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INTRODUCTION TO MATRICES

Chapter 1 reviewed simple linear regression in alge-
braic notation and showed that the notation for models
involving several variables is very cumbersome.

This chapter introduces matrix notation and all matrix
operations that are used in this text. Matrix algebra
greatly simplifies the presentation of regression and is
used throughout the text. Sections 2.7 and 2.8 are not
used until later in the text and can be omitted for now.

Matrix algebra is extremely helpful in multiple regression for simplify-
ing notation and algebraic manipulations. You must be familiar with the
basic operations of matrices in order to understand the regression results
presented. A brief introduction to the key matrix operations is given in
this chapter. You are referred to matrix algebra texts, for example, Searle
(1982), Searle and Hausman (1970), or Stewart (1973), for more complete
presentations of matrix algebra.

2.1 Basic Definitions

A matrix is a rectangular array of numbers arranged in orderly rows and Matrix
columns. Matrices are denoted with boldface capital letters. The following
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are examples.

Z =

⎡
⎣ 1 26 4
5 7

⎤
⎦ X =

⎡
⎢⎢⎢⎢⎢⎣

1 5
1 6
1 4
1 9
1 2
1 6

⎤
⎥⎥⎥⎥⎥⎦

B =
[
15 7 −1 0
15 5 −2 10

]
.

The numbers that form a matrix are called the elements of the matrix. A Elements
general matrix could be denoted as

A =

⎡
⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎦ .

The subscripts on the elements denote the row and column, respectively,
in which the element appears. For example, a23 is the element found in the
second row and third column. The row number is always given first.
The order of a matrix is its size given by the number of rows and Order
columns. The first matrix given, Z, is of order (3, 2). That is, Z is a
3 × 2 matrix, since it has three rows and two columns. Matrix A is an
m× n matrix.
The rank of a matrix is defined as the number of linearly independent Rank
columns (or rows) in the matrix. Any subset of columns of a matrix are
linearly independent if no column in the subset can be expressed as a
linear combination of the others in the subset. The matrix

A =

⎡
⎣ 1 2 4
3 0 6
5 3 13

⎤
⎦

contains a linear dependency among its columns. The first column multi-
plied by two and added to the second column produces the third column.
In fact, any one of the three columns of A can be written as a linear com-
bination of the other two columns. On the other hand, any two columns of
A are linearly independent since one cannot be produced as a multiple of
the other. Thus, the rank of the matrix A, denoted by r(A), is two.
If there are no linear dependencies among the columns of a matrix, the Full-Rank

Matricesmatrix is said to be of full rank, or nonsingular. If a matrix is not of
full rank it is said to be singular. The number of linearly independent
rows of a matrix will always equal the number of linearly independent
columns. The linear dependency among the rows ofA is shown by 9(row1)+
7(row2) = 6(row3). The critical matrices in regression will almost always
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have fewer columns than rows and, therefore, rank is more easily visualized
by inspection of the columns.
The collection of all linear combinations of columns of A is called the Column Space
column space of A or the space spanned by the columns of A.

2.2 Special Types of Matrices

A vector is a matrix having only one row or one column, and is called a Vector
row or column vector, respectively. Although vectors are often designated
with boldface lowercase letters, this convention is not followed rigorously in
this text. A boldface capital letter is used to designate a data vector and a
boldface Greek letter is used for vectors of parameters. Thus, for example,

v =

⎛
⎜⎝
3
8
2
1

⎞
⎟⎠ is a 4× 1 column vector.

μ = (μ1 μ2 μ3 ) is a 1× 3 row vector.
We usually define the vectors as column vectors but they need not be. A
single number such as 4, −2.1, or 0 is called a scalar.
A square matrix has an equal number of rows and columns. Square

Matrix
D =

[
2 4
6 7

]
is a 2× 2 square matrix.

A diagonal matrix is a square matrix in which all elements are zero ex- Diagonal
Matrixcept the elements on the main diagonal, the diagonal of elements, a11, a22,

. . . , ann, running from the upper left postion to the lower right position.

A =

⎡
⎣ 5 0 00 4 0
0 0 8

⎤
⎦ is a 3× 3 diagonal matrix.

An identity matrix is a diagonal matrix having all the diagonal ele- Identity
Matrixments equal to 1; such a matrix is denoted by In. The subscript identifies

the order of the matrix and is omitted when the order is clear from the
context.

I3 =

⎡
⎣ 1 0 00 1 0
0 0 1

⎤
⎦ is a 3× 3 identity matrix.

After matrix multiplication is discussed, it can be verified that multiplying
any matrix by the identity matrix will not change the original matrix.
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A symmetric matrix is a square matrix in which element aij equals Symmetric
Matrixelement aji for all i and j. The elements form a symmetric pattern around

the diagonal of the matrix.

A =

⎡
⎣ 5 −2 3

−2 4 −1
3 −1 8

⎤
⎦ is a 3× 3 symmetric matrix.

Note that the first row is identical to the first column, the second row is
identical to the second column, and so on.

2.3 Matrix Operations

The transpose of a matrix A, designated A′, is the matrix obtained by Transpose
using the rows of A as the columns of A′. If

A =

⎡
⎢⎣
1 2
3 8
4 1
5 9

⎤
⎥⎦ ,

the transpose of A is

A′ =
[
1 3 4 5
2 8 1 9

]
.

