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3.2.2 Discrete Poincaré inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 General elliptic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 Discontinuous matrix diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . 78

1



Version Juillet 2003 2

3.3.2 Other boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Dual meshes and unknowns located at vertices . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 The piecewise linear finite element method viewed as a finite volume method . . . 84
3.4.2 Classical finite volumes on a dual mesh . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.3 “Finite Volume Finite Element” methods . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.4 Generalization to the three dimensional case . . . . . . . . . . . . . . . . . . . . . 89

3.5 Mesh refinement and singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.1 Singular source terms and finite volumes . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Compactness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Parabolic equations 95
4.1 Meshes and schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Error estimate for the linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Convergence in the nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Solutions to the continuous problem . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Definition of the finite volume approximate solutions . . . . . . . . . . . . . . . . . 103
4.3.3 Estimates on the approximate solution . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.5 Weak convergence and nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.6 A uniqueness result for nonlinear diffusion equations . . . . . . . . . . . . . . . . . 115

5 Hyperbolic equations in the one dimensional case 119
5.1 The continuous problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Numerical schemes in the linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 The centered finite difference scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.2 The upstream finite difference scheme . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.3 The upwind finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 The nonlinear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.1 Meshes and schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.2 L∞-stability for monotone flux schemes . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.3 Discrete entropy inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.4 Convergence of the upstream scheme in the general case . . . . . . . . . . . . . . . 134
5.3.5 Convergence proof using BV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Higher order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Multidimensional nonlinear hyperbolic equations 145
6.1 The continuous problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 Meshes and schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 Explicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2.2 Implicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.3 Passing to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Stability results for the explicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.1 L∞ stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.2 A “weak BV ” estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Existence of the solution and stability results for the implicit scheme . . . . . . . . . . . . 156
6.4.1 Existence, uniqueness and L∞ stability . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4.2 “Weak space BV ” inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.3 “Time BV ” estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Entropy inequalities for the approximate solution . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.1 Discrete entropy inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.2 Continuous entropy estimates for the approximate solution . . . . . . . . . . . . . 166



Version Juillet 2003 3

6.6 Convergence of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.6.1 Convergence towards an entropy process solution . . . . . . . . . . . . . . . . . . 174
6.6.2 Uniqueness of the entropy process solution . . . . . . . . . . . . . . . . . . . . . . 175
6.6.3 Convergence towards the entropy weak solution . . . . . . . . . . . . . . . . . . . . 179

6.7 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.7.1 Statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.7.2 Preliminary lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.7.3 Proof of the error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.7.4 Remarks and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.8 Nonlinear weak-? convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.9 A stabilized finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.10 Moving meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Systems 197
7.1 Hyperbolic systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.1.1 Classical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.1.2 Rough schemes for complex hyperbolic systems . . . . . . . . . . . . . . . . . . . . 200
7.1.3 Partial implicitation of explicit scheme . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.1.5 Staggered grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.2 Incompressible Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.2.1 The continuous equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.2.2 Structured staggered grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.2.3 A finite volume scheme on unstructured staggered grids . . . . . . . . . . . . . . . 209

7.3 Flows in porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.3.1 Two phase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.3.2 Compositional multiphase flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.3.3 A simplified case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.3.4 The scheme for the simplified case . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.3.5 Estimates on the approximate solution . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.3.6 Theorem of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Bibliography



Chapter 1

Introduction

The finite volume method is a discretization method which is well suited for the numerical simulation of
various types (elliptic, parabolic or hyperbolic, for instance) of conservation laws; it has been extensively
used in several engineering fields, such as fluid mechanics, heat and mass transfer or petroleum engineer-
ing. Some of the important features of the finite volume method are similar to those of the finite element
method, see

oden
Oden [1991]: it may be used on arbitrary geometries, using structured or unstructured

meshes, and it leads to robust schemes. An additional feature is the local conservativity of the numerical
fluxes, that is the numerical flux is conserved from one discretization cell to its neighbour. This last
feature makes the finite volume method quite attractive when modelling problems for which the flux is of
importance, such as in fluid mechanics, semi-conductor device simulation, heat and mass transfer. . . The
finite volume method is locally conservative because it is based on a “ balance” approach: a local balance
is written on each discretization cell which is often called “control volume”; by the divergence formula,
an integral formulation of the fluxes over the boundary of the control volume is then obtained. The fluxes
on the boundary are discretized with respect to the discrete unknowns.

Let us introduce the method more precisely on simple examples, and then give a description of the
discretization of general conservation laws.

1.1 Examples

Two basic examples can be used to introduce the finite volume method. They will be developed in details
in the following chapters.

introte Example 1.1 (Transport equation) Consider first the linear transport equation

{
ut(x, t) + div(vu)(x, t) = 0, x ∈ IR2, t ∈ IR+,
u(x, 0) = u0(x), x ∈ IR2 (1.1) introtransp

where ut denotes the time derivative of u, v ∈ C1(IR2, IR2), and u0 ∈ L∞(IR2). Let T be a mesh of
IR2 consisting of polygonal bounded convex subsets of IR2 and let K ∈ T be a “control volume”, that
is an element of the mesh T . Integrating the first equation of (

introtransp
1.1) over K yields the following “balance

equation” over K:

∫

K

ut(x, t)dx +

∫

∂K

v(x, t) · nK(x)u(x, t)dγ(x) = 0, ∀t ∈ IR+, (1.2) introbaltr

where nK denotes the normal vector to ∂K, outward to K. Let k ∈ IR∗
+ be a constant time discretization

step and let tn = nk, for n ∈ IN. Writing equation (
introbaltr
1.2) at time tn, n ∈ IN and discretizing the time

4
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partial derivative by the Euler explicit scheme suggests to find an approximation u(n)(x) of the solution
of (

introtransp
1.1) at time tn which satisfies the following semi-discretized equation:

1

k

∫

K

(u(n+1)(x)− u(n)(x))dx +

∫

∂K

v(x, tn) · nK(x)u(n)(x)dγ(x) = 0, ∀n ∈ IN, ∀K ∈ T , (1.3) introsemidisc

where dγ denotes the one-dimensional Lebesgue measure on ∂K and u(0)(x) = u(x, 0) = u0(x). We need
to define the discrete unknowns for the (finite volume) space discretization. We shall be concerned here
principally with the so-called “cell-centered” finite volume method in which each discrete unkwown is

associated with a control volume. Let (u
(n)
K )K∈T ,n∈IN denote the discrete unknowns. For K ∈ T , let EK

be the set of edges which are included in ∂K, and for σ ⊂ ∂K, let nK,σ denote the unit normal to σ
outward to K. The second integral in (

introsemidisc
1.3) may then be split as:

∫

∂K

v(x, tn) · nK(x)u(n)(x)dγ(x) =
∑

σ∈EK

∫

σ

v(x, tn) · nK,σu(n)(x)dγ(x); (1.4) introflux1

for σ ⊂ ∂K, let

v
(n)
K,σ =

∫

σ

v(x, tn)nK,σ(x)dγ(x).

Each term of the sum in the right-hand-side of (
introflux1
1.4) is then discretized as

F
(n)
K,σ =

{
v
(n)
K,σu

(n)
K if v

(n)
K,σ ≥ 0,

v
(n)
K,σu

(n)
L if v

(n)
K,σ < 0,

(1.5) introflux2

where L denotes the neighbouring control volume to K with common edge σ. This “upstream” or
“upwind” choice is classical for transport equations; it may be seen, from the mechanical point of view,
as the choice of the “upstream information” with respect to the location of σ. This choice is crucial in
the mathematical analysis; it ensures the stability properties of the finite volume scheme (see chapters

hyper1d
5

and
hypmd
6). We have therefore derived the following finite volume scheme for the discretization of (

introtransp
1.1):





m(K)

k
(u

(n+1)
K − u

(n)
K ) +

∑

σ∈EK

F
(n)
K,σ = 0, ∀K ∈ T , ∀n ∈ IN,

u
(0)
K =

∫

K

u0(x)dx,

(1.6)

where m(K) denotes the measure of the control volume K and F
(n)
K,σ is defined in (

introflux2
1.5). This scheme

is locally conservative in the sense that if σ is a common edge to the control volumes K and L, then
FK,σ = −FL,σ. This property is important in several application fields; it will later be shown to be a key
ingredient in the mathematical proof of convergence. Similar schemes for the discretization of linear or
nonlinear hyperbolic equations will be studied in chapters

hyper1d
5 and

hypmd
6.

introde Example 1.2 (Stationary diffusion equation) Consider the basic diffusion equation

{
−∆u = f on Ω =]0, 1[×]0, 1[,
u = 0 on ∂Ω.

(1.7) introdiffeq

Let T be a rectangular mesh. Let us integrate the first equation of (
introdiffeq
1.7) over a control volume K of the

mesh; with the same notations as in the previous example, this yields:

∑

σ∈EK

∫

σ

−∇u(x) · nK,σdγ(x) =

∫

K

f(x)dx. (1.8)
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For each control volume K ∈ T , let xK be the center of K. Let σ be the common edge between the
control volumes K and L. The flux −

∫
σ ∇u(x) ·nK,σdγ(x), may be approximated by the following finite

difference approximation:

FK,σ = −m(σ)

dσ
(uL − uK), (1.9) introfluxint

where (uK)K∈T are the discrete unknowns and dσ is the distance between xK and xL. This finite
difference approximation of the first order derivative ∇u · n on the edges of the mesh (where n denotes
the unit normal vector) is consistent: the truncation error on the flux is of order h, where h is the
maximum length of the edges of the mesh. It is necessary for this to be true that the points xK be the
intersections of the orthogonal bisectors of the edges of K. Indeed, this is the case here since the control
volumes are rectangular. This property is satisfied by other meshes which will be studied hereafter. It is
crucial for the discretization of diffusion operators.
In the case where the edge σ is part of the boundary, then dσ denotes the distance between the center
xK of the control volume K to which σ belongs and the boundary. The flux −

∫
σ∇u(x) · nK,σdγ(x), is

then approximated by

FK,σ =
m(σ)

dσ
uK , (1.10) introfluxext

Hence the finite volume scheme for the discretization of (
introdiffeq
1.7) is:

∑

σ∈EK

FK,σ = m(K)fK , ∀K ∈ T , (1.11)

where FK,σ is defined by (
introfluxint
1.9) and (

introfluxext
1.10), and fK denotes (an approximation of) the mean value of f

on K. We shall see later (see chapters
ellund
2,

ellmd
3 and

parabolic
4) that the finite volume scheme is easy to generalize

to a triangular mesh, whereas the finite difference method is not. As in the previous example, the finite
volume scheme is locally conservative, since for any edge σ separating K from L, one has FK,σ = −FL,σ.

1.2 The finite volume principles for general conservation laws

The finite volume method is used for the discretization of conservation laws. We gave in the above section
two examples of such conservation laws. Let us now present the discretization of general conservation
laws by finite volume schemes. As suggested by its name, a conservation law expresses the conservation
of a quantity q(x, t). For instance, the conserved quantities may be the energy, the mass, or the number
of moles of some chemical species. Let us first assume that the local form of the conservation equation
may be written as

qt(x, t) + divF(x, t) = f(x, t), (1.12) conserv.loc

at each point x and each time t where the conservation of q is to be written. In equation (
conserv.loc
1.12), (·)t

denotes the time partial derivative of the entity within the parentheses, div represents the space divergence
operator: divF = ∂F1/∂x1 + . . .+∂Fd/∂xd, where F = (F1, . . . , Fd)

t denotes a vector function depending
on the space variable x and on the time t, xi is the i-th space coordinate, for i = 1, . . . , d, and d is the
space dimension, i.e. d = 1, 2 or 3; the quantity F is a flux which expresses a transport mechanism of
q; the “source term” f expresses a possible volumetric exchange, due for instance to chemical reactions
between the conserved quantities.

Thanks to the physicist’s work, the problem can be closed by introducing constitutive laws which relate
q, F, f with some scalar or vector unknown u(x, t), function of the space variable x and of the time t. For
example, the components of u can be pressures, concentrations, molar fractions of the various chemical
species by unit volume. . . The quantity q is often given by means of a known function q̄ of u(x, t), of the
space variable x and of the time t, that is q(x, t) = q̄(x, t, u(x, t)). The quantity F may also be given
by means of a function of the space variable x, the time variable t and of the unknown u(x, t) and (or)
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by means of the gradient of u at point (x, t). . . . The transport equation of Example
introte
1.1 is a particular

case of (
conserv.loc
1.12) with q(x, t) = u(x, t), F(x, t) = vu(x, t) and f(x, t) = f(x); so is the stationary diffusion

equation of Example
introde
1.2 with q(x, t) = u(x), F(x, t) = −∇u(x), and f(x, t) = f(x). The source term f

may also be given by means of a function of x, t and u(x, t).

Example 1.3 (The one-dimensional Euler equations) Let us consider as an example of a system
of conservation laws the 1D Euler equations for equilibrium real gases; these equations may be written
under the form (

conserv.loc
1.12), with

q =
( ρ
ρu
E

)
and F =

( ρu
ρu2 + p
u(E + p)

)
,

where ρ, u, E and p are functions of the space variable x and the time t, and refer respectively to the
density, the velocity, the total energy and the pressure of the particular gas under consideration. The
system of equations is closed by introducing the constitutive laws which relate p and E to the specific
volume τ , with τ = 1

ρ and the entropy s, through the constitutive laws:

p =
∂ε

∂τ
(τ, s) and E = ρ(ε(τ, s) +

u2

2
),

where ε is the internal energy per unit mass, which is a given function of τ and s.

Equation (
conserv.loc
1.12) may be seen as the expression of the conservation of q in an infinitesimal domain; it is

formally equivalent to the equation

∫

K

q(x, t2)dx−
∫

K

q(x, t1)dx+

∫ t2

t1

∫

∂K

F(x, t) · nK(x)dγ(x)dt

=

∫ t2

t1

∫

K

f(x, t)dxdt,

(1.13) conserv.vol

for any subdomain K and for all times t1 and t2, where nK(x) is the unit normal vector to the boundary
∂K, at point x, outward to K. Equation (

conserv.vol
1.13) expresses the conservation law in subdomain K between

times t1 and t2. Here and in the sequel, unless otherwise mentionned, dx is the integration symbol for
the d-dimensional Lebesgue measure in IRd and dγ is the integration symbol for the (d− 1)-dimensional
Hausdorff measure on the considered boundary.

1.2.1 Time discretization

The time discretization of Equation (
conserv.loc
1.12) is performed by introducing an increasing sequence (tn)n∈IN

with t0 = 0. For the sake of simplicity, only constant time steps will be considered here, keeping in mind
that the generalization to variable time steps is straightforward. Let k ∈ IR?

+ denote the time step, and
let tn = nk, for n ∈ IN. It can be noted that Equation (

conserv.loc
1.12) could be written with the use of a space-

time divergence. Hence, Equation (
conserv.loc
1.12) could be either discretized using a space-time finite volume

discretization or a space finite volume discretization with a time finite difference scheme (the explicit
Euler scheme, for instance). In the first case, the conservation law is integrated over a time interval and
a space “control volume” as in the formulation (

conserv.loc
1.12). In the latter case, it is only integrated space wise,

and the time derivative is approximated by a finite difference scheme; with the explicit Euler scheme, the
term (q)t is therefore approximated by the differential quotient (q(n+1) − q(n))/k, and q(n) is computed
with an approximate value of u at time tn, denoted by u(n). Implicit and higher order schemes may also
be used.

1.2.2 Space discretization

In order to perform a space finite volume discretization of equation (
conserv.loc
1.12), a mesh T of the domain Ω of

IRd, over which the conservation law is to be studied, is introduced. The mesh is such that Ω = ∪K∈TK,
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where an element of T , denoted by K, is an open subset of Ω and is called a control volume. Assumptions
on the meshes will be needed for the definition of the schemes; they also depend on the type of equation
to be discretized.

For the finite volume schemes considered here, the discrete unknowns at time tn are denoted by u
(n)
K ,

K ∈ T . The value u
(n)
K is expected to be some approximation of u on the cell K at time tn. The basic

principle of the classical finite volume method is to integrate equation (
conserv.loc
1.12) over each cell K of the mesh

T . One obtains a conservation law under a nonlocal form (related to equation (
conserv.vol
1.13)) written for the

volume K. Using the Euler time discretization, this yields

∫

K

q(n+1)(x) − q(n)(x)

k
dx+

∫

∂K

F(x, tn) · nK(x)dγ(x) =

∫

K

f(x, tn)dx, (1.14) eVF3

where nK(x) is the unit normal vector to ∂K at point x, outward to K.

The remaining step in order to define the finite volume scheme is therefore the approximation of the “flux”,

F(x, tn) · nK(x), across the boundary ∂K of each control volume, in terms of {u(n)
L , L ∈ T } (this flux

approximation has to be done in terms of {un+1
L , L ∈ T } if one chooses the implicit Euler scheme instead of

the explicit Euler scheme for the time discretization). More precisely, omitting the terms on the boundary
of Ω, let K|L = K ∩ L, with K, L ∈ T , the exchange term (from K to L),

∫
K|LF(x, tn) · nK(x)dγ(x),

between the control volumesK and L during the time interval [tn, tn+1) is approximated by some quantity,

F
(n)
K,L, which is a function of {u(n)

M ,M ∈ T } (or a function of {un+1
M ,M ∈ T } for the implicit Euler scheme,

or more generally a function of {u(n)
M ,M ∈ T } and {un+1

M ,M ∈ T } if the time discretization is a one-step

method). Note that F
(n)
K,L = 0 if the Hausdorff dimension of K ∩ L is less than d − 1 (e.g. K ∩ L is a

point in the case d = 2 or a line segment in the case d = 3).

Let us point out that two important features of the classical finite volume method are

1. the conservativity, that is F
(n)
K,L = −F (n)

L,K , for all K and L ∈ T and for all n ∈ IN.

2. the “consistency” of the approximation of F(x, tn) ·nK(x), which has to be defined for each relation
type between F and the unknowns.

These properties, together with adequate stability properties which are obtained by estimates on the
approximate solution, will give some convergence properties of the finite volume scheme.

1.3 Comparison with other discretization techniques

The finite volume method is quite different from (but sometimes related to) the finite difference method
or the finite element method. On these classical methods see e.g.

DB
Dahlquist and Björck [1974],

finitedifference
Thomée [1991],

ciarlet
Ciarlet, P.G. [1978],

finitelement
Ciarlet [1991],

mixedfinitelement
Roberts and Thomas [1991].

Roughly speaking, the principle of the finite difference method is, given a number of discretization points
which may be defined by a mesh, to assign one discrete unknown per discretization point, and to write
one equation per discretization point. At each discretization point, the derivatives of the unknown are
replaced by finite differences through the use of Taylor expansions. The finite difference method becomes
difficult to use when the coefficients involved in the equation are discontinuous (e.g. in the case of
heterogeneous media). With the finite volume method, discontinuities of the coefficients will not be any
problem if the mesh is chosen such that the discontinuities of the coefficients occur on the boundaries of
the control volumes (see sections

ell1D
2.3 and

ell2Dgen
3.3, for elliptic problems). Note that the finite volume scheme

is often called “finite difference scheme” or “cell centered difference scheme”. Indeed, in the finite volume
method, the finite difference approach can be used for the approximation of the fluxes on the boundary
of the control volumes. Thus, the finite volume scheme differs from the finite difference scheme in that
the finite difference approximation is used for the flux rather than for the operator itself.
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The finite element method (see e.g.
ciarlet
Ciarlet, P.G. [1978]) is based on a variational formulation, which is

written for both the continuous and the discrete problems, at least in the case of conformal finite element
methods which are considered here. The variational formulation is obtained by multiplying the original
equation by a “test function”. The continuous unknown is then approximated by a linear combination
of “shape” functions; these shape functions are the test functions for the discrete variational formulation
(this is the so called “Galerkin expansion”); the resulting equation is integrated over the domain. The
finite volume method is sometimes called a “discontinuous finite element method” since the original
equation is multiplied by the characteristic function of each grid cell which is defined by 1K(x) = 1, if
x ∈ K, 1K(x) = 0, if x /∈ K, and the discrete unknown may be considered as a linear combination of
shape functions. However, the techniques used to prove the convergence of finite element methods do not
generally apply for this choice of test functions. In the following chapters, the finite volume method will
be compared in more detail with the classical and the mixed finite element methods.

From the industrial point of view, the finite volume method is known as a robust and cheap method
for the discretization of conservation laws (by robust, we mean a scheme which behaves well even for
particularly difficult equations, such as nonlinear systems of hyperbolic equations and which can easily be
extended to more realistic and physical contexts than the classical academic problems). The finite volume
method is cheap thanks to short and reliable computational coding for complex problems. It may be more
adequate than the finite difference method (which in particular requires a simple geometry). However,
in some cases, it is difficult to design schemes which give enough precision. Indeed, the finite element
method can be much more precise than the finite volume method when using higher order polynomials,
but it requires an adequate functional framework which is not always available in industrial problems.
Other more precise methods are, for instance, particle methods or spectral methods but these methods
can be more expensive and less robust than the finite volume method.

1.4 General guideline

The mathematical theory of finite volume schemes has recently been undertaken. Even though we choose
here to refer to the class of scheme which is the object of our study as the ”finite volume” method, we
must point out that there are several methods with different names (box method, control volume finite
element methods, balance method to cite only a few) which may be viewed as finite volume methods.
The name ”finite difference” has also often been used referring to the finite volume method. We shall
mainly quote here the works regarding the mathematical analysis of the finite volume method, keeping
in mind that there exist numerous works on applications of the finite volume methods in the applied
sciences, some references to which may be found in the books which are cited below.

Finite volume methods for convection-diffusion equations seem to have been first introduced in the early
sixties by

samarskitich
Tichonov and Samarskii [1962],

samarski1
Samarskii [1965] and

samarski2
Samarskii [1971].

The convergence theory of such schemes in several space dimensions has only recently been undertaken. In
the case of vertex-centered finite volume schemes, studies were carried out by

samarskilaz
Samarskii, Lazarov and

Makarov [1987] in the case of Cartesian meshes,
Heinrich
Heinrich [1986],

BR
Bank and Rose [1986],

Cai
Cai [1991],

CMMC
Cai, Mandel and Mc Cormick [1991] and

Vanselow
Vanselow [1996] in the case of unstructured meshes;

see also
mortonsuli
Morton and Süli [1991],

suli
Süli [1989],

mackenzie
Mackenzie, and Morton [1992],

mortonss
Morton, Stynes

and Süli [1997] and
shashkov
Shashkov [1987] in the case of quadrilateral meshes. Cell-centered finite volume

schemes are addressed in
WM
Manteuffel and White [1986],

FS
Forsyth and Sammon [1988],

weiser
Weiser and

Wheeler [1988] and
lazarovsiam
Lazarov, Mishev and Vassilevski [1996] in the case of Cartesian meshes and

in
vass
Vassileski, Petrova and Lazarov [1992],

VF4
Herbin [1995],

rouenrh
Herbin [1996],

rouenlazarov
Lazarov and Mishev

[1996],
mishev
Mishev [1998] in the case of triangular or Voronöı meshes; let us also mention

rouencoudiere
Coudière, Vila

and Villedieu [1996] and
coudiere
Coudière, Vila and Villedieu [1999] where more general meshes are

treated, with, however, a somewhat technical geometrical condition. In the pure diffusion case, the cell
centered finite volume method has also been analyzed with finite element tools:

ABMO
Agouzal, Baranger,

Maitre and Oudin [1995],
angermann
Angermann [1996],

BMO
Baranger, Maitre and Oudin [1996],

arbogast
Arbogast,
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Wheeler and Yotov [1997],
angermann
Angermann [1996]. Semilinear convection-diffusion are studied in

FFL2
Feistauer, Felcman and Lukacova-Medvidova [1997] with a combined finite element-finite volume
method,

cvnl
Eymard, Gallouët and Herbin [1999] with a pure finite volume scheme.

Concerning nonlinear hyperbolic conservation laws, the one-dimensional case is now classical; let us
mention the following books on numerical methods for hyperbolic problems:

godlewski-ellipses
Godlewski and Raviart

[1991],
leveque
LeVeque [1990],

godlewski-springer
Godlewski and Raviart [1996],

kronerbook
Kröner [1997], and references therein. In

the multidimensional case, let us mention the convergence results which where obtained in
cgh
Champier,

Gallouët and Herbin [1993],
kroner1
Kröner and Rokyta [1994],

Coquelconv
Cockburn, Coquel and LeFloch

[1995] and the error estimates of
Coquel
Cockburn, Coquel and LeFloch [1994] and

Vi
Vila [1994] in the

case of an explicit scheme and
eggh
Eymard, Gallouët, Ghilani and Herbin [1998] in the case of explicit

and implicit schemes.

The purpose of the following chapters is to lay out a mathematical framework for the convergence and
error analysis of the finite volume method for the discretization of elliptic, parabolic or hyperbolic partial
differential equations under conservative form, following the philosophy of the works of

cgh
Champier,

Gallouët and Herbin [1993],
VF4
Herbin [1995],

eggh
Eymard, Gallouët, Ghilani and Herbin [1998]

and
cvnl
Eymard, Gallouët and Herbin [1999]. In order to do so, we shall describe the implementation of

the finite volume method on some simple (linear or non-linear) academic problems, and develop the tools
which are needed for the mathematical analysis. This approach will help to determine the properties of
finite volume schemes which lead to “good” schemes for complex applications.
Chapter

ellund
2 introduces the finite volume discretization of an elliptic operator in one space dimension.

The resulting numerical scheme is compared to finite difference, finite element and mixed finite element
methods in this particular case. An error estimate is given; this estimate is in fact contained in results
shown later in the multidimensional case; however, with the one-dimensional case, one can already un-
derstand the basic principles of the convergence proof, and understand the difference with the proof of
WM
Manteuffel and White [1986] or

FS
Forsyth and Sammon [1988], which does not seem to generalize

to the unstructured meshes. In particular, it is made clear that, although the finite volume scheme is not
consistent in the finite difference sense since the truncation error does not tend to 0, the conservativity of
the scheme, together with a consistent approximation of the fluxes and some “stability” allow the proof of
convergence. The scheme and the error estimate are then generalized to the case of a more general elliptic
operator allowing discontinuities in the diffusion coefficients. Finally, a semilinear problem is studied, for
which a convergence result is proved. The principle of the proof of this result may be used for nonlinear
problems in several space dimensions. It will be used in Chapter

ellmd
3 in order to prove convergence results

for linear problems when no regularity on the exact solution is known.

In Chapter
ellmd
3, the discretization of elliptic problems in several space dimensions by the finite volume

method is presented. Structured meshes are shown to be an easy generalization of the one-dimensional
case; unstructured meshes are then considered, for Dirichlet and Neumann conditions on the boundary
of the domain. In both cases, admissible meshes are defined, and, following

cvnl
Eymard, Gallouët and

Herbin [1999], convergence results (with no regularity on the data) and error estimates assuming a
C2 or H2 regular solution to the continuous problems are proved. As in the one-dimensional case, the
conservativity of the scheme, together with a consistent approximation of the fluxes and some “stability”
are used for the proof of convergence. In addition to the properties already used in the one-dimensional
case, the multidimensional estimates require the use of a “discrete Poincaré” inequality which is proved
in both Dirichlet and Neumann cases, along with some compactness properties which are also used and
are given in the last section. It is then shown how to deal with matrix diffusion coefficients and more
general boundary conditions. Singular sources and mesh refinement are also studied.

Chapter
parabolic
4 deals with the discretization of parabolic problems. Using the same concepts as in Chapter

ellmd
3,

an error estimate is given in the linear case. A nonlinear degenerate parabolic problem is then studied,
for which a convergence result is proved, thanks to a uniqueness result which is proved at the end of the
chapter.

Chapter
hyper1d
5 introduces the finite volume discretization of a hyperbolic operator in one space dimension.
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Some basics on entropy weak solutions to nonlinear hyperbolic equations are recalled. Then the concept
of stability of a scheme is explained on a simple linear advection problem, for which both finite difference
and finite volume schemes are considered. Some well known schemes are presented with a finite volume
formulation in the nonlinear case. A proof of convergence using a “weak BV inequality” which was found
to be crucial in the multidimensional case (Chapter

hypmd
6) is given in the one-dimensional case for the sake

of clarity. For the sake of completeness, the proof of convergence based on “strong BV estimates” and
the Lax-Wendroff theorem is also recalled, although it does not seem to extend to the multidimensional
case with general meshes.

In Chapter
hypmd
6, finite volume schemes for the discretization of multidimensional nonlinear hyperbolic con-

servation equations are studied. Under suitable assumptions, which are satisfied by several well known
schemes, it is shown that the considered schemes are L∞ stable (this is classical) but also satisfy some
“weak BV inequality”. This “weak BV ” inequality is the key estimate to the proof of convergence of
the schemes. Following

eggh
Eymard, Gallouët, Ghilani and Herbin [1998], both time implicit and

explicit discretizations are considered. The existence of the solution to the implicit scheme is proved.
The approximate solutions are shown to satisfy some discrete entropy inequalities. Using the weak BV
estimate, the approximate solution is also shown to satisfy some continuous entropy inequalities. Intro-
ducing the concept of “entropy process solution” to the nonlinear hyperbolic equations (which is similar
to the notion of measure valued solutions of

DP
DiPerna [1985]), the approximate solutions are proved to

converge towards an entropy process solution as the mesh size tends to 0. The entropy process solution is
shown to be unique, and is therefore equal to the entropy weak solution, which concludes the convergence
of the approximate solution towards the entropy weak solution. Finally error estimates are proved for
both the explicit and implicit schemes.

The last chapter is concerned with systems of equations. In the case of hyperbolic systems which are
considered in the first part, little is known concerning the continuous problem, so that the schemes which
are introduced are only shown to be efficient by numerical experimentation. These “rough” schemes
seem to be efficient for complex cases such as the Euler equations for real gases. The incompressible
Navier-Stokes equations are then considered; after recalling the classical staggered grid finite volume
formulation (see e.g.

Pat
Patankar [1980]), a finite volume scheme defined on a triangular mesh for the

Stokes equation is studied. In the case of equilateral triangles, the tools of Chapter
ellmd
3 allow to show that

the approximate velocities converge to the exact velocities. Systems arising from modelling multiphase
flow in porous media are then considered. The convergence of the approximate finite volume solution for
a simplified case is then proved with the tools introduced in Chapter

hypmd
6.

More precise references to recent works on the convergence of finite volume methods will be made in the
following chapters. However, we shall not quote here the numerous works on applications of the finite
volume methods in the applied sciences.



Chapter 2

A one-dimensional elliptic problem

ellund
The purpose of this chapter is to give some developments of the example

introde
1.2 of the introduction in the

one-dimensional case. The formalism needed to define admissible finite volume meshes is first given
and applied to the Dirichlet problem. After some comparisons with other relevant schemes, convergence
theorems and error estimates are provided. Then, the case of general linear elliptic equations is handled
and finally, a first approach of a nonlinear problem is studied and introduces some compactness theorems
in a quite simple framework; these compactenss theorems will be useful in further chapters.

2.1 A finite volume method for the Dirichlet problem
Diric1D

2.1.1 Formulation of a finite volume scheme
fvse1d

The principle of the finite volume method will be shown here on the academic Dirichlet problem, namely a
second order differential operator without time dependent terms and with homogeneous Dirichlet bound-
ary conditions. Let f be a given function from (0, 1) to IR, consider the following differential equation:

−uxx(x) = f(x), x ∈ (0, 1),
u(0) = 0,
u(1) = 0.

(2.1) elliptic1D

If f ∈ C([0, 1], IR), there exists a unique solution u ∈ C2([0, 1], IR) to Problem (
elliptic1D
2.1). In the sequel, this

exact solution will be denoted by u. Note that the equation −uxx = f can be written in the conservative
form div(F) = f with F = −ux.
In order to compute a numerical approximation to the solution of this equation, let us define a mesh,
denoted by T , of the interval (0, 1) consisting of N cells (or control volumes), denoted by Ki, i = 1, . . . , N ,
and N points of (0, 1), denoted by xi, i = 1, . . . , N , satisfying the following assumptions:

meshund Definition 2.1 (Admissible one-dimensional mesh) An admissible mesh of (0, 1), denoted by T , is
given by a family (Ki)i=1,···,N , N ∈ IN?, such that Ki = (xi− 1

2
, xi+ 1

2
), and a family (xi)i=0,···,N+1 such

that

x0 = x 1
2

= 0 < x1 < x 3
2
< · · · < xi− 1

2
< xi < xi+ 1

2
< · · · < xN < xN+ 1

2
= xN+1 = 1.

One sets

hi = m(Ki) = xi+ 1
2
− xi− 1

2
, i = 1, . . . , N, and therefore

N∑

i=1

hi = 1,

h−i = xi − xi− 1
2
, h+
i = xi+ 1

2
− xi, i = 1, . . . , N,

hi+ 1
2

= xi+1 − xi, i = 0, . . . , N,

size(T ) = h = max{hi, i = 1, . . . , N}.

12
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The discrete unknowns are denoted by ui, i = 1, . . . , N , and are expected to be some approximation of
u in the cell Ki (the discrete unknown ui can be viewed as an approximation of the mean value of u
over Ki, or of the value of u(xi), or of other values of u in the control volume Ki. . . ). The first equation
of (

elliptic1D
2.1) is integrated over each cell Ki, as in (

eVF3
1.14) and yields

−ux(xi+ 1
2
) + ux(xi− 1

2
) =

∫

Ki

f(x)dx, i = 1, . . . , N.

A reasonable choice for the approximation of −ux(xi+ 1
2
) (at least, for i = 1, . . . , N − 1) seems to be the

differential quotient

Fi+ 1
2

= −ui+1 − ui
hi+ 1

2

.

This approximation is consistent in the sense that, if u ∈ C2([0, 1], IR), then

F ?i+ 1
2

= −u(xi+1)− u(xi)

hi+ 1
2

= −ux(xi+ 1
2
) + 0(h), (2.2) consistflux

where |0(h)| ≤ Ch, C ∈ IR+ only depending on u.

Remark 2.1 Assume that xi is the center of Ki. Let ũi denote the mean value over Ki of the exact
solution u to Problem (

elliptic1D
2.1). One may then remark that |ũi−u(xi)| ≤ Ch2

i , with some C only depending
on u; it follows easily that (ũi+1 − ũi)/hi+ 1

2
= ux(xi+ 1

2
) + 0(h) also holds, for i = 1, . . . , N − 1 (recall

that h = max{hi, i = 1, . . . , N}). Hence the approximation of the flux is also consistent if the discrete
unknowns ui, i = 1, · · · , N , are viewed as approximations of the mean value of u in the control volumes.

The Dirichlet boundary conditions are taken into account by using the values imposed at the boundaries to
compute the fluxes on these boundaries. Taking these boundary conditions into consideration and setting
fi = 1

hi

∫
Ki
f(x)dx for i = 1, . . . , N (in an actual computation, an approximation of fi by numerical

integration can be used), the finite volume scheme for problem (
elliptic1D
2.1) writes

Fi+ 1
2
− Fi− 1

2
= hifi, i = 1, . . . , N (2.3) VF1

Fi+ 1
2

= −ui+1 − ui
hi+ 1

2

, i = 1, . . . , N − 1, (2.4) VF2

F 1
2

= − u1

h 1
2

, (2.5) VF3

FN+ 1
2

=
uN
hN+ 1

2

. (2.6) VF4

Note that (
VF2
2.4), (

VF3
2.5), (

VF4
2.6) may also be written

Fi+ 1
2

= −ui+1 − ui
hi+ 1

2

, i = 0, . . . , N, (2.7) VF2m

setting

u0 = uN+1 = 0. (2.8) VF3m

The numerical scheme (
VF1
2.3)-(

VF4
2.6) may be written under the following matrix form:

AU = b, (2.9) AUb

where U = (u1, . . . , uN )t, b = (b1, . . . , bN)t, with (
VF3m
2.8) and with A and b defined by
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(AU)i =
1

hi

(
−ui+1 − ui

hi+ 1
2

+
ui − ui−1

hi− 1
2

)
, i = 1, . . . , N, (2.10) matrix

bi =
1

h i

∫

Ki

f(x)dx, i = 1, . . . , N, (2.11) rhsdf

angot1 Remark 2.2 There are other finite volume schemes for problem (
elliptic1D
2.1).

1. For instance, it is possible, in Definition
meshund
2.1, to take x1 ≥ 0, xN ≤ 1 and, for the definition of the

scheme (that is (
VF1
2.3)-(

VF4
2.6)), to write (

VF1
2.3) only for i = 2, . . . , N−1 and to replace (

VF3
2.5) and (

VF4
2.6) by

u1 = uN = 0 (note that (
VF2
2.4) does not change). For this so-called “modified finite volume” scheme,

it is also possible to obtain an error estimate as for the scheme (
VF1
2.3)-(

VF4
2.6) (see Remark

h2conv
2.5). Note

that, with this scheme, the union of all control volumes for which the “conservation law” is written
is slightly different from [0, 1] (namely [x3/2, xN−1/2] 6= [0, 1]) .

2. Another possibility is to take (primary) unknowns associated to the boundaries of the control
volumes. We shall not consider this case here (cf.

keller
Keller [1971],

croisille
Courbet and Croisille

[1998]).

2.1.2 Comparison with a finite difference scheme
fdvf

With the same notations as in Section
fvse1d
2.1.1, consider that ui is now an approximation of u(xi). It is

interesting to notice that the expression

1

h i

(
−ui+1 − ui

hi+ 1
2

+
ui − ui−1

hi− 1
2

)

is not a consistent approximation of −uxx(xi) in the finite difference sense, that is the error made by
replacing the derivative by a difference quotient (the truncation error

DB
Dahlquist and Björck [1974])

does not tend to 0 as h tends to 0. Indeed, let U =
(
u(x1), . . . , u(xN )

)t
; with the notations of (

AUb
2.9)-(

rhsdf
2.11),

the truncation error may be defined as

r = AU − b,

with r = (r1, . . . , rN )t. Note that for f regular enough, which is assumed in the sequel, bi = f(xi)+0(h).
An estimate of r is obtained by using Taylor’s expansion:

u(xi+1) = u(xi) + hi+ 1
2
ux(xi) +

1

2
h2
i+ 1

2

uxx(xi) +
1

6
h3
i+ 1

2

uxxx(ξi),

for some ξi ∈ (xi, xi+1), which yields

ri = − 1

h i

hi+ 1
2

+ hi− 1
2

2
uxx(xi) + uxx(xi) + 0(h), i = 1, . . . , N,

which does not, in general tend to 0 as h tends to 0 (except in particular cases) as may be seen on the
simple following example:

Example 2.1 Let f ≡ 1 and consider a mesh of (0, 1), in the sense of Definition
meshund
2.1, satisfying hi = h

for even i, hi = h/2 for odd i and xi = (xi+1/2 +xi−1/2)/2, for i = 1, . . . , N . An easy computation shows
that the truncation error r is such that

ri = − 1
4 , for even i

ri = + 1
2 , for odd i.

Hence sup{|ri|, i = 1, . . . , N} 6→ 0 as h→ 0.
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Therefore, the scheme obtained from (
VF1
2.3)-(

VF4
2.6) is not consistent in the finite difference sense, even

though it is consistent in the finite volume sense, that is, the numerical approximation of the fluxes is
conservative and the truncation error on the fluxes tends to 0 as h tends to 0.
If, for instance, xi is the center of Ki, for i = 1, . . . , N , it is well known that for problem (

elliptic1D
2.1), the

consistent finite difference scheme would be, omitting boundary conditions,

4

2hi + hi−1 + hi+1

[
−ui+1 − ui

hi+ 1
2

+
ui − ui−1

hi− 1
2

]
= f(xi), i = 2, . . . , N − 1, (2.12) FD

Remark 2.3 Assume that xi is, for i = 1, . . . , N , the center of Ki and that the discrete unknown ui of
the finite volume scheme is considered as an approximation of the mean value ũi of u over Ki (note that
ũi = u(xi) + (h2

i /24)uxx(xi) + 0(h3), if u ∈ C3([0, 1], IR)) instead of u(xi), then again, the finite volume
scheme, considered once more as a finite difference scheme, is not consistent in the finite difference sense.
Indeed, let R̃ = AŨ − b, with Ũ = (ũ1, . . . , ũN )t, and R̃ = (R̃1, . . . , R̃N )t, then, in general, R̃i does not
go to 0 as h goes to 0. In fact, it will be shown later that the finite volume scheme, when seen as a finite
difference scheme, is consistent in the finite difference sense if ui is considered as an approximation of
u(xi)−(h2

i /8)uxx(xi). This is the idea upon which the first proof of convergence by Forsyth and Sammon
in 1988 is based, see

FS
Forsyth and Sammon [1988] and Section

fdconvergence
2.2.2.

In the case of Problem (
elliptic1D
2.1), both the finite volume and finite difference schemes are convergent. The

finite difference scheme (
FD
2.12) is convergent since it is stable, in the sense that ‖X‖∞ ≤ C‖AX‖∞,

for all X ∈ IRN , where C is a constant and ‖X‖∞ = sup(|X1|, . . . , |XN |), X = (X1, . . . , XN )t, and
consistent in the usual finite difference sense. Since A(U − U) = R, the stability property implies that
‖U − U‖∞ ≤ C‖R‖∞ which goes to 0, as h goes to 0, by definition of the consistency in the finite
difference sense. The convergence of the finite volume scheme (

VF1
2.3)-(

VF4
2.6) needs some more work and is

described in Section
fvconvergence1D
2.2.1.

2.1.3 Comparison with a mixed finite element method

The finite volume method has often be thought of as a kind of mixed finite element method. Nevertheless,
we show here that, on the simple Dirichlet problem (

elliptic1D
2.1), the two methods yield two different schemes.

For Problem (
elliptic1D
2.1), the discrete unknowns of the finite volume method are the values ui, i = 1, . . . , N .

However, the finite volume method also introduces one discrete unknown at each of the control volume
extremities, namely the numerical flux between the corresponding control volumes. Hence, the finite
volume method for elliptic problems may appear closely related to the mixed finite element method.
Recall that the mixed finite element method consists in introducing in Problem (

elliptic1D
2.1) the auxiliary variable

q = −ux, which yields the following system:

q + ux = 0,
qx = f ;

assuming f ∈ L2((0, 1)), a variational formulation of this system is:

q ∈ H1((0, 1)), u ∈ L2((0, 1)), (2.13) efm0

∫ 1

0

q(x)p(x)dx =

∫ 1

0

u(x)px(x)dx, ∀ p ∈ H1((0, 1)), (2.14) efm1

∫ 1

0

qx(x)v(x)dx =

∫ 1

0

f(x)v(x)dx, ∀ v ∈ L2((0, 1)). (2.15) efm2

Considering an admissible mesh of (0, 1) (see Definition
meshund
2.1), the usual discretization of this variational

formulation consists in taking the classical piecewise linear finite element functions for the approximation
H of H1((0, 1)) and the piecewise constant finite element for the approximation L of L2((0, 1)). Then,
the discrete unknowns are {ui, i = 1, . . . , N} and {qi+1/2, i = 0, . . . , N} (ui is an approximation of u in
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Ki and qi+1/2 is an approximation of −ux(xi+1/2)). The discrete equations are obtained by performing
a Galerkin expansion of u and q with respect to the natural basis functions ψl, l = 1, . . . , N (spanning
L), and ϕj+1/2, j = 0, . . . , N (spanning H) and by taking p = ϕi+1/2, i = 0, . . . , N in (

efm1
2.14) and

v = ψk, k = 1, . . . , N in (
efm2
2.15). Let h0 = hN+1 = 0, u0 = uN+1 = 0 and q−1/2 = qN+3/2 = 0; then the

discrete system obtained by the mixed finite element method has 2N + 1 unknowns. It writes

qi+ 1
2
(
hi + hi+1

3
) + qi− 1

2
(
hi
6

) + qi+ 3
2
(
hi+1

6
) = ui − ui+1, i = 0, . . . , N,

qi+ 1
2
− qi− 1

2
=

∫

Ki

f(x)dx, i = 1, . . . , N.

Note that the unknowns qi+1/2 cannot be eliminated from the system. The resolution of this system of
equations does not give the same values {ui, i = 1, . . . , N} than those obtained by using the finite volume
scheme (

VF1
2.3)-(

VF4
2.6). In fact it is easily seen that, in this case, the finite volume scheme can be obtained

from the mixed finite element scheme by using the following numerical integration for the left handside
of (

efm1
2.14): ∫

Ki

g(x)dx =
g(xi+1) + g(xi)

2
hi.

This is also true for some two-dimensional elliptic problems and therefore the finite volume error estimates
for these problems may be obtained via the mixed finite element theory, see

ABMO
Agouzal, Baranger,

Maitre and Oudin [1995],
BMO
Baranger, Maitre and Oudin [1996].

2.2 Convergence theorems and error estimates for the Dirichlet

problem

2.2.1 A finite volume error estimate in a simple case
fvconvergence1D

We shall now prove the following error estimate, which will be generalized to more general elliptic problems
and in higher space dimensions.

eelapl1D Theorem 2.1
Let f ∈ C([0, 1], IR) and let u ∈ C2([0, 1], IR) be the (unique) solution of Problem (

elliptic1D
2.1). Let T =

(Ki)i=1,...,N be an admissible mesh in the sense of Definition
meshund
2.1. Then, there exists a unique vector

U = (u1, . . . , uN)t ∈ IRN solution to (
VF1
2.3) -(

VF4
2.6) and there exists C ≥ 0, only depending on u, such that

N∑

i=0

(ei+1 − ei)
2

hi+ 1
2

≤ C2h2, (2.16) eel1

and

|ei| ≤ Ch, ∀i ∈ {1, . . . , N}, (2.17) eel2

with e0 = eN+1 = 0 and ei = u(xi)− ui, for all i ∈ {1, . . . , N}.

This theorem is in fact a consequence of Theorem
ee1dell
2.3, which gives an error estimate for the finite volume

discretization of a more general operator. However, we now give the proof of the error estimate in this
first simple case.

Proof of Theorem
eelapl1D
2.1

First remark that there exists a unique vector U = (u1, . . . , uN)t ∈ IRN solution to (
VF1
2.3)-(

VF4
2.6). Indeed,

multiplying (
VF1
2.3) by ui and summing for i = 1, . . . , N gives
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u2
1

h 1
2

+

N−1∑

i=1

(ui+1 − ui)
2

hi+ 1
2

+
u2
N

hN+ 1
2

=

N∑

i=1

uihifi.

Therefore, if fi = 0 for any i ∈ {1, . . . , N}, then the unique solution to (
VF1
2.3) is obtained by taking ui = 0,

for any i ∈ {1, . . . , N}. This gives existence and uniqueness of U = (u1, . . . , uN )t ∈ IRN solution to (
VF1
2.3)

(with (
VF2
2.4)-(

VF4
2.6)).

One now proves (
eel1
2.16). Let

F i+ 1
2

= −ux(xi+ 1
2
), i = 0, . . . , N,

Integrating the equation −uxx = f over Ki yields

F i+ 1
2
− F i− 1

2
= hifi, i = 1, . . . , N.

By (
VF1
2.3), the numerical fluxes Fi+ 1

2
satisfy

Fi+ 1
2
− Fi− 1

2
= hifi, i = 1, . . . , N.

Therefore, with Gi+ 1
2

= F i+ 1
2
− Fi+ 1

2
,

Gi+ 1
2
−Gi− 1

2
= 0, i = 1, . . . , N.

Using the consistency of the fluxes (
consistflux
2.2), there exists C > 0, only depending on u, such that

F ?i+ 1
2

= F i+ 1
2

+Ri+ 1
2

and |Ri+ 1
2
|. ≤ Ch, (2.18) errconst

Hence with ei = u(xi)− ui, for i = 1, . . . , N , and e0 = eN+1 = 0, one has

Gi+ 1
2

= −ei+1 − ei
hi+ 1

2

−Ri+ 1
2
, i = 0, . . . , N,

so that (ei)i=0,...,N+1 satisfies

−ei+1 − ei
hi+ 1

2

−Ri+ 1
2

+
ei − ei−1

hi− 1
2

+Ri− 1
2

= 0, ∀i ∈ {1, . . . , N}. (2.19) eqerror

Multiplying (
eqerror
2.19) by ei and summing over i = 1, . . . , N yields

−
N∑

i=1

(ei+1 − ei)ei
hi+ 1

2

+

N∑

i=1

(ei − ei−1)ei
hi− 1

2

= −
N∑

i=1

Ri− 1
2
ei +

N∑

i=1

Ri+ 1
2
ei.

Noting that e0 = 0, eN+1 = 0 and reordering by parts, this yields (with (
errconst
2.18))

N∑

i=0

(ei+1 − ei)
2

hi+ 1
2

≤ Ch

N∑

i=0

|ei+1 − ei|. (2.20) caspie1

The Cauchy-Schwarz inequality applied to the right hand side gives

N∑

i=0

|ei+1 − ei| ≤
( N∑

i=0

(ei+1 − ei)
2

hi+ 1
2

) 1
2
( N∑

i=0

hi+ 1
2

) 1
2

. (2.21) caspie2

Since

N∑

i=0

hi+ 1
2

= 1 in (
caspie2
2.21) and from (

caspie1
2.20), one deduces (

eel1
2.16).
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Since, for all i ∈ {1, . . . , N}, ei =

i∑

j=1

(ej − ej−1), one can deduce, from (
caspie2
2.21) and (

eel1
2.16) that (

eel2
2.17)

holds.

Remark 2.4 The error estimate given in this section does not use the discrete maximum principle (that
is the fact that fi ≥ 0, for all i = 1, . . . , N , implies ui ≥ 0, for all i = 1, . . . , N), which is used in the
proof of error estimates by the finite difference techniques, but the coerciveness of the elliptic operator,
as in the proof of error estimates by the finite element techniques.

h2conv Remark 2.5

1. The above proof of convergence gives an error estimate of order h. It is sometimes possible to obtain
an error estimate of order h2. Indeed, this is the case, at least if u ∈ C4([0, 1], IR), if xi is the center
of Ki for all i = 1, . . . , N . One obtains, in this case, |ei| ≤ Ch2, for all i ∈ {1, . . . , N}, where C only
depends on u (see

FS
Forsyth and Sammon [1988] or

BMO
Baranger, Maitre and Oudin [1996]).

2. It is also possible to obtain an error estimate for the modified finite volume scheme described in
the first item of Remark

angot1
2.2 page

angot1
14. It is even possible to obtain an error estimate of order h2 in

the case x1 = 0, xN = 1 and assuming that xi+1/2 = (1/2)(xi + xi+1), for all i = 1, . . . , N − 1. In
fact, in this case, one obtains |Ri+1/2| ≤ C1h

2, for all i = 1, . . . , N −1. Then, the proof of Theorem
eelapl1D
2.1 gives (

eel1
2.16) with h4 instead of h2 which yields |ei| ≤ C2h

2, for all i ∈ {1, . . . , N} (where C1

and C2 are only depending on u). Note that this modified finite volume scheme is also consistent
in the finite difference sense. Then, the finite difference techniques yield also an error estimate on
|ei|, but only of order h.

3. It could be tempting to try and find error estimates with respect to the mean value of the exact
solution on the control volumes rather than with respect to its value at some point of the control
volumes. This is not such a good idea: indeed, if xi is not the center of Ki (this will be the general
case in several space dimensions), then one does not have (in general) |ẽi| ≤ C3h

2 (for some C3

only depending on u) with ẽi = ũi − ui where ũi denotes the mean value of u over Ki.

Remark 2.6

1. If the assumption f ∈ C([0, 1], IR) is replaced by the assumption f ∈ L2((0, 1)) in Theorem
eelapl1D
2.1,

then u ∈ H2((0, 1)) instead of C2([0, 1], IR), but the estimates of Theorem
eelapl1D
2.1 still hold. Then,

the consistency of the fluxes must be obtained with a Taylor expansion with an integral remainder.
This is feasible for C2 functions, and since the remainder only depends on the H2 norm, a density
argument allows to conclude; see also Theorem

testh2
3.4 page

testh2
56 and

cvnl
Eymard, Gallouët and Herbin

[1999].

2. If the assumption f ∈ C([0, 1], IR) is replaced by the assumption f ∈ L1((0, 1)) in Theorem
eelapl1D
2.1,

then u ∈ C2([0, 1], IR) no longer holds (neither does u ∈ H2((0, 1))), but the convergence still holds;
indeed there exists C(u, h), only depending on u and h, such that C(u, h) → 0, as h → 0, and
|ei| ≤ C(u, h), for all i = 1, . . . , N . The proof is similar to the one above, except that the estimate
(
errconst
2.18) is replaced by |Ri+1/2| ≤ C1(u, h), for all i = 0, . . . , N , with some C1(u, h), only depending

on u and h, such that C(u, h) → 0, as h→ 0.

Remark 2.7 Estimate (
eel1
2.16) can be interpreted as a “discrete H1

0” estimate on the error. A theoretical
result which underlies the L∞ estimate (

eel2
2.17) is the fact that if Ω is an open bounded subset of IR, then

H1
0 (Ω) is imbedded in L∞(Ω). This is no longer true in higher dimension. In two space dimensions,

for instance, a discrete version of the imbedding of H1
0 in Lp allows to obtain (see e.g.

thesejmf
Fiard [1994])

‖e‖p ≤ Ch, for all finite p, which in turn yields ‖e‖∞ ≤ Ch lnh for convenient meshes (see Corollary
norminf
3.1

page
norminf
62).
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The important features needed for the above proof seem to be the consistency of the approximation of
the fluxes and the conservativity of the scheme; this conservativity is natural the fact that the scheme is
obtained by integrating the equation over each cell, and the approximation of the flux on any interface
is obtained by taking into account the flux balance (continuity of the flux in the case of no source term
on the interface).
The above proof generalizes to other elliptic problems, such as a convection-diffusion equation of the form
−uxx + aux + bu = f , and to equations of the form −(λux)x = f where λ ∈ L∞ may be discontinuous,
and is such that there exist α and β in IR?

+ such that α ≤ λ ≤ β. These generalizations are studied
in the next section. Other generalizations include similar problems in 2 (or 3) space dimensions, with
meshes consisting of rectangles (parallepipeds), triangles (tetrahedra), or general meshes of Voronöı type,
and the corresponding evolutive (parabolic) problems. These generalizations will be addressed in further
chapters.
Let us now give a proof of Estimate (

eel2
2.17), under slightly different conditions, which uses finite difference

techniques.

2.2.2 An error estimate using finite difference techniques
fdconvergence

Convergence can be obtained via a method similar to that of the finite difference proof of convergence
(following, for instance,

FS
Forsyth and Sammon [1988],

WM
Manteuffel and White [1986],

Fa1
Faille

[1992a]). Most of these methods, are, however, limited to the finite volume method for Problem (
elliptic1D
2.1).

Using the notations of Section
fdvf
2.1.2 (recall that U = (u(x1), . . . , u(xN ))t, and r = AU − b = 0(1)), the

idea is to find U “close” to U , such that

AU = b+ r, with r = 0(h).

This value of U was found in
FS
Forsyth and Sammon [1988] and is such that U = U − V , where

V = (v1, . . . , vN )t and vi =
h2
iuxx(xi)

8
, i = 1, . . . , N.

Then, one may decompose the truncation error as

r = A(U − U) = AV + r with ‖V ‖∞ = 0(h2) and r = 0(h).

The existence of such a V is given in Lemma
V
2.1. In order to prove the convergence of the scheme, a

stability property is established in Lemma
stab
2.2.

V Lemma 2.1 Let T = (Ki)i=1,···,N be an admissible mesh of (0, 1), in the sense of Definition
meshund
2.1 page

meshund
12,

such that xi is the center of Ki for all i = 1, . . . , N . Let αT > 0 be such that hi > αT h for all i = 1, . . . , N
(recall that h = max{h1, . . . , hN}). Let U = (u(x1), . . . , u(xN ))t ∈ IRN , where u is the solution to (

elliptic1D
2.1),

and assume u ∈ C3([0, 1], IR). Let A be the matrix defining the numerical scheme, given in (
matrix
2.10) page

matrix
14. Then there exists a unique U = (u1, . . . , uN ) solution of (

VF1
2.3)-(

VF4
2.6) and there exists r and V ∈ IRN

such that
r = A(U − U) = AV + r, with ‖V ‖∞ ≤ Ch2 and ‖r‖∞ ≤ Ch,

where C only depends on u and αT .

Proof of Lemma
V
2.1

The existence and uniqueness of U is classical (it is also proved in Theorem
eelapl1D
2.1).

For i = 0, . . .N , define

Ri+ 1
2

= −u(xi+1)− u(xi)

hi+ 1
2

+ ux(xi+ 1
2
).

Remark that
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ri =
1

hi
(Ri+ 1

2
−Ri− 1

2
), for i = 0, . . . , N, (2.22) aieaie

where ri is the i−th component of r = A(U − U).
The computation of Ri+ 1

2
yields

Ri+ 1
2

= − 1
4 (hi+1 − hi)uxx(xi+ 1

2
) + 0(h2), i = 1, . . . , N − 1,

R 1
2

= − 1
4h1uxx(0) + 0(h2), RN+ 1

2
= 1

4hNuxx(1) + 0(h2).

Define V = (v1, . . . , vN )t with vi =
h2

iuxx(xi)
8 , i = 1, . . . , N . Then,

−vi+1 − vi
hi+ 1

2

= Ri+ 1
2

+ 0(h2), i = 1, . . . , N − 1,

−2v1
h1

= R 1
2

+ 0(h2),

2vN
hN

= RN+ 1
2

+ 0(h2).

Since hi ≥ αT h, for i = 1, . . . , N , replacing Ri+ 1
2

in (
aieaie
2.22) gives that ri = (AV )i +0(h), for i = 1, . . . , N ,

and ‖V ‖∞ = 0(h2). Hence the lemma is proved.

stab Lemma 2.2 (Stability) Let T = (Ki)i=1,···,N be an admissible mesh of [0, 1] in the sense of Definition
meshund
2.1. Let A be the matrix defining the finite volume scheme given in (

matrix
2.10). Then A is invertible and

‖A‖−1
∞ ≤ 1

4
. (2.23) eqstab

Proof of Lemma
stab
2.2

First we prove a discrete maximum principle; indeed if bi ≥ 0, for all i = 1, . . . , N , and if U is solution of
AU = b then we prove that ui ≥ 0 for all i = 1, . . . , N .
Let a = min{ui, i = 0, . . . , N + 1} (recall that u0 = uN+1 = 0) and i0 = min{i ∈ {0, . . . , N + 1}; ui = a}.
If i0 6= 0 and i0 6= N + 1, then

1

hi0

(ui0 − ui0−1

hi0− 1
2

− ui0+1 − ui0
hi0+ 1

2

)
= bi0 ≥ 0,

this is impossible since ui0+1 − ui0 ≥ 0 and ui0 − ui0−1 < 0, by definition of i0. Therefore, i0 = 0 or
N + 1. Then, a = 0 and ui ≥ 0 for all i = 1, . . . , N .
Note that, by linearity, this implies that A is invertible.
Next, we shall prove that there exists M > 0 such that ‖A−1‖∞ ≤ M (indeed, M = 1/4 is convenient).
Let φ be defined on [0, 1] by φ(x) = 1

2x(1−x). Then −φxx(x) = 1 for all x ∈ [0, 1]. Let Φ = (φ1, . . . , φN )
with φi = φ(xi); if A represented the usual finite difference approximation of the second order derivative,
then we would have AΦ = 1, since the difference quotient approximation of the second order derivative
of a second order polynomial is exact (φxxx = 0). Here, with the finite volume scheme (

VF1
2.3)-(

VF4
2.6), we

have AΦ−1 = AW (where 1 denotes the vector of IRN the components of which are all equal to 1), with

W = (w1, . . . , wN ) ∈ IRN such that Wi = −h2
i

8 (see proof of Lemma
V
2.1). Let b ∈ IRN and AU = b, since

A(Φ−W ) = 1, we have
A(U − ‖b‖∞(Φ−W )) ≤ 0,

this last inequality being meant componentwise. Therefore, by the above maximum principle, assuming,
without loss of generality, that h ≤ 1, one has

ui ≤ ‖b‖∞(φi − wi), so that ui ≤
‖b‖∞

4
.
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(note that φ(x) ≤ 1
8 ). But we also have

A(U + ‖b‖∞(Φ−W )) ≥ 0,

and again by the maximum principle, we obtain

ui ≥ −‖b‖∞
4

.

Hence ‖U‖∞ ≤ 1
4‖b‖∞. This shows that ‖A−1‖∞ ≤ 1

4 .

This stability result, together with the existence of V given by Lemma
V
2.1, yields the convergence of the

finite volume scheme, formulated in the next theorem.

Theorem 2.2 Let T = (Ki)i=1,···,N be an admissible mesh of [0, 1] in the sense of Definition
meshund
2.1 page

meshund
12. Let αT ∈ IR?

+ be such that hi ≥ αT h, for all i = 1, . . . , N (recall that h = max{h1, . . . , hN}). Let

U = (u(x1), . . . , u(xN ))t ∈ IRN , and assume u ∈ C3([0, 1], IR) (recall that u is the solution to (
elliptic1D
2.1)). Let

U = (u1, . . . , uN) be the solution given by the numerical scheme (
VF1
2.3)-(

VF4
2.6). Then there exists C > 0,

only depending on αT and u, such that ‖U − U‖∞ ≤ Ch.

rubarbare Remark 2.8 In the proof of Lemma
stab
2.2, it was shown that A(U − V ) = b + 0(h); therefore, if, once

again, the finite volume scheme is considered as a finite difference scheme, it is consistent, in the finite
difference sense, when ui is considered to be an approximation of u(xi)− (1/8)h2

iuxx(xi).

wc Remark 2.9 With the notations of Lemma
V
2.1, let r be the function defined by

r(x) = ri, if x ∈ Ki, i = 1, . . . , N,

the function r does not necessarily go to 0 (as h goes to 0) in the L∞ norm (and even in the L1 norm),
but, thanks to the conservativity of the scheme, it goes to 0 in L∞((0, 1)) for the weak-? topology, that
is ∫ 1

0

r(x)ϕ(x)dx → 0, as h→ 0, ∀ϕ ∈ L1((0, 1)).

This property will be called “weak consistency” in the sequel and may also be used to prove the conver-
gence of the finite volume scheme (see

Fa1
Faille [1992a]).

The proof of convergence described above may be easily generalized to the two-dimensional Laplace
equation −∆u = f in two and three space dimensions if a rectangular or a parallepipedic mesh is used,
provided that the solution u is of class C3. However, it does not seem to be easily generalized to other
types of meshes.

2.3 General 1D elliptic equations
ell1D

2.3.1 Formulation of the finite volume scheme

This section is devoted to the formulation and to the proof of convergence of a finite volume scheme for
a one-dimensional linear convection-diffusion equation, with a discontinuous diffusion coefficient. The
scheme can be generalized in the two-dimensional and three-dimensional cases (for a space discretization
which uses, for instance, simplices or parallelepipedes or a “Voronöı mesh”, see Section

vfquatre
3.1.2 page

vfquatre
37)

and to other boundary conditions.

Let λ ∈ L∞((0, 1)) such that there exist λ and λ ∈ IR?
+ with λ ≤ λ ≤ λ a.e. and let a, b, c, d ∈ IR, with

b ≥ 0, and f ∈ L2((0, 1)). The aim, here, is to find an approximation to the solution, u, of the following
problem:

−(λux)x(x) + aux(x) + bu(x) = f(x), x ∈ [0, 1], (2.24) eq1
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u(0) = c, u(1) = d. (2.25) cl

The discontinuity of the coefficient λ may arise for instance for the permeability of a porous medium,
the ratio between the permeability of sand and the permeability of clay being of an order of 103; heat
conduction in a heterogeneous medium can also yield such discontinuities, since the conductivities of the
different components of the medium may be quite different. Note that the assumption b ≥ 0 ensures the
existence of the solution to the problem.

Remark 2.10 Problem (
eq1
2.24)-(

cl
2.25) has a unique solution u in the Sobolev space H1((0, 1)). This

solution is continuous (on [0, 1]) but is not, in general, of class C2 (even if λ(x) = 1, for all x ∈ [0, 1]).
Note that one has −λux(x) =

∫ x
0
g(t)dt+C, where C is some constant and g = f −aux− bu ∈ L1((0, 1)),

so that λux is a continuous function and ux ∈ L∞((0, 1)).

Let T = (Ki)i=1,···,N be an admissible mesh, in the sense of Definition
meshund
2.1 page

meshund
12, such that the

discontinuities of λ coincide with the interfaces of the mesh.
The notations being the same as in section

Diric1D
2.1, integrating Equation (

eq1
2.24) over Ki yields

−(λux)(xi+ 1
2
) + (λux)(xi− 1

2
) + au(xi+ 1

2
)− au(xi− 1

2
) +

∫

Ki

bu(x)dx =

∫

Ki

f(x)dx, i = 1, . . . , N.

Let (ui)i=1,···,N be the discrete unknowns. In the case a ≥ 0, which will be considered in the sequel,
the convective term au(xi+1/2) is approximated by aui (“upstream”) because of stability considerations.
Indeed, this choice always yields a stability result whereas the approximation of au(xi+1/2) by (a/2)(ui+
ui+1) (with the approximation of the other terms as it is done below) yields a stable scheme if ah ≤ 2λ,
for a uniform mesh of size h and a constant diffusion coefficient λ. The case a ≤ 0 is easily handled in the
same way by approximating au(xi+1/2) by aui+1. The term

∫
Ki
bu(x)dx is approximated by bhiui. Let

us now turn to the approximation Hi+1/2 of −λux(xi+1/2). Let λi = 1
hi

∫
Ki
λ(x)dx; since λ|Ki ∈ C1(K̄i),

there exists cλ ∈ IR+, only depending on λ, such that |λi − λ(x)| ≤ cλh, ∀x ∈ Ki. In order that the
scheme be conservative, the discretization of the flux at xi+1/2 should have the same value on Ki and
Ki+1. To this purpose, we introduce the auxiliary unknown ui+1/2 (approximation of u at xi+1/2). Since
on Ki and Ki+1, λ is continuous, the approximation of −λux may be performed on each side of xi+1/2

by using the finite difference principle:

Hi+ 1
2

= −λi
ui+ 1

2
− ui

h+
i

on Ki, i = 1, . . . , N,

Hi+ 1
2

= −λi+1

ui+1 − ui+ 1
2

h−i+1

on Ki+1, i = 0, . . . , N − 1,

with u1/2 = c, and uN+1/2 = d, for the boundary conditions. (Recall that h+
i = xi+1/2 − xi and

h−i = xi − xi−1/2). Requiring the two above approximations of λux(xi+1/2) to be equal (conservativity
of the flux) yields the value of ui+1/2 (for i = 1, . . . , N − 1):

ui+ 1
2

=

ui+1
λi+1

h−i+1

+ ui
λi

h+
i

λi+1

h−i+1

+
λi

h+
i

(2.26) uipud

which, in turn, allows to give the expression of the approximation Hi+ 1
2

of λux(xi+ 1
2
):

Hi+ 1
2

= −τi+ 1
2
(ui+1 − ui), i = 1, . . . , N − 1,

H 1
2

= − λ1

h−1
(u1 − c),

HN+ 1
2

= −λN

h+
N

(d− uN)

(2.27) vfsig
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with

τi+ 1
2

=
λiλi+1

h+
i λi+1 + h−i+1λi

, i = 1, . . . , N − 1. (2.28) tau1D

Example 2.2 If hi = h, for all i ∈ {1, . . . , N}, and xi is assumed to be the center of Ki, then h+
i =

h−i = h
2 , so that

Hi+ 1
2

= − 2λiλi+1

λi + λi+1

ui+1 − ui
h

,

and therefore the mean harmonic value of λ is involved.

The numerical scheme for the approximation of Problem (
eq1
2.24)-(

cl
2.25) is therefore,

Fi+ 1
2
− Fi− 1

2
+ bhiui = hifi, ∀i ∈ {1, . . . , N}, (2.29) eqd1

with fi = 1
hi

∫ x
i+1

2
x

i− 1
2

f(x)dx, for i = 1, . . . , N , and where (Fi+ 1
2
)i∈{0,...,N} is defined by the following

expressions

Fi+ 1
2

= −τi+ 1
2
(ui+1 − ui) + aui, ∀i ∈ {1, . . . , N − 1}, (2.30) eqd2

F 1
2

= − λ1

h−1
(u1 − c) + ac, FN+ 1

2
= −λN

h+
N

(d− uN) + auN . (2.31) cld

Remark 2.11 In the case a ≥ 0, the choice of the approximation of au(xi+1/2) by aui+1 would yield an
unstable scheme, except for h small enough (when a ≤ 0, the unstable scheme is aui).

Taking (
tau1D
2.28), (

eqd2
2.30) and (

cld
2.31) into account, the numerical scheme (

eqd1
2.29) yields a system of N equations

with N unknowns u1, . . . , uN .

2.3.2 Error estimate
ce1r

ee1dell Theorem 2.3
Let a, b ≥ 0, c, d ∈ IR, λ ∈ L∞((0, 1)) such that λ ≤ λ ≤ λ a.e. with some λ, λ ∈ IR?

+ and f ∈ L1((0, 1)).
Let u be the (unique) solution of (

eq1
2.24)-(

cl
2.25). Let T = (Ki)i=1,···,N be an admissible mesh, in the sense of

Definition
meshund
2.1, such that λ ∈ C1(Ki) and f ∈ C(Ki), for all i = 1, · · · , N . Let γ = max{‖uxx‖L∞(Ki), i =

1, · · · , N} and δ = max{‖λ‖L∞(Ki), i = 1, · · · , N}. Then,

1. there exists a unique vector U = (u1, . . . , uN )t ∈ IRN solution to (
tau1D
2.28)-(

cld
2.31),

2. there exists C, only depending on λ, λ, γ and δ, such that

N∑

i=0

τi+ 1
2
(ei+1 − ei)

2 ≤ Ch2, (2.32) ee1

where τi+ 1
2

is defined in (
tau1D
2.28), and

|ei| ≤ Ch, ∀i ∈ {1, . . . , N}, (2.33) ee2

with e0 = eN+1 = 0 and ei = u(xi)− ui, for all i ∈ {1, . . . , N}.
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Proof of Theorem
ee1dell
2.3

Step 1. Existence and uniqueness of the solution to (
tau1D

2.28)-(
cld

2.31).
Multiplying (

eqd1
2.29) by ui and summing for i = 1, . . . , N yields that if c = d = 0 and fi = 0 for any i ∈

{1, . . . , N}, then the unique solution to (
tau1D
2.28)-(

cld
2.31) is obtained by taking ui = 0, for any i ∈ {1, . . . , N}.

This yields existence and uniqueness of the solution to (
tau1D
2.28)-(

cld
2.31).

Step 2. Consistency of the fluxes.
Recall that h = max{h1, . . . , hN}. Let us first show the consistency of the fluxes.
LetHi+1/2 = −(λux)(xi+1/2) andH?

i+1/2 = −τi+1/2(u(xi+1)−u(xi)), for i = 0, . . . , N , with τ1/2 = λ1/h
−
1

and τN+1/2 = λN/h
+
N . Let us first show that there exists C1 ∈ IR?

+, only depending on λ, λ, γ and δ,
such that

H?
i+ 1

2

= H i+ 1
2

+ Ti+ 1
2
,

|Ti+ 1
2
| ≤ C1h, i = 0, . . . , N.

(2.34) lambdaconsist

In order to show this, let us introduce

H?,−
i+ 1

2

= −λi
u(xi+ 1

2
)− u(xi)

h+
i

and H?,+

i+ 1
2

= −λi+1

u(xi+1)− u(xi+ 1
2
)

h−i+1

; (2.35) Gast

since λ ∈ C1(K̄i), one has u ∈ C2(K̄i); hence, there exists C ∈ IR?
+, only depending on γ and δ, such

that

H?,−
i+ 1

2

= H i+ 1
2

+R−
i+ 1

2

, where |R−
i+ 1

2

| ≤ Ch, i = 1, . . . , N, (2.36) eqRun

and

H?,+

i+ 1
2

= H i+ 1
2

+R+
i+ 1

2

, where |R+
i+ 1

2

| ≤ Ch, i = 0, . . . , N − 1. (2.37) eqRde

This yields (
lambdaconsist
2.34) for i = 0 and i = N .

The following equality:

H i+ 1
2

= H?,−
i+ 1

2

−R−
i+ 1

2

= H?,+

i+ 1
2

−R+
i+ 1

2

, i = 1, . . . , N − 1, (2.38) Gbarast

yields that

u(xi+ 1
2
) =

λi+1

h−i+1

u(xi+1) +
λi

h+
i

u(xi)

λi

h+
i

+
λi+1

h−i+1

+ Si+ 1
2
, i = 1, . . . , N − 1, (2.39) lambdauipud

where

Si+ 1
2

=
R+
i+ 1

2

−R−
i+ 1

2

λi

h+

i

+ λi+1

h−
i+1

so that

|Si+ 1
2
| ≤ 1

λ

h+
i h

−
i+1

h+
i + h−i+1

|R+
i+ 1

2

−R−
i+ 1

2

|.

Let us replace the expression (
lambdauipud
2.39) of u(xi+1/2) in H?,−

i+1/2 defined by (
Gast
2.35) (note that the computation

is similar to that performed in (
uipud
2.26)-(

vfsig
2.27)); this yields

H?,−
i+ 1

2

= −τi+ 1
2
(u(xi+1)− u(xi))−

λi

h+
i

Si+ 1
2
, i = 1, . . . , N − 1. (2.40) computGast
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Using (
Gbarast
2.38), this implies that H?

i+ 1
2

= H i+ 1
2

+ Ti+ 1
2

where

|Ti+ 1
2
| ≤ |R−

i+ 1
2

|+ |R+
i+ 1

2

−R−
i+ 1

2

| λ
2λ
.

Using (
eqRun
2.36) and (

eqRde
2.37), this last inequality yields that there exists C1, only depending on λ, λ, γ, δ, such

that

|H?
i+ 1

2

−Hi+ 1
2
| = |Ti+ 1

2
| ≤ C1h, i = 1, . . . , N − 1.

Therefore (
lambdaconsist
2.34) is proved.

Define now the total exact fluxes;

F i+ 1
2

= −(λux)(xi+ 1
2
) + au(xi+ 1

2
), ∀i ∈ {0, . . . , N},

and define

F ?i+ 1
2

= −τi+ 1
2
(u(xi+1)− u(xi)) + au(xi), ∀i ∈ {1, . . . , N − 1},

F ?1
2

= − λ1

h−1
(u(x1)− c) + ac, F ?N+ 1

2

= −λN

h+
N

(d− u(xN )) + auN .

Then, from (
lambdaconsist
2.34) and the regularity of u, there exists C2, only depending on λ, λ, γ and δ, such that

F ?i+ 1
2

= F i+ 1
2

+Ri+ 1
2
, with |Ri+ 1

2
| ≤ C2h, i = 0, . . . , N. (2.41) consistflux1D

Hence the numerical approximation of the flux is consistent.

Step 3. Error estimate.
Integrating Equation (

eq1
2.24) over each control volume yields that

F i+ 1
2
− F i− 1

2
+ bhi(u(xi) + Si) = hifi, ∀i ∈ {1, . . . , N}, (2.42) eqdc1

where Si ∈ IR is such that there exists C3 only depending on u such that |Si| ≤ C3h, for i = 1, . . . , N .
Using (

consistflux1D
2.41) yields that

F ?i+ 1
2

− F ?i− 1
2

+ bhi(u(xi) + Si) = hifi +Ri+ 1
2
−Ri− 1

2
, ∀i ∈ {1, . . . , N}. (2.43) eqfast1D

Let ei = u(xi)− ui, for i = 1, . . . , N , and e0 = eN+1 = 0. Substracting (
eqd1
2.29) from (

eqfast1D
2.43) yields

−τi+ 1
2
(ei+1 − ei) + τi− 1

2
(ei − ei−1) + a(ei − ei−1) + bhiei = −bhiSi +Ri+ 1

2
−Ri− 1

2
, ∀i ∈ {1, . . . , N}.

Let us multiply this equation by ei, sum for i = 1, . . . , N , reorder the summations. Remark that

N∑

i=1

ei(ei − ei−1) =
1

2

N+1∑

i=1

(ei − ei−1)
2

and therefore

N∑

i=0

τi+ 1
2
(ei+1 − ei)

2 +
a

2

N+1∑

i=1

(ei − ei−1)
2 +

N∑

i=1

bhie
2
i = −

N∑

i=1

bhiSiei −
N∑

i=0

Ri+ 1
2
(ei+1 − ei).

Since |Si| ≤ C3h and thanks to (
consistflux1D
2.41), one has



26

N∑

i=0

τi+ 1
2
(ei+1 − ei)

2 ≤
N∑

i=1

bC3hih|ei|+
N∑

i=1

C2h|ei+1 − ei|.

Remark that |ei| ≤
∑N

j=1 |ej − ej−1|. Denote by A =
(∑N

i=0 τi+ 1
2
(ei+1− ei)2

) 1
2

and B =
(∑N

i=0
1

τ
i+1

2

) 1
2

.

The Cauchy-Schwarz inequality yields

A2 ≤
N∑

i=1

bC3hihAB + C2hAB.

Now, since

1

τi+ 1
2

≤ λ

λ2 (h−i+1 + h+
i ),

N∑

i=0

(h−i+1 + h+
i ) = 1, with h+

0 = h−N+1 = 0, and

N∑

i=1

hi = 1,

one obtains that A ≤ C4h, with C4 only depending on λ, λ, γ and δ, which yields Estimate (
ee1
2.32).

Applying once again the Cauchy-Schwarz inequality yields Estimate (
ee2
2.33).

2.3.3 The case of a point source term

In many physical problems, some discontinuous or point source terms appear. In the case where a
source term exists at the interface xi+1/2, the fluxes relative to Ki and Ki+1 will differ because of this
source term. The computation of the fluxes is carried out in a similar way, writing that the sum of the
approximations of the fluxes must be equal to the source term at the interface. Consider again the one-
dimensional conservation problem (

eq1
2.24), (

cl
2.25) (with, for the sake of simplification, a = b = c = d = 0,

we use below the notations of the previous section), but assume now that at x ∈ (0, 1), a point source of
intensity α exists. In this case, the problem may be written in the following way:

−(λux(x))x = f(x), x ∈ (0, x) ∪ (x, 1), (2.44) eqdisc

u(0) = 0, (2.45) cldisc1

u(1) = 0, (2.46) cldisc2

(λux)
+(x)− (λux)

−(x) = −α, (2.47) fluxdisc

where
(λux)

+(x) = lim
x→x,x>x

(λux)(x) and (λux)
−(x) = lim

x→x,x<x
(λux)(x).

Equation (
fluxdisc
2.47) states that the flux is discontinuous at point x. Another formulation of the problem is

the following:

−(λux)x = g in D′((0, 1)), (2.48) eqmatdisc

u(0) = 0, (2.49) cldisc21

u(1) = 0, (2.50) cldisc22

where g = f + αδx, where δx denotes the Dirac measure, which is defined by < δx, ϕ >D′,D= ϕ(x), for
any ϕ ∈ D((0, 1)) = C∞c ((0, 1), IR), and D′((0, 1)) denotes the set of distributions on (0,1), i.e. the set of
continuous linear forms on D((0, 1)).
Assuming the mesh to be such that x = xi+1/2 for some i ∈ 1, . . . , N − 1, the equation corresponding to

the unknown ui is F−i+1/2 − Fi−1/2 =
∫
Ki
f(x)dx, while the equation corresponding to the unknown ui+1

is Fi+3/2 − F+
i+1/2 =

∫
Ki+1

f(x)dx. In order to compute the values of the numerical fluxes F±i+1/2, one
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must take the source term into account while writing the conservativity of the flux; hence at xi+1/2, the

two numerical fluxes at x = x, namely F+
i+ 1

2

and F−
i+ 1

2

, must satisfy, following Equation (
fluxdisc
2.47),

F+
i+ 1

2

− F−
i+ 1

2

= α. (2.51) ddf

Next, the fluxes F+
i+1/2 and F−i+1/2 must be expressed in terms of the discrete variables uk, k = 1, . . . , N ;

in order to do so, introduce the auxiliary variable ui+1/2 (which will be eliminated later), and write

F+
i+ 1

2

= −λi+1

ui+1 − ui+ 1
2

h−i+1

F−
i+ 1

2

= −λi
ui+ 1

2
− ui

h+
i

.

Replacing these expressions in (
ddf
2.51) yields

ui+ 1
2

=
h+
i h

−
i+1

(h−i+1λi + h+
i λi+1)

[
λi+1

h−i+1

ui+1 +
λi

h+
i

ui + α].

and therefore

F+
i+ 1

2

=
h+
i λi+1

h−i+1λi + h+
i λi+1

α− λiλi+1

h−i+1λi + h+
i λi+1

(ui+1 − ui)

F−
i+ 1

2

=
−h−i+1λi

h−i+1λi + h+
i λi+1

α− λiλi+1

h−i+1λi + h+
i λi+1

(ui+1 − ui).

Note that the source term α is distributed on either side of the interface proportionally to the coefficient
λ, and that, when α = 0, the above expressions lead to

F+
i+ 1

2

= F−
i+ 1

2

= − λiλi+1

h−i+1λi + h+
i λi+1

(ui+1 − ui).

Note that the error estimate given in Theorem
ee1dell
2.3 still holds in this case (under adequate assumptions).

2.4 A semilinear elliptic problem

2.4.1 Problem and Scheme

This section is concerned with the proof of convergence for some nonlinear problems. We are interested,
as an example, by the following problem:

−uxx(x) = f(x, u(x)), x ∈ (0, 1), (2.52) enl1d

u(0) = u(1) = 0, (2.53) enl1dcl

with a function f : (0, 1)× IR → IR such that

f(x, s) is measurable with respect to x ∈ (0, 1) for all s ∈ IR
and continuous with respect to s ∈ IR for a.e. x ∈ (0, 1),

(2.54) carat

f ∈ L∞((0, 1)× IR). (2.55) bornee

It is possible to prove that there exists at least one weak solution to (
enl1d
2.52), (

enl1dcl
2.53), that is a function u

such that
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u ∈ H1
0 ((0, 1)),

∫ 1

0

ux(x)vx(x)dx =

∫ 1

0

f(x, u(x))v(x)dx, ∀v ∈ H1
0 ((0, 1)). (2.56) enl1dw

Note that (
enl1dw
2.56) is equivalent to “u ∈ H1

0 ((0, 1)) and −uxx = f(·, u) in the distribution sense in (0, 1)”.
The proof of the existence of such a solution is possible by using, for instance, the Schauder’s fixed point
theorem (see e.g.

deimling
Deimling [1980]) or by using the convergence theorem

enl1dcr
2.4 which is proved in the

sequel.

Let T be an admissible mesh of [0, 1] in the sense of Definition
meshund
2.1. In order to discretize (

enl1d
2.52), (

enl1dcl
2.53),

let us consider the following (finite volume) scheme

Fi+ 1
2
− Fi− 1

2
= hifi(ui), i = 1, . . . , N, (2.57) enl1dd

Fi+ 1
2

= −ui+1 − ui
hi+ 1

2

, i = 0, . . . , N, (2.58) enl1df

u0 = uN+1 = 0, (2.59) enl1dcld

with fi(ui) = 1
hi

∫
Ki
f(x, ui)dx, i = 1, . . . , N . The discrete unknowns are therefore u1, . . . , uN .

In order to give a convergence result for this scheme (Theorem
enl1dcr
2.4), one first proves the existence of a

solution to (
enl1dd
2.57)-(

enl1dcld
2.59), a stability result, that is, an estimate on the solution of (

enl1dd
2.57)-(

enl1dcld
2.59) (Lemma

enl1dl1
2.3) and a compactness lemma (Lemma

enl1dl2
2.4).

enl1dl1 Lemma 2.3 (Existence and stability result) Let f : (0, 1) × IR → IR satisfying (
carat
2.54), (

bornee
2.55) and

T be an admissible mesh of (0, 1) in the sense of Definition
meshund
2.1. Then, there exists (u1, . . . , uN )t ∈ IRN

solution of (
enl1dd
2.57)-(

enl1dcld
2.59) and which satisfies:

N∑

i=0

(ui+1 − ui)
2

hi+ 1
2

≤ C, (2.60) h1dest

for some C ≥ 0 only depending on f .

Proof of Lemma
enl1dl1
2.3

Define M = ‖f‖L∞((0,1)×IR). The proof of estimate (
h1dest
2.60) is given in a first step, and the existence of a

solution to (
enl1dd
2.57)-(

enl1dcld
2.59) in a second step.

Step 1 (Estimate)
Let V = (v1, . . . , vN )t ∈ IRN , there exists a unique U = (u1, . . . , uN )t ∈ IRN solution of (

enl1dd
2.57)-(

enl1dcld
2.59)

with fi(vi) instead of fi(ui) in the right hand-side (see Theorem
eelapl1D
2.1 page

eelapl1D
16). One sets U = F (V ), so

that F is a continuous application from IRN to IRN , and (u1, . . . , uN) is a solution to (
enl1dd
2.57)-(

enl1dcld
2.59) if and

only if U = (u1, . . . , uN )t is a fixed point to F .
Multiplying (

enl1dd
2.57) by ui and summing over i yields

N∑

i=0

(ui+1 − ui)
2

hi+ 1
2

≤M

N∑

i=1

hi|ui|, (2.61) preest

and from the Cauchy-Schwarz inequality, one has

|ui| ≤
( N∑

j=0

(uj+1 − uj)
2

hj+ 1
2

) 1
2 , i = 1, . . . , N,

then (
preest
2.61) yields, with C = M2,
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N∑

i=0

(ui+1 − ui)
2

hi+ 1
2

≤ C. (2.62) h1destbis

This gives, in particular, Estimate (
h1dest
2.60) if (u1, . . . , uN )t ∈ IRN is a solution of (

enl1dd
2.57)-(

enl1dcld
2.59) (that is

ui = vi for all i).

Step 2 (Existence)
The application F : IRN → IRN defined above is continuous and, taking in IRN the norm

‖V ‖ =
( N∑

i=0

(vi+1 − vi)
2

hi+ 1
2

) 1
2 , for V = (v1, . . . , vN )t, with v0 = vN+1 = 0,

one has F (BM ) ⊂ BM , where BM is the closed ball of radius M and center 0 in IRN . Then, F has a
fixed point in BM thanks to the Brouwer fixed point theorem (see e.g.

deimling
Deimling [1980]). This fixed

point is a solution to (
enl1dd
2.57)-(

enl1dcld
2.59).

2.4.2 Compactness results

.

enl1dl2 Lemma 2.4 (Compactness)
For an admissible mesh T of (0, 1) (see definition

meshund
2.1), let (u1, . . . , uN)t ∈ IRN satisfy (

h1dest
2.60) for some

C ∈ IR (independent of T ) and let uT : (0, 1) → IR be defined by uT (x) = ui if x ∈ Ki, i = 1, . . . , N .
Then, the set {uT , T admissible mesh of (0, 1)} is relatively compact in L2((0, 1)). Furthermore, if
uTn → u in L2((0, 1)) and size(Tn) → 0, as n→∞, then, u ∈ H1

0 ((0, 1)).

Proof of Lemma
enl1dl2
2.4

A possible proof is to use “classical” compactness results, replacing uT by a continuous function, say
uT , piecewise affine, such that uT (xi) = ui for i = 1, . . . , N , and uT (0) = uT (1) = 0. The set {uT , T
admissible mesh of (0, 1)} is then bounded in H1

0 ((0, 1)), see Remark
Liebig
3.9 page

Liebig
49.

Another proof is given here, the interest of which is its simple generalization to multidimensional cases
(such as the case of one unknown per triangle in 2 space dimensions, see Section

vfquatre
3.1.2 page

vfquatre
37 and Section

rellichd
3.6 page

rellichd
92) when the construction of such a function, uT , “close” to uT and bounded in H1

0 ((0, 1))
(independently of T ), is not so easy.

In order to have uT defined on IR, one sets uT (x) = 0 for x /∈ [0, 1]. The proof may be decomposed into
four steps.

Step 1. First remark that the set {uT , T an admissible mesh of (0, 1)} is bounded in L2(IR). Indeed, this
an easy consequence of (

h1dest
2.60), since one has, for all x ∈ [0, 1] (since u0 = 0 and by the Cauchy-Schwarz

inequality),

|uT (x)| ≤
N∑

i=0

|ui+1 − ui| ≤ (

N∑

i=0

(ui+1 − ui)
2

hi+ 1
2

)
1
2 ≤ C.

Step 2. Let 0 < η < 1. One proves, in this step, that

‖uT (·+ η)− uT ‖2
L2(IR) ≤ Cη(η + 2h). (2.63) cleest

(Recall that h = size(T ).)
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Indeed, for i ∈ {0, . . . , N} define χi+1/2 : IR → IR, by χi+1/2(x) = 1, if xi+1/2 ∈ [x, x+η] and χi+1/2(x) =
0, if xi+1/2 /∈ [x, x+ η]. Then, one has, for all x ∈ IR,

(uT (x + η)− uT (x))2 ≤
( N∑

i=0

|ui+1 − ui|χi+ 1
2
(x)
)2

≤
( N∑

i=0

(ui+1 − ui)
2

hi+ 1
2

χi+ 1
2
(x)
)( N∑

i=0

χi+ 1
2
(x)hi+ 1

2

)
. (2.64) clest

Since
∑N

i=0 χi+1/2(x)hi+1/2 ≤ η + 2h, for all x ∈ IR, and
∫
IR
χi+1/2(x)dx = η, for all i ∈ {0, . . . , N},

integrating (
clest
2.64) over IR yields (

cleest
2.63).

Step 3. For 0 < η < 1, Estimate (
cleest
2.63) implies that

‖uT (·+ η)− uT ‖2
L2(IR) ≤ 3Cη.

This gives (with Step 1), by the Kolmogorov compactness theorem (recalled in Section
rellichd
3.6, see Theorem

Kolm
3.9 page

Kolm
93), the relative compactness of the set {uT , T an admissible mesh of (0, 1)} in L2((0, 1)) and

also in L2(IR) (since uT = 0 on IR \ [0, 1]).

Step 4. In order to conclude the proof of Lemma
enl1dl2
2.4, one may use Theorem

kolmh10
3.10 page

kolmh10
93, which we prove

here in the one-dimensional case for the sake of clarity. Let (Tn)n∈IN be a sequence of admissible meshes
of (0, 1) such that size(Tn) → 0 and uTn → u, in L2((0, 1)), as n → ∞. Note that uTn → u, in L2(IR),
with u = 0 on IR \ [0, 1]. For a given η ∈ (0, 1), let n→∞ in (

cleest
2.63), with uTn instead of uT (and size(Tn)

instead of h). One obtains

‖u(·+ η)− u

η
‖2
L2(IR) ≤ C. (2.65) preh1

Since (u(·+ η)− u)/η tends to Du (the distribution derivative of u) in the distribution sense, as η → 0,
Estimate (

preh1
2.65) yields that Du ∈ L2(IR). Furthermore, since u = 0 on IR \ [0, 1], the restriction of u to

(0, 1) belongs to H1
0 ((0, 1)). The proof of Lemma

enl1dl2
2.4 is complete.

.

2.4.3 Convergence

The following convergence result follows from lemmata
enl1dl1
2.3 and

enl1dl2
2.4.

enl1dcr Theorem 2.4 Let f : (0, 1) × IR → IR satisfying (
carat
2.54), (

bornee
2.55). For an admissible mesh, T , of (0, 1)

(see Definition
meshund
2.1), let (u1, . . . , uN)t ∈ IRN be a solution to (

enl1dd
2.57)-(

enl1dcld
2.59) (the existence of which is given

by Lemma
enl1dl1
2.3), and let uT : (0, 1) → IR by uT (x) = ui, if x ∈ Ki, i = 1, . . . , N .

Then, for any sequence (Tn)n∈IN of admissible meshes such that size(Tn) → 0, as n → ∞, there exists a
subsequence, still denoted by (Tn)n∈IN, such that uTn → u, in L2((0, 1)), as n→∞, where u ∈ H1

0 ((0, 1))
is a weak solution to (

enl1d
2.52), (

enl1dcl
2.53) (that is, a solution to (

enl1dw
2.56)).

Proof of Theorem
enl1dcr
2.4

Let (Tn)n∈IN be a sequence of admissible meshes of (0, 1) such that size(Tn) → 0, as n→∞. By lemmata
enl1dl1
2.3 and

enl1dl2
2.4, there exists a subsequence, still denoted by (Tn)n∈IN , such that uTn → u, in L2((0, 1)), as

n→ ∞, where u ∈ H1
0 ((0, 1)). In order to conclude, it only remains to prove that −uxx = f(·, u) in the

distribution sense in (0, 1).
To prove this, let ϕ ∈ C∞c ((0, 1)). Let T be an admissible mesh of (0, 1), and ϕi = ϕ(xi), i = 1, . . . , N ,
and ϕ0 = ϕN+1 = 0. If (u1, . . . , uN ) is a solution to (

enl1dd
2.57)-(

enl1dcld
2.59), multiplying (

enl1dd
2.57) by ϕi and summing

over i = 1, . . . , N yields
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∫ 1

0

uT (x)ψT (x)dx =

∫ 1

0

fT (x)ϕT (x)dx, (2.66) yenamar

where

ψT (x) =
1

hi
(
ϕi − ϕi−1

hi− 1
2

− ϕi+1 − ϕi
hi+ 1

2

), fT (x) = f(x, ui) and ϕT (x) = ϕi, if x ∈ Ki.

Note that, thanks to the regularity of the function ϕ,

ϕi+1 − ϕi
hi+ 1

2

= ϕx(xi+ 1
2
) +Ri+ 1

2
, |Ri+ 1

2
| ≤ C1h,

with some C1 only depending on ϕ, and therefore

∫ 1

0

uT (x)ψT (x)dx =

N∑

i=1

∫

Ki

ui
hi

(
ϕx(xi− 1

2
)− ϕx(xi+ 1

2
)
)
dx+

N∑

i=1

ui(Ri− 1
2
−Ri+ 1

2
)

=

∫ 1

0

−uT (x)θT (x)dx +

N∑

i=0

Ri+ 1
2
(ui+1 − ui),

with u0 = uN+1 = 0, where the piecewise constant function

θT =
∑

i=1,N

ϕx(xi+ 1
2
)− ϕx(xi− 1

2
)

hi
1Ki

tends to ϕxx as h tends to 0.
Let us consider (

yenamar
2.66) with Tn instead of T ; thanks to the Cauchy-Schwarz inequality, a passage to the

limit as n→∞ gives, thanks to (
h1dest
2.60),

−
∫ 1

0

u(x)ϕxx(x)dx =

∫ 1

0

f(x, u(x))ϕ(x)dx,

and therefore −uxx = f(·, u) in the distribution sense in (0, 1). This concludes the proof of Theorem
enl1dcr
2.4.

Note that the crucial idea of this proof is to use the property of consistency of the fluxes on the regular
test function ϕ.

sublinear Remark 2.12 It is possible to give some extensions of the results of this section. For instance, Theorem
enl1dcr
2.4 is true with an assumption of “sublinearity” on f instead of (

bornee
2.55). Furthermore, in order to have

both existence and uniqueness of the solution to (
enl1dw
2.56) and a rate of convergence (of order h) in Theorem

enl1dcr
2.4, it is sufficient to assume, instead of (

carat
2.54) and (

bornee
2.55), that f ∈ C1([0, 1] × IR, IR) and that there

exists γ < 1, such that (f(x, s)− f(x, t))(s − t) ≤ γ(s− t)2, for all (x, s) ∈ [0, 1]× IR.



Chapter 3

Elliptic problems in two or three

dimensions

ellmd

The topic of this chapter is the discretization of elliptic problems in several space dimensions by the
finite volume method. The one-dimensional case which was studied in Chapter

ellund
2 is easily generalized

to nonuniform rectangular or parallelipedic meshes. However, for general shapes of control volumes,
the definition of the scheme (and the proof of convergence) requires some assumptions which define an
“admissible mesh”. Dirichlet and Neumann boundary conditions are both considered. In both cases, a
discrete Poincaré inequality is used, and the stability of the scheme is proved by establishing estimates
on the approximate solutions. The convergence of the scheme without any assumption on the regularity
of the exact solution is proved; this result may be generalized, under adequate assumptions, to nonlinear
equations. Then, again in both the Dirichlet and Neumann cases, an error estimate between the finite
volume approximate solution and the C2 or H2 regular exact solution to the continuous problems are
proved. The results are generalized to the case of matrix diffusion coefficients and more general boundary
conditions. Section

scvfe
3.4 is devoted to finite volume schemes written with unknowns located at the vertices.

