

With the Boussinesq approximation, the instantaneous equations governing fluid motion in the
density current are:
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Figure 1: Submerged density current.
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ρ0 {
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
} = −∂p

∂x
+ ρ0 ν {

∂2u

∂x2
+
∂2u

∂z2
}+ g ρ0 (1 + β) S (2)

ρ0 {
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
} = −∂p

∂z
+ ρ0 ν {

∂2w

∂x2
+
∂2w

∂z2
} − g ρ0 (1 + β) (3)

∂u

∂x
+
∂w

∂z
= 0 (4)

∂β

∂t
+
∂u β

∂x
+
∂w β

∂z
= D {∂

2β

∂x2
+
∂2β

∂z2
} (5)

where (2) and (3) correspond to the momentum equations in directions x and z, respectively, (4)

corresponds to the conservation of volume equation and (5) corresponds to the conservation of mass
(or relative density difference of the density current) equation. Note that it is precisely β which

drives the density current through buoyancy. In those equations u and w denote the instantaneous
streamwise and bed normal velocity components, p denotes thermodynamic pressure, and ν denotes
kinematic viscosity of the moving fluid.

The latter system of equations is next averaged over the turbulence. With that aim, each
variable is decomposed into a mean value plus a fluctuation:

u = ū+ u′ ; w = w̄+ w′ ; β = β̄ + β′ ; p = p̄+ p′ (6)

With this decomposition, averaging over the turbulence reduces the previous system of equations
to:

ρ0 {
∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
} = −∂p̄

∂x
+ ρ0 ν {

∂2ū

∂x2
+
∂2ū

∂z2
}+ g ρ0 (1 + β̄) S − ρ0

∂u′2

∂x
− ρ0

∂u′w′

∂z
(7)

ρ0 {
∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z
} = −∂p̄

∂z
+ ρ0 ν {

∂2w̄

∂x2
+
∂2w̄

∂z2
} − g ρ0 (1 + β̄)− ρ0

∂w′2

∂z
− ρ0

∂u′w′

∂x
(8)

∂ū

∂x
+
∂w̄

∂z
= 0 (9)

∂β̄

∂t
+
∂ū β̄

∂x
+
∂w̄ β̄

∂z
= D {∂

2β̄

∂x2
+
∂2β̄

∂z2
} − ∂u′β′

∂x
− ∂w′β′

∂z
(10)

Where the terms u′2, w′2, u′w′, represent Reynolds turbulent stresses, and the terms u′β′ and
w′β′, represent Reynolds turbulent mass fluxes.

The next step consists of reducing the Reynolds averaged equations by introducing boundary
layer approximations. For that, the following scaling is used:

ū ∝ U ; z ∝ h ; x ∝ L ; β ∝ B (11)

where U denotes the mean velocity characteristic of the density current, h denotes the height of

the current, L denotes a length scale in the streamwise direction, and B represents a mean value
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of the relative density difference of the current. The boundary layer approximation is obtained by

invoking the condition: h/L << 1.
To further simplify the analysis, the assumption of a steady density current is considered.

From (9) it is concluded that

U

L
∝ W

h
(12)

and therefore W ∝ U h/L, where W is a measure of the bed normal velocity scale. Since h/L << 1

then it is obvious that W is of a lower magnitude than U .
Introducing the scales U , W , h and L, neglecting the term:

u′2

U2
<< 1 (13)

and taking the limits: Re = U L/ν → ∞ and U h/ν → ∞, in order to neglect small terms in the
equations, it is possible to reduce (7) to:

ρ0 {ū
∂ū

∂x
+ w̄

∂ū

∂z
} = −∂p̄

∂x
+ g ρ0 (1 + β̄) S − ρ0

∂u′w′

∂z
(14)

Repeating the same procedure for (8) yields the hydrostatic pressure approximation:

0 = −∂p̄
∂z
− g ρ0 (1 + β̄) (15)

Doing a similar treatment of (10), neglecting molecular diffusion with respect to turbulent

diffusion and neglecting the streamwise turbulent flux of β with respect to the corresponding
streamwise advective flux, such that: u′β′/(U B) << 1, and finally assuming that even though

w′β′/(U B) << 1 the corresponding vertical gradient of this variable is not negligible, yields:

∂ū β̄

∂x
+
∂w̄ β̄

∂z
= −∂w

′β′

∂z
(16)

Integrating (15) in the vertical and imposing a zero value for the pressure at the free surface

gives an expression for the pressure distribution of the flow:

p̄(x, z) = ρ0 g

∫ H(x)

z
(1 + β̄(x, z)) dz (17)

Taking the derivative of this result with respect to x yields:

∂p̄

∂x
= ρ0 g S + ρ0 g

∂

∂x

∫ ∞

0
β̄ dz (18)

Where the relationship:

∂H

∂x
= S (19)

has been used, assuming a horizontal free surface, unperturbed by the submerged density current,

and the upper limit of integration, H , has been replaced by the limit z →∞, assuming H/h >> 1.
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2 Depth-averaged Equations

Next, the simplified equations of motion are integrated in the vertical.
Replacing (18) in (14) yields:

ρ0 {ū
∂ū

∂x
+ w̄

∂ū

∂z
} = −ρ0

∂

∂x

∫ ∞

z
β̄ dz +

∂τ

∂z
+ g ρ0 β̄ S (20)

where τ = −ρ0u′w′, represents the Reynolds shear stress in the x direction.

It is easy to see, using the conservation of volume equation (4) that:

ū
∂ū

∂x
+ w̄

∂ū

∂z
=
∂ū2

∂x
+
∂ūw̄

∂z
(21)

Replacing this result in (20) gives:

ρ0 {
∂ū2

∂x
+
∂ūw̄

∂z
} = −ρ0

∂

∂x

∫ ∞

z
β̄ dz +

∂τ

∂z
+ g ρ0 β̄ S (22)

equation that can be depth-averaged to obtain:

∂

∂x

∫ ∞

0
ρ0 ū

2 dz = −ρ g ∂
∂x

∫ ∞

0

∫ ∞

z
β̄ dz′dz − τb + ρ0 g S

∫ ∞

0
β̄ dz (23)

where the no-slip, no-penetration, no surface streamwise velocity and no surface shear stress bound-

ary conditions have been imposed: (ūw̄)|z=0 = 0, (ūw̄)|z=∞ = 0, τ |z=0 = τb, τ |z=∞ = 0, and τb
denotes the bottom shear stress.

Integrating now (9) yields:

∂

∂x

∫ ∞

0
ū dz = w̄e (24)

where the boundary conditions: w̄|z=0 = 0 and w̄|z=∞ = −w̄e have been used. Here w̄e denotes the
entrainment velocity or rate of entrainment of ambient fluid into the density current due to mixing

effects.
Integrating (16) yields:

∂

∂x

∫ ∞

0
ū β̄ dz = 0 (25)

where the zero surface relative density difference, no-penetration, no surface and no bottom mass

flux boundary conditions: β̄|z=∞ = 0, w̄|z=0 = 0, w′β′|z=∞ = 0, w′β′|z=0 = 0, have been imposed.
The result (25) implies that the density current mass flux associated to β in direction x remains

constant, and therefore it must be equal to the value of this flux at the origin of the density current
(U0 B0 h0), which is imposed externally:

∫ ∞

0
ū β̄ dz = constant = U0 h0 B0 (26)

i.e., the flux U0 B0 h0 is an invariant of the problem.

To continue with the analysis it is necessary to introduce further assumptions. In particular,
closure relationships for the entrainment velocity, w̄e, and the bottom shear stress, τb are required.

These are specified as:
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w̄e = ew U (27)

τb = ρ0 cf U
2 (28)

where ew denotes an entrainment coefficient and cf a bottom friction coefficient.
It is necessary now to define more precisely the values of the thickness, h, the mean velocity,

U , and the mean relative density difference, B, of the density current. These definitions can be
expressed in terms of the following moments:

U h =

∫ ∞

0
ū dz ; U2 h =

∫ ∞

0
ū2 dz ; U B h =

∫ ∞

0
ū β̄ dz (29)

where the first integral corresponds the volumetric flow discharge per unit width transported by

the submerged current, the second integral corresponds to the streamwise momentum flux of the
density current, and the third integral corresponds to the buoyancy flux transported by the density

current in direction x.
From these integrals, U , h and B can be defined as:

U =
U2 h

U h
=

∫
ū2 dz∫
ū dz

; h =
(U h)2

U2 h
=

(
∫
ū dz)2

∫
ū2 dz

; B =
U B h

U h
=

∫
ū β̄ dz∫
ū dz

(30)

which all vary in the x direction.