If a matrixA has orderm×n, its transposeA′ has order n×m. A symmetric
matrix is equal to its transpose: A′ = A.
Addition of two matrices is defined if and only if the matrices are of Addition
the same order. Then, addition (or subtraction) consists of adding (or sub-
tracting) the corresponding elements of the two matrices. For example,[

1 2
3 8

]
+

[
7 −6
8 2

]
=

[
8 −4
11 10

]
.

Addition is commutative: A+B = B +A.
Multiplication of two matrices is defined if and only if the number of Multiplication

columns in the first matrix equals the number of rows in the second matrix.
If A is of order r×s and B is of order m×n, the matrix product AB exists
only if s = m. The matrix product BA exists only if r = n. Multiplication
is most easily defined by first considering the multiplication of a row vector
times a column vector. Let a′ = ( a1 a2 a3 ) and b′ = ( b1 b2 b3 ).
(Notice that both a and b are defined as column vectors.) Then, the product
of a′ and b is

a′b = ( a1 a2 a3 )

⎛
⎝ b1

b2
b3

⎞
⎠ (2.1)

= a1b1 + a2b2 + a3b3.
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The result is a scalar equal to the sum of products of the corresponding
elements. Let

a′ = ( 3 6 1 ) and b′ = ( 2 4 8 ) .

The matrix product is

a′b = ( 3 6 1 )

⎛
⎝ 24
8

⎞
⎠ = 6 + 24 + 8 = 38.

Matrix multiplication is defined as a sequence of vector multiplications.
Write

A =
[
a11 a12 a13
a21 a22 a23

]
as A =

(
a′

1
a′

2

)
,

where a′
1 = ( a11 a12 a13 ) and a′

2 = ( a21 a22 a23 ) are the 1× 3 row
vectors in A. Similarly, write

B =

⎡
⎣ b11 b12
b21 b22
b31 b32

⎤
⎦ as B = ( b1 b2 ) ,

where b1 and b2 are the 3 × 1 column vectors in B. Then the product of
A and B is the 2× 2 matrix

AB = C =
[
a′

1b1 a′
1b2

a′
2b1 a′

2b2

]
=

[
c11 c12
c21 c22

]
, (2.2)

where

c11 = a′
1b1 =

3∑
j=1

a1jbj1 = a11b11 + a12b21 + a13b31

c12 = a′
1b2 =

3∑
j=1

a1jbj2 = a11b12 + a12b22 + a13b32

c21 = a′
2b1 =

3∑
j=1

a2jbj1 = a21b11 + a22b21 + a23b31

c22 = a′
2b2 =

3∑
j=1

a2jbj2 = a21b12 + a22b22 + a23b32.

In general, element cij is obtained from the vector multiplication of the
ith row vector from the first matrix and the jth column vector from the
second matrix. The resulting matrix C has the number of rows equal to
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the number of rows in A and number of columns equal to the number of
columns in B.

Let Example 2.1

T =

⎡
⎣ 1 24 5
3 0

⎤
⎦ and W =

( −1
3

)
.

The product WT is not defined since the number of columns in W is not
equal to the number of rows in T . The product TW , however, is defined:

TW =

⎡
⎣ 1 24 5
3 0

⎤
⎦( −1

3

)

=

⎛
⎝ (1)(−1) + (2)(3)(4)(−1) + (5)(3)
(3)(−1) + (0)(3)

⎞
⎠ =

⎛
⎝ 5
11
−3

⎞
⎠ .

The resulting matrix is of order 3× 1 with the elements being determined
by multiplication of the corresponding row vector from T with the column
vector in W .

Matrix multiplication is not commutative;AB does not necessarily equal
BA even if both products exist. As for the matricesW and T in Example
2.1, the matrices are not of the proper order for multiplication to be defined
in both ways. The first step in matrix multiplication is to verify that the
matrices do conform (have the proper order) for multiplication.
The transpose of a product is equal to the product in reverse order of
the transposes of the two matrices. That is,

(AB)′ = B′A′. (2.3)

The transpose of the product of T and W from Example 2.1 is

(TW )′ =W ′T ′ = (−1 3 )
[
1 4 3
2 5 0

]
= ( 5 11 −3 ) .

Scalar multiplication is the multiplication of a matrix by a single
number. Every element in the matrix is multiplied by the scalar. Thus,

3
[
2 1 7
3 5 9

]
=

[
6 3 21
9 15 27

]
.

The determinant of a matrix is a scalar computed from the elements of Determinant
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the matrix according to well-defined rules. Determinants are defined only
for square matrices and are denoted by |A|, where A is a square matrix.
The determinant of a 1× 1 matrix is the scalar itself. The determinant of
a 2× 2 matrix,

A =
[
a11 a12
a21 a22

]
,

is defined as

|A| = a11a22 − a12a21. (2.4)