Some links between the finite element method, the “classical” finite volume method and the “control
volume finite element” method introduced by

F1
Forsyth [1989] are given. Section

meshref
3.5 is devoted to the

treatment of singular sources and to mesh refinement; under suitable assumption, it can be shown that
error estimates still hold for “atypical” refined meshes. Finally, Section

rellichd
3.6 is devoted to the proof of

compactness results which are used in the proofs of convergence of the schemes.

3.1 Dirichlet boundary conditions
sdbc

Let us consider here the following elliptic equation

−∆u(x) + div(vu)(x) + bu(x) = f(x), x ∈ Ω, (3.1) elldifstaf

with Dirichlet boundary condition:
u(x) = g(x), x ∈ ∂Ω, (3.2) elldifstab

where

ellH Assumption 3.1

1. Ω is an open bounded polygonal subset of IRd, d = 2 or 3,

2. b ≥ 0,

3. f ∈ L2(Ω),

32
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4. v ∈ C1(Ω, IRd); divv ≥ 0,

5. g ∈ C(∂Ω, IR) is such that there exists g̃ ∈ H1(Ω) such that γ(g̃) = g a.e. on ∂Ω.

Here, and in the sequel, “polygonal” is used for both d = 2 and d = 3 (meaning polyhedral in the latter
case) and γ denotes the trace operator from H1(Ω) into L2(∂Ω). Note also that “a.e. on ∂Ω” is a.e. for
the d− 1-dimensional Lebesgue measure on ∂Ω.
Under Assumption

ellH
3.1, by the Lax-Milgram theorem, there exists a unique variational solution u ∈ H1(Ω)

of Problem (
elldifstaf
3.1)-(

elldifstab
3.2). (For the study of elliptic problems and their discretization by finite element

methods, see e.g.
ciarlet
Ciarlet, P.G. [1978] and references therein). This solution satisfies u = w+ g̃, where

g̃ ∈ H1(Ω) is such that γ(g̃) = g, a.e. on ∂Ω, and w is the unique function of H1
0 (Ω) satisfying

∫

Ω

(
∇w(x) · ∇ψ(x) + div(vw)(x)ψ(x) + bw(x)ψ(x)

)
dx =

∫

Ω

(
−∇g̃(x) · ∇ψ(x) − div(vg̃)(x)ψ(x) − bg̃(x)ψ(x) + f(x)ψ(x)

)
dx, ∀ψ ∈ H1

0 (Ω).
(3.3) ellsolvar

3.1.1 Structured meshes
smesh

If Ω is a rectangle (d = 2) or a parallelepiped (d = 3), it may then be meshed with rectangular or
parallelepipedic control volumes. In this case, the one-dimensional scheme may easily be generalized.

Rectangular meshes for the Laplace operator

Let us for instance consider the case d = 2, let Ω = (0, 1)×(0, 1), and f ∈ C2(Ω, IR) (the three dimensional
case is similar). Consider Problem (

elldifstaf
3.1)-(

elldifstab
3.2) and assume here that b = 0, v = 0 and g = 0 (the general

case is considered later, on general unstructured meshes). The problem reduces to the pure diffusion
equation:

−∆u(x, y) = f(x, y), (x, y) ∈ Ω,
u(x, y) = 0, (x, y) ∈ ∂Ω.

(3.4) lapl2d

In this section, it is convenient to denote by (x, y) the current point of IR2 (elsewhere, the notation x is
used for a point or a vector of IRd).
Let T = (Ki,j)i=1,···,N1;j=1,···,N2

be an admissible mesh of (0, 1)× (0, 1), that is, satisfying the following
assumptions (which generalize Definition

meshund
2.1)

hyprect Assumption 3.2 Let N1 ∈ IN?, N2 ∈ IN?, h1, . . . , hN1
> 0, k1, . . . , kN2

> 0 such that

N1∑

i=1

hi = 1,

N2∑

i=1

ki = 1,

and let h0 = 0, hN1+1 = 0, k0 = 0, kN2+1 = 0. For i = 1, . . . , N1, let x 1
2

= 0, xi+ 1
2

= xi− 1
2

+ hi, (so that

xN1+
1
2

= 1), and for j = 1, . . . , N2, y 1
2

= 0, yj+ 1
2

= yj− 1
2

+ kj , (so that yN2+
1
2

= 1) and

Ki,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
].

Let (xi)i=0,N1+1, and (yj)j=0,N2+1, such that

xi− 1
2
< xi < xi+ 1

2
, for i = 1, . . . , N1, x0 = 0, xN1+1 = 1,

yj− 1
2
< yj < yj+ 1

2
, for j = 1, . . . , N2, y0 = 0, yN2+1 = 1,

and let xi,j = (xi, yj), for i = 1, . . . , N1,, j = 1, . . . , N2; set

hi
− = xi − xi− 1

2
, hi

+ = xi+ 1
2
− xi, for i = 1, . . . , N1, hi+ 1

2
= xi+1 − xi, for i = 0, . . . , N1,
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kj
− = yj − yj− 1

2
, kj

+ = yj+ 1
2
− yj , for j = 1, . . . , N2, kj+ 1

2
= yj+1 − yj , for j = 0, . . . , N2.

Let h = max{(hi, i = 1, · · · , N1), (kj , j = 1, · · · , N2)}.

As in the 1D case, the finite volume scheme is found by integrating the first equation of (
lapl2d
3.4) over each

control volume Ki,j , which yields





−
∫ y

j+ 1
2

y
j− 1

2

ux(xi+ 1
2
, y)dy +

∫ y
i+1

2

y
i− 1

2

ux(xi− 1
2
, y)dy

+

∫ x
i+1

2

x
i− 1

2

uy(x, yj− 1
2
)dx−

∫ x
i+1

2

x
i− 1

2

uy(x, yj+ 1
2
)dx =

∫

Kij

f(x, y)dx dy.

The fluxes are then approximated by differential quotients with respect to the discrete unknowns (ui,j , i =
1, · · · , N1, j = 1, · · · , N2) in a similar manner to the 1D case; hence the numerical scheme writes

Fi+ 1
2
,j − Fi− 1

2
,j + Fi,j+ 1

2
− Fi,j− 1

2
= hi,jfi,j , ∀ (i, j) ∈ {1, . . . , N1} × {1, . . . , N2}, (3.5) vfrect

where hi,j = hi × kj , fi,j is the mean value of f over Ki,j , and

Fi+ 1
2
,j = − kj

hi+ 1
2

(ui+1,j − ui,j), for i = 0, · · · , N1, j = 1, · · · , N2,

Fi,j+ 1
2

= − hi
kj+ 1

2

(ui,j+1 − ui,j), for i = 1, · · · , N1, j = 0, · · · , N2,
(3.6) fluxrect

u0,j = uN1+1,j = ui,0 = ui,N2+1 = 0, for i = 1, . . . , N1, j = 1, . . . , N2. (3.7) clrect

The numerical scheme (
vfrect
3.5)-(

clrect
3.7) is therefore clearly conservative and the numerical approximations of

the fluxes can easily be shown to be consistent.

Proposition 3.1 (Error estimate) Let Ω = (0, 1)× (0, 1) and f ∈ L2(Ω). Let u be the unique varia-
tional solution to (

lapl2d
3.4). Under Assumptions

hyprect
3.2, let ζ > 0 be such that hi ≥ ζh for i = 1, . . . , N1 and

kj ≥ ζh for j = 1, . . . , N2. Then, there exists a unique solution (ui,j)i=1,···,N1,j=1,···,N2
to (

vfrect
3.5)-(

clrect
3.7).

Moreover, there exists C > 0 only depending on u, Ω and ζ such that

∑

i,j

(ei+1,j − ei,j)
2

hi+ 1
2

kj +
∑

i,j

(ei,j+1 − ei,j)
2

kj+ 1
2

hi ≤ Ch2 (3.8) hunzrect

and

∑

i,j

(ei,j)
2hikj ≤ Ch2, (3.9) lderect

where ei,j = u(xi,j)− ui,j , for i = 1, · · · , N1, j = 1, · · · , N2.

In the above proposition, since f ∈ L2(Ω) and Ω is convex, it is well known that the variational solution
u to (

lapl2d
3.4) belongs to H2(Ω). We do not give here the proof of this proposition since it is in fact included

in Theorem
testh2
3.4 page

testh2
56 (see also

lazarovsiam
Lazarov, Mishev and Vassilevski [1996] where the case u ∈ Hs,

s ≥ 3
2 is also studied).

In the case u ∈ C2(Ω), the estimates (
hunzrect
3.8) and (

lderect
3.9) can be shown with the same technique as in the 1D

case (see e.g.
thesejmf
Fiard [1994]). If u ∈ C2 then the above estimates are a consequence of Theorem

ellesterr
3.3 page

ellesterr
52; in this case, the value C in (

hunzrect
3.8) and (

lderect
3.9) independent of ζ, and therefore the assumption hi ≥ ζh

for i = 1, . . . , N1 and kj ≥ ζh for j = 1, . . . , N2 is no longer needed.

Relation (
hunzrect
3.8) can be seen as an estimate of a “discrete H1

0 norm” of the error, while relation (
lderect
3.9) gives

an estimate of the L2 norm of the error.
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h2conv2d Remark 3.1 Some slight modifications of the scheme (
vfrect
3.5)-(

clrect
3.7) are possible, as in the first item of

Remark
angot1
2.2 page

angot1
14. It is also possible to obtain, sometimes, an “h2” estimate on the L2 (or L∞) norm

of the error (that is “h4” instead of “h2” in (
lderect
3.9)), exactly as in the 1D case, see Remark

h2conv
2.5 page

h2conv
18. In

the case equivalent to the second case of Remark
h2conv
2.5, the point xi,j is not necessarily the center of Ki,j .

When the mesh is no longer rectangular, the scheme (
vfrect
3.5)-(

fluxrect
3.6) is not easy to generalize if keeping to a 5

points scheme. In particular, the consistency of the fluxes or the conservativity can be lost, see
Fa1
Faille

[1992a], which yields a bad numerical behaviour of the scheme. One way to keep both properties is to
introduce a 9-points scheme.

Quadrangular meshes: a nine-point scheme

Let Ω be an open bounded polygonal subset of IR2, and f be a regular function from Ω to IR. We still
consider Problem

lapl2d
3.4, turning back to the usual notation x for the current point of IR2,

−∆u(x) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

(3.10) Lapl-2D

Let T be a mesh defined over Ω; then, integrating the first equation of (
Lapl-2D
3.10) over any cell K of the mesh

yields

−
∫

∂K

gradu · nK =

∫

K

f,

where nK is the normal to the boundary ∂K, outward to K. Let uK denote the discrete unknown
associated to the control volume K ∈ T . In order to obtain a numerical scheme, if σ is a common edge
to K ∈ T and L ∈ T (denoted by K|L) or if σ is an edge of K ∈ T belonging to ∂Ω, the expression
gradu · nK must be approximated on σ by using the discrete unknowns. The study of the finite volume
scheme in dimension 1 and the above straightforward generalization to the rectangular case showed that
the fundamental properties of the method seem to be

1. conservativity: in the absence of any source term on K|L, the approximation of gradu ·nK on K|L
which is used in the equation associated with cell K is equal to the approximation of −gradu · nL
which is used in the equation associated with cell L. This property is naturally obtained when
using a finite volume scheme.

2. consistency of the fluxes: taking for uK the value of u in a fixed point of K (for instance, the center
of gravity of K), where u is a regular function, the difference between gradu · nK and the chosen
approximation of gradu · nK is of an order less or equal to that of the mesh size. This need of
consistency will be discussed in more detail: see remarks

cafe
3.2 page

cafe
37 and

creme
3.8 page

creme
49

Several computer codes use the following “natural” extension of (
fluxrect
3.6) for the approximation of gradu ·nK

on K ∩ L:

gradu · nK =
uL − uK
dK|L

,

where dK|L is the distance between the center of the cells K and L. This choice, however simple, is far
from optimal, at least in the case of a general (non rectangular) mesh, because the fluxes thus obtained
are not consistent; this yields important errors, especially in the case where the mesh cells are all oriented
in the same direction, see

Fa1
Faille [1992a],

Fa2
Faille [1992b]. This problem may be avoided by modifying

the approximation of gradu · nK so as to make it consistent. However, one must be careful, in doing so,
to maintain the conservativity of the scheme. To this purpose, a 9-points scheme was developped, which
is denoted by FV9.
Let us describe now how the flux gradu · nK is approximated by the FV9 scheme. Assume here, for
the sake of clarity, that the mesh T is structured; indeed, it consists in a set of quadrangular cells
{Ki,j , i = 1, . . . , N ; j = 1, . . . ,M}. As shown in Figure

vf9fig
3.1, let Ci,j denote the center of gravity of the cell
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Ki,j , σi,j−1/2, σi+1/2,j , σi,j+1/2, σi−1/2,j the four edges to Ki,j and ηi,j−1/2, ηi+1/2,j , ηi,j+1/2, ηi−1/2,j

their respective orthogonal bisectors. Let ζi,j−1/2, (resp. ζi+1/2,j , ζi,j+1/2, ζi−1/2,j) be the lines joining
points Ci,j and Ci,j−1 (resp. Ci,j and Ci+1,j , Ci,j and Ci,j+1, Ci−1,j and Ci,j).

*σi,j+1/2

q
ηi,j+1/2

�

Ui,j+1/2

Y

Di,j+1/2

Ci−1,j Ci,j

Ki,j

�
ζi−1/2,j

1
ζi+1/2,j+1

Ci,j+1

Ki,j+1

Ci+1,j+1

Figure 3.1: FV9 scheme vf9fig

Consider for instance the edge σi,j+1/2 which lies between the cells Ki,j and Ki,j+1 (see Figure
vf9fig
3.1). In

order to find an approximation of gradu · nK , for K = Ki,j , at the center of this edge, we shall first
derive an approximation of u at the two points Ui,j+1/2 and Di,j+1/2 which are located on the orthogonal
bisector ηi,j+1/2 of the edge σi,j+1/2, on each side of the edge. Let φi,j+1/2 be the approximation of
−gradu · nK at the center of the edge σi,j+1/2. A natural choice for φi,j+1/2 consists in taking

φi,j+1/2 = −
uUi,j+1/2 − uDi,j+1/2

d(Ui,j+1/2, Di,j+1/2)
, (3.11) flux

where uUi,j+1/2 and uDi,j+1/2 are approximations of u at Ui,j+1/2 and Di,j+1/2, and d(Ui,j+1/2, Di,j+1/2)
is the distance between points Ui,j+1/2 and Di,j+1/2.
The points Ui,j+1/2 and Di,j+1/2 are chosen so that they are located on the lines ζ which join the centers
of the neighbouring cells. The points Ui,j+1/2 and Di,j+1/2 are therefore located at the intersection of
the orthogonal bisector ηi,j+1/2 with the adequate ζ lines, which are chosen according to the geometry
of the mesh. More precisely,

Ui,j+1/2 = ηi,j+1/2 ∩ ζi−1/2,j+1 if ηi,j+1/2 is to the left of Ci,j+1

= ηi,j+1/2 ∩ ζi+1/2,j+1 otherwise
Di,j+1/2 = ηi,j+1/2 ∩ ζi−1/2,j if ηi,j+1/2 is to the left of Ci,j

= ηi,j+1/2 ∩ ζi+1/2,j otherwise

In order to satisfy the property of consistency of the fluxes, a second order approximation of u at points
Ui,j+1/2 and Di,j+1/2 is required. In the case of the geometry which is described in Figure

vf9fig
3.1, the

following linear approximations of uUi,j+1/2 and uDi,j+1/2 can be used in (
flux
3.11);
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uUi,j+1/2 = αui+1,j+1 + (1− α)ui,j+1 where α =
d(Ci,j+1, Ui,j+1/2)

d(Ci,j+1 , Ci+1,j+1)

uDi,j+1/2 = βui−1,j + (1− β)ui,j where β =
d(Ci,j , Di,j+1/2)

d(Ci−1,j , Ci,j)

The approximation of gradu ·nK at the center of a “vertical” edge σi+1/2,j is performed in a similar way,
by introducing the points Ri+1/2,j intersection of the orthogonal bisector ηi+1/2,j and, according to the
geometry, of the line ζi,j−1/2 or ζi,j+1/2, and Li+1/2,j intersection of ηi+1/2,j and ζi+1,j−1/2 or ζi+1,j+1/2.
Note that the outmost grid cells require a particular treatment (see

Fa1
Faille [1992a]).

The scheme which is described above is stable under a geometrical condition on the family of meshes
which is considered. Since the fluxes are consistent and the scheme is conservative, it also satisfies a
property of “weak consistency”, that is, as in the one dimensional case (see remark

wc
2.9 page

wc
21 of Section

ell1D
2.3), the exact solution of (

Lapl-2D
3.10) satisfies the numerical scheme with an error which tends to 0 in L∞(Ω)

for the weak-? topology. Under adequate restrictive assumptions, the convergence of the scheme can be
deduced, see

Fa1
Faille [1992a].

Numerical tests were performed for the Laplace operator and for operators of the type −div( Λ grad.),
where Λ is a variable and discontinuous matrix (see

Fa1
Faille [1992a]); the discontinuities of Λ are treated

in a similar way as in the 1D case (see Section
ell1D
2.3). Comparisons with solutions which were obtained

by the bilinear finite element method, and with known analytical solutions, were performed. The results
given by the VF9 scheme and by the finite element scheme were very similar.
The two drawbacks of this method are the fact that it is a 9-points scheme, and therefore computationally
expensive, and that it yields a nonsymmetric matrix even if the original continuous operator is symmetric.
Also, its generalization to three dimensions is somewhat complex.

cafe Remark 3.2 The proof of convergence of this scheme is hindered by the lack of consistency for the
discrete adjoint operator (see Section

ellcvf4
3.1.4). An error estimate is also difficult to obtain because the

numerical flux at an interface K|L cannot be written under the form τK|L(uK−uL) with τK|L > 0. Note,
however, that under some geometrical assumptions on the mesh, see

Fa1
Faille [1992a] and

coudiere
Coudière,

Vila and Villedieu [1999], error estimates may be obtained.

3.1.2 General meshes and schemes
vfquatre

Let us now turn to the discretization of convection-diffusion problems on general structured or non
structured grids, consisting of any polygonal (recall that we shall call “polygonal” any polygonal domain
of IR2 or polyhedral domain or IR3) control volumes (satisfying adequate geometrical conditions which
are stated in the sequel) and not necessarily ordered in a Cartesian grid. The advantage of finite volume
schemes using non structured meshes is clear for convection-diffusion equations. On one hand, the stability
and convergence properties of the finite volume scheme (with an upstream choice for the convective flux)
ensure a robust scheme for any admissible mesh as defined in Definitions

meshdirichlet
3.1 page

meshdirichlet
37 and

meshneuman
3.5 page

meshneuman
63

below, without any need for refinement in the areas of a large convection flux. On the other hand, the
use of a non structured mesh allows the computation of a solution for any shape of the physical domain.

We saw in the previous section that a consistent discretization of the normal flux −∇u·n over the interface
of two control volumes K and L may be performed with a differential quotient involving values of the
unknown located on the orthogonal line to the interface between K and L, on either side of this interface.
This remark suggests the following definition of admissible finite volume meshes for the discretization of
diffusion problems. We shall only consider here, for the sake of simplicity, the case of polygonal domains.
The case of domains with a regular boundary does not introduce any supplementary difficulty other than
complex notations. The definition of admissible meshes and notations introduced in this definition are
illustrated in Figure

CCfig1
3.2

meshdirichlet Definition 3.1 (Admissible meshes) Let Ω be an open bounded polygonal subset of IRd, d = 2, or 3.
An admissible finite volume mesh of Ω, denoted by T , is given by a family of “control volumes”, which
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are open polygonal convex subsets of Ω , a family of subsets of Ω contained in hyperplanes of IRd, denoted
by E (these are the edges (two-dimensional) or sides (three-dimensional) of the control volumes), with
strictly positive (d − 1)-dimensional measure, and a family of points of Ω denoted by P satisfying the
following properties (in fact, we shall denote, somewhat incorrectly, by T the family of control volumes):

(i) The closure of the union of all the control volumes is Ω;

(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K \K = ∪σ∈EKσ. Furthermore,
E = ∪K∈T EK .

(iii) For any (K,L) ∈ T 2 with K 6= L, either the (d − 1)-dimensional Lebesgue measure of K ∩ L is 0
or K ∩ L = σ for some σ ∈ E , which will then be denoted by K|L.

(iv) The family P = (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if σ = K|L, it is assumed that
xK 6= xL, and that the straight line DK,L going through xK and xL is orthogonal to K|L.

(v) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that σ ∈ EK . If xK /∈ σ, let
DK,σ be the straight line going through xK and orthogonal to σ, then the condition DK,σ ∩ σ 6= ∅
is assumed; let yσ = DK,σ ∩ σ.

In the sequel, the following notations are used.
The mesh size is defined by: size(T ) = sup{diam(K), K ∈ T }.
For any K ∈ T and σ ∈ E , m(K) is the d-dimensional Lebesgue measure of K (it is the area of K in the
two-dimensional case and the volume in the three-dimensional case) and m(σ) the (d − 1)-dimensional
measure of σ.
The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω}
(resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
The set of neighbours of K is denoted by N (K), that is N (K) = {L ∈ T ; ∃σ ∈ EK , σ = K ∩ L}.
If σ = K|L, we denote by dσ or dK|L the Euclidean distance between xK and xL (which is positive) and
by dK,σ the distance from xK to σ.
If σ ∈ EK ∩ Eext, let dσ denote the Euclidean distance between xK and yσ (then, dσ = dK,σ).
For any σ ∈ E ; the “transmissibility” through σ is defined by τσ = m(σ)/dσ if dσ 6= 0.
In some results and proofs given below, there are summations over σ ∈ E0, with E0 = {σ ∈ E ; dσ 6= 0}.
For simplicity, (in these results and proofs) E = E0 is assumed.

xK xL

xK

m(σ)

dσ

σ

yσ

∂Ω

K L

K

dσ

yσ

Figure 3.2: Admissible meshes CCfig1

Remark 3.3 (i) The definition of yσ for σ ∈ Eext requires that yσ ∈ σ. However, In many cases, this
condition may be relaxed. The condition xK ∈ K may also be relaxed as described, for instance, in
Example

tm
3.1 below.
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(ii) The condition xK 6= xL if σ = K|L, is in fact quite easy to satisfy: two neighbouring control volumes
K,L which do not satisfy it just have to be collapsed into a new control volume M with xM = xK = xL,
and the edge K|L removed from the set of edges. The new mesh thus obtained is admissible.

tm Example 3.1 (Triangular meshes) Let Ω be an open bounded polygonal subset of IR2. Let T be a
family of open triangular disjoint subsets of Ω such that two triangles having a common edge have also two
common vertices. Assume that all angles of the triangles are less than π/2. This last condition is sufficient
for the orthogonal bisectors to intersect inside each triangle, thus naturally defining the points xK ∈ K.
One obtains an admissible mesh. In the case of an elliptic operator, the finite volume scheme defined on
such a grid using differential quotients for the approximation of the normal flux yields a 4-point scheme
VF4
Herbin [1995]. This scheme does not lead to a finite difference scheme consistent with the continuous
diffusion operator (using a Taylor expansion). The consistency is only verified for the approximation of
the fluxes, but this, together with the conservativity of the scheme yields the convergence of the scheme,
as it is proved below.
Note that the condition that all angles of the triangles are less than π/2 (which yields xK ∈ K) may
be relaxed (at least for the triangles the closure of which are in Ω) to the so called “strict Delaunay
condition” which is that the closure of the circumscribed circle to each triangle of the mesh does not
contain any other triangle of the mesh. For such a mesh, the point xK (which is the intersection of the
orthogonal bisectors of the edges of K) is not always in K, but the scheme (

easyvf1
3.17)-(

easyvf3
3.19) is convenient since

(
easyvf2
3.18) yields a consistent approximation of the diffusion fluxes and since the transmissibilities (denoted

by τK|L) are positive.

evoronoi Example 3.2 (Voronöı meshes) Let Ω be an open bounded polygonal subset of IRd. An admissible
finite volume mesh can be built by using the so called “Voronöı” technique. Let P be a family of points
of Ω. For example, this family may be chosen as P = {(k1h, . . . , kdh), k1, . . . kd ∈ ZZ } ∩ Ω, for a given
h > 0. The control volumes of the Voronöı mesh are defined with respect to each point x of P by

Kx = {y ∈ Ω, |x− y| < |z − y|, ∀z ∈ P , z 6= x}.
Recall that |x− y| denotes the euclidean distance between x and y.
Voronöı meshes are admissible in the sense of Definition

meshdirichlet
3.1 if the assumption “on the boundary”, namely

part (v) of Definition
meshdirichlet
3.1, is satisfied. Indeed, this is true, in particular, if the number of points x ∈ P

which are located on ∂Ω is “large enough”. Otherwise, the assumption (v) of Definition
meshdirichlet
3.1 may be

replaced by the weaker assumption “d(yσ , σ) ≤ size(T ) for any σ ∈ Eext” which is much easier to satisfy.
Note also that a slight modification of the treatment of the boundary conditions in the finite volume
scheme (

ellschema
3.20)-(

ellschemad
3.23) page

ellschemad
42 allows us to obtain convergence and error estimates results (as in theorems

ellcvgce
3.1 page

ellcvgce
46 and

ellesterr
3.3 page

ellesterr
52) for all Voronöı meshes. This modification is the obvious generalization of

the scheme described in the first item of Remark
angot1
2.2 page

angot1
14 for the 1D case. It consists in replacing, for

K ∈ T such that EK ∩ Eext 6= ∅, the equation (
ellschema
3.20), associated to this control volume, by the equation

uK = g(zK), where zK is some point on ∂Ω ∩ ∂K. In fact, Voronöı meshes often satisfy the following
property:

EK ∩ Eext 6= ∅ ⇒ xK ∈ ∂Ω

and the mesh is therefore admissible in the sense of Definition
meshdirichlet
3.1 (then, the scheme (

ellschema
3.20)-(

ellschemad
3.23) page

ellschemad
42 yields uK = g(xK) if K ∈ T is such that EK ∩ Eext 6= ∅).
An advantage of the Voronöı method is that it easily leads to meshes on non polygonal domains Ω.

Let us now introduce the space of piecewise constant functions associated to an admissible mesh and
some “discrete H1

0” norm for this space. This discrete norm will be used to obtain stability properties
which are given by some estimates on the approximate solution of a finite volume scheme.

Xmesh Definition 3.2 Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3, and T an admissible
mesh. Define X(T ) as the set of functions from Ω to IR which are constant over each control volume of
the mesh.
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defh10d Definition 3.3 (Discrete H1
0 norm) Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3,

and T an admissible finite volume mesh in the sense of Definition
meshdirichlet
3.1 page

meshdirichlet
37.

For u ∈ X(T ), define the discrete H1
0 norm by

‖u‖1,T =
(∑

σ∈E
τσ(Dσu)

2
) 1

2

, (3.12) normh1d

where τσ = m(σ)/dσ and
Dσu = |uK − uL| if σ ∈ Eint, σ = K|L,
Dσu = |uK | if σ ∈ Eext ∩ EK ,
where uK denotes the value taken by u on the control volume K and the sets E , Eint, Eext and EK are
defined in Definition

meshdirichlet
3.1 page

meshdirichlet
37.

The discrete H1
0 norm is used in the following sections to prove the congergence of finite volume schemes

and, under some regularity conditions, to give error estimates. It is related to the H1
0 norm, see the

convergence of the norms in Theorem
ellcvgce
3.1. One of the tools used below is the following “discrete Poincaré

inequality” which may also be found in
temam
Temam [1977]:

thinpoin Lemma 3.1 (Discrete Poincaré inequality) Let Ω be an open bounded polygonal subset of IRd, d = 2
or 3, T an admissible finite volume mesh in the sense of Definition

meshdirichlet
3.1 and u ∈ X(T ) (see Definition

Xmesh
3.2), then

‖u‖L2(Ω) ≤ diam(Ω)‖u‖1,T , (3.13) ellinpoin

where ‖ · ‖1,T is the discrete H1
0 norm defined in Definition

defh10d
3.3 page

defh10d
40.

dirich-part Remark 3.4 (Dirichlet condition on part of the boundary) This lemma gives a discrete Poincaré
inequality for Dirichlet boundary conditions on the boundary ∂Ω. In the case of a Dirichlet condition on
part of the boundary only, it is still possible to prove a Discrete boundary condition provided that the
polygonal bounded open set Ω is also connex, thanks to Lemma (

thinpoin
3.1) page

thinpoin
40 proven in the sequel.

Proof of Lemma
thinpoin
3.1

For σ ∈ E , define χσ from IRd× IRd to {0, 1} by χσ(x, y) = 1 if σ ∩ [x, y] 6= ∅ and χσ(x, y) = 0 otherwise.

Let u ∈ X(T ). Let d be a given unit vector. For all x ∈ Ω, let Dx be the semi-line defined by its origin, x,
and the vector d. Let y(x) such that y(x) ∈ Dx∩∂Ω and [x, y(x)] ⊂ Ω, where [x, y(x)] = {tx+(1−t)y(x),
t ∈ [0, 1]} (i.e. y(x) is the first point where Dx meets ∂Ω).

Let K ∈ T . For a.e. x ∈ K, one has

|uK | ≤
∑

σ∈E
Dσuχσ(x, y(x)),

where the notations Dσu and uK are defined in Definition
defh10d
3.3 page

defh10d
40. We write the above inequality

for a.e x ∈ Ω and not for all x ∈ Ω in order to account for the cases where an edge or a vertex of the
mesh is included in the semi-line [x, y(x)]; in both cases one may not write the above inequality, but there
are only a finite number of edges and vertices, and since d is fixed, the above inequality may be written
almost everywhere.
Let cσ = |d · nσ | (recall that ξ · η denotes the usual scalar product of ξ and η in IRd). By the Cauchy-
Schwarz inequality, the above inequality yields:

|uK |2 ≤
∑

σ∈E

(Dσu)
2

dσcσ
χσ(x, y(x))

∑

σ∈E
dσcσχσ(x, y(x)), for a.e. x ∈ K. (3.14) bon

Let us show that, for a.e. x ∈ Ω,
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∑

σ∈E
dσcσχσ(x, y(x)) ≤ diam(Ω). (3.15) prelim

Let x ∈ K, K ∈ T , such that σ ∩ [x, y(x)] contains at most one point, for all σ ∈ E , and [x, y(x)] does
not contain any vertex of T (proving (

prelim
3.15) for such points x leads to (

prelim
3.15) a.e. on Ω, since d is fixed).

There exists σx ∈ Eext such that y(x) ∈ σx. Then, using the fact that the control volumes are convex,
one has:

∑

σ∈E
χσ(x, y(x))dσcσ = |(xK − xσx) · d|.

Since xK and xσx ∈ Ω (see Definition
meshdirichlet
3.1), this gives (

prelim
3.15).

Let us integrate (
bon
3.14) over Ω; (

prelim
3.15) gives

∑

K∈T

∫

K

|uK |2dx ≤ diam(Ω)
∑

σ∈E

(Dσu)
2

dσcσ

∫

Ω

χσ(x, y(x))dx.

Since
∫
Ω
χσ(x, y(x))dx ≤ diam(Ω)m(σ)cσ , this last inequality yields

∑

K∈T

∫

K

|uK |2dx ≤ (diam(Ω))2
∑

σ∈E
|Dσu|2

m(σ)

dσ
dx.

Hence the result.

Let T be an admissible mesh. Let us now define a finite volume scheme to discretize (
elldifstaf
3.1), (

elldifstab
3.2) page

elldifstab
32.

Let

fK =
1

m(K)

∫

K

f(x)dx, ∀K ∈ T . (3.16) frhs

Let (uK)K∈T denote the discrete unknowns. In order to describe the scheme in the most general way, one
introduces some auxiliary unknowns (as in the 1D case, see Section

ell1D
2.3), namely the fluxes FK,σ , for all

K ∈ T and σ ∈ EK , and some (expected) approximation of u in σ, denoted by uσ, for all σ ∈ E . ForK ∈ T
and σ ∈ EK , let nK,σ denote the normal unit vector to σ outward to K and vK,σ =

∫
σ
v(x) · nK,σdγ(x).

Note that dγ is the integration symbol for the (d − 1)-dimensional Lebesgue measure on the considered
hyperplane. In order to discretize the convection term div(v(x)u(x)) in a stable way (see Section

ell1D
2.3

page
ell1D
21), let us define the upstream choice uσ,+ of u on an edge σ with respect to v in the following way.

If σ = K|L, then uσ,+ = uK if vK,σ ≥ 0, and uσ,+ = uL otherwise; if σ ⊂ K ∩ ∂Ω, then uσ,+ = uK if
vK,σ ≥ 0 and uσ,+ = g(yσ) otherwise.

Let us first assume that the points xK are located in the interior of each control volume, and are therefore
not located on the edges, hence dK,σ > 0 for any σ ∈ EK , where dK,σ is the distance from xK to σ. A
finite volume scheme can be defined by the following set of equations:

∑

σ∈EK

FK,σ +
∑

σ∈EK

vK,σuσ,+ + bm(K)uK = m(K)fK , ∀K ∈ T , (3.17) easyvf1

FK,σ = −τK|L(uL − uK), ∀σ ∈ Eint, if σ = K|L, (3.18) easyvf2

FK,σ = −τσ(g(yσ)− uK), ∀σ ∈ Eext such that σ ∈ EK . (3.19) easyvf3

In the general case, the center of the cell may be located on an edge. This is the case for instance when
constructing Voronöı meshes with some of the original points located on the boundary ∂Ω. In this case,
the following formulation of the finite volume scheme is valid, and is equivalent to the above scheme if
no cell center is located on an edge:
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∑

σ∈EK

FK,σ +
∑

σ∈EK

vK,σuσ,+ + bm(K)uK = m(K)fK , ∀K ∈ T , (3.20) ellschema

FK,σ = −FL,σ, ∀σ ∈ Eint, if σ = K|L, (3.21) ellschemab

FK,σdK,σ = −m(σ)(uσ − uK), ∀σ ∈ EK , ∀K ∈ T , (3.22) ellschemac

uσ = g(yσ), ∀σ ∈ Eext. (3.23) ellschemad

Note that (
ellschema
3.20)-(

ellschemad
3.23) always lead, after an easy elimination of the auxiliary unknowns, to a linear

system of N equations with N unknowns, namely the (uK)K∈T , with N = card(T ).

Remark 3.5

1. Note that one may have, for some σ ∈ EK , xK ∈ σ, and therefore, thanks to (
ellschemac
3.22), uσ = uK .

2. The choice uσ = g(yσ) in (
ellschemad
3.23) needs some discussion. Indeed, this choice is possible since g is

assumed to belong to C(∂Ω, IR) and then is everywhere defined on ∂Ω. In the case where the
solution to (

elldifstaf
3.1), (

elldifstab
3.2) page

elldifstab
32 belongs to H2(Ω) (which yields g ∈ C(∂Ω, IR)), it is clearly the

“good choice” since it yields the consistency of fluxes (even though an error estimate also holds
with other choices for uσ, the choice given below is, for instance, possible). If g ∈ H1/2 (and not
continuous), the value g(yσ) is not necessarily defined. Then, another choice for uσ is possible, for
instance,

uσ =
1

m(σ)

∫

σ

g(x)dγ(x).

With this latter choice for uσ, a convergence result also holds, see Theorem
ellcvgcediraf
3.2.

For the sake of simplicity, it is assumed in Definition
meshdirichlet
3.1 that xK 6= xL, for all K, L ∈ T . This condition

may be relaxed; it simply allows an easy expression of the numerical flux FK,σ = −τK|L(uL − uK) if
σ = K|L.

3.1.3 Existence and estimates

Let us first prove the existence of the approximate solution and an estimate on this solution. This estimate
ensures the stability of the scheme and will be obtained by using the discrete Poincaré inequality (

ellinpoin
3.13)

and will yield convergence thanks to a compactness theorem given in Section
rellichd
3.6 page

rellichd
92.

ellexistu Lemma 3.2 (Existence and estimate) Under Assumptions
ellH
3.1, let T be an admissible mesh in the

sense of Definition
meshdirichlet
3.1 page

meshdirichlet
37; there exists a unique solution (uK)K∈T to equations (

ellschema
3.20)-(

ellschemad
3.23).

Furthermore, assuming g = 0 and defining uT ∈ X(T ) (see Definition
Xmesh
3.2) by uT (x) = uK for a.e.

x ∈ K, and for any K ∈ T , the following estimate holds:

‖uT ‖1,T ≤ diam(Ω)‖f‖L2(Ω), (3.24) ellestimx

where ‖ · ‖1,T is the discrete H1
0 norm defined in Definition

defh10d
3.3.

Proof of Lemma
ellexistu
3.2

Equations (
ellschema
3.20)-(

ellschemad
3.23) lead, after an easy elimination of the auxiliary unknowns, to a linear system of

N equations with N unknowns, namely the (uK)K∈T , with N = card(T ).

Step 1 (existence and uniqueness)



43

Assume that (uK)K∈T satisfies this linear system with g(yσ) = 0 for any σ ∈ Eext, and fK = 0 for all
K ∈ T . Let us multiply (

ellschema
3.20) by uK and sum over K; from (

ellschemab
3.21) and (

ellschemac
3.22) one deduces

b
∑

K∈T
m(K)u2

K +
∑

K∈T

∑

σ∈EK

FK,σuK +
∑

K∈T

∑

σ∈EK

vK,σuσ,+uK = 0, (3.25) ell1e

which gives, reordering the summation over the set of edges

b
∑

K∈T
m(K)u2

K +
∑

σ∈E
τσ(Dσu)

2 +
∑

σ∈E
vσ

(
uσ,+ − uσ,−

)
uσ,+ = 0, (3.26) ell7e

where
|Dσu| = |uK − uL|, if σ = K|L and |Dσu| = |uK |, if σ ∈ EK ∩ Eext;
vσ = |

∫
σ v(x) · ndγ(x)|, n being a unit normal vector to σ;

uσ,− is the downstream value to σ with respect to v, i.e. if σ = K|L, then uσ,− = uK if vK,σ ≤ 0, and
uσ,− = uL otherwise; if σ ∈ EK ∩ Eext, then uσ,− = uK if vK,σ ≤ 0 and uσ,− = uσ if vK,σ > 0.
Note that uσ = 0 if σ ∈ Eext.

Now, remark that

∑

σ∈E
vσuσ,+(uσ,+ − uσ,−) =

1

2

∑

σ∈E
vσ

(
(uσ,+ − uσ,−)2 + (u2

σ,+ − u2
σ,−)

)
(3.27) vfqconv1

and, thanks to the assumption divv ≥ 0,

∑

σ∈E
vσ(u

2
σ,+ − u2

σ,−) =
∑

K∈T

(∫

∂K

v(x) · nKdγ(x)
)
u2
K =

∫

Ω

(divv(x))u2
T (x)dx ≥ 0. (3.28) vfqconv11

Hence,

b‖uT ‖2
L2(Ω) + ‖uT ‖2

1,T = b
∑

K∈T
m(K)u2

K +
∑

σ∈E
τσ(Dσu)

2 ≤ 0, (3.29) ell7f

One deduces, from (
ell7f
3.29), that uK = 0 for all K ∈ T .

This proves the existence and the uniqueness of the solution (uK)K∈T , of the linear system given by
(
ellschema
3.20)-(

ellschemad
3.23), for any {g(yσ), σ ∈ Eext} and {fK , K ∈ T }.

Step 2 (estimate)
Assume g = 0. Multiply (

ellschema
3.20) by uK , sum over K; then, thanks to (

ellschemab
3.21), (

ellschemac
3.22), (

vfqconv1
3.27) and (

vfqconv11
3.28) one

has

b‖uT ‖2
L2(Ω) + ‖uT ‖2

1,T ≤
∑

K∈T
m(K)fKuK .

By the Cauchy-Schwarz inequality, this inequality yields

‖uT ‖2
1,T ≤ (

∑

K∈T
m(K)u2

K)
1
2 (
∑

K∈T
m(K)f2

K)
1
2 ≤ ‖f‖L2(Ω)‖uT ‖L2(Ω).

Thanks to the discrete Poincaré inequality (
ellinpoin
3.13), this yields ‖uT ‖1,T ≤ ‖f‖L2(Ω)diam(Ω), which con-

cludes the proof of the lemma.

Let us now state a discrete maximum principle which is satisfied by the scheme (
ellschema
3.20)-(

ellschemad
3.23); this is an

interesting stability property, even though it will not be used in the proofs of the convergence and error
estimate.
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maxppe Proposition 3.2 Under Assumption
ellH
3.1 page

ellH
32, let T be an admissible mesh in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37, let (fK)K∈T be defined by (

frhs
3.16). If fK ≥ 0 for all K ∈ T , and g(yσ) ≥ 0, for all σ ∈ Eext,

then the solution (uK)K∈T of (
ellschema
3.20)-(

ellschemad
3.23) satisfies uK ≥ 0 for all K ∈ T .

Proof of Proposition
maxppe
3.2

Assume that fK ≥ 0 for all K ∈ T and g(yσ) ≥ 0 for all σ ∈ Eext. Let a = min{uK ,K ∈ T }. Let K0 be
a control volume such that uK0

= a. Assume first that K0 is an “interior” control volume, in the sense
that EK ⊂ Eint, and that uK0

≤ 0. Then, from (
ellschema
3.20),

∑

σ∈EK0

FK0,σ +
∑

σ∈EK0

vK0,σuσ,+ ≥ 0; (3.30)

since for any neighbour L of K0 one has uL ≥ uK0
, then, noting that divv ≥ 0, one must have uL = uK0

for any neighbour L of K. Hence, setting B = {K ∈ T , uK = a}, there exists K ∈ B such that EK 6⊂ Eint,
that is K is a control volume “neighbouring the boundary”.
Assume then that K0 is a control volume neighbouring the boundary and that uK0

= a < 0. Then, for
an edge σ ∈ Eext ∩ EK , relations (

ellschemac
3.22) and (

ellschemad
3.23) yield g(yσ) < 0, which is in contradiction with the

assumption. Hence Proposition
maxppe
3.2 is proved.

Remark 3.6 The maximum principle immediately yields the existence and uniqueness of the solution
of the numerical scheme (

ellschema
3.20)-(

ellschemad
3.23), which was proved directly in Lemma

ellexistu
3.2.

3.1.4 Convergence
ellcvf4

Let us now show the convergence of approximate solutions obtained by the above finite volume scheme
when the size of the mesh tends to 0. One uses Lemma

ellexistu
3.2 together with the compactness theorem

kolmh10
3.10

given at the end of this chapter to prove the convergence result. In order to use Theorem
kolmh10
3.10, one needs

the following lemma.

h1dtot Lemma 3.3 Let Ω be an open bounded set of IRd, d = 2 or 3. Let T be an admissible mesh in the sense
of Definition

meshdirichlet
3.1 page

meshdirichlet
37 and u ∈ X(T ) (see Definition

Xmesh
3.2). One defines ũ by ũ = u a.e. on Ω, and

ũ = 0 a.e. on IRd \ Ω. Then there exists C > 0, only depending on Ω, such that

‖ũ(·+ η)− ũ‖2
L2(IRd) ≤ ‖u‖2

1,T |η|(|η| + C size(T )), ∀η ∈ IRd. (3.31) itransh10

Proof of Lemma
h1dtot
3.3

For σ ∈ E , define χσ from IRd × IRd to {0, 1} by χσ(x, y) = 1 if [x, y] ∩ σ 6= ∅ and χσ(x, y) = 0 if
[x, y] ∩ σ = ∅.
Let η ∈ IRd, η 6= 0. One has

|ũ(x+ η)− ũ(x)| ≤
∑

σ∈E
χσ(x, x + η)|Dσu|, for a.e. x ∈ Ω

(see Definition
defh10d
3.3 page

defh10d
40 for the definition of Dσu).

This gives, using the Cauchy-Schwarz inequality,

|ũ(x+ η)− ũ(x)|2 ≤
∑

σ∈E
χσ(x, x + η)

|Dσu|2
dσcσ

∑

σ∈E
χσ(x, x + η)dσcσ , for a.e. x ∈ IRd, (3.32) astucecos

where cσ = |nσ · η
|η| |, and nσ denotes a unit normal vector to σ.

Let us now prove that there exists C > 0, only depending on Ω, such that
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∑

σ∈E
χσ(x, x + η)dσcσ ≤ |η|+ C size(T ), (3.33) aie

for a.e. x ∈ IRd.

Let x ∈ IRd such that σ ∩ [x, x + η] contains at most one point, for all σ ∈ E , and [x, x + η] does not
contain any vertex of T (proving (

aie
3.33) for such points x gives (

aie
3.33) for a.e. x ∈ IRd, since η is fixed).

Since Ω is not assumed to be convex, it may happen that the line segment [x, x+ η] is not included in Ω.
In order to deal with this, let y, z ∈ [x, x + η] such that y 6= z and [y, z] ⊂ Ω; there exist K, L ∈ T such
that y ∈ K and z ∈ L. Hence,

∑

σ∈E
χσ(y, z)dσcσ = |(y1 − z1) ·

η

|η| |,

where y1 = xK or yσ with σ ∈ Eext∩EK and z1 = xL or yσ̃ with σ̃ ∈ Eext ∩EL, depending on the position
of y and z in K or L respectively.
Since y1 = y + y2, with |y2| ≤ size(T ), and z1 = z + z2, with |z2| ≤ size(T ), one has

|(y1 − z1) ·
η

|η| | ≤ |y − z|+ |y2|+ |z2| ≤ |y − z|+ 2 size(T )

and

∑

σ∈E
χσ(y, z)dσcσ ≤ |y − z|+ 2 size(T ). (3.34) aier

Note that this yields (
aie
3.33) with C = 2 if [x, x+ η] ⊂ Ω.

Since Ω has a finite number of sides, the line segment [x, x + η] intersects ∂Ω a finite number of times;
hence there exist t1, . . . , tn such that 0 ≤ t1 < t2 < . . . < tn ≤ 1, n ≤ N , where N only depends on Ω
(indeed, it is possible to take N = 2 if Ω is convex and N equal to the number of sides of Ω for a general
Ω) and such that

∑

σ∈E
χσ(x, x+ η)dσcσ =

∑

i=1,n−1

oddi

∑

σ∈E
χσ(xi, xi+1)dσcσ,

with xi = x+ tiη, for i = 1, . . . , n, xi ∈ ∂Ω if ti /∈ {0, 1} and [xi, xi+1] ⊂ Ω if i is odd.
Then, thanks to (

aier
3.34) with y = xi and z = xi+1, for i = 1, . . . , n− 1, one has (

aie
3.33) with C = 2(N − 1)

(in particular, if Ω is convex, C = 2 is convenient for (
aie
3.33) and therefore for (

itransh10
3.31) as we shall see below).

In order to conclude the proof of Lemma
h1dtot
3.3, remark that, for all σ ∈ E ,

∫

IRd

χσ(x, x+ η)dx ≤ m(σ)cσ |η|.

Therefore, integrating (
astucecos
3.32) over IRd yields, with (

aie
3.33),

‖ũ(·+ η)− ũ‖2
L2(IRd) ≤

(∑

σ∈E

m(σ)

dσ
|Dσu|2

)
|η|(|η|+ C size(T )).

We are now able to state the convergence theorem. We shall first prove the convergence result in the case
of homogeneous Dirichlet boundary conditions, i.e. g = 0; the nonhomogenous case is then considered in
the two-dimensional case (see Theorem

ellcvgcediraf
3.2 page

ellcvgcediraf
51), following

cvnl
Eymard, Gallouët and Herbin [1999].
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ellcvgce Theorem 3.1 (Convergence, homogeneous Dirichlet boundary conditions) Under Assumption
ellH
3.1 page

ellH
32 with g = 0, let T be an admissible mesh (in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37). Let (uK)K∈T

be the solution of the system given by equations (
ellschema
3.20)-(

ellschemad
3.23) (existence and uniqueness of (uK)K∈T are

given in Lemma
ellexistu
3.2). Define uT ∈ X(T ) by uT (x) = uK for a.e. x ∈ K, and for any K ∈ T . Then uT

converges in L2(Ω) to the unique variational solution u ∈ H1
0 (Ω) of Problem (

elldifstaf
3.1), (

elldifstab
3.2) as size(T ) → 0.

Furthermore ‖uT ‖1,T converges to ‖u‖H1
0
(Ω) as size(T ) → 0.

convplus Remark 3.7

1. In Theorem
ellcvgce
3.1, the hypothesis f ∈ L2(Ω) is not necessary. It is used essentially to obtain a bound

on ‖uT ‖1,T . In order to pass to the limit, the hypothesis “f ∈ L1(Ω)” is sufficient. Then, in
Theorem

ellcvgce
3.1, the hypothesis f ∈ L2(Ω) can be replaced by f ∈ Lp(Ω) for some p > 1, if d = 2,

and for p ≥ 6
5 , if d = 3, provided that the meshes satisfy, for some fixed ζ > 0, dK,σ ≥ ζdσ , for all

σ ∈ EK and for all control volumes K. Indeed, one obtains, in this case, a bound on ‖uT ‖1,T by
using a “discrete Sobolev inequality” (proved in Lemma

lq
3.5 page

lq
60).

It is also possible to obtain convergence results, towards a “very weak solution” of Problem (
elldifstaf
3.1),

(
elldifstab
3.2), with only f ∈ L1(Ω), by working with some discrete equivalent of the W 1,q

0 -norm, with
q < d

d−1 . This is not detailed here.

2. In Theorem
ellcvgce
3.1, it is also possible to prove convergence results when f(x) is replaced by some

nonlinear function f(x, u(x)) as in Theorem
enl1dcr
2.4 page

enl1dcr
30. The proof is an easy adaptation of that

of Theorem
enl1dcr
2.4 page

enl1dcr
30.

Proof of Theorem
ellcvgce
3.1

Let Y be the set of approximate solutions, that is the set of uT where T is an admissible mesh in the
sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37. First, we want to prove that uT tends to the unique solution (in H1

0 (Ω))
to (

ellsolvar
3.3) as size(T ) → 0.

Thanks to Lemma
ellexistu
3.2 and to the discrete Poincaré inequality (

ellinpoin
3.13), there exists C1 ∈ IR, only depending

on Ω and f , such that ‖uT ‖1,T ≤ C1 and ‖uT ‖L2(Ω) ≤ C1 for all uT ∈ Y . Then, thanks to Lemma
h1dtot
3.3

and to the compactness result given in Theorem
kolmh10
3.10 page

kolmh10
93, the set Y is relatively compact in L2(Ω)

and any possible limit (in L2(Ω)) of a sequence (uTn)n∈IN ⊂ Y (such that size(Tn) → 0) belongs to H1
0 (Ω).

Therefore, thanks to the uniqueness of the solution (in H1
0 (Ω)) of (

ellsolvar
3.3), it is sufficient to prove that if

(uTn)n∈IN ⊂ Y converges towards some u ∈ H1
0 (Ω), in L2(Ω), and size(Tn) → 0 (as n → ∞), then u is

the solution to (
ellsolvar
3.3). We prove this result below, omiting the index n, that is assuming uT → u in L2(Ω)

as size(T ) → 0.

Let ψ ∈ C∞c (Ω) and let size(T ) be small enough so that ψ(x) = 0 if x ∈ K and K ∈ T is such that
∂K ∩ ∂Ω 6= ∅. Multiplying (

ellschema
3.20) by ψ(xK), and summing the result over K ∈ T yields

T1 + T2 + T3 = T4, (3.35) ell1g

with

T1 = b
∑

K∈T
m(K)uKψ(xK),

T2 = −
∑

K∈T

∑

L∈N (K)

τK|L(uL − uK)ψ(xK),

T3 =
∑

K∈T

∑

σ∈EK

vK,σuσ,+ψ(xK),

T4 =
∑

K∈T
m(K)ψ(xK)fK .
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First remark that, since uT tends to u in L2(Ω),

T1 → b

∫

Ω

u(x)ψ(x)dx as size(T ) → 0.

Similarly,

T4 →
∫

Ω

f(x)ψ(x)dx as size(T ) → 0.

Let us now turn to the study of T2;

T2 = −
∑

K|L∈Eint

τK|L(uL − uK)(ψ(xK)− ψ(xL)).

Consider the following auxiliary expression:

T ′2 =

∫

Ω

uT (x)∆ψ(x)dx

=
∑

K∈T
uK

∫

K

∆ψ(x)dx

=
∑

K|L∈Eint

(uK − uL)

∫

K|L
∇ψ(x) · nK,Ldγ(x).

Since uT converges to u in L2(Ω), it is clear that T ′2 tends to

∫

Ω

u(x)∆ψ(x) dx as size(T ) tends to 0.

Define

RK,L =
1

m(K|L)

∫

K|L
∇ψ(x) · nK,Ldγ(x)−

ψ(xL)− ψ(xK)

dK|L
,

where nK,L denotes the unit normal vector to K|L, outward to K, then

|T2 + T ′2| = |
∑

K|L∈Eint

m(K|L)(uK − uL)RK,L|

≤
[ ∑

K|L∈Eint

m(K|L)
(uK − uL)2

dK|L

∑

K|L∈Eint

m(K|L)dK|L(RK,L)2
]1/2

,

Regularity properties of the function ψ give the existence of C2 ∈ IR, only depending on ψ, such that
|RK,L| ≤ C2size(T ). Therefore, since

∑

K|L∈Eint

m(K|L)dK|L ≤ dm(Ω),

from Estimate (
ellestimx
3.24), we conclude that T2 + T ′2 → 0 as size(T ) → 0.

Let us now show that T3 tends to −
∫
Ω

v(x)u(x)∇ψ(x)dx as size(T ) → 0. Let us decompose T3 = T ′3+T ′′3
where

T ′3 =
∑

K∈T

∑

σ∈EK

vK,σ(uσ,+ − uK)ψ(xK)

and

T ′′3 =
∑

K∈T

∑

σ∈EK

vK,σuKψ(xK) =

∫

Ω

divv(x)uT (x)ψT (x)dx,
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where ψT is defined by ψT (x) = ψ(xK) if x ∈ K, K ∈ T . Since uT → u and ψT → ψ in L2(Ω) as
size(T ) → 0 (indeed, ψT → ψ uniformly on Ω as size(T ) → 0) and since divv ∈ L∞(Ω), one has

T ′′3 →
∫

Ω

divv(x)u(x)ψ(x)dx as size(T ) → 0.

Let us now rewrite T ′3 as T ′3 = T ′′′3 + r3 with

T ′′′3 =
∑

K∈T

∑

σ∈EK

(uσ,+ − uK)

∫

σ

v(x) · nK,σψ(x)dγ(x)

and

r3 =
∑

K∈T

∑

σ∈EK

(uσ,+ − uK)

∫

σ

v(x) · nK,σ(ψ(xK)− ψ(x))dγ(x).

Thanks to the regularity of v and ψ, there exists C3 only depending on v and ψ such that

|r3| ≤ C3size(T )
∑

K|L∈Eint

|uK − uL|m(K|L),

which yields, with the Cauchy-Schwarz inequality,

|r3| ≤ C3size(T )(
∑

K|L∈Eint

τK|L|uK − uL|2)
1
2 (

∑

K|L∈Eint

m(K|L)dK|L)
1
2 ,

from which one deduces, with Estimate (
ellestimx
3.24), that r3 → 0 as size(T ) → 0.

Next, remark that

T ′′′3 = −
∑

K∈T
uK

∑

σ∈EK

∫

σ

v(x) · nK,σψ(x)dγ(x) = −
∑

K∈T
uK

∫

K

div(v(x)ψ(x))dx.

This implies (since uT → u in L2(Ω)) that T ′′′3 → −
∫
Ω

div(v(x)ψ(x))u(x)dx, so that T ′3 has the same
limit and T3 → −

∫
Ω v(x) · ∇ψ(x)u(x)dx.

Hence, letting size(T ) → 0 in (
ell1g
3.35) yields that the function u ∈ H1

0 (Ω) satisfies

∫

Ω

(
bu(x)ψ(x) − u(x)∆ψ(x) − v(x)u(x)∇ψ(x) − f(x)ψ(x)

)
dx = 0, ∀ψ ∈ C∞c (Ω),

which, in turn, yields (
ellsolvar
3.3) thanks to the fact that u ∈ H1

0 (Ω), and to the density of C∞c (Ω) in H1
0 (Ω).

This concludes the proof of uT → u in L2(Ω) as size(T ) → 0, where u is the unique solution (in H1
0 (Ω))

to (
ellsolvar
3.3).

S Let us now prove that ‖uT ‖1,T tends to ‖u‖H1
0
(Ω) in the pure diffusion case, i.e. assuming b = 0 and

v = 0. Since

‖uT ‖2
1,T =

∫

Ω

fT (x)uT (x)dx →
∫

Ω

f(x)u(x)dx as size(T ) → 0,

where fT is defined from Ω to IR by fT (x) = fK a.e. on K for all K ∈ T , it is easily seen that

‖uT ‖2
1,T →

∫

Ω

f(x)u(x)dx = ‖u‖2
H1

0
(Ω) as size(T ) → 0.

This concludes the proof of Theorem
ellcvgce
3.1.
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creme Remark 3.8 (Consistency for the adjoint operator) The proof of Theorem
ellcvgce
3.1 uses the property

of consistency of the (diffusion) fluxes on the test functions. This property consists in writing the
consistency of the fluxes for the adjoint operator to the discretized Dirichlet operator. This consistency is
achieved thanks to that of fluxes for the discretized Dirichlet operator and to the fact that this operator
is self adjoint. In fact, any discretization of the Dirichlet operator giving “L2-stability” and consistency
of fluxes on its adjoint, yields a convergence result (see also Remark

cafe
3.2 page

cafe
37). On the contrary, the

error estimates proved in sections
errordirichlet
3.1.5 and

sh2ee
3.1.6 directly use the consistency for the discretized Dirichlet

operator itself.

Liebig Remark 3.9 (Finite volume schemes and H1 approximate solutions)
In the above proof, we showed that a sequence of approximate solutions (which are piecewise constant
functions) converges in L2(Ω) to a limit which is in H1

0 (Ω). An alternative to the use of Theorem
kolmh10
3.10 is

the construction of a bounded sequence in H1(IRd) from the sequence of approximate solutions. This can
be performed by convoluting the approximate solution with a mollifier “of size size(T )”. Using Rellich’s
compactness theorem and the weak sequential compactness of the bounded sets of H1, one obtains that
the limit of the sequence of approximate solutions is in H1

0 .

Let us now deal with the case of non homogeneous Dirichlet boundary conditions, in which case g ∈
H1/2(∂Ω) is no longer assumed to be 0. The proof uses the following preliminary result:

thuh1 Lemma 3.4 Let Ω be an open bounded polygonal subset of IR2, g̃ ∈ H1(Ω) and g = γ(g̃) (recall that γ is
the “trace” operator from H1(Ω) to H1/2(∂Ω)). Let T be an admissible mesh (in the sense of Definition
meshdirichlet
3.1 page

meshdirichlet
37) such that, for some ζ > 0, the inequality dK,σ ≥ ζdiam(K) holds for all control volumes

K ∈ T and for all σ ∈ EK , and let M ∈ IN be such that card(EK) ≤M for all K ∈ T . Let us define g̃K
for all K ∈ T by

g̃K =
1

m(K)

∫

K

g̃(x)dx

and g̃σ for all σ ∈ Eext by

g̃σ =
1

m(σ)

∫

σ

g(x)dγ(x).

Let us define

N (g̃, T ) =
( ∑

σ=K|L∈Eint

τK|L(g̃K − g̃L)2 +
∑

σ∈Eext

τσ(g̃K(σ) − g̃σ)
2
) 1

2

, (3.36) Ngtilde

where K(σ) = K if σ ∈ Eext ∩ EK . Then there exists C ∈ IR+, only depending on ζ and M , such that

N (g̃, T ) ≤ C‖g̃‖H1(Ω). (3.37) ellthuh1

Proof of Lemma
thuh1
3.4

Lemma
thuh1
3.4 is given in the two dimensional case, an analogous result is possible in the three dimensional

case. Let Ω, g̃, T , ζ, M satisfying the hypotheses of Lemma
thuh1
3.4. By a classical argument of density, one

may assume that g̃ ∈ C1(Ω, IR).
A first step consists in proving that there exists C1 ∈ IR+, only depending on ζ, such that

(g̃K − g̃σ)
2 ≤ C1

diam(K)

m(σ)

∫

K

|∇g̃(x)|2dx, ∀K ∈ T , ∀σ ∈ EK , (3.38) thuh11

where g̃K (resp. g̃σ) is the mean value of g̃ on K (resp. σ), for K ∈ T (resp. σ ∈ E). Indeed, without
loss of generality, one assumes that σ = {0} × J0, with J0 is a closed interval of IR and K ⊂ IR+ × IR.

Let α = max{x1, x = (x1, x2)
t ∈ K} and a = (α, β)t ∈ K. In the following, a is fixed. For all x1 ∈ (0, α),

let J(x1) = {x2 ∈ IR, such that (x1, x2)
t ∈ K}, so that J0 = J(0).



50

For a.e. x = (x1, x2)
t ∈ K and a.e., for the 1-Lebesgue measure, y = (0, y)t ∈ σ (with y ∈ J0), one sets

z(x, y) = ta+(1−t)y with t = x1

α . Note that, since K is convex, z(x, y) ∈ K and z(x, y) = (x1, z2(x1, y))
t,

with z2(x1, y) = x1

α β + (1− x1

α )y.
One has, using the Cauchy-Schwarz inequality,

(g̃K − g̃σ)
2 ≤ 2

m(K)m(σ)
(A+B), (3.39) thuh111

where

A =

∫

K

∫

σ

(
g̃(x) − g̃(z(x, y))

)2
dγ(y)dx,

and

B =

∫

K

∫

σ

(
g̃(z(x, y))− g̃(y)

)2
dγ(y)dx.

Let us now obtain a bound of A. Let Dig̃, i = 1 or 2, denote the partial derivative of g̃ w.r.t. the
components of x = (x1, x2)

t ∈ IR2. Then,

A =

∫ α

0

∫

J(x1)

∫

J(0)

( ∫ x2

z2(x1,y)

D2g̃(x1, s)ds
)2
dydx2dx1.

The Cauchy-Schwarz inequality yields

A ≤ diam(K)

∫ α

0

∫

J(x1)

∫

J(0)

∫

J(x1)

(
D2g̃(x1, s)

)2
dsdydx2dx1

and therefore

A ≤ diam(K)3
∫

K

(
D2g̃(x)

)2
dx. (3.40) thuh12

One now turns to the study of B, which can be rewritten as

B =

∫ α

0

∫

J(x1)

∫

J(0)

( ∫ x1

0

[D1g̃(s, z2(s, y)) +
β − y

α
D2g̃(s, z2(s, y))]ds

)2
dydx2dx1.

The Cauchy-Schwarz inequality and the fact that α ≥ ζdiam(K) give that

B ≤ 2diam(K)(B1 +
1

ζ2
B2), (3.41) thuh112

with

Bi =

∫ α

0

∫

J(x1)

∫

J(0)

∫ x1

0

(
Dig̃(s, z2(s, y))

)2
dsdydx2dx1, i = 1, 2.

First, using Fubini’s theorem, one has

Bi =

∫

J(0)

∫ α

0

(
Dig̃(s, z2(s, y))

)2 ∫ α

s

∫

J(x1)

dx2dx1dsdy.

Therefore

Bi ≤ diam(K)

∫ α

0

∫

J(0)

(
Dig̃(s, z2(s, y))

)2
(α− s)dyds.

Then, with the change of variables z2 = z2(s, y), one gets
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Bi ≤ diam(K)

∫ α

0

∫

J(s)

(
Dig̃(s, z2)

)2 α− s

1− s
α

dz2ds.

Hence

Bi ≤ diam(K)2
∫

K

(
Dig̃(x)

)2
dx. (3.42) thuh13

Using the fact that m(K) ≥ πζ2
(
diam(K)

)2
, (

thuh111
3.39), (

thuh12
3.40), (

thuh112
3.41) and (

thuh13
3.42), one concludes (

thuh11
3.38).

In order to conclude the proof of (
ellthuh1
3.37), one remarks that

(
N (g̃, T )

)2

≤ 2
∑

K∈T

∑

σ∈EK

τσ(g̃K − g̃σ)
2.

Because, for all K ∈ T and σ ∈ EK , dσ ≥ ζdiam(K), one gets thanks to (
thuh11
3.38), that

(
N (g̃, T )

)2

≤ 2
∑

K∈T

∑

σ∈EK

C1

ζ

∫

K

|∇g̃(x)|2dx.

The above inequality shows that

(
N (g̃, T )

)2

≤ 2M
C1

ζ

∫

Ω

|∇g̃(x)|2dx,

which implies (
ellthuh1
3.37).

ellcvgcediraf Theorem 3.2 (Convergence, non homogeneous Dirichlet boundary condition)
Assume items 1, 2, 3 and 4 of Assumption

ellH
3.1 page

ellH
32 and g ∈ H1/2(∂Ω). Let ζ ∈ IR+ and M ∈ IN

be given values. Let T be an admissible mesh (in the sense of Definition
meshdirichlet
3.1 page

meshdirichlet
37) such that dK,σ ≥

ζdiam(K) for all control volumes K ∈ T and for all σ ∈ EK , and card(EK) ≤ M for all K ∈ T . Let
(uK)K∈T be the solution of the system given by equations (

ellschema
3.20)-(

ellschemac
3.22) and

uσ =
1

m(σ)

∫

σ

g(x)dγ(x), ∀σ ∈ Eext. (3.43) ellschemadi

(note that the proofs of existence and uniqueness of (uK)K∈T which were given in Lemma
ellexistu
3.2 page

ellexistu
42 remain valid). Define uT ∈ X(T ) by uT (x) = uK for a.e. x ∈ K and for any K ∈ T . Then, uT
converges, in L2(Ω), to the unique variational solution u ∈ H1(Ω) of Problem (

elldifstaf
3.1), (

elldifstab
3.2) as size(T ) → 0.

Proof of Theorem
ellcvgcediraf
3.2

The proof is only detailed for the case b = 0 and v = 0 (the extension of the proof to the general case
is straightforward using the proof of Theorem

ellcvgce
3.1 page

ellcvgce
46). Let g̃ ∈ H1(Ω) be such that the trace of

g̃ on ∂Ω is equal to g. One defines ũT ∈ X(T ) by ũT = uT − g̃T where g̃T ∈ X(T ) is defined by
g̃(x) = 1

m(K)

∫
K
g̃(y)dy for all x ∈ K and all K ∈ T . Then (ũK)K∈T satisfies

∑

σ∈EK

F̃K,σ = m(K)fK −
∑

σ∈EK

GK,σ , ∀K ∈ T , (3.44) ellschemada

F̃K,σ = −τK|L(ũL − ũK), ∀σ ∈ Eint, if σ = K|L, (3.45) ellschembda

F̃K,σ = τσ(ũK), ∀σ ∈ Eext such that σ ∈ EK . (3.46) ellschemcda

GK,σ = −τK|L(g̃L − g̃L), ∀σ ∈ Eint, if σ = K|L, (3.47) ellschemdda
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GK,σ = −τσ(g̃σ − g̃L), ∀σ ∈ Eext such that σ ∈ EK , (3.48) ellschemeda

where g̃σ = 1
m(σ)

∫
σ
g(x)dγ(x) Multiplying (

ellschemada
3.44) by ũK , summing over K ∈ T , gathering by edges in the

right hand side and using the Cauchy-Schwarz inequality yields

‖ũT ‖2
1,T ≤

∑

K∈T
m(K)fK ũK +N (g̃, T )‖ũT ‖1,T ,

from the definition (
Ngtilde
3.36) page

Ngtilde
49 of N (g̃, T ) and Definition

defh10d
3.3 page

defh10d
40 of ‖ · ‖1,T . Therefore, thanks

to Lemma
thuh1
3.4 page

thuh1
49 and the discrete Poincaré inequality (

ellinpoin
3.13), there exists C1 ∈ IR, only depending

on Ω, ‖g̃‖H1(Ω), ζ, M and f , such that ‖ũT ‖1,T ≤ C1 and ‖ũT ‖L2(Ω) ≤ C1. Let us now prove that ũT
converges in L2(Ω), as size(T ) → 0, towards the unique solution in H1

0 (Ω) to (
ellsolvar
3.3). We proceed as in

Theorem
ellcvgce
3.1 page

ellcvgce
46. Using Lemma

h1dtot
3.3, the compactness result given in Theorem

kolmh10
3.10 page

kolmh10
93 and the

uniqueness of the solution (in H1
0 (Ω)) of (

ellsolvar
3.3), it is sufficient to prove that if ũT converges towards some

ũ ∈ H1
0 (Ω), in L2(Ω) as size(T ) → 0, then ũ is the solution to (

ellsolvar
3.3). In order to prove this result, let us

introduce the function g̃T defined by

g̃T (x) =
1

m(K)

∫

K

g̃(y)dy, ∀x ∈ K, ∀K ∈ T ,

which converges to g̃ in L2(Ω), as size(T ) → 0. Then the function uT converges in L2(Ω), as size(T ) → 0
to u = ũ+ g̃ ∈ H1(Ω) and the proof that ũ is the unique solution of (

ellsolvar
3.3) is identical to the corresponding

part in the proof of Theorem
ellcvgce
3.1 page

ellcvgce
46. This completes the proof of Theorem

ellcvgcediraf
3.2.

Remark 3.10 A more simple proof of convergence for the finite volume scheme with non homogeneous
Dirichlet boundary condition can be made if g is the trace of a Lipschitz-continuous function g̃. In that
case, ζ and M do not have to be introduced and Lemma

thuh1
3.4 is not used. The scheme is defined with

uσ = g(yσ) instead of the average value of g on σ, and the proof uses g̃(xK) instead of the average value
of g̃ on K.

3.1.5 C2 error estimate
errordirichlet

Under adequate regularity assumptions on the solution of Problem (
elldifstaf
3.1)-(

elldifstab
3.2), one may prove that the

error between the exact solution and the approximate solution given by the finite volume scheme (
ellschema
3.20)-

(
ellschemad
3.23) is of order size(T ) = supK∈T diam(K), in a certain sense which we give in the following theorem:

ellesterr Theorem 3.3 Under Assumption
ellH
3.1 page

ellH
32, let T be an admissible mesh as defined in Definition

meshdirichlet
3.1

page
meshdirichlet
37 and uT ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39) be defined a.e.in Ω by uT (x) = uK for a.e. x ∈ K,

for all K ∈ T , where (uK)K∈T is the solution to (
ellschema
3.20)-(

ellschemad
3.23). Assume that the unique variational

solution u of Problem (
elldifstaf
3.1)-(

elldifstab
3.2) satisfies u ∈ C2(Ω). Let, for each K ∈ T , eK = u(xK) − uK , and

eT ∈ X(T ) defined by eT (x) = eK for a.e. x ∈ K, for all K ∈ T .
Then, there exists C > 0 only depending on u, v and Ω such that

‖eT ‖1,T ≤ Csize(T ), (3.49) eqesterrh1

where ‖ · ‖1,T is the discrete H1
0 norm defined in Definition

defh10d
3.3,

‖eT ‖L2(Ω) ≤ Csize(T ) (3.50) eqesterr

and
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∑

σ∈Eint
σ=K|L

m(σ)dσ

(uL − uK
dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x)
)2

+

∑

σ∈Eext

σ∈K∩∂Ω

m(σ)dσ

(g(yσ)− uK
dσ

− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x)
)2

≤ Csize(T )2.
(3.51) eqesterr1

Remark 3.11

1. Inequality (
eqesterrh1
3.49) (resp. (

eqesterr
3.50)) yields an estimate of order 1 for the discrete H1

0 norm (resp. L2

norm) of the error on the solution. Note also that, since u ∈ C1(Ω), one deduces, from (
eqesterr
3.50), the

existence of C only depending on u and Ω such that ‖u− uT ‖L2(Ω) ≤ Csize(T ). Inequality (
eqesterr1
3.51)

may be seen as an estimate of order 1 for the L2 norm of the flux.

2. In
BMO
Baranger, Maitre and Oudin [1996], finite element tools are used to obtain error estimates

of order size(T )2 in the case d = 2, v = b = g = 0 and if the elements of T are triangles of a finite
element mesh satisfying the Delaunay condition (see section

scvfe
3.4 page

Delaunay
85). Note that this result is

quite different of those of the remarks
h2conv
2.5 page

h2conv
18 and

h2conv2d
3.1 page

h2conv2d
35, which are obtained by using a

higher order approximation of the flux.

3. The proof of Theorem
ellesterr
3.3 given below is close to that of error estimates for finite element schemes

in the sense that it uses the coerciveness of the operator (the discrete Poincaré inequality) instead
of the discrete maximum principle of Proposition

maxppe
3.2 page

maxppe
44 (which is used for error estimates

with finite difference schemes).

Proof of Theorem
ellesterr
3.3

Let uT ∈ X(T ) be defined a.e. in Ω by uT (x) = uK for a.e. x ∈ K, for all K ∈ T , where (uK)K∈T is
the solution to (

ellschema
3.20)-(

ellschemad
3.23). Let us write the flux balance for any K ∈ T ;

∑

σ∈EK

(
FK,σ + V K,σ

)
+ b

∫

K

u(x)dx =

∫

K

f(x)dx, (3.52) eller1

where FK,σ = −
∫
σ∇u(x) ·nK,σdγ(x), and V K,σ =

∫
σ u(x)v(x) ·nK,σdγ(x) are respectively the diffusion

and convection fluxes through σ outward to K.
Let F ?K,σ and V ?K,σ be defined by

F ?K,σ = −τK|L(u(xL)− u(xK)), ∀σ = K|L ∈ EK ∩ Eint, ∀K ∈ T ,

F ?K,σd(xK , σ) = −m(σ)(u(yσ)− u(xK)), ∀σ ∈ EK ∩ Eext, ∀K ∈ T ,

V ?K,σ = vK,σu(xσ,+), ∀σ ∈ EK , ∀K ∈ T ,
where xσ,+ = xK (resp. xL) if σ ∈ Eint, σ = K|L and vK,σ ≥ 0 (resp. vK,σ ≤ 0) and xσ,+ = xK (resp.
yσ) if σ = EK ∩ Eext and vK,σ ≥ 0 (resp. vK,σ ≤ 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

RK,σ =
1

m(σ)
(FK,σ − F ?K,σ), (3.53) eller2

rK,σ =
1

m(σ)
(V K,σ − V ?K,σ), (3.54) eller2b
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Thanks to the regularity of u and v, there exists C1 ∈ IR, only depending on u and v, such that
|RK,σ |+ |rK,σ | ≤ C1size(T ) for any K ∈ T and σ ∈ EK . For K ∈ T , let

ρK = u(xK)− (1/m(K))

∫

K

u(x)dx,

so that |ρK | ≤ C2size(T ) with some C2 ∈ IR+ only depending on u.

Substract (
ellschema
3.20) to (

eller1
3.52); thanks to (

eller2
3.53) and (

eller2b
3.54), one has

∑

σ∈EK

(
GK,σ +WK,σ

)
+ bm(K)eK = bm(K)ρK −

∑

σ∈EK

m(σ)(RK,σ + rK,σ), (3.55) eller3

where

GK,σ = F ?K,σ − FK,σ is such that

GK,σ = −τK|L(eL − eK), ∀K ∈ T , ∀σ ∈ EK ∩ Eint, σ = K|L,

GK,σd(xK , σ) = m(σ)eK , ∀K ∈ T , ∀σ ∈ EK ∩ Eext,

with eK = u(xK)− uK , and WK,σ = V ?K,σ − VK,σ = vK,σ(u(xσ,+)− uσ,+)

Multiply (
eller3
3.55) by eK , sum for K ∈ T , and note that

∑

K∈T

∑

σ∈EK

GK,σeK =
∑

σ∈E
|Dσe|2

m(σ)

dσ
= ‖e‖2

1,T .

Hence

‖eT ‖2
1,T +

∑

K∈T

∑

σ∈EK

vK,σeσ,+eK+b‖eT ‖2
L2(Ω) ≤ b

∑

K∈T
m(K)ρKeK−

∑

K∈T

∑

σ∈EK

m(σ)(RK,σ+rK,σ)eK , (3.56) ellraslebol1

where
eT ∈ X(T ), eT (x) = eK for a.e. x ∈ K and for all K ∈ T ,
|Dσe| = |eK − eL|, if σ ∈ Eint, σ = K|L, |Dσe| = |eK |, if σ ∈ EK ∩ Eext,
eσ,+ = u(xσ,+)− uσ,+.
By Young’s inequality, the first term of the left hand side satisfies:

|
∑

K∈T
m(K)ρKeK | ≤

1

2
‖eT ‖2

L2(Ω) +
1

2
C2

2 (size(T ))2m(Ω). (3.57) ellyoung

Thanks to the assumption divv ≥ 0, one obtains, through a computation similar to (
vfqconv1
3.27)-(

vfqconv11
3.28) page

vfqconv11
43

that ∑

K∈T

∑

σ∈EK

vK,σeσ,+eK ≥ 0.

Hence, (
ellraslebol1
3.56) and (

ellyoung
3.57) yield that there exists C3 only depending on u, b and Ω such that

‖eT ‖2
1,T +

1

2
b‖eT ‖2

L2(Ω) ≤ C3(size(T ))2 −
∑

K∈T

∑

σ∈EK

m(σ)(RK,σ + rK,σ)eK , (3.58) ellraslebol2

Thanks to the property of conservativity, one has RK,σ = −RL,σ and rK,σ = −rL,σ for σ ∈ Eint such that
σ = K|L. Let Rσ = |RK,σ | and rσ = |rK,σ | if σ ∈ EK . Reordering the summation over the edges and
from the Cauchy-Schwarz inequality, one then obtains
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|
∑

K∈T

∑

σ∈EK

m(σ)(RK,σ + rK,σ)eK | ≤
∑

σ∈E
m(σ)(Dσe)(Rσ + rσ) ≤

(∑

σ∈E

m(σ)

dσ
(Dσe)

2
) 1

2
(∑

σ∈E
m(σ)dσ(Rσ + rσ)

2
) 1

2

.
(3.59) ellraslebol3

Now, since |Rσ + rσ | ≤ C1size(T ) and since
∑

σ∈E
m(σ)dσ = dm(Ω), (

ellraslebol2
3.58) and (

ellraslebol3
3.59) yield the existence

of C4 ∈ IR+ only depending on u,v and Ω such that

‖eT ‖2
1,T +

1

2
b‖eT ‖2

L2(Ω) ≤ C3(size(T ))2 + C4size(T )‖e‖1,T .

Using again Young’s inequality, there exists C5 only depending on u, v, b and Ω such that

‖eT ‖2
1,T + b‖eT ‖2

L2(Ω) ≤ C5(size(T ))2. (3.60) ellraslebol4

This inequality yields Estimate (
eqesterrh1
3.49) and, in the case b > 0, Estimate (

eqesterr
3.50). In the case where b = 0,

one uses the discrete Poincaré inequality (
ellinpoin
3.13) and the inequality (

ellraslebol4
3.60) to obtain

‖eT ‖2
L2(Ω) ≤ diam(Ω)2C5(size(T ))2,

which yields (
eqesterr
3.50).

Remark now that (
eqesterrh1
3.49) can be written

∑

σ∈Eint
σ=K|L

m(σ)dσ

(uL − uK
dσ

− u(xL)− u(xK)

dσ

)2

+

∑

σ∈Eext

σ∈K∩∂Ω

m(σ)dσ

(g(yσ)− uK
dσ

− u(yσ)− u(xK)

dσ

)2

≤ (Csize(T ))2.
(3.61) caspie3

From Definition (
eller2
3.53) and the consistency of the fluxes, one has

∑

σ∈Eint
σ=K|L

m(σ)dσ

(u(xL)− u(xK)

dσ
− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x)
)2

+

∑

σ∈Eext

σ∈K∩∂Ω

m(σ)dσ

(u(yσ)− u(xK)

dσ
− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x)
)2

=

∑

σ∈E
m(σ)dσR

2
σ ≤ dm(Ω)C2

1 (size(T ))2.

(3.62) caspie4

Then (
caspie3
3.61) and (

caspie4
3.62) give (

eqesterr1
3.51).

3.1.6 H2 error estimate
sh2ee

In Theorem
ellesterr
3.3, the hypothesis u ∈ C2(Ω) was used. In the following theorem (Theorem

testh2
3.4), one obtains

Estimates (
eqesterrh1
3.49) and (

eqesterr
3.50), in the case b = v = 0 and assuming some additional assumption on the mesh

(see Definition
ram
3.4 below), under the weaker assumption u ∈ H2(Ω). This additional assumption on the

mesh is not completely necessary (see Remark
h2plus
3.13 and

ghv
Gallouët, Herbin and Vignal [1999]). It is

also possible to obtain Estimates (
eqesterrh1
3.49) and (

eqesterr
3.50) in the cases b 6= 0 or v 6= 0 assuming u ∈ H2(Ω) (see

Remark
h2plus
3.13 and

ghv
Gallouët, Herbin and Vignal [1999]). Some similar results are also in

lazarovsiam
Lazarov,

Mishev and Vassilevski [1996] and
coudiere
Coudière, Vila and Villedieu [1999].
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ram Definition 3.4 (Restricted admissible meshes) Let Ω be an open bounded polygonal subset of IRd,
d = 2 or 3. A restricted admissible finite volume mesh of Ω, denoted by T , is an admissible mesh in the
sense of Definition

meshdirichlet
3.1 such that, for some ζ > 0, one has dK,σ ≥ ζdiam(K) for all control volumes K

and for all σ ∈ EK .

testh2 Theorem 3.4 (H2 regularity) Under Assumption
ellH
3.1 page

ellH
32 with b = v = 0, let T be a restricted

admissible mesh in the sense of Definition
ram
3.4 and uT ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39) be the

approximate solution defined in Ω by uT (x) = uK for a.e. x ∈ K, for all K ∈ T , where (uK)K∈T is
the (unique) solution to (

ellschema
3.20)-(

ellschemad
3.23) (existence and uniqueness of (uK)K∈T are given by Lemma

ellexistu
3.2).

Assume that the unique solution, u, of (
ellsolvar
3.3) (with b = v = 0) belongs to H2(Ω). For each control volume

K, let eK = u(xK)− uK, and eT ∈ X(T ) defined by eT (x) = eK for a.e. x ∈ K, for all K ∈ T .
Then, there exists C, only depending on u, ζ and Ω, such that (

eqesterrh1
3.49), (

eqesterr
3.50) and (

eqesterr1
3.51) hold.

uish2 Remark 3.12

1. In Theorem
testh2
3.4, the function eT is still well defined, and so is the quantity “∇u · nσ” on σ, for all

σ ∈ E . Indeed, since u ∈ H2(Ω) (and d ≤ 3), one has u ∈ C(Ω) (and then u(xK) is well defined for
all control volumes K) and ∇u ·nσ belongs to L2(σ) (for the (d−1)-dimensional Lebesgue measure
on σ) for all σ ∈ E .

2. Note that, under Assumption
ellH
3.1 with b = v = g = 0 the (unique) solution of (

ellsolvar
3.3) is necessarily

in H2(Ω) provided that Ω is convex.

Proof of Theorem
testh2
3.4

Let K be a control volume and σ ∈ EK . Define VK,σ = {txK + (1− t)x, x ∈ σ, t ∈ [0, 1]}. For σ ∈ Eint,
let Vσ = VK,σ ∪ VL,σ, if K and L are the control volumes such that σ = K|L. For σ ∈ Eext ∩ EK , let
Vσ = VK,σ .
The main part of the proof consists in proving the existence of some C, only depending on the space
dimension d and ζ (given in Definition

ram
3.4), such that, for all control volumes K and for all σ ∈ EK ,

|RK,σ |2 ≤ C
(size(T ))2

m(σ)dσ

∫

Vσ

|H(u)(z)|2dz, (3.63) consh2

whereH is the Hessian matrix of u and

|H(u)(z)|2 =

d∑

i,j=1

|DiDju(z)|2,

and Di denotes the (weak) derivative with respect to the component zi of z = (z1, · · · , zd)t ∈ IRd.
Recall that RK,σ is the consistency error on the diffusion flux (see (

eller2
3.53)), that is:

RK,σ =
u(xL)− u(xK)

dσ
− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x), if σ ∈ Eint and σ = K|L,

RK,σ =
u(yσ)− u(xK)

dσ
− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x), if σ ∈ Eext ∩ EK .

Note that RK,σ is well defined, thanks to u ∈ H2(Ω), see Remark
uish2
3.12.

In Step 1, one proves (
consh2
3.63), and, in Step 2, we conclude the proof of Estimates (

eqesterrh1
3.49) and (

eqesterr
3.50).

Step 1. Proof of (
consh2
3.63).

Let σ ∈ E . Since u ∈ H2(Ω), the restriction of u to Vσ belongs to H2(Vσ). The space C2(Vσ) is dense in
H2(Vσ) (see, for instance,

necas
Nečas [1967], this can be proved quite easily be a regularization technique).

Then, by a density argument, one needs only to prove (
consh2
3.63) for u ∈ C2(Vσ). Therefore, in the remainder

of Step 1, it is assumed u ∈ C2(Vσ).
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First, one proves (
consh2
3.63) if σ ∈ Eint. Let K and L be the 2 control volumes such that σ = K|L.

It is possible to assume, for simplicity of notations and without loss of generality, that σ = 0 × σ̃, with
some σ̃ ⊂ IRd−1, and xK = (−α, 0)t, xL = (β, 0)t, with some α > ζdiam(K), β > ζdiam(L) (ζ is defined
in Definition

ram
3.4 page

ram
56).

Since u ∈ C2(Vσ) a Taylor expansion gives for a.e. (for the (d− 1)-dimensional Lebesgue measure on σ)
x = (0, x̃)t ∈ σ,

u(xL)− u(x) = ∇u(x) · (xL − x) +

∫ 1

0

H(u)(tx+ (1− t)xL)(xL − x) · (xL − x)tdt,

and

u(xK)− u(x) = ∇u(x) · (xK − x) +

∫ 1

0

H(u)(tx+ (1− t)xK)(xK − x) · (xK − x)tdt,

where H(u)(z) denotes the Hessian matrix of u at point z.
Subtracting one equation to the other and integrating over σ yields (note that xL − xK = nK,σdσ)
|RK,σ | ≤ BK,σ +BL,σ, with, for some C1 only depending on d,

BK,σ =
C1

m(σ)dσ

∫

σ

∫ 1

0

|H(u)(tx+ (1− t)xK)||xK − x|2tdtdγ(x). (3.64) donotpanic

The quantity BL,σ is obtained with BK,σ by changing K in L.
One uses a change of variables in (

donotpanic
3.64). Indeed, one sets z = tx+ (1− t)xK . Since |xK − x| ≤ diam(K)

and dz = td−1αdtdγ(x), one obtains, since z1 = (t− 1)α, z = (z1, z)
t,

BK,σ ≤
C1(diam(K))2

m(σ)dσ

∫

VK,σ

|H(u)(z)| αd−2

α(z1 + α)d−2
dz.

This gives, with the famous Cauchy-Schwarz inequality,

BK,σ ≤
C1α

d−3(diam(K))2

m(σ)dσ

( ∫

VK,σ

|H(u)(z)|2dz
) 1

2
( ∫

VK,σ

1

(z1 + α)(d−2)2
dz
) 1

2 . (3.65) onrespirefort

For d = 2, (
onrespirefort
3.65) gives

BK,σ ≤
C1(diam(K))2

αm(σ)dσ

(αm(σ)

2

) 1
2
( ∫

VK,σ

|H(u)(z)|2dz
) 1

2 ,

and therefore

BK,σ ≤
C1(diam(K))2

2
1
2 (m(σ)dσ)

1
2 (dσα)

1
2

( ∫

VK,σ

|H(u)(z)|2dz
) 1

2 .

A similar estimate holds on BL,σ by changing K in L and α in β. Since α, β ≥ ζdiam(K) and dσ =
α+ β ≥ ζdiam(K), these estimates on BK,σ and BL,σ yield (

consh2
3.63) for some C only depending on d and

ζ.
For d = 3, the computation of the integral A =

∫
VK,σ

1
(z1+α)2 dz by the following change of variable (see

Figure (
fig-consist-h2
3.1.6)):

A =

∫ 0

−d

1

(z1 + α)2
(

∫

z∈tσ̃
dz)dz1, where t =

z1 + α

dK,σ
.

Now, ∫

z∈tσ̃
dz =

∫

y∈σ̃
t2dy =

(z1 + α)2

α2
m(σ),
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and therefore A = m(σ)
α , and (

onrespirefort
3.65) yields that:

BK,σ ≤
C3 (diam(K))2

(m(σ) d2
σ dK,σ)

1/2

(∫

VK,σ

|H(u)(z)|2 dz
)1/2

≤ C3 size(T )√
2 ζ (m(σ) dσ)1/2

‖H(u)‖L2(VK,σ).

σ̃

z1

α

(0,0)

z

tσ̃

xK = (−dK,σ, 0)t

fig-consist-h2

Figure 3.3: Consistency error, d = 3

and therefore (
onrespirefort
3.65) gives:

BK,σ ≤
C1(diam(K))2

m(σ)dσ

( ∫ 0

−α

m(σ)

α2
dz1
) 1

2
( ∫

VK,σ

|H(u)(z)|2dz
) 1

2 ,

and then

BK,σ ≤
C1(diam(K))2

(m(σ)dσ)
1
2 (dσα)

1
2

( ∫

VK,σ

|H(u)(z)|2dz
) 1

2 .

With a similar estimate on BL,σ, this yields (
consh2
3.63) for some C only depending on d and ζ.

Now, one proves (
consh2
3.63) if σ ∈ Eext. Let K be the control volume such that σ ∈ EK . One can assume,

without loss of generality, that xK = 0 and σ = {2α} × σ̃ with σ̃ ⊂ IRd−1 and some α ≥ 1
2ζdiam(K).

The above proof gives (see Definition
meshdirichlet
3.1 page

meshdirichlet
37 for the definition of yσ), with some C2 only depending

on d,

|u(yσ)− u(xK)

2α
− 1

m(σ̂)

∫

σ̂

∇u(x) · nK,σdγ(x)|2 ≤ C2
(size(T ))2

m(σ)dσ

∫

Vσ̂

|H(u)(z)|2dz, (3.66) consbord1

with σ̂ = {(α x
2 ), x ∈ σ̃}, and Vσ̂ = {tyσ + (1− t)x, x ∈ σ̂, t ∈ [0, 1]} ∪ {txK + (1− t)x, x ∈ σ̂, t ∈ [0, 1]}.

Note that m(σ̂) = m(σ)
2d−1 and that Vσ̂ ⊂ Vσ.

One has now to compare Iσ = 1
m(σ)

∫
σ∇u(x) · nK,σdγ(x) with Iσ̂ = 1

m(σ̂)

∫
σ̂ ∇u(x) · nK,σdγ(x).

A Taylor expansion gives

Iσ − Iσ̂ =
1

m(σ)

∫

σ

∫ 1

1
2

H(u)(xK + t(x − xK))(x − xK) · nK,σdtdγ(x).

The change of variables in this last integral z = xK + t(x−xK), which gives dz = 2αtd−1dtdγ(x), yields,
with Eσ = {tx+ (1− t)xK , x ∈ σ, t ∈ [ 12 , 1]} and some C3 only depending on d (note that t ≥ 1

2 ),
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|Iσ − Iσ̂ | ≤
C3

m(σ)α

∫

Eσ

|H(u)(z)||x− xK |dz.

Then, from the Cauchy-Schwarz inequality and since |x− xK | ≤ diam(K),

|Iσ − Iσ̂ |2 ≤
C4(diam(K))2

m(σ)dσ

∫

Eσ

|H(u)(z)|2dz, (3.67) consbord2

with some C4 only depending on d and ζ.
Inequalities (

consbord1
3.66) and (

consbord2
3.67) yield (

consh2
3.63) for some C only depending on d and ζ.

One may therefore choose C ∈ IR+ such that (
consh2
3.63) holds for σ ∈ Eint or σ ∈ Eext. This concludes Step 1.

Step 2. Proof of Estimates (
eqesterrh1
3.49), (

eqesterr
3.50) and (

eqesterr1
3.51).

In order to obtain Estimate (
eqesterrh1
3.49) (and therefore (

eqesterr
3.50) from the discrete Poincaré inequality (

ellinpoin
3.13)),

one proceeds as in Theorem
ellesterr
3.3. Inequality (

ellraslebol1
3.56) writes here, since RK,σ = −RL,σ, if σ = K|L,

‖eT ‖2
1,T ≤

∑

σ∈E
Rσ |Dσe|m(σ),

with Rσ = |RK,σ |, if σ ∈ EK . Recall also that |Dσe| = |eK − eL| if σ ∈ Eint, σ = K|L and |Dσe| = |eK |,
if σ ∈ Eext ∩ EK . Cauchy and Schwarz strike again:

‖eT ‖2
1,T ≤

(∑

σ∈E
R2
σm(σ)dσ

) 1
2
(∑

σ∈E
|Dσe|2

m(σ)

dσ

) 1
2 .

The main consequence of (
consh2
3.63) is that

∑

σ∈E
m(σ)dσR

2
σ ≤ C(size(T ))2

∑

σ∈E

∫

Vσ

|H(u)(z)|2dz = C(size(T ))2
∫

Ω

|H(u)(z)|2dz. (3.68) bouh

Then, one obtains

‖eT ‖1,T ≤
√
Csize(T )

( ∫

Ω

|H(u)(z)|2dz
) 1

2 .

This concludes the proof of (
eqesterrh1
3.49) since u ∈ H2(Ω) implies

∫
Ω
|H(u)(z)|2dz <∞.

Estimate (
eqesterr1
3.51) follows from (

bouh
3.68) in a similar manner as in the proof of Theorem

ellesterr
3.3. This concludes

the proof of Theorem
testh2
3.4.

h2plus Remark 3.13 (Generalizations)

1. By developping the method used to bound the consistency error on the flux on the elements of Eext,
it is possible to replace, in Theorem

testh2
3.4, the hypothesis dK,σ ≥ ζdiam(K) in Definition

ram
3.4 page

ram
56 by the weaker hypothesis dσ ≥ ζdiam(σ) provided that Vσ is convex. Note also that, in this
case, the hypothesis xK ∈ K is not necessary, it suffices that xL − xK = dσnK,σ , for all σ ∈ Eint,
σ = K|L (for σ ∈ Eext, one always needs yσ − xK = dσnK,σ).

2. It is also possible to prove Theorem
testh2
3.4 if b 6= 0 or v 6= 0 (or, of course, b 6= 0 and v 6= 0). Indeed,

if the solution, u, to (
ellsolvar
3.3) is not only in H2(Ω) but is also Lipschitz continuous on Ω (this is the

case if, for instance, there exists p > d such that u ∈ W 2,p(Ω)), the treatment of the consistency
error terms due to the terms involving b and v are exactly as in Theorem

ellesterr
3.3. If u is not Lipschitz

continuous on Ω, one has to deal with the consistency error terms due to b and v similarly as in the
proof of Theorem

testh2
3.4 (see also

cvnl
Eymard, Gallouët and Herbin [1999] or

ghv
Gallouët, Herbin

and Vignal [1999]).
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It is also possible, essentially under Assumption
ellH
3.1 page

ellH
32, to obtain an Lq estimate of the error, for

2 ≤ q < +∞ if d = 2, and for 1 ≤ q ≤ 6 if d = 3, see
sobolevsobolev
Coudière, Gallouët and Herbin [1998]. The

error estimate for the Lq norm is a consequence of the following lemma:

lq Lemma 3.5 (Discrete Sobolev Inequality) Let Ω be an open bounded polygonal subset of IRd and T
be a general finite volume mesh of Ω in the sense of definition

meshneuman
3.5 page

meshneuman
63, and let ζ > 0 be such that

∀K ∈ T , ∀σ ∈ EK , dK,σ ≥ ζdσ , and dK,σ ≥ ζdiam(K). (3.69) regularitebis

Let be u ∈ X(T ) (see definition
Xmesh
3.2 page

Xmesh
39), then, there exists C > 0 only depending on Ω and ζ, such

that for all q ∈ [2,+∞), if d = 2, and q ∈ [2, 6], if d = 3,

‖u‖Lq(Ω) ≤ Cq‖u‖1,T , (3.70) ellinlq

where ‖ · ‖1,T is the discrete H1
0 norm defined in definition

defh10d
3.3 page

defh10d
40.