3 Self Similar Solution

To further simplify the equations governing the motion of the density current, a self similarity
hypothesis is introduced for the vertical distributions of ū and β̄. This similarity hypothesis reduces
the dependence on x of the vertical distributions of ū and β̄, such that a collapse of them in one

unique curve, when the variables are made dimensionless using the proper scaling, is possible.
Consider the following normalization:

ū

U
= f1(η) ;

β̄

B
= f2(η) ; η =

z

h
(31)

Experimental results have shown that the curves f1 and f2 are indeed independent of x and they

produce a satisfactory collapse of the experimental data (Parker et al., 1987).
Given the above definitions, the following conditions must hold if the proposed normalization

is effective:

∫ ∞

0
f1(η)dη = 1 ;

∫ ∞

0
f2

1 (η) dη = 1 ;

∫ ∞

0
f1(η) f2(η) dη = 1 (32)

Replacing (27), (28) and (30) in (23), (24) and (25) yields:

d(U2 h)

dx
= S1 g B h S − 1

2
S2 g

d(B h2)

dx
− cf U2 (33)

d(U h)

dx
= ew U (34)
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d(U B h)

dx
= 0 (35)

where S1 and S2 are shape factors defined by:

S1 =

∫ ∞

0
f2(η) dη ; S2 = 2

∫ ∞

0

∫ ∞

η
f2(η) dηdη (36)

which, as it is verified experimentally, have values close to unity.

From (35) it is concluded that the buoyancy flux is invariant along x, just as it was discussed
previously:

U B h = U0 B0 h0 = constant (37)

where U0, h0 and B0 denote the mean velocity, height and mean relative density difference, respec-
tively, at the origin of the the density current, which corresponds to the boundary condition of the

submerged flow.
Using the property of constant buoyancy flux, it is possible to manipulate equations (33) and

(34) to obtain:

dh

dx
=

(2− 1
2 S2 Ri) ew − S1 Ri S + cf

(1− S2 Ri)
(38)

h

3 Ri

dRi

dx
=

(1 + 1
2 S2 Ri) ew − S1 Ri S + cf

(1− S2 Ri)
(39)

where Ri denotes the Richardson number of the density current, defined as:

Ri =
g B h

U2
(40)

It is easy to see that Ri is the inverse of the densimetric Froude number of the flow.
The equations (38) and (39) were first proposed by Ellison and Turner in 1959. This set of

equations, which is analogous to the equation for the computation of backwater curves in open
channel flows, can be used to determine the gradually varied flow of submerged density currents.

Moreover, by neglecting ew in the above equations the result obtained in a previous set of notes for
non-mixing underflows is recovered.

In non-mixing density currents (or even in open channel flows), h and Ri are linked through the
continuity equation. Since in such case there is no entrainment of ambient fluid into the underflow,

(34) gives U h = q = constant, where q denotes the volumetric discharge per unit width. The
Richardson number in this case results to be proportional to h3. This leads to a uniform flow

situation for which dh/dx = 0, that is, to a flow in which h is constant and therefore Ri is also
constant. In the case of density currents, however, the volumetric discharge U h increases along
x due to entrainment of ambient fluid. In such case, B varies along the current and therefore Ri

varies with both h and B. As a result, no uniform flow situation (dh/dx = 0) is possible in the
case of density currents.

It is important to note that the use of (38) and (39) requires knowledge about the shape factors,
S1 and S2. Those can only be obtained from experimental observations.
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The entrainment coefficient, ew , is, in general, a function of the Richardson number of the flow.

This coefficient can be evaluated using the relationship proposed by Garćıa (1985):

ew =
0.075

(1 + 715 Ri2.4)0.5
(41)

It is easy to see that when Ri→ 0, ew → 0.075, which is the value corresponding to a wall plane
jet (that is, to a flow without stratification). For large values of Ri, (41) can be approximated by:

ew = 2.8× 10−3 Ri−1.2 (42)

4 Analysis of gradually varied flow types in density currents

In this section the possible backwater curves corresponding to submerged density currents are
analyzed. As it is shown next, these backwater curves are somewhat similar to those of open

channel flow, however due to the entrainment of ambient fluid into the underflow, the number of
possible situations is larger and more complex flow situations are possible.

4.1 Governing equations

The already obtained equations governing the motion of density currents can be rewritten as:

dh

dx
=

(2 ew + cf)− (S1 S + 1
2 S2 ew) Ri

(1− S2 Ri)
(43)

h

3 Ri

dRi

dx
=

(ew + cf)− (S1 S − 1
2 S2 ew) Ri

(1− S2 Ri)
=
dh

dx
− ew (44)

dU

dx
= − U

3 Ri

dRi

dx
(45)

1

B

dB

dx
= −ew

h
(46)

ew = f(Ri) (47)

The last equation simply indicates that the entrainment coefficient is a function of the Richardson

number of the flow. According to (41) ew always decreases as Ri increases.

4.2 Characteristic values of the Richardson number

From the analysis of the above system of equations, the following characteristic values of the
Richardson number are deduced:

• Critical flow

This condition occurs when:

dh

dx
→ ±∞ (48)
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Therefore, from (43) the critical Richardson number of the flow is given by:

Ric =
1

S2
(49)

and the following flow conditions are defined: Ri > Ric corresponds to subcritical flow, and
Ri < Ric corresponds to supercritical flow.