For example, if

A =
[
1 6

−2 10
]
,

the determinant of A is

|A| = (1)(10)− (6)(−2) = 22.
The determinants of higher-order matrices are obtained by expanding
the determinants as linear functions of determinants of 2× 2 submatrices.
First, it is convenient to define the minor and the cofactor of an element
in a matrix. Let A be a square matrix of order n. For any element ars
in A, a square matrix of order (n − 1) is formed by eliminating the row
and column containing the element ars. Label this matrix Ars, with the
subscripts designating the row and column eliminated from A. Then |Ars|,
the determinant ofArs, is called theminor of the element ars. The product
θrs = (−1)r+s |Ars| is called the cofactor of ars. Each element in a square
matrix has its own minor and cofactor.
The determinant of a matrix of order n is expressed in terms of the ele-
ments of any row or column and their cofactors. Using row i for illustration,
we can express the determinant of A as

|A| =
n∑

j=1

aijθij , (2.5)

where each θij contains a determinant of order (n − 1). Thus, the deter-
minant of order n is expanded as a function of determinants of one less
order. Each of these determinants, in turn, is expanded as a linear function
of determinants of order (n− 2). This substitution of determinants of one
less order continues until |A| is expressed in terms of determinants of 2× 2
submatrices of A.
The first step of the expansion is illustrated for a 3 × 3 matrix A. To
compute the determinant of A, choose any row or column of the matrix.
For each element of the row or column chosen, compute the cofactor of the
element. Then, if the ith row of A is used for the expansion,

|A| = ai1θi1 + ai2θi2 + ai3θi3. (2.6)
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For illustration, let Example 2.2

A =

⎡
⎣ 2 4 61 2 3
5 7 9

⎤
⎦

and use the first row for the expansion of |A|. The cofactors of the elements
in the first row are

θ11 = (−1)(1+1)
∣∣∣∣ 2 37 9

∣∣∣∣ = (18− 21) = −3,

θ12 = (−1)(1+2)
∣∣∣∣ 1 35 9

∣∣∣∣ = −(9− 15) = 6, and

θ13 = (−1)(1+3)
∣∣∣∣ 1 25 7

∣∣∣∣ = (7− 10) = −3.

Then, the determinant of A is

|A| = 2(−3) + 4(6) + 6(−3) = 0

.

If the determinant of a matrix is zero, the matrix is singular, or it is
not of full rank. Otherwise, the matrix is nonsingular. Thus, the matrix
A in Example 2.2 is singular. The linear dependency is seen by noting that
row 1 is equal to twice row 2. The determinants of larger matrices rapidly
become difficult to compute and are obtained with the help of a computer.
Division in the usual sense does not exist in matrix algebra. The concept Inverse of

a Matrixis replaced by multiplication by the inverse of the matrix. The inverse of
a matrix A, designated by A−1, is defined as the matrix that gives the
identity matrix when multiplied by A. That is,

A−1A = AA−1 = I. (2.7)

The inverse of a matrix may not exist. A matrix has a unique inverse if
and only if the matrix is square and nonsingular. A matrix is nonsingular
if and only if its determinant is not zero.
The inverse of a 2× 2 matrix is easily computed. If

A =
[

a11 a12
a21 a22

]
,

then

A−1 =
1
|A|

[
a22 −a12

−a21 a11

]
. (2.8)
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Note the rearrangement of the elements and the use of the determinant of
A as the scalar divisor. For example, if

A =
[
4 3
1 2

]
, then A−1 =

⎡
⎢⎣

2
5 − 3

5

− 1
5

4
5

⎤
⎥⎦ .

That this is the inverse of A is verified by multiplication of A and A−1:

AA−1 =
[
4 3
1 2

]⎡⎢⎣
2
5 − 3

5

− 1
5

4
5

⎤
⎥⎦ = [

1 0
0 1

]
.

The inverse of a matrix is obtained in general by (1) replacing every
element of the matrix with its cofactor, (2) transposing the resulting matrix,
and (3) dividing by the determinant of the original matrix, as illustrated
in the next example.

Consider the following matrix, Example 2.3

B =

⎡
⎣ 1 3 24 5 6
8 7 9

⎤
⎦ .

The determinant of B is

|B| = 1
∣∣∣∣ 5 67 9

∣∣∣∣− 3
∣∣∣∣ 4 68 9

∣∣∣∣+ 2
∣∣∣∣ 4 58 7

∣∣∣∣
= (45− 42)− 3(36− 48) + 2(28− 40)
= 15.

The unique inverse ofB exists since |B| �= 0. The cofactors for the elements
of the first row of B were used in obtaining |B| : θ11 = 3, θ12 = 12, θ13 =
−12. The remaining cofactors are:

θ21 = −
∣∣∣∣ 3 27 9

∣∣∣∣ = −13 θ22 =
∣∣∣∣ 1 28 9

∣∣∣∣ = −7 θ23 = −
∣∣∣∣ 1 38 7

∣∣∣∣ = 17
θ31 =

∣∣∣∣ 3 25 6
∣∣∣∣ = 8 θ32 = −

∣∣∣∣ 1 24 6
∣∣∣∣ = 2 θ33 =

∣∣∣∣ 1 34 5
∣∣∣∣ = −7.

Thus, the matrix of cofactors is⎡
⎣ 3 12 −12

−13 −7 17
8 2 −7

⎤
⎦
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and the inverse of B is

B−1 =
1
15

⎡
⎣ 3 −13 8
12 −7 2

−12 17 −7

⎤
⎦ .

Notice that the matrix of cofactors has been transposed and divided by
|B| to obtain B−1. It is left as an exercise to verify that this is the inverse
of B. As with the determinants, computers are used to find the inverses of
larger matrices.

Note that if A is a diagonal nonsingular matrix, then A−1 is also a Inverse of
a Diagonal
Matrix

diagonal matrix where the diagonal elements of A−1 are the reciprocals of
the diagonal elements of A. That is, if

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

...
0 0 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎦ ,

where aii �= 0, then

A =

⎡
⎢⎢⎢⎢⎢⎣

a−1
11 0 0 · · · 0
0 a−1

22 0 · · · 0
0 0 a−1

33 · · · 0
...

