Aspects of the Development of a New Copper Electrowinning Cell based on Reactive Electrodialysis
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Limitations of conventional copper electrowinning cells

a) low mass transfer rates due to low electrolyte flowrates, which limit the cell current density;

b) low specific cathode surface area (m2/kg), which also limits the copper deposition rate;

c) high energy requirements (about 2kWh per kg of deposited copper) caused by anodic reaction

(2 H2O ( O2 + 4 H+  + 4 e) 

with high equilibrium potential and high anodic overpotential, resulting in a 2 V cell  voltage;

d) anodic reaction which produces acid mist, causing environmental problems.

Objective

This work aims to contribute to the development of a copper EW cell which simultaneously overcomes the main limitations of conventional technology. 


Ways to overcome EW cell limitations:

a) new cell designs to allow for electrolyte agitation; 

b) mesh or particulate cathodes to increase the specific cathode surface area; 

c) alternative anodic reactions, with less positive equilibrium potentials, lower anodic overpotentials and which do not produce acid mist; 

d) alternative anodic materials to decrease the anodic overpotential. 

Proposals

· Kammel, 1982, has considered 12 alternative cell designs and concluded that the most promising ones are the particulate bed cell and the fluidized bed cell. 

· 'Moving bed' or 'circulating bed' cells have been developed

· The sustitution of an alternative anodic reaction has been studied. The one which has shown more promise is the ferrous to ferric ion oxidation 

(Fe2+ ( Fe3+ + e). 

· Various anode materials which have a catalytic effect on the ferrous/ferric reaction have been studied

· One way of using the ferrous/ferric anodic reaction while  avoiding a decrease in cathode current efficiency due to ferric ion reduction, is to separate the anolyte from the catholyte (e.g. in a reactive electrodialysis (RED) cell). 

RED cell


[image: image1.png]Copper mesh cathode

Anode

Rectifier

Catholyte._4>
P

Cell

 Anotyte
x

Agitation

\ Agitation

Anion membrane




In a reactive electrodialysis cell, anolyte and catholyte are separated by an anion membrane which hinders cation transport between compartments.

Results

The present work used a copper mesh cathode and various anode materials in an RED cell. 

Catholyte : cupric sulfate in sulfuric acid 

Anolyte :  ferrous sulfate in sulfuric acid

(various concentrations)

An anion membrane separated catholyte from anolyte. 

Both anolyte and catholyte were recirculated by means of peristaltic pumps.

· The electrochemical kinetics of the ferrous/ferric reaction was characterized on : lead sheet, platinum sheet, graphite rod, Pt (as a surface layer on Ti mesh), RuO2 (on Ti) and IrO2 (on Ti) by means of potentiodynamic sweeps. 

iL = limiting c.d. of the anodic reaction 

Estart =  starting potential for O2 evolution

Table 1
Kinetics of the Fe2+ /Fe3+ reaction

Material

iL, A/m2

Estart, V


Pt


290 


1.8


RuO2/Ti

260


1.7


IrO2/Ti

330


1.7


Graphite

290


1.5


Lead


<10


1.7


The ferrous/ferric reaction on Pb exhibits a very low exchange current density even at high overpotentials, therefore, Pb is not a suitable anodic material for this reaction. 

· In the RED cell which uses the ferrous/ferric reaction and catalytic anodes, the graphite anode affords a degree of electrocatalysis which is similar to that of more expensive materials.

· The cell voltage for the Fe2+/Fe3+ reaction was measured for various anode materials at constant cell current density. Results are in Table 2 and show that the cell voltage is lower by 30-60% than those obtained in conventional copper EW cells. The anodic materials, in decreasing order of performance, are: Pt > Pt/Ti > RuO2/Ti ( IrO2/Ti ( graphite.

Table 2 

Cell voltages RED cell (V)

icell, A/m2

200
250
400
Material



Pt


0.97
1.23
1.72

Pt/Ti


1.07
1.29
1.88

RuO2/Ti

1.17
1.35
1.92

IrO2/Ti

1.18
1.38
2.02

Graphite

1.19
1.40
2.04

· The cell voltage can be further reduced by optimizing (decreasing) the thickness of the anolyte and catholyte compartments

· The separation of Fe and Cu species in the RED cell is achieved by means of anion membranes. Cu ions are retained in the catholyte, where they are electro-deposited on copper sheet or copper mesh cathodes. Results for cell voltage depending on membrane type ('low' and 'high' selectivity) and number are shown in Table 3, where A = anolyte and C = catholyte. 

Table 3

Anion membrane performance








(4 hour runs)

System


Vcell


Cu (A) 
Fe (C)





V



ppm

ppm






1 low sel.

1.23
         
4.8           
5.1 

2 low sel.

1.38
         
1.2         
0.4

1 high sel.      
1.17
         
1.8          
0.9

2 high. sel.     
1.30
         
0.9          
0.3

Conclusions

Copper electrowinning was carried out in a 

reactive electrodialysis cell

Copper mesh cathodes were used

Ferrous/ferric ion oxidation was used as anodic reaction

Lead is unsuitable as an anode material to carry out the electrolytic ferrous/ferric oxidation

Pt, RuO2-Ti, IrO2-Ti and graphite were suitable as anode materials and exhibited similar behaviour

Cell voltages ranged between 0.97 and 1.72 V for the most catalytic material (Pt) at c.d.'s between 200 and 400 A/m2
Cell voltages ranged between 1.19 and 2.04 V for the least expensive material (graphite) at c.d.'s between 200 and 400 A/m2
Best separation results for cation transfer between 

anolyte and catholyte were achieved with two 

high selectivity anion membranes 
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