• Normal or equilibrium flow

This condition occurs when:

dRi

dx
= 0 (50)

that is, when Ri = Rin = constant, where Rin represents the normal value of the Richardson

number. Replacing in (44) yields:

Rin =
ewn + cf

S1 S − 1
2 S2 ewn

(51)

where ewn represents the entrainment coefficient associated to the normal flow given by:

ewn = f(Rin) = constant (52)

It is important to note that since, from a physical point of view, the Richardson number is
always positive, from (51) it is concluded that the following condition must always hold:

S1 S >
1

2
S2 ewn (53)

For these conditions, from (43) it is concluded that the normal flow depth hn is given by:

dhn
dx

= ewn (54)

which implies that hn increases linearly with the distance x, due to entrainment of ambient

fluid into the density current, according to the equation:

h(x) = h0 + ewn (x− x0) (55)

where h0 represents a boundary condition for the integration, imposed at x = x0.

Replacing (50) in (45) yields:

dU

dx
= 0 (56)

which indicates that for normal flow conditions both the Richardson number and the mean

velocity of the underflow are constant. This last condition gives: U = Un = constant, where
Un denotes the normal flow velocity. Interestingly, this results occurs as the flow depth

increases along x.
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Finally, (46) implies that the mean relative density difference varies as:

Bn =
Rin U

2
n

g hn(x)
(57)

which from (55) implies that Bn decreases along x and that the current tends to disappear
due to dilution created by the entrainment of ambient fluid into the underflow.

• Uniform flow

This condition occurs when:

dh

dx
= 0 (58)

Replacing this condition in (43) yields the Richardson number associated with the uniform
flow:

Riu =
2 ewu + cf

S1 S − 1
2 S2 ewu

(59)

However, from (47) it is concluded that (58) implies:

dRi

dx
= −ewu

3 Riu
hu

≤ 0 (60)

which indicates that the Richardson number of this flow cannot remain constant, equal to
Riu, unless ew = 0. In other words, uniform flow depth density currents are not possible,

unless mixing with the ambient fluid is negligible.

4.3 Gradually varied density current types

With the aim of analyzing the possible different flow situations associated with density currents, it

is convenient to introduce the following definitions:

Ri1 =
2 ew + cf

S1 S + 1
2 S2 ew

(61)

Ri2 =
ew + cf

S1 S − 1
2 S2 ew

(62)

Both Ri1 and Ri2 are functions of the Richardson number of the flow. Moreover, from (51) and

(59) it can be shown that:

Ri1(Riu) = Riu (63)

Ri2(Rin) = Rin (64)

Introducing the definitions (61) and (62) in equations (43) and (44) yields:
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dh

dx
=
S1 S + 1

2 S2 ew

S2

(Ri1 −Ri)
(Ric −Ri)

(65)

h

3 Ri

dRi

dx
=
S1 S − 1

2 S2 ew

S2

(Ri2 − Ri)
(Ric − Ri)

=
dh

dx
− ew (66)

With the aim of analyzing the sign of the gradients of h and Ri of equations (65) and (66), it
is convenient to note that the following relationships are valid:

Ri < Ric → Rin < Riu (67)

Ri > Ric → Rin > Riu (68)

Ri < Rin → Ri2 > Ri (69)

Ri > Rin → Ri2 < Ri (70)

Ri < Rin → ew > ewn (71)

Ri > Rin → ew < ewn (72)

Ri < Riu → Ri1 > Ri (73)

Ri > Riu → Ri1 < Ri (74)

The classification of the possible flow types is done based on the value of Ri relative to the three
characteristic values of the Richardson number in density currents, Ric, Rin, Riu. The bottom slope

is defined as mild if:

Ric < Ri < Rin (75)

and as steep if:

Rin < Ri < Ric (76)

According to this classification, eight different cases of backwater curves are obtained for the

density currents in analysis, which are summarized in Figs. 2 and 3. Those cases have been
identified in the figures, in terms of the sign of the gradients of h and Ri in each case, which are

indicated with the signs ”+” (indicating that the gradient is positive) and ”−” (indicating that the
gradient is negative).
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Case Backwater typed Ri/d x d h/d x

+

−
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+

− −

+ +
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hn
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Figure 2: Density currents in Mild slope (Ric < Riu < Rin).

Case Backwater typed Ri/d x d h/d x
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−
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Figure 3: Density currents in Steep slope (Rin < Riu < Ric).
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