...
...

...
0 0 0 · · · a−1

nn

⎤
⎥⎥⎥⎥⎥⎦ .

Also, if A and B are two nonsingular matrices, then[
A 0
0 B

]−1

=
[
A−1 0
0 B−1

]
.

2.4 Geometric Interpretations of Vectors

The elements of an n× 1 vector can be thought of as the coordinates of a
point in an n-dimensional coordinate system. The vector is represented in
this n-space as the directional line connecting the origin of the coordinate
system to the point specified by the elements. The direction of the vector
is from the origin to the point; an arrowhead at the terminus indicates
direction.
To illustrate, let x′ = ( 3 2 ). This vector is of order two and is plotted Vector

Lengthin two-dimensional space as the line vector going from the origin (0, 0) to
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FIGURE 2.1. The geometric representation of the vectors x′ = (3, 2) and
w′ = (2, −1) in two-dimensional space.

the point (3, 2) (see Figure 2.1). This can be viewed as the hypotenuse of a
right triangle whose sides are of length 3 and 2, the elements of the vector
x. The length of x is then given by the Pythagorean theorem as the square
root of the sum of squares of the elements of x. Thus,

length(x) =
√
32 + 22 =

√
13 = 3.61.

This result extends to the length of any vector regardless of its order.
The sum of squares of the elements in a column vector x is given by (the
matrix multiplication) x′x. Thus, the length of any vector x is

length(x) =
√
x′x. (2.9)

Multiplication of x by a scalar defines another vector that falls precisely Space
Defined by xon the line formed by extending the vector x indefinitely in both directions.

For example,
u′ = (−1)x′ = (−3 −2 )

falls on the extension of x in the negative direction. Any point on this indef-
inite extension of x in both directions can be “reached” by multiplication
of x with an appropriate scalar. This set of points constitutes the space
defined by x, or the space spanned by x. It is a one-dimensional subspace
of the two-dimensional space in which the vectors are plotted. A single
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FIGURE 2.2. Geometric representation of the sum of two vectors.

vector of order n defines a one-dimensional subspace of the n-dimensional
space in which the vector falls.
The second vector w′ = ( 2 1 ), shown in Figure 2.1 with a dotted Linear

Independenceline, defines another one-dimensional subspace. The two subspaces defined
by x and w are disjoint subspaces (except for the common origin). The
two vectors are said to be linearly independent since neither falls in
the subspace defined by the other. This implies that one vector cannot be
obtained by multiplication of the other vector by a scalar.
If the two vectors are considered jointly, any point in the plane can be Two-

Dimensional
Subspace

“reached” by an appropriate linear combination of the two vectors. For
example, the sum of the two vectors gives the vector y (see Figure 2.2),

y′ = x′ +w′ = ( 3 2 ) + ( 2 −1 ) = ( 5 1 ) .

The two vectors x and w define, or span, the two-dimensional subspace
represented by the plane in Figure 2.2. Any third vector of order 2 in this
two-dimensional space must be a linear combination of x and w. That is,
there must be a linear dependency among any three vectors that fall on
this plane.
Geometrically, the vector x is added tow by moving x, while maintaining Vector

Additionits direction, until the base of x rests on the terminus of w. The resultant
vector y is the vector from the origin (0, 0) to the new terminus of x. The
same result is obtained by moving w along the vector x. This is equivalent
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to completing the parallelogram using the two original vectors as adjacent
sides. The sum y is the diagonal of the parallelogram running from the
origin to the opposite corner (see Figure 2.2). Subtraction of two vectors,
say w′ − x′, is most easily viewed as the addition of w′ and (−x′).
Vectors of order 3 are considered briefly to show the more general be- Three-

Dimensional
Subspace

havior. Each vector of order 3 can be plotted in three-dimensional space;
the elements of the vector define the endpoint of the vector. Each vector
individually defines a one-dimensional subspace of the three-dimensional
space. This subspace is formed by extending the vector indefinitely in both
directions. Any two vectors define a two-dimensional subspace if the two
vectors are linearly independent—that is, as long as the two vectors do
not define the same subspace. The two-dimensional subspace defined by
two vectors is the set of points in the plane defined by the origin and the
endpoints of the two vectors. The two vectors defining the subspace and
any linear combination of them lie in this plane.
A three-dimensional space contains an infinity of two-dimensional sub-
spaces. These can be visualized by rotating the plane around the origin.
Any third vector that does not fall in the original plane will, in conjunction
with either of the first two vectors, define another plane. Any three linearly
independent vectors, or any two planes, completely define, or span, the
three-dimensional space. Any fourth vector in that three-dimensional sub-
space must be a linear function of the first three vectors. That is, any four
vectors in a three-dimensional subspace must contain a linear dependency.
The general results are stated in the box:

1. Any vector of order n can be plotted in n-dimensional space and
defines a one-dimensional subspace of the n-dimensional space.

2. Any p linearly independent vectors of order n, p < n, define a p-
dimensional subspace.

3. Any p+ 1 vectors in a p-dimensional subspace must contain a linear
dependency.

Two vectors x and w of the same order are orthogonal vectors if the Orthogonal
Vectorsvector product

x′w = w′x = 0. (2.10)

If

x =

⎛
⎜⎜⎝

1
0

−1
4

⎞
⎟⎟⎠ and w =

⎛
⎜⎜⎝

3
4

−1
−1

⎞
⎟⎟⎠ ,

then x and w are orthogonal because

x′w = (1)(3) + (0)(4) + (−1)(−1) + (4)(−1) = 0.