Proof of Lemma
lq
3.5

Let us first prove the two-dimensional case. Assume d = 2 and let q ∈ [2,+∞). Let d1 = (1, 0)t and
d2 = (0, 1)t; for x ∈ Ω, let D1

x and D2
x be the straight lines going through x and defined by the vectors

d1 and d2.
Let v ∈ X(T ). For all control volume K, one denotes by vK the value of v on K. For any control volume
K and a.e. x ∈ K, one has

v2
K ≤

∑

σ∈E
Dσv χ

(1)
σ (x)

∑

σ∈E
Dσv χ

(2)
σ (x), (3.71) lq1

where χ
(1)
σ and χ

(2)
σ are defined by

χ(i)
σ (x) =

{
1 if σ ∩ Dix 6= ∅
0 if σ ∩ Dix = ∅ for i = 1, 2.

Recall that Dσv = |vK − vL|, if σ ∈ Eint, σ = K|L and Dσv = |vK |, if σ ∈ Eext ∩ EK . Integrating (
lq1
3.71)

over K and summing over K ∈ T yields

∫

Ω

v2(x)dx ≤
∫

Ω

(∑

σ∈E
Dσv χ

(1)
σ (x)

∑

σ∈E
Dσv χ

(2)
σ (x)

)
dx.

Note that χ
(1)
σ (resp. χ

(2)
σ ) only depends on the second component x2 (resp. the first component x1) of

x and that both functions are non zero on a region the width of which is less than m(σ); hence

∫

Ω

v2(x)dx ≤
(∑

σ∈E
m(σ)Dσv

)2

. (3.72) poinbis

Applying the inequality (
poinbis
3.72) to v = |u|αsign(u), where u ∈ X(T ) and α > 1 yields

∫

Ω

|u(x)|2αdx ≤
(∑

σ∈E
m(σ)Dσv

)2

.

Now, since |vK − vL| ≤ α(|uK |α−1 + |uL|α−1)|uK −uL|, if σ ∈ Eint, σ = K|L and |vK | ≤ α(|uK |α−1)|uK |,
if σ ∈ Eext ∩ EK ,

(∫

Ω

|u(x)|2αdx
) 1

2 ≤ α
∑

K∈T

∑

σ∈EK

m(σ)|uK |α−1Dσu.

Using Hölder’s inequality with p, p′ ∈ IR+ such that 1
p + 1

p′ = 1 yields that



61

(∫

Ω

|u(x)|2αdx
) 1

2 ≤ α
(∑

K∈T

∑

σ∈EK

|uK |p(α−1)m(σ)dK,σ
) 1

p
(∑

K∈T

∑

σ∈EK

|Dσu|p
′

dK,σ
p′

m(σ)dK,σ
) 1

p′ .

Since
∑

σ∈EK

m(σ)dK,σ = 2m(K), this gives

(∫

Ω

|u(x)|2αdx
) 1

2 ≤ α2
1
p
( ∫

Ω

|u(x)|p(α−1)dx
) 1

p
(∑

K∈T

∑

σ∈EK

|Dσu|p
′

dK,σ
p′

m(σ)dK,σ
) 1

p′ ,

which yields, choosing p such that p(α− 1) = 2α, i.e. p = 2α
α−1 and p′ = 2α

α+1 ,

‖u‖Lq(Ω) =
(∫

Ω

|u(x)|2αdx
) 1

2α ≤ α2
1
p
(∑

K∈T

∑

σ∈EK

|Dσu|p
′

dK,σ
p′

m(σ)dK,σ
) 1

p′ , (3.73) lq2

where q = 2α. Let r = 2
p′ and r′ = 2

2−p′ , Hölder’s inequality yields

∑

K∈T

∑

σ∈EK

|Dσu|p
′

dK,σ
p′

m(σ)dK,σ ≤
(∑

K∈T

∑

σ∈EK

|Dσu|2
dK,σ

2 m(σ)dK,σ
) p′

2
(∑

K∈T

∑

σ∈EK

m(σ)dK,σ
) 1

r′ ,

replacing in (
lq2
3.73) gives

‖u‖Lq(Ω) ≤ α2
1
p (

2

ζ
)

1
2 (2m(Ω))

1

p′r′ ‖u‖1,T

and then (
ellinlq
3.70) with, for instance, C = ( 2

ζ )
1
2 ((2m(Ω))

1
2 + 1).

Let us now prove the three-dimensional case. Let d = 3. Using the same notations as in the two-
dimensional case, let d1 = (1, 0, 0)t, d2 = (0, 1, 0)t and d3 = (0, 0, 1)t ; for x ∈ Ω, let D1

x, D2
x and D3

x

be the straight lines going through x and defined by the vectors d1, d2 and d3. Let us again define the

functions χ
(1)
σ , χ

(2)
σ and χ

(3)
σ by

χ(i)
σ (x) =

{
1 if σ ∩ Dix 6= ∅
0 if σ ∩ Dix = ∅ for i = 1, 2, 3.

Let v ∈ X(T ) and let A ∈ IR+ such that Ω ⊂ [−A,A]3; we also denote by v the function defined on
[−A,A]3 which equals v on Ω and 0 on [−A,A]3 \ Ω. By the Cauchy-Schwarz inequality, one has:

∫ A

−A

∫ A

−A
|v(x1, x2, x3)|

3
2 dx1dx2

≤
(∫ A

−A

∫ A

−A
|v(x1, x2, x3)|dx1dx2

) 1
2
(∫ A

−A

∫ A

−A
|v(x1, x2, x3)|2dx1dx2

) 1
2

.

(3.74) sob3d1

Now remark that

∫ A

−A

∫ A

−A
|v(x1, x2, x3)|dx1dx2 ≤

∑

σ∈E
Dσv

∫ A

−A

∫ A

−A
χ(3)
σ (x)dx1dx2 ≤

∑

σ∈E
m(σ)Dσv.

Moreover, computations which were already performed in the two-dimensional case give that

∫ A

−A

∫ A

−A
|v(x1, x2, x3)|2dx1dx2 ≤

∫ A

−A

∫ A

−A

∑

σ∈E
Dσvχ

(1)
σ (x)

∑

σ∈E
Dσvχ

(2)
σ (x)dx1dx2 ≤

(∑

σ∈E
m(σx3

)Dσv
)2

,

where σx3
denotes the intersection of σ with the plane which contains the point (0, 0, x3) and is orthogonal

to d3. Therefore, integrating (
sob3d1
3.74) in the third direction yields:
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∫

Ω

|v(x)| 32 dx ≤
(∑

σ∈E
m(σ)Dσv

) 3
2

. (3.75) sob3d2

Now let v = |u|4sign(u), since |vK − vL| ≤ 4(|uK |3 + |uL|3)|uK − uL|, Inequality (
sob3d2
3.75) yields:

∫

Ω

|u(x)|6dx ≤
[
4
∑

K∈T

∑

σ∈EK

|uK |3Dσum(σ)
] 3

2

.

By Cauchy-Schwarz’ inequality and since
∑

σ∈EK

m(σ)dK,σ = 3m(K), this yields

‖u‖L6 ≤ 4
√

3
∑

K∈T

∑

σ∈EK

(Dσu)
2 m(σ)

dK,σ
,

and since dK,σ ≥ ζdσ , this yields (
ellinlq
3.70) with, for instance, C = 4

√
3√
ζ
.

poin2 Remark 3.14 (Discrete Poincaré Inequality) In the above proof, Inequality (
poinbis
3.72) leads to another

proof of some discrete Poincaré inequality (as in Lemma
thinpoin
3.1 page

thinpoin
40) in the two-dimensional case. Indeed,

let Ω be an open bounded polygonal subset of IR2. Let T be an admissible finite volume mesh of Ω in
the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37 (but more general meshes are possible). Let v ∈ X(T ). Then, (

poinbis
3.72),

the Cauchy-Schwarz inequality and the fact that
∑

σ∈E
m(σ)dσ = 2 m(Ω) yield

‖v‖2
L2(Ω) ≤ 2 m(Ω)‖v‖2

1,T .

A similar result holds in the three-dimensional case.

norminf Corollary 3.1 Under the same assumptions and with the same notations as in Theorem
ellesterr
3.3 page

ellesterr
52, or

as in Theorem
testh2
3.4 page

testh2
56, and assuming that the mesh satisfies, for some ζ > 0, dK,σ ≥ ζdσ , for all

σ ∈ EK and for all control volume K, there exists C > 0 only depending on u, ζ and Ω such that

‖eT ‖Lq(Ω) ≤ Cqsize(T ); for any q ∈
{

[1, 6] if d = 3,
[1,+∞) if d = 2,

(3.76) eqesterrq

furthermore, there exists C ∈ IR+ only depending on u, ζ, ζT = min{ m(K)
size(T )2 ,K ∈ T }, and Ω, such that

‖eT ‖L∞(Ω) ≤ Csize(T )(| ln(size(T ))|+ 1), if d = 2. (3.77)

‖eT ‖L∞(Ω) ≤ Csize(T )2/3, if d = 3. (3.78) eqesterrinf

Proof of Corollary
norminf
3.1

Estimate (
eqesterrh1
3.49) of Theorem

ellesterr
3.3 (or Theorem

testh2
3.4) and Inequality (

ellinlq
3.70) of Lemma

lq
3.5 immediately yield

Estimate (
eqesterrq
3.76) in the case d = 2. Let us now prove (

eqesterrinf
3.78). Remark that

‖eT ‖L∞(Ω) = max{|eK |,K ∈ T } ≤
( 1

ζT size(T )2

) 1
q ‖eT ‖Lq . (3.79) inf1

For d = 2, a study of the real function defined, for q ≥ 2, by q 7→ ln q + (1 − 2
q ) lnh (with h = size(T ))

shows that its minimum is attained for q = −2 lnh, if lnh ≤ − 1
2 . And therefore (

eqesterrq
3.76) and (

inf1
3.79) yield

(
eqesterrinf
3.78).

The 3 dimensional case is an immediate consequence of (
eqesterrq
3.76) with q = 6.
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3.2 Neumann boundary conditions
nll

This section is devoted to the convergence proof of the finite volume scheme when Neumann boundary
conditions are imposed. The discretization of a general convection-diffusion equation with Dirichlet,
Neumann and Fourier boundary conditions is considered in section

ell2Dgen
3.3 below, and the convection term is

largely studied in the previous section. Hence we shall limit here the presentation to the pure diffusion
operator. Consider the following elliptic problem:

−∆u(x) = f(x), x ∈ Ω, (3.80) nlldifstaf

with Neumann boundary conditions:

∇u(x) · n(x) = g(x), x ∈ ∂Ω, (3.81) nlldifstab

where ∂Ω denotes the boundary of Ω and n its unit normal vector outward to Ω.
The following assumptions are made on the data:

nllH Assumption 3.3

1. Ω is an open bounded polygonal connected subset of IRd, d = 2 or 3,

2. g ∈ L2(∂Ω), f ∈ L2(Ω) and
∫
∂Ω g(x)dγ(x) +

∫
Ω f(x)dx = 0.

Under Assumption
nllH
3.3, Problem (

nlldifstaf
3.80), (

nlldifstab
3.81) has a unique (variational) solution, u, belonging to H1(Ω)

and such that
∫
Ω
u(x)dx = 0. It is the unique solution of the following problem:

u ∈ H1(Ω),

∫

Ω

u(x)dx = 0, (3.82) nllspace

∫

Ω

∇u(x)∇ψ(x) =

∫

Ω

f(x)ψ(x)dx +

∫

∂Ω

g(x)γ(ψ)(x)dγ(x), ∀ψ ∈ H1(Ω). (3.83) nllsolvar

Recall that γ is the “trace” operator from H1(Ω) to L2(∂Ω) (or to H
1
2 (∂Ω)).

3.2.1 Meshes and schemes
msn

Admissible meshes

The definition of the scheme in the case of Neumann boundary conditions is easier, since the finite volume
scheme naturally introduces the fluxes on the boundaries in its formulation. Hence the class of admissible
meshes considered here is somewhat wider than the one considered in Definition

meshdirichlet
3.1 page

meshdirichlet
37, thanks to

the Neumann boundary conditions and the absence of convection term.

meshneuman Definition 3.5 (Admissible meshes) Let Ω be an open bounded polygonal connected subset of IRd,
d = 2, or 3. An admissible finite volume mesh of Ω for the discretization of Problem (

nlldifstaf
3.80), (

nlldifstab
3.81), denoted

by T , is given by a family of “control volumes”, which are open disjoint polygonal convex subsets of Ω,
a family of subsets of Ω contained in hyperplanes of IRd, denoted by E (these are the “sides” of the
control volumes), with strictly positive (d − 1)-dimensional Lebesgue measure, and a family of points of
Ω denoted by P satisfying properties (i), (ii), (iii) and (iv) of Definition

meshdirichlet
3.1 page

meshdirichlet
37.

The same notations as in Definition
meshdirichlet
3.1 page

meshdirichlet
37 are used in the sequel.

One defines the set X(T ) of piecewise constant functions on the control volumes of an admissible mesh
as in Definition

Xmesh
3.2 page

Xmesh
39.
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defh1d Definition 3.6 (Discrete H1 seminorm) Let Ω be an open bounded polygonal subset of IRd, d = 2
or 3, and T an admissible finite volume mesh in the sense of Definition

meshneuman
3.5.

For u ∈ X(T ), the discrete H1 seminorm of u is defined by

|u|1,T =
( ∑

σ∈Eint

τσ(Dσu)
2
) 1

2

,

where τσ = m(σ)
dσ

and Eint are defined in Definition
meshdirichlet
3.1 page

meshdirichlet
37, uK is the value of u in the control volume

K and Dσu = |uK − uL| if σ ∈ Eint, σ = K|L.

The finite volume scheme

Let T be an admissible mesh in the sense of Definition
meshneuman
3.5 . For K ∈ T , let us define:

fK =
1

m(K)

∫

K

f(x)dx, (3.84) nllcondsou

gK =
1

m(∂K ∩ ∂Ω)

∫

∂K∩∂Ω

g(x)dγ(x) if m(∂K ∩ ∂Ω) 6= 0,

gK = 0 if m(∂K ∩ ∂Ω) = 0.
(3.85) nllcondbor

Recall that, in formula (
nllcondsou
3.84), m(K) denotes the d-dimensional Lebesgue measure of K, and, in (

nllcondbor
3.85),

m(∂K ∩ ∂Ω) denotes the (d − 1)-dimensional Lebesgue measure of ∂K ∩ ∂Ω. Note that gK = 0 if the
dimension of ∂K ∩ ∂Ω is less than d − 1. Let (uK)K∈T denote the discrete unknowns; the numerical
scheme is defined by (

ellschema
3.20)-(

ellschemac
3.22) page

ellschemac
42, with b = 0 and v = 0. This yields:

−
∑

L∈N (K)

τK|L
(
uL − uK

)
= m(K)fK + m(∂K ∩ ∂Ω)gK , ∀K ∈ T , (3.86) nllschema

(see the notations in Definitions
meshdirichlet
3.1 page

meshdirichlet
37 and

meshneuman
3.5 page

meshneuman
63). The condition (

nllspace
3.82) is discretized by:

∑

K∈T
m(K)uK = 0. (3.87) nllschemaO

Then, the approximate solution, uT , belongs to X(T ) (see Definition
Xmesh
3.2 page

Xmesh
39) and is defined by

uT (x) = uK , for a.e. x ∈ K, ∀K ∈ T .
The following lemma gives existence and uniqueness of the solution of (

nllschema
3.86) and (

nllschemaO
3.87).

nllexistu Lemma 3.6 Under Assumption
nllH
3.3. let T be an admissible mesh (see Definition

meshneuman
3.5) and {fK, K ∈ T },

{gK, K ∈ T } defined by (
nllcondsou
3.84), (

nllcondbor
3.85). Then, there exists a unique solution (uK)K∈T to (

nllschema
3.86)-(

nllschemaO
3.87).

Proof of lemma
nllexistu
3.6

Let N = card(T ). The equations (
nllschema
3.86) are a system of N equations with N unknowns, namely (uK)K∈T .

Ordering the unknowns (and the equations), this system can be written under a matrix form with a N×N
matrix A. Using the connexity of Ω, the null space of this matrix is the set of “constant” vectors (that
is uK = uL, for all K,L ∈ T ). Indeed, if fK = gK = 0 for all K ∈ T and {uK , K ∈ T } is solution of
(
nllschema
3.86), multiplying (

nllschema
3.86) (for K ∈ T ) by uK and summing over K ∈ T yields

∑

σ∈Eint

τσ(Dσu)
2 = 0,

where Dσu = |uK−uL| if σ ∈ Eint, σ = K|L. This gives, thanks to the positivity of τσ and the connexity
of Ω, uK = uL, for all K,L ∈ T .
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For general (fK)K∈T and (gK)K∈T , a necessary condition, in order that (
nllschema
3.86) has a solution, is that

∑

K∈T
(m(K)fK + m(∂K ∩ ∂Ω)gK) = 0. (3.88) finetfin

Since the dimension of the null space of A is one, this condition is also a sufficient condition. Therefore,
System (

nllschema
3.86) has a solution if and only if (

finetfin
3.88) holds, and this solution is unique up to an additive

constant. Adding condition (
nllschemaO
3.87) yields uniqueness. Note that (

finetfin
3.88) holds thanks to the second item

of Assumption
nllH
3.3; this concludes the proof of Lemma

nllexistu
3.6.

3.2.2 Discrete Poincaré inequality

The proof of an error estimate, under a regularity assumption on the exact solution, and of a convergence
result, in the general case (under Assumption

nllH
3.3), requires a “discrete Poincaré” inequality as in the

case of the Dirichlet problem.

thinpoin1 Lemma 3.7 (Discrete mean Poincaré inequality) Let Ω be an open bounded polygonal connected
subset of IRd, d = 2 or 3. Then, there exists C ∈ IR+, only depending on Ω, such that for all admissible
meshes (in the sense of Definition

meshneuman
3.5 page

meshneuman
63), T , and for all u ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39),

the following inequality holds:

‖u‖2
L2(Ω) ≤ C|u|21,T + 2(m(Ω))−1(

∫

Ω

u(x)dx)2, (3.89) ellinpoin1

where | · |1,T is the discrete H1 seminorm defined in Definition
defh1d
3.6.

Proof of Lemma
thinpoin1
3.7

The proof given here is a “direct proof”; another proof, by contradiction, is possible (see Remark
poincontr
3.16).

Let T be an admissible mesh and u ∈ X(T ). Let mΩ(u) be the mean value of u over Ω, that is

mΩ(u) =
1

m(Ω)

∫

Ω

u(x)dx.

Since
‖u‖2

L2(Ω) ≤ 2‖u−mΩ(u)‖2
L2(Ω) + 2(mΩ(u))2m(Ω),

proving Lemma
thinpoin1
3.7 amounts to proving the existence of D ≥ 0, only depending on Ω, such that

‖u−mΩ(u)‖2
L2(Ω) ≤ D|u|21,T . (3.90) poineff

The proof of (
poineff
3.90) may be decomposed into three steps (indeed, if Ω is convex, the first step is sufficient).

Step 1 (Estimate on a convex part of Ω)
Let ω be an open convex subset of Ω, ω 6= ∅ and mω(u) be the mean value of u on ω. In this step, one
proves that there exists C0, depending only on Ω, such that

‖u(x)−mω(u)‖2
L2(ω) ≤

1

m(ω)
C0|u|21,T . (3.91) pstep2

(Taking ω = Ω, this proves (
poineff
3.90) and Lemma

thinpoin1
3.7 in the case where Ω is convex.)

Noting that

∫

ω

(u(x) −mω(u))2dx ≤ 1

m(ω)

∫

ω

( ∫

ω

(u(x)− u(y))2dy
)
dx,

(
pstep2
3.91) is proved provided that there exists C0 ∈ IR+, only depending on Ω, such that
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∫

ω

∫

ω

(u(x)− u(y))2dxdy ≤ C0|u|21,T . (3.92) poinconv

For σ ∈ Eint, let the function χσ from IRd × IRd to {0, 1} be defined by

χσ(x, y) = 1, if x, y ∈ Ω, [x, y] ∩ σ 6= ∅,
χσ(x, y) = 0, if x /∈ Ω or y /∈ Ω or [x, y] ∩ σ = ∅.

(Recall that [x, y] = {tx + (1 − t)y, t ∈ [0, 1]}.) For a.e. x, y ∈ ω, one has, with Dσu = |uK − uL| if
σ ∈ Eint, σ = K|L,

(u(x)− u(y))2 ≤
( ∑

σ∈Eint

|Dσu|χσ(x, y)
)2
,

(note that the convexity of ω is used here) which yields, thanks to the Cauchy-Schwarz inequality,

(u(x)− u(y))2 ≤
∑

σ∈Eint

|Dσu|2
dσcσ,y−x

χσ(x, y)
∑

σ∈Eint

dσcσ,y−xχσ(x, y), (3.93) astcospoin

with

cσ,y−x = | y − x

|y − x| · nσ |,

recall that nσ is a unit normal vector to σ, and that xK − xL = ±dσnσ if σ ∈ Eint, σ = K|L. For a.e.
x, y ∈ ω, one has

∑

σ∈Eint

dσcσ,y−xχσ(x, y) = |(xK − xL) · y − x

|y − x| |,

for some convenient control volumes K and L, depending on x, y and σ (the convexity of ω is used again
here). Therefore,

∑

σ∈Eint

dσcσ,y−xχσ(x, y) ≤ diam(Ω).

Thus, integrating (
astcospoin
3.93) with respect to x and y in ω,

∫

ω

∫

ω

(u(x) − u(y))2dxdy ≤ diam(Ω)

∫

ω

∫

ω

∑

σ∈Eint

|Dσu|2
dσcσ,y−x

χσ(x, y)dxdy,

which gives, by a change of variables,

∫

ω

∫

ω

(u(x)− u(y))2dxdy ≤ diam(Ω)

∫

IRd

( ∑

σ∈Eint

|Dσu|2
dσcσ,z

∫

ω

χσ(x, x+ z)dx
)
dz. (3.94) astcospoin1

Noting that, if |z| > diam(Ω), χσ(x, x + z) = 0, for a.e. x ∈ Ω, and

∫

Ω

χσ(x, x + z)dx ≤ m(σ)|z · nσ | = m(σ)|z|cσ,z for a.e. z ∈ IRd,

therefore, with (
astcospoin1
3.94):

∫

ω

∫

ω

(u(x) − u(y))2dxdy ≤ (diam(Ω))2m(BΩ)
∑

σ∈Eint

m(σ)|Dσu|2
dσ

,

where BΩ denotes the ball of IRd of center 0 and radius diam(Ω).
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This inequality proves (
poinconv
3.92) and then (

pstep2
3.91) with C0 = (diam(Ω))2m(BΩ) (which only depends on Ω).

Taking ω = Ω, it concludes the proof of Lemma
thinpoin1
3.7 in the case where Ω is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)
In this step, one proves the same inequality than (

pstep2
3.91) but with the mean value of u on a (arbitrary)

part I of the boundary of ω instead of mω(u) and with a convenient C1 depending on I , Ω and ω instead
of C0.
More precisely, let ω be a polygonal open convex subset of Ω and let I ⊂ ∂ω, with m(I) > 0 (m(I) is
the (d − 1)-Lebesgue measure of I). Assume that I is included in a hyperplane of IRd. Let γ(u) be the
“trace” of u on the boundary of ω, that is γ(u)(x) = uK if x ∈ ∂ω ∩K, for K ∈ T . (If x ∈ K ∩ L, the
choice of γ(u)(x) between uK and uL does not matter). Let mI(u) be the mean value of γ(u) on I . This
step is devoted to the proof that there exists C1, only depending on Ω, ω and I , such that

‖u−mI(u)‖2
L2(ω) ≤ C1|u|21,T . (3.95) pstep3

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} × J , with J ⊂ IR and ω ⊂ IR+ × IR (one uses
here the convexity of ω).

Let α = max{x1, x = (x1, x2)
t ∈ ω} and a = (α, β)t ∈ ω. In the following, a is fixed. For a.e.

x = (x1, x2)
t ∈ ω and for a.e. (for the 1-Lebesgue measure) y = (0, y)t ∈ I (with y ∈ J), one sets

z(x, y) = ta + (1 − t)y with t = x1/α. Note that, thanks to the convexity of ω, z(x, y) = (z1, z2)
t ∈ ω,

with z1 = x1. The following inequality holds:

±(u(x)− γ(u)(y)) ≤ |u(x)− u(z(x, y))|+ |u(z(x, y)− γ(u)(y))|.
In the following, the notation Ci, i ∈ IN?, will be used for quantities only depending on Ω, ω and I .
Let us integrate the above inequality over y ∈ I , take the power 2, from the Cauchy-Schwarz inequality,
an integration over x ∈ ω leads to

∫

ω

(u(x) −mI(u))
2dx ≤ 2

m(I)

∫

ω

∫

I

(u(x)− u(z(x, y)))2dγ(y)dx

+
2

m(I)

∫

ω

∫

I

(u(z(x, y))− u(y))2dγ(y)dx.

Then,

∫

ω

(u(x)−mI(u))
2dx ≤ 2

m(I)
(A+B),

with, since ω is convex,

A =

∫

ω

∫

I

( ∑

σ∈Eint

|Dσu|χσ(x, z(x, y))
)2
dγ(y)dx,

and

B =

∫

ω

∫

I

( ∑

σ∈Eint

|Dσu|χσ(z(x, y), y)
)2
dγ(y)dx.

Recall that, for ξ, η ∈ Ω, χσ(ξ, η) = 1 if [ξ, η] ∩ σ 6= ∅ and χσ(ξ, η) = 0 if [ξ, η] ∩ σ = ∅. Let us now look
for some bounds of A and B of the form C|u|21,T .

The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that

∑

σ∈Eint

cσ,x−z(x,y)dσχσ(x, z(x, y)) ≤ diam(Ω)

(recall that cσ,η = | η|η| · nσ | (for η ∈ IR2 \ 0) gives
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A ≤ C2

∫

ω

∫

I

∑

σ∈Eint

|Dσu|2χσ(x, z(x, y))
cσ,x−z(x,y)dσ

dxdγ(y).

Since z1 = x1, one has cσ,x−z(x,y) = cσ,e, with e = (0, 1)t. Let us perform the integration of the right
hand side of the previous inequality, with respect to the first component of x, denoted by x1, first. The
result of the integration with respect to x1 is bounded by |u|21,T . Then, integrating with respect to x2

and y ∈ I gives A ≤ C3|u|21,T .

In order to obtain a bound B, one remarks, as for A, that

B ≤ C4

∫

ω

∫

I

∑

σ∈Eint

|Dσu|2χσ(z(x, y), y)
cσ,y−z(x,y)dσ

dxdγ(y).

In the right hand side of this inequality, the integration with respect to y ∈ I is transformed into an
integration with respect to ξ = (ξ1, ξ2)

t ∈ σ, this yields (note that cσ,y−z(x,y) = cσ,a−y)

B ≤ C4

∑

σ∈Eint

|Dσu|2
dσ

∫

ω

∫

σ

ψσ(x, ξ)

cI,a−y(ξ)

|a− y(ξ)|
|a− ξ| dxdγ(ξ),

where y(ξ) = sξ + (1− s)a, with sξ1 + (1− s)α = 0, and where ψσ is defined by

ψσ(x, ξ) = 1, if y(ξ) ∈ I and ξ1 ≤ x1

ψσ(x, ξ) = 0, if y(ξ) 6∈ I or ξ1 > x1.

Noting that cI,a−y(ξ) ≥ C5 > 0, one deduces that

B ≤ C6

∑

σ∈Eint

|Dσu|2
dσ

∫

σ

( ∫

ω

ψσ(x, ξ)
|a − y(ξ)|
|a− ξ| dx

)
dγ(ξ) ≤ C7|u|21,T ,

with, for instance, C7 = C6(diam(ω))2. The bounds on A and B yield (
pstep3
3.95).

Step 3 (proof of (
poineff
3.90))

Let us now prove that there exists D ∈ IR+, only depending on Ω such that (
poineff
3.90) hold. Since Ω is a

polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by
{Ω1, . . . ,Ωn}, such that Ω = ∪ni=1Ωi. Let Ii,j = Ωi ∩ Ωj , and B be the set of couples (i, j) ∈ {1, . . . , n}2

such that i 6= j and the (d− 1)-dimensional Lebesgue measure of Ii,j , denoted by m(Ii,j), is positive.
Let mi denote the mean value of u on Ωi, i ∈ {1, . . . , n}, and mi,j denote the mean value of u on Ii,j ,
(i, j) ∈ B. (For σ ∈ Eint, in order that u be defined on σ, a.e. for the (d − 1)-dimensional Lebesgue
measure, let K ∈ T be a control volume such that σ ∈ EK , one sets u = uK on σ.) Note that mi,j = mj,i

for all (i, j) ∈ B.

Step 1 gives the existence of Ci, i ∈ {1, . . . , n}, only depending on Ω (since the Ωi only depend on Ω),
such that

‖u−mi‖2
L2(Ωi)

≤ Ci|u|21,T , ∀i ∈ {1, . . . , n}, (3.96) morc

Step 2 gives the existence of Ci,j , i, j ∈ B, only depending on Ω, such that

‖u−mi,j‖2
L2(Ωi)

≤ Ci,j |u|21,T , ∀(i, j) ∈ B.

Then, one has (mi − mi,j)
2m(Ωi) ≤ 2(Ci + Ci,j)|u|21,T , for all (i, j) ∈ B. Since Ω is connected, the

above inequality yields the existence of M , only depending on Ω, such that |mi − mj | ≤ M |u|1,T for
all (i, j) ∈ {1, . . . , n}2, and therefore |mΩ(u) −mi| ≤ M |u|1,T for all i ∈ {1, . . . , n}. Then, (

morc
3.96) yields

the existence of D, only depending on Ω, such that (
poineff
3.90) holds. This completes the proof of Lemma

thinpoin1
3.7.
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An easy consequence of the proof of Lemma
thinpoin1
3.7 is the following lemma. Although this lemma is not used

in the sequel, it is interesting in its own sake.

thinpoin2 Lemma 3.8 (Mean boundary Poincaré inequality) Let Ω be an open bounded polygonal connected
subset of IRd, d = 2 or 3. Let I ⊂ ∂Ω such that the (d−1)- Lebesgue measure of I is positive. Then, there
exists C ∈ IR+, only depending on Ω and I, such that for all admissible mesh (in the sense of Definition
meshneuman
3.5 page

meshneuman
63) T and for all u ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39), the following inequality holds:

‖u−mI(u)‖2
L2(Ω) ≤ C|u|21,T

where | · |1,T is the discrete H1 seminorm defined in Definition
defh1d
3.6 and mI(u) is the mean value of γ(u)

on I with γ(u) defined a.e. on ∂Ω by γ(u)(x) = uK if x ∈ σ, σ ∈ Eext ∩ EK, K ∈ T .

Note that this last lemma also gives as a by-product a discrete poincaré inequality in the case of a Dirichlet
boundary condition on a part of the boundary if the domain is assumed to be connex, see Remark

dirich-part
3.4.

Finally, let us point out that a continuous version of lemmata
thinpoin1
3.7 and

thinpoin2
3.8 holds and that the proof is

similar and rather easier. Let us state this continuous version which can be proved by contradiction or
with a technique similar to Lemma

thuh1
3.4 page

thuh1
49. The advantage of the latter is that it gives a more

explicit bound.

thinpoincont Lemma 3.9 Let Ω be an open bounded polygonal connected subset of IRd, d = 2 or 3. Let I ⊂ ∂Ω such
that the (d− 1)- Lebesgue measure of I is positive.
Then, there exists C ∈ IR+, only depending on Ω, and C̃ ∈ IR+, only depending on Ω and I, such that,
for all u ∈ H1(Ω), the following inequalities hold:

‖u‖2
L2(Ω) ≤ C|u|2H1(Ω) + 2(m(Ω))−1(

∫

Ω

u(x)dx)2

and

‖u−mI(u)‖2
L2(Ω) ≤ C̃|u|2H1(Ω),

where |·|H1(Ω) is the H1 seminorm defined by |v|2H1(Ω) = ‖∇u‖2
(L2(Ω))d =

∫
Ω |∇v(x)|2dx for all v ∈ H1(Ω),

and mI(u) is the mean value of γ(u) on I. Recall that γ is the trace operator from H1(Ω) to H1/2(∂Ω).

3.2.3 Error estimate

Under Assumption
nllH
3.3, let T be an admissible mesh (see Definition

meshneuman
3.5) and {fK , K ∈ T }, {gK , K ∈ T }

defined by (
nllcondsou
3.84), (

nllcondbor
3.85). By Lemma

nllexistu
3.6, there exists a unique solution (uK)K∈T to (

nllschema
3.86)-(

nllschemaO
3.87). Under

an additional regularity assumption on the exact solution, the following error estimate holds:

nllesterr Theorem 3.5 Under Assumption
nllH
3.3 page

nllH
63, let T be an admissible mesh (see Definition

meshneuman
3.5 page

meshneuman
63)

and h = size(T ). Let (uK)K∈T be the unique solution to (
nllschema
3.86) and (

nllschemaO
3.87) (thanks to (

nllcondsou
3.84) and (

nllcondbor
3.85),

existence and uniqueness of (uK)K∈T is given in Lemma
nllexistu
3.6). Let uT ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39) be defined by uT (x) = uK for a.e. x ∈ K, for all K ∈ T . Assume that the unique solution, u, to
Problem (

nllspace
3.82), (

nllsolvar
3.83) satisfies u ∈ C2(Ω).

Then there exists C ∈ IR+ which only depends on u and Ω such that

‖uT − u‖L2(Ω) ≤ Ch, (3.97) nqesterr

∑

σ=K|L∈Eint

m(σ)dσ(
uL − uK

dσ
− 1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x))2 ≤ Ch2. (3.98) nqesterr1
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Recall that, in the above theorem, K|L denotes the element σ of Eint such that σ = ∂K ∩ ∂L, with K,
L ∈ T .

Proof of Theorem
nllesterr
3.5

Let CT ∈ IR be such that

∑

K∈T
u(xK)m(K) = 0,

where u = u+ CT .
Let, for each K ∈ T , eK = u(xK) − uK , and eT ∈ X(T ) defined by eT (x) = eK for a.e. x ∈ K, for all
K ∈ T . Let us first prove the existence of C only depending on u and Ω such that

|eT |1,T ≤ Ch and ‖eT ‖L2(Ω) ≤ Ch. (3.99) nllestpre

Integrating (
nlldifstaf
3.80) page

nlldifstaf
63 over K ∈ T , and taking (

nlldifstab
3.81) page

nlldifstab
63 into account yields:

∑

σ∈EK

∫

σ

∇u(x) · nK,σdγ(x) =

∫

K

f(x)dx +

∫

∂K∩∂Ω

g(x)dγ(x). (3.100) nller1

For σ ∈ Eint such that σ = K|L, let us define the consistency error on the flux from K through σ by:

RK,σ =
1

m(σ)

∫

σ

∇u(x) · nK,σdγ(x)−
u(xL)− u(xK)

dσ
. (3.101) nller2

Note that the definition of RK,σ remains with u instead of u in (
nller2
3.101).

Thanks to the regularity of the solution u, there exists C1 ∈ IR+, only depending on u, such that
|RK,L| ≤ C1h. Using (

nller1
3.100), (

nller2
3.101) and (

nllschema
3.86) yields

∑

K|L∈Eint

τK|L(eL − eK)2 ≤ dm(Ω)(C1h)
2,

which gives the first part of (
nllestpre
3.99).

Thanks to the discrete Poincaré inequality (
ellinpoin1
3.89) applied to the function eT , and since

∑

K∈T
m(K)eK = 0

(which is the reason why eT was defined with u instead of u) one obtains the second part of (
nllestpre
3.99), that

is the existence of C2 only depending on u and Ω such that

∑

K∈T
m(K)(eK)2 ≤ C2h

2.

From (
nllestpre
3.99), one deduces (

nqesterr
3.97) from the fact that u ∈ C1(Ω). Indeed, let C2 be the maximum value of

|∇u| in Ω. One has |u(x)− u(y)| ≤ C2h, for all x, y ∈ K, for all K ∈ T . Then, from
∫
Ω
u(x)dx = 0, one

deduces CT ≤ C2h. Furthermore, one has

∑

K∈T

∫

K

(u(xK)− u(x))2dx ≤
∑

K∈T
m(K)(C2h)

2 = m(Ω)(C2h)
2.

Then, noting that

‖uT − u‖2
L2(Ω) =

∑

K∈T

∫

K

(uK − u(x))2dx

≤ 3
∑

K∈T
m(K)(eK)2 + 3(CT )2m(Ω) + 3

∑

K∈T

∫

K

(u(xK)− u(x))2dx
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yields (
nqesterr
3.97).

The proof of Estimate (
nqesterr1
3.98) is exactly the same as in the Dirichlet case. This property will be useful

in the study of the convergence of finite volume methods in the case of a system consisting of an elliptic
equation and a hyperbolic equation (see Section

casimplec
7.3.6).

As for the Dirichlet problem, the hypothesis u ∈ C2(Ω) is not necessary to obtain error estimates.
Assuming an additional assumption on the mesh (see Definition

nram
3.7), Estimates (

nllestpre
3.99) and (

nqesterr1
3.98) hold

under the weaker assumption u ∈ H2(Ω) (see Theorem
ntesth2
3.6 below). It is therefore also possible to obtain

(
nqesterr
3.97) under the additional assumption that u is Lipschitz continuous.

nram Definition 3.7 (Neumann restricted admissible meshes) Let Ω be an open bounded polygonal
connected subset of IRd, d = 2 or 3. A restricted admissible mesh for the Neumann problem, de-
noted by T , is an admissible mesh in the sense of Definition

meshneuman
3.5 such that, for some ζ > 0, one has

dK,σ ≥ ζdiam(K) for all control volume K and for all σ ∈ EK ∩ Eint.

ntesth2 Theorem 3.6 (H2 regularity, Neumann problem) Under Assumption
nllH
3.3 page

nllH
63, let T be an ad-

missible mesh in the sense of Definition
nram
3.7 and h = size(T ). Let uT ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39)

be the approximated solution defined in Ω by uT (x) = uK for a.e. x ∈ K, for all K ∈ T , where (uK)K∈T
is the (unique) solution to (

nllschema
3.86) and (

nllschemaO
3.87) (thanks to (

nllcondsou
3.84) and (

nllcondbor
3.85), existence and uniqueness of

(uK)K∈T is given in Lemma
nllexistu
3.6). Assume that the unique solution, u, of (

nllspace
3.82), (

nllsolvar
3.83) belongs to H2(Ω).

Let CT ∈ IR be such that ∑

K∈T
u(xK)m(K) = 0 where u = u+ CT .

Let, for each control volume K ∈ T , eK = u(xK) − uK , and eT ∈ X(T ) defined by eT (x) = eK for a.e.
x ∈ K, for all K ∈ T .
Then there exists C, only depending on u, ζ and Ω, such that (

nllestpre
3.99) and (

nqesterr1
3.98) hold.

Note that, in Theorem
ntesth2
3.6, the function eT is well defined, and the quantity “∇u · nσ” is well defined on

σ, for all σ ∈ E (see Remark
uish2
3.12).

Proof of Theorem
ntesth2
3.6

The proof is very similar to that of Theorem
testh2
3.4 page

testh2
56, from which the same notations are used.

There exists some C, depending only on the space dimension (d) and ζ (given in Definition
nram
3.7), such

that, for all σ ∈ Eint,

|Rσ |2 ≤ C
h2

m(σ)dσ

∫

Vσ

|(H(u)(z)|2dz, (3.102) nconsh2

and therefore

∑

σ∈Eint

m(σ)dσR
2
σ ≤ Ch2

∫

Ω

|H(u)(z)|2dz. (3.103) nbouh

The proof of (
nconsh2
3.102) (from which (

nbouh
3.103) is an easy consequence) was already done in the proof of Theorem

testh2
3.4 (note that, here, there is no need to consider the case of σ ∈ Eext). In order to obtain Estimate (

nllestpre
3.99),

one proceeds as in Theorem
testh2
3.4. Recall

|eT |21,T ≤
∑

σ∈Eint

Rσ |Dσe|m(σ),

where |Dσe| = |eK − eL| if σ ∈ Eint is such that σ = K|L; hence, from the Cauchy-Schwarz inequality,
one obtains that
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|eT |21,T ≤
( ∑

σ∈Eint

R2
σm(σ)dσ

) 1
2
( ∑

σ∈Eint

|Dσe|2
m(σ)

dσ

) 1
2 .

Then, one obtains, with (
nbouh
3.103),

|eT |1,T ≤
√
Ch
( ∫

Ω

|H(u)(z)|2dz
) 1

2 .

This concludes the proof of the first part of (
nllestpre
3.99). The second part of (

nllestpre
3.99) is a consequence of the

discrete Poincaré inequality (
ellinpoin1
3.89). Using (

nbouh
3.103) also easily leads (

nqesterr1
3.98).

Note also that, if u is Lipschitz continuous, Inequality (
nqesterr
3.97) follows from the second part of (

nllestpre
3.99) and

the definition of u as in Theorem
nllesterr
3.5.

This concludes the proof of Theorem
ntesth2
3.6.

Some generalizations of Theorem
ntesth2
3.6 are possible, as for the Dirichlet case, see Remark

h2plus
3.13 page

h2plus
59.

3.2.4 Convergence

A convergence result, under Assumption
nllH
3.3, may be proved without any regularity assumption on the

exact solution.
The proof of convergence uses the following preliminary inequality on the “trace” of an element of X(T )
on the boundary:

nlltrace Lemma 3.10 (Trace inequality) Let Ω be an open bounded polygonal connected subset of IRd, d = 2
or 3 (indeed, the connexity of Ω is not used in this lemma). Let T be an admissible mesh, in the sense
of Definition

meshneuman
3.5 page

meshneuman
63, and u ∈ X(T ) (see Definition

Xmesh
3.2 page

Xmesh
39). Let uK be the value of u in the

control volume K. Let γ(u) be defined by γ(u) = uK a.e. (for the (d− 1)-dimensional Lebesgue measure)
on σ, if σ ∈ Eext and σ ∈ EK . Then, there exists C, only depending on Ω, such that

‖γ(u)‖L2(∂Ω) ≤ C(|u|1,T + ‖u‖L2(Ω)). (3.104) nlltraceineq

Remark 3.15 The result stated in this lemma still holds if Ω is not assumed connected. Indeed, one
needs only modify (in an obvious way) the definition of admissible meshes (Definition

meshneuman
3.5 page

meshneuman
63) so as

to take into account non connected subsets.

Proof of Lemma
nlltrace
3.10

By compactness of the boundary of ∂Ω, there exists a finite number of open hyper-rectangles (d = 2 or
3), {Ri, i = 1, . . . , N}, and normalized vectors of IRd, {ηi, i = 1, . . . , N}, such that





∂Ω ⊂ ∪Ni=1Ri,
ηi · n(x) ≥ α > 0 for all x ∈ Ri ∩ ∂Ω, i ∈ {1, . . . , N},
{x+ tηi, x ∈ Ri ∩ ∂Ω, t ∈ IR+} ∩ Ri ⊂ Ω,

where α is some positive number and n(x) is the normal vector to ∂Ω at x, inward to Ω. Let {αi, i =

1, . . . , N} be a family of functions such that
∑N
i=1 αi(x) = 1, for all x ∈ ∂Ω, αi ∈ C∞c (IRd, IR+) and

αi = 0 outside of Ri, for all i = 1, . . . , N . Let Γi = Ri ∩ ∂Ω; let us prove that there exists Ci only
depending on α and αi such that

‖αiγ(u)‖L2(Γi) ≤ Ci
(
|u|1,T + ‖u‖L2(Ω)

)
. (3.105) trace1

The existence of C, only depending on Ω, such that (
nlltraceineq
3.104) holds, follows easily (taking C =

∑N
i=1 Ci,

and using
∑N
i=1 αi(x) = 1, note that α and αi depend only on Ω). It remains to prove (

trace1
3.105).
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Let us introduce some notations. For σ ∈ E and K ∈ T , define χσ and χK from IRd × IRd to {0, 1}
by χσ(x, y) = 1, if [x, y] ∩ σ 6= ∅, χσ(x, y) = 0, if [x, y] ∩ σ = ∅, and χK(x, y) = 1, if [x, y] ∩ K 6= ∅,
χK(x, y) = 0, if [x, y] ∩K = ∅.

Let i ∈ {1, . . . , N} and let x ∈ Γi. There exists a unique t > 0 such that x+ tηi ∈ ∂Ri, let y(x) = x+ tηi.
For σ ∈ E , let zσ(x) = [x, y(x)] ∩ σ if [x, y(x)] ∩ σ 6= ∅ and is reduced to one point. For K ∈ T , let
ξK(x), ηK(x) be such that [x, y(x)] ∩K = [ξK(x), ηK(x)] if [x, y(x)] ∩K 6= ∅.
One has, for a.e. (for the (d− 1)-dimensional Lebesgue measure) x ∈ Γi,

|αiγ(u)(x)| ≤
∑

σ=K|L∈Eint

|αi(zσ(x))(uK − uL)|χσ(x, y(x)) +
∑

K∈T
|(αi(ξK(x)− αi(ηK(x))uK |χK(x, y(x)),

that is,

|αiγ(u)(x)|2 ≤ A(x) +B(x) (3.106) trace2

with

A(x) = 2(
∑

σ=K|L∈Eint

|αi(zσ(x))(uK − uL)|χσ(x, y(x)))2,

B(x) = 2(
∑

K∈T
|(αi(ξK(x)) − αi(ηK(x)))uK |χK(x, y(x)))2.

A bound on A(x) is obtained for a.e. x ∈ Γi, by remarking that, from the Cauchy-Schwarz inequality:

A(x) ≤ D1

∑

σ∈Eint

|Dσu|2
dσcσ

χσ(x, y(x))
∑

σ∈Eint

dσcσχσ(x, y(x)),

where D1 only depends on αi and cσ = |ηi · nσ |. (Recall that Dσu = |uK − uL|.) Since

∑

σ∈Eint

dσcσχσ(x, y(x)) ≤ diam(Ω),

this yields:

A(x) ≤ diam(Ω)D1

∑

σ∈Eint

|Dσu|2
dσcσ

χσ(x, y(x)).

Then, since ∫

Γi

χσ(x, y(x))dγ(x) ≤ 1

α
cσm(σ),

there exists D2, only depending on Ω, such that

A =

∫

Γi

A(x)dγ(x) ≤ D2|u|21,T .

A bound B(x) for a.e. x ∈ Γi is obtained with the Cauchy-Schwarz inequality:

B(x) ≤ D3

∑

K∈T
u2
KχK(x, y(x))|ξK (x) − ηK(x)|

∑

K∈T
|ξK(x)− ηK(x)|χK(x, y(x)),

where D3 only depends on αi. Since

∑

K∈T
|ξK(x) − ηK(x)|χK(x, y(x)) ≤ diam(Ω) and

∫

Γi

χK(x, y(x))|ξK (x) − ηK(x)|dγ(x) ≤ 1

α
m(K),
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there exists D4, only depending on Ω, such that

B =

∫

Γi

B(x)dγ(x) ≤ D4‖u‖2
L2(Ω).

Integrating (
trace2
3.106) over Γi, the bounds on A and B lead (

trace1
3.105) for some convenient Ci and it concludes

the proof of Lemma
nlltrace
3.10.

poincontr Remark 3.16 Using this “trace inequality” (
nlltraceineq
3.104) and the Kolmogorov theorem (see Theorem

Kolm
3.9

page
Kolm
93, it is possible to prove Lemma

thinpoin1
3.7 page

thinpoin1
65 (Discrete Poincaré inequality) by way of contradic-

tion. Indeed, assume that there exists a sequence (un)n∈IN such that, for all n ∈ IN, ‖un‖L2(Ω) = 1,∫
Ω
un(x)dx = 0, un ∈ X(Tn) (where Tn is an admissible mesh in the sense of Definition

meshneuman
3.5) and

|un|1,Tn ≤ 1
n . Using the trace inequality, one proves that (un)n∈IN is relatively compact in L2(Ω), as in

Theorem
nllconv
3.7 page

nllconv
74. Then, one can assume that un → u, in L2(Ω), as n→∞. The function u satisfies

‖u‖L2(Ω) = 1, since ‖un‖L2(Ω) = 1, and
∫
Ω u(x)dx = 0, since

∫
Ω un(x)dx = 0. Using |un|1,Tn ≤ 1

n ,
a proof similar to that of Theorem

kolmh1
3.11 page

kolmh1
94, yields that Diu = 0, for all i ∈ {1, . . . , n} (even if

size(Tn) 6→ 0, as n → ∞), where Diu is the derivative in the distribution sense with respect to xi of u.
Since Ω is connected, one deduces that u is constant on Ω, but this is impossible since ‖u‖L2(Ω) = 1 and∫
Ω
u(x)dx = 0.

Let us now prove that the scheme (
nllschema
3.86) and (

nllschemaO
3.87), where (fK)K∈T and (gK)K∈T are given by (

nllcondsou
3.84)

and (
nllcondbor
3.85) is stable: the approximate solution given by the scheme is bounded independently of the mesh,

as we proceed to show.

nllest Lemma 3.11 (Estimate for the Neumann problem) Under Assumption
nllH
3.3 page

nllH
63, let T be an

admissible mesh (in the sense of Definition
meshneuman
3.5 page

meshneuman
63). Let (uK)K∈T be the unique solution to (

nllschema
3.86)

and (
nllschemaO
3.87), where (fK)K∈T and (gK)K∈T are given by (

nllcondsou
3.84) and (

nllcondbor
3.85); the existence and uniqueness

of (uK)K∈T is given in Lemma
nllexistu
3.6. Let uT ∈ X(T ) (see Definition

Xmesh
3.2) be defined by uT (x) = uK for

a.e. x ∈ K, for all K ∈ T . Then, there exists C ∈ IR+, only depending on Ω, g and f , such that

|uT |1,T ≤ C, (3.107) nllestimate

where | · |1,T is defined in Definition
defh1d
3.6 page

defh1d
64.

Proof of Lemma
nllest
3.11

Multiplying (
nllschema
3.86) by uK and summing over K ∈ T yields

∑

K|L∈Eint

τK|L(uL − uK)2 =
∑

K∈T
m(K)fKuK +

∑

σ∈Eext

uKσgKσm(σ), (3.108) nqesterr2a

where, for σ ∈ Eext, Kσ ∈ T is such that σ ∈ EKσ .
We get (

nllestimate
3.107) from (

nqesterr2a
3.108) using (

nlltraceineq
3.104), (

ellinpoin1
3.89) and the Cauchy-Schwarz inequality.

Using the estimate (
nllestimate
3.107) on the approximate solution, a convergence result is given in the following

theorem.

nllconv Theorem 3.7 (Convergence in the case of the Neumann problem)
Under Assumption

nllH
3.3 page

nllH
63, let u be the unique solution to (

nllspace
3.82),(

nllsolvar
3.83). For an admissible mesh (in

the sense of Definition
meshneuman
3.5 page

meshneuman
63) T , let (uK)K∈T be the unique solution to (

nllschema
3.86) and (

nllschemaO
3.87) (where

(fK)K∈T and (gK)K∈T are given by (
nllcondsou
3.84) and (

nllcondbor
3.85), the existence and uniqueness of (uK)K∈T is given

in Lemma
nllexistu
3.6) and define uT ∈ X(T ) (see Definition

Xmesh
3.2) by uT (x) = uK for a.e. x ∈ K, for all K ∈ T .

Then,
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uT → u in L2(Ω) as size(T ) → 0,

|uT |21,T →
∫

Ω

|∇u(x)|2dx as size(T ) → 0

and
γ(uT ) → γ(u) in L2(Ω) for the weak topology as size(T ) → 0,

where the function γ(u) stands for the trace of u on ∂Ω in the sense given in Lemma
nlltrace
3.10 when u ∈ X(T )

and in the sense of the classical trace operator from H1(Ω) to L2(∂Ω) (or H
1
2 (∂Ω)) when u ∈ H1(Ω).

Proof of Theorem
nllconv
3.7

Step 1 (Compactness)
Denote by Y the set of approximate solutions uT for all admisible meshes T . Thanks to Lemma

nllest
3.11

and to the discrete Poincaré inequality (
ellinpoin1
3.89), the set Y is bounded in L2(Ω). Let us prove that Y is

relatively compact in L2(Ω), and that, if (Tn)n∈IN is a sequence of admissible meshes such that size(Tn)
tends to 0 and uTn tends to u, in L2(Ω), as n tends to infinity, then u belongs to H1(Ω). Indeed, these
results follow from theorems

Kolm
3.9 and

kolmh1
3.11 page

kolmh1
94, provided that there exists a real positive number C

only depending on Ω, f and g such that

‖ũT (·+ η)− ũT ‖2
L2(IRd) ≤ C|η|, for any admissible mesh T and for any η ∈ IRd, |η| ≤ 1, (3.109) cvneum1

and that, for any compact subset ω̄ of Ω,

‖uT (·+ η)− uT ‖2
L2(ω̄) ≤ C|η|(|η| + 2 size(T )), for any admissible mesh T

and for any η ∈ IRd such that |η| < d(ω̄,Ωc).
(3.110) cvneum2

Recall that ũT is defined by ũT (x) = uT (x) if x ∈ Ω and ũT (x) = 0 otherwise. In order to prove (
cvneum1
3.109)

and (
cvneum2
3.110), define χσ from IRd × IRd to {0, 1} by χσ(x, y) = 1 if [x, y] ∩ σ 6= ∅ and χσ(x, y) = 0 if

[x, y] ∩ σ = ∅. Let η ∈ IRd \ {0}. Then:

|ũ(x+ η)− ũ(x)| ≤
∑

σ∈Eint

χσ(x, x + η)|Dσu|+
∑

σ∈Eext

χσ(x, x + η)|uσ |, for a.e. x ∈ Ω, (3.111) cvneum3

where, for σ ∈ Eext, uσ = uK , and K is the control volume such that σ ∈ EK . Recall also that
Dσu = |uK − uL|, if σ = K|L. Let us first prove Inequality (

cvneum2
3.110). Let ω̄ be a compact subset of Ω. If

x ∈ ω̄ and |η| < d(ω̄,Ωc), the second term of the right hand side of (
cvneum3
3.111) is 0, and the same proof as

in Lemma
h1dtot
3.3 page

h1dtot
44 gives, from an integration over ω̄ instead of Ω and from (

aie
3.33) with C = 2 since

[x, x+ η] ⊂ Ω for x ∈ ω̄,

‖uT (·+ η)− uT ‖2
L2(ω̄) ≤ |u|21,T |η|(|η|+ 2 size(T )). (3.112) preppar

In order to prove (
cvneum1
3.109), remark that the number of non zero terms in the second term of the right hand

side of (
cvneum3
3.111) is, for a.e. x ∈ Ω, bounded by some real positive number, which only depends on Ω, which

can be taken, for instance, as the number of sides of Ω, denoted by N . Hence, with C1 = (N +1)2 (which
only depends on Ω. Indeed, if Ω is convex, N = 2 is also convenient), one has

|ũ(x+ η)− ũ(x)|2 ≤ C1(
∑

σ∈Eint

χσ(x, x + η)|Dσu|)2 + C1

∑

σ∈Eext

χσ(x, x+ η)u2
σ , for a.e. x ∈ Ω. (3.113) cvneum4

Let us integrate this inequality over IRd. As seen in the proof of Lemma
h1dtot
3.3 page

h1dtot
44,
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∫

IRd

( ∑

σ∈Eint

χσ(x, x+ η)|Dσu|
)2
dx ≤ |u|21,T |η|(|η|+ 2(N − 1)size(T ));

hence, by Lemma
nllest
3.11 page

nllest
74, there exists a real positive number C2, only depending on Ω, f and g,

such that (if |η| ≤ 1)

∫

IRd

( ∑

σ∈Eint

χσ(x, x + η)|Dσu|
)2
dx ≤ C2|η|.

Let us now turn to the second term of the right hand side of (
cvneum4
3.113) integrated over IRd;

∫

IRd

( ∑

σ∈Eext

χσ(x, x+ η)u2
σ

)
dx ≤

∑

σ∈Eext

m(σ)|η|u2
σ

≤ ‖γ(uT )‖2
L2(∂Ω)|η|;

therefore, thanks to Lemma
nlltrace
3.10, Lemma

nllest
3.11 and to the discrete Poincaré inequality (

ellinpoin1
3.89), there exists

a real positive number C3, only depending on Ω, f and g, such that

∫

IRd

( ∑

σ∈Eext

χσ(x, x + η)u2
σ

)
dx ≤ C3|η|.

Hence (
cvneum1
3.109) is proved for some real positive number C only depending on Ω, f and g.

Step 2 (Passage to the limit)
In this step, the convergence of uT to the solution of (

nllspace
3.82), (

nllsolvar
3.83) (in L2(Ω) as size(T ) → 0) is first

proved.
Since the solution to (

nllspace
3.82), (

nllsolvar
3.83) is unique, and thanks to the compactness of the set Y described in

Step 1, it is sufficient to prove that, if uTn → u in L2(Ω) and size(Tn) → 0 as n→ 0, then u is a solution
to (

nllspace
3.82)-(

nllsolvar
3.83).

Let (Tn)n∈IN be a sequence of admissible meshes and (uTn)n∈IN be the corresponding solutions to (
nllschema
3.86)-

(
nllschemaO
3.87) page

nllschemaO
64 with T = Tn. Assume uTn → u in L2(Ω) and size(Tn) → 0 as n→ 0. By Step 1, one has

u ∈ H1(Ω) and since the mean value of uTn is zero, one also has
∫
Ω
u(x)dx = 0. Therefore, u is a solution

of (
nllspace
3.82). It remains to show that u satisfies (

nllsolvar
3.83). Since (γ(uTn))n∈IN is bounded in L2(∂Ω), one may

assume (up to a subsequence) that it converges to some v weakly in L2(∂Ω). Let us first prove that

−
∫

Ω

u(x)∆ϕ(x)dx +

∫

∂Ω

∇ϕ(x) · n(x)v(x)dγ(x) =

∫

Ω

f(x)ϕ(x)dx

+

∫

∂Ω

g(x)ϕ(x)dγ(x), ∀ϕ ∈ C2(Ω),
(3.114) cvneum5

and then that u satisfies (
nllsolvar
3.83).

Let T be an admissible mesh, uT the corresponding approximate solution to the Neumann problem, given
by (

nllschema
3.86) and (

nllschemaO
3.87), where (fK)K∈T and (gK)K∈T are given by (

nllcondsou
3.84) and (

nllcondbor
3.85) and let ϕ ∈ C2(Ω).

Let ϕK = ϕ(xK), define ϕT by ϕT (x) = ϕK , for a.e. x ∈ K and for any control volume K, and
γ(ϕT )(x) = ϕK for a.e. x ∈ σ (for the (d − 1)-dimensional Lebegue measure), for any σ ∈ Eext and
control volume K such that σ ∈ EK .
Multiplying (

nllschema
3.86) by ϕK , summing over K ∈ T and reordering the terms yields

∑

K∈T
uK

∑

L∈N (K)

τK|L(ϕL − ϕK) =

∫

Ω

f(x)ϕT (x)dx +

∫

∂Ω

γ(ϕT )(x)g(x)dγ(x). (3.115) cvneum6

Using the consistency of the fluxes and the fact that ϕ ∈ C2(Ω), there exists C only depending on ϕ such
that
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∑

L∈N (K)

τK|L(ϕL − ϕK) =

∫

K

∆ϕ(x)dx −
∫

∂Ω∩∂K
∇ϕ(x) · n(x)dγ(x) +

∑

L∈N (K)

RK,L(ϕ),

with RK,L = −RL,K , for all L ∈ N (K) and K ∈ T , and |RK,L| ≤ C4m(K|L)size(T ), where C4 only
depends on ϕ. Hence (

cvneum6
3.115) may be rewritten as

−
∫

Ω

uT (x)∆ϕ(x)dx +

∫

∂Ω

∇ϕ(x) · n(x)γ(uT )(x)dγ(x) + r(ϕ, T ) =
∫

Ω

f(x)ϕT (x)dx +

∫

∂Ω

γ(ϕT )(x)g(x)dγ(x),
(3.116) cvneum7

where
|r(ϕ, T )| = C4

∑

σ∈Eint

|Dσu|m(σ)size(T )

≤ C4

( ∑

σ∈Eint

|Dσu|2
m(σ)

dσ

) 1
2
( ∑

σ∈Eint

m(σ)dσ
) 1

2 size(T )

≤ C5size(T ),

where C5 is a real positive number only depending on f , g, Ω and ϕ (thanks to Lemma
nllest
3.11).

Writing (
cvneum7
3.116) with T = Tn and passing to the limit as n tends to infinity yields (

cvneum5
3.114).

Let us now prove that u satifies (
nllsolvar
3.83). Since u ∈ H1(Ω), an integration by parts in (

cvneum5
3.114) yields

∫

Ω

∇u(x) · ∇ϕ(x)dx +

∫

∂Ω

∇ϕ(x) · n(x)(v(x) − γ(u)(x))dγ(x)

=

∫

Ω

f(x)ϕ(x)dx +

∫

∂Ω

g(x)ϕ(x)dγ(x), ∀ϕ ∈ C2(Ω),
(3.117) cvneum9

where γ(u) denotes the trace of u on ∂Ω (which belongs to L2(∂Ω)). In order to prove that u is solution
to (

nllsolvar
3.83) (this will conclude the proof of Theorem

nllconv
3.7), it is sufficient, thanks to the density of C2(Ω) in

H1(Ω), to prove that v = γ(u) a.e. on ∂Ω (for the (d− 1) dimensional Lebesgue measure on ∂Ω). Let us
now prove that v = γ(u) a.e. on ∂Ω by first remarking that (

cvneum9
3.117) yields

∫

Ω

∇u(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ C∞c (Ω),

and therefore, by density of C∞c (Ω) in H1
0 (Ω),

∫

Ω

∇u(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ H1
0 (Ω).

With (
cvneum9
3.117), this yields

−
∫

∂Ω

∇ϕ(x) · n(x)(v(x) − γ(u)(x))dγ(x) = 0, ∀ϕ ∈ C2(Ω) such that ϕ = 0 on ∂Ω. (3.118) cvneum10

There remains to show that the wide choice of ϕ in (
cvneum10
3.118) allows to conclude v = γ(u) a.e. on ∂Ω (for

the (d− 1)-dimensional Lebesgue measure of ∂Ω). Indeed, let I be a part of the boundary ∂Ω, such that
I is included in a hyperplane of IRd. Assume that I = {0}×J , where J is an open ball of IRd−1 centered

on the origin. Let z = (a, z̃) ∈ IRd with a ∈ IR?
+, z̃ ∈ IRd−1 and B = {(t, a−|t|a y+ |t|

a z̃); t ∈ (−a, a), y ∈ J};
assume that, for a convenient a, one has

B ∩ Ω = {(t, a− |t|
a

y +
|t|
a
z̃); t ∈ (0, a), y ∈ J}.
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Let ψ ∈ C∞c (J), and for x = (x1, y) ∈ IR × J , define ϕ1(x) = −x1ψ(y). Then,

ϕ1 ∈ C∞(IRd) and
∂ϕ1

∂n
= ψ on I.

(Recall that n is the normal unit vector to ∂Ω, outward to Ω.) Let ϕ2 ∈ C∞c (B) such that ϕ2 = 1 on
a neighborhood of {0} × {ψ 6= 0}, where {ψ 6= 0} = {x ∈ J ; ψ(x) 6= 0}, and set ϕ = ϕ1ϕ2; ϕ is an
admissible test function in (

cvneum10
3.118), and therefore

∫

J

ψ(y)
(
γ(u)(0, y)− v(0, y)

)
dy = 0,

which yields, since ψ is arbitrary in C∞c (J), v = γ(u) a.e. on I . Since J is arbitrary, this implies that
v = γ(u) a.e. on ∂Ω.

This conclude the proof of uT → u in L2(Ω) as size(T ) → 0, where u is the solution to (
nllspace
3.82),(

nllsolvar
3.83).

Note also that the above proof gives (by way of contradiction) that γ(uT ) → γ(u) weakly in L2(∂Ω), as
size(T ) → 0.
Then, a passage to the limit in (

nqesterr2a
3.108) together with (

nllsolvar
3.83) yields

|uT |21,T → ‖|∇u|‖2
L2(Ω), as size(T ) → 0.

This concludes the proof of Theorem
nllconv
3.7.

Note that, with some discrete Sobolev inequality (similar to (
ellinlq
3.70)), the hypothesis “f ∈ L2(Ω) g ∈

L2(∂Ω)” may be relaxed in some way similar to that of Item 2 of Remark
convplus
3.7.

3.3 General elliptic operators
ell2Dgen

3.3.1 Discontinuous matrix diffusion coefficients

Meshes and schemes

Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3. We are interested here in the discretiza-
tion of an elliptic operator with discontinuous matrix diffusion coefficients, which may appear in real
case problems such as electrical or thermal transfer problems or, more generally, diffusion problems in
heterogeneous media. In this case, the mesh is adapted to fit the discontinuities of the data. Hence
the definition of an admissible mesh given in Definition

meshdirichlet
3.1 must be adapted. As an illustration, let us

consider here the following problem, which was studied in Section
ell1D
2.3 page

ell1D
21 in the one-dimensional

case:

−div(Λ∇u)(x) + div(vu)(x) + bu(x) = f(x), x ∈ Ω, (3.119) roueneq

u(x) = g(x), x ∈ ∂Ω, (3.120) rouencl

with the following assumptions on the data (one denotes by IRd×d the set of d × d matrices with real
coefficients):

hypdiscont Assumption 3.4

1. Λ is a bounded measurable function from Ω to IRd×d such that for any x ∈ Ω, Λ(x) is symmetric,
and that there exists λ and λ ∈ IR?

+ such that λξ · ξ ≤ Λ(x)ξ · ξ ≤ λξ · ξ for any x ∈ Ω and any

ξ ∈ IRd.

2. v ∈ C1(Ω, IRd), divv ≥ 0 on Ω, b ∈ IR+.

3. f is a bounded piecewise continuous function from Ω to IR.
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4. g is such that there exists g̃ ∈ H1(Ω) such that γ(g̃) = g (a.e. on ∂Ω) and is a bounded piecewise
continuous function from ∂Ω to IR.

(Recall that γ denotes the trace operator from H1(Ω) into L2(∂Ω).) As in Section
sdbc
3.1, under Assumption

hypdiscont
3.4, there exists a unique variational solution u ∈ H1(Ω) of Problem (

roueneq
3.119), (

rouencl
3.120). This solution

satisfies u = w + g̃, where g̃ ∈ H1(Ω) is such that γ(g̃) = g, a.e. on ∂Ω, and w is the unique function of
H1

0 (Ω) satisfying

∫

Ω

(
Λ(x)∇w(x) · ∇ψ(x) + div(vw)(x)ψ(x) + bw(x)ψ(x)

)
dx =

∫

Ω

(
−Λ(x)∇g̃(x) · ∇ψ(x) − div(vg̃)(x)ψ(x) − bg̃(x)ψ(x) + f(x)ψ(x)

)
dx, ∀ψ ∈ H1

0 (Ω).

Let us now define an admissible mesh for the discretization of Problem (
roueneq
3.119)-(

rouencl
3.120).

rouenmesh Definition 3.8 (Admissible mesh for a general diffusion operator) Let Ω be an open bounded
polygonal subset of IRd, d = 2 or 3. An admissible finite volume mesh for the discretization of Problem
(
roueneq
3.119)-(

rouencl
3.120) is an admissible mesh T of Ω in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37 where items (iv) and

(v) are replaced by the two following conditions:

(iv)’ The set T is such that

the restriction of g to each edge σ ∈ Eext is continuous.

For any K ∈ T , let ΛK denote the mean value of Λ on K, that is

ΛK =
1

m(K)

∫

K

Λ(x)dx.

There exists a family of points

P = (xK)K∈T such that xK = ∩σ∈EKDK,σ ∈ K,

where DK,σ is a straigth line perpendicular to σ with respect to the scalar product induced by Λ−1
K

such that DK,σ ∩ σ = DL,σ ∩ σ 6= ∅ if σ = K|L. Furthermore, if σ = K|L, let yσ = DK,σ ∩ σ(=
DL,σ ∩ σ) and assume that xK 6= xL.

(v)’ For any σ ∈ Eext, let K be the control volume such that σ ∈ EK and let DK,σ be the straight line
going through xK and orthogonal to σ with respect to the scalar product induced by Λ−1

K ; then,
there exists yσ ∈ σ ∩ DK,σ; let gσ = g(yσ).

The notations are are the same as those introduced in Definition
meshdirichlet
3.1 page

meshdirichlet
37.

We shall now define the discrete unknowns of the numerical scheme, with the same notations as in Section
vfquatre
3.1.2. As in the case of the Dirichlet problem, the primary unknowns (uK)K∈T will be used, which aim
to be approximations of the values u(xK), and some auxiliary unknowns, namely the fluxes FK,σ , for
all K ∈ T and σ ∈ EK , and some (expected) approximation of u in σ, say uσ , for all σ ∈ E . Again,
these auxiliary unknowns are helpful to write the scheme, but they can be eliminated locally so that
the discrete equations will only be written with respect to the primary unknowns (uK)K∈T . For any
σ ∈ Eext, set uσ = g(yσ). The finite volume scheme for the numerical approximation of the solution to
Problem (

roueneq
3.119)-(

rouencl
3.120) is obtained by integrating Equation (

roueneq
3.119) over each control volume K, and

approximating the fluxes over each edge σ of K. This yields

∑

σ∈EK

FK,σ +
∑

σ∈EK

vK,σuσ,+ + m(K)buK = fK , ∀K ∈ T , (3.121) rouenvfn

where
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vK,σ =
∫
σ
v(x) · nK,σdγ(x) (where nK,σ denotes the normal unit vector to σ outward to K); if σ =

Kσ,+|Kσ,−, uσ,+ = uKσ,+ , where Kσ,+ is the upstream control volume, i.e. vK,σ ≥ 0, with K = Kσ,+;
if σ ∈ Eext, then uσ,+ = uK if vK,σ ≥ 0 (i.e. K is upstream to σ with respect to v), and uσ,+ = uσ
otherwise.
FK,σ is an approximation of

∫
σ −ΛK∇u(x) · nK,σdγ(x); the approximation FK,σ is written with respect

to the discrete unknowns (uK)K∈T and (uσ)σ∈E . For K ∈ T and σ ∈ EK , let λK,σ = |ΛKnK,σ| (recall
that | · | denote the Euclidean norm).

• If xK 6∈ σ, a natural expression for FK,σ is then

FK,σ = −m(σ)λK,σ
uσ − uK
dK,σ

.

Writing the conservativity of the scheme, i.e. FL,σ = −FK,σ if σ = K|L ⊂ Ω, yields the value of
uσ, if xL /∈ σ, with respect to (uK)K∈T ;

uσ =
1

λK,σ

dK,σ
+

λL,σ

dL,σ

(λK,σ
dK,σ

uK +
λL,σ
dL,σ

uL
)
.

Note that this expression is similar to that of (
uipud
2.26) page

uipud
22 in the 1D case.

• If xK ∈ σ, one sets uσ = uK .

Hence the value of FK,σ ;

• internal edges:
FK,σ = −τσ(uL − uK), if σ ∈ Eint, σ = K|L, (3.122) rouenfluxni

where

τσ = m(σ)
λK,σλL,σ

λK,σdL,σ + λL,σdK,σ
if yσ 6= xK and yσ 6= xL

and

τσ = m(σ)
λK,σ
dK,σ

if yσ 6= xK and yσ = xL;

• boundary edges:

FK,σ = −τσ(gσ − uK), if σ ∈ Eext and xK 6∈ σ, (3.123) rouenfluxnf

where

τσ = m(σ)
λK,σ
dK,σ

;

if xK ∈ σ, then the equation associated to uK is uK = gσ (instead of that given by (
rouenvfn
3.121)) and

the numerical flux FK,σ is an unknown which may be deduced from (
rouenvfn
3.121).

Remark 3.17 Note that if Λ = Id, then the scheme (
rouenvfn
3.121)-(

rouenfluxnf
3.123) is the same scheme than the one

described in Section
vfquatre
3.1.2.
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Error estimate

Theorem 3.8rouenesterr

Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3. Under Assumption
hypdiscont
3.4, let u be the unique

variational solution to Problem (
roueneq
3.119)-(

rouencl
3.120). Let T be an admissible mesh for the discretization of

Problem (
roueneq
3.119)-(

rouencl
3.120), in the sense of Definition

rouenmesh
3.8. Let ζ1 and ζ2 ∈ IR+ such that

ζ1(size(T ))2 ≤ m(K) ≤ ζ2(size(T ))2,
ζ1size(T ) ≤ m(σ) ≤ ζ2size(T ),
vfquatreH2bisζ1size(T ) ≤ dσ ≤ ζ2size(T ).

Assuming moreover that
the restriction of f to K belongs to C(K), for any K ∈ T ;
the restriction of Λ to K belongs to C1(K, IRd×d), for any K ∈ T ;
the restriction of u (unique variational solution of Problem (

roueneq
3.119)-(

rouencl
3.120)) to K belongs to C2(K), for

any K ∈ T .
(Recall that Cm(K, IRN ) = {v|K , v ∈ Cm(IRd, IRN )} and Cm(·) = Cm(·, IR).)

Then, there exists a unique family (uK)K∈T satisfying (
rouenvfn
3.121)-(

rouenfluxnf
3.123); furthermore, denoting by eK =

u(xK)− uK, there exists C ∈ IR+ only depending on ζ1, ζ2, γ = supK∈T (‖D2u‖L∞(K)) and δ = supK∈T
(‖DΛ‖L∞(K)) such that

∑

σ∈E

(Dσe)
2

dσ
m(σ) ≤ C(size(T ))2 (3.124) rouenesthuz

and

∑

K∈T
e2Km(K) ≤ C(size(T ))2. (3.125) rouenestdeux

Recall that Dσe = |eL − eK | for σ ∈ Eint, σ = K|L and Dσe = |eK | for σ ∈ Eext ∩ EK.

Proof of Theorem
rouenesterr
3.8

First, one may use Taylor expansions and the same technique as in the 1D case (see step 2 of the proof of
Theorem

ee1dell
2.3, Section

ell1D
2.3) to show that the expressions (

rouenfluxni
3.122) and (

rouenfluxnf
3.123) are consistent approximations

of the exact diffusion flux
∫
σ
−Λ(x)∇u(x) · nK,σdγ(x), i.e. there exists C1 only depending on u and Λ

such that, for all σ ∈ E , with F ?K,σ = τσ(u(xL) − u(xK)), if σ = K|L, and F ?K,σ = τσ(u(yσ)− u(xK)), if
σ ∈ Eext ∩ EK ,

F ?K,σ −
∫
σ
−Λ(x)∇u(x) · nK,σdγ(x) = RK,σ ,

with |RK,σ | ≤ C1size(T )m(σ).

There also exists C2 only depending on u and v such that, for all σ ∈ E ,

vK,σu(xKσ,+)−
∫
σ v · nK,σu = rK,σ ,

with |rK,σ | ≤ C2size(T )m(σ).

Let us then integrate Equation (
roueneq
3.119) over each control volume, subtract to (

rouenvfn
3.121) and use the consis-

tency of the fluxes to obtain the following equation on the error:





−
∑

σ∈EK

GK,σ +
∑

σ∈EK

vK,σeσ,+ + m(K)beK =

∑

σ∈EK

(RK,σ + rK,σ) + SK , ∀K ∈ T ,

where GK,σ = τσ(eL − eK), if σ = K|L, and GK,σ = τσ(−eK), if σ ∈ Eext ∩ EK , eσ,+ = eKσ,+ is the
error associated to the upstream control volume to σ and SK = b(m(K)u(xK)−

∫
K
u(x)dx) is such that
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|SK | ≤ m(K)C3h, where C3 ∈ IR+ only depends on u and b. Then, similarly to the proof of Theorem
ellesterr
3.3

page
ellesterr
52, let us multiply by eK , sum over K ∈ T , and use the conservativity of the scheme, which yields

that if σ = K|L then RK,σ = −RL,σ. A reordering of the summation over σ ∈ E yields the “discrete H1
0

estimate” (
rouenesthuz
3.124). Then, following

VF4
Herbin [1995], one shows the following discrete Poincaré inequality:

∑

K∈T
e2Km(K) ≤ C4

∑

σ∈E

(Dσe)
2

dσ
m(σ), (3.126) ellinpoindisc

where C4 only depends on Ω, ζ1 and ζ2, which in turn yields the L2 estimate (
rouenestdeux
3.125).

Remark 3.18 In the case where Λ is constant, or more generally, in the case where Λ(x) = λ(x)Id, where
λ(x) > 0, the proof of Lemma

thinpoin
3.1 is easily extended. However, for a general matrix Λ, the generalization

of this proof is not so clear; this is the reason of the dependency of the estimates (
rouenesthuz
3.124) and (

rouenestdeux
3.125) on

ζ1 and ζ2, which arises when proving (
ellinpoindisc
3.126) as in

VF4
Herbin [1995].

3.3.2 Other boundary conditions
obt

The finite volume scheme may be used to discretize elliptic problems with Dirichlet or Neumann boundary
conditions, as we saw in the previous sections. It is also easily implemented in the case of Fourier (or
Robin) and periodic boundary conditions. The case of interface conditions between two geometrical
regions is also generally easy to implement; the purpose here is to present the treatment of some of these
boundary and interface conditions. One may also refer to

Angot
Angot [1989] and references therein,

FH1
Fiard,

Herbin [1994] for the treatment of more complex boundary conditions and coupling terms in a system
of elliptic equations.
Let Ω be (for the sake of simplicity) the open rectangular subset of IR2 defined by Ω = (0, 1) × (0, 2),
let Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (1, 2), Γ1 = [0, 1] × {0}, Γ2 = {1} × [0, 2], Γ3 = [0, 1] × {2},
Γ4 = {0} × [0, 2] and I = [0, 1] × {1}. Let λ1 and λ2 > 0, f ∈ C(Ω), α > 0, u ∈ IR, g ∈ C(Γ4), θ and
Φ ∈ C(I). Consider here the following problem (with some “natural” notations):

−div(λi∇u)(x) = f(x), x ∈ Ωi, i = 1, 2, (3.127) pbeq

−λi∇u(x) · n(x) = α(u(x) − u), x ∈ Γ1 ∪ Γ3, (3.128) pbFourier

∇u(x) · n(x) = 0, x ∈ Γ2, (3.129) pbNeumann

u(x) = g(x), x ∈ Γ4, (3.130) pbDirichlet

(λ2∇u(x) · nI(x))|2 = (λ1∇u(x) · nI(x))|1 + θ(x), x ∈ I, (3.131) pbjumpflux

u|2(x)− u|1(x) = Φ(x), x ∈ I, (3.132) pbjumpun

where n denotes the unit normal vector to ∂Ω outward to Ω and nI = (0, 1)t (it is a unit normal vector
to I).
Let T be an admissible mesh for the discretization of (

pbeq
3.127)-(

pbjumpun
3.132) in the sense of Definition

rouenmesh
3.8. For the

sake of simplicity, let us assume here that dK,σ > 0 for all K ∈ T , σ ∈ EK . Integrating Equation (
pbeq
3.127)

over each control volume K, and approximating the fluxes over each edge σ of K yields the following
finite volume scheme:

∑

σ∈EK

FK,σ = fK , ∀K ∈ T , (3.133) pbvfn

where FK,σ is an approximation of
∫
σ
−λi∇u(x) · nK,σdγ(x), with i such that K ⊂ Ωi.

Let NT = card(T ), NE = card(E), N0
E = card({σ ∈ E ;σ 6⊂ ∂Ω ∪ I}), N i

E = card({σ ∈ E ;σ ⊂ Γi}), and

N I
E = card({σ ∈ E ;σ ⊂ I}) (note that NE = N0

E +
∑4

i=1N
i
E +N I

E ). Introduce the NT (primary) discrete
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unknowns (uK)K∈T ; note that the number of (auxiliary) unknowns of the type FK,σ is 2(N0
E + N I

E ) +∑4
i=1N

i
E ; let us introduce the discrete unknowns (uσ)σ∈E , which aim to be approximations of u on σ.

In order to take into account the jump condition (
pbjumpun
3.132), two unknowns of this type are necessary on

the edges σ ⊂ I , namely uσ,1 and uσ,2. Hence the number of (auxiliary) unknowns of the type uσ is

N0
E +

∑4
i=1 N

i
E + 2N I

E . Therefore, the total number of discrete unknowns is

Ntot = NT + 3N0
E + 4N I

E + 2

4∑

i=1

N i
E .

Hence, it is convenient, in order to obtain a well-posed system, to write Ntot discrete equations. We
already have NT equations from (

pbvfn
3.133). The expression of FK,σ with respect to the unknowns uK and

uσ is

FK,σ = −m(σ)λi
uσ − uK
dK,σ

, ∀K ∈ T ;K ⊂ Ωi (i = 1, 2), ∀σ ∈ EK ; (3.134) pbvfnflux

which yields 2(N0
E +N I

E ) +
∑4
i=1 N

i
E . (In (

pbvfnflux
3.134), uσ stands for uσ,i if σ ⊂ I .)

Let us now take into account the various boundary and interface conditions:

• Fourier boundary conditions. Discretizing condition (
pbFourier
3.128) yields

FK,σ = αm(σ)(uσ − u), ∀K ∈ T , ∀σ ∈ EK ; σ ⊂ Γ1 ∪ Γ3, (3.135) pbvfnFourier

that is N1
E +N3

E equations.

• Neumann boundary conditions. Discretizing condition (
pbNeumann
3.129) yields

FK,σ = 0, ∀K ∈ T , ∀σ ∈ EK ; σ ⊂ Γ2, (3.136) pbvfnNeumann

that is N2
E equations.

• Dirichlet boundary conditions. Discretizing condition (
pbDirichlet
3.130) yields

uσ = g(yσ), ∀σ ∈ E ;σ ⊂ Γ4, (3.137) pbvfnDirichlet

that is N4
E equations.

• Conservativity of the flux. Except at interface I , the flux is continuous, and therefore

FK,σ = −FL,σ, ∀σ ∈ E ;σ 6⊂ (

4⋃

i=1

Γi ∪ I) and σ = K|L, (3.138) pbvfnconserv

that is N0
E equations.

• Jump condition on the flux. At interface I , condition (
pbjumpflux
3.131) is discretized into

FK,σ + FL,σ =

∫

σ

θ(x)ds, ∀σ ∈ E ;σ ⊂ I and σ = K|L; K ⊂ Ω2, (3.139) pbvfnjumpflux

that is N I
E equations.

• Jump condition on the unknown. At interface I , condition (
pbjumpun
3.132) is discretized into

uσ,2 = uσ,1 + Φ(yσ), ∀σ ∈ E ;σ ⊂ I and σ = K|L. (3.140) pbvfnjumpun

that is another N I
E equations.
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Hence the total number of equations from (
pbvfn
3.133) to (

pbvfnjumpun
3.140) is Ntot, so that the numerical scheme can

be expected to be well posed.

The finite volume scheme for the discretization of equations (
pbeq
3.127)-(

pbjumpun
3.132) is therefore completely defined

by (
pbvfn
3.133)-(

pbvfnjumpun
3.140). Particular cases of this scheme are the schemes (

ellschema
3.20)-(

ellschemad
3.23) page

ellschemad
42 (written for

Dirichlet boundary conditions) and (
nllschema
3.86)-(

nllschemaO
3.87) page

nllschemaO
64 (written for Neumann boundary conditions and

no convection term) which were thoroughly studied in the two previous sections.

3.4 Dual meshes and unknowns located at vertices
scvfe

One of the principles of the classical finite volume method is to associate the discrete unknowns to the grid
cells. However, it is sometimes useful to associate the discrete unknowns with the vertices of the mesh;
for instance, the finite volume method may be used for the discretization of a hyperbolic equation coupled
with an elliptic equation (see Chapter

systemes
7). Suppose that an existing finite element code is implemented

for the elliptic equation and yields the discrete values of the unknown at the vertices of the mesh. One
might then want to implement a finite volume method for the hyperbolic equation with the values of the
unknowns at the vertices of the mesh. Note also that for some physical problems, e.g. the modelling of
two phase flow in porous media, the conservativity principle is easier to respect if the discrete unknowns
have the same location. For these various reasons, we introduce here some finite volume methods where
the discrete unknowns are located at the vertices of an existing mesh.
For the sake of simplicity, the treatment of the boundary conditions will be omitted here. Recall that
the construction of a finite volume method is carried out (in particular) along the following principles:

1. Divide the spatial domain in control volumes,

2. Associate to each control volume and, for time dependent problems, to each discrete time, one
discrete unknown,

3. Obtain the discrete equations (at each discrete time) by integration of the equation over the control
volume and the definition of one exchange term between two (adjacent) control volumes.

Recall, in particular, that the definition of one (and one only) exchange term between two control volumes
is important; this is called the property of conservativity of a finite volume method. The aim here is
to present finite volume methods for which the discrete unknowns are located at the vertices of the
mesh. Hence, to each vertex must correspond a control volume. Note that these control volumes may be
somehow “fictive” (see the next section); the important issue is to respect the principles given above in
the construction of the finite volume scheme. In the three following sections, we shall deal with the two
dimensional case; the generalization to the three-dimensional case is the purpose of section

cvfe3D
3.4.4.

3.4.1 The piecewise linear finite element method viewed as a finite volume

method
lfefv

We consider here the Dirichlet problem. Let Ω be a bounded open polygonal subset of IR2, f and g be
some “regular” functions (from Ω or ∂Ω to IR). Consider the following problem:

{
−∆u(x) = f(x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω.

(3.141) rouene2D

Let us show that the “piecewise linear” finite element method for the discretization of (
rouene2D
3.141) may be

viewed as a kind of finite volume method. Let M be a finite element mesh of Ω, consisting of triangles
(see e.g.

ciarlet
Ciarlet, P.G. [1978] for the conditions on the triangles), and let V ⊂ Ω be the set of vertices

of M. For K ∈ V (note that here K denotes a point of Ω), let ϕK be the shape function associated to
K in the piecewise linear finite element method for the mesh M. We remark that
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∑

K∈V
ϕK(x) = 1, ∀x ∈ Ω,

and therefore

∑

K∈V

∫

Ω

ϕK(x)dx = m(Ω) (3.142) consglo

and

∑

K∈V
∇ϕK(x) = 0, for a.e.x ∈ Ω. (3.143) rouencruu

Using the latter equality, the discrete finite element equation associated to the unknown uK , if K ∈ Ω,
can therefore be written as

∑

L∈V

∫

Ω

(uL − uK)∇ϕL(x) · ∇ϕK(x)dx =

∫

Ω

f(x)ϕK(x)dx.

Then the finite element method may be written as

∑

L∈V
−τK|L(uL − uK) =

∫

Ω

f(x)ϕK(x)dx, if K ∈ V ∩ Ω,

uK = g(K), if K ∈ V ∩ ∂Ω,

with

τK|L = −
∫

Ω

∇ϕL(x) · ∇ϕK(x)dx.

Under this form, the finite element method may be viewed as a finite volume method, except that there
are no “real” control volumes associated to the vertices of M. Indeed, thanks to (

consglo
3.142), the control

volume associated to K may be viewed as the support of ϕK “weighted” by ϕK . This interpretation of
the finite element method as a finite volume method was also used in

F1
Forsyth [1989],

F2
Forsyth [1991]

and
EG
Eymard and Gallouët [1993] in order to design a numerical scheme for a transport equation for

which the velocity field is the gradient of the pressure, which is itself the solution to an elliptic equation
(see also

HL
Herbin and Labergerie [1997] for numerical tests). This method is often referred to as the

”control volume finite element” method.

In this finite volume interpretation of the finite element scheme, the notion of “consistency of the fluxes”
does not appear. This notion of consistency, however, seems to be an interesting tool in the study of the
“classical” finite volume schemes.

Note that the (discrete) maximum principle is satisfied with this scheme if only if the transmissibilities
τK|L are nonnegative (for all K,L ∈ V with K ∈ Ω) ; this is the case under the classical Delaunay
condition; this condition states that the (interior of the) circumscribed circle (or sphere in the three
dimensional case) of any triangle (tetrahedron in the three dimensional case) of the mesh does not
contain any element of V . This is equivalent, in the case of two dimensional triangular meshes, to the
fact that the sum of two opposite angles facing a common edge is less or equal π.Delaunay

3.4.2 Classical finite volumes on a dual mesh

Let M be a mesh of Ω (M may consist of triangles, but it is not necessary) and V be the set of vertices
of M. In order to associate to each vertex (of M) a control volume (such that the whole spatial domain
is the “disjoint union” of the control volumes), a possibility is to construct a “dual mesh” which will be
denoted by T . In order for this mesh to be admissible in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37, a simple way
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is to use the Voronöı mesh defined with V (see Example
evoronoi
3.2 page

evoronoi
39). For a description of the Delaunay-

Voronöı discretization and its use for covolume methods, we refer to
nicolbooknicolbook
Nicolaides [1993] (and references

therein). In order to write the “classical” finite volume scheme with this mesh (see (
ellschema
3.20)-(

ellschemad
3.23) page

ellschemad
42),

a slight modification is necessary at the boundary for some particular M (see Example
evoronoi
3.2); this method

is denoted CFV/DM (classical finite volume on dual mesh); it is conservative, the numerical fluxes are
consistent, and the transmissibilities are nonnegative. Hence, the convergence results and error estimates
which were studied in previous sections hold (see, in particular, theorems

ellcvgce
3.1 page

ellcvgce
46 and

ellesterr
3.3 page

ellesterr
52).

A case of particular interest is found when the primal mesh (that is M) consists in triangles with acute
angles. One uses, as dual mesh, the Voronöı mesh defined with V . Then, the dual mesh is admissible in
the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37 and is constructed with the orthogonal bisectors of the edges of the

elements of M, parts of these orthogonal bisectors (and parts of ∂Ω) give the boundaries to the control
volumes of the dual mesh. In this case, the CFV/DM scheme is “close” to the piecewise linear finite
element scheme on the primal mesh. Let us elaborate on this point.
For K ∈ V , let K also denote the control volume (of the dual mesh) associated to K (in the sequel, the
sense of “K”, which denotes vertex or control volume, will not lead any confusion) and let ϕK be the
shape function associated to the vertex K (in the piecewise linear finite element associated to M). The
term τK|L (ratio between the length of the edge K|L and the distance between vertices), which is used
in the finite volume scheme, verifies

τK|L = −
∫

Ω

∇ϕK(x) · ∇ϕL(x)dx.

The CFV/DM scheme (finite volume scheme on the dual mesh) writes

−
∑

L∈N (K)

τK|L(uL − uK) =

∫

K

f(x)dx, if K ∈ V ∩ Ω,

uK = g(K), if K ∈ V ∩ ∂Ω,

where K stands for an element of V or for the control volume (of the dual mesh) associated to this point.
The finite element scheme (on the primal mesh) writes

−
∑

L∈N (K)

τK|L(uL − uK) =

∫

Ω

f(x)ϕK(x)dx, if K ∈ V ∩ Ω,

uK = g(K), if K ∈ V ∩ ∂Ω.

Therefore, the only difference between the finite element and finite volume schemes is in the definition
of the right hand sides. Note that these right hand sides may be quite different. Consider for example a
node K which is the vertex of four identical triangles featuring an angle of π2 at the vertex K, as depicted
in Figure

cfvdm
3.4, and denote by a the area of each of these triangles.

Then, for f ≡ 1, the right hand side computed for the discrete equation associated to the node K is equal
to a in the case of the finite element (piecewise linear finite element) scheme, and equal to 2a for the
dual mesh finite volume (CFV/DM) scheme. Both schemes may be shown to converge, by using finite
volume techniques for the CFV/DM scheme (see previous sections), and finite element techniques for the
piecewise linear finite element (see e.g.

ciarlet
Ciarlet, P.G. [1978]).

Let us now weaken the hypothesis that all angles of the triangles of the primal mesh M are acute to the
so called Delaunay condition and the additional assumption that an angle of an element of M is less or
equal π/2 if its opposite edge lies on ∂Ω (see e.g.

Vanselow
Vanselow [1996]). Under this new assumption the

schemes (piecewise linear finite element finite element and CFV/DM with the Voronöı mesh defined with
V) still lead to the same transmissibilities and still differ in the definition of the right hand sides.
Recall that the Delaunay condition states that no neighboring element (of M) is included in the circum-
scribed circle of an arbitrary element of M. This is equivalent to saying that the sum of two opposite
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K

Figure 3.4: An example of a triangular primal mesh (solid line) and a dual Voronöı control volume
(dashed line) cfvdm

angles to an edge is less or equal π. As shown in Figure
fig.delaunay
3.5, the dual mesh is still admissible in the sense

of Definition
meshdirichlet
3.1 page

meshdirichlet
37 and is still constructed with the orthogonal bisectors of the edges of the elements

of M, parts of these orthogonal bisectors (and parts of ∂Ω) give the boundaries to the control volumes
of the dual mesh (see Figure (

fig.delaunay
3.5)) is not the case when M does not satisfy the Delaunay condition.

Non Delaunay caseDelaunay case

B

A

B

A

LL KK

Figure 3.5: Construction of the Voronöı dual cells (dashed line) in the case of a triangular primal mesh
(solid line) with and without the Delaunay condition fig.delaunay

Consider now a primal mesh, M, consisting of triangles, but which does not satisfy the Delaunay condition
and let the dual mesh be the Voronöı mesh defined with V . Then, the two schemes, piecewise linear finite
element and CFV/DM are quite different. If the Delaunay condition does not hold say between the

angles K̂AL and K̂BL (the triplets (K,A,L) and (K,B,L) defining two elements of M), the sum of
these two angles is greater than π and the transmissibility τK|L = −

∫
Ω
∇ϕK(x) · ∇ϕL(x)dx between the

two control volumes associated respectively to K and L becomes negative with the piecewise linear finite
element scheme; there is no transmissibility between A and B (since A and B do not belong to a common
element of M). Hence the maximum principle is no longer respected for the finite element scheme, while
it remains valid for the CFV/DM finite volume scheme. This is due to the fact that the CFV/DM scheme
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allows an exchange term between A and B, with a positive transmissibility (and leads to no exchange
term between K and L), while the finite element scheme does not. Also note also that the common edge
to the control volumes (of the dual mesh) associated to A and B is not a part of an orthogonal bisector
of an edge of an element of M (it is a part of the orthogonal bisector of the segment [A,B]).

To conclude this section, note that an admissible mesh for the classical finite volume is generally not a
dual mesh of a primal triangular mesh consisting of triangles (for instance, the general triangular meshes
which are considered in

VF4
Herbin [1995] are not dual meshes to triangular meshes).

3.4.3 “Finite Volume Finite Element” methods

The “finite volume finite element” method for elliptic problems also uses a dual mesh T constructed from
a finite element primal mesh, such that each cell of T is associated with a vertex of the primal mesh M.
Let V again denote the set of vertices of M. As in the classical finite volume method, the conservation
law is integrated over each cell of the (dual) mesh. Indeed, this integration is performed only if the cell
is associated to a vertex (of the primal mesh) belonging to Ω.
Let us consider Problem (

rouene2D
3.141). Integrating the conservation law over KP , where P ∈ V ∩Ω and KP is

the control volume (of the dual mesh) associated to P yields

−
∫

∂KP

∇u(x) · nP (x)dγ(x) =

∫

KP

f(x)dx.

(Recall that nP is the unit normal vector to ∂KP outward to KP .) Now, following the idea of finite
element methods, the function u is approximated by a Galerkin expansion

∑
M∈V uMϕM , where the

functions ϕM are the shape functions of the piecewise linear finite element method. Hence, the discrete
unknowns are {uP , P ∈ V} and the scheme writes

−
∑

M∈V

(∫

∂KP

∇ϕM (x) · nP (x)dγ(x)
)
uM =

∫

KP

f(x)dx, ∀P ∈ V ∩ Ω, (3.144) cvfe

uP = g(P ), ∀P ∈ V ∩ ∂Ω.