50 2. INTRODUCTION TO MATRICES

Geometrically, two orthogonal vectors are perpendicular to each other or
they form a right angle at the origin.
Two linearly dependent vectors form angles of 0 or 180 degrees at the Linearly

Dependent
Vectors

origin. All other angles reflect vectors that are neither orthogonal nor lin-
early dependent. In general, the cosine of the angle α between two (column)
vectors x and w is

cos(α) =
x′w√

x′x
√
w′w

. (2.11)

If the elements of each vector have mean zero, the cosine of the angle
formed by two vectors is the product moment correlation between the
two columns of data in the vectors. Thus, orthogonality of two such vectors
corresponds to a zero correlation between the elements in the two vectors. If
two such vectors are linearly dependent, the correlation coefficient between
the elements of the two vectors will be either +1.0 or −1.0 depending on
whether the vectors have the same or opposite directions.

2.5 Linear Equations and Solutions

A set of r linear equations in s unknowns is represented in matrix notation
as Ax = y, where x is a vector of the s unknowns, A is the r× s matrix of
known coefficients on the s unknowns, and y is the r × 1 vector of known
constants on the right-hand side of the equations.
A set of equations may have (1) no solution, (2) a unique solution, or (3)
an infinite number of solutions. In order to have at least one solution, the
equations must be consistent. This means that any linear dependencies
among the rows of A must also exist among the corresponding elements of
y (Searle and Hausman, 1970). For example, the equations⎡

⎣ 1 2 32 4 6
3 3 3

⎤
⎦
⎛
⎝x1

x2
x3

⎞
⎠ =

⎛
⎝ 610
9

⎞
⎠

are inconsistent since the second row of A is twice the first row but
the second element of y is not twice the first element. Since they are not
consistent, there is no solution to this set of equations. Note that x′ =
( 1 1 1 ) satisfies the first and third equations but not the second. If the
second element of y were 12 instead of 10, the equations would be consistent
and the solution x′ = ( 1 1 1 ) would satisfy all three equations.
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One method of determining if a set of equations is consistent is to com- Consistent
Equationspare the rank of A to the rank of the augmented matrix [A y]. The equa-

tions are consistent if and only if

r(A) = r([A y]). (2.12)

Rank can be determined by using elementary (row and column) operations
to reduce the elements below the diagonal to zero. Operations such as
addition of two rows, interchanging rows, and obtaining a scalar multiple
of a row are called elementary row operations. (In a rectangular matrix,
the diagonal is defined as the elements a11, a22, . . . , add, where d is the
lesser of the number of rows and number of columns.) The number of rows
with at least one nonzero element after reduction is the rank of the matrix.

Elementary operations on Example 2.4

A =

⎡
⎣ 1 2 32 4 6
3 3 3

⎤
⎦

give

A∗ =

⎡
⎣ 1 2 3
0 −3 −6
0 0 0

⎤
⎦

so that r(A) = 2. [The elementary operations to obtain A∗ are (1) sub-
tract 2 times row 1 from row 2, (2) subtract 3 times row 1 from row 3,
and (3) interchange rows 2 and 3.] The same elementary operations, plus
interchanging columns 3 and 4, on the augmented matrix

[A y] =

⎡
⎣ 1 2 3 6
2 4 6 10
3 3 3 9

⎤
⎦

give

[A y]∗ =

⎡
⎣ 1 2 6 3
0 −3 −9 −6
0 0 −2 0

⎤
⎦ .

Thus, r([A y]) = 3. Since r([A y]) �= r(A), the equations are not consistent
and, therefore, they have no solution.

Consistent equations either have a unique solution or an infinity of solu- Unique
Solutiontions. If r(A) equals the number of unknowns, the solution is unique and

is given by
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1. x = A−1y, when A is square; or

2. x = A−1
1 y, where A1 is a full rank submatrix of A, when A is

rectangular.

The equations Ax = y with Example 2.5

A =

⎡
⎣ 1 23 3
5 7

⎤
⎦ and y =

⎛
⎝ 6
9
21

⎞
⎠

are consistent. (Proof of consistency is left as an exercise.) The rank of A
equals the number of unknowns [r(A) = 2], so that the solution is unique.
Any two linearly independent equations in the system of equations can be
used to obtain the solution. Using the first two rows gives the full-rank
equations [

1 2
3 3

](
x1
x2

)
=

(
6
9

)
with the solution(

x1
x2

)
=

[
1 2
3 3

]−1 ( 6
9

)

=
1
3

[ −3 2
3 −1

](
6
9

)
=

(
0
3

)
.

Notice that the solution x′ = ( 0 3 ) satisfies the third equation also.

When r(A) in a consistent set of equations is less than the number of Infinite
Solutionsunknowns, there is an infinity of solutions.

Consider the equations Ax = y with Example 2.6

A =

⎡
⎣ 1 2 32 4 6
3 3 3

⎤
⎦ and y =

⎛
⎝ 6
12
9

⎞
⎠ .

The rank of A is r(A) = 2 and elementary operations on the augmented
matrix [A y] give

[A y]∗ =

⎡
⎣ 1 2 3 6
0 −3 −6 −18
0 0 0 0

⎤
⎦ .

Thus, r([A y]) = 2, which equals r(A), and the equations are consistent.
However, r(A) is less than the number of unknowns so that there is an
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infinity of solutions. This infinity of solutions comes from the fact that one
element of x can be chosen arbitrarily and the remaining two chosen so
as to satisfy the set of equations. For example, if x1 is chosen to be 1, the
solution is x′ = ( 1 1 1 ), whereas if x1 is chosen to be 2, the solution is
x′ = ( 2 −1 2 ).

A more general method of finding a solution to a set of consistent equa- Solutions
Using
Generalized
Inverses

tions involves the use of generalized inverses. There are several defini-
tions of generalized inverses [see Searle (1971), Searle and Hausman (1970),
and Rao (1973)]. An adequate definition for our purposes is the following
(Searle and Hausman, 1970).

A generalized inverse of A is any matrix A− that satisfies the
condition AA−A = A.

(A− is used to denote a generalized inverse.) The generalized inverse is not
unique (unless A is square and of full rank, in which case A− = A−1). A
generalized inverse can be used to express a solution to a set of consistent
equations Ax = y as x = A−y. This solution is unique only when r(A)
equals the number of unknowns in the set of equations. (The computer is
used to obtain generalized inverses when needed.)

For illustration, consider the set of consistent equations Ax = y where Example 2.7

A =

⎡
⎣ 1 23 3
5 7

⎤
⎦ and y =

⎛
⎝ 6
9
21

⎞
⎠ .

It has been shown that r(A) = 2 which equals the number of unknowns so
that the solution is unique. A generalized inverse of A is

A− =
1
18

[ −10 16 −4
8 −11 5

]
and the unique solution is given by

x = A−y =
(
0
3

)
.

It is left as an exercise to verify the matrix multiplication of A−y and that
AA−A = A.

For another illustration, consider again the consistent equations Ax = y Example 2.8
from Example 2.6, where

A =

⎡
⎣ 1 2 32 4 6
3 3 3

⎤
⎦ and y =

⎛
⎝ 6
12
9

⎞
⎠ .
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This system has been shown to have an infinity of solutions. A generalized
inverse of A is

A− =

⎡
⎢⎢⎢⎢⎢⎣

− 1
10 − 2

10
4
9

0 0 1
9

1
10

2
10 − 2

9

⎤
⎥⎥⎥⎥⎥⎦ ,

which gives the solution

x = A−y = ( 1 1 1 )′ .

This happens to agree with the first solution obtained in Example 2.6.
Again, it is left as an exercise to verify that x = A−y and AA−A = A.
A different generalized inverse of A may lead to another solution of the
equations.

2.6 Orthogonal Transformations and Projections

The linear transformation of vector x to vector y, both of order n, is
written as y = Ax, where A is the n×n matrix of coefficients effecting the
transformation. The transformation is a one-to-one transformation only if
A is nonsingular. Then, the inverse transformation of y to x is x = A−1y.
A linear transformation is an orthogonal transformation if AA′ = I. Orthogonal

TransformationsThis condition implies that the row vectors of A are orthogonal and of unit
length. Orthogonal transformations maintain distances and angles between
vectors. That is, the spatial relationships among the vectors are not changed
with orthogonal transformations.

For illustration, let y′
1 = ( 3 10 20 ), y

′
2 = ( 6 14 21 ), and Example 2.9

A =

⎡
⎣ 1 1 1

−1 0 1
−1 2 −1

⎤
⎦ .

Then

x1 = Ay1 =

⎡
⎣ 1 1 1

−1 0 1
−1 2 −1

⎤
⎦
⎛
⎝ 310
20

⎞
⎠ =

⎛
⎝ 3317

−3

⎞
⎠

and

x2 = Ay2 =

⎡
⎣ 1 1 1

−1 0 1
−1 2 −1

⎤
⎦
⎛
⎝ 6
14
21

⎞
⎠ =

⎛
⎝ 4115
1

⎞
⎠
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are linear transformations of y1 to x1 and y2 to x2. These are not orthog-
onal transformations because

AA′ =

⎡
⎣ 3 0 00 2 0
0 0 6

⎤
⎦ �= I.

The rows of A are mutually orthogonal (the off-diagonal elements are zero)
but they do not have unit length. This can be made into an orthogonal
transformation by scaling each row vector of A to have unit length by
dividing each vector by its length. Thus,

x∗
1 = A∗y1 =

⎡
⎢⎢⎢⎢⎢⎣

1√
3

1√
3

1√
3

− 1√
2

0 1√
2

− 1√
6

2√
6

− 1√
6

⎤
⎥⎥⎥⎥⎥⎦y1 =

⎛
⎜⎜⎜⎜⎜⎝

33√
3

17√
2

− 3√
6

⎞
⎟⎟⎟⎟⎟⎠

and

x∗
2 = A∗y2 =

⎛
⎜⎜⎜⎜⎜⎝

41√
3

15√
2

1√
6

⎞
⎟⎟⎟⎟⎟⎠

are orthogonal transformations. It is left as an exercise to verify that the
orthogonal transformation has maintained the distance between the two
vectors; that is, verify that

(y1 − y2)
′(y1 − y2) = (x

∗
1 − x∗

2)
′(x∗

1 − x∗
2) = 26.

[The squared distance between two vectors u and v is (u− v)′(u− v).]