Equations (
cvfe
3.144) may also be written under the conservative form

∑

Q∈V
EP,Q =

∫

KP

f(x)dx, ∀P ∈ V ∩ Ω, (3.145) cvfe1

uP = g(P ), ∀P ∈ V ∩ ∂Ω, (3.146) cvfe2

where

EP,Q = −
∑

M∈V

∫

∂KP∩∂KQ

∇ϕM (x) · nP (x)dγ(x). (3.147) cvfe3

Note that EQ,P = −EP,Q. Unfortunately, the exchange term EP,Q between P and Q is not, in general,
a function of the only unknowns uP and uQ (this property was used, in the previous sections, to obtain
convergence results of finite volume schemes). Another way to write (

cvfe
3.144) is, thanks to (

rouencruu
3.143),

−
∑

Q∈V

(∫

∂KP

∇ϕQ(x) · nP (x)dγ(x)
)
(uQ − uP ) =

∫

KP

f(x)dx, ∀P ∈ V ∩ Ω.

Hence a new exchange term from P to Q might be ĒP,Q = −
(∫

∂KP
∇ϕQ(x) ·nP (x)dγ(x)

)
(uQ−uP ) and

the scheme is therefore conservative if ĒP,Q = −ĒQ,P . Unfortunately, this is not the case for a general
dual mesh.
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There are several ways of constructing a dual mesh from a primal mesh. A common way (see e.g.
La
Fezoui,

Lanteri, Larrouturou and Olivier [1989]) is to take a primal mesh (M) consisting of triangles and
to construct the dual mesh with the medians (of the triangles of M), joining the centers of gravity of
the triangles to the midpoints of the edges of the primal mesh. The main interest of this way is that the
resulting scheme (called FVFE/M below, Finite Volume Finite Element with Medians) is very close to
the piecewise linear finite element scheme associated to M. Indeed the FVFE/M scheme is defined by
(
cvfe1
3.145)-(

cvfe3
3.147) while the piecewise linear finite element scheme writes

∑

Q∈V
EP,Q =

∫

Ω

f(x)ϕP (x)dx, ∀P ∈ V ∩ Ω,

uP = g(P ), ∀P ∈ V ∩ ∂Ω,

where EP,Q is defined by (
cvfe3
3.147).

These two schemes only differ by the right hand sides and, in fact, these right hand sides are “close” since

m(KP ) =

∫

Ω

ϕP (x)dx, ∀P ∈ V .

This is due to the fact that
∫
T ϕP (x)dx = m(T )/3 and m(KP ∩ T ) = m(T )/3, for all T ∈ M and all

vertex P of T .
Thus, convergence properties of the FVFE/M scheme can be proved by using the finite element techniques.
Recall however that the piecewise linear finite element scheme (and the FVFE/M scheme) does not satisfy
the (discrete) maximum principle if M does not satisfy the Delaunay condition.

There are other means to construct a dual mesh starting from a primal triangular mesh. One of them is
the Voronöı mesh associated to the vertices of the primal mesh, another possibility is to join the centers
of gravity; in the latter case, the control volume associated to a vertex, say S, of the primal mesh is then
limited by the lines joining the centers of gravity of the neighboring triangles of which S is a vertex (with
some convenient modification for the vertices which are on the boundary of Ω). See also

Barth
Barth [1994]

for descriptions of dual meshes.

Note that the proof of convergence which we designed for finite volume with admissible meshes does not
generalize to any “FVFE” (Finite Volume Finite Element) method for several reasons. In particular,
since the exchange term between P and Q (denoted by EP,Q) is not, in general, a function of the only
unknowns uP and uQ (and even if it is the transmissibilities may become negative) and also since, as in
the case of the finite element method, the concept of consistency of the fluxes is not clear with the FVFE
schemes.

3.4.4 Generalization to the three dimensional case
cvfe3D

The methods described in the three above sections generalize to the three-dimensional case, in particular
when the primal mesh is a tetrahedral mesh. With such a mesh, the Delaunay condition no longer ensures
the non negativity of the transmissibilities in the case of the piecewise linear finite element method. It
is however possible to construct a dual mesh (the “three-dimensional Voronöı” mesh) to a Delaunay
triangulation such that the FVFE scheme leads to positive transmissibilities, and therefore such that the
maximum principle holds, see

Putti
Cordes and Putti [1998].

Note that the theoretical results (convergence and error estimate) which were shown for the classical finite
volume method on an admissible mesh (sections

vfquatre
3.1.2 page

vfquatre
37 and

nll
3.2 page

nll
63) still hold for CFV/DM

in three-dimensional, since the dual mesh is admissible.
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3.5 Mesh refinement and singularities
meshref

Some problems involve singular source terms. In the case of petroleum engineering for instance, one may
model (in two space dimensions) the well with a Dirac measure. Other problems may require a better
precision of some unknown in certain areas. This section is devoted to the treatment of this kind of
problem, either with an adequate treatment of the singularity or by mesh refinement.

3.5.1 Singular source terms and finite volumes

It is possible to take into account, in the discretization with the finite volume method, the singularities
of the solution of an elliptic problem. A common example is the study of wells in petroleum engineering.
As a model example we can consider the following problem, which appears, for instance, in the study of
a two phase flow in a porous medium. Let B be the ball of IR2 of center 0 and radius rp (B represents a
well of radius rp). Let Ω = (−R,R)2 be the whole domain of simulation; rp is of the order of 10 cm while
R can be of the order of 1 km for instance. An approximation to the solution of the following problem
is sought:

−div(∇u)(x) = 0, x ∈ Ω \B,
u(x) = Pp, x ∈ ∂B,
“BC”on ∂Ω,

(3.148) sing

where “BC” stands for some “smooth” boundary conditions on ∂Ω (for instance, Dirichlet or Neumann
condition). This system is a mathematical model (under convenient assumptions. . . ) of the two phase
flow problem, with u representing the pressure of the fluid and Pp an imposed pressure at the well. In
order to discretize (

sing
3.148) with the finite volume method, a mesh T of Ω is introduced. For the sake of

simplicity, the elements of T are assumed to be squares of length h (the method is easily generalized to
other meshes). It is assumed that the well, represented by B, is located in the middle of one cell, denoted
by K0, so that the origin 0 is the center of K0. It is also assumed that the mesh size, h, is large with
respect to the radius of the well, rp (which is the case in real applications, where, for instance, h ranges
between 10 and 100 m). Following the principle of the finite volume method, one discrete unknown uK
per cell K (K ∈ T ) is introduced in order to discretize the following system:

∫

∂K

∇u(x) · nK(x)dγ(x) = 0, K ∈ T , K 6= K0,∫

∂K0

∇u(x) · nK0
(x)dγ(x) =

∫

∂B

∇u(x) · nB(x)dγ(x),
(3.149) singd

where nP denotes the normal to ∂P , outward to P (with P = K,K0 or B).
Hence, we have to discretize ∇u · nK on ∂K (and ∇u · nB on ∂B) in terms of {uL, L ∈ T } (and “BC”
and Pp).
The problems arise in the discretization of ∇u ·nK0

and ∇u ·nB. Indeed, if σ = K|L is the common edge
to K and L (elements of T ), with K 6= K0 and L 6= K0, since the solution of (

sing
3.148) is “smooth” enough

with respect to the mesh size, except “near” the well, ∇u · nK can be discretized by 1
h (uL − uK) on σ.

In order to discretize ∇u near the well, it is assumed that ∇u · nB is constant on ∂B. Let q(x) =
−2πrp∇u · nB for x ∈ ∂B (recall that nB is the normal to ∂B, outward to B). Then q ∈ IR is a new
unknown, which satisfies

∫

∂B

−∇u · nBdγ(x) = q.

Denoting by | · | the euclidian norm in IR2, and u the solution to (
sing
3.148), let v be defined by

v(x) =
q

2π
ln(|x|) + u(x), x ∈ Ω \B, (3.150) reg1

v(x) =
q

2π
ln(rp) + Pp, x ∈ B. (3.151) reg2
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Thanks to the boundary conditions satisfied by u on ∂B, the function v satisfies −div(∇v) = 0 on the
whole domain Ω, and therefore v is regular on the whole domain Ω. Note that, if we set

u(x) = − q

2π
ln(|x|) + v(x), a.e. x ∈ Ω,

then
−div(∇u) = qδ0 on Ω,

where δ0 is the Dirac mass at 0. A discretization of ∇u ·nK0
is now obtained in the following way. Let σ

be the common edge to K1 ∈ T and K0, since v is smooth, it is possible to approximate ∇v · nK0
on σ

by 1
h (vK1

− vK0
), where vKi is some approximation of v in Ki (e.g. the value of v at the center of Ki).

Then, by (
reg2
3.151), it is natural to set

vK0
=

q

2π
ln(rp) + Pp,

and by (
reg1
3.150),

vK1
=

q

2π
ln(h) + uK1

.

By (
reg1
3.150) and from the fact that the integral over σ of ∇( q

2π ln(|x|)) · nK0
is equal to q

4 , we find the
following approximation for

∫
σ
∇u · nK0

dγ:

−q
4

+
q

2π
ln(

h

rp
) + uK1

− Pp.

The discretization is now complete, there are as many equations as unknowns. The discrete unknowns
appearing in the discretized problem are {uK ,K ∈ T ,K 6= K0} and q. Note that, up to now, the
unknown uK0

has not been used. The discrete equations are given by (
singd
3.149) where each term of (

singd
3.149)

is replaced by its approximation in terms of {uK ,K ∈ T ,K 6= K0} and q. In particular, the discrete
equation “associated” to the unknown q is the discretization of the second equation of (

singd
3.149), which is

4∑

i=1

(
q

2π
ln(

h

rp
) + uKi − Pp) = 0, (3.152) do1

where {Ki, i = 1, 2, 3, 4} are the four neighbouring cells to K0.
It is possible to replace the unknown q by the unknown uK0

(as it is done in petroleum engineering) by
setting

uK0
=
q

4
− q

2π
ln(

h

rp
) + Pp, (3.153) uko

the interest of which is that it yields the usual formula for the discretization of ∇u · nK0
on σ if σ is the

common edge to K1 and K0, namely 1
h (uK1

− uK0
); the discrete equation associated to the unknown

uK0
is then (from (

do1
3.152))

4∑

i=1

(uKi − uK0
) = −q

and (
uko
3.153) may be written as:

q = ip(Pp − uK0
), with ip =

1

− 1
4 + 1

2π ln( hrp
)
.

This last equation defines ip, the so called “well-index” in petroleum engineering. With this formula for ip,
the discrete unknowns are now {uK ,K ∈ T }. The discrete equations associated to {uK ,K ∈ T ,K 6= K0}
are given by the first part of (

singd
3.149) where each terms of (

singd
3.149) is replaced by its approximation in terms

of {uK ,K ∈ T } (using also “BC” on ∂Ω). The discrete equation associated to the unknown uK0
is
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4∑

i=1

(uKi − uK0
) = −ip(Pp − uK0

),

where {Ki, i = 1, 2, 3, 4} are the four neighbouring cells to K0.
Note that the discrete unknown uK0

is somewhat artificial, it does not really represent the value of u in

K0. In fact, if x ∈ K0, the “approximate value” of u(x) is − q
2π ln( |x|rp

)+Pp and uK0
= q

4 −
q
2π ln( hrp

)+Pp.

3.5.2 Mesh refinement

Mesh refinement consists in using, in certain areas of the domain, control volumes of smaller size than
elsewhere. In the case of triangular grids, a refinement may be performed for instance by dividing each
triangle in the refined area into four subtriangles, and those at the boundary of the refined area in two
triangles. Then, with some additional technique (e.g. change of diagonal), one may obtain an admissible
mesh in the sense of definitions

meshdirichlet
3.1 page

meshdirichlet
37,

meshneuman
3.5 page

meshneuman
63 and

rouenmesh
3.8 page

rouenmesh
79; therefore the error estimates

ellesterr
3.3 page

ellesterr
52,

nllesterr
3.5 page

nllesterr
69 and

rouenesterr
3.8 page

rouenesterr
81 hold under the same assumptions.

In the case of rectangular grids, the same refining procedure leads to “atypical” nodes and edges, i.e. an
edge σ of a given control volume K may be common to two other control volumes, denoted by L and
M . This is also true in the triangular case if the triangles of the boundary of the refined area are left
untouched.
Let us consider for instance the same problem as in section

smesh
3.1.1 page

smesh
33, with the same assumptions

and notations, namely the discretization of

−∆u(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1),
u(x, y) = 0, (x, y) ∈ ∂Ω.

It is easily seen that, in this case, if the approximation of the fluxes is performed using differential
quotients such as in (

fluxrect
3.6) page

fluxrect
34, the fluxes on the “atypical” edge σ cannot be consistent, since the

lines joining the centers of K and L and the centers of K and M are not orthogonal to σ. However, the
error which results from this lack of consistency can be controlled if the number of atypical edges is not
too large.

In the case of rectangular grids (with a refining procedure), denoting by Ea the set of “atypical” edges of a
given mesh T , i.e. edges with separate more than two control volumes, and Ta the set of “atypical” control
volumes, i.e. the control volumes containing an atypical edge in their boundaries; let eK denote the error
between u(xK) and uK for each control volume K, and eT denote the piecewise constant function defined
by e(x) = eK for any x ∈ K, then one has

‖e‖L2(Ω) ≤ C(size(T ) + (
∑

K∈Ta
m(K))

1
2 ).

The proof is similar to that of Theorem
ellesterr
3.3 page

ellesterr
52. It is detailed in

belmouhoub
Belmouhoub [1996].

3.6 Compactness results
rellichd

This section is devoted to some functional analysis results which were used in the previous section. Let Ω
be a bounded open set of IRd, d ≥ 1. Two relative compactness results in L2(Ω) for sequences “almost”
bounded in H1(Ω) which were used in the proof of convergence of the schemes are presented here. Indeed,
they are variations of the Rellich theorem (relative compactness in L2(Ω) of a bounded sequence in H1(Ω)
or H1

0 (Ω)). The originality of these results is not the fact that the sequences are relatively compact in
L2(Ω), which is an immediate consequence of the Kolmogorov theorem (see below), but the fact that the
eventual limit, in L2(Ω), of the sequence (or of a subsequence) is necessarily in H1(Ω) (or in H1

0 (Ω) for
Theorem

kolmh10
3.10), a space which does not contain the elements of the sequence.
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We shall make use in this section of the Kolmogorov compactness theorem in L2(Ω) which we now recall.
The essential part of the proof of this theorem may be found in

bre
Brezis [1983].

Kolm Theorem 3.9 Let ω be an open bounded set of IRN , N ≥ 1, 1 ≤ q < ∞ and A ⊂ Lq(ω). Then, A is
relatively compact in Lq(ω) if and only if there exists {p(u), u ∈ A} ⊂ Lq(IRN ) such that

1. p(u) = u a.e. on ω, for all u ∈ A,

2. {p(u), u ∈ A} is bounded in Lq(IRN),

3. ‖p(u)(·+ η)− p(u)‖Lq(IRN ) → 0, as η → 0, uniformly with respect to u ∈ A.

Let us now state the compactness results used in this chapter.

kolmh10 Theorem 3.10 Let Ω be an open bounded set of IRd with a Lipschitz continuous boundary, d ≥ 1, and
{un, n ∈ IN} a bounded sequence of L2(Ω). For n ∈ IN, one defines ũn by ũn = un a.e. on Ω and ũn = 0
a.e. on IRd \ Ω. Assume that there exist C ∈ IR and {hn, n ∈ IN} ⊂ IR+ such that hn → 0 as n → ∞
and

‖ũn(·+ η)− ũn‖2
L2(IRd) ≤ C|η|(|η| + hn), ∀n ∈ IN, ∀η ∈ IRd. (3.154) transh10

Then, {un, n ∈ IN} is relatively compact in L2(Ω). Furthermore, if un → u in L2(Ω) as n → ∞, then
u ∈ H1

0 (Ω).

Proof of Theorem
kolmh10
3.10

Since {hn, n ∈ IN} is bounded, the fact that {un, n ∈ IN} is relatively compact in L2(Ω) is an immediate
consequence of Theorem

Kolm
3.9, taking N = d, ω = Ω, q = 2 and p(un) = ũn. Then, assuming that un → u

in L2(Ω) as n → ∞, it is only necessary to prove that u ∈ H1
0 (Ω). Let us first remark that ũn → ũ in

L2(IRd), as n→∞, with ũ = u a.e. on Ω and ũ = 0 a.e. on IRd \ Ω.
Then, for ϕ ∈ C∞c (IRd), one has, for all η ∈ IRd, η 6= 0 and n ∈ IN, using the Cauchy-Schwarz inequality
and thanks to (

transh10
3.154),

∫

IRd

(ũn(x+ η)− ũn(x))

|η| ϕ(x)dx ≤
√
C|η|(|η| + hn)

|η| ‖ϕ‖L2(IRd),

which gives, letting n→∞, since hn → 0,

∫

IRd

(ũ(x+ η)− ũ(x))

|η| ϕ(x)dx ≤
√
C‖ϕ‖L2(IRd),

and therefore, with a trivial change of variables in the integration,

∫

IRd

(ϕ(x − η)− ϕ(x))

|η| ũ(x)dx ≤
√
C‖ϕ‖L2(IRd). (3.155) ueh1

Let {ei, i = 1, . . . , d} be the canonical basis of IRd. For i ∈ {1, . . . , d} fixed, taking η = hei in (
ueh1
3.155)

and letting h→ 0 (with h > 0, for instance) leads to

−
∫

IRd

∂ϕ(x)

∂xi
ũ(x)dx ≤

√
C‖ϕ‖L2(IRd),

for all ϕ ∈ C∞c (IRd).
This proves that Diũ (the derivative of ũ with respect to xi in the sense of distributions) belongs to
L2(IRd), and therefore that ũ ∈ H1(IRd). Since u is the restriction of ũ on Ω and since ũ = 0 a.e. on
IRd \ Ω, therefore u ∈ H1

0 (Ω). This completes the proof of Theorem
kolmh10
3.10.
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kolmh1 Theorem 3.11 Let Ω be an open bounded set of IRd, d ≥ 1, and {un, n ∈ IN} a bounded sequence of
L2(Ω). For n ∈ IN, one defines ũn by ũn = un a.e. on Ω and ũn = 0 a.e. on IRd \Ω. Assume that there
exist C ∈ IR and {hn, n ∈ IN} ⊂ IR+ such that hn → 0 as n→∞ and such that

‖ũn(·+ η)− ũn‖2
L2(IRd) ≤ C|η|, ∀n ∈ IN, ∀η ∈ IRd, (3.156) transh11

and, for all compact ω̄ ⊂ Ω,

‖un(·+ η)− un‖2
L2(ω̄) ≤ C|η|(|η| + hn), ∀n ∈ IN, ∀η ∈ IRd, |η| < d(ω̄,Ωc). (3.157) transh12

(The distance between ω̄ and IRd \ Ω is denoted by d(ω̄,Ωc).)
Then {un, n ∈ IN} is relatively compact in L2(Ω). Furthermore, if un → u in L2(Ω) as n → ∞, then
u ∈ H1(Ω).

Proof of Theorem
kolmh1
3.11

The proof is very similar to that of Theorem
kolmh10
3.10. Using assumption

transh11
3.156, Theorem

Kolm
3.9 yields that {un,

n ∈ IN} is relatively compact in L2(Ω). Assuming now that un → u in L2(Ω), as n → ∞, one has to
prove that u ∈ H1(Ω).
Let ϕ ∈ C∞c (Ω) and ε > 0 such that ϕ(x) = 0 if the distance from x to IRd \Ω is less than ε. Assumption
transh12
3.157 yields

∫

Ω

(un(x+ η)− un(x))

|η| ϕ(x)dx ≤
√
C|η|(|η| + hn)

|η| ‖ϕ‖L2(Ω),

for all η ∈ IRd such that 0 < |η| < ε.
From this inequality, it may be proved, as in the proof of Theorem

kolmh10
3.10 (letting n → ∞ and using a

change of variables in the integration),

∫

Ω

(ϕ(x − η)− ϕ(x))

|η| u(x)dx ≤
√
C‖ϕ‖L2(Ω),

for all η ∈ IRd such that 0 < |η| < ε.
Then, taking η = hei and letting h→ 0 (with h > 0, for instance) one obtains, for all i ∈ {1, . . . , d},

−
∫

Ω

∂ϕ(x)

∂xi
u(x)dx ≤

√
C‖ϕ‖L2(Ω),

for all ϕ ∈ C∞c (Ω).
This proves that Diu (the derivative of u with respect to xi in the sense of distributions) belongs to
L2(Ω), and therefore that u ∈ H1(Ω). This completes the proof of Theorem

kolmh1
3.11.



Chapter 4

Parabolic equations

parabolic
The aim of this chapter is the study of finite volume schemes applied to a class of linear or nonlinear
parabolic problems. We consider the following transient diffusion-convection equation:

ut(x, t) −∆ϕ(u)(x, t) + div(vu)(x, t) + bu(x, t) = f(x, t), x ∈ Ω, t ∈ (0, T ), (4.1) parabch

where Ω is an open polygonal bounded subset of IRd, with d = 2 or d = 3, T > 0, b ≥ 0, v ∈ IRd is,
for the sake of simplicity, a constant velocity field, f is a function defined on Ω× IR+ which represents a
volumetric source term. The function ϕ is a nondecreasing Lipschitz continuous function, which arises in
the modelling of general diffusion processes. A simplified version of Stefan’s problem may be expressed
with the formulation (

parabch
4.1) where ϕ is a continuous piecewise linear function, which is constant on an

interval. The porous medium equation is also included in equation (
parabch
4.1), with ϕ(u) = um, m > 1.

However, the linear case, i.e. ϕ(u) = u, is of full interest and the error estimate of section
parabest
4.2 will be

given in such a case. In section
paranl
4.3 page

paranl
102, we study the convergence of the explicit and of the implicit

Euler scheme for the nonlinear case with v = 0 and b = 0.

Remark 4.1 One could also consider a nonlinear convection term of the form div(vψ(u))(x, t) where
ψ ∈ C1(IR, IR). Such a nonlinear convection term will be largely studied in the framework of nonlinear
hyperbolic equations (chapters

hyper1d
5 and

hypmd
6) and we restrain here to a linear convection term for the sake of

simplicity.

An initial condition is given by

u(x, 0) = u0(x), x ∈ Ω. (4.2) parabcich

Let ∂Ω denote the boundary of Ω, and let ∂Ωd ⊂ ∂Ω and ∂Ωn ⊂ ∂Ω such that ∂Ωd ∪ ∂Ωn = ∂Ω and
∂Ωd ∩ ∂Ωn = ∅. A Dirichlet boundary condition is specified on ∂Ωd ⊂ ∂Ω. Let g be a real function
defined on ∂Ωd × IR+, the Dirichlet boundary condition states that

u(x, t) = g(x, t), x ∈ ∂Ωd, t ∈ (0, T ). (4.3) parabclch

A Neumann boundary condition is given with a function g̃ defined on ∂Ωn × IR+:

−∇ϕ(u)(x, t) · n(x) = g̃(x, t), x ∈ ∂Ωn, t ∈ (0, T ), (4.4) parabc2ch

where n is the unit normal vector to ∂Ω, outward to Ω.

Remark 4.2 Note that, formally, ∆ϕ(u) = div(ϕ′(u)∇u). Then, if ϕ′(u)(x, t) = 0 for some (x, t) ∈
Ω× (0, T ), the diffusion coefficient vanishes, so that Equation (

parabch
4.1) is a “degenerate” parabolic equation.

In this case of degeneracy, the choice of the boundary conditions is important in order for the problem
to be well-posed. In the case where ϕ′ is positive, the problem is always parabolic.

95
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In the next section, a finite volume scheme for the discretization of (
parabch
4.1)-(

parabc2ch
4.4) is presented. An error

estimate in the linear case (that is ϕ(u) = u) is given in section
parabest
4.2. Finally, a nonlinear (and degenerate)

case is studied in section
paranl
4.3; a convergence result is given for subsequences of sequences of approximate

solutions, and, when the weak solution is unique, for the whole set of approximate solutions. A uniqueness
result is therefore proved for the case of a smooth boundary.

4.1 Meshes and schemes
parasch

In order to perform a finite volume discretization of system (
parabch
4.1)-(

parabc2ch
4.4), admissible meshes are used in

a similar way to the elliptic cases. Let T be an admissible mesh of Ω in the sense of Definition
meshdirichlet
3.1

page
meshdirichlet
37 with the additional assumption that any σ ∈ Eext is included in the closure of ∂Ωd or included

in the closure of ∂Ωn. The time discretization may be performed with a variable time step; in order
to simplify the notations, we shall choose a constant time step k ∈ (0, T ). Let Nk ∈ IN? such that
Nk = max{n ∈ IN, nk < T}, and we shall denote tn = nk, for n ∈ {0, . . . , Nk + 1}. Note that with a
variable time step, error estimates and convergence results similar to that which are given in the next
sections hold.

Denote by {unK , K ∈ T , n ∈ {0, . . . , Nk + 1}} the discrete unknowns; the value unK is an expected
approximation of u(xK , nk).
In order to obtain the numerical scheme, let us integrate formally Equation (

parabch
4.1) over each control volume

K of T , and time interval (nk, (n+ 1)k), for n ∈ {0, . . . , Nk}:

∫

K

(u(x, tn+1)− u(x, tn))dx −
∫ (n+1)k

nk

∫

∂K

∇ϕ(u)(x, t) · nK(x)dγ(x)dt+
∫ (n+1)k

nk

∫

∂K

v · nK(x)u(x, t)dγ(x)dt + b

∫ (n+1)k

nk

∫

K

u(x, t)dxdt =

∫ (n+1)k

nk

∫

K

f(x, t)dxdt.

(4.5) eqint

where nK is the unit normal vector to ∂K, outward to K.

Recall that, as usual, the stability condition for an explicit discretization of a parabolic equation requires
the time step to be limited by a power two of the space step, which is generally too strong a condition
in terms of computational cost. Hence the choice of an implicit formulation in the left hand side of (

eqint
4.5)

which yields

1

k

∫

K

(u(x, tn+1)− u(x, tn))dx −
∫

∂K

∇ϕ(u)(x, tn+1) · nK(x)dγ(x)+
∫

∂K

v · nK(x)u(x, tn+1)dγ(x) + b

∫

K

u(x, tn+1)dxdt =
1

k

∫ (n+1)k

nk

∫

K

f(x, t)dxdt,

(4.6) eqinti

There now remains to replace in Equation (
eqint
4.5) each term by its approximation with respect to the

discrete unknowns (and the data). Before doing so, let us remark that another way to obtain (
eqinti
4.6) is to

integrate (in space) formally Equation (
parabch
4.1) over each control volume K of T , at time t ∈ (0, T ). This

gives

∫

K

ut(x, t)dx −
∫

∂K

∇ϕ(u)(x, t) · nK(x)dγ(x)+
∫

∂K

v · nK(x)u(x, t)dγ(x) + b

∫

K

u(x, t)dx =

∫

K

f(x, t)dx.
(4.7) eqintrt

An implicit time discretization is then obtained by taking t = tn+1 in the left hand side of (
eqintrt
4.7), and

replacing ut(x, tn+1) by (u(x, tn+1) − u(x, tn))/k. For the right hand side of (
eqintrt
4.7) a mean value of f

between tn and tn+1 may be used. This gives (
eqinti
4.6). It is also possible to take f(x, tn+1) in the right hand

side of (
eqintrt
4.7). This latter choice is simpler for the proof of some error estimates (see Section

parabest
4.2).
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Writing the approximation of the various terms in Equation (
eqinti
4.6) with respect to the discrete unknowns

(namely, {unK , K ∈ T , n ∈ {0, . . . , Nk +1}}) and taking into account the initial and boundary conditions
yields the following implicit finite volume scheme for the discretization of (

parabch
4.1)-(

parabc2ch
4.4), using the same

notations and introducing some auxiliary unknowns as in Chapter
ellmd
3 (see equations (

ellschema
3.20)-(

ellschemad
3.23) page

ellschemad
42):

m(K)
un+1
K − unK

k
+
∑

σ∈EK

Fn+1
K,σ +

∑

σ∈EK

vK,σu
n+1
σ,+ + m(K)bun+1

K = m(K)fnK ,

∀K ∈ T , ∀n ∈ {0, . . . , Nk},
(4.8) parab

with

dK,σF
n
K,σ = −m(σ)

(
ϕ(unσ)− ϕ(unK)

)
for σ ∈ EK , for n ∈ {1, . . . , Nk + 1}, (4.9) parabflux

FnK,σ = −FnL,σ for all σ ∈ Eint such that σ = K|L, for n ∈ {1, . . . , Nk + 1}, (4.10) parabcons

FnK,σ =
1

k

∫ nk

(n−1)k

∫

σ

g̃(x, t)dγ(x)dt for σ ∈ EK such that σ ⊂ ∂Ωn, for n ∈ {1, . . . , Nk + 1}, (4.11) parabc2

and

unσ = g(yσ, nk) for σ ⊂ ∂Ωd, for n ∈ {1, . . . , Nk + 1}, (4.12) parabcl

The upstream choice for the convection term is performed as in the elliptic case (see page
easyvf1
41, recall that

vK,σ = m(σ)v.nK,σ),

unσ,+ =

{
unK , if v · nK,σ ≥ 0,
unL, if v · nK,σ < 0,

for all σ ∈ Eint such that σ = K|L, (4.13) parabconv

unσ,+ =

{
unK , if v · nK,σ ≥ 0,
unσ if v · nK,σ < 0,

for all σ ∈ EK such that σ ⊂ ∂Ω. (4.14) parabconvb

Note that, in the same way as in the elliptic case, the unknowns un+1
σ may be eliminated using (

parabflux
4.9)-(

parabcl
4.12).

There remains to define the right hand side, which may be defined by:

fnK =
1

k m(K)

∫ (n+1)k

nk

∫

K

f(x, t)dxdt, ∀K ∈ T , ∀n ∈ {0, . . . , Nk}, (4.15) parabvfnp

or by:

fnK =
1

m(K)

∫

K

f(x, tn+1)dx, ∀K ∈ T , ∀n ∈ {0, . . . , Nk}. (4.16) parabvfnq

Initial conditions can be taken into account by different ways, depending on the regularity of the data
u0. For example, it is possible to take

u0
K =

1

m(K)

∫

K

u0(x)dx, K ∈ T , (4.17) parnlcondini

or

u0
K = u0(xK),K ∈ T . (4.18) parabvf3
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Remark 4.3 It is not obvious to prove that the implicit finite volume scheme (
parab
4.8)-(

parabconvb
4.14) (with (

parabvfnp
4.15) or

(
parabvfnq
4.16) and (

parnlcondini
4.17) or (

parabvf3
4.18)) has a solution. Once the unknowns F n+1

K,σ are eliminated, a nonlinear system
of equations has to be solved. A proof of the existence and uniqueness of a solution to this system is
proved in the next section for the linear case, and is sketched in Remark

parnleximp
4.9 for the nonlinear case.

Remark 4.4 (Comparison with finite difference and finite element) Let us first consider the case
of the heat equation, that is the case where v = 0, b = 0, ϕ(s) = s for all s ∈ IR, with Dirichlet condi-
tion on the whole boundary (∂Ωd = ∂Ω). If the the mesh consists in rectangular control volumes with
constant space step in each direction, then the discretization obtained with the finite volume method
gives (as in the case of the Laplace operator), the same scheme than the one obtained with the finite
difference method (for which the discretization points are the centers of the elements of T ) except at
the boundary. In the general nonlinear case, finite difference methods have been used in

ATT
Attey [1974],

KAM
Kamenomostskaja, S.L. [1995] and

MEY
Meyer [1973], for example.

Finite element methods have also been classically used for this type of problem, see for instance
AG
Amiez

and Gremaud [1991] or
CIA
Ciavaldini [1975]. Following the notations of section

lfefv
3.4.1, let M be a finite

element mesh of Ω, consisting of triangles (see e.g.
ciarlet
Ciarlet, P.G. [1978] for the conditions on the

triangles), and let V ⊂ Ω be the set of vertices of M. For K ∈ V (note that here K denotes a point of
Ω), let ϕK be the shape function associated to K in the piecewise linear finite element method for the
mesh M. A finite element formulation for (

parabch
4.1), with the implicit Euler scheme in time, yields for a node

/cv/in/Omega:

1

k

(∫

Ω

(un+1(x)− un(x))ϕK (x)dx
)

+

∫

Ω

∇un+1(x) · ∇ϕK(x)dx =

∫

Ω

f(x, tn+1)ϕK(x)dx,

Let us approximate un by the usual Galerkin expansion:

un+1 =
∑

L∈V
un+1
L ϕL and un =

∑

L∈V
unLϕL

where unL is expected to be an approximation of u at time tn and node L, for all L and n; replacing in
the above equation, this yields:

1

k

∑

L∈V

∫

Ω

(un+1
j − unj )ϕL(x)ϕK(x)dx+

∑

L∈V

∫

Ω

un+1
j ∇ϕL(x) · ∇ϕK(x)dx =

∫

Ω

f(x, tn+1)ϕK(x)dx. (4.19) efp

Hence, the finite element formulation yields, at each time step, a linear system of the form CUn+1 +
AUn+1 = B (where Un+1 = (un+1

K )tK∈V,K∈Ω, and A and C are N ×N matrices); this scheme, however, is
generally used after a mass-lumping, i.e. by assigning to the diagonal term of C the sum of the coefficients
of the corresponding line and transforming it into a diagonal matrix; we already saw in section

lfefv
3.4.1 that

the part AUn+1 may be seen as a linear system derived from a finite volu;e formulation; hence the mass
lumping technique the left hand side of (

efp
4.19) to be seen as the result of a discretization by a finite volume

scheme.

4.2 Error estimate for the linear case
parabest

We consider, in this section, the linear case, ϕ(s) = s for all s ∈ IR, and assume ∂Ωd = ∂Ω, i.e. that a
Dirichlet boundary condition is given on the whole boundary, in which case Problem (

parabch
4.1)-(

parabc2ch
4.4) becomes

ut(x, t)−∆u(x, t) + div(vu)(x, t) + bu(x, t) = f(x, t), x ∈ Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
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u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ (0, T );

the finite volume scheme (
parab
4.8)-(

parabconvb
4.14) then becomes, assuming, for the sake of simplicity, that xK ∈ K

for all K ∈ T ,

m(K)
un+1
K − unK

k
+
∑

σ∈EK

Fn+1
K,σ +

∑

σ∈EK

vK,σu
n+1
σ,+ + m(K)bun+1

K = m(K)fnK ,

∀K ∈ T , ∀n ∈ {0, . . . , Nk},
(4.20) parablin

with

FnK,σ = −τK|L(unL − unK) for all σ ∈ Eint such that σ = K|L, for n ∈ {1, . . . , Nk + 1}, (4.21) parablinflux

FnK,σ = −τσ(g(yσ, nk)− unK) for all σ ∈ EK such that σ ⊂ ∂Ω, for n ∈ {1, . . . , Nk + 1}, (4.22) parablincl

and

{
unσ,+ = unK , if v · nK,σ ≥ 0,
unσ,+ = unL, if v · nK,σ < 0,

for all σ ∈ Eint such that σ = K|L, (4.23) parablinconv

{
unσ,+ = unK , if v · nK,σ ≥ 0,
unσ,+ = g(yσ , nk), if v · nK,σ < 0,

for all σ ∈ EK such that σ ⊂ ∂Ω. (4.24) parablinconvb

The source term and initial condition f and u0, are discretized by (
parabvfnq
4.16) and (

parabvf3
4.18).

A convergence analysis of a one-dimensional vertex-centered scheme was performed in
guo
Guo and Stynes

[1997] by writing the scheme in a finite element framework. Here we shall use direct finite volume
techniques which also handle the multi-dimensional case.
The following theorem gives an L∞ estimate (on the approximate solution) and an error estimate. Some
easy generalizations are possible (for instance, the same theorem holds with b < 0, the only difference is
that in the L∞ estimate (

parinfty
4.25) the bound c also depends on b).

parabestim Theorem 4.1 Let Ω be an open polygonal bounded subset of IRd, T > 0, u ∈ C2(Ω × IR+, IR), b ≥ 0
and v ∈ IRd. Let u0 ∈ C2(Ω, IR) be defined by u0 = u(·, 0), let f ∈ C0(Ω × IR+, IR) be defined by
f = ut − div(∇u) + div(vu) + bu and g ∈ C0(∂Ω× IR+, IR) defined by g = u on ∂Ω× IR+. Let T be an
admissible mesh in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37 and k ∈ (0, T ). Then there exists a unique vector

(uK)K∈T satisfying (
parablin
4.20)-(

parablinconvb
4.24) (or (

parab
4.8)-(

parabconvb
4.14)) with (

parabvfnq
4.16) and (

parabvf3
4.18). There exists c only depending

on u0, T , f and g such that

sup{|unK |,K ∈ T , n ∈ {1, . . . , Nk + 1}} ≤ c. (4.25) parinfty

Furthermore, let enK = u(xK , tn)−unK , for K ∈ T and n ∈ {1, . . . , Nk + 1}, and h = size(T ). Then there
exists C ∈ IR+ only depending on b, u, v, Ω and T such that

(
∑

K∈T
(enK)2m(K))

1
2 ≤ C(h+ k), ∀n ∈ {1, . . . , Nk + 1}. (4.26) estdeuxp

Proof of Theorem
parabestim
4.1

For simplicity, let us assume that xK ∈ K for all K ∈ T . Generalization without this condition is
straightforward.

(i) Existence, uniqueness, and L∞ estimate
For a given n ∈ {0, . . . , Nk}, set fnK = 0 and unK = 0 in (

parablin
4.20), and g(yσ , (n+ 1)k) = 0 for all σ ∈ E such

that σ ⊂ ∂Ω. Multiplying (
parablin
4.20) by un+1

K and using the same technique as in the proof of Lemma
ellexistu
3.2

page
ellexistu
42 yields that un+1

K = 0 for all K ∈ T . This yields the uniqueness of the solution {un+1
K , K ∈ T } to
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(
parablin
4.20)-(

parablinconvb
4.24) for given {unK , K ∈ T }, {fnK , K ∈ T } and {g(yσ, (n+ 1)k), σ ∈ E , σ ⊂ ∂Ωd}. The existence

follows immediately, since (
parablin
4.20)-(

parablinconvb
4.24) is a finite dimensional linear system with respect to the unknown

{un+1
K , K ∈ T } (with as many unknowns as equations).

Let us now prove the estimate (
parinfty
4.25).

Set mf = min{f(x, t), x ∈ Ω, t ∈ [0, 2T ]} and mg = min{g(x, t), x ∈ ∂Ω, t ∈ [0, 2T ]}.
Let n ∈ {0, . . . , Nk}. Then, we claim that

min{un+1
K , K ∈ T } ≥ min{min{unK , K ∈ T }+ kmf , 0,mg}. (4.27) claim1

Indeed, if min{un+1
K , K ∈ T } < min{0,mg}, let K0 ∈ T such that un+1

K0
= min{un+1

K , K ∈ T }. Since

un+1
K0

< 0 and un+1
K0

< mg writing (
parablin
4.20) with K = K0 and n leads to

un+1
K0

≥ unK0
+ kfnK0

≥ min{unK , K ∈ T }+ kmf ,

this proves (
claim1
4.27), which yields, by induction, that:

min{unK , K ∈ T } ≥ min{min{u0
K , K ∈ T }, 0,mg}+ nkmin{mf , 0}, ∀n ∈ {0, . . . , Nk + 1}.

Similarly,

max{unK , K ∈ T } ≤ max{max{u0
K , K ∈ T }, 0,Mg}+ nkmax{Mf , 0}, ∀n ∈ {0, . . . , Nk + 1},

with Mf = max{f(x, t), x ∈ Ω, t ∈ [0, 2T ]} and Mg = max{g(x, t), x ∈ ∂Ω, t ∈ [0, 2T ]}.
This proves (

parinfty
4.25) with c = ‖u0‖L∞(Ω) + ‖g‖L∞(∂Ω×(0,2T )) + 2T‖f‖L∞(Ω×(0,2T )).

(ii) Error estimate
As in the stationary case (see the proof of Theorem

ellesterr
3.3 page

ellesterr
52), one uses the regularity of the data

and the solution to write an equation for the error enK = u(xK , tn) − unK , defined for K ∈ T and
n ∈ {0, . . . , Nk + 1}. Note that e0K = 0 for K ∈ T . Let n ∈ {0, . . . , Nk}. Integrating (in space) Equation
(
parabch
4.1) over each control volume K of T , at time t = tn+1, gives, thanks to the choice of fnK (see (

parabvfnq
4.16)),

∫

K

ut(x, tn+1)dx−
∫

∂K

(
∇u(x, t)− vu(x, tn+1)

)
· nK(x)dγ(x) + b

∫

K

u(x, tn+1)dx = m(K)fnK . (4.28) eqintrtl

Note that, for all x ∈ K and all K ∈ T , a Taylor expansion yields, thanks to the regularity of u:

ut(x, tn+1) = (1/k)(u(xK , tn+1)− u(xK , tn)) + snK(x) with |snK(x)| ≤ C1(h+ k)

with some C1 only depending on u and T . Therefore, defining SnK =

∫

K

snK(x)dx, one has: |SnK | ≤
C1m(K)(h+ k).
One follows now the lines of the proof of Theorem

ellesterr
3.3 page

ellesterr
52, adding the terms due to the time derivative

ut. Substracting (
parablin
4.20) to (

eqintrtl
4.28) yields

m(K)
en+1
K − enK

k
+
∑

σ∈EK

(
Gn+1
K,σ +Wn+1

K,σ

)
+ bm(K)en+1

K =

bm(K)ρnK −
∑

σ∈EK

m(σ)(RnK,σ + rnK,σ)− SnK , ∀K ∈ T ,
(4.29) diffea

where (with the notations of Definition
meshdirichlet
3.1 page

meshdirichlet
37),

Gn+1
K,σ = −τσ(en+1

L − en+1
K ), ∀K ∈ T , ∀σ ∈ EK ∩ Eint, σ = K|L,

Gn+1
K,σ = τσe

n+1
K , ∀K ∈ T , ∀σ ∈ EK ∩ Eext,

Wn+1
K,σ = m(σ)v · nK,σ(u(xσ,+, tn+1)− un+1

σ,+ ),
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where xσ,+ = xK (resp. xL) if σ ∈ Eint, σ = K|L and v · nK,σ ≥ 0 (resp. v · nK,σ < 0) and xσ,+ = xK
(resp. yσ) if σ = EK ∩ Eext and v · nK,σ ≥ 0 (resp. v · nK,σ < 0),

ρnK = u(xK , t
n+1)− 1

m(K)

∫

K

u(x, tn+1)dx,

m(σ)RnK,σ = τσ(u(xK , t
n+1)− u(xL, t

n+1)) +

∫

σ

∇u(x, tn).nK,σdγ(x) if σ = K|L ∈ Eint,

m(σ)RnK,σ = τσ(u(xK , t
n+1)− g(yσ , t

n+1) +

∫

σ

∇u(x, tn).nK,σdγ(x) if σ ∈ EK ∩ Eint,

and

m(σ)rnK,σ = v · nK,σ(m(σ)u(xσ,+, tn+1)−
∫

m

(σ)u(x, tn+1)dγ(x), for any σ ∈ E .

As in Theorem
ellesterr
3.3, thanks to the regularity of u, there exists C2, only depending on u, v and T , such

that |RnK,σ |+ |rnK,σ | ≤ C2h and |ρnK | ≤ C2h, for any K ∈ T and σ ∈ EK .

Multiplying (
diffea
4.29) by en+1

K , summing for K ∈ T , and performing the same computations as in the proof
of Theorem

ellesterr
3.3 between (

ellraslebol1
3.56) to (

ellraslebol4
3.60) page

ellraslebol4
55 yields, with some C3 only depending on u, v, b, Ω and

T ,

1

k

∑

K∈T
m(K)(en+1

K )2 +
1

2
‖en+1
T ‖2

1,T +
1

2
b‖en+1

T ‖2
L2(Ω) ≤

C3h
2 + C1(h+ k)

∑

K∈T
m(K)|en+1

K |+ 1

k

∑

K∈T
m(K)en+1

K enK ,
(4.30) finesterr

where the second term of the right hand side is due to the bound on SnK and where en+1
T is a piecewise

constant function defined by

en+1
T (x) = en+1

K , for x ∈ K,K ∈ T .
Inequality (

finesterr
4.30) yields

‖en+1
T ‖2

L2(Ω) ≤ 2kC3h
2 + 2kC1m(Ω)(k + h)‖en+1

T ‖L2(Ω) + ‖enT ‖2
L2(Ω),

which gives

‖en+1
T ‖2

L2(Ω) ≤ ‖enT ‖2
L2(Ω) + C4

(
kh2 + k(k + h)‖en+1

T ‖L2(Ω)

)
, (4.31) An

where C4 ∈ IR+ only depends on u, v, b, Ω and T . Remarking that for ε > 0, the following inequality
holds:

C4k(k + h)‖en+1
T ‖L2(Ω) ≤ ε2‖en+1

T ‖2
L2(Ω) + (1/ε2)C2

4k
2(k + h)2,

taking ε2 = k/(k + 1), (
An
4.31) yields

‖en+1
T ‖2

L2(Ω) ≤ (1 + k)‖enT ‖2
L2(Ω) + C4kh

2(1 + k) + (1 + k)2C2
4k(k + h)2. (4.32) Anp

Then, if ‖enT ‖2
L2(Ω) ≤ cn(h + k)2, with cn ∈ IR+, one deduces from (

Anp
4.32), using h ≤ h + k and k < T ,

that

‖en+1
T ‖2

L2(Ω) ≤ cn+1(h+ k)2 with cn+1 = (1 + k)cn + C5k and C5 = C4(1 + T ) + C2
4 (1 + T )2.

(Note that C5 only depends on u, v, b, Ω and T ).
Choosing c0 = 0 (since ‖e0T ‖L2(Ω) = 0), the relation between cn and cn+1 yields (by induction) cn ≤
C5e

2kn. Estimate (
estdeuxp
4.26) follows with C2 = C5e

4T .
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Remark 4.5 The error estimate given in Theorem
parabestim
4.1 may be generalized to the case of discontinuous

coefficients. The admissibility of the mesh is then redefined so that the data and the solution are piecewise
regular on the control volumes as in Definition

rouenmesh
3.8 page

rouenmesh
79, see also

rouenrh
Herbin [1996].

4.3 Convergence in the nonlinear case
paranl

4.3.1 Solutions to the continuous problem
parnlpbcont

We consider Problem (
parabch
4.1)-(

parabc2ch
4.4) with v = 0, b = 0, ∂Ωn = ∂Ω and g̃ = 0, that is a homogeneous

Neumann condition on the whole boundary, in which case the problem becomes

ut(x, t)−∆ϕ(u)(x, t) = f(x, t), for (x, t) ∈ Ω× (0, T ), (4.33) paranlanf

with

∇ϕ(u)(x, t) · n(x) = 0, for (x, t) ∈ ∂Ω× (0, T ), (4.34) paranlanb

and the initial condition

u(x, 0) = u0(x), for all x ∈ Ω. (4.35) paranlani

We suppose that the following hypotheses are satisfied:

parnlH Assumption 4.1

(i) Ω is an open bounded polygonal subset of IRd and T > 0.

(ii) The function ϕ ∈ C(IR, IR) is a nondecreasing locally Lipschitz continuous function.

(iii) The initial data u0 satisfies u0 ∈ L∞(Ω).

(iv) The right hand side f satisfies f ∈ L∞(Ω× IR?
+).

Equation (
paranlanf
4.33) is a degenerate parabolic equation. Formally, ∆ϕ(u) = div(ϕ′(u)∇u), so that, if ϕ′(u) =

0, the diffusion coefficient vanishes. Let us give a definition of a weak solution u to Problem (
paranlanf
4.33)-

(
paranlani
4.35) (the proof of the existence of such a solution is given in

KAM
Kamenomostskaja, S.L. [1995],

LSU
Ladyženskaja, Solonnikov and Ural’ceva [1968],

MEI
Meirmanov [1992],

Ol2
Oleinik [1960]).

parnldefess Definition 4.1 Under Assumption
parnlH
4.1, a measurable function u is a weak solution of (

paranlanf
4.33)-(

paranlani
4.35) if

u ∈ L∞(Ω× (0, T )),∫ T

0

∫

Ω

(
u(x, t)ψt(x, t) + ϕ(u(x, t))∆ψ(x, t) + f(x, t)ψ(x, t)

)
dx dt +

∫

Ω

u0(x)ψ(x, 0)dx = 0, for all ψ ∈ AT ,
(4.36) paranlanw

where AT = {ψ ∈ C2,1(Ω × [0, T ]), ∇ψ · n = 0 on ∂Ω × [0, T ], and ψ(·, T ) = 0}, and C2,1(Ω × [0, T ])
denotes the set of functions which are restrictions on Ω× [0, T ] of functions from IRd × IR into IR which
are twice (resp. once) continuously differentiable with respect to the first (resp. second) variable. (Recall
that, as usual, n is the unit normal vector to ∂Ω, outward to Ω.)

Remark 4.6 It is possible to use a solution in a stronger sense, using only one integration by parts for
the space term. It then leads to a larger test function space than AT .
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Remark 4.7 Note that the function u formally satisfies the conservation law

∫

Ω

u(x, t)dx =

∫

Ω

u0(x)dx +

∫ t

0

∫

Ω

f(x, t)dxdt, (4.37) parnlcsvt

for all t ∈ [0, T ]. This property is also satisfied by the finite volume approximation.

4.3.2 Definition of the finite volume approximate solutions

As in sections
vfquatre
3.1.2 page

vfquatre
37 and

msn
3.2.1 page

msn
63, an admissible mesh of Ω is defined, with respect to which

a functional space is introduced: this space contains the approximate solutions obtained from the finite
volume discretization over the admissible mesh.

Xmeshk Definition 4.2 Let Ω be an open bounded polygonal subset of IRd, T be an admissible mesh in the
sense of Definition

meshneuman
3.5 page

meshneuman
63, T > 0, k ∈ (0, T ) and Nk = max{n ∈ IN;nk < T}. Let X(T , k) be

the set of functions u from Ω × (0, (Nk + 1)k) to IR such that there exists a family of real values {unK ,
K ∈ T , n ∈ {0, . . . , Nk}}, with u(x, t) = unK for a.e. x ∈ K, K ∈ T and for a.e. t ∈ [nk, (n + 1)k),
n ∈ {0, . . . , Nk}.

Since we only consider, for the sake of simplicity, a Neumann boundary condition, we can easily eliminate
the unknowns F nK,σ located at the edges in equation (

parab
4.8) using the equations (

parabflux
4.9), (

parabcons
4.10), and (

parabc2
4.11).

An explicit version of the scheme can then be written in the following way:

m(K)
un+1
K − unK

k
−

∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)
= m(K)fnK ,

∀K ∈ T , ∀n ∈ {0, . . . , Nk}.
(4.38) parnlschema

u0
K =

1

m(K)

∫

K

u0(x)dx, ∀K ∈ T , (4.39) parnlcondinj

fnK =
1

k m(K)

∫ (n+1)k

nk

∫

K

f(x, t)dxdt, ∀K ∈ T , ∀n ∈ {0, . . . , Nk}. (4.40) parnlcondsou

(Recall that τK|L =
m(K|L)

dK|L
, see Definition

meshneuman
3.5 page

meshneuman
63.)

Remark 4.8 The definition using the mean value in (
parnlcondinj
4.39) is motivated by the lack of regularity assumed

on the data u0.

The scheme (
parnlschema
4.38)-(

parnlcondsou
4.40) is then used to build an approximate solution, uT ,k ∈ X(T , k) by

uT ,k(x, t) = unK , ∀x ∈ K, ∀t ∈ [nk, (n+ 1)k), ∀K ∈ T , ∀n ∈ {0, . . . , Nk}. (4.41) parnldefuapp

parnleximp Remark 4.9 The implicit finite volume scheme is defined by

m(K)
un+1
K − unK

k
−

∑

L∈N (K)

τK|L
(
ϕ(un+1

L )− ϕ(un+1
K )

)
= m(K)fnK ,

∀K ∈ T , ∀n ∈ {0, . . . , Nk}.
(4.42) parnlschemaimp

The proof of the existence of un+1
K , for any n ∈ {0, . . . , Nk}, can be obtained using the following fixed

point method:
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un+1,0
K = unK , for all K ∈ T , (4.43) parnlpfixei

and

m(K)
un+1,m+1
K − unK

k
−

∑

L∈N (K)

τK|L
(
ϕ(un+1,m

L )− ϕ(un+1,m+1
K )

)
= m(K)fnK ,

∀K ∈ T , ∀m ∈ IN.

(4.44) parnlpfixem

Equation (
parnlpfixem
4.44) gives a contraction property, which leads first to prove that for all K ∈ T , the sequence

(ϕ(un+1,m
K ))m∈IN converges. Then we deduce that (un+1,m

K )m∈IN also converges.
We shall see further that all results obtained for the explicit scheme are also true, with convenient
adaptations, for the implicit scheme. The function uT ,k is then defined by uT ,k(x, t) = un+1

K , for all x ∈
K, for all t ∈ [nk, (n+ 1)k).

The mathematical problem is to study, under Assumption
parnlH
4.1 and with a mesh in the sense of Definition

meshneuman
3.5, the convergence of uT ,k to a weak solution of Problem (

paranlanf
4.33)-(

paranlani
4.35), when h = size(T ) → 0 and k → 0.

Exactly in the same manner as for the elliptic case, we shall use estimates on the approximate solutions
which are discrete versions of the estimates which hold on the solution of the continous problem and which
ensure the stability of the scheme. We present the proofs in the case of the explicit scheme and show in
several remarks how they can be extended to the case of the implicit scheme (which is significantly easier
to study). The proof of convergence of the scheme uses a weak-? convergence property, as in

CIA
Ciavaldini

[1975], which is proved in a general setting in section
nlparaws
4.3.5 page

nlparaws
114. For the sake of completeness,

the proof of uniqueness of the weak solution of Problem (
paranlanf
4.33)-(

paranlani
4.35) is given for the case of a regular

boundary; this allows to prove that the whole sequence of approximate solutions converges to the weak
solution of problem (

paranlanf
4.33)-(

paranlani
4.35), in which case an admissible mesh for a smooth domain can easily be

defined (see Definition
parnlHT
4.4 page

parnlHT
114).

4.3.3 Estimates on the approximate solution

Maximum principle

parnlestinf Lemma 4.1 Under Assumption
parnlH
4.1, let T be an admissible mesh in the sense of Definition

meshneuman
3.5 page

meshneuman
63

and k ∈ (0, T ). Let U = ‖u0‖L∞(Ω) + T‖f‖L∞(Ω×(0,T )), B = sup
−U≤x<y≤U

ϕ(x)− ϕ(y)

x− y
. Assume that the

condition

k ≤ m(K)

B
∑

L∈N (K)

τK|L
, for all K ∈ T , (4.45) parnlcflt

is satisfied. Then the function uT ,k defined by (
parnlschema
4.38)-(

parnldefuapp
4.41) verifies

‖uT ,k‖L∞(Ω×(0,T )) ≤ U. (4.46) parnlinfsta

Proof of Lemma
parnlestinf
4.1

Let n ∈ {0, . . . , Nk − 1} and assume unK ∈ [−U,+U ] for all K ∈ T .
Let K ∈ T , Equation (

parnlschema
4.38) can be written as

un+1
K =

(
1− k

m(K)

∑

L∈N (K)

τK|L
ϕ(unL)− ϕ(unK)

unL − unK

)
unK +

k

m(K)

∑

L∈N (K)

(
τK|L

ϕ(unL)− ϕ(unK)

unL − unK

)
unL + kfnK ,
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with the convention that
ϕ(unL)− ϕ(unK)

unL − unK
= 0 if unL − unK = 0.

Thanks to the condition (
parnlcflt
4.45) and since ϕ is nondecreasing, the following inequality can be deduced:

|un+1
K | ≤ sup

L∈T
|unL|+ k‖f‖L∞(Ω×(0,T )).

Then, since K is arbitrary in T ,

sup
K∈T

|un+1
K | ≤ sup

L∈T
|unL|+ k‖f‖L∞(Ω×(0,T )). (4.47) parnlinfsta1

Using (
parnlinfsta1
4.47), an induction on n yields, for n ∈ {0, . . . , Nk}, supK∈T |unK | ≤ ‖u0‖L∞(Ω)+nk‖f‖L∞(Ω×(0,T )),

which leads to Inequality (
parnlinfsta
4.46) since Nkk ≤ T .

Remark 4.10 Assume that there exist α, β, γ ∈ IR?
+ such that m(K) ≥ αhd, m(∂K) ≤ βhd−1, for all

K ∈ T , and dK|L ≥ γh, for all K|L ∈ Eint (recall that h = size(T )). Then, k ≤ Ch2 with C = (αγ)/(Bβ)
yields (

parnlcflt
4.45).

Remark 4.11 Let (Tn, kn)n∈IN be a sequence of admissible meshes and time steps, and (uTn,kn)n∈IN the
associated sequence of approximate finite volume solutions; then , thanks to (

parnlinfsta
4.46), there exists a function

u ∈ L∞(Ω × (0, T )) and a subsequence of (uTn,kn)n∈IN which converges to u for the weak-? topology of
L∞(Ω× (0, T )).

Remark 4.12 Estimate (
parnlinfsta
4.46) is also true, with U = ‖u0‖L∞(Ω) + 2T‖f‖L∞(Ω×(0,2T )), for the implicit

scheme, because the fixed point method guarantees (
parnlinfsta1
4.47) (with ‖f‖L∞(Ω×(0,2T )) instead of ‖f‖L∞(Ω×(0,T ))

and until n = Nk), without any condition on k.

Space translates of approximate solutions

Let us now define a seminorm, which is the discrete version of the seminorm in the space L2(0, T ;H1(Ω)).

defh1dk Definition 4.3 (Discrete L2(0, T ;H1(Ω)) seminorm) Let Ω be an open bounded polygonal subset of
IRd, T an admissible finite volume mesh in the sense of Definition

meshneuman
3.5 page

meshneuman
63, T > 0, k ∈ (0, T ) and

Nk = max{n ∈ IN;nk < T}. For u ∈ X(T , k), let the following seminorms be defined by:

|u(·, t)|21,T =
∑

K|L∈Eint

τK|L(unL − unK)2, for a.e. t ∈ (0, T ) and n = max{n ∈ IN;nk ≤ t}, (4.48) normh1dsk

and

|u|21,T ,k =

Nk∑

n=0

k
∑

K|L∈Eint

τK|L(unL − unK)2. (4.49) normh1dk

Let us now state some preliminary lemmata to the use of Kolmogorov’s theorem (compactness properties
in L2(Ω× (0, T ))) in the proof of convergence of the approximate solutions.

lsteftrx Lemma 4.2 Let Ω be an open bounded polygonal subset of IRd, T an admissible mesh in the sense of
Definition

meshneuman
3.5 page

meshneuman
63, T > 0, k ∈ (0, T ) and u ∈ X(T , k). For all η ∈ IRd, let Ωη be defined by

Ωη = {x ∈ Ω, [x, x + η] ⊂ Ω}. Then:

‖u(·+ η, ·)− u(·, ·)‖2
L2(Ωη×(0,T )) ≤ |u|21,T ,k|η|(|η| + 2 size(T )), ∀η ∈ IRd, (4.50) parnltrx
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Proof of Lemma
lsteftrx
4.2

Reproducing the proof of Lemma
h1dtot
3.3 page

h1dtot
44 (see also the proof of (

cvneum2
3.110) page

cvneum2
75), we get, for a.e.

t ∈ (0, T ):

‖u(·+ η, t)− u(·, t)‖2
L2(Ωη) ≤ |u(·, t)|21,T |η|(|η|+ 2 size(T )), ∀η ∈ IRd. (4.51) parnltrx1

Integrating (
parnltrx1
4.51) on t ∈ (0, T ) gives (

parnltrx
4.50).

The set Ωη defined in Lemma
lsteftrx
4.2 verifies Ω \ Ωη ⊂ ∪σ∈Eext

¯ωη,σ, with ωη,σ = {y − tη, y ∈ σ, t ∈ [0, 1]}.
Then, m(Ω \Ωη) ≤ |η| m(∂Ω), since m(ω̄η) ≤ ηm(σ). Then, an immediate corollary of Lemma

lsteftrx
4.2 is the

following:

lsteftrxt Lemma 4.3 Let Ω be an open bounded polygonal subset of IRd, T an admissible mesh in the sense of
Definition

meshneuman
3.5 page

meshneuman
63, T > 0, k ∈ (0, T ) and u ∈ X(T , k). Let ũ be defined by ũ = u a.e. on Ω× (0, T ),

and ũ = 0 a.e. on IRd+1 \ Ω× (0, T ). Then:

{
‖ũ(·+ η, ·)− ũ(·, ·)‖2

L2(IRd+1)
≤ |η|

(
|u|21,T ,k(|η|+ 2 size(T )) + 2m(∂Ω)‖u‖2

L∞(Ω×(0,T ))

)
,

∀η ∈ IRd.
(4.52) parnltrxt

Remark 4.13 Estimate (
parnltrxt
4.52) makes use of the L∞(Ω×(0, T ))-norm of u ∈ X(T , k). A similar estimate

may be proved with the L2(Ω× (0, T ))-norm of u (instead of the L∞(Ω× (0, T ))-norm). Indeed, the right
hand side of (

parnltrxt
4.52) may be replaced by Cη(|u|21,T ,k + ‖u‖2

L2(Ω×(0,T ))), where C only depends on Ω. This
estimate is proved in Theorem

nllconv
3.7 page

nllconv
74 where it is used for the convergence of numerical schemes for

the Neumann problem (for which no L∞ estimate on the approximate solutions is available). The key to
its proof is the “trace lemma”

nlltrace
3.10 page

nlltrace
72.

Let us now state the following lemma, which gives an estimate of the discrete L2(0, T ;H1(Ω)) seminorm
of the nonlinearity.

parnlestimeg Lemma 4.4 Under Assumption
parnlH
4.1, let T be an admissible mesh in the sense of Definition

meshneuman
3.5 page

meshneuman
63.

Let ξ ∈ (0, 1) and k ∈ (0, T ) such that

k ≤ (1− ξ)
m(K)

B
∑

L∈N (K)

τK|L
, for all K ∈ T . (4.53) parnlcfl

Let uT ,k ∈ X(T , k) be given by (
parnlschema
4.38)-(

parnldefuapp
4.41).

Let U = ‖u0‖L∞(Ω) + T‖f‖L∞(Ω×(0,T )) and B be the Lipschitz constant of ϕ on [−U,U ]. Then there
exists F1 ≥ 0, which only depends on Ω, T , ϕ, u0, f and ξ such that

|ϕ(uT ,k)|21,T ,k ≤ F1. (4.54) parnlestimx

Proof of lemma
parnlestimeg
4.4

Let us first remark that the condition (
parnlcfl
4.53) is stronger than (

parnlcflt
4.45). Therefore, the result of lemma

parnlestinf
4.1

holds, i.e. |unK | ≤ U , for all K ∈ T , n ∈ {0, . . . , Nk}. Multiplying equation (
parnlschema
4.38) by kunK , and summing

the result over n ∈ {0, . . . , Nk} and K ∈ T yields:

Nk∑

n=0

∑

K∈T
m(K)(un+1

K − unK)unK−
Nk∑

n=0

k
∑

K∈T

∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)
unK =

Nk∑

n=0

k
∑

K∈T
m(K)unKf

n
K .

(4.55) parnl1e
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In order to obtain a lower bound on the first term on the left hand side of (
parnl1e
4.55), let us first remark that:

(un+1
K − unK)unK =

1

2
(un+1
K )2 − 1

2
(unK)2 − 1

2
(un+1
K − unK)2. (4.56) parnl2e

Now, applying (
parnlschema
4.38), using Young’s inequality, the following inequality is obtained:

(un+1
K − unK)2 ≤ k2(1 + ξ)

[( 1

m(K)

∑

L∈N (K)

τK|L(ϕ(unL)− ϕ(unK))
)2

+
(fnK)2

ξ

]
. (4.57) parnl3eb

which yields in turn, using the Cauchy-Schwarz inequality:

(un+1
K − unK)2 ≤ k2

m(K)2
(1 + ξ)

[ ∑

L∈N (K)

τK|L
][ ∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)2]

+
(1 + ξ)(k fnK)2

ξ
.

(4.58) parnl3e

Taking condition (
parnlcfl
4.53) into account gives:

(un+1
K − unK)2 ≤ (1− ξ2)

k

Bm(K)

[ ∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)2]
+

(1 + ξ)(k fnK)2

ξ
. (4.59) parnl4e

Using (
parnl2e
4.56) and (

parnl4e
4.59) leads to the following lower bound on the first term of the left hand side of (

parnl1e
4.55):

Nk∑

n=0

∑

K∈T
m(K)(un+1

K − unK)unK ≥ 1

2

∑

K∈T
m(K)

(
(uNk+1
K )2 − (u0

K)2
)

−1− ξ2

2B

Nk∑

n=0

k
∑

K∈T

[ ∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)2]

−k(1 + ξ)

2ξ

Nk∑

n=0

k
∑

K∈T
m(K)(fnK)2.

(4.60) parnl5e

Let us now handle the second term on the left hand side of (
parnl1e
4.55). Let φ ∈ C(IR, IR) be defined by

φ(x) = xϕ(x) −
∫ x

x0

ϕ(y)dy, where x0 ∈ IR is an arbitrary given real value. Then the following equality

holds:

φ(unL)− φ(unK) = unK(ϕ(unL)− ϕ(unK))−
∫ un

L

un
K

(ϕ(x) − ϕ(unL))dx. (4.61) parnl6e

The following technical lemma is used here and several times in the sequel:

petitlemme Lemma 4.5 Let g : IR → IR be a monotone Lipschitz continuous function, with a Lipschitz constant
G > 0. Then:

|
∫ d

c

(g(x)− g(c))dx| ≥ 1

2G
(g(d)− g(c))2, ∀c, d ∈ IR. (4.62) estplemme

Proof of Lemma
petitlemme
4.5

In order to prove Lemma
petitlemme
4.5, we assume, for instance, that g is nondecreasing and c < d (the other

cases are similar). Then, one has g(s) ≥ h(s), for all s ∈ [c, d], where h(s) = g(c) for s ∈ [c, d − l] and
h(s) = g(c) + (s− d+ l)G for s ∈ [d− l, d], with lG = g(d)− g(c), and therefore:

∫ d

c

(g(s)− g(c))ds ≥
∫ d

c

(h(s)− g(c))ds =
l

2
(g(d)− g(c)) =

1

2G
(g(d) − g(c))2,
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this completes the proof of Lemma
petitlemme
4.5.

Using Lemma
petitlemme
4.5, (

parnl6e
4.61) and the equality

∑

K∈T

∑

L∈N (K)

τK|L(φ(unL)− φ(unK)) = 0 yields:

−
Nk∑

n=0

k
∑

K∈T

∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)
unK ≥ 1

2B

Nk∑

n=0

k
∑

K∈T

∑

L∈N (K)

τK|L(ϕ(unL)− ϕ(unK))2. (4.63) parnl7e

Since k < T we deduce from (
parnlinfsta
4.46) that the right hand side of equation (

parnl1e
4.55) satisfies

|
Nk∑

n=0

k
∑

K∈T
m(K)unKf

n
K | ≤ 2Tm(Ω)U‖f‖L∞(Ω×(0,2T )). (4.64) parnl8e

Relations k < T , (
parnl1e
4.55), (

parnl5e
4.60), (

parnl7e
4.63) and (

parnl8e
4.64) lead to

ξ2

2B

Nk∑

n=0

k
∑

K∈T

∑

L∈N (K)

τK|L(ϕ(unL)− ϕ(unK))2 ≤

2Tm(Ω)‖f‖L∞(Ω×(0,2T ))

(
U +

1 + ξ

2ξ
‖f‖L∞(Ω×(0,2T ))T

)
+

1

2
m(Ω)‖u0‖2

L∞(Ω)

(4.65) parnl9e

which concludes the proof of the lemma.

Remark 4.14 Estimate (
parnlestimx
4.54) also holds for the implicit scheme , without any condition on k. One

multiplies (
parnlschemaimp
4.42) by un+1

K : the last term on the right hand side of (
parnl2e
4.56) appears with the opposite sign,

which considerably simplifies the previous proof.

Time translates of approximate solutions

In order to fulfill the hypotheses of Kolmogorov’s theorem, the study of time translates must now be
performed. The following estimate holds:

lsteftrt Lemma 4.6 Under Assumption
parnlH
4.1 page

parnlH
102, let T be an admissible mesh in the sense of Definition

meshneuman
3.5

page
meshneuman
63 and k ∈ (0, T ). Let uT ,k ∈ X(T , k) be given by (

parnlschema
4.38)-(

parnldefuapp
4.41). Let U = ‖uT ,k‖L∞(Ω×(0,T )) and B

be the Lipschitz constant of ϕ on [−U,U ]. Then:

{ ‖ϕ(uT ,k(·, ·+ τ))− ϕ(uT ,k(·, ·))‖2
L2(Ω×(0,T−τ)) ≤

2Bτ
(
|ϕ(uT ,k)|21,T ,k +BTm(Ω)U‖f‖L∞(Ω×(0,T ))

)
, ∀τ ∈ (0, T ).

(4.66) parnltrt

Proof of Lemma
lsteftrt
4.6

Let τ ∈ (0, T ). Since B is the Lipschitz constant of ϕ on [−U,U ], U = ‖uT ,k‖L∞(Ω×(0,T )) and ϕ is
nondecreasing, the following inequality holds:

∫

Ω×(0,T−τ)

(
ϕ(uT ,k(x, t+ τ)) − ϕ(uT ,k(x, t))

)2

dxdt ≤ B

∫ T−τ

0

A(t)dt, (4.67) parnltrt1

where, for almost every t ∈ (0, T − τ),

A(t) =

∫

Ω

(
ϕ(uT ,k(x, t+ τ)) − ϕ(uT ,k(x, t))

)(
uT ,k(x, t+ τ) − uT ,k(x, t)

)
dx.

Let t ∈ (0, T − τ). Using the definition of uT ,k (
parnldefuapp
4.41), this may also be written:

A(t) =
∑

K∈T
m(K)

(
ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K )

)(
u
n1(t)
K − u

n0(t)
K

)
, (4.68) parnltrt3
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with n0(t), n1(t) ∈ {0, . . . , Nk} such that n0(t)k ≤ t < (n0(t) + 1)k and n1(t)k ≤ t+ τ < (n1(t) + 1)k.
Equality (

parnltrt3
4.68) may be written as

A(t) =
∑

K∈T
(ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K ))

( n1(t)∑

n=n0(t)+1

m(K)(unK − un−1
K )

)
,

which also writes

A(t) =
∑

K∈T
(ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K ))

( Nk∑

n=1

χn(t, t+ τ)m(K)(unK − un−1
K )

)
, (4.69) parnltrt4

with χn(t, t+ τ) = 1 if nk ∈ (t, t+ τ ] and χn(t, t+ τ) = 0 if nk /∈ (t, t+ τ ].
In (

parnltrt4
4.69), the order of summation between n and K is changed and the scheme (

parnlschema
4.38) is used. Hence,

A(t) = k

Nk∑

n=1

χn(t, t+ τ)
[∑

K∈T
(ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K ))

( ∑

L∈N (K)

τK|L(ϕ(un−1
L )− ϕ(un−1

K )) + m(K)fn−1
K

)]
.

Gathering by edges, this yields:

A(t) = k

Nk∑

n=1

[ ∑

K|L∈Eint

τK|L(ϕ(u
n1(t)
K )− ϕ(u

n1(t)
L )− ϕ(u

n0(t)
K ) + ϕ(u

n0(t)
L ))

(ϕ(un−1
L )− ϕ(un−1

K )) +
∑

K∈T
(ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K ))m(K)fn−1

K

]
χn(t, t+ τ).

Using the inequality 2ab ≤ a2 + b2, this yields:

A(t) ≤ 1

2
A0(t) +

1

2
A1(t) +A2(t) +A3(t), (4.70) parnltrt7

with

A0(t) = k

Nk∑

n=1

χn(t, t+ τ)
( ∑

K|L∈Eint

τK|L(ϕ(u
n0(t)
L )− ϕ(u

n0(t)
K ))2

)
,

A1(t) = k

Nk∑

n=1

χn(t, t+ τ)
( ∑

K|L∈Eint

τK|L(ϕ(u
n1(t)
L )− ϕ(u

n1(t)
K ))2

)
,

A2(t) = k

Nk∑

n=1

χn(t, t+ τ)
( ∑

K|L∈Eint

τK|L(ϕ(un−1
L )− ϕ(un−1

K ))2
)
,

and

A3(t) = k

Nk∑

n=1

χn(t, t+ τ)
(∑

K∈T
(ϕ(u

n1(t)
K )− ϕ(u

n0(t)
K ))m(K)fn−1

K

)
.

Note that, since t ∈ (0, T − τ), n0(t) ∈ {0, . . . , Nk}, and, for m ∈ {0, . . . , Nk}, n0(t) = m if and only if
t ∈ [mk, (m+ 1)k). Therefore,

∫ T−τ

0

A0(t)dt ≤
Nk∑

m=0

∫ (m+1)k

mk

k

Nk∑

n=1

χn(t, t+ τ)
( ∑

K|L∈Eint

τK|L(ϕ(umL )− ϕ(umK))2
)
dt,
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which also writes

∫ T−τ

0

A0(t)dt ≤
Nk∑

m=0

k

∫ (m+1)k

mk

( Nk∑

n=1

χn(t, t+ τ)
)
dt

∑

K|L∈Eint

τK|L(ϕ(umL )− ϕ(umK))2. (4.71) parnltrt12

The change of variable t = s+ (n−m)k yields

∫ (m+1)k

mk

χn(t, t+ τ)dt =

∫ 2mk−nk+k

2mk−nk
χn(s+(n−m)k, s+(n−m)k+ τ)ds =

∫ 2mk−nk+k

2mk−nk
χm(s, s+ τ)ds,

then, for all m ∈ {0, . . . , Nk},
∫ (m+1)k

mk

( Nk∑

n=1

χn(t, t+ τ)
)
dt ≤

∫

IR

χm(s, s+ τ)ds = τ,

since χm(s, s+ τ) = 1 if and only if mk ∈ (s, s+ τ ] which is equivalent to s ∈ [mk − τ,mk).
Therefore (

parnltrt12
4.71) yields

∫ T−τ

0

A0(t)dt ≤ τ |ϕ(uT ,k)|21,T ,k. (4.72) parnltrt14

Similarly:

∫ T−τ

0

A1(t)dt ≤ τ |ϕ(uT ,k)|21,T ,k. (4.73) parnltrt14b

Let us now study the term
∫ T−τ
0 A2(t)dt:

∫ T−τ

0

A2(t)dt ≤
Nk∑

n=1

k
∑

K|L∈Eint

τK|L(ϕ(un−1
L )− ϕ(un−1

K ))2
∫ T−τ

0

χn(t, t+ τ)dt. (4.74) parnltrt15

Since
∫ T−τ
0 χn(t, t + τ) ≤ τ (recall that χn(t, t + τ) = 1 if and only if t ∈ [nk − τ, nk)), the following

inequality holds:

∫ T−τ

0

A2(t)dt ≤ τ |ϕ(uT ,k)|21,T ,k. (4.75) parnltrt16

In the same way:

∫ T−τ
0

A3(t)dt ≤
Nk∑

n=1

k
(∑

K∈T
m(K)2BU‖f‖L∞(Ω×(0,T ))

) ∫ T−τ

0

χn(t, t+ τ)dt

≤ τTm(Ω)2BU‖f‖L∞(Ω×(0,T )).

(4.76) parnltrt17

Using inequalities (
parnltrt1
4.67), (

parnltrt7
4.70) and (

parnltrt14
4.72)-(

parnltrt17
4.76), (

parnltrt
4.66) is proved.

Remark 4.15 Estimate (
parnltrt
4.66) is again true for the implicit scheme , with ‖f‖L∞(Ω×(0,2T )) instead of

‖f‖L∞(Ω×(0,T )).

An immediate corollary of Lemma
lsteftrt
4.6 is the following.
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lsteftrtt Lemma 4.7 Under Assumption
parnlH
4.1 page

parnlH
102, let T be an admissible mesh in the sense of Definition

meshneuman
3.5

page
meshneuman
63 and k ∈ (0, T ). Let uT ,k ∈ X(T , k) be given by (

parnlschema
4.38)-(

parnldefuapp
4.41). Let U = ‖uT ,k‖L∞(Ω×(0,T ) and B

be the Lipschitz constant of ϕ on [−U,U ]. One defines ũ by ũ = uT ,k a.e. on Ω× (0, T ), and ũ = 0 a.e.

on IRd+1 \ Ω× (0, T ). Then:

‖ϕ(ũ(·, ·+ τ))− ϕ(ũ(·, ·))‖2
L2(IRd+1)

≤ 2|τ |B
(

|ϕ(uT ,k)|21,T ,k+
BTm(Ω)U‖f‖L∞(Ω×(0,T )) +Bm(Ω)U2

)
,

∀τ ∈ IR.

4.3.4 Convergence

parnlcvgce Theorem 4.2 Under Assumption
parnlH
4.1 page

parnlH
102, let U = ‖u0‖L∞(Ω) + T‖f‖L∞(Ω×(0,T )) and

B = sup
−U≤x<y≤U

ϕ(x) − ϕ(y)

x− y
.

Let ξ ∈ (0, 1) be a given real value. For m ∈ IN, let Tm be an admissible mesh in the sense of Definition
meshneuman
3.5 page

meshneuman
63 and km ∈ (0, T ) satisfying the condition (

parnlcfl
4.53) with T = Tm and k = km. Let uTm,km be

given by (
parnlschema
4.38)-(

parnldefuapp
4.41) with T = Tm and k = km. Assume that size(Tm) → 0 as m→∞.

Then, there exists a subsequence of the sequence of approximate solutions, still denoted by (uTm,km)m∈IN,
which converges to a weak solution u of Problem (

paranlanf
4.33)-(

paranlani
4.35), as m→∞, in the following sense:

(i) uTm,km converges to u in L∞(Ω× (0, T )), for the weak-? topology as m tends to +∞,
(ii) (ϕ(uTm,km)) converges to ϕ(u) in L1(Ω× (0, T )) as m tends to +∞,
where uTm,km and ϕ(uTm,km) also denote the restrictions of these functions to Ω× (0, T ).

Proof of Theorem
parnlcvgce
4.2

Let us set um = uTm,km and assume, without loss of generality, that ϕ(0) = 0. First remark that,
by (

parnlcfl
4.53), km → 0 as m → 0. Thanks to Lemma

parnlestinf
4.1 page

parnlestinf
104, the sequence (um)m∈IN is bounded in

L∞(Ω× (0, T ). Then, there exists a subsequence, still denoted by (um)m∈IN , such that um converges, as
m→∞, to u in L∞(Ω× (0, T )), for the weak-? topology.
For the study of the sequence (ϕ(um))m∈IN, we shall apply Theorem

Kolm
3.9 page

Kolm
93 with N = d+ 1, q = 2,

ω = Ω×(0, T ) and p(v) = ṽ with ṽ defined, as usual, by ṽ = v on Ω×(0, T ) and ṽ = 0 on IRd+1\Ω×(0, T ).
The first and second items of Theorem

Kolm
3.9 are clearly satisfied; let us prove hereafter that the third is

also satisfied. By Lemma
parnlestimeg
4.4, the sequence (|ϕ(um)|1,Tm,km)m∈IN is bounded. Let η ∈ IRd and τ ∈ IR,

since

‖ϕ(ũm(·+ η, ·+ τ))− ϕ(ũm(·, ·))‖L2(IRd+1) ≤
‖ϕ(ũm(·+ η, ·))− ϕ(ũm(·, ·))‖L2(IRd+1) + ‖ϕ(ũm(·, ·+ τ))− ϕ(ũm(·, ·))‖L2(IRd+1),

lemmata
lsteftrxt
4.3 and

lsteftrtt
4.7 give the third item of Theorem

Kolm
3.9 and this yields the compactness of the sequence

(ϕ(um))m∈IN in L2(Ω× (0, T )).

Therefore, there exists a subsequence, still denoted by (ϕ(um))m∈IN , and there exists χ ∈ L2(Ω× (0, T ))
such that ϕ(uTm,km) converges, as m→∞, to χ in L2(Ω× (0, T )). Indeed, since (ϕ(um))m∈IN is bounded
in L∞(Ω × (0, T )), this convergence holds in Lq(Ω × (0, T )) for all 1 ≤ q < ∞. Furthermore, since ϕ is
nondecreasing, Theorem

parnlAF
4.3 page

parnlAF
114 gives that χ = ϕ(u).

Up to now, the following properties have been shown to be satisfied by a convenient subsequence:

(i) (um)m∈IN converges to u, as m→∞, in L∞(Ω× (0, T )) for the weak-? topology,

(ii) (ϕ(um))m∈IN converges to ϕ(u) in L1(Ω× (0, T )) (and even in Lp(Ω× (0, T )) for all p ∈ [0,∞)).
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There remains to show that u is a weak solution of Problem (
paranlanf
4.33)-(

paranlani
4.35), which concludes the proof of

Theorem
parnlcvgce
4.2.

Let m ∈ IN. For the sake of simplicity, we shall use the notations T = Tm, h = size(T ) and k = km. Let
ψ ∈ AT . We multiply (

parnlschema
4.38) page

parnlschema
103 by kψ(xK , nk), and sum the result on n ∈ {0, . . . , Nk} and K ∈ T .

We obtain

T1m + T2m = T3m, (4.77) parnl1g

with

T1m =

Nk∑

n=0

∑

K∈T
m(K)(un+1

K − unK)ψ(xK , nk),

T2m = −
Nk∑

n=0

k
∑

K∈T

∑

L∈N (K)

τK|L
(
ϕ(unL)− ϕ(unK)

)
ψ(xK , nk),

and

T3m =

Nk∑

n=0

k
∑

K∈T
ψ(xK , nk)m(K)fnK .

We first consider T1m.

T1m =

Nk∑

n=1

∑

K∈T
m(K)unK

(
ψ(xK , (n− 1)k)− ψ(xK , nk)

)
+

∑

K∈T
m(K)

(
uNk+1
K ψ(xK , kNk)− u0

Kψ(xK , 0)
)
.

Performing one more step of the induction in Lemma
parnlestinf
4.1, it is clear that |uNk+1

K | < U+2T‖f‖L∞(Ω×(0,2T )),
for all K ∈ T .
Since 0 < T −Nkk ≤ k, there exists C1,ψ which only depends on ψ, T and Ω, such that |ψ(xK , Nkk)| ≤
kC1,ψ. Hence,

∑

K∈T
m(K)uNk+1

K ψ(xK , kNk) → 0 as m→∞.

Since

‖
∑

K∈T
u0
K1K − u0‖L1(Ω) → 0, as m→∞,

(where 1K(x) = 1 if x ∈ K, 0 otherwise), one has

∑

K∈T
m(K)u0

Kψ(xK , 0) →
∫

Ω

u0(x)ψ(x, 0)dx as m→∞.

Since (um)m∈IN converges, as m → +∞, to u in L∞(Ω × (0, T )), for the weak-? topology, and since
|uNk

K | < U + T‖f‖L∞(Ω×(0,T )), for all K ∈ T , the following property also holds:

Nk∑

n=1

∑

K∈T
m(K)unK

(
ψ(xK , (n− 1)k)− ψ(xK , nk)

)
→ −

∫ T

0

∫

Ω

u(x, t)ψt(x, t)dxdt as m→∞.

Therefore,
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T1m → −
∫ T

0

∫

Ω

u(x, t)ψt(x, t)dxdt −
∫

Ω

u0(x)ψ(x, 0)dx, as m→∞.

We now study T2m. This term can be rewritten as

T2m = −
Nk∑

n=0

k
∑

K|L∈Eint

m(K|L)(ϕ(unL)− ϕ(unK))
ψ(xK , nk)− ψ(xL, nk)

dK|L
.

It is useful to introduce the following expression:

T ′2m =

Nk∑

n=0

∫ (n+1)k

nk

∫

Ω

ϕ(uT ,k(x, t))∆ψ(x, nk)dxdt

=

Nk∑

n=0

k
∑

K∈T
ϕ(unK)

∫

K

∆ψ(x, nk)dx

=

Nk∑

n=0

k
∑

K|L∈Eint

(ϕ(unK)− ϕ(unL))

∫

K|L
∇ψ(x, nk) · nK,Ldγ(x).

The sequence (ϕ(um))m∈IN converges to ϕ(u) in L1(Ω× (0, T )); furthermore, it is bounded in L∞ so that
the integral between T and (Nk + 1)k tends to 0. Therefore:

T ′2m →
∫ T

0

∫

Ω

ϕ(u(x, t))∆ψ(x, t)dxdt, as m→∞.

The term T2m + T ′2m can be written as

T2m + T ′2m =

Nk∑

n=0

k
∑

K|L∈E
m(K|L)(ϕ(unK)− ϕ(unL))RnK,L,

with

RnK,L =
1

m(K|L)

∫

K|L
∇ψ(x, nk) · nK,Ldγ(x)−

ψ(xL, nk)− ψ(xK , nk)

dK|L
.

Thanks to the regularity properties of ψ there exists Cψ , which only depends on ψ, such that |RnK,L| ≤
Cψh. Then, using the estimate (

parnlestimx
4.54), we conclude that T2m + T ′2m → 0 as m→∞. Therefore,

T2m → −
∫ T

0

∫

Ω

ϕ(u(x, t))∆ψ(x, t)dxdt, as m→∞.

Let us now study T3m.
Define fT ,k ∈ X(T , k) by fT ,k(x, t) = fnK if (x, t) ∈ K × (nk, nk + k). Since fT ,k → f in L1(Ω × (0, T )
and since f ∈ L∞(Ω× (0, 2T ),

T3m →
∫

Ω

∫ T

0

f(x, t)ψ(x, t)dtdx, as m→∞.

Passing to the limit in Equation (
parnl1g
4.77) gives that u is a weak solution of Problem (

paranlanf
4.33)-(

paranlani
4.35). This

concludes the proof of Theorem
parnlcvgce
4.2.

Remark 4.16 This convergence proof is quite similar in the case of the implicit scheme, with the addi-
tional condition that (km)m∈IN converges to zero, since condition (

parnlcfl
4.53) does not have to be satisfied.
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subsequence Remark 4.17 The above convergence result was shown for a subsequence only. A convergence theorem
is obtained for the full set of approximate solutions, if a uniqueness result is valid. Such a result can be
easily obtained in the case of a smooth boundary and is given in section

up
4.3.6 below. For this case, an

extension to the definition
meshneuman
3.5 page

meshneuman
63 of admissible meshes is given hereafter.

parnlHT Definition 4.4 (Admissible meshes for regular domains) Let Ω be an open bounded connected
subset of IRd, d = 2 or 3 with a C2 boundary ∂Ω. An admissible finite volume mesh of Ω is given by an
open bounded polygonal set Ω′ containing Ω, and an admissible mesh T ′ of Ω′ in the sense of Definition
meshneuman
3.5 page

meshneuman
63. The set of control volumes of the mesh of Ω are {K ′∩Ω, K ′ ∈ T ′ such that md(K

′∩Ω) > 0}
and the set of edges of the mesh is E = {σ ∩Ω, σ ∈ E ′ such that md−1(σ ∩Ω) > 0}, where E ′ denotes the
set of edges of T ′ and mN denotes the N -dimensional Lebesgue measure.

Remark 4.18 For smooth domains Ω, the set of edges E of an admissible mesh of Ω does not contain
the parts of the boundaries of the control volumes which are included in the boundary ∂Ω of Ω.

4.3.5 Weak convergence and nonlinearities
nlparaws

We show here a property which was used in the proof of Theorem
parnlcvgce
4.2.

parnlAF Theorem 4.3 Let U > 0 and ϕ ∈ C([−U,U ]) be a nondecreasing function. Let ω be an open bounded
subset of IRN , N ≥ 1. Let (un)n∈IN ⊂ L∞(ω) such that
(i) −U ≤ un ≤ U a.e. in ω, for all n ∈ IN;
(ii) there exists u ∈ L∞(ω) such that (un)n∈IN converges to u in L∞(ω) for the weak-? topology;
(iii) there exists a function χ ∈ L1(ω) such that (ϕ(un))n∈IN converges to χ in L1(ω).
Then χ(x) = ϕ(u(x)), for a.e. x ∈ ω.

Proof of Theorem
parnlAF
4.3

First we extend the definition of ϕ by ϕ(v) = ϕ(−U) + v + U for all v < −U and ϕ(v) = ϕ(U) + v − U
for all v > U , and denote again by ϕ this extension of ϕ which now maps IR into IR, is continuous and
nondecreasing. Let us define α± from IR to IR by α−(t) = inf{v ∈ IR, ϕ(v) = t} and α+(t) = sup{v ∈
IR, ϕ(v) = t}, for all t ∈ IR.
Note that the functions α± are increasing and that
(i) α− is left continuous and therefore lower semi-continuous, that is

t = lim
n→∞

tn =⇒ α−(t) ≤ lim inf
n→∞

α−(tn),

(ii) α+ is right continuous and therefore upper semi-continuous, that is

t = lim
n→∞

tn =⇒ α+(t) ≥ lim sup
n→∞

α+(tn).

Thus, since we may assume, up to a subsequence, that ϕ(un) → χ a.e. in ω,

α−(χ(x)) ≤ lim inf
n→∞

α−
(
ϕ(un(x))

)
≤ lim sup

n→∞
α+

(
ϕ(un(x))

)
≤ α+(χ(x)), (4.78) parnl1

for a.e. x ∈ ω.

A direct application of the definition of the functions α− and α+ gives

α−
(
ϕ(un(x))

)
≤ un(x) ≤ α+

(
ϕ(un(x))

)
. (4.79) parnl5

Let L1
+ = {ψ ∈ L1(ω), ψ ≥ 0 a.e.}. Let ψ ∈ L1

+. We multiply (
parnl5
4.79) by ψ(x) and integrate over ω, it

yields
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∫

ω

α−
(
ϕ(un(x))

)
ψ(x)dx ≤

∫

ω

un(x)ψ(x)dx ≤
∫

ω

α+

(
ϕ(un(x))

)
ψ(x)dx. (4.80) plus

Applying Fatou’s lemma to the sequences of L1 positive functions α−(ϕ(un))ψ − α−(ϕ(−U))ψ and
α+(ϕ(U))ψ − α+(ϕ(un))ψ yields, with (

parnl1
4.78),

∫

ω

α−(χ(x))ψ(x)dx ≤ lim inf
n→∞

∫

ω

α−
(
ϕ(un(x))

)
ψ(x)dx,

and

lim sup
n→∞

∫

ω

α+

(
ϕ(un(x))

)
ψ(x)dx ≤

∫

ω

α+(χ(x))ψ(x)dx.

Then, passing to the lim inf and lim sup in (
plus
4.80) and using the convergence of (un)n∈IN to u in L∞(ω)

for the weak-? topology gives

∫

ω

α−(χ(x))ψ(x)dx ≤
∫

ω

u(x)ψ(x)dx ≤
∫

ω

α+(χ(x))ψ(x)dx.

Thus, since ψ is arbitrary in L1
+, the following inequality holds for a.e. x ∈ ω:

α−(χ(x)) ≤ u(x) ≤ α+(χ(x)),

which implies in turn that χ(x) = ϕ(u(x)) for a.e. x ∈ ω. This completes the proof of Theorem
parnlAF
4.3.

Remark 4.19 Another proof of Theorem
parnlAF
4.3 is possible by passing to the limit in the inequality

0 ≤
∫

ω

(ϕ(un)(x) − ϕ(v(x)))(un(x) − v(x))dx, ∀v ∈ L∞(ω),

which leads to

0 ≤
∫

ω

(χ(x)− ϕ(v(x)))(u(x) − v(x))dx, ∀v ∈ L∞(ω).

From this inequality, one deduces that χ = ϕ(u) a.e. on ω.

A third proof is possible by using the concept of nonlinear weak-? convergence, see Definition
nlwsdef
6.3 page

nlwsdef
190.

4.3.6 A uniqueness result for nonlinear diffusion equations
up

The uniqueness of the weak solution to variations of Problem (
paranlanf
4.33)-(

paranlani
4.35) has been proved by several

authors. For precise references we refer to
MEI
Meirmanov [1992]. Also rather similar proofs have been

given in
BKP
Bertsch, Kersner and Peletier [1995] and

GHP
Guedda, Hilhorst and Peletier [1997].

Recall that this uniqueness result allows to obtain a convergence result on the whole set of finite volume
approximate solutions to Problem (

parabch
4.1)-(

parabc2ch
4.4) (see Remark

subsequence
4.17).

The uniqueness of the weak solution to Problem (
paranlanf
4.33)-(

paranlani
4.35) immediately results from the following

property.

parnlthunicite Theorem 4.4 Let Ω be an open bounded subset of IRd with a C2 boundary, and suppose that items (ii),
(iii) and (iv) of Assumption

parnlH
4.1 are satisfied. Let u1 and u2 be two solutions of Problem (

paranlanf
4.33)-(

paranlani
4.35)

in the sense of Definition
parnldefess
4.1 page

parnldefess
102, with initial conditions u0,1 and u0,2 and source terms v1 and v2

respectively, that is, for u1 (resp. u2), u0 = u0,1 (resp. u0 = u0,2) in (
paranlani
4.35) and f = v1 (resp. v2) in

(
paranlanf
4.33).
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Then for all T > 0,

∫ T

0

∫

Ω

|u1(x, t)− u2(x, t)|dxdt ≤ T

∫

Ω

|u0,1(x)− u0,2(x)|dx +

∫ T

0

∫

Ω

(T − t) |v1(x, t) − v2(x, t)|dxdt.

Before proving Theorem
parnlthunicite
4.4, let us first show the following auxiliary result.

The existence of regular solutions to the adjoint problem

parnlauxi Lemma 4.8 Let Ω be an open bounded subset of IRd with a C2 boundary, and suppose that ϕ is a
nondecreasing locally Lipschitz-continuous function. Let T > 0, w ∈ C∞

c (Ω × (0, T )) such that |w| ≤ 1,
and g ∈ C∞(Ω× [0, T ]) such that there exists r ∈ IR with 0 < r ≤ g(x, t), for all (x, t) ∈ Ω× (0, T ).

Then there exists a unique function ψ ∈ C2,1(Ω× [0, T ]) such that

ψt(x, t) + g(x, t)∆ψ(x, t) = w(x, t), for all (x, t) ∈ Ω× (0, T ), (4.81) parnllemme1

∇ψ · n(x, t) = 0, for all (x, t) ∈ ∂Ω× (0, T ), (4.82) parnllemme3

ψ(x, T ) = 0, for all x ∈ Ω. (4.83) parnllemme2

Moreover the function ψ satisfies

|ψ(x, t)| ≤ T − t, for all (x, t) ∈ Ω× (0, T ), (4.84) parnllemme4

and

∫ T

0

∫

Ω

g(x, t)
(
∆ψ(x, t)

)2

dxdt ≤ 4T

∫ T

0

∫

Ω

|∇w(x, t)|2dxdt. (4.85) parnllemme5

Proof of Lemma
parnlauxi
4.8

It will be useful in the following to point out that the right hand side of (
parnllemme5
4.85) does not depend on g.

Since the function g is bounded away from zero, equations (
parnllemme1
4.81)-(

parnllemme2
4.83) define a boundary value problem

for a usual heat equation with an initial condition, in which the time variable is reversed. Since Ω, g and
w are sufficiently smooth, this problem has a unique solution ψ ∈ AT , see

LSU
Ladyženskaja, Solonnikov

and Ural’ceva [1968]. Since |w| ≤ 1, the functions T − t and −(T − t) are respectively upper and
lower solutions of Problem (

parnllemme1
4.81)-(

parnllemme3
4.82). Hence we get (

parnllemme4
4.84) (see

LSU
Ladyženskaja, Solonnikov and

Ural’ceva [1968]).