Projection of a vector onto a subspace is a special case of a transforma- Projections
tion. (Projection is a key step in least squares.) The objective of a projec-
tion is to transform y in n-dimensional space to that vector ŷ in a subspace
such that ŷ is as close to y as possible. A linear transformation of y to ŷ,
ŷ = Py, is a projection if and only if P is idempotent and symmetric
(Rao, 1973), in which case P is referred to as a projection matrix.
An idempotentmatrix is a square matrix that remains unchanged when Idempotent

Matricesmultiplied by itself. That is, the matrix A is idempotent if AA = A. It can
be verified that the rank of an idempotent matrix is equal to the sum of the
elements on the diagonal (Searle, 1982; Searle and Hausman, 1970). This
sum of elements on the diagonal of a square matrix is called the trace of
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the matrix and is denoted by tr(A). Symmetry is not required for a matrix
to be idempotent. However, all idempotent matrices with which we are
concerned are symmetric.
The subspace of a projection is defined, or spanned, by the columns or
rows of the projection matrix P . If P is a projection matrix, (I−P ) is also
a projection matrix. However, since P and (I−P ) are orthogonal matrices,
the projection by (I − P ) is onto the subspace orthogonal to that defined
by P . The rank of a projection matrix is the dimension of the subspace
onto which it projects and, since the projection matrix is idempotent, the
rank is equal to its trace.

The matrix Example 2.10

A =
1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦

is idempotent since

AA = A2 =
1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦ 1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦

=
1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦ = A.

The rank of A is given by

r(A) = tr(A) =
1
6
(5 + 2 + 5) = 2.

Since A is symmetric, it is also a projection matrix. Thus, the linear
transformation

ŷ = Ay1 =
1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦
⎛
⎝ 3
10
20

⎞
⎠ =

⎛
⎝ 2.5
11.0
19.5

⎞
⎠

is a projection of y1 = ( 3 10 20 )
′ onto the subspace defined by the

columns of A. The vector ŷ is the unique vector in this subspace that
is closest to y1. That is, (y1 − ŷ)′(y1 − ŷ) is a minimum. Since A is a
projection matrix, so is

I −A =

⎡
⎣ 1 0 00 1 0
0 0 1

⎤
⎦− 1
6

⎡
⎣ 5 2 −1
2 2 2

−1 2 5

⎤
⎦ = 1

6

⎡
⎣ 1 −2 1

−2 4 −2
1 −2 1

⎤
⎦ .
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Then,

e = (I −A)y1 =
1
6

⎡
⎣ 1 −2 1

−2 4 −2
1 −2 1

⎤
⎦
⎛
⎝ 3
10
20

⎞
⎠ =

⎛
⎝ 1

2−1
1
2

⎞
⎠

is a projection onto the subspace orthogonal to the subspace defined by A.
Note that ŷ′e = 0 and ŷ + e = y1.

2.7 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of matrices are needed for some of the meth-
ods to be discussed, including principal component analysis, principal com-
ponent regression, and assessment of the impact of collinearity (see Chap-
ter 13). Determining the eigenvalues and eigenvectors of a matrix is a dif-
ficult computational problem and computers are used for all but the very
simplest cases. However, the reader needs to develop an understanding of
the eigenanalysis of a matrix.
The discussion of eigenanalysis is limited to real, symmetric, nonneg-
ative definite matrices and, then, only key results are given. The reader
is referred to other texts [such as Searle and Hausman (1970)] for more
general discussions. In particular, Searle and Hausman (1970) show sev-
eral important applications of eigenanalysis of asymmetric matrices. Real
matrices do not contain any complex numbers as elements. Symmetric,
nonnegative definite matrices are obtained from products of the type
B′B and, if used as defining matrices in quadratic forms (see Chapter 4),
yield only zero or positive scalars.
It can be shown that for a real, symmetric matrix A (n × n) there Definitions
exists a set of n scalars λi, and n nonzero vectors zi, i = 1, . . . , n, such
that

Azi = λizi,

or Azi − λizi = 0,

or (A− λiI)zi = 0, i = 1, . . . , n. (2.13)

The λi are the n eigenvalues (characteristic roots or latent roots) of the
matrix A and the zi are the corresponding (column) eigenvectors (char-
acteristic vectors or latent vectors).
There are nonzero solutions to equation 2.13 only if the matrix (A−λiI) Solution
is less than full rank—that is, only if the determinant of (A− λiI) is zero.
The λi are obtained by solving the general determinantal equation

|A− λI| = 0. (2.14)



58 2. INTRODUCTION TO MATRICES

Since A is of order n × n, the determinant of (A − λI) is an nth degree
polynomial in λ. Solving this equation gives the n values of λ, which are not
necessarily distinct. Each value of λ is then used in turn in Equation 2.13
to find the companion eigenvector zi.
When the eigenvalues are distinct, the vector solution to Equation 2.13
is unique except for an arbitrary scale factor and sign. By convention, each
eigenvector is defined to be the solution vector scaled to have unit length;
that is, z′

izi = 1. Furthermore, the eigenvectors are mutually orthogonal;
z′
izj = 0 when i �= j. When the eigenvalues are not distinct, there is an
additional degree of arbitrariness in defining the subsets of vectors corre-
sponding to each subset of nondistinct eigenvalues. Nevertheless, the eigen-
vectors for each subset can be chosen so that they are mutually orthogonal
as well as orthogonal to the eigenvectors of all other eigenvalues. Thus, if
Z = (z1 z2 · · · zn ) is the matrix of eigenvectors, then Z ′Z = I. This
implies that Z ′ is the inverse of Z so that ZZ ′ = I as well.
Using Z and L, defined as the diagonal matrix of the λi, we can write Decomposition

of a Matrixthe initial equations Azi = λizi as

AZ = ZL, (2.15)
or Z ′AZ = L, (2.16)
or A = ZLZ ′. (2.17)

Equation 2.17 shows that a real symmetric matrix A can be transformed to
a diagonal matrix by pre- and postmultiplying by Z ′ and Z, respectively.
Since L is a diagonal matrix, equation 2.17 shows that A can be expressed
as the sum of matrices:

A = ZLZ ′ =
∑

λi(ziz
′
i), (2.18)

where the summation is over the n eigenvalues and eigenvectors. Each term
is an n× n matrix of rank 1 so that the sum can be viewed as a decompo-
sition of the matrix A into n matrices that are mutually orthogonal. Some
of these may be zero matrices if the corresponding λi are zero. The rank of
A is revealed by the number of nonzero eigenvalues λi.