In order to show (
parnllemme5
4.85), multiply (

parnllemme1
4.81) by ∆ψ(x, t), integrate by parts on Ω× (0, τ), for τ ∈ (0, T ]. This

gives

1

2

∫

Ω

|∇ψ(x, 0)|2dx − 1

2

∫

Ω

|∇ψ(x, τ)|2dx +

∫ τ

0

∫

Ω

g(x, t)
(
∆ψ(x, t)

)2

dxdt =

−
∫ τ

0

∫

Ω

∇w(x, t) · ∇ψ(x, t)dxdt.
(4.86) parnllemme6

Since ∇ψ(·, T ) = 0, letting τ = T in (
parnllemme6
4.86) leads to

1

2

∫

Ω

|∇ψ(x, 0)|2dx+

∫ T

0

∫

Ω

g(x, t)
(
∆ψ(x, t)

)2

dxdt =

−
∫ T

0

∫

Ω

∇w(x, t) · ∇ψ(x, t)dxdt.

(4.87) parnllemme7

Integrating (
parnllemme6
4.86) with respect to τ ∈ (0, T ) leads to
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1

2

∫ T

0

∫

Ω

|∇ψ(x, τ)|2dxdτ ≤ T

2

∫

Ω

|∇ψ(x, 0)|2dx +

T

∫ T

0

∫

Ω

g(x, t)
(
∆ψ(x, t)

)2

dxdt +

T

∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt.

(4.88) parnllemme8

Using (
parnllemme7
4.87) and (

parnllemme8
4.88), we get

1

2

∫ T

0

∫

Ω

|∇ψ(x, τ)|2dxdτ ≤ 2T

∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt. (4.89) parnllemme9

Thanks to the Cauchy-Schwarz inequality, the right hand side of (
parnllemme9
4.89) may be estimated as follows:

[∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt
]2
≤

∫ T

0

∫

Ω

|∇ψ(x, t)|2dxdt

×
∫ T

0

∫

Ω

|∇w(x, t)|2dxdt.

With (
parnllemme9
4.89), this implies

[∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt
]2
≤ 4T

∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt

×
∫ T

0

∫

Ω

|∇w(x, t)|2dxdt.

Therefore,

∫ T

0

∫

Ω

|∇w(x, t) · ∇ψ(x, t)|dxdt ≤ 4T

∫ T

0

∫

Ω

|∇w(x, t)|2dxdt,

which, together with (
parnllemme7
4.87), yields (

parnllemme5
4.85).

Proof of the uniqueness theorem

Let u1 and u2 be two solutions of Problem (
paranlanw
4.36), with initial conditions u0,1 and u0,2 and source terms

v1 and v2 respectively. We set ud = u1−u2, vd = v1− v2 and u0,d = u0,1−u0,2. Let us also define, for all

(x, t) ∈ Ω× IR?
+, q(x, t) =

ϕ(u1(x, t)) − ϕ(u2(x, t))

u1(x, t) − u2(x, t)
if u1(x, t) 6= u2(x, t), else q(x, t) = 0. For all T ∈ IR?

+

and for all ψ ∈ AT , we deduce from (
paranlanw
4.36) that

∫ T

0

∫

Ω

[
ud(x, t)

(
ψt(x, t) + q(x, t)∆ψ(x, t)

)
+ vd(x, t)ψ(x, t)

]
dxdt +

∫

Ω

u0,d(x)ψ(x, 0)dx = 0.
(4.90) parnlun1

Let w ∈ C∞c (Ω × (0, T )), such that |w| ≤ 1. Since ϕ is locally Lipschitz continuous, we can define its
Lipschitz constant, say BM , on [−M,M ], where M = max{‖u1‖L∞(Ω×(0,T )), ‖u2‖L∞(Ω×(0,T ))} so that
0 ≤ q ≤ BM a.e. on Ω× (0, T ).

Using mollifiers, functions q1,n ∈ C∞c (Ω× (0, T )) may be constructed such that ‖q1,n− q‖L2(Ω×(0,T )) ≤ 1
n

and 0 ≤ q1,n ≤ BM , for n ∈ IN?. Let qn = q1,n + 1
n . Then

1

n
≤ qn(x, t) ≤ BM +

1

n
, for all (x, t) ∈ Ω× (0, T ),
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and

∫ T

0

∫

Ω

(qn(x, t)− q(x, t))2

qn(x, t)
dxdt ≤ 2

( ∫ T

0

∫

Ω

(qn(x, t)− q1,n(x, t))
2

qn(x, t)
dxdt +

∫ T

0

∫

Ω

(q1,n(x, t)− q(x, t))2

qn(x, t)
dxdt

)
,

which shows that

∫ T

0

∫

Ω

(qn(x, t)− q(x, t))2

qn(x, t)
dxdt ≤ 2n

(Tm(Ω)

n2
+

1

n2

)
.

It leads to

‖qn − q√
qn

‖L2(Ω×(0,T )) → 0 as n→∞. (4.91) parnlun3

Let ψn ∈ AT be given by lemma
parnlauxi
4.8, with g = qn. Substituting ψ by ψn in (

parnlun1
4.90), using (with g = qn

and ψ = ψn) (
parnllemme1
4.81) and (

parnllemme4
4.84) give

|
∫ T

0

∫

Ω

ud(x, t)
(
w(x, t) + (q(x, t) − qn(x, t))∆ψn(x, t)

)
dxdt| ≤

∫ T

0

∫

Ω

|vd(x, t)|(T − t)dxdt + T

∫

Ω

|u0,d(x)|dx.
(4.92) parnlun10

The Cauchy-Schwarz inequality yields

[∫ T

0

∫

Ω

|ud(x, t)||(q(x, t) − qn(x, t))∆ψn(x, t)|dxdt
]2
≤ 4M2

∫ T

0

∫

Ω

(q(x, t)− qn(x, t)√
qn(x, t)

)2

dxdt

∫ T

0

∫

Ω

qn(x, t)
(
∆ψn(x, t)

)2

dxdt.
(4.93) parnlun11

We deduce from (
parnllemme5
4.85) and (

parnlun3
4.91) that the right hand side of (

parnlun11
4.93) tends to zero as n→∞. Hence the

left hand side of (
parnlun11
4.93) also tends to zero as n→∞. Therefore letting n→∞ in (

parnlun10
4.92) gives

|
∫ T

0

∫

Ω

ud(x, t)w(x, t)dxdt| ≤
∫ T

0

∫

Ω

|vd(x, t)|(T − t)dxdt +

T

∫

Ω

|u0,d(x)|dx.
(4.94) parnlun12

Inequality (
parnlun12
4.94) holds for any function w ∈ C∞c (Ω × (0, T )), with |w| ≤ 1. Let us take as functions w

the elements of a sequence (wm)m∈IN such that wm ∈ C∞c (Ω × (0, T )) and |wm| ≤ 1 for all m ∈ IN, and
the sequence (wm)m∈IN converges to sign(ud(·, ·)) in L1(Ω× (0, T )). Letting m→∞ yields

∫ T

0

∫

Ω

|ud(x, t)|dxdt ≤
∫ T

0

∫

Ω

|vd(x, t)|(T − t)dxdt + T

∫

Ω

|u0,d(x)|dx,

which concludes the proof of Theorem
parnlthunicite
4.4.



Chapter 5

Hyperbolic equations in the one

dimensional case

hyper1d

This chapter is devoted to the numerical schemes for one-dimensional hyperbolic conservation laws. Some
basics on the solution to linear or nonlinear hyperbolic equations with initial data and without boundary
conditions will first be recalled. We refer to

godlewski-ellipses
Godlewski and Raviart [1991],

godlewski-springer
Godlewski and Raviart

[1996],
kronerbook
Kröner [1997],

leveque
LeVeque [1990] and

serre
Serre [1996] for extensive studies of theoretical and/or

numerical aspects; we shall highlight here the finite volume point of view for several well known schemes,
comparing them with finite difference schemes, either for the linear and the nonlinear case. Convergence
results for numerical schemes are presented, using a “weak BV inequality” which will be used later in
the multidimensional case. We also recall the classical proof of convergence which uses a “strong BV
estimate” and the Lax-Wendroff theorem. The error estimates which can also be obtained will be given
later in the multidimensional case (Chapter

hypmd
6).

Throughout this chapter, we shall focus on explicit schemes. However, all the results which are presented
here can be extended to implicit schemes (this requires a bit of work). This will be detailed in the
multidimensional case (see (

estschemai
6.9) page

estschemai
150 for the scheme).

5.1 The continuous problem
hyppb

Consider the nonlinear hyperbolic equation with initial data:

{
ut(x, t) + (f(u))x(x, t) = 0 x ∈ IR, t ∈ IR+,
u(x, 0) = u0(x), x ∈ IR,

(5.1) hyperbolic1D

where f is a given function from IR to IR, of class C1, u0 ∈ L∞(IR) and where the partial derivatives of
u with respect to time and space are denoted by ut and ux.

Example 5.1 (Bürgers equation) A simple flow model was introduced by Bürgers and yields the
following equation:

ut(x, t) + u(x, t)ux(x, t)− εuxx(x, t) = 0 (5.2) Burgeps

Bürgers studied the limit case which is obtained when ε tends to 0; the resulting equation is (
hyperbolic1D
5.1) with

f(s) =
s2

2
, i.e.

ut(x, t) +
1

2
(u2)x(x, t) = 0

119
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defclass1 Definition 5.1 (Classical solution) Let f ∈ C1(IR, IR) and u0 ∈ C1(IR, IR); a classical solution to
Problem (

hyperbolic1D
5.1) is a function u ∈ C1(IR × IR+, IR) such that

{
ut(x, t) + f ′(u(x, t))ux(x, t) = 0, ∀ x ∈ IR, ∀ t ∈ IR+,

u(x, 0) = u0(x), ∀x ∈ IR.

Recall that in the linear case, i.e. f(s) = cs for all s ∈ IR, for some c ∈ IR, there exists (for u0 ∈ C1(IR, IR))
a unique classical solution. It is u(x, t) = u0(x − ct), for all x ∈ IR and for all t ∈ IR+. In the nonlinear
case, the existence of such a solution depends on the initial data u0; in fact, the following result holds:

nocr Proposition 5.1 Let f ∈ C1(IR, IR) be a nonlinear function, i.e. such that there exist s1, s2 ∈ IR with
f ′(s1) 6= f ′(s2); then there exists u0 ∈ C∞c (IR, IR) such that Problem (

hyperbolic1D
5.1) has no classical solution.

Proposition
nocr
5.1 is an easy consequence of the following remark.

Remark 5.1 If u is a classical solution to (
hyperbolic1D
5.1), then u is constant along the characteristic lines which

are defined by
x(t) = f ′(u0(x0))t+ x0, t ∈ IR+,

where x0 ∈ IR is the origin of the characteristic. This is the equation of a straight line issued from the
point (x0, 0) (in the (x, t) coordinates). Note that if f depends on x and u (rather than only on u), the
characteristics are no longer straight lines.

The concept of weak solution is introduced in order to define solutions of (
hyperbolic1D
5.1) when classical solutions

do not exist.

defweak1 Definition 5.2 (Weak solution) Let f ∈ C1(IR, IR) and u0 ∈ L∞(IR); a weak solution to Problem
(
hyperbolic1D
5.1) is a function u such that





u ∈ L∞(IR × IR?
+),∫

IR

∫

IR+

u(x, t)ϕt(x, t)dtdx +

∫

IR

∫

IR+

f(u(x, t))ϕx(x, t)dtdx +

∫

IR

u0(x)ϕ(x, 0)dx = 0,

∀ϕ ∈ C1
c (IR × IR+, IR).

(5.3) h1dweak

Remark 5.2
1. If u ∈ C1(IR× IR+, IR)∩L∞(IR× IR?

+) then u is a weak solution if and only if u is a classical solution.
2. Note that in the above definition, we require the test function ϕ to belong to C1

c (IR× IR+, IR), so that
ϕ may be non zero at time t = 0.

One may show that there exists at least one weak solution to (
hyperbolic1D
5.1). In the linear case, i.e. f(s) = cs, for

all s ∈ IR, for some c ∈ IR, this solution is unique (it is u(x, t) = u0(x − ct) for a.e. (x, t) ∈ IR × IR+).
However, the uniqueness of this weak solution in the general nonlinear case is no longer true. Hence the
concept of entropy weak solution, for which an existence and uniqueness result is known.

defent1 Definition 5.3 (Entropy weak solution) Let f ∈ C1(IR, IR) and u0 ∈ L∞(IR); the entropy weak
solution to Problem (

hyperbolic1D
5.1) is a function u such that





u ∈ L∞(IR × IR?
+),∫

IR

∫

IR+

η(u(x, t))ϕt(x, t)dtdx +

∫

IR

∫

IR+

Φ(u(x, t))ϕx(x, t)dtdx +

∫

IR

η(u0(x))ϕ(x, 0)dx ≥ 0,

∀ϕ ∈ C1
c (IR × IR+, IR+),

for all convex function η ∈ C1(IR, IR) and Φ ∈ C1(IR, IR) such that Φ′ = η′f ′.

(5.4) h1dent
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Remark 5.3 The solutions of (
h1dent
5.4) are necessarily solutions of (

h1dweak
5.3). This can be shown by taking in

(
h1dent
5.4) η(s) = s for all s ∈ IR, η(s) = −s, for all s ∈ IR, and regularizations of the positive and negative

parts of the test functions of the weak formulation.

hyp1dexistu Theorem 5.1 Let f ∈ C1(IR, IR), u0 ∈ L∞(IR), then there exists a unique entropy weak solution to
Problem (

hyperbolic1D
5.1).

The proof of this result was first given by Vol’pert in
Vo
Vol’pert [1967], introducing the space BV (IR)

which is defined hereafter and assuming u0 ∈ BV (IR), see also
Ol
Oleinik [1963] for the convex case. In

krushkov
Krushkov [1970], Krushkov proved the theorem of existence and uniqueness in the general case u0 ∈
L∞(IR), using a regularization of u0 in BV (IR), under the slightly stronger assumption f ∈ C3(IR, IR).
Krushkov also proved that the solution is in the space C(IR+, L

1
loc(IR)). Krushkov’s proof uses particular

entropies, namely the functions | · −κ| for all κ ∈ IR, which are generally referred to as “Krushkov’s
entropies”. The “entropy flux” associated to | ·−κ| may be taken as f(·>κ)−f(·⊥κ), where a>b denotes
the maximum of a and b and a⊥b denotes the minimum of a and b, for all real values a, b (recall that
f(a>b)− f(a⊥b) = sign(a− b)(f(a)− f(b))).

bv Definition 5.4 (BV (IR)) A function v ∈ L1
loc(IR) is of bounded variation, that is v ∈ BV (IR), if

|v|BV (IR) = sup{
∫

IR

v(x)ϕx(x)dx, ϕ ∈ C1
c (IR, IR), |ϕ(x)| ≤ 1 ∀x ∈ IR} < +∞. (5.5) defBV

divbv1d Remark 5.4

1. If v : IR → IR is piecewise constant, that is if there exists an increasing sequence (xi)i∈ZZ with IR =
∪i∈ZZ [xi, xi+1] and a sequence (vi)i∈ZZ such that v|(xi,xi+1) = vi, then |v|BV (IR) =

∑
i∈ZZ

|vi+1−vi|.

2. If v ∈ C1(IR, IR) then |v|BV (IR) = ‖vx‖L1(IR).

3. The space BV (IR) is included in the space L∞(IR); furthermore, if u ∈ BV (IR) ∩ L1(IR) then
‖u‖L∞(IR) ≤ |u|BV (IR).

4. Let u ∈ BV (IR) and let (xi+1/2)i∈ZZ be an increasing sequence of real values such that IR =
∪i∈ZZ [xi−1/2, xi+1/2]. For i ∈ ZZ , let Ki = (xi−1/2, xi+1/2) and ui be the mean value of u over Ki.
Then, choosing conveniently ϕ in the definition of |u|BV (IR), it is easy to show that

∑

i∈ZZ

|ui+1 − ui| ≤ |u|BV (IR). (5.6) bvz

Inequality (
bvz
5.6) is used for the classical proof of “BV estimates” for the approximate solutions given

by finite volume schemes (see Lemma
nlstabv
5.7 page

nlstabv
139 and Corollary

nlstabvco
5.1 page

nlstabvco
139).

Note that (
bvz
5.6) is also true when ui is the mean value of u over a subinterval of Ki instead of the

mean value of u over Ki.

Krushkov used a characterization of entropy weak solutions which is given in the following proposition.

prentkr1 Proposition 5.2 (Entropy weak solution using “Krushkov’s entropies”) Let f ∈ C1(IR, IR)
and u0 ∈ L∞(IR), u is the unique entropy weak solution to Problem (

hyperbolic1D
5.1) if and only if u is such that





u ∈ L∞(IR × IR?
+),∫

IR

∫

IR+

|u(x, t)− κ|ϕt(x, t)dtdx+
∫

IR

∫

IR+

(
f(u(x, t)>κ)− f(u(x, t)⊥κ)

)
ϕx(x, t)dtdx +

∫

IR

|u0(x) − κ|ϕ(x, 0)dx ≥ 0,

∀ϕ ∈ C1
c (IR × IR+, IR+), ∀κ ∈ IR.

(5.7) h1dentkr
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The result of existence of an entropy weak solution defined by (
h1dent
5.4) was already proved by passing to

the limit on the solutions of an appropriate numerical scheme, see e.g.
Ol
Oleinik [1963], and may also be

obtained by passing to the limit on finite volume approximations of the solution (see Theorem
nlcv1d
5.2 page

nlcv1d
136 in the one-dimensional case and Theorem

eghbcewsol
6.4 page

eghbcewsol
179 in the multidimensional case).

Remark 5.5 An entropy weak solution is sometimes defined as a function u satisfying:





∫

IR

∫

IR+

u(x, t)ϕt(x, t)dtdx +

∫

IR

∫

IR+

f(u(x, t))ϕx(x, t)dtdx +

∫

IR

u0(x)ϕ(x, 0)dx = 0,

∀ϕ ∈ C1
c (IR × IR+, IR).∫

IR

∫

IR+

η(u(x, t))ϕt(x, t)dtdx +

∫

IR

∫

IR+

Φ(u(x, t))ϕx(x, t)dtdx ≥ 0,

∀ϕ ∈ C1
c (IR × IR?

+, IR+),
for all convex function η ∈ C1(IR, IR) and Φ ∈ C1(IR, IR) such that Φ′ = η′f ′.

(5.8) h1dentf

The uniqueness of an entropy weak solution thus defined depends on the functional space to which u is
chosen to belong. Indeed, the uniqueness result given in Theorem

hyp1dexistu
5.1 is no longer true with u defined by

(
h1dentf
5.8) such that

u, f(u) ∈ L1
loc(IR × IR+), u ∈ L∞(IR × (ε,∞)), ∀ε ∈ IR?

+. (5.9) h1space

Under Assumption (
h1space
5.9), every term in (

h1dentf
5.8) makes sense. Note that (

h1space
5.9)-(

h1dentf
5.8) is weaker than (

h1dent
5.4). An

easy counterexample to a uniqueness result of the solution to (
h1dentf
5.8)-(

h1space
5.9) is obtained with f(s) = s2 for

all s ∈ IR and u0(x) = 0 for a.e. x ∈ IR. In this case, a first solution to (
h1dentf
5.8)-(

h1space
5.9) is u(x, t) = 0 for

a.e. (x, t) ∈ IR × IR+ (it is the entropy weak solution). A second solution to (
h1dentf
5.8)-(

h1space
5.9) is defined for a.e.

(x, t) ∈ IR × IR+ by

u(x, t) = 0, if x < −
√
t or x >

√
t,

u(x, t) = x
2t , if −

√
t < x <

√
t.

This second solution is not an entropy weak solution: it does not satisfy (
h1dent
5.4). Also note that this second

solution is not in the space C(IR+, L
1
loc(IR)) nor in the space L∞(IR×IR+) (it belongs to L∞(IR+, L

1(IR))).
Indeed, under the assumption u ∈ L∞(IR × IR+) ∩ C(IR+, L

1
loc(IR)), the solution of (

h1dentf
5.8) is unique.

The entropy weak solution to (
hyperbolic1D
5.1) satisfies the following L∞ and BV stability properties:

Proposition 5.3 Let f ∈ C1(IR, IR) and u0 ∈ L∞(IR). Let u be the entropy weak solution to (
hyperbolic1D
5.1).

Then, u ∈ C(IR+, L
1
loc(IR)); furthermore, the following estimates hold:

1. ‖u(·, t)‖L∞(IR) ≤ ‖u0‖L∞(IR), for all t ∈ IR+.

2. If u0 ∈ BV (IR), then |u(·, t)|BV (IR) ≤ |u0|BV (IR), for all t ∈ IR+.

5.2 Numerical schemes in the linear case

We shall first introduce the numerical schemes in the linear case f(u) = u in (
hyperbolic1D
5.1). The problem considered

in this section is therefore
{
ut(x, t) + ux(x, t) = 0 x ∈ IR, t ∈ IR+,

u(x, 0) = u0(x), x ∈ IR.
(5.10) lhy1D

Assume that u0 ∈ C1(IR, IR); Problem (
lhy1D
5.10) has a unique classical solution, as defined in Definition

defclass1
5.1,

which is u(x, t) = u0(x − t) for all (x, t) ∈ IR × IR+. If u0 ∈ L∞(IR), then Problem (
lhy1D
5.10) has a unique

weak solution, as defined in Definition
defweak1
5.2, which is again u(x, t) = u0(x − t) for a.e. (x, t) ∈ IR × IR+.

Therefore, if u0 ≥ 0, the solution u is also nonnegative. Hence, it is advisable for many problems that
the solution given by the numerical scheme should preserve the nonnegativity of the solution.
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5.2.1 The centered finite difference scheme

Assume u0 ∈ C(IR, IR). Let h ∈ IR?
+ and xi = ih for all i ∈ ZZ . Let k ∈ IR?

+ be the time step. With
the explicit Euler scheme for the time discretization (the implicit Euler scheme could also be used), the
centered finite difference scheme associated to points xi and k is





un+1
i − uni

k
+
uni+1 − uni−1

2h
= 0, ∀n ∈ IN, ∀i ∈ ZZ ,

u0
i = u0(xi), ∀i ∈ ZZ .

(5.11) DFCl

The discrete unknown uni is expected to be an approximation of u(xi, nk) where u is the solution to
(
lhy1D
5.10).

It is well known that this scheme should be avoided. In particular, for the following reasons:

1. it does not preserve positivity, i.e. u0
i ≥ 0 for all i ∈ ZZ does not imply u1

i ≥ 0 for all i ∈ ZZ ; take
for instance u0

i = 0 for i ≤ 0 and u0
i = 1 for i > 0, then u1

0 = −k/(2h) < 0;

2. it is not “L∞-diminishing”, i.e. max{|u0
i |, i ∈ ZZ } = 1 does not imply that max{|u1

i |, i ∈ ZZ } ≤ 1;
for instance, in the previous example, max{|u0

i |, i ∈ ZZ } = 1 and max{|u1
i |, i ∈ ZZ } = 1 + k/(2h);

3. it is not “L2-diminishing”, i.e.
∑

i∈ZZ
(u0
i )

2 = 1 does not imply that
∑

i∈ZZ
(u1
i )

2 ≤ 1; take for
instance u0

i = 0 for i 6= 0 and u0
i = 1 for i = 0, then u1

0 = 1, u1
1 = k/(2h), u1

−1 = −k/(2h), so that∑
i∈ZZ

(u1
i )

2 = 1 + k2/(2h2) > 1;

4. it is unstable in the von Neumann sense: if the initial condition is taken under the form u0(x) =
exp(ipx), where p is given in ZZ , then u(x, t) = exp(−ipt) exp(ipx) (i is, here, the usual complex
number, u0 and u take values in Cl ). Hence exp(−ipt) can be seen as an amplification factor, and
its modulus is 1. The numerical scheme is stable in the von Neumann sense if the amplification
factor for the discrete solution is less than or equal to 1. For the scheme (

DFCl
5.11), we have u1

j =

u0
j − (u0

j+1−u0
j−1)k/(2h) = exp(ipjh)ξp,h,k, with ξp,h,k = 1− (exp(iph)− exp(−iph))k/(2h). Hence

|ξp,h,k|2 = 1 + (k2/h2) sin2 ph > 1 if ph 6= qπ for any q in ZZ .

In fact, one can also show that there exists u0 ∈ C1
c (IR, IR) such that the solution given by the numerical

scheme does not tend to the solution of the continuous problem when h and k tend to 0 (whatever the
relation between h and k).

Remark 5.6 The scheme (
DFCl
5.11) is also a finite volume scheme with the (spatial) mesh T given by

xi+1/2 = (i + 1/2)h in Definition
meshhyp1d
5.5 below and with a centered choice for the approximation of

u(xi+1/2, nk): the value of u(xi+1/2, nk) is approximated by (uni + uni+1)/2, see (
VFDA
5.14) where an up-

stream choice for u(xi+1/2, nk) is performed. In fact, the choice of u0
i is different in (

VFDA
5.14) and in (

DFCl
5.11)

but this does not change the unstability of the centered scheme.

5.2.2 The upstream finite difference scheme

Consider now a nonuniform distribution of points xi, i.e. an increasing sequence of real values (xi)i∈ZZ

such that limi→±∞ xi = ±∞. For all i ∈ ZZ , we set hi−1/2 = xi − xi−1. The time discretization is
performed with the explicit Euler scheme with time step k > 0. Still assuming u0 ∈ C(IR, IR), consider
the upwind (or upstream) finite difference scheme defined by





un+1
i − uni

k
+
uni − uni−1

hi− 1
2

= 0, ∀n ∈ IN, ∀i ∈ ZZ ,

u0
i = u0(xi), ∀i ∈ ZZ .

(5.12) DFDA

Rewriting the scheme as
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un+1
i = (1− k

hi− 1
2

)uni +
k

hi− 1
2

uni−1,

it appears that if inf i∈ZZ hi−1/2 > 0 and if k is such that k ≤ inf i∈ZZ hi−1/2 then un+1
i is a convex

combination of uni and uni−1; by induction, this proves that the scheme (
DFDA
5.12) is stable, in the sense that

if u0 is such that Um ≤ u0(x) ≤ UM for a.e. x ∈ IR, where Um, UM ∈ IR, then Um ≤ uni ≤ UM for any
i ∈ ZZ and n ∈ IN.
Moreover, if u0 ∈ C2(IR, IR)∩L∞(IR) and u′0 and u′′0 belong to L∞(IR), it is easily shown that the scheme
is consistent in the finite difference sense, i.e. the consistency error defined by

Rni =
u(xi, (n+ 1)k)− u(xi, nk)

k
+
u(xi, nk)− u(xi−1, nk)

hi− 1
2

(5.13) consisthyplin

is such that |Rni | ≤ Ch, where h = supi∈ZZ
hi and C ≥ 0 only depends on u0 (recall that u is the solution

to problem (
lhy1D
5.10)). Hence the following error estimate holds:

eefd Proposition 5.4 (Error estimate for the upwind finite difference scheme)
Let u0 ∈ C2(IR, IR)∩L∞(IR), such that u′0 and u′′0 ∈ L∞(IR). Let (xi)i∈ZZ be an increasing sequence of real
values such that limi→±∞ xi = ±∞. Let h = supi∈ZZ

hi− 1
2
, and assume that h <∞ and inf i∈ZZ hi−1/2 >

0. Let k > 0 such that k ≤ inf i∈ZZ hi−1/2. Let u denote the unique solution to (
lhy1D
5.10) and {uni , i ∈ ZZ ,

n ∈ IN} be given by (
DFDA
5.12); let eni = u(xi, nk)− uni , for any n ∈ IN and i ∈ ZZ , and let T ∈]0,+∞[ (note

that u(xi, nk) is well defined since u ∈ C2(IR × IR+, IR)).
Then there exists C ∈ IR+, only depending on u0, such that |eni | ≤ ChT, for any n ∈ IN such that nk ≤ T ,
and for any i ∈ ZZ .

Proof of Proposition
eefd
5.4

Let i ∈ ZZ and n ∈ IN. By definition of the consistency error Rni in (
consisthyplin
5.13), the error eni satisfies

en+1
i − eni

k
+
eni − eni−1

hi− 1
2

= Rni .

Hence

en+1
i = eni (1−

k

hi− 1
2

) +
k

hi− 1
2

eni−1 + kRni .

Using |Rni | ≤ Ch (for some C only depending on u0) and the assumption k ≤ inf i∈ZZ hi−1/2, this yields

|en+1
i | ≤ sup

j∈ZZ

|enj |+ Ckh.

Since e0i = 0 for any i ∈ ZZ , an induction yields

sup
i∈ZZ

|eni | ≤ Cnkh

and the result follows.

Note that in the above proof, the linearity of the equation and the regularity of u0 are used. The next
questions to arise are what to do in the case of a nonlinear equation and in the case u0 ∈ L∞(IR).
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5.2.3 The upwind finite volume scheme

Let us first give a definition of the admissible meshes for the finite volume schemes.

Definition 5.5 (One-dimensional admissible mesh) An admissible mesh T of IR is given by an
increasing sequence of real values (xi+1/2)i∈ZZ , such that IR = ∪i∈ZZ [xi−1/2, xi+1/2]. The mesh T is the
set T = {Ki, i ∈ ZZ } of subsets of IR defined by Ki = (xi−1/2, xi+1/2) for all i ∈ ZZ . The length of Ki

is denoted by hi, so that hi = xi+1/2 − xi−1/2 for all i ∈ ZZ . It is assumed that h = size(T ) = sup{hi,
i ∈ ZZ } < +∞ and that, for some α ∈ IR?

+, αh ≤ inf{hi, i ∈ ZZ }.meshhyp1d

Consider an admissible mesh in the sense of Definition
meshhyp1d
5.5. Let k ∈ IR?

+ be the time step. Assume
u0 ∈ L∞(IR) (this is a natural hypothesis for the finite volume framework). Integrating (

lhy1D
5.10) on each

control volume of the mesh, approximating the time derivatives by differential quotients and using an
upwind choice for u(xi+ 1

2
, nk) yields the following (time explicit) scheme:





hi
un+1
i − uni

k
+ uni − uni−1 = 0, ∀n ∈ IN, ∀i ∈ ZZ ,

u0
i =

1

hi

∫

Ki

u0(x)dx, ∀i ∈ ZZ .
(5.14) VFDA

The value uni is expected to be an approximation of u (solution to (
lhy1D
5.10)) in Ki at time nk. It is

easily shown that this scheme is not consistent in the finite difference sense if uni is considered to be
an approximation of u(xi, nk) with, for instance, xi = (xi−1/2 + xi+1/2)/2 for all i ∈ ZZ . Even if
u0 ∈ C∞c (IR, IR), the quantity Rni defined by (

consisthyplin
5.13) does not satisfy (except in particular cases) |Rni | ≤ Ch,

with some C only depending on u0.

It is however possible to interpret this scheme as another expression of the upwind finite difference
scheme (

DFDA
5.12) (except for the minor modification of u0

i , i ∈ ZZ ). One simply needs to consider uni as
an approximation of u(xi+1/2, nk) which leads to a consistency property in the finite difference sense.
Indeed, taking xj = xj+1/2 (for j = i and i− 1) in the definition (

consisthyplin
5.13) of Rni yields |Rni | ≤ Ch, where C

only depends on u0. Therefore, a convergence result for this scheme is given by the proposition
eefd
5.4. This

analogy cannot be extended to the general case of “monotone flux schemes” (see Definition
monflux
5.6 page

monflux
131

below) for a nonlinear equation for which there may be no value of xi (independant of u) leading to such
a consistency property, see Remark

vfordf
5.11 page

vfordf
131 for a counterexample (the analogy holds however for

the scheme (
up1D
5.28), convenient for a nondecreasing function f , see Remark

vfdf
5.13).

The approximate finite volume solution uT ,k may be defined on IR× IR+ from the discrete unknowns uni ,
i ∈ ZZ , n ∈ IN which are computed in (

VFDA
5.14):

uT ,k(x, t) = uni for x ∈ Ki and t ∈ [nk, (n+ 1)k). (5.15) uapp

The following L∞ estimate holds:

linstab Lemma 5.1 (L∞ estimate in the linear case) Let u0 ∈ L∞(IR) and Um, UM ∈ IR such that Um ≤
u0(x) ≤ UM for a.e. x ∈ IR. Let T be an admissible mesh in the sense of Definition

meshhyp1d
5.5 and let k ∈ IR?

+

satisfying the Courant-Friedrichs-Levy (CFL) condition

k ≤ inf
i∈ZZ

hi.

(note that taking k ≤ αh implies the above condition). Let uT ,k be the finite volume approximate solution
defined by (

VFDA
5.14) and (

uapp
5.15).

Then,

Um ≤ uT ,k(x, t) ≤ UM for a.e. x ∈ IR and a.e. t ∈ IR+.
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Proof of Lemma
linstab
5.1

The proof that Um ≤ uni ≤ UM , for all i ∈ ZZ and n ∈ IN, as in the case of the upwind finite difference
scheme (see (

DFDA
5.12) page

DFDA
123), consists in remarking that equation (

VFDA
5.14) gives, under the CFL condition,

an expression of un+1
i as a linear convex combination of uni and uni−1, for all i ∈ ZZ and n ∈ IN.

The following inequality will be crucial for the proof of convergence.

bvwhyplin Lemma 5.2 (Weak BV estimate, linear case) Let T be an admissible mesh in the sense of Defini-
tion

meshhyp1d
5.5 page

meshhyp1d
125 and let k ∈ IR?

+ satisfying the CFL condition

k ≤ (1− ξ) inf
i∈ZZ

hi, (5.16) cflhypl

for some ξ ∈ (0, 1) (taking k ≤ (1− ξ)αh implies this condition).
Let {uni , i ∈ ZZ , n ∈ IN} be given by the finite volume scheme (

VFDA
5.14). Let R ∈ IR?

+ and T ∈ IR?
+ and

assume h = size(T ) < R, k < T . Let i0 ∈ ZZ , i1 ∈ ZZ and N ∈ IN be such that −R ∈ K i0 , R ∈ Ki1 and
T ∈ (Nk, (N + 1)k] (note that i0 < i1).
Then there exists C ∈ IR?

+, only depending on R, T , u0, α and ξ, such that

i1∑

i=i0

N∑

n=0

k|uni − uni−1| ≤ Ch−1/2. (5.17) bvf

Proof of Lemma
bvwhyplin
5.2

Multiplying the first equation of (
VFDA
5.14) by kuni and summing on i = i0, . . . , i1 and n = 0, . . .N yields

A+B = 0 with

A =

i1∑

i=i0

N∑

n=0

hi(u
n+1
i − uni )u

n
i

and

B =

i1∑

i=i0

N∑

n=0

k(uni − uni−1)u
n
i .

Noting that

A = −1

2

i1∑

i=i0

N∑

n=0

hi(u
n+1
i − uni )

2 +
1

2

i1∑

i=i0

hi[(u
N+1
i )2 − (u0

i )
2]

and using the scheme (
VFDA
5.14) gives

A = −1

2

i1∑

i=i0

N∑

n=0

k2

hi
(uni − uni−1)

2 +
1

2

i1∑

i=i0

hi[(u
N+1
i )2 − (u0

i )
2];

therefore, using the CFL condition (
cflhypl
5.16),

A ≥ −(1− ξ)
1

2

i1∑

i=i0

N∑

n=0

k(uni − uni−1)
2 − 1

2

i1∑

i=i0

hi(u
0
i )

2.

We now study the term B, which may be rewritten as

B =
1

2

i1∑

i=i0

N∑

n=0

k(uni − uni−1)
2 +

1

2

N∑

n=0

k[(uni1)
2 − (uni0−1)

2].
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Thanks to the L∞ estimate of Lemma
linstab
5.1 page

linstab
125, this last equality implies that

B ≥ 1

2

i1∑

i=i0

N∑

n=0

k(uni − uni−1)
2 − T max{−Um, UM}2.

Therefore, since A+B = 0 and
∑i1

i=i0
hi ≤ 4R, the following inequality holds:

0 ≥ ξ

i1∑

i=i0

N∑

n=0

k(uni − uni−1)
2 − (4R+ 2T ) max{−Um, UM}2,

which, in turn, gives the existence of C1 ∈ IR?
+, only depending on R, T , u0 and ξ such that

i1∑

i=i0

N∑

n=0

k(uni − uni−1)
2 ≤ C1. (5.18) bvfsq

Finally, using
i1∑

i=i0

1 ≤
i1∑

i=i0

hi
αh

≤ 4R

αh
,

the Cauchy-Schwarz inequality leads to

[

i1∑

i=i0

N∑

n=0

k|uni − uni−1|]2 ≤ C12T
4R

αh
,

which concludes the proof of the lemma.

Contrary to the discrete H1
0 estimates which were obtained on the approximate finite volume solutions

of elliptic equations, see e.g. (
ellestimx
3.24), the weak BV estimate (

bvf
5.17) is not related to an a priori estimate

on the solution to the continuous problem (
lhy1D
5.10). It does not give any compactness property in the

space L1
loc(IR) (there are some counterexamples); such a compactness property is obtained thanks to a

“strong BV estimate” (with, for instance, an L∞ estimate) as it is recalled below (see Lemma
helly
5.6). In the

one-dimensional case which is studied here such a “strong BV estimate” can be obtained if u0 ∈ BV (IR),
see Corollary

nlstabvco
5.1; this is no longer true in the multidimensional case with general meshes, for which only

the above weak BV estimate is available.

rbvweff Remark 5.7 The weak BV estimate is a crucial point for the proof of convergence. Indeed, the property
which is used in the proof of convergence (see Proposition

convhyplin
5.5 below) is, with the notations of Lemma

bvwhyplin
5.2,

h

i1∑

i=i0

N∑

n=0

k|uni − uni−1| → 0, as h→ 0, (5.19) bvweff

for R, T , u0, α and ξ fixed.

If a piecewise constant function uT ,k, such as given by (
uapp
5.15) (with some uni in IR, not necessarily given

by (
VFDA
5.14)), is bounded in (for instance) L∞(IR × IR+) and converges in L1

loc(IR × IR+) as h → 0 and
k → 0 (with a possible relation between k and h) then (

bvweff
5.19) holds. This proves that the hypothesis

(
bvweff
5.19) is included in the hypotheses of the classical Lax-Wendroff theorem of convergence (see Theorem
laxw
5.3 page

laxw
140); note that (

bvweff
5.19) is implied by (

bvf
5.17) and that it is weaker than (

bvf
5.17)).

We show in the following remark how the “ weak” and “ strong” BV estimates may “formally” be
obtained on the “continuous equation”; this gives a hint of the reason why this estimate may be obtained
even if the exact solution does not belong to the space BV (IR× IR+). A similar remark also holds in the
nonlinear case (i.e. for Problem (

hyperbolic1D
5.1)).
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Remark 5.8 (Formal derivations of the strong and weak BV estimates) When approximat-
ing the solution to (

lhy1D
5.10) by the finite volume scheme (

VFDA
5.14) (with hi = h for all i, for the sake of

simplicity), the equation to which an approximation of a solution is sought is “close” to the equation

ut + ux − εuxx = 0 (5.20) rem

where ε = h−k
2 is positive under the CFL condition (

cflhypl
5.16), which ensures that the scheme is diffusive.

We assume that u is regular enough, with null limits for u(x, t) and its derivatives as x→ ±∞.

(i) “Strong” BV estimate.
Derivating the equation (

rem
5.20) with respect to the variable x, multiplying by signr(ux(x, t)), where signr

denotes a nondecreasing regularization of the function sign, and integrating over IR yields

(∫

IR

φr(ux(x, t))dx
)
t
+

∫

IR

uxx(x, t)signr(ux(x, t))dx = −ε
∫

IR

sign′r(ux(x, t))(uxx(x, t))
2dx ≤ 0,

where φ′r = signr and φr(0) = 0. Since

∫

IR

uxx(x, t)signr(ux(x, t))dx =

∫

IR

(φr(ux(x, t)))xdx = 0,

this yields, passing to the limit on the regularization, that ‖ux(·, t)‖L1(IR) is nonincreasing with respect to
t. Copying this formal proof on the numerical scheme yields a strong BV estimate, which is an a priori
estimate giving compactness properties in L1

loc(IR × IR+), see Lemma
nlstabv
5.7, Corollary

nlstabvco
5.1 and Lemma

helly
5.6

page
helly
138.

(ii) “Weak” BV estimate
Multiplying (

rem
5.20) by u and summing over IR × (0, T ) yields

1

2

∫

IR

u2(x, T )dx− 1

2

∫

IR

u2(x, 0)dx+

∫ T

0

∫

IR

εu2
x(x, t)dxdt = 0,

which yields in turn

ε

∫ T

0

∫

IR

u2
x(x, t)dxdt ≤

1

2
‖u0‖2

L2(IR).

This is the continuous analogous of (
bvfsq
5.18). Hence if h− k = ε ≥ ξh (this is Condition (

cflhypl
5.16), note that

this condition is more restrictive than the usual CFL condition required for the L∞ stability), the discrete
equivalent of this formal proof yields (

bvfsq
5.18) (and then (

bvf
5.17)).

In the first case, we derivate the equation and we use some regularity on u0 (namely u0 ∈ BV (IR)). In
the second case, it is sufficient to have u0 ∈ L∞(IR) but we need the diffusion term to be large enough
in order to obtain the estimate which, by the way, does not yield any estimate on the solution of (

rem
5.20)

with ε = 0. This formal derivation may be carried out similarly in the nonlinear case.

Let us now give a convergence result for the scheme (
VFDA
5.14) in L∞(IR × IR?

+) for the weak-? topology.
Recall that a sequence (vn)n∈IN ⊂ L∞(IR× IR?

+) converges to v ∈ L∞(IR× IR?
+) in L∞(IR× IR?

+) for the
weak-? topology if

∫

IR+

∫

IR

(vn(x, t)− v(x, t))ϕ(x, t)dxdt → 0 as n→∞, ∀ϕ ∈ L1(IR × IR?
+).

A stronger convergence result is available, and comes from the nonlinear study given in Section
hyp1dnl
5.3.
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convhyplin Proposition 5.5 (Convergence in the linear case) Let u0 ∈ L∞(IR) and u be the unique weak solu-
tion to Problem (

lhy1D
5.10) page

lhy1D
122 in the sense of Definition

defweak1
5.2 page

defweak1
120, with f(s) = s for all s ∈ IR. Let

ξ ∈ (0, 1) and α > 0 be given. Let T be an admissible mesh in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 and

let k ∈ IR?
+ satisfying the CFL condition (

cflhypl
5.16) page

cflhypl
126 (taking k ≤ (1 − ξ)αh implies this condition,

note that ξ and α do not depend on T ).
Let uT ,k be the finite volume approximate solution defined by (

VFDA
5.14) and (

uapp
5.15). Then uT ,k → u in

L∞(IR × IR?
+) for the weak-? topology as h = size(T ) → 0.

Proof of Proposition
convhyplin
5.5

Let (Tm, km)m∈IN be a sequence of meshes and time steps satisfying the hypotheses of Proposition
convhyplin
5.5

and such that size(Tm) → 0 as m→∞.
Lemma

linstab
5.1 gives the existence of a subsequence, still denoted by (Tm, km)m∈IN , and of a function u ∈

L∞(IR × IR?
+) such that uTm,km → u in L∞(IR × IR?

+) for the weak-? topology, as m → +∞. There
remains to show that u is the solution of (

h1dweak
5.3) (with f(s) = s for all s ∈ IR). The uniqueness of the weak

solution to Problem (
lhy1D
5.10) will then imply that the full sequence converges to u.

Let ϕ ∈ C1
c (IR × IR+, IR). Let m ∈ IN and T = Tm, k = km and h = size(T ). Let us multiply the first

equation of (
VFDA
5.14) by (k/hi)ϕ(x, nk), integrate over x ∈ Ki and sum for all i ∈ ZZ and n ∈ IN. This

yields

Am +Bm = 0

with

Am =
∑

i∈ZZ

∑

n∈IN

(un+1
i − uni )

∫

Ki

ϕ(x, nk)dx

and

Bm =
∑

i∈ZZ

∑

n∈IN

k(uni − uni−1)
1

hi

∫

Ki

ϕ(x, nk)dx.

Let us remark that Am = A1,m −A′1,m with

A1,m = −
∫ ∞

k

∫

IR

uT ,k(x, t)ϕt(x, t− k)dxdt−
∫

IR

u0(x)ϕ(x, 0)dx

and

A′1,m =
∑

i∈ZZ

u0
i

∫

Ki

ϕ(x, 0)dx−
∫

IR

u0(x)ϕ(x, 0)dx.

Using the fact that
∑
i∈ZZ

u0
i 1Ki → u0 in L1

loc(IR) as m→∞, we get that A′1,m → 0 as m→∞. (Recall
that 1Ki(x) = 1 if x ∈ Ki and 1Ki(x) = 0 if x /∈ Ki.)
Therefore, since uT ,k → u in L∞(IR×IR?

+) for the weak-? topology as m→∞, and ϕt(·, ·−k)1IR×(k,∞) →
ϕt in L1(IR × IR?

+) (note that k → 0 thanks to (
cflhypl
5.16)),

lim
m→+∞

Am = lim
m→+∞

A1,m = −
∫

IR+

∫

IR

u(x, t)ϕt(x, t)dxdt −
∫

IR

u0(x)ϕ(x, 0)dx.

Let us now turn to the study of Bm. We compare Bm with

B1,m = −
∑

n∈IN

∫ (n+1)k

nk

∫

IR

uT ,k(x, t)ϕx(x, nk)dxdt,

which tends to −
∫
IR+

∫
IR
u(x, t)ϕx(x, t)dxdt as m→∞. The term B1,m can be rewritten as
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B1,m =
∑

i∈ZZ

∑

n∈IN

k(uni − uni−1)ϕ(xi− 1
2
, nk).

Let R > 0 and T > 0 be such that ϕ(x, t) = 0 if |x| ≥ R or t ≥ T . Then, there exists C ∈ IR?
+, only

depending on ϕ, such that, if h < R and k < T (which is true for h small enough, thanks to (
cflhypl
5.16)),

|Bm −B1,m| ≤ Ch

i1∑

i=i0

N∑

n=0

k|uni − uni−1|, (5.21) eqcvhl2

where i0 ∈ ZZ , i1 ∈ ZZ and N ∈ IN are such that −R ∈ Ki0 , R ∈ Ki1 and T ∈ (Nk, (N + 1)k].
Using (

eqcvhl2
5.21) and Lemma

bvwhyplin
5.2, we get that Bm −B1,m → 0 and then

Bm → −
∫

IR+

∫

IR

u(x, t)ϕx(x, t)dxdt as m→∞,

which completes the proof that u is the weak solution to Problem (
lhy1D
5.10) page

lhy1D
122 (note that here the

useful consequence of lemma
bvwhyplin
5.2 is (

bvweff
5.19)).

Remark 5.9 In Proposition
convhyplin
5.5, a simpler proof of convergence could be achieved, with ξ = 0, using

a multiplication of the first equation of (
VFDA
5.14) by (k/hi)ϕ(xi−1/2, nk). However, this proof does not

generalize to the general case of nonlinear hyperbolic problems.

Remark 5.10 Proving the convergence of the finite difference method (with the scheme (
DFDA
5.12)) with

u0 ∈ L∞(IR) can be done using the same technique as the proof of the finite volume method (that is
considering the finite difference scheme as a finite volume scheme on a convenient mesh).

5.3 The nonlinear case
hyp1dnl

In this section, finite volume schemes for the discretization of Problem (
hyperbolic1D
5.1) are presented and a theorem

of convergence is given (Theorem
nlcv1d
5.2) which will be generalized to the multidimensional case in the next

chapter. We also recall the classical proof of convergence which uses a “strong BV estimate” and the
Lax-Wendroff theorem. This proof, however, does not seem to extend to the multidimensional case for
general meshes. The following properties are assumed to be satisfied by the data of problem (

hyperbolic1D
5.1).

datah1d Assumption 5.1 The flux function f belongs to C1(IR, IR), the initial data u0 belongs to L∞(IR) and
Um, UM ∈ IR are such that Um ≤ u0 ≤ UM a.e. on IR.

5.3.1 Meshes and schemes
ms1d

Let T be an admissible mesh in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 and k ∈ IR?

+ be the time step. In the
general nonlinear case, the finite volume scheme for the discretization of Problem (

hyperbolic1D
5.1) page

hyperbolic1D
119 writes





hi
k

(un+1
i − uni ) + fni+1/2 − fni−1/2 = 0, ∀n ∈ IN, ∀i ∈ ZZ ,

u0
i =

1

hi

∫ xi+1/2

xi−1/2

u0(x)dx, ∀i ∈ ZZ ,
(5.22) h1D

where uni is expected to be an approximation of u at time tn = nk in cell Ki. The quantity fni+1/2 is

often called the numerical flux at point xi+1/2 and time tn (it is expected to be an approximation of f(u)
at point xi+1/2 and time tn). Note that a common expression of fni+1/2 is used for both equations i and

i + 1 in (
h1D
5.22); therefore the scheme (

h1D
5.22) satisfies the property of conservativity, common to all finite

volume schemes. In the case of a so called “scheme with 2p+1 points” (p ∈ IN?), the numerical flux may
be written
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fni+1/2 = g(uni−p+1, . . . , u
n
i+p), (5.23) nf

where g is the numerical flux function, which determines the scheme. It is assumed to be a locally
Lipschitz continuous function.
As in the linear case (

uapp
5.15) page

uapp
125, the approximate finite volume solution is defined by

uT ,k(x, t) = uni for x ∈ Ki and t ∈ [nk, (n+ 1)k). (5.24) nluapp

The property of consistency for the finite volume scheme (
h1D
5.22), (

nf
5.23) with 2p+ 1 points, is ensured by

writing the following condition:

g(s, . . . , s) = f(s), ∀s ∈ IR. (5.25) consflux

This condition is equivalent to writing the consistency of the approximation of the flux (as in the elliptic
and parabolic cases, which were described in the previous chapters, see e.g. Section

Diric1D
2.1).

vfordf Remark 5.11 (Finite volumes and finite differences) We can remark that, as in the elliptic case,
the condition (

consflux
5.25) does not generally give the consistency of the scheme (

h1D
5.22) when it is considered as

a finite difference scheme. For instance, assume f(s) = s2 for all s ∈ IR, p = 1 and g(a, b) = f1(a) + f2(b)
for all a, b ∈ IR with f1(s) = max{s, 0}2, f2(s) = min{s, 0}2 (which is shown below to be a “good
choice”, see Example

flumono
5.2). Assume also h2i = h and h2i+1 = h/2 for all i ∈ ZZ . In this case, there is

no choice of points xi ∈ IR such that the quantity (fni+1/2 − fni−1/2)/hi is an approximation of order 1 of

(f(u))x(xi, nk), for any regular function u, when uni = u(xi, nk) for all i ∈ ZZ . Indeed, up to second order
terms, this property of consistency is achieved if and only if f ′2(a)|xi+1 − xi|+ f ′1(a)|xi−1 − xi| = f ′(a)hi
for all i ∈ ZZ and for all a ∈ IR. Choosing a > 0 and a < 0, this condition leads to |xi+1 − xi| = hi and
|xi+1 − xi| = hi+1 for all i ∈ ZZ , which is impossible.

Examples of convenient choices for the function g will now be given. An interesting class of schemes is
the class of 3-points schemes with a monotone flux, which we now define.

monflux Definition 5.6 (Monotone flux schemes) Under Assumption
datah1d
5.1, the finite volume scheme (

h1D
5.22)--

(
nf
5.23) is said to be a “monotone flux scheme” if p = 1 and if the function g, only depending on f , Um

and UM , satisfies the following assumptions:

• g is locally Lipschitz continuous from IR2 to IR,

• g(s, s) = f(s), for all s ∈ [Um, UM ],

• (a, b) 7→ g(a, b), from [Um, UM ]2 to IR, is nondecreasing with respect to a and nonincreasing with
respect to b.

The monotone flux schemes are worthy of consideration for they are consistent in the finite volume
sense, they are L∞-stable under a condition (the so called Courant-Friedrichs-Levy condition) of the type
k ≤ C1h, where C1 only depends on g and u0 (see Section

linfstah1d
5.3.2 page

linfstah1d
132 below), and they are “consistent

with the entropy inequalities” also under a condition of the type k ≤ C2h, where C2 only depends on g
and u0 (but C2 may be different of C1, see Section

discenth1d
5.3.3 page

discenth1d
133).

schmono Remark 5.12 A monotone flux scheme is a monotone scheme, under a Courant-Friedrichs-Levy condi-
tion, which means that the scheme can be written under the form

un+1
i = H(uni−1, u

n
i , u

n
i+1),

with H nondecreasing with respect to its three arguments.
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flumono Example 5.2 (Examples of monotone flux schemes) (see also
godlewski-springer
Godlewski and Raviart [1996],

leveque
LeVeque [1990] and references therein). Under Assumption

datah1d
5.1, here are some numerical flux functions

g for which the finite volume scheme (
h1D
5.22)-(

nf
5.23) is a monotone flux scheme (in the sense of Definition

monflux
5.6):

• the flux splitting scheme: assume f = f1 + f2, with f1, f2 ∈ C1(IR, IR), f ′1(s) ≥ 0 and f ′2(s) ≤ 0
for all s ∈ [Um, UM ] (such a decomposition for f is always possible, see the modified Lax-Friedrichs
scheme below), and take

g(a, b) = f1(a) + f2(b).

Note that if f ′ ≥ 0, taking f1 = f and f2 = 0, the flux splitting scheme boils down to the upwind
scheme, i.e. g(a, b) = f(a).

• the Godunov scheme: the Godunov scheme, which was introduced in
Go
Godunov [1976], may be

summarized by the following expression.

g(a, b) =

{
min{f(ξ), ξ ∈ [a, b]} if a ≤ b,
max{f(ξ), ξ ∈ [b, a]} if b ≤ a.

(5.26) fluxgodunov

• the modified Lax-Friedrichs scheme : take

g(a, b) =
f(a) + f(b)

2
+D(a− b), (5.27) fluxLF

with D ∈ IR such that 2D ≥ max{|f ′(s)|, s ∈ [Um, UM ]}. Note that in this modified version of
the Lax-Friedrichs scheme, the coefficient D only depends on f , Um and UM , while the original
Lax-Friedrichs scheme consists in taking D = h/(2k), in the case hi = h for all i ∈ IN, and therefore
satisfies the three items of Definition

monflux
5.6 under the condition h/k ≥ max{|f ′(s)|, s ∈ [Um, UM ]}.

However, an inverse CFL condition appears to be necessary for the convergence of the original Lax-
Friedrichs scheme (see remark

estext
6.11 page

estext
181); such a condition is not necessary for the modified

version.

Note also that the modified Lax-Friedrichs scheme consists in a particular flux splitting scheme
with f1(s) = (1/2)f(s) +Ds and f2(s) = (1/2)f(s)−Ds for s ∈ [Um, UM ].

vfdf Remark 5.13 In the case of a nondecreasing (resp. nonincreasing) function f , the Godunov monotone
flux scheme (

fluxgodunov
5.26) reduces to g(a, b) = f(a) (resp. f(b)). Then, in the case of a nondecreasing function

f , the scheme (
h1D
5.22), (

nf
5.23) reduces to

hi
un+1
i − uni

k
+ f(uni )− f(uni−1) = 0, (5.28) up1D

i.e. the upstream (or upwind) finite volume scheme. The scheme (
up1D
5.28) is sometimes called “upstream

finite difference” scheme. In that particular case (f monotone and 1D) it is possible to find points xi in
order to obtain a consistent scheme in the finite difference sense (if f is nondecreasing, take xi = xi+1/2

as for the scheme (
VFDA
5.14) page

VFDA
125).

5.3.2 L∞-stability for monotone flux schemes
linfstah1d

nlh1dstab Lemma 5.3 (L∞ estimate in the nonlinear case) Under Assumption
datah1d
5.1, let T be an admissible

mesh in the sense of definition
meshhyp1d
5.5 page

meshhyp1d
125 and let k ∈ IR?

+ be the time step.
Let uT ,k be the finite volume approximate solution defined by (

h1D
5.22)-(

nluapp
5.24) and assume that the scheme is

a monotone flux scheme in the sense of definition
monflux
5.6 page

monflux
131. Let g1 and g2 be the Lipschitz constants

of g on [Um, UM ]2 with respect to its two arguments.
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Under the Courant-Friedrichs-Levy (CFL) condition

k ≤ inf i∈ZZ hi
g1 + g2

, (5.29) cflhypnl

(note that taking k ≤ αh/(g1 + g2) implies (
cflhypnl
5.29)),

the approximate solution uT ,k satisfies

Um ≤ uT ,k(x, t) ≤ UM for a.e. x ∈ IR and a.e. t ∈ IR+.

Proof of Lemma
nlh1dstab
5.3

Let us prove that

Um ≤ uni ≤ UM , ∀i ∈ ZZ , ∀n ∈ IN, (5.30) induc

by induction on n, which proves the lemma. Assertion (
induc
5.30) holds for n = 0 thanks to the definition of

u0
i in (

h1D
5.22) page

h1D
130. Suppose that it holds for n ∈ IN.

For all i ∈ ZZ , scheme (
h1D
5.22), (

nf
5.23) (with p = 1) gives

un+1
i = (1− bni+ 1

2

− ani− 1
2

)uni + bni+ 1
2

uni+1 + ani− 1
2

uni−1,

with

bni+ 1
2

=





k

hi

g(uni , u
n
i+1)− f(uni )

uni − uni+1

if uni 6= uni+1,

0 if uni = uni+1,

and

ani− 1
2

=





k

hi

g(uni−1, u
n
i )− f(uni )

uni−1 − uni
if uni 6= uni−1,

0 if uni = uni−1.

Since f(uni ) = g(uni , u
n
i ) and thanks to the monotonicity of g, 0 ≤ bn

i+ 1
2

≤ g2k/hi and 0 ≤ an
i− 1

2

≤ g1k/hi,

for all i ∈ ZZ . Therefore, under condition (
cflhypnl
5.29), the value un+1

i may be written as a convex linear
combination of the values uni and uni−1. Assertion (

induc
5.30) is thus proved for n + 1, which concludes the

proof of the lemma.

5.3.3 Discrete entropy inequalities
discenth1d

nlh1dentdis Lemma 5.4 (Discrete entropy inequalities) Under Assumption
datah1d
5.1, let T be an admissible mesh in

the sense of definition
meshhyp1d
5.5 page

meshhyp1d
125 and let k ∈ IR?

+ be the time step.
Let uT ,k be the finite volume approximate solution defined by (

h1D
5.22)-(

nluapp
5.24) and assume that the scheme is

a monotone flux scheme in the sense of definition
monflux
5.6 page

monflux
131. Let g1 and g2 be the Lipschitz constants

of g on [Um, UM ]2 with respect to its two arguments. Under the CFL condition (
cflhypnl
5.29), the following

inequation holds:

hi
k

(
|un+1
i − κ| − |uni − κ|

)
+

g(uni >κ, uni+1>κ)− g(uni ⊥κ, uni+1⊥κ)− g(uni−1>κ, uni >κ) + g(uni−1⊥κ, uni ⊥κ) ≤ 0,
∀ n ∈ IN, ∀ i ∈ ZZ , ∀ κ ∈ IR.

(5.31) eqnlh1de

Recall that a>b (resp. a⊥b) denotes the maximum (resp. the minimum) of the two real numbers a and b.
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Proof of Lemma
nlh1dentdis
5.4

Thanks to the monotonicity properties of g and to the condition (
cflhypnl
5.29) (see remark

schmono
5.12),

un+1
i = H(uni−1, u

n
i , u

n
i+1), ∀i ∈ ZZ , ∀n ∈ IN,

where H is a function from IR3 to IR which is nondecreasing with respect to all its arguments and such
that κ = H(κ, κ, κ) for all κ ∈ IR.
Hence, for all κ ∈ IR,

un+1
i ≤ H(uni−1>κ, uni >κ, uni+1>κ),

and

κ ≤ H(uni−1>κ, uni >κ, uni+1>κ),
which yields

un+1
i >κ ≤ H(uni−1>κ, uni >κ, uni+1>κ).

In the same manner, we get

un+1
i ⊥κ ≥ H(uni−1⊥κ, uni ⊥κ, uni+1⊥κ),

and therefore, by substracting the last two equations,

|un+1
i − κ| ≤ H(uni−1>κ, uni >κ, uni+1>κ)−H(uni−1⊥κ, uni ⊥κ, uni+1⊥κ),

that is (
eqnlh1de
5.31).

In the two next sections, we study the convergence of the schemes defined by (
h1D
5.22), (

nf
5.23) with p = 1

(see the remarks
5pts1
5.14 and

5pts2
5.15 and Section

hyperhos
5.4 for the schemes with 2p+ 1 points).

We first develop a proof of convergence for the monotone flux schemes; this proof is based on a weak BV
estimate similar to (

bvf
5.17) like the proof of proposition

convhyplin
5.5 page

convhyplin
129 in the linear case. It will be generalized

in the multidimensional case studied in Chapter
hypmd
6. We then briefly describe the BV framework which

gave the first convergence results; its generalization to the multidimensional case is not so easy, except
in the case of Cartesian meshes.

5.3.4 Convergence of the upstream scheme in the general case

A proof of convergence similar to the proof of convergence given in the linear case can be developed. For
the sake of simplicity, we shall consider only the case of a nondecreasing function f and of the classical
upstream scheme (the general case for f and for the monotone flux schemes being handled in Chapter
hypmd
6). We shall first prove a “weak BV ” estimate.

nlwb1d Lemma 5.5 (Weak BV estimate for the nonlinear case) Under Assumption
datah1d
5.1, assume that f is

nondecreasing. Let ξ ∈ (0, 1) be a given value. Let T be an admissible mesh in the sense of definition
meshhyp1d
5.5

page
meshhyp1d
125, let M be the Lipschitz constant of f in [Um, UM ] and let k ∈ IR?

+ satisfying the CFL condition

k ≤ (1− ξ)
inf i∈ZZ hi

M
. (5.32) cflhypnlc

(The condition k ≤ (1 − ξ)αh/M implies the above condition.) Let {uni , i ∈ ZZ , n ∈ IN} be given by
the finite volume scheme (

h1D
5.22), (

nf
5.23) with p = 1 and g(a, b) = f(a). Let R ∈ IR?

+ and T ∈ IR?
+ and

assume h < R and k < T . Let i0 ∈ ZZ , i1 ∈ ZZ and N ∈ IN be such that −R ∈ Ki0 , R ∈ Ki1 ,and
T ∈ (Nk, (N + 1)k]. Then there exists C ∈ IR?

+, only depending on R, T , u0, α, f and ξ, such that
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i1∑

i=i0

N∑

n=0

k|f(uni )− f(uni−1)| ≤ Ch−1/2. (5.33) bvfnl

Proof of Lemma
nlwb1d
5.5

We multiply the first equation of (
h1D
5.22) by kuni , and we sum on i = i0, . . . , i1 and n = 0, . . . , N . We get

A+B = 0, with

A =

i1∑

i=i0

N∑

n=0

hi(u
n+1
i − uni )u

n
i ,

and

B =

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)
uni .

We have

A = −1

2

i1∑

i=i0

N∑

n=0

hi(u
n+1
i − uni )

2 +
1

2

i1∑

i=i0

hi[(u
N+1
i )2 − (u0

i )
2].

Using the scheme (
h1D
5.22), we get

A = −1

2

i1∑

i=i0

N∑

n=0

k2

hi

(
f(uni )− f(uni−1)

)2

+
1

2

i1∑

i=i0

hi[(u
N+1
i )2 − (u0

i )
2],

and therefore, using the CFL condition (
cflhypnlc
5.32),

A ≥ − 1

2M
(1− ξ)

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)2

− 1

2

i1∑

i=i0

hi(u
0
i )

2. (5.34) eqbvwhnl

We now study the term B.
Denoting by Φ the function Φ(a) =

∫ a
Um

sf ′(s)ds, for all a ∈ IR, an integration by parts yields, for all

(a, b) ∈ IR2,

Φ(b)− Φ(a) = b(f(b)− f(a))−
∫ b

a

(f(s)− f(a))dx.

Using the technical lemma
petitlemme
4.5 page

petitlemme
107 which states

∫ b
a (f(s)− f(a))dx ≥ 1

2M (f(b)− f(a))2, we obtain

b(f(b)− f(a)) ≥ 1

2M
(f(b)− f(a))2 + Φ(b)− Φ(a).

The above inequality with a = uni−1 and b = uni yields

B ≥ 1

2M

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)2

+

N∑

n=0

k[Φ(uni1)− Φ(uni0−1)].

Thanks to the L∞ estimate of Lemma
linstab
5.1 page

linstab
125, there exists C1 > 0, only depending on u0 and f

such that

B ≥ 1

2M

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)2

− TC1.
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Therefore, since A+B = 0 and
∑i1

i=i0
hi ≤ 4R, the following inequality holds:

0 ≥ ξ

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)2

− 4RM max{−Um, UM}2 − 2MTC1,

which gives the existence of C2 ∈ IR?
+, only depending on R, T , u0, f and ξ such that

i1∑

i=i0

N∑

n=0

k
(
f(uni )− f(uni−1)

)2

≤ C2.

The Cauchy-Schwarz inequality yields

[ i1∑

i=i0

N∑

n=0

k|f(uni )− f(uni−1)|
]2
≤ C22T

4R

αh
,

which concludes the proof of the lemma.

We can now state the convergence theorem.

nlcv1d Theorem 5.2 (Convergence in the nonlinear case) Assume Assumption
datah1d
5.1 and f nondecreasing.

Let ξ ∈ (0, 1) and α > 0 be given. Let M be the Lipschitz constant of f in [Um, UM ]. For an admissible
mesh T in the sense of Definition

meshhyp1d
5.5 page

meshhyp1d
125 and for a time step k ∈ IR?

+ satisfying the CFL condition
(
cflhypnlc
5.32) (taking k ≤ (1− ξ)αh/M is a sufficient condition, note that ξ and α do not depend of T ), let uT ,k

be the finite volume approximate solution defined by (
h1D
5.22)-(

nluapp
5.24) with p = 1 and g(a, b) = f(a).

Then the function uT ,k converges to the unique entropy weak solution u of (
hyperbolic1D
5.1) page

hyperbolic1D
119 in L1

loc(IR×IR+)
as size(T ) tends to 0.

Proof

Let Y be the set of approximate solutions, that is the set of uT ,k, defined by (
h1D
5.22)-(

nluapp
5.24) with p = 1 and

g(a, b) = f(a), for all (T , k) where T is an admissible mesh in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 and

k ∈ IR?
+ satisfies the CFL condition (

cflhypnlc
5.32). Thanks to Lemma

nlh1dstab
5.3, the set Y is bounded in L∞(IR× IR+).

The proof of Theorem
nlcv1d
5.2 is performed in three steps. In the first step, a compactness result is given for

Y , only using the boundeness of Y in L∞(IR × IR+). In the second step, it is proved that the eventual
limit (in a convenient sense) of a sequence of approximate solutions is a solution (in a convenient sense)
of problem (

hyperbolic1D
5.1). In the third step a uniqueness result yields the conclusion. For steps 1 and 3, we refer

to chapter
hypmd
6 for a complete proof.

Step 1 (compactness result)
Let us first use a compactness result in L∞(IR×IR+) which is stated in Proposition

nlwsprop
6.4 page

nlwsprop
191. Since Y

is bounded in L∞(IR× IR+), for any sequence (um)m∈IN of Y there exists a subsequence, still denoted by
(um)m∈IN, and there exists µ ∈ L∞(IR×IR+×(0, 1)) such that (um)m∈IN converges to µ in the “nonlinear
weak-? sense”, that is

∫

IR

∫

IR+

θ(um(x, t))ϕ(x, t)dtdx →
∫

IR

∫

IR+

∫ 1

0

θ(µ(x, t, α))ϕ(x, t)dαdtdx, as m→∞,

for all ϕ ∈ L1(IR × IR+) and all θ ∈ C(IR, IR). In other words, for any θ ∈ C(IR, IR),

θ(um) → µθ in L∞(IR × IR+) for the weak-? topology as m→∞, (5.35) cvmug

where µθ is defined by

µθ(x, t) =

∫ 1

0

θ(µ(x, t, α))dα, for a.e. (x, t) ∈ IR × IR+.
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Step 2 (passage to the limit)
Let (um)m∈IN be a sequence of Y . Assume that (um)m∈IN converges to µ in the nonlinear weak-? sense
and that um = uTm,km (for all m ∈ IN) with size(Tm) → 0 as m → ∞ (note that km → 0 as m → ∞,
thanks to (

cflhypnlc
5.32)).

Let us prove that µ is a “solution” to problem (
hyperbolic1D
5.1) in the following sense (we shall say that µ is “an

entropy process solution” to problem (
hyperbolic1D
5.1)):





µ ∈ L∞(IR × IR+ × (0, 1)),∫

IR

∫

IR+

∫ 1

0

(
|µ(x, t, α)− κ|ϕt(x, t) + (f(µ(x, t, α)>κ) − f(µ(x, t, α)⊥κ))ϕx(x, t)

)
dαdtdx

+

∫

IR

|u0(x)− κ|ϕ(x, 0)dx ≥ 0, ∀ϕ ∈ C1
c (IR × IR+, IR+), ∀κ ∈ IR.

(5.36) h1deps

Let κ ∈ IR. Setting

v(x, t) =

∫ 1

0

|µ(x, t, α) − κ|dα, for a.e. (x, t) ∈ IR × IR+

and

w(x, t) =

∫ 1

0

(
f(µ(x, t, α)>κ)− f(µ(x, t, α)⊥κ)

)
dα, for a.e. (x, t) ∈ IR × IR+,

the inequality in (
h1deps
5.36) writes

∫

IR

∫

IR+

[v(x, t)ϕt(x, t) + w(x, t)ϕx(x, t)]dtdx +

∫

IR

|u0(x)− κ|ϕ(x, 0)dx ≥ 0,

∀ϕ ∈ C1
c (IR × IR+, IR+).

(5.37) cvh1dnl1

Let us prove that (
cvh1dnl1
5.37) holds; for m ∈ IN we shall denote by T = Tm and k = km. We use the result of

Lemma
nlh1dentdis
5.4, which writes in the present particular case f ′ ≥ 0,

hi
vn+1
i − vni

k
+ wni − wni−1 ≤ 0, ∀i ∈ ZZ , ∀n ∈ IN,

where vni = |uni − κ| and wni = f(uni >κ)− f(uni ⊥κ) = |f(uni )− f(κ)|.
The functions vTm,km and wTm,km are defined in the same way as the function uTm,km , i. e. with constant
values vni and wni in each control volume Ki during each time step (nk, (n + 1)k). Choosing θ equal to
the continuous functions | · −κ| and |f(·) − f(κ)| in (

cvmug
5.35) yields that the sequences (vTm,km)m∈IN and

(wTm,km)m∈IN converge to v and w in L∞(IR × IR?
+) for the weak-? topology.

Applying the method which was used in the proof of Proposition
convhyplin
5.5 page

convhyplin
129, taking vli instead of uli in

the definition of Am (for l = n and n + 1) and wnj instead of unj in the definition of Bm (for j = i and
i− 1), we conclude that (

cvh1dnl1
5.37) holds.

Indeed, a weak BV inequality holds on the values wni (that is (
bvf
5.17) page

bvf
126 holds with wnj instead of

unj for j = i and i− 1), thanks to Lemma
nlwb1d
5.5 page

nlwb1d
134 and the relation

∣∣|f(uni )− κ| − |f(uni−1)− κ|
∣∣ ≤ |f(uni )− f(uni−1)|, ∀i ∈ ZZ , ∀n ∈ IN.

(Note that here, as in the linear case, the useful consequence of the weak BV inequality, is (
bvweff
5.19) page

bvweff
127 with wnj instead of unj for j = i and i− 1.)
This concludes Step 2.

Step 3 (uniqueness result for (
h1deps
5.36) and conclusion)

Theorem
ewsunicite
6.3 page

ewsunicite
175 states that there exists at most one solution to (

h1deps
5.36) and that there exists u ∈

L∞(IR×IR+) such that µ solution to (
h1deps
5.36) implies µ(x, t, α) = u(x, t) for a.e. (x, t, α) ∈ IR×IR+×(0, 1).

Then, u is necessarily the entropy weak solution to (
hyperbolic1D
5.1).
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Furthermore, if (um)m∈IN converges to u in the nonlinear weak-? sense, an easy argument shows that
(um)m∈IN converges to u in L1

loc(IR × IR+) (and even in Lploc(IR × IR+) for all 1 ≤ p < ∞), see Remark
(
cvforte
6.15) page

cvforte
193.

Then, the conclusion of Theorem
nlcv1d
5.2 follows easily from Step 2 and Step 1 by way of contradiction (in

order to prove the convergence of a sequence uTm,km ⊂ Y to u, if size(Tm) → 0 as m→∞, without any
extraction of a “subsequence”).

5pts1 Remark 5.14 In Theorem
nlcv1d
5.2, we only consider the case f ′ ≥ 0 and the so called “upstream scheme”.

It is quite easy to generalize the result for any f ∈ C1(IR, IR) and any monotone flux scheme (see the
following chapter). It is also possible to consider other schemes (for instance, some 5-points schemes, as
in Section

hyperhos
5.4). For a given scheme, the proof of convergence of the approximate solution towards the

entropy weak solution contains 2 steps:

1. prove an L∞ estimate on the approximate solutions, which allows to use the compactness result of
Step 1 of the proof of Theorem

nlcv1d
5.2,

2. prove a “weak BV ” estimate and some “discrete entropy inequality” in order to have the following
property:

If (um)m∈IN is a sequence of approximate solutions which converges in the nonlinear weak-? sense,
then

lim
m→IN

∫

IR

∫

IR+

(
|um(x, t) − κ|ϕt(x, t) + (f(um(x, t)>κ)− f(um(x, t)⊥κ))ϕx(x, t)

)
dtdx

+

∫

IR

|u0(x)− κ|ϕ(x, 0)dx ≥ 0, ∀ϕ ∈ C1
c (IR × IR+, IR+), ∀κ ∈ IR.

5.3.5 Convergence proof using BV
bvmethod

We now give the details of the classical proof of convergence (considering only 3 points schemes), which
requires regularizations of u0 in BV (IR). It consists in using Helly’s compactness theorem (which may
also be used in the linear case to obtain a strong convergence of uT ,k to u in L1

loc(IR×IR+)). This theorem
is a direct consequence of Kolmogorov’s theorem (theorem

Kolm
3.9 page

Kolm
93). We give below the definition of

BV (Ω) where Ω is an open subset of IRp(Ω), p ≥ 1 (already given in Definition
defBV
5.5 page

defBV
121 for Ω = IR)

and we give a straightforward consequence of Helly’s theorem for the case of interest here.

bvrd Definition 5.7 (BV (Ω)) Let p ∈ IN? and let Ω be an open subset of IRp. A function v ∈ L1
loc(Ω) has a

bounded variation, that is v ∈ BV (Ω), if |v|BV (Ω) <∞ where

|v|BV (Ω) = sup{
∫

Ω

v(x)divϕ(x)dx, ϕ ∈ C1
c (Ω, IR

p), |ϕ(x)| ≤ 1, ∀x ∈ Ω}. (5.38) defBVRp

helly Lemma 5.6 (Consequence of Helly’s theorem) Let A ⊂ L∞(IR2). Assume that there exists C ∈
IR+ and, for all T > 0, there exists CT ∈ IR+ such that

‖v‖L∞(IR2) ≤ C, ∀v ∈ A,
and

|v|BV (IR×(−T,T )) ≤ CT , ∀v ∈ A, ∀T > 0.

Then for any sequence (vn)n∈IN of elements of A, there exists a subsequence, still denoted by (vn)n∈IN,
and there exists v ∈ L∞(IR2), with ‖v‖L∞(IR2) ≤ C and |v|BV (IR×(−T,T )) ≤ CT for all T > 0, such that

vn → v in L1
loc(IR

2) as n→∞, that is
∫
ω̄ |vn(x)− v(x)|dx → 0, as n→∞ for any compact set ω̄ of IR2.
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In order to use Lemma
helly
5.6, one first shows the following BV stability estimate for the approximate

solution:

nlstabv Lemma 5.7 (Discrete space BV estimate) Under Assumption
datah1d
5.1, assume that u0 ∈ BV (IR); let T

be an admissible mesh in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 and let k ∈ IR?

+ be the time step. Let {uni ,
i ∈ ZZ , n ∈ IN} be given by (

h1D
5.22), (

nf
5.23) and assume that the scheme is a monotone flux scheme¡ in the

sense of Definition
monflux
5.6 page

monflux
131. Let g1 and g2 be the Lipschitz constants of g on [Um, UM ]2 with respect

to its two arguments. Then, under the CFL condition (
cflhypnl
5.29), the following inequality holds:

∑

i∈ZZ

|un+1
i+1 − un+1

i | ≤
∑

i∈ZZ

|uni+1 − uni |, ∀ n ∈ IN. (5.39) eqnlstabv

Proof of Lemma
nlstabv
5.7

First remark that, for n = 0,
∑

i∈ZZ
|u0
i+1 − u0

i | ≤ |u0|BV (IR) (see Remark
divbv1d
5.4 page

divbv1d
121).

For all i ∈ ZZ , the scheme (
h1D
5.22), (

nf
5.23) (with p = 1) leads to

un+1
i = uni + bni+ 1

2

(uni+1 − uni ) + ani− 1
2

(uni−1 − uni ),

and

un+1
i+1 = uni+1 + bni+ 3

2

(uni+2 − uni+1) + ani+ 1
2

(uni − uni+1),

where ai+1/2 and bi+1/2 are defined (for all i ∈ ZZ ) in Lemma
nlh1dstab
5.3 page

nlh1dstab
132. Substracting one equation

to the other leads to

un+1
i+1 − un+1

i = (uni+1 − uni )(1− bni+ 1
2

− ani+ 1
2

) + bni+ 3
2

(uni+2 − uni+1) + ani− 1
2

(uni − uni−1).

Under the condition (
cflhypnl
5.29), we get

|un+1
i+1 − un+1

i | ≤ |uni+1 − uni |(1− bni+ 1
2

− ani+ 1
2

) + bni+ 3
2

|uni+2 − uni+1|+ ani− 1
2

|uni − uni−1|.

Summing the previous equation over i ∈ ZZ gives (
eqnlstabv
5.39).

nlstabvco Corollary 5.1 (Discrete BV estimate) Under assumption
datah1d
5.1, let u0 ∈ BV (IR); let T be an admis-

sible mesh in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 and let k ∈ IR?

+ be the time step. Let uT ,k be the
finite volume approximate solution defined by (

h1D
5.22)-(

nluapp
5.24) and assume that the scheme is a monotone

flux scheme in the sense of Definition
monflux
5.6 page

monflux
131. Let g1 and g2 be the Lipschitz constants of g on

[Um, UM ]2 with respect to its two arguments and assume that k satisfies the CFL condition (
cflhypnl
5.29). Let

uT ,k(x, t) = u0
i for a.e. (x, t) ∈ Ki × IR−, for all i ∈ ZZ (hence uT ,k is defined a.e. on IR2). Then, for

any T > 0, there exists C ∈ IR?
+, only depending on u0, g and T such that:

|uT ,k|BV (IR×(−T,T )) ≤ C. (5.40) conlstabv

Proof of Corollary
nlstabvco
5.1

As in Lemma
nlstabv
5.7, remark that

∑
i∈ZZ

|u0
i+1 − u0

i | ≤ |u0|BV (IR).

Let us first assume that T ≤ k. Then, the BV semi-norm of uT ,k satisfies

|uT ,k|BV (IR×(−T,T )) ≤ 2T
∑

i∈ZZ

|u0
i+1 − u0

i |.

Hence the estimate (
conlstabv
5.40) is true for C = 2T |u0|BV (IR).

Let us now assume that k < T . Let N ∈ IN? such that Nk < T ≤ (N + 1)k. The definition of
| · |BV (IR×(−T,T )) yields



140

|uT ,k|BV (IR×(−T,T )) ≤ T
∑
i∈ZZ

|u0
i+1 − u0

i |+
N−1∑

n=0

∑

i∈ZZ

k|uni+1 − uni |+ (T −Nk)
∑

i∈ZZ

|uNi+1 − uNi |+
N−1∑

n=0

∑

i∈ZZ

hi|un+1
i − uni |.

(5.41) bvtot

Lemma
nlstabv
5.7 gives

∑
i∈ZZ

|uni+1 − uni | ≤ |u0|BV (IR) for all n ∈ IN, and therefore,

N−1∑

n=0

∑

i∈ZZ

k|uni+1 − uni |+ (T −Nk)
∑

i∈ZZ

|uNi+1 − uNi | ≤ T |u0|BV (IR). (5.42) bvtot1

In order to bound the last term of (
bvtot
5.41), using the scheme (

h1D
5.22) yields, for all i ∈ ZZ and all n ∈ IN,

|un+1
i − uni | ≤

k

hi
g1|uni − uni−1|+

k

hi
g2|uni − uni+1|.

Therefore,

∑

i∈ZZ

hi|un+1
i − uni | ≤ k(g1 + g2)

∑

i∈ZZ

|uni − uni+1|, for all n ∈ IN,

which yields, since Nk < T ,

N−1∑

n=0

∑

i∈ZZ

hi|un+1
i − uni | ≤ T (g1 + g2)|u0|BV (IR). (5.43) bvtot2

Therefore Inequality (
conlstabv
5.40) follows from (

bvtot
5.41), (

bvtot1
5.42) and (

bvtot2
5.43) with C = T (2 + g1 + g2)|u0|BV (IR).

Consider a sequence of admissible meshes and time steps verifying the CFL condition, and the associated
sequence of approximate solutions (prolonged on IR × IR− as in Corollary

nlstabvco
5.1). By Lemma

nlh1dstab
5.3 page

nlh1dstab
132 and Corollary

nlstabvco
5.1, the sequence of approximate solutions satisfies the hypotheses of Lemma

helly
5.6 page

helly
138. It is therefore possible to extract a subsequence which converges in L1

loc(IR × IR+) to a function
u ∈ L∞(IR × IR?

+). It must still be shown that the function u is the unique weak entropy solution of
Problem (

hyperbolic1D
5.1). This may be proven by using the discrete entropy inequalities (

eqnlh1de
5.31) and the strong BV

estimate (
eqnlstabv
5.39) or the classical Lax-Wendroff theorem recalled below.

laxw Theorem 5.3 (Lax-Wendroff) Under Assumption
datah1d
5.1, let α > 0 be given and let (Tm)m∈IN be a

sequence of admissible meshes in the sense of Definition
meshhyp1d
5.5 page

meshhyp1d
125 (note that, for all m ∈ IN, the mesh

Tm satisfies the hypotheses of Definition
meshhyp1d
5.5 where T = Tm and α is independent of m). Let (km)m∈IN

be a sequence of (positive) time steps. Assume that size(Tm) → 0 and km → 0 as m→∞.

For m ∈ IN, setting T = Tm and k = km, let um = uT ,k be the solution of (
h1D
5.22)-(

nluapp
5.24) with p = 1

and some g from IR2 to IR, only depending on f and u0, locally Lipschitz continuous and such that
g(s, s) = f(s) for all s ∈ IR.

Assume that (um)m∈IN is bounded in L∞(IR × IR+) and that um → u a.e. on IR × IR+. Then, u is a
weak solution to problem (

hyperbolic1D
5.1) (that is u satisfies (

h1dweak
5.3)).

Furthermore, assume that for any κ ∈ IR there exists some locally Lipschitz continuous function Gκ from
IR2 to IR, only depending on f , u0 and κ, such that Gκ(s, s) = f(s>κ)− f(s⊥κ) for all s ∈ IR and such
that for all m ∈ IN

1

k
(|un+1

i − κ| − |uni − κ|) +
1

hi
(Gκ(u

n
i , u

n
i+1)−Gκ(u

n
i−1, u

n
i )) ≤ 0, ∀i ∈ ZZ , ∀n ∈ IN, (5.44) entlw

where {uni , i ∈ ZZ , n ∈ IN} is the solution to (
h1D
5.22)-(

nf
5.23) for T = Tm and k = km. Then, u is the

entropy weak solution to Problem (
hyperbolic1D
5.1) (that is u is the unique solution of (

h1dent
5.4)).
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Proof of Theorem
laxw
5.3

Since (um)m∈IN is bounded in L∞(IR × IR+) and um → u a.e. on IR × IR+, the sequence (um)m∈IN

converges to u in L1
loc(IR × IR+). This implies in particular (from Kolmogorov’s theorem, see Theorem

Kolm
3.9) that, for all R > 0 and all T > 0,

sup
m∈IN

∫ 2T

0

∫ 2R

−2R

|um(x, t) − um(x − η, t)|dxdt→ 0 as η → 0.

Then, taking η = α size(Tm) (for m ∈ IN) and letting m→∞ yields, in particular,

∫ 2T

0

∫ 2R

−2R

|um(x, t) − um(x− α size(Tm), t)|dxdt→ 0 as m→∞. (5.45) astuce

For m ∈ IN, let {uni , i ∈ ZZ , n ∈ IN} be the solution to (
h1D
5.22)-(

nf
5.23) for T = Tm and k = km (note that

uni depends on m, even though this dependency is not so clear in the notation). We also set km = k and
size(Tm) = h, so that k and h are depending on m (but recall that α is not depending on m).

Let R > 0 and T > 0. Let i0 ∈ ZZ , i1 ∈ ZZ and N ∈ IN be such that −R ∈ Ki0 , R ∈ Ki1 and
T ∈ (Nk, (N + 1)k]. Then, for h < R and k < T (which is true for m large enough),

αh

i1∑

i=i0

N∑

n=0

k|uni − uni−1| ≤
∫ 2T

0

∫ 2R

−2R

|um(x, t)− um(x− αh, t)|dxdt.

Therefore, Inequality (
astuce
5.45) leads to (

bvweff
5.19), that is

h

i1∑

i=i0

N∑

n=0

k|uni − uni−1| → 0 as m→∞. (5.46) bvwelw

Using (
bvwelw
5.46), the remainder of the proof of Theorem

laxw
5.3 is very similar to the proof of Proposition

convhyplin
5.5

page
convhyplin
129 and to Step 2 in the proof of Theorem

nlcv1d
5.2 page

nlcv1d
136 (Inequality (

bvwelw
5.46) replaces the weak BV

inequality).

In order to prove that u is solution to (
h1dweak
5.3), let us multiply the first equation of (

h1D
5.22) by (k/hi)ϕ(x, nk),

integrate over x ∈ Ki and sum for all i ∈ ZZ and n ∈ IN. This yields

Am +Bm = 0

with

Am =
∑

i∈ZZ

∑

n∈IN

(un+1
i − uni )

∫

Ki

ϕ(x, nk)dx

and

Bm =
∑

i∈ZZ

∑

n∈IN

k(g(uni , u
n
i+1)− g(uni−1, u

n
i ))

1

hi

∫

Ki

ϕ(x, nk)dx.

As in the proof of Proposition
convhyplin
5.5, one has

lim
m→+∞

Am = −
∫

IR+

∫

IR

u(x, t)ϕt(x, t)dxdt −
∫

IR

u0(x)ϕ(x, 0)dx.

Let us now turn to the study of Bm. We compare Bm with

B1,m = −
∑

n∈IN

∫ (n+1)k

nk

∫

IR

f(uT ,k(x, t))ϕx(x, nk)dxdt,



142

which tends to −
∫
IR+

∫
IR
f(u(x, t))ϕx(x, t)dxdt as m → ∞ since f(uT ,k) → f(u) in L1

loc(IR × IR+) as
m→∞.
The term B1,m can be rewritten as

B1,m =
∑

i∈ZZ

∑

n∈IN

k(f(uni )− f(uni−1))ϕ(xi−1/2 , nk),

which yields, introducing g(uni−1, u
n
i ),

B1,m =
∑

i∈ZZ

∑

n∈IN

k(f(uni )− g(uni−1, u
n
i ))ϕ(xi−1/2, nk)

+
∑

i∈ZZ

∑

n∈IN

k(g(uni−1, u
n
i )− f(uni−1))ϕ(xi−1/2, nk).

Similarly, introducing f(uni ) in Bm,

Bm =
∑

i∈ZZ

∑

n∈IN

k(f(uni )− g(uni−1, u
n
i ))

1

hi

∫

Ki

ϕ(x, nk)dx

+
∑

i∈ZZ

∑

n∈IN

k(g(uni , u
n
i+1)− f(uni ))

1

hi

∫

Ki

ϕ(x, nk)dx.

In order to compare Bm and B1,m, let R > 0 and T > 0 be such that ϕ(x, t) = 0 if |x| ≥ R or t ≥ T . Let
A > 0 be such that ‖um‖L∞(IR×IR+) ≤ A for all m ∈ IN. Then there exists C > 0, only depending on ϕ
and the Lipschitz constants on g on [−A,A]2, such that, if h < R and k < T (which is true for m large
enough),

|Bm −B1,m| ≤ Ch

i1∑

i=i0

N∑

n=0

k|uni − uni−1|, (5.47) bazar

where i0 ∈ ZZ , i1 ∈ ZZ and N ∈ IN are such that −R ∈ Ki0 , R ∈ Ki1 and T ∈ (Nk, (N + 1)k].
Using (

bazar
5.47) and (

bvwelw
5.46), we get |Bm −B1,m| → 0 and then

Bm → −
∫

IR

∫

IR+

f(u(x, t))ϕx(x, t)dtdx as m→∞,

which completes the proof that u is a solution to problem
h1dweak
5.3.

Under the additional assumption that um satisfies (
entlw
5.44), one proves that u satisfies (

h1dentkr
5.7) page

h1dentkr
121 (and

therefore that u satisfies (
h1dent
5.4)) and is the entropy weak solution to Problem (

hyperbolic1D
5.1) by a similar method.

Indeed, let κ ∈ IR. One replaces uli by |uli − κ| in Am (for l = n and n+ 1) and one replaces g by Gκ in
Bm. Then, passing to the limit in Am +Bm ≤ 0 (which is a consequence of the inequation (

entlw
5.44)) leads

the desired result.
This concludes the proof of Theorem

laxw
5.3

5pts2 Remark 5.15 Theorem
laxw
5.3 still holds with (2p+ 1)-points schemes (p > 1). The generalization of the

first part of Theorem
laxw
5.3 (the proof that u is a solution to (

h1dweak
5.3)) is quite easy. For the second part of

Theorem
laxw
5.3 (entropy inequalities) the discrete entropy inequalities may be replaced by some weaker ones

(in order to handle interesting schemes such as those which are described in the following section).
However, the use of Theorem

laxw
5.3 needs a compactness property of sequences of approximate solutions in

the space L1
loc(IR×IR+). Such a compactness property is generally achieved with a “strong BV estimate”

(similar to (
eqnlstabv
5.39)). Hence an extensive literature on “TVD schemes” (see

HA
Harten [1983]), “ENO

schemes”. . . (see
godlewski-ellipses
Godlewski and Raviart [1991],

godlewski-springer
Godlewski and Raviart [1996] and references

therein). The generalization of this method in the multidimensional case (studied in the following chapter)
does not seem so clear except in the case of Cartesian meshes.
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5.4 Higher order schemes
hyperhos

Consider a monotone flux scheme in the sense of Definition
monflux
5.6 page

monflux
131. By definition, the considered

scheme is a 3 points scheme; recall that the numerical flux function is denoted by g. The approximate
solution obtained with this scheme converges to the entropy weak solution of Problem (

hyperbolic1D
5.1) page

hyperbolic1D
119

as the mesh size tends to 0 and under a so called CFL condition (it is proved in Theorem
nlcv1d
5.2 for a

particular case and in the next chapter for the general case). However, 3-points schemes are known to
be diffusive, so that the approximate solution is not very precise near the discontinuities. An idea to
reduce the diffusion is to go to a 5-points scheme by introducing “slopes” on each discretization cell and
limiting the slopes in order for the scheme to remain stable. A classical way to do this is the “MUSCL”
(Monotonic Upwind Scheme for Conservation Laws, see

vanleer3
Van Leer [1979]) technique .

We briefly describe, with the notations of Section
ms1d
5.3.1, an example of such a scheme, see e.g.

godlewski-ellipses
Godlewski

and Raviart [1991] and
godlewski-springer
Godlewski and Raviart [1996] for further details. Let n ∈ IN.

• Computation of the slopes

p̃ni =
uni+1 − uni−1

hi + hi−1

2 + hi+1

2

, i ∈ ZZ .

• Limitation of the slopes

pni = αni p̃
n
i , i ∈ ZZ , where αni is the largest number in [0, 1] such that

uni +
hi
2
αni p̃

n
i ∈ [uni ⊥uni+1, u

n
i >uni+1] and uni −

hi
2
αni p̃

n
i ∈ [uni ⊥uni−1, u

n
i >uni−1].

In practice, other formulas giving smaller values of αni are sometimes needed for stability reasons.

• Computation of un+1
i for i ∈ ZZ

One replaces g(uni , u
n+1
i ) in (

nf
5.23) by :

g(uni−1, u
n
i , u

n
i+1, u

n
i+2) = g(uni +

hi
2
pni , u

n
i+1 −

hi+1

2
pn+1
i ).

The scheme thus constructed is less diffusive than the original one and it remains stable thanks to the
limitation of the slope. Indeed, if the limitation of the slopes is not active (that is αni = 1), the space
diffusion term disappears from this new scheme, while the time “antidiffusion” term remains. Hence it
seems appropriate to use a higher order scheme for the time discretization. This may be done by using,
for instance, an RK2 (Runge Kutta order 2, or Heun) method for the discretization of the time derivative.
The MUSCL scheme may be written as

Un+1 − Un

k
= H(Un) for n ∈ IN,

where Un = (uni )i∈ZZ ; hence it may be seen as the explicit Euler discretization of

Ut = H(U);

therefore, the RK2 time discretization yields to the following scheme:

Un+1 − Un

k
=

1

2
H(Un) +

1

2

(
H(Un + kH(Un))

)
for n ∈ IN.

Going to a second order discretization in time allows larger time steps, without loss of stability.
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Results of convergence are possible with these new schemes (with eventually some adaptation of the
slope limitations to obtain convenient discrete entropy inequalities, see

vilathese
Vila [1986]. It is also possible

to obtain error estimates in the spirit of those given in the following chapter, in the multidimensional
case, see e.g.

Chainais1
Chainais-Hillairet [1996],

Noelle
Noëlle [1996],

kroner2
Kröner, Noelle and Rokyta [1995].

However these error estimates are somewhat unsatisfactory since they are of a similar order to that of the
original 3-points scheme (although these schemes are numerically more precise that the original 3-points
schemes).

The higher order schemes are nonlinear even if Problem (
hyperbolic1D
5.1) page

hyperbolic1D
119 is linear, because of the limitation

of the slopes.

Implicit versions of these higher order schemes are more or less straightforward. However, the numerical
implementation of these implicit versions requires the solution of nonlinear systems. In many cases, the
solutions to these nonlinear systems seem impossible to reach for large k; in fact, the existence of the
solutions is not so clear, see

pfertzel
Pfertzel [1987]. Since the advantage of implicit schemes is essentially

the possibility to use large values of k, the above flaw considerably reduces the opportunity of their use.
Therefore, although implicit 3-points schemes are very diffusive, they remain the basic schemes in several
industrial environments. See also Section

turbo
7.1.3 page

turbo
203 for some clues on implicit schemes applied to

complex industrial applications.



Chapter 6

Multidimensional nonlinear

hyperbolic equations

hypmd
The aim of this chapter is to define and study finite volume schemes for the approximation of the
solution to a nonlinear scalar hyperbolic problem in several space dimensions. Explicit and implicit
time discretizations are considered. We prove the convergence of the approximate solution towards the
entropy weak solution of the problem and give an error estimate between the approximate solution and
the entropy weak solution with respect to the discretization mesh size.

6.1 The continuous problem

We consider here the following nonlinear hyperbolic equation in d space dimensions (d ≥ 1), with initial
condition

ut(x, t) + div(vf(u))(x, t) = 0, x ∈ IRd, t ∈ IR+, (6.1) estpbcont

u(x, 0) = u0(x), x ∈ IRd, (6.2) estcondini

where ut denotes the time derivative of u (t ∈ IR+), and div the divergence operator with respect to the
space variable (which belongs to IRd). Recall that |x| denotes the euclidean norm of x in IRd, and x · y
the usual scalar product of x and y in IRd.

The following hypotheses are made on the data:

estdonnees Assumption 6.1

(i) u0 ∈ L∞(IRd), Um, UM ∈ IR, Um ≤ u0 ≤ UM a.e.,

(ii) v ∈ C1(IRd × IR+, IR
d),

(iii) divv(x, t) = 0, ∀(x, t) ∈ IRd × IR+,

(iv) ∃V <∞ such that |v(x, t)| ≤ V, ∀(x, t) ∈ IRd × IR+,
(v) f ∈ C1(IR, IR).

baptisee Remark 6.1 Note that part (iv) of Assumption
estdonnees
6.1 is crucial. It ensures the property of “propagation

in finite time” which is needed for the uniqueness of the solution of (
estkruzkov
6.3) and for the stability (under

a “Courant-Friedrichs-Levy” (CFL) condition) of the time explicit numerical scheme. Part (iii) of As-
sumption

estdonnees
6.1, on the other hand, is only considered for the sake of simplicity; the results of existence and

uniqueness of the entropy weak solution and convergence (including error estimates as in the theorems
esth14
6.5 page

esth14
180 and

esth14i
6.6 page

esth14i
181) of the numerical schemes presented below may be extended to the case

divv 6= 0. However, part (iii) of Assumption
estdonnees
6.1 is natural in many “applications” and avoids several

145
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technical complications. Note, in particular, that, for instance, if divv 6= 0, the L∞-bound on the solution
of (

estkruzkov
6.3) and the L∞ estimate (in Lemma

estinftyest
6.1 and Proposition

esteu
6.1) on the approximate solution depend

on v and T . The case F (x, t, u) instead of v(x, t)f(u) is also feasible, but somewhat more technical, see
Chainais1
Chainais-Hillairet [1996] and

Chainais2
Chainais-Hillairet [1999].

Problem (
estpbcont
6.1)-(

estcondini
6.2) has a unique entropy weak solution, which is the solution to the following equation

(which is the multidimensional extension of the one-dimensional definition
defent1
5.3 page

defent1
120).





u ∈ L∞(IRd × IR?
+),∫

IR+

∫

IRd

[
η(u(x, t))ϕt(x, t) + Φ(u(x, t))v(x, t) · ∇ϕ(x, t)

]
dxdt+

∫

IRd

η(u0(x))ϕ(x, 0)dx ≥ 0, ∀ϕ ∈ C∞c (IRd × IR+, IR+),

∀η ∈ C1(IR, IR), convex function, and Φ ∈ C1(IR, IR) such that Φ′ = f ′η′,

where ∇ϕ denotes the gradient of the function ϕ with respect to the space variable (which belongs to
IRd). Recall that Cmc (E,F ) denotes the set of functions Cm from E to F , with compact support in E.
The characterization of the entropy weak solution by the Krushkov entropies (proposition

prentkr1
5.2 page

prentkr1
121)

still holds in the multidimensional case. Let us define again, for all κ ∈ IR, the Krushkov entropies (|·−κ|)
for which the entropy flux is f(·>κ) − f(·⊥κ) (for any pair of real values a, b, we denote again by a>b
the maximum of a and b, and by a⊥b the minimum of a and b). The unique entropy weak solution is
also the unique solution to the following problem:





u ∈ L∞(IRd × IR?
+),∫

IR+

∫

IRd

[
|u(x, t)− κ|ϕt(x, t) +

(
f(u(x, t)>κ)− f(u(x, t)⊥κ)

)
v(x, t) · ∇ϕ(x, t)

]
dxdt+

∫

IRd

|u0(x) − κ|ϕ(x, 0)dx ≥ 0, ∀κ ∈ IR, ∀ϕ ∈ C∞c (IRd × IR+, IR+).

(6.3) estkruzkov

As in the one-dimensional case (Theorem
hyp1dexistu
5.1 page

hyp1dexistu
121), existence and uniqueness results are also known

for the entropy weak solution to Problem (
estpbcont
6.1)-(

estcondini
6.2) under assumptions which differ slightly from as-

sumption
estdonnees
6.1 (see e.g.

krushkov
Krushkov [1970],

Vo
Vol’pert [1967]). In particular, these results are obtained

with a nonlinearity F (in our case F = vf) of class C3. We recall that the methods which were used in
krushkov
Krushkov [1970] require a regularization in BV (IRd) of the function u0, in order to take advantage,
for any T > 0, of compactness properties which are similar to those given in Lemma

helly
5.6 page

helly
138 for

the case d = 1. Recall that the space BV (Ω) where Ω is an open subset of IRp, p ≥ 1, was defined in
Definition

bvrd
5.7 page

bvrd
138; it will be used later with Ω = IRd or Ω = IRd × (−T, T ).

The existence of solutions to similar problems to (
estpbcont
6.1)-(

estcondini
6.2) was already proved by passing to the limit

on solutions of an appropriate numerical scheme, see
CS
Conway and Smoller [1966]. The work of

CS
Conway and Smoller [1966] uses a finite difference scheme on a uniform rectangular grid, in two
space dimensions, and requires that the initial condition u0 belongs to BV (IRd) (and thus, the solution
to Problem (

estpbcont
6.1)-(

estcondini
6.2) also has a locally bounded variation). These assumptions (on meshes and on u0)

yield, as in Lemma
helly
5.6 page

helly
138, a (strong) compactness property in L1

loc(IR
d × IR+) on a family of

approximate solutions. In the following, however, we shall only require that u0 ∈ L∞(IRd) and we shall
be able to deal with more general meshes. We may use, for instance, a triangular mesh in the case of
two space dimensions. For each of these reasons, the BV framework may not be used and a (strong)
compactness property in L1

loc on a family of approximate solutions is not easy to obtain (although this
compactness property does hold and results from this chapter). In order to prove the existence of
a solution to (

estpbcont
6.1)-(

estcondini
6.2) by passing to the limit on the approximate solutions given by finite volume

schemes on general meshes (in the sense used below) in two or three space dimensions, we shall work
with some “weak” compactness result in L∞, namely Proposition

nlwsprop
6.4, which yields the “nonlinear weak-?

convergence” (see Definition
nlwsdef
6.3 page

nlwsdef
190) of a family of approximate solutions. When doing so, passing
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to the limit with the approximate solutions will give the existence of an “entropy process solution” to
Problem (

estpbcont
6.1)-(

estcondini
6.2), see Definition

estepsol
6.2 page

estepsol
173. A uniqueness result for the entropy process solution to

Problem (
estpbcont
6.1)-(

estcondini
6.2) is then proven. This uniqueness result proves that the entropy process solution is

indeed the entropy weak solution, hence the existence and uniqueness of the entropy weak solution. This
uniqueness result also allows us to conclude to the convergence of the approximate solution given by the
numerical scheme (that is (

estschema
6.7), (

estschemaz
6.5)) towards the entropy weak solution to (

estpbcont
6.1)-(

estcondini
6.2) (this convergence

holds in Lploc(IR
d × IR+) for any 1 ≤ p <∞).

Note that uniqueness results for “generalized” solutions (namely measure valued solutions) to (
estpbcont
6.1)-(

estcondini
6.2)

have recently been proved (see
DP
DiPerna [1985],

Sz
Szepessy [1989],

GH
Gallouët and Herbin [1994]).

The proofs of these results rely on the one hand on the concept of measure valued solutions and on the
other hand on the existence of an entropy weak solution. The direct proof of the uniqueness of a measure
valued solution (i.e. without assuming any existence result of entropy weak solutions) leads to a difficult
problem involving the application of the theorem of continuity in mean. This difficulty is easier to deal
within the framework of entropy process solutions (but in fact, measure valued solutions and entropy
process solutions are two presentations of the same concept).

Developing the above analysis gives a (strong) convergence result of approximate solutions towards the
entropy weak solution. But moreover, we also derive some error estimates depending on the regularity of
u0.

In the case of a Cartesian grid, the convergence and error analysis reduces essentially to a one-dimensional
discretization problem for which results were proved some time ago, see e.g.

Kuznetsov
Kuznetsov [1976],

CM
Crandall and Majda [1980],

S
Sanders [1983]. In the case of general meshes, the numerical schemes

are not generally “TVD” (Total Variation Diminushing) and therefore the classical framework of the 1D
case (see Section

bvmethod
5.3.5 page

bvmethod
138) may not be used. More recent works deal with several convergence

results and error estimates for time explicit finite volume schemes, see e.g.
Coquel
Cockburn, Coquel and

LeFloch [1994],
cgh
Champier, Gallouët and Herbin [1993],

Vi
Vila [1994],

kroner1
Kröner and Rokyta

[1994],
kroner2
Kröner, Noelle and Rokyta [1995],

kronerbook
Kröner [1997]: following Szepessy’s work on the con-

vergence of the streamline diffusion method (see
Sz
Szepessy [1989]), most of these works use DiPerna’s

uniqueness theorem, see
DP
DiPerna [1985] (or an adaptation of it, see

GH
Gallouët and Herbin [1994] and

EGH2
Eymard, Gallouët and Herbin [1995]), and the error estimates generalize the work by

Kuznetsov
Kuznetsov

[1976]. Here we use the framework of
cgh
Champier, Gallouët and Herbin [1993],

eggh
Eymard, Gallouët,

Ghilani and Herbin [1998]; we prove directly that any monotone flux scheme (defined below) satisfies
a “weak BV ” estimate (see lemmata

estwbvest
6.2 page

estwbvest
153 and

estwbvesti
6.3 page

estwbvesti
159). This inequality appears to be a key

for the proof of convergence and for the error estimate. Some convergence results and error estimates are
also possible with some so called “higher order schemes” which are not monotone flux schemes (briefly
presented for the 1D case in section

hyperhos
5.4 page

hyperhos
143). These results are not presented here, see

Noelle
Noëlle

[1996] and
Chainais1
Chainais-Hillairet [1996] for some of them.

Note that the nonlinearity considered here is of the form v(x, t)f(u). This kind of flux is often encountered
in porous medium modelling, where the hyperbolic equation may then be coupled with an elliptic or
parabolic equation (see e.g.

EG
Eymard and Gallouët [1993],

Vignal1
Vignal [1996a],

Vignal2
Vignal [1996b],

HL
Herbin

and Labergerie [1997]). It adds an extra difficulty to the case F (u) because of the dependency on x
and t. Note again (see Remark

baptisee
6.1) that the method which we present here for a nonlinearity of the form

v(x, t)f(u) also yields the same results in the case of a nonlinearity of the form F (x, t, u), see the recent
work of

Chainais2
Chainais-Hillairet [1999].

The time implicit discretization adds the extra difficulties of proving the existence of the approximate
solution (see Lemma

esteu
6.1 page

esteu
157) and proving a so called “strong time BV estimate” (see Lemma

estlbvt
6.5

page
estlbvt
162) in order to show that the error estimate for the implicit scheme may still be of order h1/4 even

if the time step k is of order
√
h, at least in particular cases.

We first describe in section
eghbns
6.2 finite volume schemes using a “general” mesh for the discretization of



148

(
estpbcont
6.1)-(

estcondini
6.2). In sections

stabe
6.3 and

stabi
6.4 some estimates on the approximate solution given by the numerical

schemes are shown and in Section
entineq
6.5 some entropy inequalities are proven. We then prove in section

eghcvsol
6.6

the convergence of convenient subsequences of sequences of approximate solutions towards an entropy
process solution, by passing to the limit when the mesh size and the time step go to 0. A byproduct
of this result is the existence of an entropy process solution to (

estpbcont
6.1)-(

estcondini
6.2) (see Definition

estepsol
6.2 page

estepsol
173).

The uniqueness of the entropy process solution to problem (
estpbcont
6.1)-(

estcondini
6.2) is then proved; we can therefore

conclude to the existence and uniqueness of the entropy weak solution and also to the Lploc convergence
for any finite p of the approximate solution towards the entropy weak solution (Section

eghcvsol
6.6). Using the

existence of the entropy weak solution, an error estimate result is given in Section
esterr
6.7 (which also yields

the convergence result). Therefore the main interest of this convergence result is precisely to prove the
existence of the entropy weak solution to (

estpbcont
6.1)-(

estcondini
6.2) without any regularity assumption on the initial

data. Section
nlwscv
6.8 describes the notion of nonlinear weak-? convergence, which is widely used in the proof

of convergence of section
eghcvsol
6.6.

Section
fve
6.9 is not related to the previous sections. It describes a finite volume approach which may be

used to stabilize finite element schemes for the discretization of a hyperbolic equation (or system).

6.2 Meshes and schemes
eghbns

Let us first define an admissible mesh of IRd as a generalization of the notion of admissible mesh of IR as
defined in definition

meshhyp1d
5.5 page

meshhyp1d
125.

meshypmd Definition 6.1 (Admissible meshes) An admissible finite volume mesh of IRd, with d = 1, 2 or 3
(for the discretization of Problem (

estpbcont
6.1)-(

estcondini
6.2)), denoted by T , is given by a family of disjoint polygonal

connected subsets of IRd such that IRd is the union of the closure of the elements of T (which are called
control volumes in the following) and such that the common “interface” of any two control volumes is
included in a hyperplane of IRd (this is not necessary but is introduced to simplify the formulation).
Denoting by h = size(T ) = sup{diam(K),K ∈ T }, it is assumed that h < +∞ and that, for some α > 0,

αhd ≤ m(K),
m(∂K) ≤ 1

αh
d−1, ∀K ∈ T , (6.4) estmaillage

where m(K) denotes the d-dimensional Lebesgue measure of K, m(∂K) denotes the (d− 1)-dimensional
Lebesgue measure of ∂K (∂K is the boundary of K) and N (K) denotes the set of neighbours of the
control volume K; for L ∈ N (K), we denote by K|L the common interface between K and L, and by
nK,L the unit normal vector to K|L oriented from K to L. The set of all the interfaces is denoted by E .

Note that, in this definition, the terminology is “mixed”. For d = 3, “polygonal” stands for “polyhedral”
and, for d = 2, “interface” stands for “edge”. For d = 1 definition

meshypmd
6.1 is equivalent to definition

meshhyp1d
5.5 page

meshhyp1d
125.

In order to define the numerical flux, we consider functions g ∈ C(IR2, IR) satisfying the following
assumptions:

estcondflu Assumption 6.2 Under Assumption
estdonnees
6.1 the function g, only depending on f , v, Um and UM , satisfies

• g is locally Lipschitz continuous from IR2 to IR,

• g(s, s) = f(s), for all s ∈ [Um, UM ],

• (a, b) 7→ g(a, b), from [Um, UM ]2 to IR, is nondecreasing with respect to a and nonincreasing with
respect to b.
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Let us denote by g1 and g2 the Lipschitz constants of g on [Um, UM ]2 with respect to its two arguments.

The hypotheses on g are the same as those presented for monotone flux schemes in the one-dimensional
case (see definition

monflux
5.6 page

monflux
131); the function g allows the construction of a numerical flux, see Remark

deflunum
6.3 below.

Remark 6.2 In Assumption
estcondflu
6.2, the third item will ensure some stability properties of the schemes

defined below. In particular, in the case of the “explicit scheme” (see (
estschema
6.7)), it yields the monotonicity

of the scheme under a CFL condition (namely, condition (
estcfl
6.6) with ξ = 0). The second item is essential

since it ensures the consistency of the fluxes. All the examples of functions g given in Examples
flumono
5.2 page

flumono
132 satisfy these assumptions. We again give the important example of the “generalized 1D Godunov
scheme” obtained with a one-dimensional Godunov scheme for each interface (see e.g., for the explicit
scheme, see

Coquel
Cockburn, Coquel and LeFloch [1994],

Vi
Vila [1994]),

g(a, b) =

{
max{f(s), b ≤ s ≤ a} if b ≤ a
min{f(s), a ≤ s ≤ b} if a ≤ b,

and also the framework of some “flux splitting” schemes:

g(a, b) = f1(a) + f2(b),

with f1, f2 ∈ C1(IR, IR), f = f1 + f2, f1 nondecreasing and f2 nonincreasing (this framework is consider-
ably more simple that the general framework, because it reduces the study to the particular case of two
monotone nonlinearities).

Besides, it is possible to replace Assumption
estcondflu
6.2 on g by some slightly more general assumption, in order

to handle, in particular, the case of some “Lax-Friedrichs type” schemes (see Remark
estext
6.11 below).

In order to describe the numerical schemes considered here, let T be an admissible mesh in the sense of
Definition

meshypmd
6.1 and k > 0 be the time step. The discrete unknowns are unK , n ∈ IN?, K ∈ T . The set {u0

K ,
K ∈ T } is given by the initial condition,

u0
K =

1

m(K)

∫

K

u0(x)dx, ∀K ∈ T . (6.5) estschemaz

The equations satisfied by the discrete unknowns, unK , n ∈ IN?, K ∈ T , are obtained by discretizing
equation (

estpbcont
6.1). We now describe the explicit and implicit schemes.

6.2.1 Explicit schemes

We present here the “explicit scheme” associated to a function g satisfying Assumption
estcondflu
6.2. In this case,

for stability reasons (see lemmata
estinftyest
6.1 and

estwbvest
6.2), the time step k ∈ IR?

+ is chosen such that

k ≤ (1− ξ)
α2h

V (g1 + g2)
, (6.6) estcfl

where ξ ∈ (0, 1) is a given real value; recall that g1 and g2 are the Lipschitz constants of g with respect
to the first and second variables on [Um, UM ]2 and that Um ≤ u0 ≤ UM a.e. and |v(x, t)| ≤ V < +∞,
for all (x, t) ∈ IRd × IR+. Consider the following explicit numerical scheme:

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

(
vnK,L g(u

n
K , u

n
L)− vnL,K g(unL, u

n
K)
)

= 0, ∀K ∈ T , ∀n ∈ IN, (6.7) estschema

where

vnK,L =
1

k

∫ (n+1)k

nk

∫

K|L
(v(x, t) · nK,L)+dγ(x)dt
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and

vnL,K =
1

k

∫ (n+1)k

nk

∫

K|L
(v(x, t) · nL,K)+dγ(x)dt

=
1

k

∫ (n+1)k

nk

∫

K|L
(v(x, t) · nK,L)−dγ(x)dt.

Recall that a+ = a>0 and a− = −(a⊥0) for all a ∈ IR and that dγ is the integration symbol for the
(d− 1)-dimensional Lebesgue measure on the considered hyperplane.

deflunum Remark 6.3 (Numerical fluxes) The numerical flux at the interface between the control volume K
and the control volume L ∈ N (K) is then equal to vnK,L g(u

n
K , u

n
L)−vnL,K g(unL, u

n
K); this expression yields

a monotone flux such as defined in definition
monflux
5.6 page

monflux
131, given in the one-dimensional case. However,

in the multidimensional case, the expression of the numerical flux depends on the considered interface;
this was not so in the one-dimensional case for which the numerical flux is completely defined by the
function g.

The approximate solution, denoted by uT ,k, is defined a.e. from IRd × IR+ to IR by

uT ,k(x, t) = unK , if x ∈ K, t ∈ [nk, (n+ 1)k), K ∈ T , n ∈ IN. (6.8) estuapp

6.2.2 Implicit schemes

The use of implicit schemes is steadily increasing in industrial codes for reasons such as robustness and
computational cost. Hence we consider in our analysis the following implicit numerical scheme (for which
condition (

estcfl
6.6) is no longer needed) associated to a function g satisfying Assumption

estcondflu
6.2:

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

(vnK,L g(u
n+1
K , un+1

L )− vnL,K g(un+1
L , un+1

K )) = 0, ∀K ∈ T , ∀n ∈ IN. (6.9) estschemai

where {u0
K , K ∈ T } is still determined by (

estschemaz
6.5). The implicit approximate solution uT ,k, is defined now

a.e. from IRd × IR+ to IR by

uT ,k(x, t) = un+1
K , if x ∈ K, t ∈ (nk, (n+ 1)k], K ∈ T , n ∈ IN. (6.10) estuappimp

6.2.3 Passing to the limit

We show in section
eghcvsol
6.6 page

eghcvsol
173 the convergence of the approximate solutions uT ,k (given by the numerical

schemes above described) towards the unique entropy weak solution u to (
estpbcont
6.1)-(

estcondini
6.2) in an adequate sense,

when size(T ) → 0 and k → 0 (with, possibly, a stability condition). In order to describe the general line
of thought leading to this convergence result, we shall simply consider the explicit scheme (that is (

estschemaz
6.5),

(
estschema
6.7) and (

estuapp
6.8)) (the implicit scheme will also be fully investigated later).

First, in section
stabe
6.3, by writing un+1

K as a convex combination of unK and (unL)L∈N (K), the L∞ stability is

easily shown under the CFL condition (
estcfl
6.6) (uT ,k is proved to be bounded in L∞(IRd×IR?

+), independently
of size(T ) and k).

By a classical argument, if any possible limit of a family of approximate solutions uT ,k (where T is an
admissible mesh in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and k satisfies (

estcfl
6.6)) is the entropy weak solution

to problem (
estpbcont
6.1)-(

estcondini
6.2) then uT ,k converges (in L∞(IRd × IR?

+) for the weak-? topology, for instance),
as h = size(T ) → 0 (and k satisfies (

estcfl
6.6)), towards the unique entropy weak solution to problem (

estpbcont
6.1)-

(
estcondini
6.2). Unfortunately, the L∞ estimate of section

stabe
6.3 does not yield that any possible limit of a family
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of approximate is solution to problem (
estpbcont
6.1)-(

estcondini
6.2), even in the linear case (f(u) = u) (see the proofs

of convergence of Chapter
hyper1d
5). The “BV stability” can be used (combined with the L∞ stability) to

show the convergence in the case of one space dimension (see section
bvmethod
5.3.5 page

bvmethod
138) and in the case of

Cartesian meshes in two or three space dimensions. Indeed, in the case of Cartesian meshes, assuming
u0 ∈ BV (IRd) and assuming (for simplicity) v to be constant (a generalization is possible for v regular
enough), the following estimate holds, for all T ≥ k:

k

NT,k∑

n=0

∑

K|L∈E
m(K|L)|unK − unL| ≤ T |u0|BV (IRd),

where NT,k ∈ IN is such that (NT,k + 1)k ≤ T < (NT,k + 2)k, and the values unK are given by (
estschemaz
6.5) and

(
estschema
6.7). Such an estimate is wrong in the general case of admissible meshes in the sense of Definition

meshypmd
6.1

page
meshypmd
148, as it can be shown with easy counterexamples. It is, however, not necessary for the proof of

convergence. A weaker inequality, which is called “weak BV ” as in the one-dimensional case (see lemma
nlwb1d
5.5 page

nlwb1d
134) will be shown in the multidimensional case for both explicit and implicit schemes (see

lemmata
estwbvest
6.2 page

estwbvest
153 and

estwbvesti
6.3 page

estwbvesti
159); the weak BV estimate yields the convergence of the scheme in

the general case. As an illustration, consider the case f ′ ≥ 0; using an upwind scheme, i.e. g(a, b) = f(a),
the weak BV inequality (

estbvfx
6.16) page

estbvfx
153, which is very close to that of the 1D case (lemma

nlwb1d
5.5 page

nlwb1d
134),

writes

NT,k∑

n=0

k
∑

(K,L)∈En
R

(vnK,L + vnL,K)|f(unK)− f(unL)| ≤ C√
h
, (6.11) BVfaible

where EnR = {(K,L) ∈ T 2, L ∈ N (K),K|L ⊂ B(0, R) and unK > unL} and C only depends on v, g, u0, α,
ξ, R and T (see Lemma

estwbvest
6.2).

We say that Inequality (
BVfaible
6.11) is “weak”, but it is in fact “three times weak” for the following reasons:

1. the inequality is of order 1√
h
, and not of order 1.

2. In the left hand side of (
BVfaible
6.11), the quantity which is associated to the K|L ∈ EnR interface is zero

if f is constant on the interval to which the values unK and unL belong; variations of the discrete
unknowns in this interval are therefore not taken into account.

3. The left hand side of (
BVfaible
6.11) involves terms (vnK,L + vnL,K) which are not uniformly bounded from

below by C m(K|L) with some C > 0 only depending on the data (that is v, u0 and g) and not on
T (note that, for instance, vnK,L = vnL,K = 0 if v · nK,L = 0).

For the convergence result (namely Theorem
eghbcewsol
6.4 page

eghbcewsol
179) the useful consequence of (

BVfaible
6.11) is

h

NT,k∑

n=0

k
∑

(K,L)∈En
R

(vnK,L + vnL,K)|f(unK)− f(unL)| → 0 as h→ 0,

as in the 1D case, see Theorem
nlcv1d
5.2 page

nlcv1d
136. For the error estimate in Theorem

esth14
6.5 page

esth14
180, the bound

C/
√
h in (

BVfaible
6.11) is crucial. Note that a “twice weak BV ” inequality in the sense (ii) and (iii), but of order

1 (that is C instead of C/
√
h in the right hand side of (

BVfaible
6.11)), would yield a sharp error estimate, i.e.

Ceh
1/2 instead of Ceh

1/4 in (
esteqcorol
6.94) page

esteqcorol
180.

Note that, in order to obtain (
BVfaible
6.11), ξ > 0 is crucial in the CFL condition (

estcfl
6.6).

Recall also that (
BVfaible
6.11) together with the L∞(IRd × IR?

+) bound does not yield any (strong) compactness

property in L1
loc(IR

d × IR+) on a family of approximated solutions.

In the linear case (that is f(s) = cs for all s ∈ IR, for some c in IR), the inequality (
BVfaible
6.11) is used in

the same manner as in the previous chapter; one proves that the approximate solution satisfies the weak
formulation to (

estpbcont
6.1)-(

estcondini
6.2) (which is equivalent to (

estkruzkov
6.3)) with an error which goes to 0 as h → 0, under
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condition (
estcfl
6.6). We deduce from this the convergence of uT ,k (as h → 0 and under condition (

estcfl
6.6))

towards the unique weak solution of (
estpbcont
6.1)-(

estcondini
6.2) in L∞(IRd × IR?

+) for the weak-? topology. In fact, the

convergence holds in Lploc(IR
d × IR+) (strongly) for any 1 ≤ p <∞, thanks to the argument developped

for the study of the nonlinear case.

The nonlinear case adds an extra difficulty, as in the 1D case; it will be handled in detail in the present
chapter. This difficulty arises from the fact that, if uT ,k converges to u (as h→ 0, under condition (

estcfl
6.6))

and f(uT ,k) to µf , in L∞(IRd× IR?
+) for the weak-? topology, there remains to show that µf = f(u) and

that u is the entropy weak solution to problem (
estpbcont
6.1)-(

estcondini
6.2). The weak BV inequality (

BVfaible
6.11) is used to

show that, for any “entropy” function η, i.e. convex function of class C1 from IR to IR, with associated
entropy flux φ, i.e. φ such that φ′ = f ′η′, the following entropy inequality is satisfied:





∫

IR+

∫

IRd

(
µη(x, t)ϕt(x, t) + µφ(x, t)v(x, t) · ∇ϕ(x, t)

)
dxdt+

∫

IRd

η(u0(x))ϕ(x, 0)dx ≥ 0,

∀ϕ ∈ C∞c (IRd × IR+, IR+),

(6.12) entropy

where µη (resp. µφ) is the limit of η(uT ,k) (resp. φ(uT ,k)) in L∞(IRd × IR?
+) for the weak-? topology

(the existence of these limits can indeed be assumed). From (
entropy
6.12), it is shown that uT ,k converges to

u in L1
loc(IR

d × IR+) (as h → 0, k satisfying (
estcfl
6.6)), and that u is the entropy weak solution to problem

(
estpbcont
6.1)-(

estcondini
6.2). This last result uses a generalization of a result on measure valued solutions of DiPerna (see

DP
DiPerna [1985],

GH
Gallouët and Herbin [1994]), and is developped in section

eghcvsol
6.6 page

eghcvsol
173.

6.3 Stability results for the explicit scheme
stabe

6.3.1 L
∞ stability

estinftyest Lemma 6.1 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0, let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2 and assume that (

estcfl
6.6) holds; let uT ,k be given by (

estuapp
6.8),

(
estschema
6.7), (

estschemaz
6.5); then,

Um ≤ unK ≤ UM , ∀n ∈ IN, ∀K ∈ T , (6.13) estinduction

and

‖uT ,k‖L∞(IRd×IR?
+

) ≤ ‖u0‖L∞(IRd). (6.14) eststabinf

Proof of Lemma
estinftyest
6.1

Note that (
eststabinf
6.14) is a straightforward consequence of (

estinduction
6.13), which will be proved by induction. For n = 0,

since Um ≤ u0 ≤ UM a.e., (
estinduction
6.13) follows from (

estschemaz
6.5).

Let n ∈ IN, assume that Um ≤ unK ≤ UM for all K ∈ T . Using the fact that divv = 0, which yields∑

L∈N (K)

(vnK,L − vnL,K) = 0, we can rewrite (
estschema
6.7) as

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

(
vnK,L(g(unK , u

n
L)− f(unK))− vnL,K(g(unL, u

n
K)− f(unK))

)
= 0. (6.15) estschemab

Set, for unK 6= unL,

τnK,L = vnK,L
g(unK , u

n
L)− f(unK)

unK − unL
− vnL,K

g(unL, u
n
K)− f(unK)

unK − unL
,

and τnK,L = 0 if unK = unL.
Assumption

estcondflu
6.2 on g and Assumption

estdonnees
6.1 yields 0 ≤ τnK,L ≤ V m(K|L)(g1 + g2). Using (

estschemab
6.15), we can

write
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un+1
K =

(
1− k

m(K)

∑

L∈N (K)

τnK,L

)
unK +

k

m(K)

∑

L∈N (K)

τnK,Lu
n
L,

which gives, under condition (
estcfl
6.6), inf

L∈T
unL ≤ un+1

K ≤ sup
L∈T

unL, for all K ∈ T . This concludes the proof of

(
estinduction
6.13), which, in turn, yields (

eststabinf
6.14).

Remark 6.4 Note that the stability result (
eststabinf
6.14) holds even if ξ = 0 in (

estcfl
6.6). However, we shall need

ξ > 0 for the following “weak BV ” inequality.

6.3.2 A “weak BV ” estimate

In the following lemma, B(0, R) denotes the ball of IRd of center 0 and radius R (IRd is always endowed
with its usual scalar product).

estwbvest Lemma 6.2 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0. Let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2 and assume that (

estcfl
6.6) holds. Let uT ,k be given by (

estuapp
6.8),

(
estschema
6.7), (

estschemaz
6.5).

Let T > 0, R > 0, NT,k = max{n ∈ IN, n < T/k}, TR = {K ∈ T ,K ⊂ B(0, R)} and EnR = {(K,L) ∈
T 2, L ∈ N (K),K|L ⊂ B(0, R) and unK > unL}.
Then there exists C ∈ IR, only depending on v, g, u0, α, ξ, R, T such that, for h < R and k < T ,

NT,k∑

n=0

k
∑

(K,L)∈En
R

[
vnK,L

(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q)) + max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))
)
+

vnL,K

(
max

un
L
≤p≤q≤un

K

(f(q)− g(p, q)) + max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))
)]

≤ C√
h
,

(6.16) estbvfx

and

NT,k∑

n=0

∑

K∈TR

m(K)|un+1
K − unK | ≤

C√
h
, (6.17) estbvft

Proof of Lemma
estwbvest
6.2

In this proof, we shall denote by Ci (i ∈ IN) various quantities only depending on v, g, u0, α, ξ, R, T .
Multiplying (

estschemab
6.15) by kunK and summing the result over K ∈ TR, n ∈ {0, . . . , NT,k} yields

B1 +B2 = 0, (6.18) est1bv

with

B1 =

NT,k∑

n=0

∑

K∈TR

m(K)unK(un+1
K − unK),

and

B2 =

NT,k∑

n=0

k
∑

K∈TR

∑

L∈N (K)

(
vnK,L(g(unK , u

n
L)− f(unK))unK − vnL,K(g(unL, u

n
K)− f(unK))unK

)
.

Gathering the last two summations by edges in B2 leads to the definition of B3:
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B3 =

NT,k∑

n=0

k
∑

(K,L)∈En
R

[
vnK,L

(
unK(g(unK , u

n
L)− f(unK))− unL(g(unK , u

n
L)− f(unL))

)
−

vnL,K

(
unK(g(unL, u

n
K)− f(unK))− unL(g(unL, u

n
K)− f(unL))

)]
.

The expression |B3−B2| can be reduced to a sum of terms each of which corresponds to the boundary of a
control volume which is included in B(0, R+h)\B(0, R−h); since the measure of B(0, R+h)\B(0, R−h)
is less than C2h, the number of such terms is, for n fixed, lower than (C2h)/(αh

d) = C3h
1−d. Thanks to

(
eststabinf
6.14), using the fact that m(∂K) ≤ (1/α)hd−1, that |v(x, t)| ≤ V , that g is bounded on [Um, UM ]2, and

that g(s, s) = f(s), one may show that each of the non zero term in |B3 − B2| is bounded by C1h
d−1.

Furthermore, since (NT,k + 1)k ≤ 2k, we deduce that

|B3 −B2| ≤ C4. (6.19) est5bv

Denoting by Φ a primitive of the function (·)f ′(·), an integration by parts yields, for all (a, b) ∈ IR2,

Φ(b)− Φ(a) =

∫ b

a

sf ′(s)ds = b(f(b)− g(a, b))− a(f(a)− g(a, b))−
∫ b

a

(f(s)− g(a, b))ds. (6.20) est6bv

Using (
est6bv
6.20), the term B3 may be decomposed as

B3 = B4 −B5,

where

B4 =

NT,k∑

n=0

k
∑

(K,L)∈En
R

(
vnK,L

∫ un
L

un
K

(f(s)− g(unK , u
n
L))ds + vnL,K

∫ un
K

un
L

(f(s)− g(unL, u
n
K))ds

)

and

B5 =

NT,k∑

n=0

k
∑

(K,L)∈En
R

(vnK,L − vnL,K)
(
Φ(unK)− Φ(unL)

)
.

The term B5 is again reduced to a sum of terms corresponding to control volumes included in B(0, R+
h) \B(0, R− h), thanks to divv = 0; therefore, as for (

est5bv
6.19), there exists C5 ∈ IR such that

B5 ≤ C5.

Let us now turn to an estimate of B4. To this purpose, let a, b ∈ IR, define C(a, b) = {(p, q) ∈ [a⊥b, a>b]2;
(q − p)(b− a) ≥ 0}. Thanks to the monotonicity properties of g (and using the fact that g(s, s) = f(s)),
the following inequality holds, for any (p, q) ∈ C(a, b):

∫ b

a

(f(s)− g(a, b))ds ≥
∫ d

c

(f(s)− g(a, b))ds ≥
∫ q

p

(f(s)− g(p, q))ds ≥ 0. (6.21) est7bv

The technical lemma
petitlemme
4.5 page

petitlemme
107 can then be applied. It states that

|
∫ q

p

(θ(s)− θ(p))ds| ≥ 1

2G
(θ(q)− θ(p))2, ∀p, q ∈ IR,

for all monotone, Lipschitz continuous function θ : IR → IR, with a Lipschitz constant G > 0.
From Lemma

petitlemme
4.5, we can notice that

∫ q

p

(f(s)− g(p, q))ds ≥
∫ q

p

(g(p, s)− g(p, q))ds ≥ 1

2g2
(f(p)− g(p, q))2, (6.22) est8bv
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and

∫ q

p

(f(s)− g(p, q))ds ≥
∫ q

p

(g(s, q)− g(p, q))ds ≥ 1

2g1
(f(q)− g(p, q))2. (6.23) est9bv

Multiplying (
est8bv
6.22) (resp. (

est9bv
6.23)) by g2/(g1 + g2) (resp. g1/(g1 + g2)), taking the maximum for (p, q) ∈

C(a, b), and adding the two equations yields, with (
est7bv
6.21),

∫ b

a

(f(s)− g(a, b))ds ≥ 1

2(g1 + g2)

(
max

(p,q)∈C(a,b)
(f(p)− g(p, q))2 + max

(p,q)∈C(a,b)
(f(q)− g(p, q))2

)
. (6.24) est9bvbis

We can then deduce, from (
est9bvbis
6.24):

B4 ≥
1

2(g1 + g2)

NT,k∑

n=0

k
∑

(K,L)∈En
R

[

vnK,L

(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q))2 + max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))2
)
+

vnL,K

(
max

un
L
≤p≤q≤un

K

(f(q)− g(p, q))2 + max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))2
)]
.

(6.25) est10bv

This gives a bound on B2, since (with C6 = C4 + C5):

B2 ≥ B4 − C6. (6.26) est10bva

Let us now turn to B1. We have

B1 = −1

2

NT,k∑

n=0

∑

K∈TR

m(K)(un+1
K − unK)2 +

1

2

∑

K∈TR

m(K)
(
u
NT,k+1
K

)2

− 1

2

∑

K∈TR

m(K)
(
u0
K

)2

. (6.27) est11bv

Using (
estschemab
6.15) and the Cauchy-Schwarz inequality yields the following inequality:

(un+1
K − unK)2 ≤
k2

m(K)2

∑

L∈N (K)

(vnK,L + vnL,K)
∑

L∈N (K)

[
vnK,L

(
g(unK , u

n
L)− f(unK)

)2

+ vnL,K

(
g(unL, u

n
K)− f(unK)

)2]
.

Then, using the CFL condition (
estcfl
6.6), Definition

meshypmd
6.1 and part (iv) of Assumption

estdonnees
6.1 gives

m(K)(un+1
K − unK)2 ≤

k
1− ξ

g1 + g2

∑

L∈N (K)

[
vnK,L

(
g(unK , u

n
L)− f(unK)

)2

+ vnL,K

(
g(unL, u

n
K)− f(unK)

)2]
. (6.28) est13bv

Summing equation (
est13bv
6.28) over K ∈ TR and over n = 0, . . . , NT,k, and reordering the summation leads to

1

2

NT,k∑

n=0

∑

K∈TR

m(K)(un+1
K − unK)2 ≤ 1− ξ

2(g1 + g2)

NT,k∑

n=0

k
∑

(K,L)∈En
R

[

vnK,L

(
(g(unK , u

n
L)− f(unK))2 + (g(unK , u

n
L)− f(unL))2

)
+

vnL,K

(
(f(unK)− g(unL, u

n
K))2 + (f(unL)− g(unL, u

n
K))2

)]
+ C7,

(6.29) est13bvbis

where C7 accounts for the interfaces K|L ⊂ B(0, R) such that K /∈ TR and/or L /∈ TR (these control
volumes are included in B(0, R+ h) \B(0, R− h)).
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Note that the right hand side of (
est13bvbis
6.29) is bounded by (1− ξ)B4 + C7 (from (

est10bv
6.25)). Using (

est1bv
6.18), (

est10bva
6.26)

and (
est11bv
6.27) gives

ξ

2(g1 + g2)

NT,k∑

n=0

k
∑

(K,L)∈En
R

[
vnK,L

(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q))2 + max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))2
)
+

vnL,K

(
max

un
L
≤p≤q≤un

K

(f(q)− g(p, q))2 + max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))2
)]

≤ 1

2

∑

K∈TR

m(K)
(
u0
K

)2

+ C6 + C7 = C8.

(6.30) est14bv

Applying the Cauchy-Schwarz inequality to the left hand side of (
estbvfx
6.16) and using (

est14bv
6.30) yields

NT,k∑

n=0

k
∑

(K,L)∈En
R

[
vnK,L

(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q)) + max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))
)
+

vnL,K

(
max

un
L
≤p≤q≤un

K

(f(q)− g(p, q)) + max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))
)]

≤ C9

(NT,k∑

n=0

k
∑

(K,L)∈En
R

(vnK,L + vnL,K)
) 1

2

.

(6.31) est15bv

Noting that

∑

(K,L)∈En
R

(vnK,L + vnL,K) ≤
∑

K∈TR+h

Vm(∂K) ≤ V
1

α
hd−1 m(B(0, R+ h))

αhd
=
C10

h

and (NT,k + 1)k ≤ 2T , one obtains (
estbvfx
6.16) from (

est15bv
6.31).

Finally, since (
estschemab
6.15) yields

m(K)|un+1
K − unK | ≤ k

∑

L∈N (K)

(
vnK,L|g(unK , unL)− f(unK)|+ vnL,K |g(unL, unK)− f(unK)|

)
,

Inequality (
estbvft
6.17) immediately follows from (

estbvfx
6.16). This completes the proof of Lemma

estwbvest
6.2.

6.4 Existence of the solution and stability results for the implicit

scheme
stabi

This section is devoted to the time implicit scheme (given by (
estschemai
6.9) and (

estschemaz
6.5)). We first prove the existence

and uniqueness of the solution {unK , n ∈ IN,K ∈ T } of (
estschemaz
6.5), (

estschemai
6.9) and such that unK ∈ [Um, UM ] for all

K ∈ T and all n ∈ IN. Then, one gives a “weak space BV ” inequality (this is equivalent to the inequality
(
estbvfx
6.16) for the explicit scheme) and a “(strong) time BV ” estimate (Estimate (

estbvt
6.45) below). This last

estimate requires that v does not depend on t (and it leads to the term “k” in the right hand side of
(
esteqcoroli
6.95) in Theorem

esth14i
6.6). The error estimate, in the case where v depends on t, is given in Remark

estexti
6.12.

6.4.1 Existence, uniqueness and L∞ stability

The following proposition gives an existence and uniqueness result of the solution to (
estschemaz
6.5), (

estschemai
6.9). In this

proposition, v may depend on t and one does not need to assume u0 ∈ BV (IRd).
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esteu Proposition 6.1 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0. Let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2.

Then there exists a unique solution {unK , n ∈ IN, K ∈ T } ⊂ [Um, UM ] to (
estschemaz
6.5),(

estschemai
6.9).

Proof of Proposition
esteu
6.1

One proves Proposition
esteu
6.1 by induction. Indeed, {u0

K , K ∈ T } is uniquely defined by (
estschemaz
6.5) and one has

u0
K ∈ [Um, UM ], for all K ∈ T , since Um ≤ u0 ≤ UM a.e.. Assuming that, for some n ∈ IN, the set {unK ,
K ∈ T } is given and that unK ∈ [Um, UM ], for all K ∈ T , the existence and uniqueness of {un+1

K , K ∈ T },
such that un+1

K ∈ [Um, UM ] for all K ∈ T , solution of (
estschemai
6.9), must be shown.

Step 1 (uniqueness of {un+1
K , K ∈ T }, such that un+1

K ∈ [Um, UM ] for all K ∈ T , solution of (
estschemai
6.9))

Recall that n ∈ IN and {unK , K ∈ T } are given. Let us consider two solutions of (
estschemai
6.9), respectively

denoted by {uK , K ∈ T } and {wK , K ∈ T }; therefore, {uK , K ∈ T } and {wK , K ∈ T } satisfy {uK ,
K ∈ T } ⊂ [Um, UM ], {wK , K ∈ T } ⊂ [Um, UM ],

m(K)
uK − unK

k
+

∑

L∈N (K)

(vnK,L g(uK , uL)− vnL,K g(uL, uK)) = 0, ∀K ∈ T , (6.32) estschemaiut

and

m(K)
wK − unK

k
+

∑

L∈N (K)

(vnK,L g(wK , wL)− vnL,K g(wL, wK)) = 0, ∀K ∈ T . (6.33) estschemaiwt

Then, substracting (
estschemaiwt
6.33) to (

estschemaiut
6.32), for all K ∈ T ,

m(K)

k
(uK − wK) +

∑

L∈N (K)

vnK,L(g(uK , uL)− g(wK , uL))

+
∑

L∈N (K)

vnK,L(g(wK , uL)− g(wK , wL))−
∑

L∈N (K)

vnL,K(g(uL, uK)− g(wL, uK))

−
∑

L∈N (K)

vnL,K(g(wL, uK)− g(wL, wK)) = 0

(6.34) estschemaiu1t

thanks to the monotonicity properties of g, (
estschemaiu1t
6.34) leads to

m(K)

k
|uK − wK |+

∑

L∈N (K)

vnK,L|g(uK , uL)− g(wK , uL)|

+
∑

L∈N (K)

vnL,K |g(wL, uK)− g(wL, wK)| ≤
∑

L∈N (K)

vnK,L|g(wK , uL)− g(wK , wL)|

+
∑

L∈N (K)

vnL,K |g(uL, uK)− g(wL, uK)|.

(6.35) estschemaiu2t

Let ϕ : IRd 7→ IR?
+ be defined by ϕ(x) = exp(−γ|x|), for some positive γ which will be specified later.

For K ∈ T , let ϕK be the mean value of ϕ on K. Since ϕ is integrable over IRd (and thanks to (
estmaillage
6.4)),

one has
∑

K∈T ϕK ≤ (1/(αhd))‖ϕ‖L1(IRd) <∞. Therefore the series

∑

K∈T
ϕK(

∑

L∈N (K)

vnK,L|g(wK , uL)− g(wK , wL)|) and
∑

K∈T
ϕK(

∑

L∈N (K)

vnL,K |g(uL, uK)− g(wL, uK)|)

are convergent (thanks to (
estmaillage
6.4) and the boundedness of v on IRd and g on [Um, UM ]2).

Multiplying (
estschemaiu2t
6.35) by ϕK and summing for K ∈ T yields five convergent series which can be reordered

in order to give
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∑

K∈T

m(K)

k
|uK − wK |ϕK ≤

∑

K∈T

∑

L∈N (K)

vnK,L|g(uK , uL)− g(wK , uL)||ϕK − ϕL|

+
∑

K∈T

∑

L∈N (K)

vnL,K |g(wL, uK)− g(wL, wK)||ϕK − ϕL|,

from which one deduces

∑

K∈T
aK |uK − wK | ≤

∑

K∈T
bK |uK − wK |, (6.36) estschemaiu4t

with, for all K ∈ T , aK = m(K)
k ϕK and bK =

∑

L∈N (K)

(vnK,Lg1 + vnL,Kg2)|ϕK − ϕL|.

For K ∈ T , let xK be an arbitrary point of K. Then,

aK ≥ 1

k
αhd inf{ϕ(x), x ∈ B(xK , h)}

and

bK ≤ 2V (g1 + g2)

α
hd sup{|∇ϕ(x)|, x ∈ B(xK , 2h)}.

Therefore, taking γ > 0 small enough in order to have

inf{ϕ(y), y ∈ B(x, h)} > C sup{|∇ϕ(y)|, y ∈ B(x, 2h)}, ∀x ∈ IRd (6.37) choixg

with C = (2kV (g1 + g2))/α
2, yields aK > bK for all K ∈ T . Hence (

estschemaiu4t
6.36) gives uK = wK , for all K ∈ T .

A choice of γ > 0 verifying (
choixg
6.37) is always possible. Indeed, since |∇ϕ(z)| = γ exp(−γ|z|), taking γ > 0

such that γ exp(3γh) < 1/C is convenient.
This concludes Step 1.

Step 2 (existence of {un+1
K , K ∈ T }, such that un+1

K ∈ [Um, UM ] for all K ∈ T , solution of (
estschemai
6.9)).

Recall that n ∈ IN and {unK , K ∈ T } are given. For r ∈ IN?, let Br = B(0, r) = {x ∈ IRd, |x| < r} and
Tr = {K ∈ T , K ⊂ Br} (as in Lemma

estwbvest
6.2). Let us assume that r is large enough, say r ≥ r0, in order to

have Tr 6= ∅.
If K ∈ T \ Tr, set u

(r)
K = unK . Let us first prove that there exists {u(r)

K , K ∈ Tr} ⊂ [Um, UM ], solution to

m(K)
u

(r)
K − unK
k

+
∑

L∈N (K)

(vnK,L g(u
(r)
K , u

(r)
L )− vnL,K g(u

(r)
L , u

(r)
K )) = 0, ∀K ∈ Tr. (6.38) estschemair

Then, we will prove that passing to the limit as r → ∞ (up to a subsequence) leads to a solution
{un+1

K , K ∈ T } to (
estschemai
6.9) such that un+1

K ∈ [Um, UM ] for all K ∈ T .

For a fixed r ≥ r0, in order to prove the existence of {u(r)
K , K ∈ Tr} ⊂ [Um, UM ] solution to (

estschemair
6.38),

a “topological degree” argument is used (see, for instance,
deimling
Deimling [1980] for a presentation of the

degree).

Let Unr = {unK , K ∈ Tr} and assume that Ur = {u(r)
K , K ∈ Tr} is a solution of (

estschemair
6.38). The families Ur

and Unr may be viewed as vectors of IRN , with N = card(Tr). Equation (
estschemair
6.38) gives

u
(r)
K +

k

m(K)

∑

L∈N (K)

(vnK,L g(u
(r)
K , u

(r)
L )− vnL,K g(u

(r)
L , u

(r)
K )) = unK , ∀K ∈ Tr,

which can be written on the form

Ur −Gr(Ur) = Unr , (6.39) estschemairb
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where Gr is a continuous map from IRN into IRN .
One may assume that g is nondecreasing with respect to its first argument and nonincreasing with
respect to its second argument on IR2 (indeed, thanks to the monotonicity properties of g given by
Assumption

estcondflu
6.2, it is sufficient to change, if necessary, g on IR2\ [Um, UM ]2, setting, for instance, g(a, b) =

g(Um>(UM⊥a), Um>(UM⊥b))). Then, since unK ∈ [Um, UM ], for all K ∈ T , and u
(r)
K = unK ∈ [Um, UM ],

for all K ∈ T \ Tr, it is easy to show (using div(v) = 0) that if Ur satisfies (
estschemairb
6.39), then one has

u
(r)
K ∈ [Um, UM ], for all K ∈ Tr. Therefore, if Cr is a ball of IRN of center 0 and of radius great enough,

Equation (
estschemairb
6.39) has no solution on the boundary of Cr, and one can define the topological degree of

the application Id − Gr associated to the set Cr and to the point Unr , that is deg(Id − Gr, Cr, Unr ).
Furthermore, if λ ∈ [0, 1], the same argument allows us to define deg(Id − λGr , Cr, Unr ). Then, the
property of invariance of the degree by continuous transformation asserts that deg(Id−λGr, Cr, Unr ) does
not depend on λ ∈ [0, 1]. This gives

deg(Id−Gr, Cr, Unr ) = deg(Id, Cr, Unr ).

But, since Unr ∈ Cr,

deg(Id, Cr, Unr ) = 1.

Hence

deg(Id−Gr, Cr, Unr ) 6= 0.

This proves that there exists a solution Ur ∈ Cr to (
estschemairb
6.39). Recall also that we already proved that the

components of Ur are necessarily in [Um, UM ].

In order to prove the existence of {un+1
K , K ∈ T } ⊂ [Um, UM ] solution to (

estschemai
6.9), let us pass to the limit as

r →∞. For r ≥ r0, let {u(r)
K , K ∈ T } be a solution of (

estschemair
6.38) (given by the previous proof). Since {u(r)

K ,
r ∈ IN} is included in [Um, UM ], for all K ∈ T , one can find (using a “diagonal process”) a sequence
(rl)l∈IN , with rl → ∞, as l → ∞, such that (url

K)l∈IN converges (in [Um, UM ]) for all K ∈ T . One sets
un+1
K = liml→∞ url

K . Passing to the limit in (
estschemair
6.38) (this is possible since for all K ∈ T , this equation is

satisfied for all l ∈ IN large enough) shows that {un+1
K , K ∈ T } is solution to (

estschemai
6.9).

Indeed, using the uniqueness of the solution of (
estschemai
6.9), one can show that u

(r)
K → un+1

K , as r → ∞, for all
K ∈ T .
This completes the proof of Proposition

esteu
6.1.

6.4.2 “Weak space BV ” inequality

One gives here an inequality similar to Inequality (
estbvfx
6.16) (proved for the explicit scheme). This inequality

does not make use of u0 ∈ BV (IRd) and v can depend on t. Inequality (
estbvft
6.17) also holds but is improved

in Lemma
estlbvt
6.5 when u0 ∈ BV (IRd) and v does not depend on t.

estwbvesti Lemma 6.3 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0. Let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2 and let {unK , n ∈ IN,K ∈ T } be the solution of (

estschemai
6.9),

(
estschemaz
6.5) such that un+1

K ∈ [Um, UM ] for all K ∈ T and all n ∈ IN (existence and uniqueness of such a
solution is given by Proposition

esteu
6.1).

Let T > 0, R > 0, NT,k = max{n ∈ IN, n < T/k}, TR = {K ∈ T ,K ⊂ B(0, R)} and EnR = {(K,L) ∈
T 2, L ∈ N (K),K|L ⊂ B(0, R) and unK > unL}.
Then there exists Cv ∈ IR, only depending on v, g, u0, α, R, T such that, for h < R and k < T ,
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NT,k∑

n=0

k
∑

(K,L)∈En+1

R

[
vnK,L

(
max

un+1

L
≤p≤q≤un+1

K

(g(q, p)− f(q)) + max
un+1

L
≤p≤q≤un+1

K

(g(q, p)− f(p))
)
+

vnL,K

(
max

un+1

L
≤p≤q≤un+1

K

(f(q)− g(p, q)) + max
un+1

L
≤p≤q≤un+1

K

(f(p)− g(p, q))
)]

≤ Cv√
h
.

(6.40) estbvfxi

Furthermore, Inequality
estbvft
6.17 page

estbvft
153 holds.

Proof of Lemma
estwbvesti
6.3

We multiply (
estschemai
6.9) by kun+1

K , and sum the result over K ∈ TR and n ∈ {0, . . . , NT,k}. We can then follow,
step by step, the proof of Lemma

estwbvest
6.2 page

estwbvest
153 until Equation (

est11bv
6.27) in which the first term of the right

hand side appears with the opposite sign. We can then directly conclude an inequality similar to (
est14bv
6.30),

which is sufficient to conclude the proof of Inequality (
estbvfxi
6.40). Inequality

estbvft
6.17 page

estbvft
153 follows easily from

(
estbvfxi
6.40).

6.4.3 “Time BV ” estimate

This section gives a so called “strong time BV estimate” (estimate (
estbvt
6.45)). For this estimate, the fact that

u0 ∈ BV (IRd) and that v does not depend on t is required. Let us begin this section with a preliminary
lemma on the space BV (IRd).

divbv Lemma 6.4 Let T be an admissible mesh in the sense of Definition
meshypmd
6.1 page

meshypmd
148 and let u ∈ BV (IRd)

(see Definition
defBVRp
5.38 page

defBVRp
138). For K ∈ T , let uK be the mean value of u over K. Then,

∑

K|L∈E
m(K|L)|uK − uL| ≤

C

α4
|u|BV (IRd), (6.41) bvzd

where C only depends on the space dimension (d = 1, 2 or 3).

Proof of Lemma
divbv
6.4

Lemma
divbv
6.4 is proven in two steps. In the first step, it is proved that if (

bvzd
6.41) holds for all u ∈ BV (IRd)∩

C1(IRd, IR) then (
bvzd
6.41) holds for all u ∈ BV (IRd). In Step 2, (

bvzd
6.41) is proved to hold for u ∈ BV (IRd) ∩

C1(IRd, IR).

Step 1 (passing from BV (IRd) ∩ C1(IRd, IR) to BV (IRd))
Recall that BV (IRd) ⊂ L1

loc(IR
d). Let u ∈ BV (IRd), let us regularize u by a sequence of mollifiers.

Let ρ ∈ C∞c (IRd, IR+) such that
∫
IRd ρ(x)dx = 1. Define, for all n ∈ IN?, ρn by ρn(x) = ndρ(nx) for all

x ∈ IRd and un = u ? ρn, that is

un(x) =

∫

IRd

u(y)ρn(x− y)dy, ∀x ∈ IRd.

It is well known that (un)n∈IN? is included in C∞(IRd, IR) and converges to u in L1
loc(IR

d) as n → ∞.
Then, the mean value of un over K converges, as n → ∞, to uK , for all K ∈ T . Hence, if (

bvzd
6.41) holds

with un instead of u (this will be proven in Step 2) and if |un|BV (IRd) ≤ |u|BV (IRd) for all n ∈ IN?,
Inequality (

bvzd
6.41) is proved by passing to the limit as n→∞.

In order to prove |un|BV (IRd) ≤ |u|BV (IRd) for all n ∈ IN? (this will conclude step 1), let n ∈ IN? and

ϕ ∈ C∞c (IRd, IRd) such that |ϕ(x)| ≤ 1 for all x ∈ IRd. A simple computation gives, using Fubini’s
theorem,
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∫

IRd

un(x)divϕ(x)dx =

∫

IRd

(∫

IRd

u(x− y)divϕ(x)dx
)
ρn(y)dy ≤ |u|BV (IRd), (6.42) bba

since, setting ψy = ϕ(y + ·) ∈ C∞c (IRd, IRd) (for all y ∈ IRd),

∫

IRd

u(x− y)divϕ(x)dx =

∫

IRd

u(z)divψy(z)dz ≤ |u|BV (IRd), ∀y ∈ IRd,

and

∫

IRd

ρn(y)dy = 1.

Then, taking in (
bba
6.42) the supremum over ϕ ∈ C∞c (IRd, IRd) such that |ϕ(x)| ≤ 1 for all x ∈ IRd leads to

|un|BV (IRd) ≤ |u|BV (IRd).

Step 2 (proving (
bvzd
6.41) if u ∈ BV (IRd) ∩ C1(IRd, IR))

Recall that B(x,R) denotes the ball of IRd of center x and radius R. Since u ∈ C1(IRd, IR),

∫

IRd

u(x)divϕ(x)dx = −
∫

IRd

∇u(x) · ϕ(x)dx.

Then |u|BV (IRd) = ‖(|∇u|)‖L1(IRd) and we will prove (
bvzd
6.41) with ‖(|∇u|)‖L1(IRd) instead of |u|BV (IRd).

Let K|L ∈ E , then K ∈ T , L ∈ N (K) and

uK − uL =
1

m(K)m(L)

∫

L

∫

K

(u(x) − u(y))dxdy.

For all x ∈ K and all y ∈ L,

u(x)− u(y) =

∫ 1

0

∇u(y + t(x− y)) · (x− y)dt.

Then,

m(K)m(L)|uK − uL| ≤
∫

L

(

∫

K

∫ 1

0

|∇u(y + t(x− y))||x − y|dtdx)dy

≤
∫

L

(

∫ 1

0

∫

K

|∇u(y + t(x− y))||x− y|dxdt)dy.

Using |x− y| ≤ 2h and changing the variable x in z = x− y (for all fixed y ∈ L and t ∈ (0, 1)) yields

m(K)m(L)|uK − uL| ≤ 2h

∫

L

(

∫ 1

0

∫

B(0,2h)

|∇u(y + tz)|dzdt)dy,

which may also be written (using Fubini’s theorem)

m(K)m(L)|uK − uL| ≤ 2h

∫

B(0,2h)

(

∫ 1

0

∫

L

|∇u(y + tz)|dydt)dz. (6.43) oufa

For all K ∈ T , let xK be an arbitrary point of K.
Then, changing the variable y in ξ = y + tz (for all fixed z ∈ L and t ∈ (0, 1)) in (

oufa
6.43),

m(K)m(L)|uK − uL| ≤ 2h

∫

B(0,2h)

(

∫ 1

0

∫

B(xL,3h)

|∇u(ξ)|dξdt)dz,

which yields, since T is an adimissible mesh in the sense of Definition
estmaillage
6.4 page

estmaillage
148,
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m(K|L)|uK − uL| ≤
2hd

α3h2d
m(B(0, 2h))

∫

B(xL,3h)

|∇u(ξ)|dξ.

Therefore there exists C1, only depending on the space dimension, such that

m(K|L)|uK − uL| ≤
C1

α3

∫

B(xL,3h)

|∇u(ξ)|dξ, ∀K|L ∈ E . (6.44) oufb

Let us now remark that, if M ∈ T and L ∈ T , M ∩ B(xL, 3h) 6= ∅ implies L ⊂ B(xM , 5h). Then, for a
fixed M ∈ T , the number of L ∈ T such that M ∩ B(xL, 3h) 6= ∅ is less or equal to m(B(0, 5h))/(αhd)
that is less or equal C2/α where C2 only depends on the space dimension.
Then, summing (

oufb
6.44) over K|L ∈ E leads to

∑

K|L∈E
m(K|L)|uK − uL| ≤

C1C2

α4

∑

M∈T

∫

M

|∇u(ξ)|dξ =
C1C2

α4
‖(|∇u|)‖L1(IRd),

that is (
bvzd
6.41) with C = C1C2.

Note that, in Lemma
divbv
6.4 the estimate (

bvzd
6.41) depends on α. This dependency on α is not necessary in the

one dimensinal case (see (
bvz
5.6) in Remark

divbv1d
5.4) and for particular meshes in the two and three dimensional

cases. Recall also that, except if d = 1, the space BV (IRd) is not included in L∞(IRd). In particular, it
is then quite easy to prove that, contrary to the 1D case given in Remark

divbv1d
5.4, it is not possible, for d = 2

or 3, to replace, in (
bvzd
6.41), uK by the mean value of u over an arbitrary ball (for instance) included in K.

Let us now give the “strong time BV estimate”.

estlbvt Lemma 6.5 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0. Let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2. Assume that u0 ∈ BV (IRd) and that v does not

depend on t.
Let {unK , n ∈ IN,K ∈ T } be the solution of (

estschemai
6.9), (

estschemaz
6.5) such that unK ∈ [Um, UM ] for all K ∈ T and all

n ∈ IN (existence and uniqueness of such a solution is given by Proposition
esteu
6.1 page

esteu
157).

Then, there exists Cb, only depending on v, g, u0 and α such that

∑

K∈T

m(K)

k
|un+1
K − unK | ≤ Cb, ∀n ∈ IN. (6.45) estbvt

Proof of lemma
estlbvt
6.5

Since v does not depend on t, one denotes vK,L = vnK,L, for all K ∈ T and all L ∈ N (K).
For n ∈ IN, let

An =
∑

K∈T
m(K)

|un+1
K − unK |

k

and

Bn =
∑

K∈T
|
∑

L∈N (K)

[vK,L g(u
n
K , u

n
L)− vL,K g(unL, u

n
K)]|.

Since u0 ∈ BV (IRd) and divv = 0, there exists Cb > 0, only depending on v, g, u0 and α, such that
B0 ≤ Cb. Indeed,

B0 ≤
∑

K∈T

∑

L∈N (K)

V (g1 + g2)m(K|L)|u0
K − u0

L|.
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Thanks to lemma
divbv
6.4, B0 ≤ Cb with Cb = 2V (g1 + g2)C(1/α4)|u0|BV (IRd), where C only depends on the

space dimension (d = 1, 2 or 3).

From (
estschemai
6.9), one deduces that Bn+1 ≤ An, for all n ∈ IN. In order to prove Lemma

estlbvt
6.5, there only remains

to prove that An ≤ Bn for all n ∈ IN (and to conclude by induction).

Let n ∈ IN, in order to prove that An ≤ Bn, recall that the implicit scheme (
estschemai
6.9) writes

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

(
vK,L g(u

n+1
K , un+1

L )− vL,K g(un+1
L , un+1

K )
)

= 0. (6.46) estschemir

From (
estschemir
6.46), one deduces, for all K ∈ T ,

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

vK,L (g(un+1
K , un+1

L )− g(unK , u
n+1
L ))

+
∑

L∈N (K)

vK,L

(
g(unK , u

n+1
L )− g(unK , u

n
L)
)
−

∑

L∈N (K)

vL,K

(
g(un+1

L , un+1
K )− g(unL, u

n+1
K )

)

−
∑

L∈N (K)

vL,K

(
g(unL, u

n+1
K )− g(unL, u

n
K)
)

= −
∑

L∈N (K)

vK,L g(u
n
K , u

n
L) +

∑

L∈N (K)

vL,K g(unL, u
n
K).

Using the monotonicity properties of g, one obtains for all K ∈ T ,

m(K)
|un+1
K − unK |

k
+

∑

L∈N (K)

vK,L |g(un+1
K , un+1

L )− g(unK , u
n+1
L )|

+
∑

L∈N (K)

vL,K |g(unL, un+1
K )− g(unL, u

n
K)|

≤ | −
∑

L∈N (K)

vK,Lg(u
n
K , u

n
L) +

∑

L∈N (K)

vL,K g(unL, u
n
K)|

+
∑

L∈N (K)

vK,L |g(unK , un+1
L )− g(unK , u

n
L)|+

∑

L∈N (K)

vL,K |g(un+1
L , un+1

K )− g(unL, u
n+1
K )|.

(6.47) estschemirb

In order to deal with convergent series, let us proceed as in the proof of proposition
esteu
6.1. For 0 < γ < 1,

let ϕγ : IRd 7→ IR?
+ be defined by ϕγ(x) = exp(−γ|x|).

For K ∈ T , let ϕγ,K be the mean value of ϕγ on K. As in Proposition
esteu
6.1, since ϕγ is integrable over

IRd,
∑

K∈T ϕγ,K < ∞. Therefore, multiplying (
estschemirb
6.47) by ϕγ,K (for a fixed γ) and summing over K ∈ T

yields six convergent series which can be reordered to give

∑

K∈T
m(K)

|un+1
K − unK |

k
ϕγ,K

≤
∑

K∈T
| −

∑

L∈N (K)

vK,Lg(u
n
K , u

n
L) +

∑

L∈N (K)

vL,K g(unL, u
n
K)|ϕγ,K

+
∑

K∈T

∑

L∈N (K)

vK,L |g(un+1
K , un+1

L )− g(unK , u
n+1
L )||ϕγ,K − ϕγ,L|

+
∑

K∈T

∑

L∈N (K)

vL,K |g(unL, un+1
K )− g(unL, u

n
K)||ϕγ,K − ϕγ,L|.

For K ∈ T , let xK ∈ K be such that ϕγ,K = ϕγ(xK). Let K ∈ T and L ∈ N (K). Then there exists
s ∈ (0, 1) such that ϕγ,L − ϕγ,K = ∇ϕγ(xK + s(xL − xK)) · (xL − xK). Using |∇ϕγ(x)| = γ exp(−γ|x|),
this yields |ϕγ,L − ϕγ,K | ≤ 2hγ exp(2hγ)ϕγ,K ≤ 2hγ exp(2h)ϕγ,K .
Then, using the assumptions

estdonnees
6.1 and

estcondflu
6.2, there exists some a only depending on k, V , h, α, g1 and g2

such that
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∑

K∈T
m(K)

|un+1
K − unK |

k
ϕγ,K(1− γa)

≤
∑

K∈T
| −

∑

L∈N (K)

vK,Lg(u
n
K , u

n
L) +

∑

L∈N (K)

vL,K g(unL, u
n
K)|ϕγ,K ≤ Bn.

Passing to the limit in the latter inequality as γ → 0 yields An ≤ Bn. This completes the proof of Lemma
estlbvt
6.5.

6.5 Entropy inequalities for the approximate solution
entineq

In this section, an entropy estimate on the approximate solution is proved (Theorem
estentest
6.1), which will

be used in the proofs of convergence and error estimate of the numerical scheme. In order to obtain
this entropy estimate, some discrete entropy inequalities satisfied by the approximate solution are first
derived.

6.5.1 Discrete entropy inequalities

In the case of the explicit scheme, the following lemma asserts that the scheme (
estschema
6.7) satisfies a discrete

entropy condition (this is classical in the study of 1D schemes, see e.g.
godlewski-ellipses
Godlewski and Raviart [1991],

godlewski-springer
Godlewski and Raviart [1996]).

estldei Lemma 6.6 Under assumption
estdonnees
6.1 page

estdonnees
145, let T be an admissible mesh in the sense of Definition

meshypmd
6.1

and k > 0. Let g ∈ C(IR2, IR) satisfying assumption
estcondflu
6.2 and assume that (

estcfl
6.6) holds.

Let uT ,k be given by (
estuapp
6.8), (

estschema
6.7), (

estschemaz
6.5); then, for all κ ∈ IR, K ∈ T and n ∈ IN, the following inequality

holds:

m(K)
|un+1
K − κ| − |unK − κ|

k
+

∑

L∈N (K)

[
vnK,L

(
g(unK>κ, unL>κ)− g(unK⊥κ, unL⊥κ)

)
−

vnL,K

(
g(unL>κ, unK>κ)− g(unL⊥κ, unK⊥κ)

)]
≤ 0.

(6.48) estschemak

Proof of lemma
estldei
6.6

From relation (
estschema
6.7), we express un+1

K as a function of unK and unL, L ∈ N (K),

un+1
K = unK +

k

m(K)

∑

L∈N (K)

(vnL,K g(unL, u
n
K)− vnK,L g(u

n
K , u

n
L)).

The right hand side is nondecreasing with respect to unL, L ∈ N (K). It is also nondecreasing with respect
to unK , thanks to the Courant-Friedrichs-Levy condition (

estcfl
6.6), and the Lipschitz continuity of g.

Therefore, for all κ ∈ IR, using divv = 0, we have:

un+1
K >κ ≤ unK>κ+

k

m(K)

∑

L∈N (K)

[
vnL,K g(unL>κ, unK>κ)− vnK,L g(u

n
K>κ, unL>κ)

]
(6.49) est2ent

and

un+1
K ⊥κ ≥ unK⊥κ+

k

m(K)

∑

L∈N (K)

(vnL,K g(unL⊥κ, unK⊥κ)− vnK,L g(u
n
K⊥κ, unL⊥κ)). (6.50) est3ent

The difference between (
est2ent
6.49) and (

est3ent
6.50) leads directly to (

estschemak
6.48). Note that using divv = 0 leads to
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m(K)
|un+1
K − κ| − |unK − κ|

k
+

∑

L∈N (K)

[
vnK,L

(
g(unK>κ, unL>κ)− f(unK>κ)− g(unK⊥κ, unL⊥κ) + f(unK⊥κ)

)
−

vnL,K

(
g(unL>κ, unK>κ)− f(unK>κ)− g(unL⊥κ, unK⊥κ) + f(unK⊥κ)

)]
≤ 0.

(6.51) estschemakb

For the implicit scheme, one obtains the same kind of discrete entropy inequalities.

estldeii Lemma 6.7 Under assumption
estdonnees
6.1 page

estdonnees
145, let T be an admissible mesh in the sense of Definition

meshypmd
6.1

page
meshypmd
148 and k > 0. Let g ∈ C(IR2, IR) satisfying assumption

estcondflu
6.2.

Let {unK , n ∈ IN, K ∈ T } ⊂ [Um, UM ] be the solution of (
estschemai
6.9),(

estschemaz
6.5) (the existence and uniqueness of such

a solution is given by Proposition
esteu
6.1). Then, for all κ ∈ IR, K ∈ T and n ∈ IN, the following inequality

holds:

m(K)
|un+1
K − κ| − |unK − κ|

k
+

∑

L∈N (K)

[
vnK,L

(
g(un+1

K >κ, un+1
L >κ)− g(un+1

K ⊥κ, un+1
L ⊥κ)

)

−vnL,K
(
g(un+1

L >κ, un+1
K >κ)− g(un+1

L ⊥κ, un+1
K ⊥κ)

)]
≤ 0.

(6.52) estschemaki

Proof of lemma
estldeii
6.7

Let κ ∈ IR, K ∈ T and n ∈ IN. Equation (
estschemai
6.9) may be written as

un+1
K = unK − k

m(K)

∑

L∈N (K)

(vnK,L g(u
n+1
K , un+1

L )− vnL,K g(un+1
L , un+1

K )).

The right hand side of this last equation is nondecreasing with respect to unK and with respect to un+1
L

for all L ∈ N (K). Thus,

un+1
K ≤ unK>κ−

k

m(K)

∑

L∈N (K)

(vnK,L g(u
n+1
K , un+1

L >κ)− vnL,K g(un+1
L >κ, un+1

K )).

Writing κ = κ− k

m(K)

∑

L∈N (K)

(vnK,L g(κ, κ)− vnL,K g(κ, κ)), one may remark that

κ ≤ unK>κ−
k

m(K)

∑

L∈N (K)

(vnK,L g(κ, u
n+1
L >κ)− vnL,K g(un+1

L >κ, κ)).

Therefore, since un+1
K >κ = un+1

K or κ,

un+1
K >κ ≤ unK>κ−

k

m(K)

∑

L∈N (K)

(vnK,L g(u
n+1
K >κ, un+1

L >κ)− vnL,K g(un+1
L >κ, un+1

K >κ)). (6.53) impt

A similar argument yields

un+1
K ⊥κ ≥ unK⊥κ−

k

m(K)

∑

L∈N (K)

(vnK,L g(u
n+1
K ⊥κ, un+1

L ⊥κ)− vnL,K g(un+1
L ⊥κ, un+1

K ⊥κ)). (6.54) impb

Hence, substracting (
impb
6.54) to (

impt
6.53) gives (

estschemaki
6.52).
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6.5.2 Continuous entropy estimates for the approximate solution

For Ω = IRd or IRd × IR+, we denote by M(Ω) the set of positive measures on Ω, that is of σ-additive
applications from the Borel σ-algebra of Ω in IR+. If µ ∈ M(Ω) and ψ ∈ Cc(Ω), one sets 〈µ, ψ〉 =

∫
ψdµ.

The following theorems investigate the entropy inequalities which are satisfied by the approximate so-
lutions uT ,k in the case of the time explicit scheme (Theorem

estentest
6.1) and in the case of the time implicit

scheme (Theorem
estentesti
6.2).

estentest Theorem 6.1 Under assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and k > 0. Let g ∈ C(IR2, IR) satisfy assumption

estcondflu
6.2 and assume that (

estcfl
6.6) holds.

Let uT ,k be given by (
estuapp
6.8), (

estschema
6.7), (

estschemaz
6.5); then there exist µT ,k ∈ M(IRd × IR+) and µT ∈ M(IRd) such

that





∫

IR+

∫

IRd

(
|uT ,k(x, t) − κ|ϕt(x, t)+

(f(uT ,k(x, t)>κ)− f(uT ,k(x, t)⊥κ))v(x, t) · ∇ϕ(x, t)
)
dxdt +∫

IRd

|u0(x)− κ|ϕ(x, 0)dx ≥

−
∫

IRd×IR+

(
|ϕt(x, t)| + |∇ϕ(x, t)|

)
dµT ,k(x, t)−

∫

IRd

ϕ(x, 0)dµT (x),

∀κ ∈ IR, ∀ϕ ∈ C∞c (IRd × IR+, IR+).

(6.55) kruzkovap

The measures µT ,k and µT verify the following properties:

1. For all R > 0 and T > 0, there exists C depending only on v, g, u0, α, ξ, R and T such that, for
h < R and k < T ,

µT ,k(B(0, R)× [0, T ]) ≤ C
√
h. (6.56) estmapp

2. The measure µT is the measure of density |u0(·) − uT ,0(·)| with respect to the Lebesgue measure,
where uT ,0 is defined by uT ,0(x) = u0

K for a.e. x ∈ K, for all K ∈ T .

If u0 ∈ BV (IRd), then there exists D, only depending on u0 and α, such that

µT (IRd) ≤ Dh. (6.57) estmapz

estentropiex Remark 6.5

1. Let u be the weak entropy solution to (
estpbcont
6.1)-(

estcondini
6.2). Then (

kruzkovap
6.55) is satisfied with u instead of uT ,k

and µT ,k = 0 and µT = 0.

2. Let BVloc(IR
d) be the set of v ∈ L1

loc(IR
d) such that the restriction of v to Ω belongs to BV (Ω) for

all open bounded subset Ω of IRd.

An easy adaptation of the following proof gives that if u0 ∈ BVloc(IRd) instead of BV (IRd) (in the
second item of Theorem

estentest
6.1) then, for all R > 0, there exists D, only depending on u0, α and R,

such that µT (B(0, R)) ≤ Dh.

Proof of Theorem
estentest
6.1

Let ϕ ∈ C∞c (IRd × IR+, IR+) and κ ∈ IR.

Multiplying (
estschemakb
6.51) by kϕnK = (1/m(K))

∫ (n+1)k

nk

∫
K
ϕ(x, t)dxdt and summing the result for all K ∈ T and

n ∈ IN yields

T1 + T2 ≤ 0,
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with

T1 =
∑

n∈IN

∑

K∈T

|un+1
K − κ| − |unK − κ|

k

∫ (n+1)k

nk

∫

K

ϕ(x, t)dxdt, (6.58) est1kap

and

T2 = k
∑

n∈IN

∑

(K,L)∈En

[

vnK,Lϕ
n
K

(
g(unK>κ, unL>κ)− f(unK>κ)− g(unK⊥κ, unL⊥κ) + f(unK⊥κ)

)

−vnK,LϕnL
(
g(unK>κ, unL>κ)− f(unL>κ)− g(unK⊥κ, unL⊥κ) + f(unL⊥κ)

)

−vnL,KϕnK
(
g(unL>κ, unK>κ)− f(unK>κ)− g(unL⊥κ, unK⊥κ) + f(unK⊥κ)

)

+vnL,Kϕ
n
L

(
g(unL>κ, unK>κ)− f(unL>κ)− g(unL⊥κ, unK⊥κ) + f(unL⊥κ)

)]
,

(6.59) est2kap

where En = {(K,L) ∈ T 2, unK > unL}.
One has to prove

T10 + T20 ≤
∫

IRd×IR+

(
|ϕt(x, t)|+ |∇ϕ(x, t)|

)
dµT ,k(x, t) +

∫

IRd

ϕ(x, 0)dµT (x), (6.60) estentcont

for some convenient measures µT ,k and µT , and T10, T20 defined as follows

T10 = −
∫

IR+

∫

IRd

|uT ,k(x, t)− κ|ϕt(x, t)dxdt −
∫

IRd

|u0(x)− κ|ϕ(x, 0)dx,

T20 = −
∫

IR+

∫

IRd

(
(f(uT ,k(x, t)>κ)− f(uT ,k(x, t)⊥κ))v(x, t) · ∇ϕ(x, t)

)
dxdt. (6.61) est7kap

In order to prove (
estentcont
6.60), one compares T1 and T10 (this will give µT , and a part of µT ,k) and one compares

T2 and T20 (this will give another part of µT ,k).
Inequality (

estbvft
6.17) (in the comparison of T1 and T10) and Inequality (

estbvfx
6.16) (in the comparison of T2 and

T20) will be used in order to obtain (
estmapp
6.56).

Comparison of T1 and T10

Using the definition of uT ,k and introducing the function uT ,0 (defined by uT ,0(x) = u0
K , for a.e. x ∈ K,

for all K ∈ T ) yields

T10 =
∑

n∈IN

∑

K∈T

|un+1
K − κ| − |unK − κ|

k

∫ (n+1)k

nk

∫

K

ϕ(x, (n + 1)k)dxdt +

∫

IRd

(|uT ,0(x) − κ| − |u0(x)− κ|)ϕ(x, 0)dx.

The function | · −κ| is Lipschitz continuous with a Lipschitz constant equal to 1, we then obtain

|T1 − T10| ≤
∑

n∈IN

∑

K∈T

|un+1
K − unK |

k

∫ (n+1)k

nk

∫

K

|ϕ(x, (n + 1)k)− ϕ(x, t)|dxdt +

∫

IRd

|u0(x) − uT ,0(x)|ϕ(x, 0)dx,

which leads to

|T1 − T10| ≤
∑

n∈IN

∑

K∈T
|un+1
K − unK |

∫ (n+1)k

nk

∫

K

|ϕt(x, t)|dxdt +

∫

IRd

|u0(x)− uT ,0(x)|ϕ(x, 0)dx.

(6.62) est5kapb
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Inequality (
est5kapb
6.62) gives

|T1 − T10| ≤
∫

IRd×IR+

|ϕt(x, t)|dνT ,k(x, t) +

∫

IRd

ϕ(x, 0)dµT (x), (6.63) estmajtime

where the measures µT ∈ M(IRd) and νT ,k ∈M(IRd × IR+) are defined, by their action on Cc(IR
d) and

Cc(IR
d × IR+), as follows

〈µT , ψ〉 =

∫

IRd

|u0(x)− uT ,0(x)|ψ(x)dx, ∀ψ ∈ Cc(IRd),

〈νT ,k, ψ〉 =
∑

n∈IN

∑

K∈T
|un+1
K − unK |

∫ (n+1)k

nk

∫

K

ψ(x, t)dxdt,

∀ψ ∈ Cc(IRd × IR+).

The measures µT and νT ,k are absolutely continuous with respect to the Lebesgue measure. Indeed,
one has dµT (x) = |u0(x) − uT ,0(x)|dx and dνT ,k(x, t) = (

∑
n∈IN

∑
K∈T |un+1

K − unK |1K×[nk,(n+1)k))dxdt

(where 1Ω denotes the characteristic function of Ω for any Borel subset Ω of IRd+1).

If u0 ∈ BV (IRd), the measure µT verifies (
estmapz
6.57) with some D only depending on |u0|BV (IRd) and α (this

is classical result which is given in Lemma
divbvd
6.8 below for the sake of completeness).

The measure νT ,k satisfies (
estmapp
6.56), with νT ,k instead of µT ,k, thanks to (

estbvft
6.17) and condition (

estcfl
6.6). Indeed,

for R > 0 and T > 0,

νT ,k(B(0, R)× [0, T ]) =

∫ T

0

∫

B(0,R)

∑

n∈IN

∑

K∈T
|un+1
K − unK |1K×[nk,(n+1)k)dxdt,

which yields, with T2R = {K ∈ T , K ⊂ B(0, 2R)} and NT,kk < T ≤ (NT,k + 1)k, h < R and k < T ,

νT ,k(B(0, R)× [0, T ]) ≤ k

NT,k∑

n=0

∑

K∈T2R

m(K)|un+1
K − unK | ≤

kC1√
h
,

where C1 is given by lemma
estwbvest
6.2 and only depends on v, g, u0, α, ξ, R, T . Finally, since the condition

(
estcfl
6.6) gives k ≤ C2h, where C2 only depends on v, g, u0, α, ξ, the last inequality yields, for h < R and
k < T ,

νT ,k(B(0, R)× [0, T ]) ≤ C3

√
h, (6.64) boundnu

with C3 = C1C2.
Comparison of T2 and T20

Using divv = 0, and gathering (
est7kap
6.61) by interfaces, we get

T20 = −
∑

n∈IN

∑

(K,L)∈En

[ (
(f(unK>κ)− f(unK⊥κ))− (f(unL>κ)− f(unL⊥κ))

)

∫

K|L

∫ (n+1)k

nk

(
v(x, t) · nK,L ϕ(x, t)

)
dγ(x)dt

]
.

(6.65) est8kap

Define, for all K ∈ T , all L ∈ N (K) and all n ∈ IN,

(vϕ)n,+K,L =
1

k

∫ (n+1)k

nk

∫

K|L
(v(x, t) · nK,L)+ϕ(x, t)dγ(x)dt

and

(vϕ)n,−K,L =
1

k

∫ (n+1)k

nk

∫

K|L
(v(x, t) · nK,L)−ϕ(x, t)dγ(x)dt.
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Note that (vϕ)n,+K,L = (vϕ)n,−L,K . Then, (
est8kap
6.65) gives

T20 = k
∑

n∈IN

∑

(K,L)∈En

[

(vϕ)n,+K,L

(
g(unK>κ, unL>κ)− f(unK>κ)− g(unK⊥κ, unL⊥κ) + f(unK⊥κ)

)

−(vϕ)n,−L,K

(
g(unK>κ, unL>κ)− f(unL>κ)− g(unK⊥κ, unL⊥κ) + f(unL⊥κ)

)

−(vϕ)n,−K,L

(
g(unL>κ, unK>κ)− f(unK>κ)− g(unL⊥κ, unK⊥κ) + f(unK⊥κ)

)

+(vϕ)n,+L,K

(
g(unL>κ, unK>κ)− f(unL>κ)− g(unL⊥κ, unK⊥κ) + f(unL⊥κ)

)]
.

(6.66) est8bkap

Let us introduce some terms related to the difference between ϕ on K ∈ T and K|L ∈ E ,

rn,+K,L = |vnK,LϕnK − (vϕ)n,+K,L|
and

rn,−K,L = |vnL,KϕnK − (vϕ)n,−K,L|.
Then, from (

est2kap
6.59) and (

est8bkap
6.66),

|T2 − T20| ≤
∑

n∈IN

k
∑

(K,L)∈En

[

rn,+K,L

(
g(unK>κ, unL>κ)− f(unK>κ) + g(unK⊥κ, unL⊥κ)− f(unK⊥κ)

)
+

rn,−L,K

(
g(unK>κ, unL>κ)− f(unL>κ) + g(unK⊥κ, unL⊥κ)− f(unL⊥κ)

)
+

rn,−K,L

(
f(unK>κ)− g(unL>κ, unK>κ) + f(unK⊥κ)− g(unL⊥κ, unK⊥κ)

)
+

rn,+L,K

(
f(unL>κ)− g(unL>κ, unK>κ) + f(unL⊥κ)− g(unL⊥κ, unK⊥κ)

)]
.

(6.67) est9kap

For all (K,L) ∈ En, the following inequality holds:

0 ≤ g(unK>κ, unL>κ)− f(unK>κ) ≤ max
un

L
≤p≤q≤un

K

(g(q, p)− f(q)),

more precisely, one has g(unK>κ, unL>κ) − f(unK>κ) = 0, if κ ≥ unK , and one has g(unK>κ, unL>κ) −
f(unK>κ) = g(q, p)− f(q) with p = κ and q = unK if κ ∈ [unL, u

n
K ], and with p = unL and q = unK if κ ≤ unL.

In the same way, we can assert that

0 ≤ g(unK⊥κ, unL⊥κ)− f(unK⊥κ) ≤ max
un

L
≤p≤q≤un

K

(g(q, p)− f(q)).

The same analysis can be applied to the six other terms of (
est9kap
6.67).

To conclude the estimate on |T2 − T20|, there remains to estimate the two quantities rn,±K,L. This will be

done with convenient measures applied to |∇ϕ| and |ϕt|. To estimate rn,+K,L, for instance, one remarks
that

rn,+K,L ≤
1

k2m(K)

∫ (n+1)k

nk

∫ (n+1)k

nk

∫

K

∫

K|L
|ϕ(x, t) − ϕ(y, s)|(v(y, s) · nK,L)+dγ(y)dxdtds.

Hence

rn,+K,L ≤
1

k2m(K)

∫ (n+1)k

nk

∫ (n+1)k

nk

∫

K

∫

K|L

∫ 1

0

|∇ϕ(x + θ(y − x), t+ θ(s− t)) · (y − x)+

ϕt(x+ θ(y − x), t+ θ(s− t))(s− t)|(v(y, s) · nK,L)+dθdγ(y)dxdtds

which yields
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rn,+K,L ≤
1

k2m(K)

∫ (n+1)k

nk

∫ (n+1)k

nk

∫

K

∫

K|L

∫ 1

0

(
h|∇ϕ(x + θ(y − x), t + θ(s− t))|+

k|ϕt(x+ θ(y − x), t+ θ(s− t))|
)
(v(y, s) · nK,L)+dθdγ(y)dxdtds.

This leads to the definition of a measure µn,+K,L, given by its action on Cc(IR
d × IR+):

〈µn,+K,L, ψ〉 =
2

k2m(K)

∫ (n+1)k

nk

∫ (n+1)k

nk

∫

K

∫

K|L

∫ 1

0

(
(h+ k)ψ(x + θ(y − x), t+ θ(s− t))

)

(v(y, s) · nK,L)+dθdγ(y)dxdtds, ∀ψ ∈ Cc(IRd × IR+),

in order to have 2rn,+K,L ≤ 〈µn,+K,L, |∇ϕ|+ |ϕt|〉.
We define in the same way µn,−K,L, changing (v(y, s) · nK,L)+ in (v(y, s) · nK,L)−. We finally define the
measure ν̃T ,k by

〈ν̃T ,k, ψ〉 =
∑

n∈IN

k
∑

(K,L)∈En

[(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q))
)
〈µn,+K,L, ψ〉

+
(

max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))
)
〈µn,−L,K , ψ〉

+
(

max
un

L
≤p≤q≤un

K

(f(q)− g(p, q))
)
〈µn,−K,L, ψ〉

+
(

max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))
)
〈µn,+L,K , ψ〉

]
.

(6.68) est10kap

Since 2rn,±K,L ≤ 〈µn,±K,L, |∇ϕ|+ |ϕt|〉, (
est9kap
6.67) and (

est10kap
6.68) leads to |T2 − T20| ≤ 〈ν̃T ,k, |∇ϕ| + |ϕt|〉. Therefore,

setting µT ,k = νT ,k + ν̃T ,k, using (
estmajtime
6.63) and T1 + T2 ≤ 0,

T10 + T20 ≤
∫

IRd×IR+

(
|ϕt(x, t)|+ |∇ϕ(x, t)|

)
dµT ,k(x, t) +

∫

IRd

ϕ(x, 0)dµT (x),

which is (
estentcont
6.60) and yields (

kruzkovap
6.55).

There remains to prove (
estmapp
6.56).

For all K ∈ T , let xK be an arbitrary point of K. For all K ∈ T , all K ∈ N (K) and all n ∈ IN, the
supports of the measures µn,±K,L are included in the closed set B̄(xK , h) ∩ [nk, (n+ 1)k]. Furthermore,

µn,+K,L(IRd × IR+) ≤ 2vnK,L(h+ k) and µn,−K,L(IRd × IR+) ≤ 2vnL,K(h+ k).

Then, for all R > 0 and T > 0, the definition of µT ,k (i.e. µT ,k = νT ,k + ν̃T ,k)) leads to

µT ,k(B(0, R)× [0, T ]) ≤ C3

√
h

+2(h+ k)

NT,k∑

n=0

k
∑

(K,L)∈En
2R

[
vnK,L

(
max

un
L
≤p≤q≤un

K

(g(q, p)− f(q)) + max
un

L
≤p≤q≤un

K

(g(q, p)− f(p))
)

+vnL,K

(
max

un
L
≤p≤q≤un

K

(f(q)− g(p, q)) + max
un

L
≤p≤q≤un

K

(f(p)− g(p, q))
)]
,

for h < R and k < T , where C3

√
h is the bound of νT ,k(B(0, R) × [0, T ]) given in (

boundnu
6.64). Therefore,

thanks to Lemma
estwbvest
6.2,

µT ,k(B(0, R)× [0, T ]) ≤ C3

√
h+ (1 + C2)h

C4√
h

= C
√
h,

where C only depends on v, g, u0, α, ξ, R and T . The proof of Theorem
estentest
6.1 is complete.

The following theorem investigates the case of the implicit scheme.
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estentesti Theorem 6.2 Under Assumption
estdonnees
6.1, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 and

k > 0. Let g ∈ C(IR2, IR) satisfy Assumption
estcondflu
6.2.

Let {unK , n ∈ IN,K ∈ T }, such that unK ∈ [Um, UM ] for all K ∈ T and n ∈ IN, be the solution of
(
estschemai
6.9),(

estschemaz
6.5) (existence and uniqueness of such a solution are given by Proposition

esteu
6.1). Let uT ,k be given

by (
estuapp
6.8). Assume that v does not depend on t and that u0 ∈ BV (IRd).

Then, there exist µT ,k ∈M(IRd × IR+) and µT ∈M(IRd) such that





∫

IR+

∫

IRd

(
|uT ,k(x, t) − κ|ϕt(x, t)+

(f(uT ,k(x, t)>κ)− f(uT ,k(x, t)⊥κ))v(x, t) · ∇ϕ(x, t)
)
dxdt +∫

IRd

|u0(x)− κ|ϕ(x, 0)dx ≥

−
∫

IRd×IR+

(
|ϕt(x, t)| + |∇ϕ(x, t)|

)
dµT ,k(x, t)−

∫

IRd

ϕ(x, 0)dµT (x),

∀κ ∈ IR, ∀ϕ ∈ C∞c (IRd × IR+, IR+).

(6.69) kruzkovapi

The measures µT ,k and µT verify the following properties:

1. For all R > 0 and T > 0, there exists C, only depending on v, g, u0, α, R, T such that, for h < R
and k < T ,

µT ,k(B(0, R)× [0, T ]) ≤ C(k +
√
h). (6.70) estmappi

2. The measure µT is the measure of density |u0(·)−uT ,0(·)| with respect to the Lebesgue measure and
there exists D, only depending on u0 and α, such that

µT (IRd) ≤ Dh. (6.71) estmapzi

Proof of Theorem
estentesti
6.2

Similarly to the proof of Theorem
estentest
6.1, we introduce a test function ϕ ∈ C∞c (IRd × IR+, IR+) and a real

number κ ∈ IR. We multiply (
estschemaki
6.52) by (1/m(K))

∫ (n+1)k

nk

∫
K
ϕ(x, t)dxdt, and sum the result for all K ∈ T

and n ∈ IN. We then define T1 and T2 such that T1 + T2 ≤ 0 using equations (
est1kap
6.58) and (

est2kap
6.59) in which

we replace unK by un+1
K and unL by un+1

L . Therefore we get (
estmajtime
6.63), where the measure νT ,k is such that

for all T > 0, there exists C1 only depending on v, g, u0 α and T , such that, for k < T ,

νT ,k(IR
d × [0, T ]) ≤ C1k,

using Lemma
estlbvt
6.5 page

estlbvt
162, which is available if v does not depend on t (and for which one needs that

u0 ∈ BV (IRd)).

The treatment of T2 is very similar to that of Theorem
estentest
6.1, replacing unK by un+1

K and unL by un+1
L . But,

since v does not depend on t, the bounds on rn,±K,L are simpler. Indeed,

rn,±K,L ≤
1

km(K)

∫ (n+1)k

nk

∫

K

∫

K|L
|ϕ(x, t) − ϕ(y, t)|(v(y) · nK,L)±dγ(y)dxdt.

Now 2rn,±K,L ≤ 〈µn,±K,L, |∇ϕ|〉 where µn,±K,L is defined by

〈µn,±K,L, ψ〉 =
2

km(K)

∫ (n+1)k

nk

∫

K

∫

K|L

∫ 1

0

(
h ψ(x+ θ(y − x), t)

)

(v(y) · nK,L)±dθdγ(y)dxdt, ∀ψ ∈ Cc(IRd × IR+).

With this definition of µn,±K,L, the bound on ν̃T ,k (defined by (
est10kap
6.68), replacing unK by un+1

K and unL by

un+1
L ) becomes, thanks to Lemma

estwbvesti
6.3 page

estwbvesti
159,
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ν̃T ,k(B(0, R)× [0, T ]) ≤ C2

√
h,

for h < R and k < T , where C2 only depends on v, g, u0, α, R and T .
Hence, defining (as in Theorem

estentest
6.1) µT ,k = νT ,k + ν̃T ,k, for all R > 0 and all T > 0 there exists C, only

depending on v, g, u0, α, R, T such that, for h < R and k < T ,

µT ,k(B(0, R)× [0, T ]) ≤ C(k +
√
h),

which is (
estmappi
6.70) and concludes the proof of Theorem

estentesti
6.2.

Remark 6.6 In the case where v depends on t, Lemma
estlbvt
6.5 cannot be used. However, it is easy to show

(the proof follows that of Theorem
estentest
6.1) that Theorem

estentesti
6.2 is true if (

estmappi
6.70) is replaced by

µT ,k(B(0, R)× [0, T ]) ≤ C(
k√
h

+
√
h), (6.72) estmappit

which leads to the result given in Remark
estexti
6.12. The estimate (

estmappit
6.72) may be obtained without assuming

that u0 ∈ BV (IRd) (it is sufficient that u0 ∈ L∞(IRd)).

For the sake of completeness we now prove a lemma which gives the bound on the measure µT in the
two last theorems.

divbvd Lemma 6.8 Let T be an admissible mesh in the sense of Definition
meshypmd
6.1 page

meshypmd
148 and let u ∈ BV (IRd)

(see Definition
defBVRp
5.38 page

defBVRp
138). For K ∈ T , let uK be the mean value of u over K. Define uT by

uT (x) = uK for a.e. x ∈ K, for all K ∈ T . Then,

‖u− uT ‖L1(IRd) ≤
C

α2
h|u|BV (IRd), (6.73) bvzdd

where C only depends on the space dimension (d = 1, 2 or 3).

Proof of Lemma
divbvd
6.8

The proof is very similar to that of Lemma
divbv
6.4 and we will mainly refer to the proof of Lemma

divbv
6.4.

First, remark that if (
bvzdd
6.73) holds for all u ∈ BV (IRd)∩C1(IRd, IR) then (

bvzdd
6.73) holds for all u ∈ BV (IRd).

Indeed, let u ∈ BV (IRd), it is proven in Step 1 of the proof of Lemma
divbv
6.4 that there exists a sequence

(un)n∈IN ⊂ C∞(IRd, IR) such that un → u in L1
loc(IR

d), as n→∞, and ‖un‖BV (IRd) ≤ ‖u‖BV (IRd) for all

n ∈ IN. One may also assume, up to a subsequence, that un → u a.e. on IRd. Then, if (
bvzdd
6.73) is true with

un instead of u, passing to the limit in (
bvzdd
6.73) (for un) as n→∞ leads to (

bvzdd
6.73) (for u) thanks to Fatou’s

lemma.

Let us now prove (
bvzdd
6.73) if u ∈ BV (IRd) ∩ C1(IRd, IR) (this concludes the proof of Lemma

divbvd
6.8). Since

u ∈ C1(IRd, IR),
|u|BV (IRd) = ‖(|∇u|)‖L1(IRd);

hence we shall prove (
bvzdd
6.73) with ‖(|∇u|)‖L1(IRd) instead of |u|BV (IRd).

For K ∈ T ,

∫

K

|u(x)− uK |dx ≤
1

m(K)

∫

K

(

∫

K

|u(x)− u(y)|dx)dy.

Then, following the lines of Step 2 of Lemma
divbv
6.4,

∫

K

|u(x)− uK |dx ≤
1

m(K)
h

∫

B(0,h)

(

∫ 1

0

∫

K

|∇u(y + tz)|dydt)dz. (6.74) oufc

For all K ∈ T , let xK be an arbitrary point of K.
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Then, changing the variable y in ξ = y + tz (for all fixed z ∈ K and t ∈ (0, 1)) in (
oufc
6.74),

∫

K

|u(x) − uK |dx ≤
1

m(K)
h

∫

B(0,h)

(

∫ 1

0

∫

B(xK ,2h)

|∇u(ξ)|dξdt)dz,

which yields, since T is an admissible mesh in the sense of Definition
estmaillage
6.4 page

estmaillage
148,

∫

K

|u(x)− uK |dx ≤
1

αhd
m(B(0, h))h

∫

B(xK ,2h)

|∇u(ξ)|dξ.

Therefore there exists C1, only depending on the space dimension, such that

∫

K

|u(x)− uK |dx ≤
C1

α
h

∫

B(xK ,2h)

|∇u(ξ)|dξ, ∀K ∈ T . (6.75) oufd

As in Lemma
divbv
6.4, for a fixed M ∈ T , the number of K ∈ T such that M ∩B(xK , 2h) 6= ∅ is less or equal

to m(B(0, 4h))/(αhd) that is less or equal to C2/α where C2 only depends on the space dimension.
Then, summing (

oufd
6.75) over K ∈ T leads to

∑

K∈T

∫

K

|u(x)− uK |dx ≤
C1C2

α2
h
∑

M∈T

∫

M

|∇u(ξ)|dξ =
C1C2

α2
h‖(|∇u|)‖L1(IRd),

that is (
bvzdd
6.73) with C = C1C2.

6.6 Convergence of the scheme
eghcvsol

This section is devoted to the proof of the existence and uniqueness of the entropy weak solution and of
the convergence of the approximate solution towards the entropy weak solution as the mesh size and time
step tend to 0. This proof will be performed in two steps. We first prove in section

eghcvepsol
6.6.1 the convergence

of the approximate solution towards an entropy process solution which is defined in Definition
estepsol
6.2 below

(note that the convergence also yields the existence of an entropy process solution).

estepsol Definition 6.2 A function µ is an entropy process solution to problem (
estpbcont
6.1)-(

estcondini
6.2) if µ satisfies





µ ∈ L∞(IRd × IR?
+ × (0, 1)),∫

IRd

∫ +∞

0

∫ 1

0

(
η(µ(x, t, α))ϕt(x, t) + Φ(µ(x, t, α))v(x, t) · ∇ϕ(x, t)

)
dαdtdx

+

∫

IRd

η(u0(x))ϕ(x, 0)dx ≥ 0,

for any ϕ ∈ C1
c (IR

d × IR+, IR+),
for any convex function η ∈ C1(IR, IR), and Φ ∈ C1(IR, IR) such that Φ′ = f ′η′.

(6.76) ews3

ewsews Remark 6.7 From an entropy weak solution u to problem (
estpbcont
6.1)-(

estcondini
6.2), one may easily construct an

entropy process solution to problem (
estpbcont
6.1)-(

estcondini
6.2) by setting µ(x, t, α) = u(x, t) for a.e. (x, t, α) ∈ IRd ×

IR?
+× (0, 1). Reciprocally, if µ is an entropy process solution to problem (

estpbcont
6.1)-(

estcondini
6.2) such that there exists

u ∈ L∞(IRd × IR?
+) such that µ(x, t, α) = u(x, t), for a.e. (x, t, α) ∈ IRd × IR?

+ × (0, 1), then u is an
entropy weak solution to problem (

estpbcont
6.1)-(

estcondini
6.2).

In section
ewsp
6.6.2, we show the uniqueness of the entropy process solution, which, thanks to remark

ewsews
6.7,

also yields the existence and uniqueness of the entropy weak solution. This allows us to state and prove,
in section

eghbscewsol
6.6.3, the convergence of the approximate solution towards the entropy weak solution.

We now give a useful characterization of an entropy process solution in terms of Krushkov’s entropies (as
for the entropy weak solution).
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sanslabel Proposition 6.2 A function µ is an entropy process solution of problem (
estpbcont
6.1)-(

estcondini
6.2) if and only if,





µ ∈ L∞(IRd × IR?
+ × (0, 1)),∫

IRd

∫ +∞

0

∫ 1

0

(
|µ(x, t, α) − κ|ϕt(x, t) + Φ(µ(x, t, α), κ)v(x, t) · ∇ϕ(x, t)

)
dαdtdx

+

∫

IRd

|u0(x) − κ|ϕ(x, 0)dx ≥ 0,

∀κ ∈ IR, ∀ϕ ∈ C1
c (IR

d × IR+, IR+),

(6.77) ews3k

where we set Φ(a, b) = f(a>b)− f(a⊥b), for all a, b ∈ IR.

Proof of Proposition
sanslabel
6.2

The proof of this result is similar to the case of classical entropy weak solutions. The characterization
(
ews3k
6.77) can be obtained from (

ews3
6.76), by using regularizations of the function | · −κ|. Conversely, (

ews3
6.76)

may be obtained from (
ews3k
6.77) by approximating any convex function η ∈ C1(IR, IR) by functions of the

form: ηn(·) =

n∑

i=1

α
(n)
i | · −κ(n)

i |, with α
(n)
i ≥ 0.

6.6.1 Convergence towards an entropy process solution
eghcvepsol

Let α > 0 and 0 < ξ < 1. Let (Tm, km)m∈IN be a sequence of admissible meshes in the sense of Definition
meshypmd
6.1 page

meshypmd
148 and time steps. Note that Tm is admissible with α independent of m. Assume that km

satisfies (
estcfl
6.6), for T = Tm and k = km, and that size(Tm) → 0 as m→∞.

By Lemma
estinftyest
6.1 page

estinftyest
152, the sequence (uTm,km)m∈IN of approximate solutions defined by the finite volume

scheme (
estschemaz
6.5) and (

estschema
6.7) page

estschema
149, with T = Tm and k = km, is bounded in L∞(IRd × IR?

+); therefore,

there exists µ ∈ L∞(IRd × IR?
+ × (0, 1)) such that uTm,km converges, as m tends to ∞, towards µ in the

nonlinear weak-? sense (see Definition
nlwsdef
6.3 page

nlwsdef
190 and Proposition

nlwsprop
6.4 page

nlwsprop
191), that is:

lim
m→∞

∫

IRd

∫

IR+

θ(uTm,km(x, t))ϕ(x, t)dtdx =

∫

IRd

∫

IR+

∫ 1

0

θ(µ(x, t, α))ϕ(x, t)dαdtdx,

∀ϕ ∈ L1(IR × IR?
+), ∀θ ∈ C(IR, IR).

(6.78) eghbconvy

Taking for θ, in (
eghbconvy
6.78), the Krushkov entropies (namely θ = | · −κ|, for all κ ∈ IR) and the associated

functions defining the entropy fluxes (namely θ = f(·, κ) = f(·>κ) − f(·⊥κ)) and using Theorem
estentest
6.1

(that is passing to the limit, as m→∞, in (
kruzkovap
6.55) written with uT ,k = uTm,km) yields that µ is an entropy

process solution. Hence the following result holds:

eghbcepsol Proposition 6.3 Under assumptions
estdonnees
6.1, let α > 0 and 0 < ξ < 1. Let (Tm, km)m∈IN be a sequence of

admissible meshes in the sense of Definition
meshypmd
6.1 page

meshypmd
148 and time steps. Note that Tm is admissible

with α independent of m. Assume that km satisfy (
estcfl
6.6), for T = Tm and k = km, and that size(Tm) → 0

as m→∞.
Then there exists a subsequence, still denoted by (Tm, km)m∈IN, and a function µ ∈ L∞(IRd× IR?

+×(0, 1))
such that

1. the approximate solution defined by (
estschema
6.7), (

estschemaz
6.5) and (

estuapp
6.8) with T = Tm and k = km, that is uTm,km ,

converges towards µ in the nonlinear weak-? sense, i.e. (
eghbconvy
6.78) holds,

2. µ is an entropy process solution of (
estpbcont
6.1)-(

estcondini
6.2).

Remark 6.8 The same theorem can be proved for the implicit scheme without condition (
estcfl
6.6) (and thus

without ξ).

eghbexepsol Remark 6.9 Note that a consequence of Proposition
eghbcepsol
6.3 is the existence of an entropy process solution

to Problem (
estpbcont
6.1)-(

estcondini
6.2).
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6.6.2 Uniqueness of the entropy process solution
ewsp

In order to show the uniqueness of an entropy process solution, we shall use the characterization of an
entropy process solution given in proposition

sanslabel
6.2.

ewsunicite Theorem 6.3 Under Assumption
estdonnees
6.1, the entropy process solution µ of problem (

estpbcont
6.1),(

estcondini
6.2), as defined

in Definition
estepsol
6.2 page

estepsol
173, is unique. Moreover, there exists a function u ∈ L∞(IRd × IR?

+) such that

u(x, t) = µ(x, t, α), for a.e. (x, t, α) ∈ IRd × IR?
+ × (0, 1). (Hence, with Proposition

eghbcepsol
6.3 and Remark

ewsews
6.7,

there exists a unique entropy weak solution to Problem (
estpbcont
6.1)-(

estcondini
6.2).)

Proof of Theorem
ewsunicite
6.3

Let µ and ν be two entropy process solutions to Problem (
estpbcont
6.1)-(

estcondini
6.2). Then, one has µ ∈ L∞(IRd× IR?

+×
(0, 1)), ν ∈ L∞(IRd × IR?

+ × (0, 1)) and

∫

IRd

∫ +∞

0

∫ 1

0

(
|µ(x, t, α) − κ|ϕt(x, t)

+(f(µ(x, t, α)>κ)− f(µ(x, t, α)⊥κ))v(x, t) · ∇ϕ(x, t)
)
dαdtdx

+

∫

IRd

|u0(x)− κ|ϕ(x, 0)dx ≥ 0, ∀κ ∈ IR, ∀ϕ ∈ C1
c (IR

d × IR+, IR+),

(6.79) ewsmu

∫

IRd

∫ +∞

0

∫ 1

0

(
|ν(y, s, β)− κ|ϕs(y, s)

+(f(ν(y, s, β)>κ)− f(ν(y, s, β)⊥κ))v(y, s) · ∇ϕ(y, s)
)
dβdsdy

+

∫

IRd

|u0(y)− κ|ϕ(y, 0)dy ≥ 0, ∀κ ∈ IR, ∀ϕ ∈ C1
c (IR

d × IR+, IR+).

(6.80) ewsnu

The proof of Theorem
ewsunicite
6.3 contains 2 steps. In Step 1, it is proven that

∫ 1

0

∫ 1

0

∫

IR+

∫

IRd

[
|µ(x, t, α) − ν(x, t, β)|ψt(x, t)

+
(
f(µ(x, t, α)>ν(x, t, β)) − f(µ(x, t, α)⊥ν(x, t, β))

)
v(x, t) · ∇ψ(x, t)

]
dxdtdαdβ ≥ 0,

∀ψ ∈ C1
c (IR

d × IR+, IR+).

(6.81) step1

In Step 2, it is proven that µ(x, t, α) = ν(x, t, β) for a.e. (x, t, α, β) ∈ IRd × IR?
+ × (0, 1) × (0, 1). We

then deduce that there exists u ∈ L∞(IRd × IR?
+) such that µ(x, t, α) = u(x, t) for a.e. (x, t, α) ∈

IRd × IR?
+ × (0, 1) (therefore u is necessarily the unique entropy weak solution to (

estpbcont
6.1)-(

estcondini
6.2)).

Step 1 (proof of relation (
step1
6.81))

In order to prove relation (
step1
6.81), a sequence of mollifiers in IR and IRd is introduced .

Let ρ ∈ C∞c (IRd, IR+) and ρ̄ ∈ C∞c (IR, IR+) be such that

{x ∈ IRd; ρ(x) 6= 0} ⊂ {x ∈ IRd; |x| ≤ 1},

{x ∈ IR; ρ̄(x) 6= 0} ⊂ [−1, 0] (6.82) rhodec

and

∫

IRd

ρ(x)dx = 1,

∫

IR

ρ̄(x)dx = 1.

For n ∈ IN?, define ρn = ndρ(nx) for all x ∈ IRd and ρ̄n = nρ̄(nx) for all x ∈ IR.
Let ψ ∈ C1

c (IR
d×IR+, IR+). For (y, s, β) ∈ IRd×IR+×(0, 1), let us take, in (

ewsmu
6.79), ϕ(x, t) = ψ(x, t)ρn(x−

y)ρ̄n(t− s) and κ = ν(y, s, β). Then, integrating the result over IRd × IR+ × (0, 1) leads to
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A1 +A2 +A3 +A4 +A5 ≥ 0, (6.83) ewscin

where

A1 =

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[
|µ(x, t, α) − ν(y, s, β)|

ψt(x, t)ρn(x− y)ρ̄n(t− s)
]
dxdtdydsdαdβ,

A2 =

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[
|µ(x, t, α) − ν(y, s, β)|

ψ(x, t)ρn(x− y)ρ̄′n(t− s)
]
dxdtdydsdαdβ,

A3 =

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[(
f(µ(x, t, α)>ν(y, s, β)) − f(µ(x, t, α)⊥ν(y, s, β))

)

v(x, t) · ∇ψ(x, t)ρn(x − y)ρ̄n(t− s)
]
dxdtdydsdαdβ,

A4 =

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[(
f(µ(x, t, α)>ν(y, s, β)) − f(µ(x, t, α)⊥ν(y, s, β))

)

v(x, t) · ∇ρn(x− y)ψ(x, t)ρ̄n(t− s)
]
dxdtdydsdαdβ

and

A5 =

∫ 1

0

∫

IRd

∫ ∞

0

∫

IRd

|u0(x)− ν(y, s, β)|ψ(x, 0)ρn(x− y)ρ̄n(−s)dydsdxdβ. a5

Passing to the limit in (
ewscin
6.83) as n→∞ (using (

ewsnu
6.80) for the study of A2 +A4 and A5) will give (

step1
6.81).

Let us first consider A1 and A3. Note that, using (
rhodec
6.82),

∫

IRd

∫ ∞

0

ρn(x − y)ρ̄n(t− s)dsdy = 1, ∀x ∈ IRd, ∀t ∈ IR+.

Then,

|A1 −
∫ 1

0

∫ 1

0

∫

IR+

∫

IRd

[
|µ(x, t, α) − ν(x, t, β)|ψt(x, t)

]
dxdtdαdβ|

≤
∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[
|ν(x, t, β) − ν(y, s, β)||ψt(x, t)|ρn(x − y)ρ̄n(t− s)

]
dxdtdydsdβ

≤ ‖ψt‖L∞(IRd×IR?
+

)ε(n, S),

with S = {(x, t) ∈ IRd × IR+; ψ(x, t) 6= 0} and

ε(n, S) = sup{‖ν − ν(·+ η, ·+ τ, ·)‖L1(S×(0,1)); |η| ≤
1

n
, 0 ≤ τ ≤ 1

n
}.

Since ν ∈ L1
loc(IR

d × IR+ × [0, 1]) and S is bounded, one has ε(n, S) → 0 as n→∞. Hence,

A1 →
∫ 1

0

∫ 1

0

∫

IR+

∫

IRd

[
|µ(x, t, α) − ν(x, t, β)|ψt(x, t)

]
dxdtdαdβ, as n→∞. (6.84) lima1

Similarly, let M be the Lipschitz constant of f on [−D,D] where D = max{‖µ‖∞, ‖ν‖∞}, with ‖·‖∞ =
‖·‖L∞(IRd×IR?

+
×(0,1)),

|A3 −
∫ 1

0

∫ 1

0

∫

IR+

∫

IRd

(
f(µ(x, t, α)>ν(x, t, β)) − f(µ(x, t, α)⊥ν(x, t, β))

)

v(x, t) · ∇ψ(x, t)dxdtdαdβ| ≤ 2MV ‖(|∇ψ|)‖L∞(IRd×IR?
+

) ε(n, S),



177

which yields

A3 →
∫ 1

0

∫ 1

0

∫

IR+

∫

IRd

(
f(µ(x, t, α)>ν(x, t, β)) − f(µ(x, t, α)⊥ν(x, t, β))

)

v(x, t) · ∇ψ(x, t)dxdtdαdβ, as n→∞.

(6.85) lima3

Let us now consider A2 +A4.
For (x, t, α) ∈ IRd × IR+ × (0, 1), let us take ϕ(y, s) = ψ(x, t)ρn(x − y)ρ̄n(t − s) and κ = µ(x, t, α) in
(
ewsnu
6.80). Integrating the result over IRd × IR+ × (0, 1) leads to

−A2 −B4 ≥ 0, (6.86) a2b4

with

A4 −B4 =

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[(
f(µ(x, t, α)>ν(y, s, β)) − f(µ(x, t, α)⊥ν(y, s, β))

)

(v(x, t) − v(y, s)) · ∇ρn(x− y)ψ(x, t)ρ̄n(t− s)
]
dxdtdydsdαdβ.

Note that B4 = A4 if v is constant (and one directly obtains (
lima24
6.88) below). In the general case, in order

to prove that A4 −B4 → 0 as n→∞ (which then gives (
lima24
6.88)), let us remark that, using divv = 0,

∫ 1

0

∫ 1

0

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[(
f(µ(x, t, α)>ν(x, t, β)) − f(µ(x, t, α)⊥ν(x, t, β))

)

(v(x, t) − v(y, s)) · ∇ρn(x− y)ψ(x, t)ρ̄n(t− s)
]
dxdtdydsdαdβ = 0.

(6.87) abc4

Indeed, the latter equality follows from an integration by parts for the variable y ∈ IRd. Then, substracting
the left hand side of (

abc4
6.87) to A4 −B4 and using the regularity of v, there exists C1, only depending on

M , v and ψ, such that |A4 −B4| ≤ C1ε(n, S). This gives A4 −B4 → 0 as n→∞ and, thanks to (
a2b4
6.86),

lim sup
n→∞

(A2 +A4) ≤ 0. (6.88) lima24

Finally, let us consider A5.
For x ∈ IRd, let us take ϕ(y, s) = ψ(x, 0)ρn(x− y)

∫∞
s
ρ̄n(−τ)dτ and κ = u0(x) in (

ewsnu
6.80). Integrating the

resulting inequality with respect to x ∈ IRd gives

−A5 +B5a +B5b ≥ 0, (6.89) a5c

with

B5a = −
∫ 1

0

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(ν(y, s, β)>u0(x)) − f(ν(y, s, β)⊥u0(x)))

v(y, s) · ∇ρn(x− y)ψ(x, 0)ρ̄n(−τ)dτdydxdsdβ,

B5b =

∫

IRd

∫

IRd

ψ(x, 0)ρn(x− y)|u0(x) − u0(y)|dydx.

Let S0 = {x ∈ IRd; ψ(x, 0) 6= 0} and

ε0(n, S0) = sup{
∫

S0

|u0(x) − u0(x + η)|dx; |η| ≤ 1

n
},

so that B5b ≤ ‖ψ(·, 0)‖L∞(IRd)ε0(n, S0).

Since u0 ∈ L1
loc(IR

d) and since S0 is bounded, one has ε0(n, S0) → 0 as n → ∞. Then, B5b → 0 as
n→∞.
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Let us now prove that B5a → 0 as n → ∞ (then, (
a5c
6.89) will give (

lima5
6.90) below). Note that B5a =

−B5c + (B5a +B5c) with

B5c =

∫ 1

0

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(ν(y, s, β)>u0(y))− f(ν(y, s, β)⊥u0(y)))

v(y, s) · ∇ρn(x− y)ψ(x, 0)ρ̄n(−τ)dτdydxdsdβ.
Integrating by parts for the x variable yields

B5c =

∫ 1

0

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(ν(y, s, β)>u0(y))− f(ν(y, s, β)⊥u0(y)))

v(y, s) · ∇ψ(x, 0)ρn(x− y)ρ̄n(−τ)dτdydxdsdβ.
Noting that the integration with respect to s is reduced to [0, 1/n], B5c → 0 as n→∞.
There remains to study B5a +B5c. Noting that |f(a>b)− f(a>c)| ≤ M̄ |b− c| and |f(a⊥b)− f(a⊥c)| ≤
M̄ |b− c| if b, c ∈ [−D̄, D̄], where D̄ = ‖u0‖L∞(IRd) and M̄ is the Lipschitz constant to f on [−D̄, D̄],

|B5a +B5c| ≤ 2M̄V

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

|u0(x) − u0(y)||∇ρn(x− y)|ψ(x, 0)ρ̄n(−τ)dτdydxds,

which yields the existence of C2, only depending on M̄ , V and ψ, such that

|B5a +B5c| ≤ C2

∫ 1
n

0

∫

S0

∫

B(0, 1n )

|u0(x) − u0(x − z)|nd+1dzdxds.

Therefore, |B5a +B5c| ≤ C3ε0(n, S0), with some C3 only depending on M̄ , V and ψ. Since ε0(n, S0) → 0
as n→∞, one deduces |B5a +B5c| → 0 as n→∞. Hence, B5a → 0 as n→∞ and (

a5c
6.89) yields

lim sup
n→∞

A5 ≤ 0. (6.90) lima5

It is now possible to conclude Step 1. Passing to the limit as n → ∞ in (
ewscin
6.83) and using (

lima1
6.84), (

lima3
6.85),

(
lima24
6.88) and (

lima5
6.90) yields (

step1
6.81).

Step 2 (proof of µ = ν and conclusion)
Let R > 0 and T > 0. One sets ω = VM (recall that V is given in Assumption

estdonnees
6.1 and that M is given

in Step 1).
Let ϕ ∈ C1

c (IR+, [0, 1]) be a function such that ϕ(r) = 1 if r ∈ [0, R+ωT ], ϕ(r) = 0 if r ∈ [R+ωT +1,∞)
and ϕ′(r) ≤ 0, for all r ∈ IR+.
One takes, in (

step1
6.81), ψ defined by

{
ψ(x, t) = ϕ(|x| + ωt)T−tT , for x ∈ IRd and t ∈ [0, T ],

ψ(x, t) = 0, for x ∈ IRd and t ≥ T.

The function ψ is not in C∞c (IRd × IR+, IR+), but, using a usual regularization technique, it may be
proved that such a function can be considered in (

step1
6.81), in which case Inequality (

step1
6.81) writes

∫ 1

0

∫ 1

0

∫ T

0

∫

IRd

[
|µ(x, t, α)− ν(x, t, β)|

(T − t

T
ωϕ′(|x|+ ωt)− 1

T
ϕ(|x|+ ωt)

)
+

(
f(µ(x, t, α)>ν(x, t, β)) − f(µ(x, t, α)⊥ν(x, t, β))

)T − t

T
ϕ′(|x|+ ωt)v(x, t) · x|x|

]
dxdtdαdβ ≥ 0.

Since ω = VM and ϕ′ ≤ 0, one has (f(a>b)−f(a⊥b))ϕ′(|x|+ωt)v(x, t) ·(x/|x|) ≤ |a−b|ω(−ϕ′(|x|+ωt)),
for a.e. (x, t) ∈ IRd× IR?

+ and all a, b ∈ [−D,D] (D is defined in Step 1). Therefore, since ϕ(|x|+ωt) = 1
if (x, t) ∈ B(0, R)× [0, T ], the preceding inequality gives
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∫ 1

0

∫ 1

0

∫ T

0

∫

B(0,R)

|µ(x, t, α) − ν(x, t, β)|dxdtdαdβ ≤ 0,

which yields, since R and T are arbitrary, µ(x, t, α) = ν(x, t, β) for a.e. (x, t, α, β) ∈ IRd × IR?
+ × (0, 1)×

(0, 1).

Let us now deduce also from this uniqueness result that there exists u ∈ L∞(IRd × IR?
+) such that

µ(x, t, α) = u(x, t), for a.e. (x, t, α) ∈ IRd × IR?
+ × (0, 1) (then it is easy to see, with Definition

estepsol
6.2, that

u is the entropy weak solution to Problem (
estpbcont
6.1)-(

estcondini
6.2)).

Indeed, it is possible to take, in the preceeding proof, µ = ν (recall that the proposition
eghbcepsol
6.3 gives the

existence of an entropy process solution to Problem (
estpbcont
6.1)-(

estcondini
6.2), see Remark

eghbexepsol
6.9). This yields µ(x, t, α) =

µ(x, t, β) for a.e. (x, t, α, β) ∈ IRd × IR?
+ × (0, 1)× (0, 1). Then, for a.e. (x, t) ∈ IRd × IR?

+, one has

µ(x, t, α) = µ(x, t, β) for a.e. (α, β) ∈ (0, 1)× (0, 1)

and, for a.e. α ∈ (0, 1),

µ(x, t, α) = µ(x, t, β) for a.e. β ∈ (0, 1).

Thus, defining u from IRd × IR?
+ to IR by

u(x, t) =

∫ 1

0

µ(x, t, β)dβ,

one obtains µ(x, t, α) = u(x, t), for a.e. (x, t, α) ∈ IRd × IR?
+ × (0, 1), and u is the entropy weak solution

to Problem (
estpbcont
6.1)-(

estcondini
6.2). This completes the proof of Theorem

ewsunicite
6.3.

6.6.3 Convergence towards the entropy weak solution
eghbscewsol

We now know that there exists a unique entropy process solution to problem (
estpbcont
6.1)-(

estcondini
6.2) page

estcondini
145, which

is identical to the entropy weak solution of problem (
estpbcont
6.1)-(

estcondini
6.2); we may now prove the convergence of the

approximate solution given by the finite volume scheme (
estschema
6.7), (

estschemaz
6.5) and (

estuapp
6.8) towards the entropy weak

solution as the mesh size tends to 0.

eghbcewsol Theorem 6.4 Under Assumptions
estdonnees
6.1 page

estdonnees
145, let α ∈ IR?

+ and ξ ∈ (0, 1) be given. For an admissible
mesh T in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and for k > 0 satisfying (

estcfl
6.6) (note that α and ξ are

fixed), let uT ,k be the solution to (
estschema
6.7), (

estschemaz
6.5) and (

estuapp
6.8).

Then, uT ,k → u in Lploc(IR
d × IR+) for all p ∈ [1,∞), as h = size(T ) → 0, where u is the entropy weak

solution to (
estpbcont
6.1)-(

estcondini
6.2) page

estcondini
145.

Proof of Theorem
eghbcewsol
6.4

In order to prove that uT ,k → u (in Lploc(IR
d× IR+) for all p ∈ [1,∞), as h = size(T ) → 0), let us proceed

by a classical way of contradiction which uses the uniqueness of the entropy process solution to Problem
(
estpbcont
6.1)-(

estcondini
6.2) page

estcondini
145. Assume that there exists 1 ≤ p0 <∞, ε > 0, ω̄ a compact subset of IRd, T > 0 and

a sequence ((Tm, km))m∈IN such that, for any m ∈ IN, Tm is an admissible mesh, km satisfies (
estcfl
6.6) (with

T = Tm and k = km, note that α and ξ are independent of m), size(Tm) → 0 as m→∞ and

∫ T

0

∫

ω̄

|uTm,km − u|p0dxdt ≥ ε, ∀m ∈ IN, (6.91) eghbcontra

where uTm,km is the solution to (
estschema
6.7), (

estschemaz
6.5) and (

estuapp
6.8) with T = Tm and k = km and u is the entropy weak

solution to (
estpbcont
6.1)-(

estcondini
6.2).

Using Proposition
eghbcepsol
6.3, there exists a subsequence of the sequence ((Tm, km))m∈IN, still denoted by ((Tm,

km))m∈IN , and a function µ ∈ L∞(IRd × IR?
+ × (0, 1)) such that
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1. uTm,km → µ, as m→∞, in the nonlinear weak-? sense, that is:

lim
m→∞

∫ ∞

0

∫

IRd

θ(uTm,km(x, t))ϕ(x, t)dxdt =

∫ 1

0

∫ ∞

0

∫

IRd

θ(µ(x, t, α))ϕ(x, t)dxdtdα,

∀ϕ ∈ L1(IRd × IR?
+), ∀θ ∈ C(IR, IR),

(6.92) eghbww

2. µ is an entropy process solution to (
estpbcont
6.1)-(

estcondini
6.2).

By Theorem
ewsunicite
6.3 page

ewsunicite
175, one has µ(·, ·, α) = u, for a.e. α ∈ [0, 1] (and u is the entropy weak solution to

(
estpbcont
6.1)-(

estcondini
6.2)). Taking first θ(s) = s2 in (

eghbww
6.92) and then θ(s) = s and ϕu instead of ϕ in (

eghbww
6.92) one obtains:

∫ ∞

0

∫

IRd

(uTm,km(x, t)) − u(x, t))2ϕ(x, t)dxdt → 0, as m→∞, (6.93) eghbfort

for any function ϕ ∈ L1(IRd × (0, T )). From (
eghbfort
6.93), and thanks to the L∞-bound on (uTm,km)m∈IN, one

deduces the convergence of (uTm,km)m∈IN towards u in Lploc(IR
d × IR+) for all p ∈ [1,∞), which is in

contradiction with (
eghbcontra
6.91).

This completes the proof of our convergence theorem.

Remark 6.10

1. Theorem
eghbcewsol
6.4 is also true with the implicit scheme instead of the explicit scheme (that is (

estschemai
6.9) and

(
estuappimp
6.10) instead of (

estschema
6.7) and (

estuapp
6.8)) without the condition (

estcfl
6.6) (and thus without ξ).

2. The following section improves this convergence result and gives an error estimate.

6.7 Error estimate
esterr

6.7.1 Statement of the results

This section is devoted to the proof of an error estimate of time explicit and time implicit finite volume
approximations to the solution u ∈ L∞(IRd × IR?

+) of Problem (
estpbcont
6.1)-(

estcondini
6.2) page

estcondini
145. Assuming that

u0 ∈ BV (IRd), a “h1/4” error estimate is shown for a large variety of finite volume monotone flux
schemes such as those which were presented in Section

eghbns
6.2 page

eghbns
148.

Under Assumption
estdonnees
6.1 page

estdonnees
145, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and

k > 0. Let g ∈ C(IR2, IR) satisfying Assumption
estcondflu
6.2.

Let u be the entropy weak solution of (
estpbcont
6.1)-(

estcondini
6.2) and let uT ,k be the solution of the time explicit scheme

(
estschema
6.7), (

estschemaz
6.5), (

estuapp
6.8), assuming that (

estcfl
6.6) holds, or uT ,k be the solution of the time implicit scheme (

estschemai
6.9),

(
estschemaz
6.5), (

estuappimp
6.10). Our aim is to give an error estimate between u and uT ,k.

In the case of the explicit scheme, one proves, in this section, the following theorem.

esth14 Theorem 6.5 Under Assumption
estdonnees
6.1 page

estdonnees
145, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and k > 0. Let g ∈ C(IR2, IR) satisfy Assumption

estcondflu
6.2 and assume that condition (

estcfl
6.6) holds.

Let u be the unique entropy weak solution of (
estpbcont
6.1)-(

estcondini
6.2) and uT ,k be given by (

estuapp
6.8), (

estschema
6.7), (

estschemaz
6.5). Assume

u0 ∈ BV (IRd). Then, for all R > 0 and all T > 0 there exists Ce ∈ IR+, only depending on R, T , v, g,
u0, α and ξ, such that the following inequality holds:

∫ T

0

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ Ceh
1
4 . (6.94) esteqcorol

(Recall that B(0, R) = {x ∈ IRd, |x| < R}.)
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In Theorem
esth14
6.5, u0 is assumed to belong to BV (IRd) (recall that u0 ∈ BV (IRd) if sup{

∫
u0(x)divϕ(x)dx,

ϕ ∈ C∞c (IRd, IRd); |ϕ(x)| ≤ 1, ∀x ∈ IRd} < ∞). This assumption allows us to obtain an h1/4 estimate
in (

esteqcorol
6.94). If u0 6∈ BV (IRd) (but u0 still belongs to L∞(IRd)), one can also give an error estimate which

depends on the functions ε(r, S) and ε0(r, S) defined in (
estepsrk
6.109) and (

estepsork
6.116).

A slight improvement of Theorem
esth14
6.5 (and also Theorem

esth14i
6.6 below) is possible. Using the fact that

u ∈ C(IR+, L
1
loc(IR

d)) and thus u(·, t) is defined for all t ∈ IR+, Theorem
esth14
6.5 remains true with

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dx ≤ Ceh
1/4, ∀t ∈ [0, T ],

instead of (
esteqcorol
6.94). The proof of such a result may be handled with an adaptation of the proof a uniqueness

of the entropy process solution given for instance in
EGH2
Eymard, Gallouët and Herbin [1995], see

Vi
Vila

[1994] and
Coquel
Cockburn, Coquel and LeFloch [1994] for some similar results.

In some cases, it is possible to obtain h1/2, instead of h1/4, in Theorem
esth14
6.5. This is the case, for instance,

when the mesh T is composed of rectangles (d = 2) and when v does not depend on (x, t), since, in
this case, one obtains a “BV estimate” on uT ,k. In this case, the right hand sides of inequalities (

estbvfx
6.16)

and (
estbvft
6.17), proven above, are changed from C/

√
h to C, so that the right hand side of (

estmapp
6.56) becomes

Ch instead of C
√
h, which in turn yields Ceh

1/2 in (
esteqcorol
6.94) instead of Ceh

1/4. It is, however, still an
open problem to know whether it is possible to obtain an error estimate with h1/2, instead of h1/4, in
Theorem

esth14
6.5 (under the hypotheses of Theorem

esth14
6.5), even in the case where v does not depend on (x, t)

(see
C
Cockburn and Gremaud [1996] for an attempt in this direction).

estext Remark 6.11 Theorem
esth14
6.5 (and also Theorem

esth14i
6.6) remains true with some slightly more general as-

sumption on g, instead of
estcondflu
6.2, in order to allow g to depend on T and k. Indeed, in (

estschema
6.7), one can replace

g(unK , u
n
L) (and g(unL, u

n
K)) by gK,L(unK , u

n
L, T , k) (and gL,K(unL, u

n
K , T , k)). Assume that, for all K ∈ T

and all L ∈ N (K), the function (a, b) 7→ gK,L(a, b, T , k), from [Um, UM ]2 to IR, is nondecreasing with
respect to a, nonincreasing with respect to b, Lipschitz continuous uniformly with respect to K and L
and that gK,L(a, a, T , k) = f(a) for all a ∈ [Um, UM ] (recall that Um ≤ u0 ≤ UM a.e. on IRd). Then
Theorem

esth14
6.5 remains true.

However, note that condition (
estcfl
6.6) and Ce in the estimate (

esteqcorol
6.94) of Theorem

esth14
6.5 depend on the Lipschitz

constants of gK,L(·, ·, T , k) on [Um, UM ]2. An interesting form for gK,L is gK,L(a, b, T , k) = cK,L(T , k)f(a)
+ (1−cK,L(T , k)) f(b) +DK,L(T , k) (a−b), with some cK,L(T , k) ∈ [0, 1] andDK,L(T , k) ≥ 0. In order to
obtain the desired properties on gK,L, it is sufficient to take max{|f ′(s)|, s ∈ [Um, UM ]} ≤ DK,L(T , k) ≤ D
(for all K,L), with some D ∈ IR. The Lipschitz constants of gK,L on [Um, UM ]2 only depend on D, f ,
Um and UM .

For instance, a “Lax-Friedrichs type” scheme consists, roughly speaking, in taking DK,L(T , k) of order
“h/k”. The desired properties on gK,L are satisfied, provided that k/h ≤ C, with some C depending on
max{|f ′(s)|, s ∈ [Um, UM ]}. Note, however, that the condition k/h ≤ C is not sufficient to give a real
“h1/4” estimate, since the coefficient Ce in (

esteqcorol
6.94) depends onD. Taking, for example, k of order “h2” leads

to an estimate “Ceh
1/4” which do not goes to 0 as h goes to 0 (indeed, it is known, in this case, that the

approximate solution does not converge towards the entropy weak solution to (
estpbcont
6.1)-(

estcondini
6.2)). One obtains

a real “h1/4” estimate, in the case of that “Lax-Friedrichs type” scheme, by taking C1 ≤ (k/h) ≤ C2. In
order to avoid the condition C1 ≤ (k/h) (note that (k/h) ≤ C2 is imposed by the Courant-Friedrichs-Levy
condition

estcfl
6.6), a possibility is to take DK,L(T , k) = D = max{|f ′(s)|, s ∈ [Um, UM ]} (this is related to

the “modified Lax-Friedrichs ” of Example
flumono
5.2 page

flumono
132 in the 1D case). Then D only depends on f and

u0 and, in the estimate “Ceh
1/4” of Theorem

esth14
6.5, Ce only depends on R, T , v, f , u0, α and ξ, which

leads to a convergence result at rate “h1/4” as h→ 0 (with fixed α and ξ).

In the case of the implicit scheme, one proves the following theorem.

esth14i Theorem 6.6 Under Assumption
estdonnees
6.1 page

estdonnees
145, let T be an admissible mesh in the sense of Definition

meshypmd
6.1 page

meshypmd
148 and k > 0. Let g ∈ C(IR2, IR) satisfy Assumption

estcondflu
6.2. Let u be the unique entropy weak

solution of (
estpbcont
6.1)-(

estcondini
6.2). Assume that u0 ∈ BV (IRd) and that v does not depend on t.
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Let {unK, n ∈ IN, K ∈ T } be the unique solution to (
estschemai
6.9) and (

estschemaz
6.5) such that unK ∈ [Um, UM ] for all

K ∈ T and n ∈ IN (existence and uniqueness of such a solution is given by Proposition
esteu
6.1). Let uT ,k be

defined by (
estuappimp
6.10).

Then, for all R > 0 and T > 0, there exists Ce, only depending on R, T , v, g, u0 and α, such that the
following inequality holds:

∫ T

0

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ Ce(k + h
1
2 )

1
2 . (6.95) esteqcoroli

estexti Remark 6.12 Note that, in Theorem
esth14i
6.6, there is no restriction on k (this is usual for an implicit

scheme), and one obtains an “h1/4” error estimate for some “large” k, namely if k ≤ h1/2. In Theorem
esth14i
6.6, if v depends on t and u0 ∈ L∞(IRd) (but u0 not necessarily in BV (IRd)), one can also give an error
estimate. Indeed one obtains

∫ T

0

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ Ce(
k

h
1
2

+ h
1
2 )

1
2 ,

which yields an “h1/4” error estimate if k is of order “h”.

Theorem
esth14
6.5 (resp. Theorem

esth14i
6.6) is an easy consequence of Theorem

estentest
6.1 (resp.

estentesti
6.2) and of a quite

general theorem of comparison between the entropy weak solution to (
estpbcont
6.1)-(

estcondini
6.2) and an approximate

solution. This theorem of comparison (Theorem
esterrest
6.7) may be used in other frameworks (for instance, to

compare the entropy weak solution to (
estpbcont
6.1)-(

estcondini
6.2) and the approximate solution obtained with a parabolic

regularization of (
estpbcont
6.1)). It is stated and proved in Section

compthm
6.7.3 where the proofs of theorems

esth14
6.5 and

esth14i
6.6

are also given. First, in Section
sprelim
6.7.2, two preliminary lemmata are given. Indeed, Lemma

estlemma
6.10 is the

crucial part of the two following sections.

6.7.2 Preliminary lemmata
sprelim

Let us first give a classical lemma on the space BV .

bvtrans Lemma 6.9 Let u ∈ BVloc(IR
p), p ∈ IN?, that is u ∈ L1

loc(IR
p) and the restriction of u to Ω belongs to

BV (Ω) for all open bounded subset Ω of IRp (see Definition
defBVRp
5.38 page

defBVRp
138 for the definition of BV (Ω)).

Then, for all bounded subset Ω of IRp and for all a > 0,

‖u(·+ η)− u‖L1(Ω) ≤ |η||u|BV (Ωa), ∀η ∈ IRp, |η| ≤ a, (6.96) bvdtrans

where Ωa = {x ∈ IRp; d(x,Ω) < a} and d(x,Ω) = inf{|x− y|, y ∈ Ω} is the distance from x to Ω.

Proof of Lemma
bvtrans
6.9

Let Ω be a bounded subset of IRp and η ∈ IRp. The following equality classically holds:

‖u(·+ η)− u‖L1(Ω) = sup{
∫

Ω

(u(x+ η)− u(x))ϕ(x)dx, ϕ ∈ C∞c (Ω, IR), ‖ϕ‖L∞(Ω) ≤ 1}. (6.97) defl1

Let ϕ ∈ C∞c (Ω, IR) such that ‖ϕ‖L∞(Ω) ≤ 1.
Since ϕ(x) = 0 if x ∈ Ω|η| \ Ω (recall that Ω|η| = {x ∈ IRp; d(x,Ω) < η}),

∫

Ω

u(x)ϕ(x)dx =

∫

Ω|η|

u(x)ϕ(x)dx.

Similarly, using an obvious change of variables,

∫

Ω

u(x+ η)ϕ(x)dx =

∫

Ω|η|

u(x)ϕ(x − η)dx.
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Therefore,

∫

Ω

(u(x+ η)− u(x))ϕ(x)dx =

∫

Ω|η|

u(x)(ϕ(x − η)− ϕ(x))dx = −
∫

Ω|η|

u(x)(

∫ 1

0

∇ϕ(x − sη) · ηds)dx

and, with Fubini’s theorem,

∫

Ω

(u(x+ η)− u(x))ϕ(x)dx =

∫ 1

0

(

∫

Ω|η|

u(x)∇ϕ(x − sη) · ηdx)ds. (6.98) vtt

For all s ∈ (0, 1), Define ψs ∈ C∞c (Ω|η|, IR
p) by ψs(x) = ϕ(x − sη)η; since ψs ∈ C∞c (Ω|η|, IR

p) and
|ψs(x)| ≤ |η| for all x ∈ IRp, the definition of |u|BV (Ω|η|) yields

∫

Ω|η|

u(x)∇ϕ(x − sη) · ηdx =

∫

Ω|η|

u(x)divψs(x)dx ≤ |η||u|BV (Ω|η|).

Then, (
vtt
6.98) gives

∫

Ω

(u(x+ η)− u(x))ϕ(x)dx ≤ |η||u|BV (Ω|η|). (6.99) vttt

Taking in (
vttt
6.99) the supremum over ϕ ∈ C∞c (Ω, IR) such that ‖ϕ‖L∞(Ω) ≤ 1 yields, thanks to (

defl1
6.97),

‖u(·+ η)− u‖L1(Ω) ≤ |η||u|BV (Ω|η|), ∀η ∈ IRp,

and (
bvdtrans
6.96) follows, since Ω|η| ⊂ Ωa if |η| ≤ a.

finvacances Remark 6.13 Let us give an application of the lemma
bvtrans
6.9 which will be quite useful further on. Let

u ∈ BVloc(IR
p), p ∈ IN?. Let ψ, ϕ ∈ Cc(IR

p, IR+), a > 0 and 0 < ε < a such that
∫
IRp ϕ(x)dx = 1 and

ϕ(x) = 0 for all x ∈ IRp, |x| > ε. Let S = {x ∈ IRp, ψ(x) 6= 0}.
Then,

∫

IRp

∫

IRp

|u(x)− u(y)|ψ(x)ϕ(x − y)dydx ≤ ε‖ψ‖L∞(IRp)|u|BV (Sa), (6.100) bvdvar

where Sa = {x ∈ IRp, d(x, S) < a}.
Indeed, Lemma

bvtrans
6.9 gives

‖u(·+ η)− u‖L1(S) ≤ |η||u|BV (Sa), ∀η ∈ IRp, |η| ≤ a. (6.101) ousuisje

Using a change of variables in the left hand side of (
bvdvar
6.100),

∫

IRp

∫

IRp

|u(x)− u(y)|ψ(x)ϕ(x − y)dydx ≤ ‖ψ‖L∞(IRp)

∫

B(0,ε)

(

∫

S

|u(x)− u(x− z)|dx)ϕ(z)dz.

Then, (
ousuisje
6.101) yields

∫

IRp

∫

IRp

|u(x)− u(y)|ψ(x)ϕ(x − y)dydx ≤ ε‖ψ‖L∞(IRp)|u|BV (Sa)

∫

IRp

ϕ(z)dz,

which gives (
bvdvar
6.100).
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estlemma Lemma 6.10 Under assumption
estdonnees
6.1, let u0 ∈ BV (IRd) and ũ ∈ L∞(IRd× IR?

+) such that Um ≤ ũ ≤ UM
a.e. on IRd × IR?

+. Assume that there exist µ ∈M(IRd × IR+) and µ0 ∈M(IRd) such that





∫

IR+

∫

IRd

(
|ũ(x, t)− κ|ϕt(x, t)+

(f(ũ(x, t)>κ)− f(ũ(x, t)⊥κ))v(x, t) · ∇ϕ(x, t)
)
dxdt +∫

IRd

|u0(x) − κ|ϕ(x, 0)dx ≥

−
∫

IRd×IR+

(
|ϕt(x, t)| + |∇ϕ(x, t)|

)
dµ(x, t) −

∫

IRd

|ϕ(x, 0)|dµ0(x),

∀κ ∈ IR, ∀ϕ ∈ C∞c (IRd × IR+, IR+).

(6.102) est1est

Let u be the unique entropy weak solution of (
estpbcont
6.1)-(

estcondini
6.2) (i.e. u ∈ L∞(IRd × IR?

+) is the unique solution
to (

est1est
6.102) with u instead of ũ and µ = 0, µ0 = 0).

Then for all ψ ∈ C∞c (IRd × IR+, IR+) there exists C only depending on ψ (more precisely on ‖ψ‖∞,
‖ψt‖∞, ‖∇ψ‖∞, and on the support of ψ), v, f , and u0, such that





∫

IR+

∫

IRd

[
|ũ(x, t) − u(x, t)|ψt(x, t) +
(
f(ũ(x, t)>u(x, t))− f(ũ(x, t)⊥u(x, t))

)
(v(x, t) · ∇ψ(x, t))

]
dxdt ≥

−C(µ0({ψ(·, 0) 6= 0}) + (µ({ψ 6= 0})) 1
2 + µ({ψ 6= 0})),

(6.103) est3est

where {ψ 6= 0} = {(x, t) ∈ IRd × IR+, ψ(x, t) 6= 0} and {ψ(·, 0) 6= 0} = {x ∈ IRd, ψ(x, 0) 6= 0}. (Note
that ‖·‖∞ = ‖·‖L∞(IRd×IR?

+
).)

Proof of Lemma
estlemma
6.10

The proof of Lemma
estlemma
6.10 is close to that of step 1 in the proof of Theorem

ewsunicite
6.3. Let us first define mollifiers

in IR and IRd. For p = 1 and p = d, one defines ρp ∈ C∞c (IRp, IR) satisfying the following properties:

supp(ρp) = {x ∈ IRp; ρp(x) 6= 0} ⊂ {x ∈ IRp; |x| ≤ 1},

ρp(x) ≥ 0, ∀x ∈ IRp,

∫

IRp

ρp(x)dx = 1

and furthermore, for p = 1,

ρ1(x) = 0, ∀x ∈ IR+. (6.104) estrhodec

For r ∈ IR, r ≥ 1, one defines ρp,r(x) = rpρp(rx), for all x ∈ IRp.
Using the mollifiers ρp,r will allow to choose convenient test functions in (

est1est
6.102) (which are the inequalities

satisfied by ũ) and in the analogous inequalities satisfied by u which are





∫

IR+

∫

IRd

[
|u(y, s)− κ|ϕs(y, s) +

(
f(u(y, s)>κ)− f(u(y, s)⊥κ)

)
v(y, s) · ∇ϕ(y, s)

]
dyds+

∫

IRd

|u0(y)− κ|ϕ(y, 0)dy ≥ 0, ∀κ ∈ IR, ∀ϕ ∈ C∞c (IRd × IR+, IR+).
(6.105) estkruzkovys

Indeed, the main tool is to take κ = u(y, s) in (
est1est
6.102), κ = ũ(x, t) in (

estkruzkovys
6.105) and to introduce mollifiers

in order to have y close to x and s close to t.
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Let ψ ∈ C∞c (IRd × IR+, IR+), and let ϕ : (IRd × IR+)2 → IR+ be defined by:

ϕ(x, t, y, s) = ψ(x, t)ρd,r(x− y)ρ1,r(t− s).

Note that, for any (y, s) ∈ IRd × IR+, one has ϕ(·, ·, y, s) ∈ C∞c (IRd × IR+, IR+) and, for any (x, t) ∈
IRd × IR+, one has ϕ(x, t, ·, ·) ∈ C∞c (IRd × IR+, IR+). Let us take ϕ(·, ·, y, s) as test function ϕ in (

est1est
6.102)

and ϕ(x, t, ·, ·) as test function ϕ in (
estkruzkovys
6.105). We take, in (

est1est
6.102), κ = u(y, s) and we take, in (

estkruzkovys
6.105),

κ = ũ(x, t). We then integrate (
est1est
6.102) for (y, s) ∈ IRd × IR+, and (

estkruzkovys
6.105) for (x, t) ∈ IRd × IR+. Adding

the two inequalities yields

E11 +E12 +E13 +E14 ≥ −E2, (6.106) estcin

where

E11 =

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[
|ũ(x, t)− u(y, s)|ψt(x, t)ρd,r(x− y)ρ1,r(t− s)

]
dxdtdyds,

E12 =

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[(
f(ũ(x, t)>u(y, s))− f(ũ(x, t)⊥u(y, s))

)

v(x, t) · ∇ψ(x, t)ρd,r(x − y)ρ1,r(t− s)
]
dxdtdyds,

E13 = −
∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

(
f(ũ(x, t)>u(y, s))− f(ũ(x, t)⊥u(y, s))

)
ψ(x, t)

(v(y, s)− v(x, t)) · ∇ρd,r(x− y)ρ1,r(t− s)dxdtdyds,

E14 =

∫

IRd

∫ ∞

0

∫

IRd

|u0(x) − u(y, s)|ψ(x, 0)ρd,r(x− y)ρ1,r(−s)dydsdx

and

E2 =

∫ ∞

0

∫

IRd

∫

IRd×IR+

(
|ρd,r(x− y)(ψt(x, t)ρ1,r(t− s) + ψ(x, t)ρ′1,r(t− s))|

+|ρ1,r(t− s)(∇ψ(x, t)ρd,r(x− y) + ψ(x, t)∇ρd,r(x− y))|
)
dµ(x, t)dyds

+

∫ ∞

0

∫

IRd

∫

IRd

|ψ(x, 0)ρd,r(x − y)ρ1,r(−s)|dµ0(x)dyds.

(6.107) est5est

One may be surprised by the fact that the inequation (
estcin
6.106) is obtained without using the initial condition

which is satisfied by the entropy weak solution u of (
estpbcont
6.1)-(

estcondini
6.2). Indeed, this initial condition appears

only in the third term of the left hand side of (
estkruzkovys
6.105); since ϕ(x, t, ·, 0) = 0 for all (x, t) ∈ IRd × IR+, the

third term of the left hand side of (
estkruzkovys
6.105) is zero when ϕ(x, t, ·, ·) is chosen as a test function in (

estkruzkovys
6.105).

However, the fact that u satisfies the initial condition of (
estpbcont
6.1)-(

estcondini
6.2) will be used later in order to get a

bound on E14.

Let us now study the five terms of (
estcin
6.106). One sets S = {ψ 6= 0} = {(x, t) ∈ IRd × IR+; ψ(x, t) 6= 0}

and S0 = {ψ(·, 0) 6= 0} = {x ∈ IRd; ψ(x, 0) 6= 0}. In the following, the notation Ci (i ∈ IN) will refer to
various real quantities only depending on ‖ψ‖∞, ‖ψt‖∞, ‖∇ψ‖∞, S, S0, v, f , and u0.
Equality (

est5est
6.107) leads to

E2 ≤ (r + 1)C1µ(S) + C2µ0(S0). (6.108) est6est

Let us handle the term E11. For all x ∈ IRd and for all t ∈ IR+, one has, using (
estrhodec
6.104),

∫

IRd

∫ ∞

0

ρd,r(x − y)ρ1,r(t− s)dsdy = 1.

Then,
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|E11 −
∫

IR+

∫

IRd

[
|ũ(x, t)− u(x, t)|ψt(x, t)

]
dxdt| ≤

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

[
|u(x, t)− u(y, s)||ψt(x, t)|ρd,r(x− y)ρ1,r(t− s)

]
dxdtdyds ≤ ‖ψt‖∞ε(r, S),

with

ε(r, S) = sup{‖u− u(·+ η, ·+ τ)‖L1(S), |η| ≤
1

r
, 0 ≤ τ ≤ 1

r
}. (6.109) estepsrk

Since u0 ∈ BV (IRd), the function u (entropy weak solution to (
estpbcont
6.1)-(

estcondini
6.2)) belongs to BV (IRd× (−T, T )),

for all T > 0, setting, for instance, u(., t) = u0 for t < 0 (see
krushkov
Krushkov [1970] or

Chainais2
Chainais-Hillairet

[1999] where this result is proven passing to the limit on numerical schemes).
Then, Lemma

bvtrans
6.9 gives, since r ≥ 1, (taking p = d+ 1, Ω = S and a =

√
2 in Lemma

bvtrans
6.9,)

ε(r, S) ≤ C3

r
. (6.110) estubv

Hence,

|E11 −
∫

IR+

∫

IRd

[
|ũ(x, t)− u(x, t)|ψt(x, t)

]
dxdt| ≤ C4

r
. (6.111) est7estb

In the same way, using |f(a>b) − f(a>c)| ≤ M |b − c| and |f(a⊥b) − f(a⊥c)| ≤ M |b − c| for all a, b,
c ∈ [Um, UM ] where M is the Lipschitz constant of f in [Um, UM ],

|E12 −
∫

IR+

∫

IRd

(
f(ũ(x, t)>u(x, t)) − f(ũ(x, t)⊥u(x, t))

)

(v(x, t) · ∇ψ(x, t))dxdt| ≤ C5ε(r, S) ≤ C6

r .
(6.112) est8est

Let us now turn to E13. We compare this term with

E13b = −
∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

(
f(ũ(x, t)>u(x, t)) − f(ũ(x, t)⊥u(x, t))

)
ψ(x, t)

(v(y, s) − v(x, t)) · ∇ρd,r(x− y)ρ1,r(t− s) dxdtdyds.

Since div(v(·, s)−v(x, t)) = 0 (on IRd) for all x ∈ IRd, t ∈ IR+ and s ∈ IR+, one has E13b = 0. Therefore,
substracting E13b from E13 yields

E13 ≤ C7

∫ ∞

0

∫

IRd

∫ ∞

0

∫

IRd

|u(x, t)− u(y, s)|ψ(x, t)

|(v(y, s)− v(x, t)) · ∇ρd,r(x − y)|ρ1,r(t− s) dxdtdyds.
(6.113) est8estb

The right hand side of (
est8estb
6.113) is then smaller than C8ε(r, S), since |(v(y, s) − v(x, t)) · ∇ρd,r(x − y)| is

bounded by C9r
d (noting that |x− y| ≤ 1/r). Then, with (

estubv
6.110), one has

E13 ≤
C10

r
. (6.114) est8estc

In order to estimate E14, let us take in (
estkruzkovys
6.105), for x ∈ IRd fixed, ϕ = ϕ(x, ·, ·), with

ϕ(x, y, s) = ψ(x, 0)ρd,r(x− y)

∫ ∞

s

ρ1,r(−τ)dτ,

and κ = u0(x). Note that ϕ(x, ·, ·) ∈ C∞c (IRd × IR+, IR+). We then integrate the resulting inequality
with respect to x ∈ IRd. We get

−E14 +E15 +E16 ≥ 0,
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with

E15 = −
∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(u(y, s)>u0(x))− f(u(y, s)⊥u0(x)))

v(y, s) · (ψ(x, 0)∇ρd,r(x − y))ρ1,r(−τ)dτdydxds,

E16 =

∫

IRd

∫

IRd

∫ ∞

0

ψ(x, 0)ρd,r(x− y)ρ1,r(−τ)|u0(x) − u0(y)|dτdydx.

To bound E15, one introduces E15b defined as

E15b =

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(u(y, s)>u0(y))− f(u(y, s)⊥u0(y)))

(v(y, s) · ∇ρd,r(x − y))ψ(x, 0)ρ1,r(−τ)dτdydxds.
Integrating by parts for the x variable yields

E15b = −
∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

(f(u(y, s)>u0(y))− f(u(y, s)⊥u0(y)))

(v(y, s) · ∇ψ(x, 0))ρd,r(x− y)ρ1,r(−τ)dτdydxds.
Then, noting that the time support of this integration is reduced to s ∈ [0, 1/r], one has

E15b ≤
C11

r
. (6.115) est9estd

Furthermore, one has

|E15 +E15b| ≤ C12

∫ ∞

0

∫

IRd

∫

IRd

∫ ∞

s

|u0(x) − u0(y)||v(y, s) · ∇ρd,r(x− y)|ψ(x, 0)ρ1,r(−τ)dτdydxds,

which is bounded by C13ε0(r, S0), since the time support of the integration is reduced to s ∈ [0, 1/r],
where ε0(r, S0) is defined by

ε0(r, S0) = sup{
∫

S0

|u0(x)− u0(x+ η)|dx; |η| ≤ 1

r
}. (6.116) estepsork

Since u0 ∈ BV (IRd), one has (thanks to Lemma
bvtrans
6.9) ε0(r, S0) ≤ C14/r and therefore, with (

est9estd
6.115),

E15 ≤ C15/r.

Since u0 ∈ BV (IRd), again thanks to Lemma
bvtrans
6.9, see remark

finvacances
6.13, the term E16 is also bounded by

C16/r.

Hence, since E14 ≤ E15 +E16,

E14 ≤
C17

r
. (6.117) est9estf

Using (
estcin
6.106), (

est6est
6.108), (

est7estb
6.111), (

est8est
6.112),(

est8estc
6.114), (

est9estf
6.117), one obtains

∫

IR+

∫

IRd

[
|ũ(x, t) − u(x, t)|ψt(x, t) +
(
f(ũ(x, t)>u(x, t))− f(ũ(x, t)⊥u(x, t))

)
(v(x, t) · ∇ψ(x, t))

]
dxdt ≥

−C1(r + 1)µ(S)− C2µ0(S0)− C18

r ,

which, taking r = 1/
√
µ(S) if 0 < µ(S) ≤ 1 (r →∞ if µ(S) = 0 and r = 1 if µ(S) > 1), gives (

est3est
6.103).

This concludes the proof of the lemma
estlemma
6.10.
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6.7.3 Proof of the error estimates
compthm

Let us now prove a quite general theorem of comparison between the entropy weak solution to (
estpbcont
6.1)-(

estcondini
6.2)

and an approximate solution, from which theorems
esth14
6.5 and

esth14i
6.6 will be deduced.

esterrest Theorem 6.7 Under assumption
estdonnees
6.1, let u0 ∈ BV (IRd) and ũ ∈ L∞(IRd×IR?

+) such that Um ≤ ũ ≤ UM
a.e. on IRd× IR?

+. Assume that there exist µ ∈M(IRd × IR+) and µ0 ∈ M(IRd) such that (
est1est
6.102) holds.

Let u be the unique entropy weak solution of (
estpbcont
6.1)-(

estcondini
6.2) (note that u ∈ L∞(IRd × IR?

+) is solution to
(
est1est
6.102) with u instead of ũ and µ = 0, µ0 = 0).

Then, for all R > 0 and all T > 0 there exists Ce and R̄, only depending on R, T , v, f and u0, such that
the following inequality holds:

∫ T
0

∫
B(0,R)

|ũ(x, t)− u(x, t)|dxdt ≤ Ce(µ0(B(0, R̄)) + [µ(B(0, R̄)× [0, T ])]
1
2

+µ(B(0, R̄)× [0, T ])).

Recall that B(0, R) = {x ∈ IRd; |x| < R}.

Proof of Theorem
esterrest
6.7

The proof of Theorem
esterrest
6.7 is close to that of Step 2 in the proof of Theorem

ewsunicite
6.3. It uses Lemma

estlemma
6.10

page
estlemma
184, the proof of which is given in section

sprelim
6.7.2 above.

Let R > 0 and T > 0. One sets ω = VM , where V is given in Assumption
estdonnees
6.1 and M is the Lipschitz

constant of f in [Um, UM ] (indeed, since f ∈ C1(IR, IR), one has M = sup{|f ′(s)|; s ∈ [Um, UM ]}).
Let ρ ∈ C1

c (IR+, [0, 1]) be a function such that ρ(r) = 1 if r ∈ [0, R+ωT ], ρ(r) = 0 if r ∈ [R+ωT +1,∞)
and ρ′(r) ≤ 0, for all r ∈ IR+ (ρ only depends on R, T , v, f and u0).
One takes, in (

est3est
6.103), ψ defined by

{
ψ(x, t) = ρ(|x|+ ωt)T−tT , for x ∈ IRd and t ∈ [0, T ],

ψ(x, t) = 0, for x ∈ IRd and t ≥ T.

Note that ρ(|x|+ ωt) = 1, if (x, t) ∈ B(0, R)× [0, T ].
The function ψ is not in C∞c (IRd × IR+, IR+), but, using a usual regularization technique, it may be
proved that such a function can be considered in (

est3est
6.103), in which case Inequality (

est3est
6.103) writes, with

R̄ = R + ωT + 1,

∫ T

0

∫

IRd

[
|ũ(x, t)− u(x, t)|

(T − t

T
ωρ′(|x| + ωt)− 1

T
ρ(|x|+ ωt)

)
+

(
f(ũ(x, t)>u(x, t)) − f(ũ(x, t)⊥u(x, t))

)
T−t
T ρ′(|x|+ ωt)(v(x, t) · x

|x|)
]
dxdt ≥

−C(µ0(B(0, R̄)) + (µ(B(0, R̄)× [0, T ]))
1
2 + µ(B(0, R̄)× [0, T ])),

where C only depends on R, T , v, f and u0.
Since ω = VM and ρ′ ≤ 0, one has

(
f(ũ(x, t)>u(x, t)) − f(ũ(x, t)⊥u(x, t))

) T − t

T
ρ′(|x| + ωt)(v(x, t) · x|x| )

)
≤

|ũ(x, t)− u(x, t)|T−tT ω(−ρ′(|x| + ωt)),

and therefore, since ρ(|x|+ ωt) = 1, if (x, t) ∈ B(0, R)× [0, T ],

∫ T

0

∫

B(0,R)

|ũ(x, t)− u(x, t)|dxdt ≤ CT (µ0(B(0, R̄)) + (µ(B(0, R̄)× [0, T ]))
1
2 + µ(B(0, R̄)× [0, T ])).

This completes the proof of Theorem
esterrest
6.7.
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Let us now conclude with the proofs of theorems
esth14
6.5 page

esth14
180 (which gives an error estimate for the time

explicit numerical scheme (
estschema
6.7), (

estschemaz
6.5) page

estschemaz
149) and

esth14i
6.6 page

esth14i
181 (which gives an error estimate for the

time implicit numerical scheme (
estschemai
6.9), (

estschemaz
6.5) page

estschemaz
149). There are easy consequences of theorems

estentest
6.1 and

estentesti
6.2 and of Theorem

esterrest
6.7.

Proof of Theorem
esth14
6.5

Under the assumptions of Theorem
esth14
6.5, let ũ = uT ,k. Thanks to the L∞ estimate on uT ,k (Lemma

estinftyest
6.1)

and to Theorem
estentest
6.1, ũ = uT ,k satisfies the hypotheses of Theorem

esterrest
6.7 with µ = µT ,k and µ0 = µT (the

measures µT ,k and µT are given in Theorem
estentest
6.1).

Let R > 0 and T > 0. Then, Theorem
esterrest
6.7 gives the existence of C1 and R̄, only depending on R, T , v,

f and u0, such that

∫ T
0

∫
B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ C1(µT (B(0, R̄)) + [µT ,k(B(0, R̄)× [0, T ])]
1
2

+µT ,k(B(0, R̄)× [0, T ])).
(6.118) ouvaisje

For h small enough, say h ≤ R0, one has h < R̄ and k < T (thanks to condition
estcfl
6.6, note that R0 only

depends on R, T , v, g, u0, α and ξ).
Then, for h < R0, Theorem

estentest
6.1 gives, with (

ouvaisje
6.118),

∫ T

0

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ C1(Dh+
√
Ch

1
4 + C

√
h) ≤ C2h

1
4 ,

where C2 only depends on R, T , v, g, u0, α and ξ.
This gives the desired estimate (

esteqcorol
6.94) of Theorem

esth14
6.5 for h < R0.

There remains the case h ≥ R0. This case is trivial since, for h ≥ R0,

∫ T

0

∫

B(0,R)

|uT ,k(x, t) − u(x, t)|dxdt ≤ 2 max{−Um, UM}m(B(0, R)× (0, T )) ≤ C3(R0)
1
4 ≤ C3h

1
4 ,

for some C3 only depending on R, T , v, g, u0, α and ξ.
This completes the proof of Theorem

esth14
6.5.

Proof of Theorem
esth14i
6.6

The proof of Theorem
esth14i
6.6 is very similar to that of Theorem

esth14
6.5 and we follow the proof of Theorem

esth14
6.5.

Under the assumptions of Theorem
esth14i
6.6, using Theorem

estentesti
6.2 instead of Theorem

estentest
6.1 gives that ũ = uT ,k

satisfies the hypotheses of Theorem
esterrest
6.7 with µ = µT ,k and µ0 = µT (the measures µT ,k and µT are given

in Theorem
estentesti
6.2).

Let R > 0 and T > 0. Theorem
esterrest
6.7 gives the existence of C1 and R̄, only depending on R, T , v, f and

u0, such that (
ouvaisje
6.118) holds.

For h < R̄ and k < T Theorem
estentest
6.1 gives with (

ouvaisje
6.118),

∫ T

0

∫

B(0,R)

|uT ,k(x, t) − u(x, t)|dxdt ≤ C1(Dh+
√
C(k + h

1
2 )

1
2 + C(k + h

1
2 )) ≤ C2(k + h

1
2 )

1
2 ,

where C2 only depends on R, T , v, g, u0, α.
This gives the desired estimate (

esteqcoroli
6.95) of Theorem

esth14i
6.6 for h < R̄ and k < T .

There remains the cases h ≥ R̄ and k ≥ T . These cases are trivial since

∫ T

0

∫

B(0,R)

|uT ,k(x, t)− u(x, t)|dxdt ≤ 2 max{−Um, UM}m(B(0, R)× (0, T )) ≤ C3 inf{R̄ 1
4 , T

1
2 }

for some C3 only depending on R, T , v, g, u0.
This completes the proof of Theorem

esth14i
6.6.
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6.7.4 Remarks and open problems

Theorem
esth14
6.5 page

esth14
180 gives an error estimate of order h1/4 for the approximate solution of a nonlinear

hyperbolic equation of the form ut + div(vf(u)) = 0, with initial data in L∞ ∩ BV by the explicit finite
volume scheme (

estschema
6.7) and (

estschemaz
6.5) page

estschemaz
149, under a usual CFL condition k ≤ Ch (see (

estcfl
6.6) page

estcfl
149).

Note that, in fact, the same estimate holds if u0 is only locally BV . More generally, if the initial data u0

is only in L∞, then one still obtains an error estimate in terms of the quantities

ε(r, S) = sup{
∫

S

|u(x, t)− u(x+ η, t+ τ)|dxdt; |η| ≤ 1

r
, 0 ≤ τ ≤ 1

r
}

and

ε0(r, S0) = sup{
∫

S0

|u0(x)− u0(x+ η)|dx; |η| ≤ 1

r
},

see (
estepsrk
6.109) page

estepsrk
186 and (

estepsork
6.116) page

estepsork
187. This is again an obvious consequence of Theorem

estentest
6.1 page

estentest
166 and Theorem

esterrest
6.7 page

esterrest
188.

We also considered the implicit schemes, which seem to be much more widely used in industrial codes in
order to ensure their robustness. The implicit case required additional work in order
(i) to prove the existence of the solution to the finite volume scheme,
(ii) to obtain the “strong time BV ” estimate (

estbvt
6.45) if v does not depend on t.

For v depending on t, Remark
estexti
6.12 yields an estimate of order h1/4 if k behaves as h; however, in the

case where v does not depend on t, then an estimate of order h1/4 is obtained (in Theorem
esth14i
6.6) for a

behaviour of k as
√
h; Indeed, recent numerical experiments suggest that taking k of the order of

√
h

yields results of the same precision than taking k of the order of h, with an obvious reduction of the
computational cost.

Note that the method described here may also be extended to higher order schemes for the same equation,
see

Chainais1
Chainais-Hillairet [1996]; other methods have been used for error estimates for higher order

schemes with a nonlinearity of the form F (u), as in
Noelle
Noëlle [1996]. However, it is still an open problem,

to our knowledge, to improve the order of the error estimate in the case of higher order schemes.

6.8 Nonlinear weak-? convergence
nlwscv

The notion of nonlinear weak-? convergence was used in Section
eghbscewsol
6.6.3. We give here the definition of this

type of convergence and we prove that a bounded sequence of L∞ converges, up to a subsequence, in the
nonlinear weak-? sense.

nlwsdef Definition 6.3 (Nonlinear weak-? convergence)
Let Ω be an open subset of IRN (N ≥ 1), (un)n∈IN ⊂ L∞(Ω) and u ∈ L∞(Ω × (0, 1)). The sequence
(un)n∈IN converges towards u in the “nonlinear weak-? sense” if

∫

Ω

g(un(x))ϕ(x)dx →
∫ 1

0

∫

Ω

g(u(x, α))ϕ(x)dxdα, as n→ +∞,

∀ϕ ∈ L1(Ω), ∀g ∈ C(IR, IR).
(6.119) ews5

nlwsib Remark 6.14 Let Ω be an open subset of IRN (N ≥ 1), (un)n∈IN ⊂ L∞(Ω) and u ∈ L∞(Ω × (0, 1))
such that (un)n∈IN converges towards u in the nonlinear weak-? sense. Then, in particular, the sequence
(un)n∈IN converges towards v in L∞(Ω), for the weak-? topology, where v is defined by

v(x) =

∫ 1

0

u(x, α)dα, for a.e. x ∈ Ω.
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Therefore, the sequence (un)n∈IN is bounded in L∞(Ω) (thanks to the Banach-Steinhaus theorem). The
following proposition gives that, up to a subsequence, a bounded sequence of L∞(Ω) converges in the
nonlinear weak-? sense.

nlwsprop Proposition 6.4 Let Ω be an open subset of IRN (N ≥ 1) and (un)n∈IN be a bounded sequence of
L∞(Ω). Then there exists a subsequence of (un)n∈IN, which will still be denoted by (un)n∈IN, and a
function u ∈ L∞(Ω × (0, 1)) such that the subsequence (un)n∈IN converges towards u in the nonlinear
weak-? sense.

Proof

This proposition is classical in the framework of “Young measures” and we only sketch the proof for the
sake of completeness.

Let (un)n∈IN be a bounded sequence of L∞(Ω) and r ≥ 0 such that ‖un‖L∞(Ω) ≤ r, ∀n ∈ IN.

Step 1 (diagonal process)
Thanks to the separability of the set of continuous functions defined from [−r, r] into IR (this set is
endowed with the uniform norm) and the sequential weak-? relative compactness of the bounded sets of
L∞(Ω) , there exists (using a diagonal process) a subsequence, which will still be denoted by (un)n∈IN,
such that, for any function g ∈ C(IR, IR), the sequence (g(un))n∈IN converges in L∞(Ω) for the weak-?
topology towards a function µg ∈ L∞(Ω).

Step 2 (Young measure)
In this step, we prove the existence of a family (mx)x∈Ω such that

1. for all x ∈ Ω, mx is a probability on IR whose support is included in [−r,+r] (i.e. mx is a σ-additive
application from the Borel σ-algebra of IR in IR+ such that mx(IR) = 1 and mx(IR \ [−r, r]) = 0),

2. µg(x) =
∫
IR
g(s)dmx(s) for a.e. x ∈ Ω and for all g ∈ C(IR, IR).

The family m = (mx)x∈Ω is called a “Young measure”.
Let us first claim that it is possible to define µg ∈ L∞(Ω) for g ∈ C([−r, r], IR) by setting µg = µf where
f ∈ C(IR, IR) is such that f = g on [−r, r]. Indeed, this definition is meaningful since if f and h are two
elements of C(IR, IR) such that f = g on [−r, r] then µf and µh are the same element of L∞(Ω) (i.e.
µf = µh a.e. on Ω) thanks to the fact that −r ≤ un ≤ r a.e. on Ω and for all n ∈ IN.
For x ∈ Ω, let

Ex = {g ∈ C([−r, r], IR); lim
h→0

1

m(B(0, h))

∫

B(x,h)

µg(z)dz exists in IR},

where B(x, h) is the ball of center x and radius h (note that B(x, h) ⊂ Ω for h small enough).
If g ∈ Ex, we set

µ̄g(x) = lim
h→0

1

m(B(0, h))

∫

B(x,h)

µg(z)dz.

Then, we define Tx from Ex in IR by Tx(g) = µ̄g(x). It is easily seen that Ex is a vector space which con-
tains the constant functions, that Tx is a linear application from Ex to IR and that Tx is nonnegative (i.e.
g(s) ≥ 0 for all s ∈ IR implies Tx(g) ≥ 0). Hence, using a modified version of the Hahn-Banach theorem,
one can prolonge Tx into a linear nonnegative application T x defined on the whole set C([−r, r], IR). By
a classical Riesz theorem, there exists a (nonnegative) measure mx on the Borel sets of [−r, r] such that

T x(g) =

∫ r

−r
g(s)dmx(s), ∀g ∈ C([−r, r], IR). (6.120) ewsTbar

If g(s) = 1 for all s ∈ [−r, r], the function g belongs to Ex and µ̄g(x) = 1 (note that µg = 1 a.e. on Ω).
Hence, from (

ewsTbar
6.120), mx is a probability over [−r, r], and therefore a probability over IR by prolonging it

by 0 outside of [−r, r]. This gives the first item on the family (mx)x∈Ω.
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Let us prove now the second item on the family (mx)x∈Ω. If g ∈ C([−r, r], IR) then g ∈ Ex for a.e.
x ∈ Ω and µg(x) = µ̄g(x) for a.e. x ∈ Ω (this is a classical result, since µg ∈ L1

loc(Ω), see
rudin
Rudin [1987]).

Therefore, µg(x) = Tx(g) = Tx(g) for a.e. x ∈ Ω. Hence,

µg(x) =

∫ r

−r
g(s)dmx(s) for a.e. x ∈ Ω,

for all g ∈ C([−r, r], IR) and therefore for all g ∈ C(IR, IR). Finally, since the support of mx is included
in [−r, r],

µg(x) =

∫

IR

g(s)dmx(s) for a.e. x ∈ Ω, ∀g ∈ C(IR, IR).

This completes Step 2.

Step 3 (construction of u)
It is well known that, if m̄ is a probability on IR, one has

∫

IR

g(s)dm̄(s) =

∫ 1

0

g(u(α))dα, ∀g ∈Mb, (6.121) distfct

where Mb is the set of bounded measurable functions from IR to IR and with

u(α) = sup{c ∈ IR; m̄((−∞, c)) < α}, ∀α ∈ (0, 1).

Note that the function u is measurable, nondecreasing and left continuous. Furthermore, if the support
of m̄ is included in [a, b] (for some a, b ∈ IR, a < b) then u(α) ∈ [a, b] for all α ∈ (0, 1) and (

distfct
6.121) holds

for all g ∈ C(IR, IR).
Applying this result to the measures mx leads to the definition of u as

u(x, α) = sup{c ∈ IR; mx((−∞, c)) < α}, ∀α ∈ (0, 1), ∀x ∈ Ω.

For all x ∈ Ω, the function u(x, ·) is measurable (from (0, 1) to IR), nondecreasing, left continuous and
takes its values in [−r, r]. Furthermore,

µg(x) =

∫ 1

0

g(u(x, α))dα for a.e. x ∈ Ω, ∀g ∈ C(IR, IR).

Therefore,

∫

Ω

g(un(x))ϕ(x)dx →
∫

Ω

(

∫ 1

0

g(u(x, α))dα)ϕ(x)dx, as n→∞,

∀ϕ ∈ L1(Ω), ∀g ∈ C(IR, IR).

In order to conclude the proof of Proposition
nlwsprop
6.4, there remains to show that modifying u on a negligible

set leads to a function (still denoted by u) measurable with respect to (x, α) ∈ Ω × (0, 1). Indeed, this
mesurability is needed in order to assert for instance, applying Fubini’s Theorem (see

rudin
Rudin [1987]),

that

∫

Ω

(

∫ 1

0

g(u(x, α))dα)ϕ(x)dx =

∫ 1

0

(

∫

Ω

g(u(x, α))ϕ(x)dx)dα,

for all ϕ ∈ L1(Ω) and for all g ∈ C(IR, IR).

For all g ∈ C(IR, IR), one chooses for µg (which belongs to L∞(Ω)) a bounded measurable function from
Ω to IR.
Let us define E = {ga,b; a, b ∈ Ql , a < b} where ga,b ∈ C(IR, IR) is defined by
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ga,b(x) = 1 if x ≤ a,
ga,b(x) = x−b

a−b if a < x < b,

ga,b(x) = 0 if x ≥ b.

Since E is a countable subset of C(IR, IR), there exists a Borel subset A of Ω such that m(A) = 0 and

µg(x) =

∫

IR

g(s)dmx(s), ∀x ∈ Ω \A, ∀g ∈ E . (6.122) partout

Define for all α ∈ (0, 1) v(., α) by

v(x, α) = 0 if x ∈ A,
v(x, α) = sup{c ∈ IR, mx((−∞, c)) < α} if x ∈ Ω \A,

so that u = v on (Ω \A)× (0, 1) (and then u = v a.e. on Ω× (0, 1)).
Let us now prove that v is measurable from Ω× (0, 1) to IR (this will conclude the proof of Proposition
nlwsprop
6.4).
Since v(x, .) is left continuous on (0, 1) for all x ∈ Ω, proving that v(., α) is measurable (from Ω to IR)
for all α ∈ (0, 1) leads to the mesurability of v on Ω× (0, 1) (this is also classical, see

rudin
Rudin [1987]).

There remains to show the mesurability of v(., α) for all α ∈ (0, 1).

Let α ∈ (0, 1) (in the following, α is fixed). Let us set w = v(., α) and define, for c ∈ IR,

fc(x) = mx((−∞, c))− α, x ∈ Ω \A,
so that v(x, α) = w(x) = sup{c ∈ IR, fc(x) < 0} for all x ∈ Ω \A.
Using (

partout
6.122) leads to

mx((−∞, c)) = sup{µg(x), g ≤ 1(−∞,c) and g ∈ E}, ∀x ∈ Ω \A.
Then, the function fc : Ω \ A → IR is measurable as the supremum of a countable set of measurable
functions (recall that µg is measurable for all g ∈ E).
In order to prove the measurability of w (from Ω to IR), it is sufficient to prove that {x ∈ Ω\A; w(x) ≥ a}
is a Borel set, for all a ∈ IR (recall that w = 0 on A).
Let a ∈ IR, since fc(x) is nondecreasing with respect to c, one has

{x ∈ Ω \A; w(x) ≥ a} = ∩n>0{x ∈ Ω \A; fa− 1
n
(x) < 0}.

Then {x ∈ Ω \A; w(x) ≥ a} is measurable, thanks to the measurability of fc for all c ∈ IR.
This concludes the proof of Proposition

nlwsprop
6.4.

cvforte Remark 6.15 Let Ω be an open subset of IRN (N ≥ 1), (un)n∈IN ⊂ L∞(Ω) and u ∈ L∞(Ω × (0, 1))
such that (un)n∈IN converges towards u in the nonlinear weak-? sense. Assume that u does not depend
on α, i.e. there exists v ∈ L∞(Ω) such that u(x, α) = v(x) for a.e. (x, α) ∈ Ω × (0, 1). Then, it is easy
to prove that (un)n∈IN converges towards u in Lp(B) for all 1 ≤ p <∞ and all bounded subset B of Ω.
Indeed, let B be a bounded subset of Ω. Taking, in (

ews5
6.119), g(s) = s2 (for all s ∈ IR) and ϕ = 1B and

also g(s) = s (for all s ∈ IR) and ϕ = 1Bv leads to

∫

B

(un(x) − v(x))2dx→ 0, as n→∞.

This proves that (un)n∈IN converges towards u in L2(B). The convergence of (un)n∈IN towards u in Lp(B)
for all 1 ≤ p <∞ is then an easy consequence of the L∞(Ω) bound on (un)n∈IN (see Remark

nlwsib
6.14).
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6.9 A stabilized finite element method
fve

In this section, we shall try to compare the finite element method to the finite volume method for the
discretization of a nonlinear hyperbolic equation. It is well known that the use of the finite element is not
straightforward in the case of hyperbolic equations, since the lack of coerciveness of the operator yields
a lack of stability of the finite element scheme. There are several techniques to stabilize these schemes,
which are beyond the scope of this work. Here, as in

Sel
Selmin [1993], we are interested in viewing the

finite element as a finite volume method, by writing it in a conservative form, and using a stabilization
as in the third item of Example

flumono
5.2 page

flumono
132.

Let F ∈ C1(IR, IR2), consider the following scalar conservation law:

ut(x, t) + div(F (u))(x, t) = 0, x ∈ IR2, t ∈ IR+, (6.123) claw

with an initial condition. Let T be a triangular mesh of IR2, well suited for the finite element method. Let
S denote the set of nodes of this mesh, and let (φj)j∈S be the classical piecewise bilinear shape functions.
Following the finite element principles, let us look for an approximation of u in the space spanned by
the shape functions φj ; hence, at time tn = nk (where k is the time step), we look for an approximate
solution of the form

u(., tn) =
∑

j∈S
unj φj ;

then, multiplying (
claw
6.123) by φi, integrating over IR2, approximating F (

∑
j∈S u

n
j φj) by

∑
j∈S F (unj )φj

and using the mass lumping technique on the mass matrix yields the following scheme (with the explicit
Euler scheme for the time discretization):

un+1
i − uni

k

∫

IR2

φi(x)dx −
∑

j∈S
F (unj ) ·

∫

IR2

φj(x)∇φi(x)dx = 0,

which writes, noting that

∫
φj(x)∇φi(x)dx = −

∫
φi(x)∇φj (x)dx and that

∑

j∈S
∇φj(x) = 0,

un+1
i − uni

k

∫

IR2

φi(x)dx +
∑

j∈S
(F (uni ) + F (unj )) ·

∫

IR2

φi(x)∇φj(x)dx = 0.

This last equality may also be written

un+1
i − uni

k

∫

IR2

φi(x)dx +
∑

j∈S
Ei,j = 0,

where

Ei,j =
1

2
(F (uni ) + F (unj )) ·

∫

IR2

(φi(x)∇φj (x)− φj(x)∇φi(x))dx.

Note that Ej,i = −Ei,j .

This is a centered and therefore unstable scheme. One way to stabilize it is to replace En
i,j by

Ẽni,j = Eni,j +Di,j(u
n
i − unj ),

where Di,j = Dj,i (in order for the scheme to remain “conservative”) and Di,j ≥ 0 is chosen large enough
so that Eni,j is a nondecreasing function of uni and a nonincreasing function of unj , which ensure the
stability of the scheme, under a so called CFL condition, and does not change the “consistency” (see
(
fluxLF
5.27) page

fluxLF
132 and Remark

estext
6.11 page

estext
181).
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6.10 Moving meshes

For some evolution problems the use of time variable control volumes is advisable, e.g. when the domain
of study changes with time. This is the case, for instance, for the simulation of a flow in a porous medium,
when the porous medium is heterogeneous and its geometry changes with time. In this case, the mesh is
required to move with the medium. The influence of the moving mesh on the finite volume formulation
can be explained by considering the following simple transport equation:

ut(x, t) + div(uv)(x, t) = 0, x ∈ IR2, t ∈ IR+, (6.124) cetv

where v depends on the unknown u (and possibly on other unknowns). Let k be the time step, and set
tn = nk, n ∈ IN. Let T (t) be the mesh at time t. Since the mesh moves, the elements of the mesh vary
in time. For a fixed n ∈ IN, let R(K, t) be the domain of IR2 occupied by the element K (K ∈ T (tn)) at
time t, t ∈ [tn, tn+1], that is R(K, tn) = K. Let vs(x, t) be the velocity of the displacement of the mesh
at point x ∈ IR2 and for all t ∈ [tn, tn+1] (note that vs(x, t) ∈ IR2). Let unK and un+1

K be the discrete
unknowns associated to element K at times tn and tn+1 (they can be considered as the approximations of
the mean values of u(·, tn) and u(·, tn+1) over R(K, tn) and R(K, tn+1) respectively). The discretization
of (

cetv
6.124) must take into account the evolution of the mesh in time. In order to do so, let us first consider

the following differential equation with initial condition:

∂y

∂t
(x, t) = −vs(y(x, t), t), t ∈ [tn, tn+1],

y(x, tn) = x.
(6.125) edy

Under suitable assumptions on vs (assume for instance that vs is continuous, Lipschitz continuous with
respect to its first variable and that the Lipschitz constant is integrable with respect to its second variable),
the problem (

edy
6.125) has, for all x ∈ IR2, a unique (global) solution. For x ∈ IR2, define the function

y(x, ·) from [tn, tn+1] to IR2 as the solution of problem (
edy
6.125). Let (ϕp)p∈IN ⊂ C1

c (IR
2, IR+) such that

0 ≤ ϕp(x) ≤ 1 for x ∈ IR2 and for all p ∈ IN, and such that ϕp → 1K a.e. as p → +∞. Multiplying
(
cetv
6.124) by ψp(x, t) = ϕp(y(x, t)) and integrating over IR2 yields

∫

IR2

(∂(uψp)

∂t
(x, t) + u(x, t)∇ϕp(y(x, t)) · vs(y(x, t), t) − (uv)(x, t) · ∇ψp(x, t)

)
dx = 0. (6.126) upsit

Using the explicit Euler discretization in time on Equation (
upsit
6.126) and denoting by un(x) a (regular)

approximate value of u(x, tn) yields

∫

IR2

1

k

(
un+1(x)ψp(x, tn+1)− un(x)ψp(x, tn)

)
dx+

∫

IR2

un(x)(vs(x, tn)− v(x, tn)) · ∇ϕp(x)dx = 0,

which also gives (noting that ψp(x, t) = ϕp(y(x, t)))

∫

IR2

1

k

(
un+1(x)ϕp(y(x, tn+1))− un(x)ϕp(y(x, tn))

)
dx−

∫

IR2

div(un(vs − v))(x, tn) · ϕp(x)dx = 0.
(6.127) upsinb

Letting p tend to infinity and noting that 1K(y(x, tn)) = 1R(K,tn)(x) and 1K(y(x, tn+1)) = 1R(K,tn+1)(x),
(
upsinb
6.127) becomes

1

k

(∫

R(K,tn+1)

un+1(x)dx −
∫

R(K,tn)

un(x)dx
)

+

∫

R(K,tn)

div((v − vs)u
n)(x, tn)dx = 0,

which can also be written
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1

k
(un+1
K m(R(K, tn+1))− unKm(R(K, tn)))+∫

∂R(K,tn)

(v − vs)(x, tn) · nK(x, tn)un(x)dγ(x) = 0,

where unK = [1/m(R(K, tn))]
∫
R(K,tn)

un(x)dx and un+1
K = [1/m(R(K, tn+1))]

∫
R(K,tn+1)

un+1(x)dx. Re-

call that nK denotes the normal to ∂K, outward to K. The complete discretization of the problem uses
some additional equations (on v, vs. . . ).

Remark 6.16 The above considerations concern a pure convection equation. In the case of a convection-
diffusion equation, such a moving mesh may become non-admissible in the sense of definitions

meshdirichlet
3.1 page

meshdirichlet
37 or

meshneuman
3.5 page

meshneuman
63. It is an interesting open problem to understand what should be done in that case.



Chapter 7

Systems

systemes
In chapters

ellund
2 to

hypmd
6, the finite volume was successively investigated for the discretization of elliptic,

parabolic, and hyperbolic equations. In most scientific models, however, systems of equations have
to be discretized. These may be partial differential equations of the same type or of different types, and
they may also be coupled to ordinary differential equations or algebraic equations.

The discretization of systems of elliptic equations by the finite volume method is straightforward, following
the principles which were introduced in chapters

ellund
2 and

ellmd
3. Examples of the performance of the finite

volume method for systems of elliptic equations on rectangular meshes, with “unusual” source terms
(in particular, with source terms located on the edges or interfaces of the mesh) may be found in e.g.
Angot
Angot [1989] (see also references therein),

FH1
Fiard, Herbin [1994] (where a comparison to a mixed

finite element formulation is also performed). Parabolic systems are treated similarly as elliptic systems,
with the addition of a convenient time discretization.

A huge literature is devoted to the discretization of hyperbolic systems of equations, in particular to
systems related to the compressible Euler equations, using structured or unstructured meshes. We shall
give only a short insight on this subject in Section

systemh
7.1, without any convergence result. Indeed, very few

theoretical results of convergence of numerical schemes are known on this subject. We refer to
godlewski-springer
Godlewski

and Raviart [1996] and references therein for a more complete description of the numerical schemes for
hyperbolic systems.

Finite volume methods are also well adapted to the discretization of systems of equations of different
types (for instance, an elliptic or parabolic equation coupled with hyperbolic equations). Some examples
are considered in sections

nseq
7.2 page

nseq
208 and

flowpm
7.3 page

flowpm
212. The classical case of incompressible Navier-

Stokes (for which, generally, staggered grids are used) and examples which arise in the simulation of a
multiphase flow in a porous medium are described. The latter example also serves as an illustration of
how to deal with algebraic equations and inequalities.

7.1 Hyperbolic systems of equations
systemh

Let us consider a hyperbolic system consisting of m equations (with m ≥ 1). The unknown of the system
is a function u = (u1, . . . , um)t, from Ω × [0, T ] to IRm, where Ω is an open set of IRd (i.e. d ≥ 1 is the
space dimension), and u is a solution of the following system:

∂ui
∂t

(x, t) +

d∑

j=1

∂Gi,j
∂xj

(x, t) = gi(x, t, u(x, t)),

x = (x1, . . . , xd) ∈ Ω, t ∈ (0, T ), i = 1, . . . ,m,

(7.1) rtgeq

where
Gi,j(x, t) = Fi,j(x, t, u(x, t)),

197
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and the functions Fj = (F1,j , . . . , Fm,j)
t (j = 1, . . . , d) and g = (g1, . . . , gm)t are given functions from

Ω×[0, T ]×IRm (indeed, generally, a part of IRm, instead of IRm) to IRm. The function F = (F1, . . . , Fd) is
assumed to satisfy the usual hyperbolicity condition, that is, for any (unit) vector of IRd, n, the derivative
of F · n with respect to its third argument (which can be considered as an m×m matrix) has only real
eigenvalues and is diagonalizable.
Note that in real applications, diffusion terms may also be present in the equations, we shall omit them
here. In order to complete System (

rtgeq
7.1), an initial condition for t = 0 and adequate boundary conditions

for x ∈ ∂Ω must be specified.

In the first section (Section
godroe
7.1.1), we shall only briefly describe the general method of discretization

by finite volume and some classical schemes. In the subsequent sections, some possible treatments of
difficulties appearing in real simulations will be given.

7.1.1 Classical schemes
godroe

Let us first describe some classical finite volume schemes for the discretization of (
rtgeq
7.1) with initial and

boundary conditions, using the concepts and notations which were introduced in chapter
hypmd
6. Let T be an

admissible mesh in the sense of Definition
meshypmd
6.1 page

meshypmd
148 and k be the time step, which is assumed to be

constant (the generalization to a variable time step is easy). We recall that the interface, K|L, between
any two elements K and L of T is assumed to be included in a hyperplane of IRd. The discrete unknowns
are the unK , K ∈ T , n ∈ {0, . . . , Nk + 1}, with Nk ∈ IN, (Nk + 1)k = T . For K ∈ T , let N (K) be the
set of its neighbours, that is the set of elements L of T such that the (d− 1) Lebesgue measure of K|L is
positive. For L ∈ N (K), let nK,L be the unit normal vector to K|L oriented from K to L. Let tn = nk,
for n ∈ {0, . . . , Nk + 1}.
A finite volume scheme writes

m(K)
un+1
K − unK

k
+

∑

L∈N (K)

m(K|L)FnK,L = m(K)gnK ,

K ∈ T , n ∈ {0, . . . , Nk},
(7.2) rtgschema

where

1. m(K) (resp. m(K|L)) denotes the d (resp. d− 1) Lebesgue measure of K (resp. K|L),

2. the quantity gnK , which depends on unK (or un+1
K or unK and un+1

K ), for K ∈ T , is some “consistent”
approximation of g on element K, between times tn and tn+1 (we do not discuss this approximation
here).

3. the quantity F nK,L, which depends on the set of discrete unknowns unM (or un+1
M or unM and un+1

M )
for M ∈ T , is an approximation of F · nK,L on K|L between times tn and tn+1.

In order to obtain a “good” scheme, this approximation of F · nK,L has to be consistent, conservative
(that is FnK,L=-FnL,K) and must ensure some stability properties on the approximate solution given by
the scheme (indeed, one also needs some consistency with respect to entropies, when entropies exist. . . ).
Except in the scalar case, it is not so easy to see what kind of stability properties is needed. . . . Indeed, in
the scalar case, that is m = 1, taking g = 0 and Ω = IRd (for simplicity), it is essentially sufficient to have
an L∞ estimate (that is a bound on unK independent of K, n, and of the time and space discretizations)
and a “touch” of “BV estimate” (see, for instance, chapters

hyper1d
5 and

hypmd
6 and

Chainais1
Chainais-Hillairet [1996] for

more precise assumptions). In the case m > 1, it is not generally possible to give stability properties from
which a mathematical proof of convergence could be deduced. However, it is advisable to require some
stability properties such as the positivity of some quantities depending on the unknowns; in the case of
flows, the required stability may be the positivity of the density, energy, pressure. . . ; the positivity of
these quantities may be essential for the computation of F (u) or for its hyperbolicity.
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The computation of F nK,L is often performed, at each “interface”, by solving the following 1D (for the
space variable) system (where, for simplicity, the possible dependency of F with respect to x and t is
omitted):

∂u

∂t
(z, t) +

∂fK,L(u)

∂z
(z, t) = 0, (7.3) fnkl

where fK,L(u)(z, t) = F ·nK,L(u(z, t)), for all z ∈ IR and t ∈ (0, T ), which gives consistency, conservativity
(and, hopefully, stability) of the final scheme (that is (

rtgschema
7.2)). To be more precise, in the case of lower

order schemes, F nK,L may be taken as: F nK,L = F.nK,L(w) where w is the solution for z = 0 of (
fnkl
7.3) with

initial conditions u(x, 0) = unK if x < 0 and u(x, 0) = unL if x > 0. Note that the variable z lies in IR, so
that the multidimensional problem has therefore been transformed (as in chapter

hypmd
6) into a succession of

one-dimensional problems. Hence, in the following, we shall mainly keep to the case d = 1.

Let us describe two classical schemes, namely the Godunov scheme and the Roe scheme, in the case
d = 1, Ω = IR, F (x, t, u) = F (u) and g = 0 (but m ≥ 1), in which case System (

rtgeq
7.1) becomes

∂u

∂t
(x, t) +

∂F (u)

∂x
(x, t) = 0, x ∈ IR, t ∈ (0, T ). (7.4) rtgeqs

in order to complete this system, an initial condition must be specified, the discretization of which is
standard.
Let T be an admissible mesh in the sense of Definition

meshhyp1d
5.5 page

meshhyp1d
125, that is T = (Ki)i∈ZZ , with

Ki=(xi−1/2,xi+1/2), with xi−1/2 < xi+1/2, i ∈ ZZ . One sets hi = xi+1/2 − xi−1/2, i ∈ ZZ . The dis-
crete unknowns are uni , i ∈ ZZ , n ∈ {0, . . . , Nk + 1} and the scheme (

rtgschema
7.2) then writes

hi
un+1
i − uni

k
+ Fni+ 1

2

− Fni− 1
2

= 0, i ∈ ZZ , n ∈ {0, . . . , Nk}, (7.5) rtgschemas

where Fni+1/2 is a consistent approximation of F (u(xi+1/2, tn). This scheme is clearly conservative (in the

sense defined above). Let us consider explicit schemes, so that F ni+1/2 is a function of unj , j ∈ ZZ . The

principle of the Godunov scheme
Go
Godunov [1976] is to take F ni+1/2 = F (w) where w is the solution, for

x = 0 (and any t > 0), of the following (Riemann) problem

∂u

∂t
(x, t) +

∂F (u)

∂x
(x, t) = 0, x ∈ IR, t ∈ IR+, (7.6) rtgrp

u(x, 0) = uni , if x < 0,
u(x, 0) = uni+1, if x > 0.

(7.7) rtgbcrp

Then, w depends on uni , u
n
i+1 and F .

The time step is limited by the so called “CFL condition”, which writes k ≤ Lhi, for all i ∈ ZZ , where L
is given by F and the initial condition. The quantity un+1

i , given by the Godunov scheme, see
Go
Godunov

[1976], is, for all i ∈ ZZ , the mean value on Ki of the exact solution at time k of (
rtgeqs
7.4) with the initial

condition (at time t = 0) u0 defined, a.e. on IR, by u0(x) = uni if xi−1/2 < x < xi+1/2.

The Godunov scheme is an efficient scheme (consistent, conservative, stable), sometimes too diffusive
(especially if k is far from Lhi defined above), but easy improvements are possible, such as the MUSCL
technique, see below and Section

hyperhos
5.4. Its principal drawback is its difficult implementation for many

problems, indeed the computation of F (w) can be impossible or too expensive. For instance, this com-
putation may need a non trivial parametrization of the non linear waves. Note also that F is generally
not given directly as a function of u (the components of u are called “conservative unknowns”) but as
a function of some “physical” unknowns (for instance, pressure, velocity, energy. . . ), and the passage
from u to these physical unknowns (or the converse) is often not so easy. . . it may be the consequence of
expensive and implicit calculations, using, for instance, Newton’s algorithm.
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Due to this difficulty of implementation, some “Godunov type” schemes were developed (see
hlvl
Harten,

Lax and Van Leer [1983]). The idea is to take, for un+1
i , the mean value on Ki of an approximate

solution at time k of (
rtgeqs
7.4) with the initial condition (at time t = 0), u0, defined by u0(x) = uni , if

xi−1/2 < x < xi+1/2. In order for the scheme to be written under the conservative form (
rtgschemas
7.5), with a

consistent approximation of the fluxes, this approximate solution must satisfy some consistency relation
(another relation is needed for the consistency with entropies). One of the best known of this family
of schemes is the Roe scheme (see

roe
Roe [1980] and

roe2
Roe [1981]), where this approximate solution is

computed by the solution of the following linearized Riemann problems:

∂u(x, t)

∂t
+A(uni , u

n
i+1)

∂u(x, t)

∂x
= 0, x ∈ IR, t ∈ IR+, (7.8) rtglrp

u(x, 0) = uni , if x < 0,
u(x, 0) = uni+1, if x > 0,

(7.9) rtgbclrp

where A(·, ·) is an m×mmatrix, continuously depending on its two arguments, with only real eigenvalues,
diagonalizable and satisfying the so called “Roe condition”:

A(u, v)(u− v) = F (u)− F (v), ∀u, v ∈ IRm. (7.10) rtgrc

Thanks to (
rtgrc
7.10), the Roe scheme can be written as (

rtgschemas
7.5) with

Fn
i+ 1

2

= F (uni ) +A−(uni , u
n
i+1)(u

n
i − uni+1)

(= F (uni+1) +A+(uni , u
n
i+1)(u

n
i − uni+1)),

(7.11) rtgfr

where A± are the classical nonnegative and nonpositive parts of the matrix A: let A be a matrix with
only real eigenvalues, (λp)p=1,...,m, and diagonalizable, let (ϕp)p=1,...,m be a basis of IRm associated to
these eigenvalues. Then, the matrix A+ is the matrix which has the same eigenvectors as A and has
(max{λp, 0})p=1,...,m as corresponding eigenvalues. The matrix A− is (−A)+.
Roe’s scheme was proved to be an efficient scheme, often less expensive than Godunov’s scheme, with,
more or less the same limitation on the time step, the same diffusion effect and some lack of entropy
consistency, which can be corrected. It has some properties of consistency and stability. Its main drawback
is the difficulty of the computation of a matrix A(u, v) satisfying (

rtgrc
7.10). For instance, when it is possible

to compute and diagonalize the derivative of F , DF (u), one can take A(u, v) = DF (u?), but the difficulty
is to find u? such that (

rtgrc
7.10) holds (note that this condition is crucial in order to ensure conservativity

of Roe’s scheme). In some difficult cases, the Roe matrix is computed approximately by using a “limited
expansion” with respect to some small parameter.

7.1.2 Rough schemes for complex hyperbolic systems
rough

The aim of this section is to present some discretization techniques for “complex” hyperbolic systems.
In many applications, the expressions of g and F which appear in (

rtgeq
7.1) are rather “complex”, and it is

difficult or impossible to use classical schemes such as the 1D Godunov or Roe schemes or their standard
extensions, for multidimensional problems, using 1D solvers on the interfaces of the mesh. This is the
case of gas dynamics (Euler equations) with real gas, for which the state law (pressure as a function of
density and internal energy) is tabulated or given by some complex analytical expressions. This is also
the case when modelling multiphase flows in pipe-lines: the function F is difficult to handle and highly
depends on x and u, because, for instance, of changes of the geometry and slope of the pipe, of changes
of the friction law or, more generally, of the varying nature of the flow. Most of the attempts given
below were developed for this last situation. Other interesting cases of “complexity” are the treatment of
boundary conditions (mathematical literature is rather scarce on this subject, see Section

hypbc
7.1.4 for a first

insight), and the way to handle the case where the eigenvalues (of the derivative of F · n with respect to
its third argument) are of very different magnitude, see Section

turbo
7.1.3. Another case of complexity is the
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treatment of nonconservative terms in the equations. One refers, for instance, to
h2
Brun, Hérard, Leal

De Sousa and Uhlmann [1996] and references therein, for this important case.

Possible modifications of Godunov and Roe schemes (including “classical” improvements to avoid ex-
cessive artificial diffusion) are described now to handle “complex” systems. Because of the complexity
of the models, the justification of the schemes presented here is rather numerical than mathematical.
Many variations have also been developed, which are not presented here. Note that other approaches
are also possible, see e.g.

Ghidaglia
Ghidaglia, Kumbaro and Le Coq [1996]. For simplicity, one considers

the case d = 1, Ω = IR, F (x, t, u) = F (u) and g = 0 (but m ≥ 1) described in Section
godroe
7.1.1, with the

same notations. The Godunov and Roe schemes can both be written under the form (
rtgschemas
7.5) with F ni+1/2

computed as a function of uni and uni+1; both schemes are consistent (in the sense of Section
godroe
7.1.1, i.e.

consistency of the “fluxes”) since F ni+1/2 = F (u) if uni = uni+1 = u.

Going further along this line of thought yields (among other possibilities, see below) the “VFRoe” scheme
which is (

rtgschemas
7.5), that is:

hi
un+1
i − uni

k
+ Fni+ 1

2

− Fni− 1
2

= 0, i ∈ ZZ , n ∈ {0, . . . , Nk}, (7.12) rtgvfroe1

with Fni+1/2 = F (w), where w is the solution of the linearized Riemann problem (
rtglrp
7.8), (

rtgbclrp
7.9), with

A(uni , u
n
i+1) = DF (w?), that is:

∂u(x, t)

∂t
+DF (w?)

∂u(x, t)

∂x
= 0, x ∈ IR, t ∈ IR+, (7.13) rtgvfroe2

u(x, 0) = uni , if x < 0,
u(x, 0) = uni+1, if x > 0,

(7.14) rtgvfroe3

where w? is some value between uni and uni+1 (for instance, w? = (1/2)(uni + uni+1)). In this scheme, the
Roe condition (

rtgrc
7.10) is not required (note that it is naturally conservative, thanks to its finite volume

origin). Hence, the VFRoe scheme appears to be a simplified version of the Godunov and Roe schemes.
The study of the scalar case (m = 1) shows that, in order to have some stability, at least as much as
in Roe’s scheme, the choice of w? is essential. In practice, the choice w? = (1/2)(uni + uni+1) is often
adequate, at least for regular meshes.

Remark 7.1 In Roe’s scheme, the Roe condition (
rtgrc
7.10) ensures conservativity. The VFRoe scheme is

“naturally” conservative, and therefore no such condition is needed. Also note that the VFRoe scheme
yields precise approximations of the shock velocities, without Roe’s condition.

Numerical tests show the good behaviour of the VFRoe scheme. Its two main flaws are a lack of entropy
consistency (as in Roe’s scheme) and a large diffusion effect (as in the Godunov and Roe schemes). The
first drawback can be corrected, as for Roe’s scheme, with a nonparametric entropy correction inspired
from

hh
Harten, Hyman and Lax [1976] (see

mfg
Masella, Faille, and Gallouët [1996]). The two

drawbacks can be corrected with a classical MUSCL technique, which consists in replacing, in (
rtgbclrp
7.9) page

rtgbclrp
200, uni and uni+1 by uni+1/2,− and uni+1/2,+, which depend on {unj , j = i−1, i, i+1, i+2} (see, for instance,

Section
hyperhos
5.4 page

hyperhos
143 and

godlewski-springer
Godlewski and Raviart [1996] or

leveque
LeVeque [1990]). For stability reasons,

the computation of the gradient of the unknown (cell by cell) and of the “limiters” is performed on some
“physical” quantities (such as density, pressure, velocity for Euler equations) instead of u. The extension
of the MUSCL technique to the case d > 1 is more or less straightforward.

This MUSCL technique improves the space accuracy (in the truncation error) and the numerical results
are significantly better. However, stability is sometimes lost. Indeed, considering the linear scalar equa-
tion, one remarks that the scheme is antidiffusive when the limiters are not active, this might lead to a
loss of stability. The time step must then be reduced (it is reduced by a factor 10 in severe situations. . . ).
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In order to allow larger time steps, the time accuracy should be improved by using, for instance, an
order 2 Runge-Kutta scheme (in the severe situations suggested above, the time step is then multiplied
by a factor 4). Surprisingly, this improvement of time accuracy is used to gain stability rather than
precision. . .

Several numerical experiments (see
mfg
Masella, Faille, and Gallouët [1996]) were performed which

prove the efficiency of the VFRoe scheme, such as the classical Sod tests (
sod
Sod [1978]). The shock

velocities are exact, there are no oscillations. . . . For these tests, the treatment of the boundary conditions
is straightforward. Throughout these experiments, the use of a MUSCL technique yields a significant
improvement, while the use of a higher order time scheme is not necessary. In one of the Sod tests, the
entropy correction is needed.
A comparison between the VFRoe scheme and the Godunov scheme was performed by J. M. Hérard
(personal communication) for the Euler equations on a Van Der Wals gas, for which a matrix satisfying
(
rtgrc
7.10) seems difficult to find. The numerical results are better with the VFRoe schem, which is also much

cheaper computationally. An improvment of the VFRoe scheme is possible, using, instead of (
rtgvfroe2
7.13)-(

rtgvfroe3
7.14),

linearized Riemann problems associated to a nonconservative form of the initial system, namely System
(
rtgeqs
7.4) or more generally System (

rtgeq
7.1), for the computation of w (which gives the flux F ni+1/2 in (

rtgvfroe1
7.12) by

the formula F ni+1/2 = F (w)), see for instance
bgh
Buffard, Gallouët and Hérard [1998] for a simple

example.
In some more complex cases, the flux F may also highly, and not continuously, depend on the space
variable x. In the space discretization, it is “natural” to set the discontinuities of F with respect to x on
the boundaries of the mesh. The function F may change drastically from Ki to Ki+1. In this case, the
implementation of the VFRoe scheme yields two additional difficulties:

(i) The matrix A(uni , u
n
i+1) in the linearized Riemann problem (

rtglrp
7.8), (

rtgbclrp
7.9) now depends on x:

A(uni , u
n
i+1) = DuF (x,w?), where w? is some value between uni and uni+1 and DuF denotes the

derivative of F with respect to its “u” argument.

(ii) once the solution, w, of the linearized problem (
rtglrp
7.8) (

rtgbclrp
7.9), for x = 0 and any t > 0, is calculated,

the choice F ni+1/2 = F (x,w) again depends on x.

The choice of F ni+1/2 (point (ii)) may be solved by remarking that, in Roe’s scheme, F ni+1/2 may be written

(thanks to (
rtgrc
7.10)) as

Fni+ 1
2

=
1

2
(F (uni ) + F (uni+1)) +

1

2
Ani+ 1

2

(uni − uni+1), (7.15) rtgfrc

where Ani+1/2 = |A(uni , u
n
i+1)|, and |A| = A+ +A−.

Under this form, the second term of the right hand side of (
rtgfrc
7.15) appears to be a stabilization term,

which does not affect the consistency. Indeed, in the scalar case (m = 1), one has Ani+1/2 = |F (uni ) −
F (uni+1)|/|uni − uni+1|, which easily yields the L∞ stability of the scheme (but not the consistency with
respect to the entropies). Moreover, the scheme is stable and consistent with respect to the entropies,
under a Courant-Friedrichs-Levy (CFL) condition, if F ni+1/2 is nondecreasing with respect to uni and

nonincreasing with respect to uni+1, which holds if Ani+1/2 ≥ sup{|F ′(s)|, s ∈ [uni , u
n
i+1] or [uni+1, u

n
i ]}.

This remark suggests a slightly different version of the VFRoescheme (closer to Roe’s scheme), which is
the scheme (

rtgvfroe1
7.12)-(

rtgvfroe3
7.14), taking

Fni+1/2 =
1

2
(F (uni ) + F (uni+1)) +

1

2
|DF (w?)|(uni − uni+1),

in (
rtgvfroe1
7.12), instead of F ni+1/2 = F (w). Note that it is also possible to take other convex combinations of

F (uni ) and F (uni+1) in the latter expression of F ni+1/2, without modifying the consistency of the scheme.

When F depends on x, the discontinuities of F being on the boundaries of the control volumes, the
generalization of (

rtgfrc
7.15) is obvious, except for the choice of Ani+1/2. The quantity F (uni ) is replaced by
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F (xi, u
n
i ), where xi is the center of Ki. Let us now turn to the choice of a convenient matrix Ani+1/2 for

this modified VFRoe scheme, when F highly depends on x. A first possible choice is

Ani+1/2 = (1/2)(|DuF (xi, u
n
i )|+ |DuF (xi+1, u

n
i+1)|).

The following slightly different choice for Ani+1/2 seems, however, to give better numerical results (see
fh
Faille and Heintzé [1999]). Let us define

Ai = DuF (xi, u
n
i ), ∀ i ∈ ZZ

(for the determination of Ani+1/2 the fixed index n is omitted). Let (λ
(i)
p )p=1,...,m be the eigenvalues of Ai

(with λ
(i)
p−1 ≤ λ

(i)
p , for all p) and (ϕ

(i)
p )p=1,...,m a basis of IRm associated to these eigenvalues. Then, the

matrix A
(−)
i+1/2 [resp. A

(+)
i+1/2] is the matrix which has the same eigenvectors as Ai [resp. Ai+1] and has

(max{|λ(i)
p |, |λ(i+1)

p |})p=1,...,m as corresponding eigenvalues. The choice of Ani+1/2 is

Ani+ 1
2

=
λ

2
(A

(−)

i+ 1
2

+A
(+)

i+ 1
2

), (7.16) rtggroomf

where λ is a parameter, the “normal” value of which is 1. Numerically, larger values of λ, say λ = 2 or
λ = 3, are sometimes needed, in severe situations, to obtain enough stability. Too large values of λ yield
too much artificial diffusion.

The new scheme is then (
rtgvfroe1
7.12)-(

rtgvfroe3
7.14), taking

Fni+1/2 =
1

2

(
F (xi, u

n
i ) + F (xi, u

n
i+1)

)
+

1

2
Ani+ 1

2

(uni − uni+1). (7.17) rtgfrcb

where Ani+1/2 is defined by (
rtggroomf
7.16). It has, more or less, the same properties as the Roe and VFRoe schemes

but allows the simulation of more complex systems. It needs a MUSCL technique to reduce diffusion
effects and order 2 Runge-Kutta for stability. It was implemented for the simulation of multiphase flows
in pipe lines (see

fh
Faille and Heintzé [1999]). The other difficulties encountered in this case are the

treatment of the boundary conditions and the different magnitude of the eigenvalues, which are discussed
in the next sections.

7.1.3 Partial implicitation of explicit scheme
turbo

In the modelling of flows, where “propagation” phenomena and “convection” phenomena coexist, the
Jacobian matrix of F often has eigenvalues of different magnitude, the “large” eigenvalues (large meaning
“far from 0”, positive or negative) corresponding to the propagation phenomena and “small” eigenvalues
corresponding to the “convection” phenomena . Large and small eigenvalues may differ by a factor 10 or
100.

With the explicit schemes described in the previous sections, the time step is limited by the CFL condition
corresponding to the large eigenvalues. Roughly speaking, with the notations of Section

godroe
7.1.1, this

condition is (for all i ∈ ZZ ) k ≤ |λ|−1hi, where λ is the largest eigenvalue. In some cases, this limitation
can be unsatisfactory for two reasons. Firstly, the time step is too small and implies a prohibitive
computational cost. Secondly, the discontinuities in the solutions, associated to the small eigenvalues,
are not sharp because the time step is far from the CFL condition of the small eigenvalues (however,
this can be somewhat corrected with a MUSCL method). This is in fact a major problem when the
discontinuities associated to the small eigenvalues need to be computed precisely. It is the case of interest
here.

A first method to avoid the time step limitation is to take a “fully implicit” version of the schemes
developed in the previous sections, that is F ni+1/2 function of un+1

j , j ∈ ZZ , instead of unj , j ∈ ZZ (the
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terminology “fully implicit” is by opposition to “linearly implicit”, see below and
fer
Fernandez [1989]).

However, in order to be competitive with explicit schemes, the fully implicit scheme is used with large
time steps. In practice, this prohibits the use of a MUSCL technique in the computation of the solution
at time tn+1 by, for instance, a Newton algorithm. This implicit scheme is therefore very diffusive and
will smear discontinuities.
A second method consists in splitting the system into two systems, the first one is associated with the
“small” eigenvalues, and the second one with the “large” eigenvalues (in the case of the Euler equations,
this splitting may correspond to a “convection” system and a “propagation” system). At each time step,
the first system is solved with an explicit scheme and the second one with an implicit scheme. Both use
the same time step, which is limited by the CFL condition of the small eigenvalues. Using a MUSCL
technique and an order 2 Runge-Kutta method for the first system yields sharp discontinuities associated
to the small eigenvalues. This method is often satisfactory, but is difficult to handle in the case of
severe boundary conditions, since the convenient boundary conditions for each system may be difficult
to determine.
Another method, developed by E. Turkel (see

tur
Turkel [1987]), in connexion with Roe’s scheme, uses a

change of variables in order to reduce the ratio between large and small eigenvalues.

Let us now describe a partially linearly implicit method (“turbo” scheme) which was successfully tested
for multiphase flows in pipe lines (see

fh
Faille and Heintzé [1999]) and other cases (see

fer
Fernandez

[1989]). For the sake of simplicity, the method is described for the last scheme of Section
rough
7.1.2, i.e. the

scheme defined by (
rtgvfroe1
7.12)- (

rtgvfroe3
7.14), where F n

i+ 1
2

is defined by (
rtgfrcb
7.17) and (

rtggroomf
7.16) (recall that F may depend

on x).

Assume that I ⊂ {1, . . . ,m} is the set of index of large eigenvalues (and does not depend on i). The aim

here is to “implicit” the unknowns coresponding to the large eigenvalues only: let Ãi, Ã
(−)
i+1/2 and Ã

(+)
i+1/2

be the matrix having the same eigenvectors as Ai, A
(−)
i+1/2 and A

(+)
i+1/2, with the same large eigenvalues

(i.e. corresponding to p ∈ I) and 0 as small eigenvalues. Let

Ãni+1/2 = (λ/2)(Ã
(−)
i+1/2 + Ã

(+)
i+1/2).

Then, the partially linearly implicit scheme is obtained by replacing F ni+1/2 in (
rtgschemas
7.5) by F̃ni+1/2 defined by

F̃n
i+ 1

2

= Fn
i+ 1

2

+ 1
2 (Ãi(u

n+1
i − uni ) + Ãi+1(u

n+1
i+1 − uni+1))

+ 1
2 Ã

n
i+ 1

2

(un+1
i − uni + uni+1 − un+1

i+1 ).

In order to obtain sharp discontinuities corresponding to the small eigenvalues, a MUSCL technique is
used for the computation of F ni+1/2. Then, again for stability reasons, it is preferable to add an order
2 Runge-Kutta method for the time discretization. Although it is not so easy to implement, the order
2 Runge-Kutta method is needed to enable the use of “large” time steps. The time step is, in severe
situations, very close to that given by the usual CFL condition corresponding to the small eigenvalues,
and can be considerably larger than that given by the large eigenvalues (see

fh
Faille and Heintzé [1999]

for several tests).

7.1.4 Boundary conditions
hypbc

In many simulations of real situations, the treatment of the boundary conditions is not easy (in particular
in the case of sign change of eigenvalues). We give here a classical possible mean (see e.g.

kum
Kumbaro

[1992] and
dlf
Dubois and LeFloch [1988]) of handling boundary conditions (a more detailed description

may be found in
jmm
Masella [1997] for the case of multiphase flows in pipe lines).

Let us consider now the system (
rtgeqs
7.4) where “x ∈ IR” is replaced by “x ∈ Ω” with Ω = (0, 1). In order for

the system to be well-posed, an initial condition (for t = 0) and some convenient boundary conditions
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for x = 0 and x = 1 are needed; these boundary conditions will appear later in the discretization (we do
not detail here the mathematical analysis of the problem of the adequacy of the boundary conditions, see
e.g.

serre
Serre [1996] and references therein). Let us now explain the numerical treatment of the boundary

condition at x = 0.

With the notations of Section
godroe
7.1.1, the space mesh is given by {Ki, i ∈ {0, . . . , NT }}, with

∑NT
i=1 hi = 1.

Using the finite volume scheme (
rtgschemas
7.5) with i ∈ {1, . . . , NT } instead of i ∈ ZZ needs, for the computation

of un+1
1 , with {uni , i ∈ {1, . . . , NT }} given, a value for F n1/2 (which corresponds to the flux at point x = 0

and time t = tn).

For the sake of simplicity, consider only the case of the Roe and VFRoe schemes. Then, the “interior
fluxes”, that is F ni+1/2 for i ∈ {1, . . . , NT − 1}, are determined by using matrices A(uni , u

n
i+1) (i ∈

{1, . . . , NT − 1}). In the case of the Roe scheme, F ni+1/2 is given by (
rtgfr
7.11) or (

rtgfrc
7.15) and A(·, ·) satisfies

the Roe condition (
rtgrc
7.10). In the case of the VFRoe scheme, F ni+1/2 is given through the resolution of

the linearized Riemann problem (
rtglrp
7.8), (

rtgbclrp
7.9) with e.g. A(uni , u

n
i+1) = DF ((1/2)(uni + uni+1)). In order

to compute F n1/2, a possibility is to take the same method as for the interior fluxes; this requires the

determination of some un0 . In some cases (e.g. when all the eigenvalues of DuF (u) are nonnegative), the
given boundary conditions at x = 0 are sufficient to determine the value un0 , or directly F n1/2, but this is
not true in the general case. . . . In the general case, there are not enough given boundary conditions to
determine un0 and missing equations need to be introduced. The idea is to use an iterative process. Since
A(un0 , u

n
1 ) is diagonalizable and has only real eigenvalues, let λ1, . . . , λm be the eigenvalues of A(un0 , u

n
1 )

and ϕ1, . . . , ϕm a basis of IRm associated to these eigenvalues. Then the vectors un0 and un1 may be
decomposed on this basis, this yields

un0 =

m∑

i=1

α0,i ϕi, u
n
1 =

m∑

i=1

α1,i ϕi.

Assume that the number of negative eigenvalues of A(un0 , u
n
1 ) does not depend on un0 (this is a simplifying

assumption); let p be the number of negative eigenvalues and m − p the number of positive eigenvalues
of A(un0 , u

n
1 ).

Then, the number of (scalar) given boundary conditions is (hopefully . . . ) m− p. Therefore, one takes,
for un0 , the solution of the (nonlinear) system of m (scalar) unknowns, and m (scalar) equations. The
m unknowns are the components of un0 and the m equations are obtained with the m − p boundary
conditions and the p following equations:

α0,i = α1,i, if λi < 0. (7.18) rtgbc

Note that the quantities α0,i depend on A(un0 , u
n
1 ); the resulting system is therefore nonlinear and may

be solved with, for instance, a Newton algorithm.

Other possibilities around this method are possible. For instance, another possibility, perhaps more
natural, consists in writing the m− p boundary conditions on un1/2 instead of un0 and to take (

rtgbc
7.18) with

the components of un1/2 instead of those of un0 , where un1/2 is the solution at x = 0 of (
rtglrp
7.8), (

rtgbclrp
7.9) with

i = 0. With the VFRoe scheme, the flux at the boundary x = 0 is then F n1/2 = F (un1/2). In the case of a
linear system with linear boundary conditions and with the VFRoe scheme, this method gives the same
flux Fn1/2 as the preceding method, the value un1/2 is completely determined although un0 is not completely
determined.

In the case of the scheme described in the second part of Section
rough
7.1.2, the following “simpler” possibility

was implemented. For this scheme, F ni+1/2 is given, for i ∈ {1, . . . , NT − 1}, by (
rtgfrc
7.15) with (

rtggroomf
7.16). Then,

the idea is to take the same equation for the computation of F n1/2 but to compute un0 as above (that is

with m− p boundary conditions and (
rtgbc
7.18)) with the choice A(un0 , u

n
1 ) = DuF (x1, u

n
1 ).
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This method of computation of the boundary fluxes gives good results but is not adapted to all cases
(for instance, if p changes during the Newton iterations or if the number of boundary conditions is not
equal to m − p. . . ). Some particular methods, depending on the problems under consideration, have to
be developped.

We now give an attempt for the justification of this treatment of the boundary conditions, at least for a
linear system with linear boundary conditions.
Consider the system

ut(x, t) + ux(x, t) = 0, x ∈ (0, 1), t ∈ IR+,
vt(x, t) − vx(x, t) = 0, x ∈ (0, 1), t ∈ IR+,

(7.19) sl

with the boundary conditions

u(0, t) + αv(0, t) = 0, t ∈ IR+,
v(1, t) + βu(1, t) = 0, t ∈ IR+,

(7.20) slcl

and the initial conditions

u(x, 0) = u0(x), x ∈ (0, 1),
v(x, 0) = v0(x), x ∈ (0, 1),

(7.21) slci

where α ∈ IR?, β ∈ IR?, u0 ∈ L∞(Ω) and v0 ∈ L∞(Ω) are given. It is well known that the problem
(
sl
7.19)-(

slci
7.21) admits a unique weak solution (entropy conditions are not necessary to obtain uniqueness

of the solution of this linear system).

A stable numerical scheme for the discretization of the problem (
sl
7.19)-(

slci
7.21) will add some numerical

diffusion terms. It seems quite natural to assume that this diffusion does not lead a coupling between the
two equations of (

sl
7.19). Then, roughly speaking, the numerical scheme will consist in an approximation

of the following parabolic system:

ut(x, t) + ux(x, t) − εuxx(x, t) = 0, x ∈ (0, 1), t ∈ IR+,
vt(x, t) − vx(x, t)− ηvxx(x, t) = 0, x ∈ (0, 1), t ∈ IR+,

(7.22) slp

for some ε > 0 and η > 0 depending on the mesh (and time step) and ε → 0, η → 0 as the space and
time steps tend to 0.
In order to be well posed, this parabolic system has to be completed with the initial conditions (

slci
7.21)

and (for all t > 0) four boundary conditions, i.e. two conditions at x = 0 and two conditions at x = 1.
This is also the case for the numerical scheme which may be viewed as a discretization of (

slp
7.22). There

are two boundary conditions given by (
slcl
7.20). Hence two other boundary conditions must be found, one

at x = 0 and the other at x = 1.

If these two additional conditions are, for instance, v(0, t) = u(1, t) = 0, then the (unique) solution to
(
slcl
7.20)-(

slp
7.22) with these two additional conditions does not converge, as ε → 0 and η → 0, to the weak

solution of (
sl
7.19)-(

slci
7.21). This negative result is also true for a large choice of other additional boundary

conditions. However, if the additional boundary conditions are (wisely) chosen to be vx(0, t) = ux(1, t) =
0, the solution to (

slcl
7.20)-(

slp
7.22) with these two additional conditions converges to the weak solution of

(
sl
7.19)-(

slci
7.21).

The numerical treatment of the boundary conditions described above may be viewed as a discretization
of (

slcl
7.20) and vx(0, t) = ux(1, t) = 0; this remark gives a formal justification to such a choice.
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7.1.5 Staggered grids

For some systems of equations it may be “natural” (in the sense that the discretization seems simpler) to
associate different grids to different unknowns of the problem. To each unknown is associated an equation
and this equation is integrated over the elements (which are the control volumes) of the corresponding
mesh, and then discretized by using one discrete unknown per control volume (and time step, for evolution
problems). This is the case, for instance, of the well known discretization of the incompressible Navier-
Stokes equations with staggered grids, see

Pat
Patankar [1980] and Section

sstokes
7.2.2.

Let us now give an example in order to show that staggered grids should be avoided in the case of
nonlinear hyperbolic systems since they may yield some kind of “instability”. As an illustration, let us
consider the following “academic” problem:

ut(x, t) + (vu)x(x, t) = 0, x ∈ IR, t ∈ IR+,
vt(x, t) + (v2)x(x, t) = 0, x ∈ IR, t ∈ IR+,
u(x, 0) = u0(x), x ∈ IR,
v(x, 0) = u0(x), x ∈ IR,

(7.23) sg

where u0 is a bounded function from IR to [0, 1]. Taking u = v equal to the weak entropy solution of the
Bürgers equation (namely ut + (u2)x = 0), with initial condition u0, leads to a solution of the problem
(
sg
7.23). One would expect a numerical scheme to give an approximation of this solution. Note that the

solution of the Bürgers equation, with initial condition u0, also takes its values in [0, 1], and hence, a
“good” numerical scheme can be expected to give approximate solutions taking values in [0, 1]. Let us
show that this property is not satisfied when using staggered grids.

Let k be the time step and h be the (uniform) space step. Let xi = ih and xi+1/2 = (i + 1/2)h, for
i ∈ ZZ . Define, for i ∈ ZZ , Ki = (xi−1/2, xi+1/2) and Ki+1/2 = (xi, xi+1).
The mesh associated to u is {Ki, i ∈ ZZ } and the mesh associated to v is {Ki+1/2, i ∈ ZZ }. Using the
principle of staggered grids, the discrete unknowns are uni , i ∈ ZZ , n ∈ IN?, and vni+1/2, i ∈ ZZ , n ∈ IN?.
The discretization of the initial conditions is, for instance,

u0
i =

1

h

∫

Ki

u0(x)dx, i ∈ ZZ ,

v0
i+ 1

2

=
1

h

∫

K
i+1

2

u0(x)dx, i ∈ ZZ .
(7.24) sgic

The second equation of (
sg
7.23) does not depend on u. It seems reasonable to discretize this equation with

the Godunov scheme, which is here the upstream scheme, since u0 is nonnegative. The discretization of
the first equation of (

sg
7.23) with the principle of staggered grids is easy. Since vni+1/2 is always nonnegative,

we also take an upstream value for u at the extremities of the cell Ki. Then, with the explicit Euler
scheme in time, the scheme becomes

1

k
(un+1
i − uni ) +

1

h
(vni+ 1

2

uni − vni− 1
2

uni−1) = 0, i ∈ ZZ , n ∈ IN,

1

k
(vn+1
i+ 1

2

− vni+ 1
2

) +
1

h
((vni+ 1

2

)2 − (vni− 1
2

)2) = 0, i ∈ ZZ , n ∈ IN.

(7.25) sgd

It is easy to show that, whatever k and h, there exists u0 (function from IR to [0, 1]) such that sup{u1
i , i ∈

ZZ } is strictly larger than 1. In fact, it is possible to have, for instance, sup{u1
i , i ∈ ZZ } = 1 + k/(2h).

In this sense the scheme (
sgd
7.25) appears to be unstable. Note that the same phenomenon exists with the

implicit Euler scheme instead of the explicit Euler scheme . Hence staggered grids do not seem to be the
best choice for nonlinear hyperbolic systems.
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7.2 Incompressible Navier-Stokes Equations
nseq

The discretization of the stationary Navier-Stokes equations by the finite volume method is presented in
this section. We first recall the classical discretization on cartesian staggered grids. We then study, in
the linear case of the Stokes equations, a finite volume method on a staggered triangular grid, for which
we show, in a particular case, the convergence of the method.

7.2.1 The continuous equation
cstokes

Let us consider here the stationary Navier-Stokes equations:

−ν∆u(i)(x) +

d∑

j=1

u(j)(x)
∂u(i)

∂xj
(x) +

∂p

∂xi
(x) = f (i)(x), x ∈ Ω, ∀i = 1, . . . , d,

d∑

i=1

∂u(i)

∂xi
(x) = 0, x ∈ Ω.

(7.26) nstkc

with Dirichlet boundary condition

u(i)(x) = 0, x ∈ ∂Ω, ∀i = 1, . . . , d, (7.27) stkb

under the following assumption:

stkH Assumption 7.1

(i) Ω is an open bounded connected polygonal subset of IRd, d = 2, 3,
(iii) ν > 0,

(iii) f (i) ∈ L2(Ω), ∀i = 1, . . . , d.

In the above equations, u(i) represents the ith component of the velocity of a fluid, ν the kinematic
viscosity and p the pressure. The unknowns of the problem are u(i), i ∈ {1, . . . , d} and p. The number
of unknown functions from Ω to IR which are to be computed is therefore d+ 1. Note that (

nstkc
7.26) yields

d+ 1 (scalar) equations.

We shall also consider the Stokes equations, which are obtained by neglecting the nonlinear convection
term.

−ν∆u(i)(x) +
∂p

∂xi
(x) = f (i)(x), x ∈ Ω, ∀i = 1, . . . , d,

d∑

i=1

∂u(i)

∂xi
= 0, x ∈ Ω.

(7.28) stkc

There exist several convenient mathematical formulations of (
nstkc
7.26)-(

stkb
7.27) and (

stkc
7.28)-(

stkb
7.27), see e.g.

temam
Temam [1977]. Let us give one of them for the Stokes problem. Let

V = {u = (u(1), . . . , u(d))t ∈ (H1
0 (Ω))d,

d∑

i=1

∂u(i)

∂xi
= 0}.

Under assumption
stkH
7.1, there exists a unique function u such that

u ∈ V,

ν
d∑

i=1

∫

Ω

∇u(i)(x) · ∇v(i)(x)dx =
d∑

i=1

∫

Ω

f (i)(x)v(i)(x)dx, ∀v = (v(1), . . . , v(d))t ∈ V. (7.29) stksolvar

Equation (
stksolvar
7.29) yields the existence of p ∈ L2 (unique if

∫
Ω p(x)dx = 0) such that
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−ν∆u(i) +
∂p

∂xi
= f (i) in D′(Ω), ∀i ∈ {1, . . . , d}. (7.30) stkp

In the following, we shall study finite volume schemes for the discretization of Problem (
nstkc
7.26)-(

stkb
7.27) and

(
stkc
7.28)-(

stkb
7.27). Note that the Stokes equations may also be successfully discretized by the finite element

method, see e.g.
giraultraviart
Girault and Raviart [1986] and references therein.

7.2.2 Structured staggered grids
sstokes

The discretization of the incompressible Navier-Stokes equations with staggered grids is classical (see
Pat
Patankar [1980]): the idea is to associate different control volume grids to the different unknowns. In
the two-dimensional case, the meshes consist in rectangles. Consider, for instance, the mesh, say T , for
the pressure p. Then, considering that the discrete unknowns are located at the centers of the elements of
their associated mesh, the discrete unknowns for p are, of course, located at the centers of the element of
T . The meshes are staggered such that the discrete unknowns for the x-velocity are located at the centers
of the edges of T parallel to the y-axis, and the discrete unknowns for the y-velocity are located at the
centers of the edges of T parallel to the x-axis. The two equations of “momentum” are associated to the
x and y-velocity (and integrated over the control volumes of the considered mesh) and the “divergence
free” equation is associated to the pressure (and integrated over the control volume of T ). Then the
discretization of all the terms of the equations is straightforward, except for the convection terms (in
the momentum equations) which, eventually, have to be discretized according to the Reynolds number
(upstream or centered discretization. . . ). The convergence analysis of this so-called “MAC” (Marker and
Cell) is performed in

nicol1
Nicolaides [1992] in the linear case and

nicol2
Nicolaides and Wu [1996] in the case

of the Navier-Stokes equations.

7.2.3 A finite volume scheme on unstructured staggered grids
ustokes

Let us now turn to the case of unstructured grids; the scheme we shall study uses the same control
volumes for all the components of the velocity. The pressure unknowns are located at the vertices, and a
Galerkin expansion is used for the approximation of the pressure. Note that other finite volume schemes
have been proposed for the discretization of the Stokes and incompressible Navier-Stokes equations on
unstructured grids (

bottahempel
Botta and Hempel [1996]), but, to our knowledge, no proof of convergence has

been given yet.

We again use the notion of admissible mesh, introduced in Definition
meshdirichlet
3.1 page

meshdirichlet
37, in the particular case

of triangles, if d = 2, or tetrahedra, if d = 3. We limit the description below to the case d = 2 and to the
Stokes equations. Let Ω be an open bounded polygonal connected subset Ω of IR2. Let T be a mesh of Ω
consisting of triangles, satisfying the properties required for the finite element method (see e.g.

ciarlet
Ciarlet,

P.G. [1978]), with acute angles only. Defining, for all K ∈ T , the point xK as the intersection of the
orthogonal bisectors of the sides of the triangle K yields that T is an admissible mesh in the sense of
Definition

meshdirichlet
3.1 page

meshdirichlet
37. Let ST be the set of vertices of T . For S ∈ ST , let φS be the shape function

associated to S in the piecewise linear finite element method for the mesh T . For all K ∈ T , let SK ⊂ ST
be the set of the vertices of K.
A possible finite volume scheme using a Galerkin expansion for the pressure is defined by the following
equations, with the notations of Definition

meshdirichlet
3.1 page

meshdirichlet
37:

ν
∑

σ∈EK

F
(i)
K,σ +

∑

S∈SK

pS

∫

K

∂φS
∂xi

(x)dx =m(K)f
(i)
K ,

∀K ∈ T , ∀i = 1, . . . , d,

(7.31) stkschu

F
(i)
K,σ = τσ(u

(i)
K − u

(i)
L ), if σ ∈ Eint, σ = K|L, i = 1, . . . , d,

F
(i)
K,σ = τσu

(i)
K , if σ ∈ Eext ∩ EK , i = 1, . . . , d,

(7.32) stkflu
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∑

K∈T

d∑

i=1

u
(i)
K

∫

K

∂φS
∂xi

(x)dx = 0, ∀S ∈ ST , (7.33) stkschd

∫

Ω

∑

S∈ST
pSφS(x)dx = 0, (7.34) stkschpp

f
(i)
K =

1

m(K)

∫

K

f(x)dx, ∀K ∈ T . (7.35) stkschf

The discrete unknowns of (
stkschu
7.31)-(

stkschf
7.35) are u

(i)
K , K ∈ T , i = 1, . . . , d and pS , S ∈ ST .

The approximate solution is defined by

pT =
∑

S∈ST
pSφS , (7.36) spapp

u
(i)
T (x) = u

(i)
K , a.e. x ∈ K, ∀K ∈ T , ∀i = 1, . . . , d. (7.37) suapp

The proof of the convergence of the scheme is not straightforward in the general case. We shall prove
in the following proposition the convergence of the discrete velocities given by the finite volume scheme
(
stkschu
7.31)-(

stkschf
7.35) in the simple case of a mesh consisting of equilateral triangles.

pstk Proposition 7.1 Under Assumption
stkH
7.1, let T be a triangular finite element mesh of Ω, with acute

angles only, and let, for all K ∈ T , xK be the intersection of the orthogonal bisectors of the sides of the
triangle K (hence T is an admissible mesh in the sense of Definition

meshdirichlet
3.1 page

meshdirichlet
37). Then, there exists a

unique solution to (
stkschu
7.31)-(

stkschf
7.35), denoted by {u(i)

K , K ∈ T , i = 1, . . . , d} and {pS, S ∈ ST }. Furthermore,
if the elements of T are equilateral triangles, then uT → u in (L2(Ω))d, as size(T ) → 0, where u is the

(unique) solution to (
stksolvar
7.29) and uT = (u

(1)
T , . . . , u

(d)
T )d is defined by (

suapp
7.37).

Proof of Proposition
pstk
7.1.

Step 1 (estimate on uT )

Let T be an admissible mesh, in the sense of Proposition
pstk
7.1, and {u(i)

K , K ∈ T , i = 1, . . . , d}, {pS,
S ∈ ST } be a solution of (

stkschu
7.31)-(

stkschd
7.33) with (

stkschf
7.35).

Multiplying the equations (
stkschu
7.31) by u

(i)
K , summing over i = 1, . . . , d and K ∈ T and using (

stkschd
7.33) yields

ν
d∑

i=1

∑

σ∈E
τσ(Dσu

(i))2 =
d∑

i=1

∑

K∈T
m(K)u

(i)
K f

(i)
K , (7.38) stkest1

with Dσu
(i) = |u(i)

L − u
(i)
K | if σ ∈ Eint, σ = K|L, i ∈ {1, . . . , d} and Dσu

(i) = |u(i)
K | if σ ∈ Eext ∩ EK ,

i ∈ {1, . . . , d}.
In step 2, the existence and the uniqueness of the solution of (

stkschu
7.31)-(

stkschf
7.35) will be essentially deduced

from (
stkest1
7.38).

Using the discrete Poincaré inequality (
ellinpoin
3.13) in (

stkest1
7.38) gives an L2 estimate and an estimate on the

“discrete H1
0 norm” on the component of the approximate velocities, as in Lemma

ellexistu
3.2 page

ellexistu
42, that is:

‖u(i)
T ‖1,T ≤ C, ‖u(i)

T ‖L2(Ω) ≤ C, ∀i ∈ {1, . . . , d},
where C only depends on Ω, vu and f (i), i = 1, . . . , d.
As in Theorem

ellcvgce
3.1 page

ellcvgce
46 (thanks to Lemma

h1dtot
3.3 page

h1dtot
44 and Theorem

kolmh10
3.10 page

kolmh10
93), this estimate

gives the relative compactness in (L2(Ω))d of the set of approximate solutions uT , for T in the set of
admissible meshes in the sense of Proposition

pstk
7.1. It also gives that if uTn → u in (L2(Ω))d, as n →∞,

where uTn is the solution associated to the mesh Tn, and size(Tn) → 0 as n → ∞, then u ∈ (H1
0 (Ω))d.

This will be used in Step 3 in order to prove the convergence of uT to the solution of (
stksolvar
7.29).
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Step 2 (existence and uniqueness of uT and pT )
Let T be an admissible mesh, in the sense of Proposition

pstk
7.1. Replace, in the right hand side of (

stkschd
7.33),

“0” by “gS” with some {gS, S ∈ ST } ⊂ IR. Eliminating F
(i)
K,σ , the system (

stkschu
7.31)-(

stkschd
7.33) becomes a linear

system with as many equations as unknowns. The sets of unknowns are {u(i)
K , K ∈ T , i = 1, . . . , d} and

{pS, S ∈ ST }. Ordering the equations and the unknowns yields a matrix, say A, defining this system.

Let us determine the kernel of A; let f
(i)
K = 0 and gS = 0 for all K ∈ T , all S ∈ ST and all i ∈ {1, . . . , d}.

Then, (
stkest1
7.38) leads to u

(i)
K = 0 for all K ∈ T and all i ∈ {1, . . . , d}. Turning back to (

stkschu
7.31) yields that pT

(defined by (
spapp
7.36)) is constant on K for all K ∈ T . Therefore, since Ω is connected, pT is constant on

Ω. Hence, the dimension of the kernel of A is 1 and so is the codimension of the range of A. In order to
determine the range of A, note that

∑

S∈ST
ϕS(x) = 1, ∀x ∈ Ω.

Then, a necessary condition in order that the linear system (
stkschu
7.31)-(

stkschd
7.33) has a solution is

∑

S∈ST
gS = 0 (7.39) csex

and, since the codimension of the range of A is 1, this condition is also sufficient. Therefore, under the
condition (

csex
7.39), the linear system (

stkschu
7.31)-(

stkschd
7.33) has a solution, this solution is unique up to an additive

constant for pT . In the particular case gS = 0 for all S ∈ ST , this yields that (
stkschu
7.31)-(

stkschf
7.35) has a unique

solution.

Step 3 (convergence of uT to u)
In this step the convergence of uT towards u in (L2(Ω))d as size(T ) → 0 is shown for meshes consisting of
equilateral triangles. Let (Tn)n∈IN be a sequence of meshes (such as defined in Proposition

pstk
7.1) consisting

of equilateral triangles and let (uTn)n∈IN be the associated solutions. Assume that size(Tn) → 0 and
uTn → u in (L2(Ω))d as n → ∞. Thanks to the compactness result of Step 1, proving that u is the
solution of (

stksolvar
7.29) is sufficient to conclude this step and to conclude Proposition

pstk
7.1.

By Step 1, u ∈ (H1
0 (Ω))d. It remains to show that u ∈ V (which is the first part of (

stksolvar
7.29)) and that u

satisfies the second part of (
stksolvar
7.29).

For the sake of simplicity of the notations, let us omit, from now on, the index n in Tn and let h = size(T ).
Note that xK (which is the intersection of the orthogonal bisectors of the sides of the triangle K) is the
center of gravity of K, for all K ∈ T . Let ϕ = (ϕ(1), . . . , ϕ(d))t ∈ V and assume that the functions ϕ(i)

are regular functions with compact support in Ω, say ϕ(i) ∈ C∞c (Ω) for all i ∈ {1, . . . , d}. There exists
C > 0 only depending on ϕ such that

|ϕ(i)(xK)− 1

m(K)

∫

K

ϕ(i)(x)dx| ≤ Ch2, (7.40) stkapp

for all K ∈ T and i = 1, . . . , d. Let us proceed as in the proof of convergence of the finite volume scheme
for the Dirichlet problem (Theorem

ellcvgce
3.1 page

ellcvgce
46).

Assume that h is small enough so that ϕ(x) = 0 for all x such that x ∈ K, K ∈ T and EK ∩ Eext 6= ∅.
Note that (∂φS)/(∂xi) is constant in each K ∈ T and that

d∑

i=1

∫

Ω

∂φS
∂xi

(x)ϕ(i)(x)dx = −
∫

Ω

φS(x)

d∑

i=1

∂ϕ(i)

∂xi
(x)dx = 0.

Then,

d∑

i=1

∑

K∈T

∑

S∈SK

pS

∫

K

∂φS
∂xi

(x)dx
1

m(K)

∫

K

ϕ(i)(x)dx = 0.
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Therefore, multiplying the equations (
stkschu
7.31) by (1/m(K))

∫
K
ϕ(i)(x)dx, for each i = 1, . . . , d, summing

the results over K ∈ T and i ∈ {i . . . , d} yields

ν

d∑

i=1

∑

K|L∈Eint

τK|L(u
(i)
L − u

(i)
K )(

1

m(L)

∫

L

ϕ(i)(x)dx − 1

m(K)

∫

K

ϕ(i)(x)dx) =

d∑

i=1

∑

K∈T
f

(i)
K

∫

K

ϕ(i)(x)dx.

(7.41) stkeq1

Passing to the limit in (
stkeq1
7.41) as n→∞ and using (

stkapp
7.40) gives, in the same way as for the Dirichlet problem

(see Theorem
ellcvgce
3.1 page

ellcvgce
46), that u satisfies the equation given in (

stksolvar
7.29), at least for v ∈ V ∩ (C∞c (Ω))d.

Then, since V ∩ (C∞c (Ω))d is dense (for the (H1
0 (Ω))d-norm) in V (see, for instance,

lions
Lions [1996] for a

proof of this result), u satisfies the equation given in (
stksolvar
7.29).

Since u ∈ (H1
0 (Ω))d, it remains to show that u is divergence free. Let ϕ ∈ C∞c (Ω). Multiplying (

stkschd
7.33) by

ϕ(S), summing over S ∈ ST and noting that the function
∑

S∈ST ϕ(S)φS converges to ϕ in H1(Ω), one
obtains that u is divergence free and then belongs to V . This completes the proof that u is the (unique)
solution of (

stksolvar
7.29) and concludes the proof of Proposition

pstk
7.1.

7.3 Flows in porous media
flowpm

7.3.1 Two phase flow

This section is devoted to the discretization of a system which may be viewed as an elliptic equation
coupled to a hyperbolic equation. This system appears in the modelling of a two phase flow in a porous
medium. Let Ω be an open bounded polygonal subset of IRd, d = 2 or 3, and let a and b be functions of
class C1 from IR to IR+. Assume that a is nondecreasing and b is nonincreasing. Let g and u be bounded
functions from ∂Ω × IR+ to IR, and u0 be a bounded function from Ω to IR. Consider the following
problem:

ut(x, t)− div(a(u)∇p)(x, t) = 0, (x, t) ∈ Ω× IR+,
(1− u)t(x, t)− div(b(u)∇p)(x, t) = 0, (x, t) ∈ Ω× IR+,

∇p(x, t) · n(x) = g(x, t), (x, t) ∈ ∂Ω× IR+,
u(x, t) = u(x, t), (x, t) ∈ ∂Ω× IR+ ; g(x, t) ≥ 0,
u(x, 0) = u0(x), x ∈ Ω,

(7.42) egeqeeh2D

where n is the normal to ∂Ω, outward to Ω. The unknowns of this system are the functions p and u (from
Ω×IR+ to IR). Adding the two first equations of (

egeqeeh2D
7.42), this system may be viewed as an elliptic equation

with respect to the unknown p, for a given u (note that there is no time derivative in this equation), with
a Neumann condition, coupled to a hyperbolic equation with respect to the unknown u (for a given p).
Note that, for the elliptic problem with the Neumann condition, the compatibility condition on g writes

∫

∂Ω

M(u(x, t))g(x, t)dγ(x) = 0, t ∈ IR+,

where M = a + b. It is not known whether the system (
egeqeeh2D
7.42) has a solution, except in the simple

case where the function M is a positive constant (which is, however, already an interesting case for real
applications).

In order to discretize (
egeqeeh2D
7.42), let T be an admissible mesh of Ω in the sense of Definition

meshneuman
3.5 page

meshneuman
63 and

k > 0 be the time step. The discrete unknowns are pnK and unK for K ∈ T and n ∈ IN?. The discretization
of the initial condition is
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u0
K =

1

m(K)

∫

K

u0(x)dx, K ∈ T .

In order to take into account the boundary condition on u, define, with tn = nk,

unK =
1

km(∂K ∩ ∂Ω)

∫

∂K∩∂Ω

∫ tn+1

tn

u(x, t)dγ(x)dt, K ∈ T , n ∈ IN.

The scheme will use an “upstream choice” of a(u) and b(u) on each “interface” of the mesh, that is, for
all K ∈ T , L ∈ N (K),

(a(u))nK,L = a(unK) if pn+1
K ≥ pn+1

L

(a(u))nK,L = a(unL) if pn+1
K < pn+1

L ,

(b(u))nK,L = b(unK) if pn+1
K ≥ pn+1

L

(b(u))nK,L = b(unL) if pn+1
K < pn+1

L ,

The discrete equations are, for all K ∈ T , n ∈ IN,

m(K)
un+1
K − unK

k
−

∑

L∈N (K)

τK|L(pn+1
L − pn+1

K )(a(u))nK,L

−a(u
n
K)

k

∫

∂K∩∂Ω

∫ tn+1

tn

g+(x, t)dγ(x)dt +
a(unK)

k

∫

∂K∩∂Ω

∫ tn+1

tn

g−(x, t)dγ(x)dt = 0,

−m(K)
un+1
K − unK

k
−

∑

L∈N (K)

τK|L(pn+1
L − pn+1

K )(b(u))nK,L

−b(u
n
K)

k

∫

∂K∩∂Ω

∫ tn+1

tn

g+(x, t)dγ(x)dt+
b(unK)

k

∫

∂K∩∂Ω

∫ tn+1

tn

g−(x, t)dγ(x)dt = 0.

Recall that g+(x, t) = max{g(x, t), 0}, g− = (−g)+ and τK|L = m(K|L)/dK|L (see Definition
meshdirichlet
3.1 page

meshdirichlet
37).

This finite volume scheme gives very good numerical results under a usual stability condition on the time
step with respect to the space mesh. It can be generalized to more complicated systems (in particular, for
the simulation of multiphase flows in porous medium such as the “black oil” case of reservoir engineering,
see

E
Eymard [1992]). It is possible to prove the convergence of this scheme in the case where the function

M is constant and the function g does not depend on t. In this case, the scheme may be written as a finite
volume scheme for a stationary diffusion equation with respect to the unknown p (which does not depend
on t) and an upstream finite volume scheme for a hyperbolic equation with respect to the unknown u.
The proof of this convergence is given below (Theorem

egcvgce
7.1) under the assumptions that a(u) = u and

b(u) = 1 − u (see also
Vignal1
Vignal [1996a]). Note that the elliptic equation with respect to the pressure

may also be discretized with a finite element method, and coupled to the finite volume scheme for the
hyperbolic equation. This coupling of finite elements and finite volumes was introduced in

F2
Forsyth

[1991], where it is called “CVFE” (Control Volume Finite Element), in
ES
Sonier and Eymard [1993] and

in
EG
Eymard and Gallouët [1993], where the convergence of the finite element-finite volume scheme is

shown under the same assumptions.

7.3.2 Compositional multiphase flow
thermo

Let us now turn to the study of a system of partial differential equations which arises in the simulation of
a multiphase flow in a porous medium (the so called “Black Oil” case in petroleum engineering, see e.g.
E
Eymard [1992]). This system consists in a parabolic equation coupled with hyperbolic equations and
algebraic equations and inequalities (these algebraic equations and inequalities are given by an assumption
of thermodynamical equilibrium). It may be written, for x ∈ Ω and t ∈ IR+, as:

∂

∂t
(ρ1(p)u)(x, t)− div(f1(u, v, c)∇p)(x, t) = 0, (7.43) triph1
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∂

∂t
(ρ2(p, c)(1− u− v)(1− c))(x, t)− div(f2(u, v, c)∇p)(x, t) = 0, (7.44) triph2

∂

∂t
(ρ2(p, c)(1− u− v)c+ ρ3(p)v)(x, t) − div(f3(u, v, c)∇p)(x, t) = 0, (7.45) triph3

(v(x, t) = 0 and c(x, t) ≤ f(p(x, t)) or (c(x, t) = f(p(x, t)) and v(x, t) ≥ 0), (7.46) triph4

where Ω is a given open bounded polygonal subset of IRd (d = 2 or 3), f1, f2, f3 are given functions from
IR3 to IR+, f , ρ1, ρ3 are given functions from IR to IR+ and ρ2 is a given function from IR2 to IR+. The
problem is completed by initial and boundary conditions which are omitted here. The unknowns of this
problem are the functions u, v, c, p from Ω× IR+ to IR.

In order to discretize this problem, let k be the time step (as usual, k may in fact be variable) and T be a
cartesian mesh of Ω. Following the ideas (and notations) of the previous chapters, the discrete unknowns
are unK , vnK , cnK and pnK , for K ∈ T and n ∈ IN? and it is quite easy to discretize (

triph1
7.43)-(

triph3
7.45) with a

classical finite volume method. Note that the time discretization of the unknown p must generally be
implicit while the time discretization of the unknowns u, v, c may be explicit or implicit. The explicit
choice requires a usual restriction on the time step (linearly with respect to the space step). The only
new problem is the discretization of (

triph4
7.46), which is now described.

Let n ∈ IN. The discrete unknowns at time tn+1, namely un+1
K , vn+1

K , cn+1
K and pn+1

K , K ∈ T , have to be
computed from the discrete unknowns at time tn, namely unK , vnK , cnK and pnK , K ∈ T . Even if the time
discretization of (

triph1
7.43)-(

triph3
7.45) is explicit with respect to the unknowns u, v and c, the system of discrete

equations (with unknowns un+1
K , vn+1

K , cn+1
K and pn+1

K , K ∈ T ) is nonlinear, whatever the discretization
of (

triph4
7.46). It can be solved by, say, a Newton process. Let l ∈ IN be the index of the “Newton iteration”,

and un+1,l
K , vn+1,l

K , cn+1,l
K and pn+1,l

K (K ∈ T ) be the computed unknowns at iteration l. As usual, these
unknowns are, for l = 0, taken equal to unK , vnK , cnK and pnK . In order to discretize (

triph4
7.46), a “phase index”

is introduced; it is denoted by inK , for all K ∈ T and n ∈ IN and it is defined by:

if inK = 0 then vnK = 0 ( and cnK ≤ f(pnK)),
if inK = 1 then cnK = f(pnK) ( and vnK ≥ 0).

In the Newton process for the computation of the unknowns at time tn+1, a “phase index”, denoted by
in+1,l
K is also introduced, with in+1,0

K = inK . This phase index is used in the computation of un+1,l+1
K ,

vn+1,l+1
K , cn+1,l+1

K , pn+1,l+1
K and in+1,l+1

K (K ∈ T ), starting from un+1,l
K , vn+1,l

K , cn+1,l
K , pn+1,l

K and in+1,l
K .

Setting vn+1,l+1
K = 0 if in+1,l

K = 0, and cn+1,l+1
K = f(pn+1,l+1

K ) if in+1,l
K = 1, the computation of (inter-

mediate) values of un+1,l+1
K , vn+1,l+1

K , cn+1,l+1
K , pn+1,l+1

K is possible with a “Newton iteration” on (
triph1
7.43),

(
triph2
7.44), (

triph3
7.45) (note that the number of unknowns is equal to the number of equations). Then, for each

K ∈ T , three cases are possible:

1. if cn+1,l+1
K ≤ f(pn+1,l+1

K ) and vn+1,l+1
K ≥ 0, then set in+1,l+1

K = in+1,l
K ,

2. if cn+1,l+1
K > f(pn+1,l+1

K ) (and necessarily in+1,l
K = 0), then set cn+1,l+1

K = f(pn+1,l+1
K ) and

in+1,l+1
K = 1,

3. if vn+1,l+1
K < 0 (and necessarily in+1,l

K = 1), then set vn+1,l+1
K = 0 and in+1,l+1

K = 0.

This yields the final values of un+1,l+1
K , vn+1,l+1

K , cn+1,l+1
K , pn+1,l+1

K and in+1,l+1
K (K ∈ T ).

When the “convergence” of the Newton process is achieved, say at iteration l?, the values of the unknowns
at time tn+1 are found. They are taken equal to those indexed by (n + 1, l?) (for u, v, c, p, i). It can be
proved, under convenient hypotheses on the function f (which are realistic in the applications), that there
is no “oscillation” of the “phase index” during the Newton iterations performed from time tn to time tn+1

(see
EG1
Eymard and Gallouët [1991]). This method, using the phase index, was also successfully adapted

for the treatment of the obstacle problem and the Signorini problem, see
HM
Herbin and Marchand [1997].
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7.3.3 A simplified case
casimple

The aim of this section and of the following sections is the study of the convergence of two coupled finite
volume schemes, for the system of equations ut − div(u∇p) = 0 and ∆p = 0, defined on an open set
Ω. A finite volume mesh T is used for the discretization in space, together with an explicit Euler time
discretization. Similar results are in

Vignal1
Vignal [1996a] and

vigver
Vignal and Verdière [1998] where the case

of different space meshes for the two equations is also studied.

We assume that the following assumption is satisfied.

eghyp1 Assumption 7.2 Let Ω be an open polygonal bounded connected subset of IRd, d = 2 or 3, and ∂Ω its
boundary. We denote by n the normal vector to ∂Ω outward to Ω.
Let g ∈ L2(∂Ω) be a function such that

∫

∂Ω

g(x)dγ(x) = 0,

and let ∂Ω+ ={x ∈ ∂Ω, g(x) ≥ 0}, Ω+ =Ω ∪ ∂Ω+ and ∂Ω− ={x ∈ ∂Ω, g(x) ≤ 0}. Let u0 ∈ L∞(Ω)
and ū ∈ L∞(∂Ω+ × IR?

+) represent respectively the initial condition and the boundary condition for the
unknown u.

The set
D(Ω+ × IR+) = {ϕ ∈ C∞c (IRd × IR, IR), ϕ = 0 on ∂Ω− × IR+}

will be the set of test functions for Equation (
egeq1
7.51) in the weak formulation of the problem, which is

given below.

Definition 7.1 A pair (u, p) ∈ L∞(Ω × IR?
+)×H1(Ω) (u is the saturation, p is the pressure) is a weak

solution of





∆p(x) = 0, ∀x ∈ Ω,
∇p(x) · n(x) = g(x), ∀x ∈ ∂Ω,
ut(x, t) − div(u∇p)(x, t) = 0, ∀x ∈ Ω, ∀t ∈ IR+,
u(x, 0) = u0(x), ∀x ∈ Ω,
u(x, t) = ū(x, t), ∀x ∈ ∂Ω+, ∀t ∈ IR+.

(7.47) upfort

if it verifies
p ∈ H1(Ω), (7.48) egeq02

u ∈ L∞(Ω× IR?
+), (7.49) egeq01

∫

Ω

∇p(x) · ∇X(x)dx−
∫

∂Ω

X(x)g(x)dγ(x) = 0, ∀X ∈ H1(Ω). (7.50) egeq2

and ∫

IR+

∫

Ω

u(x, t)(ϕt(x, t)−∇p(x) · ∇ϕ(x, t)dxdt +

∫

Ω

u0(x)ϕ(x, 0)dx+
∫

IR+

∫

∂Ω+

ū(x, t)ϕ(x, t)g(x)dγ(x)dt = 0, ∀ϕ ∈ D(Ω+ × IR+).
(7.51) egeq1

Under Assumption
eghyp1
7.2, a classical result gives the existence of p ∈ H1(Ω) and the uniqueness of ∇p where

p is the solution of (
egeq02
7.48),(

egeq2
7.50), which is a variational formulation of the classical Neumann problem.

Additional hypotheses on the function g are necessary to get the uniqueness of u ∈ L∞(IRd × IR?
+)

solution of (
egeq1
7.51). The existence of u results from the convergence of the scheme, but not its uniqueness,
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which could be obtained thanks to regularity properties of ∇p. We shall assume such regularity, which
ensures the uniqueness of the function u and allows an error estimate between the finite volume scheme
approximation of the pressure and the exact pressure. In fact, for the sake of simplicity, we assume (in
Assumption

eghyp4
7.3 below) that p ∈ C2(Ω). This is a rather “strong” assumption which can be weakened.

However, a convergence result (such as in Theorem
egcvgce
7.1) with the only assumption p ∈ H1(Ω) seems

not easy to obtain. Note also that similar results of convergence (for the “pressure scheme” and for the
“saturation scheme”) are possible with an open bounded connected subset of IRd with a C2 boundary
(instead of an open bounded connected polygonal subset of IRd) using Definition

parnlHT
4.4 page

parnlHT
114 of admissible

meshes.

eghyp4 Assumption 7.3 The pressure p, weak solution in H1(Ω) to (
egeq2
7.50), belongs to C2(Ω).

Remark 7.2 The solution (u, p) of (
egeq02
7.48)-(

egeq1
7.51) is also a weak solution of

(1− u)t(x, t) − div((1− u)∇p)(x, t) = 0.

Remark 7.3 The finite volume scheme will ensure the conservation of each of the quantities u and
1− u. It can be extended to more complex phenomena such as compressibility, thermodynamic equilib-
rium. . . (see Section

thermo
7.3.2)

Remark 7.4 The proof which is given here can easily be extended to the case of the existence of a source
term which writes

−∆p(x) = v(x), x ∈ Ω,
∇p(x) · n(x) = g(x), x ∈ ∂Ω,
ut(x, t)− div(u∇p)(x, t) + u(x, t)v−(x) = s(x, t)v+(x), x ∈ Ω, t ∈ IR+,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = ū(x, t), x ∈ ∂Ω+, t ∈ IR+,

where v ∈ L2(Ω) with

∫

∂Ω

g(x)dγ(x) +

∫

Ω

v(x)dx = 0 and s ∈ L∞(Ω× IR?
+). All modifications which are

connected to such terms will be stated in remarks.

7.3.4 The scheme for the simplified case

Let Ω be an open polygonal bounded connected subset of IRd. Let T be an admissible mesh, in the sense
of Definition

meshneuman
3.5 page

meshneuman
63, and let h = size(T ). Assume furthermore that, for some α > 0, dσ ≥ αh for all

σ ∈ Eint.

The pressure finite volume scheme

We first define the approximate pressure, using the finite volume scheme defined in section
nll
3.2 page

nll
63

(that is (
nllcondbor
3.85)-(

nllschemaO
3.87)).

(i) The values GK , for K ∈ T , are defined by

GK =

∫

∂K∩∂Ω

g(x)dγ(x) if m(∂K ∩ ∂Ω) 6= 0,

GK = 0, if m(∂K ∩ ∂Ω) = 0.
(7.52) egschemapb

(ii) The scheme is defined by

−
∑

L∈N (K)

τK|L
(
pL − pK

)
= GK , ∀K ∈ T , (7.53) egschemap
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and

∑

K∈T
m(K)pK = 0. (7.54) egschemap0

We recall that, from lemma
nllexistu
3.6 page

nllexistu
64, there exists a unique function pT ∈ X(T ) defined by pT (x) = pK

for a.e. x ∈ K, for all K ∈ T , where (pK)K∈T satisfy equations (
egschemapb
7.52)-(

egschemap0
7.54). Then, using Theorem

nllesterr
3.5

page
nllesterr
69, there exist C1 and C2, only depending on p and Ω, such that

‖pT − p‖L2(Ω) ≤ C1h (7.55) egllesterr

and

∑

K|L∈Eint

m(K|L)dK|L
(pL − pK

dK|L
− 1

m(K|L)

∫

K|L
∇p(x) · nK,Ldγ(x)

)2 ≤ (C2h)
2. (7.56) egllesterr1

Last but not least, using lemma
nllest
3.11 page

nllest
74, there exists C3, only depending on g and Ω, such that

∑

K|L∈Eint

τK|L(pL − pK)2 ≤ (C3)
2. (7.57) egllesterr2

The saturation finite volume scheme

Let us now turn to the finite volume discretization of the hyperbolic equation (
egeq1
7.51). In order to write

the scheme, let us introduce the following notations: let

G
(+)
K =

∫

∂K∩∂Ω

g+(x)dγ(x) and G
(−)
K =

∫

∂K∩∂Ω

g−(x)dγ(x),

so that G
(+)
K −G

(−)
K = GK . Let

G(+) =

∫

∂Ω

g+(x)dγ(x) =
∑

K∈T
G

(+)
K

(note that G(+) does not depend on T ). The scheme (
egschemap
7.53) may also be written

∑

L∈N (K)

τK|L
(
pL − pK

)
+G

(+)
K −G

(−)
K = 0, ∀K ∈ T . (7.58) egeq3

Remark 7.5 In the case of the problem with source terms, the right hand side of the equation (
egschemap
7.53) is

replaced by GK + V
(+)
K − V

(−)
K with

V
(±)
K =

∫

K

v±(x)dx.

Then, in the equation (
egeq3
7.58) the quantities G

(±)
K are replaced by G

(±)
K + V

(±)
K .

Let ξ ∈ (0, 1). Given an admissible mesh T , the time step is defined by a real value k > 0 such that

k ≤ inf
K∈T

m(K) (1− ξ)∑

L∈N (K)

τK|L(pL − pK)+ +G
(+)
K

. (7.59) egeqS
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Remark 7.6 Since the right hand side of (
egeqS
7.59) has a strictly positive lower bound, it is always possible

to find values k > 0 which satisfy (
egeqS
7.59). Roughly speaking, the condition (

egeqS
7.59) is a linear condition

between the time step and the size of the mesh. Let us explain this point in more detail: in most practical
cases, function g is regular enough so that |pL − pK |/dK|L is bounded by some C only depending on g
and Ω. Assume furthermore that the mesh T is admissible in the sense of Definition

meshneuman
3.5 page

meshneuman
63 and

that, for some α > 0, dK,σ ≥ αh, for all K ∈ T and σ ∈ E . Then the condition k ≤ Dh, with
D = ((1 − ξ)α)/(d(C + ‖g‖L∞(∂Ω))), implies the condition (

egeqS
7.59). Note also that for all g ∈ L2(∂Ω) we

already have a bound for |pT |1,T (but this does not yield a bound on |pL − pK |/dK|L). Finally, note
that condition (

egeqS
7.59) is easy to implement in practise, since the values τK|L and pK are available by the

pressure scheme.

Remark 7.7 In the problem with source terms, the condition (
egeqS
7.59) will be modified as follows:

k ≤ inf
K∈T

m(K) (1− ξ)∑

L∈N (K)

τK|L(pL − pK)+ +G
(+)
K + V

(+)
K

.

The initial condition is discretized by:

u0
K =

1

m(K)

∫

K

u0(x)dx, ∀K ∈ T . (7.60) egschema0

We extend the definition of ū by 0 on ∂Ω− × IR+, and we define ūnK , for K ∈ T and n ∈ IN, by

ūnK =
1

km(∂K ∩ ∂Ω)

∫ (n+1)k

nk

∫

∂K∩∂Ω

ū(x, t)dγ(x)dt, if m(∂K ∩ ∂Ω) 6= 0,

ūnK = 0, if m(∂K ∩ ∂Ω) = 0.

(7.61) egschemab

Hence the following function may be defined on ∂Ω× IR+:

ūT ,k(x, t) = ūnK , ∀x ∈ ∂K ∩ ∂Ω, ∀K ∈ T , ∀t ∈ [nk, (n+ 1)k), n ∈ IN.

The finite volume discretization of the hyperbolic equation (
egeq1
7.51) is then written as the following relation

between un+1
K and all unL, L ∈ T .

m(K)(un+1
K −unK)−k

[ ∑

L∈N (K)

τK|Lu
n
K,L(pL−pK)+ ūnKG

(+)
K −unKG(−)

K

]
= 0, ∀K ∈ T , ∀n ∈ IN, (7.62) egschema

in which the upstream value unK,L is defined by

unK,L = unK , if pK ≥ pL,

unK,L = unL, if pL > pK .
(7.63) egschemau

The approximate solution, denoted by uT ,k, is defined a.e. from Ω× IR+ → to IR by

uT ,k(x, t) = unK , ∀x ∈ K, ∀K ∈ T , ∀t ∈ [nk, (n+ 1)k), ∀n ∈ IN. (7.64) eguapp

Remark 7.8 In the case of source terms, the following term is defined:

snK =
1

m(K)k

∫ (n+1)k

nk

∫

K

s(x, t)dxdt

and the term k(snKV
(+)
K − unKV

(−)
K ) is added to the right hand side of (

egschema
7.62) .
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7.3.5 Estimates on the approximate solution

Estimate in L∞(Ω× IR?
+)

egestlinf Lemma 7.1 Under the assumptions
eghyp1
7.2 and

eghyp4
7.3, let T be an admissible mesh in the sense of Definition

meshneuman
3.5 page

meshneuman
63 and k > 0 satisfying (

egeqS
7.59). Then, the function uT ,k defined by (

egschemapb
7.52)-(

egschemap0
7.54) and (

egschema0
7.60)-

(
eguapp
7.64) satisfies

‖uT ,k‖L∞(Ω×IR?
+

) ≤ max{‖u0‖L∞(Ω), ‖ū‖L∞(∂Ω+×IR?
+

)}. (7.65) egeqestlinf

Proof of Lemma
egestlinf
7.1

Relation (
egschema
7.62) can be written as

un+1
K = unK

[
1− k

m(K)

( ∑

L∈N (K)

τK|L(pK − pL)− +G
(−)
K

)]
+

k

m(K)

( ∑

L∈N (K)

τK|Lu
n
L(pL − pK)+ +G

(+)
K ūnK

)
.

Using

∑

L∈N (K)

τK|L(pL − pK)+ +G
(+)
K =

∑

L∈N (K)

τK|L(pK − pL)− +G
(−)
K ,

and Inequality (
egeqS
7.59), the term un+1

K may be expressed as a linear combination of terms unL, L ∈ T , and
ūnK , with positive coefficients. Thanks to relation (

egeq3
7.58), the sum of these coefficients is equal to 1. The

estimate (
egeqestlinf
7.65) follows by an easy induction.

Remark 7.9 In the case of source terms, Lemma
egestlinf
7.1 remains true with the following estimate instead

of (
egeqestlinf
7.65):

‖uT ,k‖L∞(Ω×IR?
+

) ≤ max{‖u0‖L∞(Ω), ‖ū‖L∞(∂Ω+×IR?
+

), ‖s‖L∞(Ω×IR∗
+

)}.

Weak BV estimate

egestbvw Lemma 7.2 Under the assumptions
eghyp1
7.2 and

eghyp4
7.3, let T be an admissible mesh in the sense of Definition

meshneuman
3.5 page

meshneuman
63. Let h = size(T ) and α > 0 be such that dσ ≥ αh for all σ ∈ Eint. Let k > 0 satisfying (

egeqS
7.59).

Let {unK, K ∈ T , n ∈ IN} be the solution to (
egschema0
7.60)-(

egschemau
7.63) with {pK, K ∈ T } given by (

egschemapb
7.52)-(

egschemap0
7.54). Let

T > k be a given real value, and let NT,k be the integer value such that NT,kk < T ≤ (NT,k + 1)k. Then
there exists H, which only depends on T , Ω, u0, ū, g, α and ξ, such that the following inequality holds:

k

NT,k∑

n=0

∑

K|L∈Eint

τK|L|pK − pL||unK − unL|+ k

NT,k∑

n=0

∑

K∈T
G

(+)
K |unK − ūnK | ≤

H√
h
. (7.66) egeqbvw

Proof of Lemma
egestbvw
7.2

For n ∈ IN and K ∈ T , multiplying (
egschema
7.62) by unK yields

m(K)(un+1
K unK − unKu

n
K)− k(

∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) + ūnKu

n
KG

(+)
K − (unK)2G

(−)
K ) = 0. (7.67) egeq9

Writing un+1
K unK − unKu

n
K = − 1

2 (un+1
K − unK)2 − 1

2 (unK)2 + 1
2 (un+1

K )2 and summing (
egeq9
7.67) on K ∈ T and

n ∈ {0, . . . , NT,k} gives
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−1

2

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)2 +
1

2

∑

K∈T
m(K)((u

NT,k+1
K )2 − (u0

K)2)

−k
NT,k∑

n=0

∑

K∈T
(
∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) + ūnKu

n
KG

(+)
K − (unK)2G

(−)
K ) = 0.

(7.68) egeq10

Using (
egschemau
7.63) gives, for all K ∈ T ,

−
∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) =

∑

L∈N (K)

τK|L(unK)2(pK − pL)+ −
∑

L∈N (K)

τK|Lu
n
Lu

n
K(pL − pK)+.

Then,

−
∑

K∈T

∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) =

∑

K∈T

∑

L∈N (K)

τK|L((unK)2 − unLu
n
K)(pK − pL)+.

Therefore, since (unK)2 − unKu
n
L = 1

2 (unK − unL)2 + 1
2 ((unK)2 − (unL)2),

−
∑

K∈T

∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) = 1

2

∑

K∈T

∑

L∈N (K)

τK|L(unK − unL)2(pK − pL)+

+ 1
2

∑

K∈T

∑

L∈N (K)

τK|L(unK)2(pK − pL)+

− 1
2

∑

K∈T

∑

L∈N (K)

τK|L(unL)2(pK − pL)+

= 1
2

∑

K∈T

∑

L∈N (K)

τK|L(unK − unL)2(pK − pL)+

+ 1
2

∑

K∈T

∑

L∈N (K)

τK|L(unK)2(pK − pL)

and, using (
egeq3
7.58),

−
∑

K∈T

∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) = 1

2

∑

K∈T

∑

L∈N (K)

τK|L(unK − unL)2(pK − pL)+

+ 1
2

∑

K∈T
G

(+)
K (unK)2 − 1

2

∑

K∈T
G

(−)
K (unK)2.

Hence

−k
NT,k∑

n=0

∑

K∈T
(
∑

L∈N (K)

τK|Lu
n
K,Lu

n
K(pL − pK) + ūnKu

n
KG

(+)
K − (unK)2G

(−)
K ) =

1
2k

NT,k∑

n=0

(
∑

K|L∈Eint

τK|L|pK − pL|(unK − unL)2 +
∑

K∈T
G

(+)
K (unK − ūnK)2) −

1
2k

NT,k∑

n=0

∑

K∈T
(G

(+)
K (ūnK)2 −G

(−)
K (unK)2).

(7.69) egeq11

Using (
egschema
7.62), we get

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)2 =

NT,k∑

n=0

∑

K∈T

k2

m(K)

( ∑

L∈N (K)

τK|Lu
n
K,L(pL − pK) + ūnKG

(+)
K − unKG

(−)
K

)2
.
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Then, for all K ∈ T , using again (
egeq3
7.58) and the definition (

egschemau
7.63),

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)2 =

NT,k∑

n=0

∑

K∈T

k2

m(K)

( ∑

L∈N (K)

τK|L(unL − unK)(pL − pK)+ +G
(+)
K (ūnK − unK)

)2
.

The Cauchy-Schwarz inequality yields

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)2 ≤
NT,k∑

n=0

∑

K∈T

k2

m(K)

( ∑

L∈N (K)

τK|L(pL − pK)+ +G
(+)
K

)

( ∑

L∈N (K)

τK|L(pL − pK)+(unL − unK)2 +G
(+)
K (ūnK − unK)2

)
.

Using the stability condition (
egeqS
7.59) and reordering the summations gives

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)2 ≤
NT,k∑

n=0

k (1− ξ)

( ∑

K|L∈Eint

τK|L|pL − pK |(unL − unK)2 +
∑

K∈T
G

(+)
K (ūnK − unK)2

)
.

(7.70) egeq12

Using (
egeq10
7.68), (

egeq11
7.69) and (

egeq12
7.70), we obtain

∑

K∈T
m(K)((u

NT,k+1
K )2 − (u0

K)2)

+ξk

NT,k∑

n=0

( ∑

K|L∈Eint

τK|L|pK − pL|(unK − unL)2 +
∑

K∈T
G

(+)
K (unK − ūnK)2

)

−k
NT,k∑

n=0

∑

K∈T
(G

(+)
K (ūnK)2 −G

(−)
K (unK)2) ≤ 0.

(7.71) egeq13

Then, setting C4 = m(Ω)‖u0‖2
L∞(Ω) + 2TG(+)‖ū‖2

L∞(∂Ω+×IR?
+

) which only depends on Ω, u0, T , g and ū,

∑

K∈T
m(K)(u

NT,k+1
K )2 + k

NT,k∑

n=0

∑

K∈T
G

(−)
K (unK)2 ≤ C4

(this inequality will not be used in the sequel) and

k

NT,k∑

n=0

∑

K|L∈Eint

τK|L|pK − pL|(unK − unL)2 + k

NT,k∑

n=0

∑

K∈T
G

(+)
K (unK − ūnK)2 ≤ C4

ξ
. (7.72) egeq17

The Cauchy-Schwarz inequality yields

k

NT,k∑

n=0

∑

K|L∈Eint

τK|L|pK − pL||unK − unL|+ k

NT,k∑

n=0

∑

K∈T
G

(+)
K |unK − ūnK | ≤

(k

NT,k∑

n=0

∑

K|L∈Eint

τK|L|pK − pL|(unK − unL)2 + k

NT,k∑

n=0

∑

K∈T
G

(+)
K (unK − ūnK)2)

1
2

(
k

NT,k∑

n=0

(
∑

K|L∈Eint

τK|L|pK − pL|+
∑

K∈T
G

(+)
K )

) 1
2

(7.73) egeq18
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The expression W , defined by W =
∑

K|L∈Eint

τK|L|pK − pL|, verifies

W ≤ (
∑

K|L∈Eint

τK|L)
1
2 (

∑

K|L∈Eint

τK|L(pK − pL)2)
1
2 ≤ C3(

∑

K|L∈Eint

τK|L)
1
2 (7.74) egeq19

using (
egllesterr2
7.57). Recall that C3 only depends on g and Ω.

Since

∑

K|L∈Eint

τK|L ≤ (
∑

K|L∈Eint

m(K|L)dK|L)
1

α2h2
≤ dm(Ω)

α2h2
(7.75) sumtau

and

∑

K∈T
G

(+)
K =

∫

∂Ω

g+(x)dγ(x),

we finally conclude that (
egeqbvw
7.66) holds.

Remark 7.10 In the case of source terms, one adds the term k

NT,k∑

n=0

∑

K∈T
V

(+)
K |unK − snK | in the left hand

side of (
egeqbvw
7.66) (and H also depends on v and s).

7.3.6 Theorem of convergence
casimplec

We already know, by the results of section
nll
3.2 page

nll
63, that the pressure scheme converges. Let us now

prove the convergence of the saturation scheme (
egschema
7.62). Thanks to the estimate (

egeqestlinf
7.65) in L∞(Ω × IR?

+)
(Lemma

egestlinf
7.1), for any sequence of meshes and time steps, such that the size of the mesh tends to 0, we can

extract a subsequence such that the approximate saturation converges to a function u in L∞(Ω × IR?
+)

for the weak-? topology. We have to show that u is the (unique) solution of (
egeq01
7.49), (

egeq1
7.51) (the uniqueness

of the solution is given by Assumption
eghyp4
7.3).

egcvgce Theorem 7.1 Under assumptions
eghyp1
7.2 and

eghyp4
7.3, let ξ ∈ (0, 1) and α > 0 be given. For an admissible mesh

T , in the sense of Definition
meshneuman
3.5 page

meshneuman
63, such that dσ ≥ α size(T ) for all σ ∈ Eint and for a time step

k > 0 satisfying (
egeqS
7.59), let uT ,k be defined by (

egschemapb
7.52)-(

egschemap0
7.54) and (

egschema0
7.60)-(

eguapp
7.64). Then uT ,k converges to

the solution u of (
egeq01
7.49), (

egeq1
7.51) in L∞(Ω× IR?

+) for the weak-? topology, as size(T ) → 0.

Proof of Theorem
egcvgce
7.1

In the case g(x) = 0 for a.e. (for the (d−1)-dimensional Lebesgue measure) x ∈ ∂Ω, the proof of Theorem
egcvgce
7.1 is easy. Indeed, ∇p(x) = 0 for a.e. x ∈ Ω and, for any mesh and time step, pK − pL = 0 for all K,
L ∈ T . Then, unK = u0

K for all K ∈ T and all n ∈ IN. Therefore, it is easy to prove that the sequence
uT ,k converges, as size(T ) → 0 (for any k. . . ), to u, defined by u(x, t) = u0(x) for a.e. (x, t) ∈ Ω× IR+;
note that u is the unique solution to (

egeq01
7.49), (

egeq1
7.51).

Let us now assume that g is not the null function in L2(∂Ω).

Let (Tm, km)m∈IN be a sequence of space meshes and time steps. For all m ∈ IN, assume that Tm is an
admissible mesh in the sense of Definition

meshneuman
3.5, that dσ ≥ αsize(Tm) for all σ ∈ Eint and that km > 0

satisfies (
egeqS
7.59) (with k = km and T = Tm). Assume also that size(Tm) → 0 as m→∞.

Let um be the function uT ,k defined by (
egschemapb
7.52)-(

egschemap0
7.54) and (

egschema0
7.60)-(

eguapp
7.64), for T = Tm and k = km. By

Lemma
egestlinf
7.1, the sequence (um)m∈IN is bounded in L∞(Ω × IR?

+). In order to prove that the sequence
(um)m∈IN converges in L∞(Ω × IR?

+) for the weak-? topology to the solution of (
egeq01
7.49), (

egeq1
7.51), using a

classical contradiction argument, it is sufficient to prove that if um → u in L∞(Ω× IR?
+) for the weak-?

topology then the function u is a solution of (
egeq01
7.49), (

egeq1
7.51).
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Let us proceed in two steps. In the first step, it is proved that km → 0 as m→∞. Then, in the second
step, it is proved that the function u is a solution of (

egeq01
7.49), (

egeq1
7.51).

From now on, the index “m” is omitted.

Step 1 (proof of k → 0 as m→∞)
The proof that k → 0 (as m→∞) uses (

egeqS
7.59) and the fact that size(T ) → 0.Indeed, define

AT =
∑

K|L∈Eint

m(K|L)|pK − pL|,

and, for σ ∈ Eint, define χσ from Ω× Ω to {0, 1} by

χσ(x, y) = 1, if σ ∩ [x, y] 6= ∅,

χσ(x, y) = 0, if σ ∩ [x, y] = ∅.
Let η ∈ IRd \ {0} and ω̄ ⊂ Ω be a compact set such that d(ω̄,Ωc) ≥ η. Recall that pT is defined by
pT (x) = pK for a.e. x ∈ K and all K ∈ T . For a.e. x ∈ ω̄ one has

|pT (x + η)− pT (x)| ≤
∑

σ=K|L∈Eint

χσ(x, x + η)|pK − pL|,

integrating this inequality over ω̄ yields, using
∫
ω̄ χσ(x, x+ η)dx ≤ |η|m(σ),

‖pT (·+ η)− pT ‖L1(ω̄) ≤ |η|AT . (7.76) atau

Assume AT → 0 as m→∞. Then, since pT → p in L1(Ω), one deduces from (
atau
7.76) that ∇p = 0 a.e. on

Ω which is impossible (since g is not the null function in L2(∂Ω)). By the same way, it is also impossible
that AT → 0 for a subsequence. Then there exists a > 0 (only depending on the sequence (pT )m∈IN,
recall that pT = pTm since we omit the index m) such that AT ≥ a for all m ∈ IN.

Therefore, since AT =
∑

K∈T

∑

L∈N (K)

m(K|L)(pL − pK)+ ≥ a, there exists K ∈ T such that

∑

L∈N (K)

m(K|L)(pL − pK)+ ≥ a
m(K)

m(Ω)
,

Then, since τK|L = m(K|L)/dK|L and dK|L ≤ 2h,

∑

L∈N (K)

τK|L(pL − pK)+ ≥ a
m(K)

2hm(Ω)
,

which yields, using (
egeqS
7.59),

k ≤ (1− ξ)m(Ω)
2

a
h.

Hence k → 0 as m→∞ (since h→ 0 as m→∞). This concludes Step 1.

Step 2 (proof of u solution to (
egeq1
7.51))

Let ϕ ∈ D(Ω+ × IR+). Let T > 0 such that, for all t > T − 1 and all x ∈ Ω, ϕ(x, t) = 0. Let m ∈ IN such
that h < 1 and k < 1 (thanks to Step 1, this is true for m large enough). Recall that we denote T = Tm,
h = size(Tm) and k = km. Let NT,k ∈ IN be such that NT,kk < T ≤ (NT,k + 1)k. Multiplying equation
(
egschema
7.62) by ϕ(xK , nk) and summing the result on K ∈ T and n ∈ IN yields

E1,m +E2,m = 0,

with

E1,m =

NT,k∑

n=0

∑

K∈T
m(K)(un+1

K − unK)ϕ(xK , nk)
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and

E2,m = −
NT,k∑

n=0

k
∑

K∈T

( ∑

L∈N (K)

τK|Lu
n
K,L(pL − pK) +G

(+)
K ūnK −G

(−)
K unK

)
ϕ(xK , nk).

It is shown below that

lim
m→∞

E1,m = T1, (7.77) egcvgce1

where

T1 = −
∫

IR+

∫

Ω

u(x, t)ϕt(x, t)dxdt −
∫

Ω

u0(x)ϕ(x, 0)dx,

and that

lim
m→∞

E2,m = T2, (7.78) egcvgce2

where

T2 =

∫

IR+

∫

Ω

u(x, t)∇p(x) · ∇ϕ(x, t)dxdt −
∫

IR+

∫

∂Ω

ū(x, t)ϕ(x, t)g(x)dγ(x)dt.

Then, passing to the limit in E1,m +E2,m = 0 proves that u is the (unique) solution of (
egeq01
7.49), (

egeq1
7.51) and

concludes the proof of Theorem
egcvgce
7.1.

Let us first prove (
egcvgce1
7.77). Writing E1,m in the following way:

E1,m =

NT,k∑

n=1

∑

K∈T
m(K)

ϕ(xK , (n− 1)k)− ϕ(xK , nk)

k
unK −

∑

K∈T
m(K)u0

Kϕ(xK , 0),

the assertion (
egcvgce1
7.77) is easily proved, in the same way as, for instance, in the proof of Theorem

parnlcvgce
4.2 page

parnlcvgce
111.

Let us prove now (
egcvgce2
7.78). To this purpose, we need auxiliary expressions, which make use of the conver-

gence of the approximate pressure to the continuous one. Define E3,m and E4,m by

E3,m =

NT,k∑

n=0

k
∑

K|L∈Eint

(unK − unL)
pL − pK
dK|L

∫

K|L
ϕ(x, nk)dγ(x)

+

NT,k∑

n=0

k
∑

K∈T
(unK − ūnK)

∫

∂K∩∂Ω

g(x)ϕ(x, nk)dγ(x)

and

E4,m =
∑

n∈IN

∫ (n+1)k

nk

( ∫

Ω

uT ,k(x, t)∇p(x) · ∇ϕ(x, nk)dx −
∫

∂Ω

ūT ,k(x, t)ϕ(x, nk)g(x)dγ(x)
)
dt.

We have E4,m → T2 as m → ∞ thanks to the convergence of uT ,k to u in L∞(Ω × IR) for the weak-?
topology and to the convergence of ūT ,k to ū in L∞(∂Ω+ × IR+) for the weak-? topology (the latter
convergence holds also in Lp(∂Ω+ × (0, S)) for all 1 ≤ p < ∞ and all 0 < S < ∞). Let us prove that
|E3,m −E4,m| → 0 as m→∞ (which gives E3,m → T2 as m→∞).
using the equation satisfied by p leads to



225

E4,m =

NT,k∑

n=0

k
∑

K|L∈Eint

(unK − unL)

∫

K|L
ϕ(x, nk)∇p(x) · nK,Ldγ(x)

+

NT,k∑

n=0

k
∑

K∈T
(unK − ūnK)

∫

∂K∩∂Ω

g(x)ϕ(x, nk)dγ(x).

Therefore,

E3,m −E4,m =

NT,k∑

n=0

k
∑

K|L∈Eint

(unK − unL)

∫

K|L
(
pL − pK
dK|L

−∇p(x) · nK,L)ϕ(x, nk)dγ(x)

=

NT,k∑

n=0

k
∑

K∈T
unK

( ∑

L∈N (K)

∫

K|L
(
pL − pK
dK|L

−∇p(x) · nK,L)ϕ(x, nk)dγ(x)
)
.

Using the equation satisfied by the pressure in (
upfort
7.47) and the pressure scheme (

egschemap
7.53) yields

E3,m −E4,m =

NT,k∑

n=0

k
∑

K∈T
unK

( ∑

L∈N (K)

∫

K|L
(
pL − pK
dK|L

−∇p(x) · nK,L)(ϕ(x, nk) − ϕ(xK , nk))dγ(x)
)
.

Thanks to the regularity of ϕ and p, there exists C5 > 0, only depending on p, and C6, only depending
on ϕ, such that, for all K|L ∈ Eint,

|pL − pK
dK|L

−∇p(x) · nK,L)| ≤ |pL − pK
dK|L

− 1

m(K|L)

∫

σ

∇p(x) · nK,Ldγ(x)|+ C5h, ∀x ∈ K|L

and, for all K ∈ T ,

|ϕ(x, nk)− ϕ(xK , nk)| ≤ C6h, ∀x ∈ K, ∀n ∈ IN.

Thus,

|E3,m −E4,m| ≤
NT,k∑

n=0

k
∑

K∈T
|unK |

( ∑

L∈N (K)

|τK|L(pL − pK)−
∫

K|L
∇p(x) · nK,Ldγ(x)|

)
C6h

+

NT,k∑

n=0

k
∑

K∈T
|unK |(

∑

L∈N (K)

m(K|L)C6C5h
2),

which leads to |E3,m −E4,m| → 0 as m→∞, using (
egllesterr1
7.56), (

sumtau
7.75) and the Cauchy-Schwarz inequality.

In order to prove that E2,m → T2 as m → ∞ (which concludes the proof of Theorem
egcvgce
7.1), let us show

that |E2,m −E3,m| → 0 as m→∞.
We get, using (

egeq3
7.58) and (

egschemau
7.63)

E2,m = −
NT,k∑

n=0

k
∑

K|L∈Eint

τK|L(unL − unK)(pL − pK)ϕ(xK , nk)

−
NT,k∑

n=0

k
∑

K∈T
(ūnK − unK)G

(+)
K ϕ(xK , nk).

This yields
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E3,m −E2,m =

NT,k∑

n=0

k
∑

K|L∈Eint

τK|L(unK − unL)(pL − pK)φnK,L+

NT,k∑

n=0

k
∑

K∈T
(unK − ūnK)G

(+)
K φnK ,

(7.79) egeq28

where

φnK,L =
1

m(K|L)

∫

K|L
ϕ(x, nk)dγ(x) − ϕ(xK , nk), ∀K ∈ T , ∀L ∈ N (K)

and

G
(+)
K φnK =

∫

∂K∩∂Ω

ϕ(x, nk)g(x)dγ(x) −G
(+)
K ϕ(xK , nk).

We recall that, for all x ∈ ∂Ω, ϕ(x, nk)g+(x) = ϕ(x, nk)g(x), by definition of D(Ω+ × IR+). Therefore,

there exists C7, which only depends on ϕ, such that |φnK,L| ≤ C7h and G
(+)
K |φnK | ≤ G

(+)
K C7h, for all

K ∈ T , L ∈ N (K) and all n ∈ IN. Therefore, using Lemma
egestbvw
7.2, we get |E3,m − E2,m| ≤ C7h

H√
h

which

yields |E2,m −E3,m| → 0 and then E2,m → T2 as m→∞. This concludes the proof of Theorem
egcvgce
7.1.

Remark 7.11 In the case of source terms, the convergence theorem
egcvgce
7.1 still holds. There are some minor

modifications in the proof. The definitions of E2,m, E3,m and E4,m change. In the definition of E2,m, the

quantity G
(+)
K ūnK − G

(−)
K unK is replaced by G

(+)
K ūnK −G

(−)
K unK + V

(+)
K snK − V

(−)
K unK . In the definition of

E3,m one adds

NT,k∑

n=0

k
∑

K∈T
(unK − snK)

∫

K

v+(x)ϕ(x, nk)dx.

The quantity E3,m − E4,m does not change and in order to prove E3,m − E2,m → 0 it is sufficient to
remark that there exists C8, only depending on ϕ, such that

|
∫

K

ϕ(x, nk)v+(x)dx − V
(+)
K ϕ(xK , nk)| ≤ V

(+)
K C8h.
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d’écoulement diphasique, Thesis, Université Paris XI Orsay.
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Voronöı, 39, 86