For illustration, consider the matrix Example 2.11

A =
[
10 3
3 8

]
.

The eigenvalues of A are found by solving the determinantal equation
(equation 2.14),

|(A− λI)| =
∣∣∣∣
[
10− λ 3
3 8− λ

]∣∣∣∣ = 0
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or

(10− λ)(8− λ)− 9 = λ2 − 18λ+ 71 = 0.

The solutions to this quadratic (in λ) equation are

λ1 = 12.16228 and λ2 = 5.83772

arbitrarily ordered from largest to smallest. Thus, the matrix of eigenvalues
of A is

L =
[
12.16228 0
0 5.83772

]
.

The eigenvector corresponding to λ1 = 12.16228 is obtained by solving
equation 2.13 for the elements of z1:

(A− 12.16228I)
(
z11
z21

)
= 0

or [−2.162276 3
3 −4.162276

](
z11
z21

)
= 0.

Arbitrarily setting z11 = 1 and solving for z21, using the first equation,
gives z21 = .720759. Thus, the vector z′

1 = ( 1 .720759 ) satisfies the first
equation (and it can be verified that it also satisfies the second equation).
Rescaling this vector so it has unit length by dividing by

length(z1) =
√
z′

1z1 =
√
1.5194935 = 1.232677

gives the first eigenvector

z1 = ( .81124 .58471 )′ .

The elements of z2 are found in the same manner to be

z2 = (−.58471 .81124 )′ .

Thus, the matrix of eigenvectors for A is

Z =
[

.81124 −.58471

.58471 .81124

]
.

Notice that the first column of Z is the first eigenvector, and the second
column is the second eigenvector.

Continuing with Example 2.11, notice that the matrix A is of rank two Example 2.12
because both eigenvalues are nonzero. The decomposition of A into two
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orthogonal matrices each of rank one, A = A1 + A2, equation 2.18, is
given by

A1 = λ1z1z
′
1 = 12.16228

(
.81124
.58471

)
( .81124 .58471 )

=
[
8.0042 5.7691
5.7691 4.1581

]

and

A2 = λ2z2z
′
2 =

[
1.9958 −2.7691

−2.7691 3.8419

]
.

Since the two columns of A1 are multiples of the same vector u1, they are
linearly dependent and, therefore, r(A1) = 1. Similarly, r(A2) = 1. Multi-
plication of A1 with A2 shows that the two matrices are orthogonal to each
other:A1A2 = 0, where 0 is a 2×2 matrix of zeros. Thus, the eigenanalysis
has decomposed the rank-2 matrix A into two rank-1 matrices. It is left as
an exercise to verify the multiplication and that A1 +A2 = A.

Notice that the sum of the eigenvalues in Example 2.11, λ1+λ2 = 18, is
equal to tr(A). This is a general result: the sum of the eigenvalues for any
square symmetric matrix is equal to the trace of the matrix. Furthermore,
the trace of each of the component rank-1 matrices is equal to its eigenvalue:

tr(A1) = λ1 and tr(A2) = λ2.

Note that for A = B′B, we have

z′
iAzi = λiz

′
izi

and

λi =
z′
iAzi

z′
izi

=
z′
iB

′Bzi

z′
izi

=
c′ici
z′
izi

,

where ci = Bzi. Therefore, if A = B′B for some real matrix B, then the
eigenvalues of A are nonnegative. Symmetric matrices with nonnegative
eigenvalues are called nonnegative definite matrices.

2.8 Singular Value Decomposition

The eigenanalysis, Section 2.7, applies to a square symmetric matrix. In
this section, the eigenanalysis is used to develop a similar decomposition,
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called the singular value decomposition, for a rectangular matrix. The
singular value decomposition is then used to give the principal compo-
nent analysis.
Let X be an n× p matrix with n > p. Then X ′X is a square symmetric Singular Value

Decompositionmatrix of order p × p. From Section 2.7, X ′X can be expressed in terms
of its eigenvalues L and eigenvectors Z as

X ′X = ZLZ ′. (2.19)

Here L is a diagonal matrix consisting of eigenvalues λ1, . . . , λp of X ′X.
From Section 2.7, we know that λ1, . . . , λp are nonnegative. Similarly,XX ′

is a square symmetric matrix but of order n × n. The rank of XX ′ will
be at most p so there will be at most p nonzero eigenvalues; they are in
fact the same p eigenvalues obtained from X ′X. In addition, XX ′ will
have at least n− p eigenvalues that are zero. These n− p eigenvalues and
their vectors are dropped in the following. Denote with U the matrix of
eigenvectors ofXX ′ that correspond to the p eigenvalues common toX ′X.
Each eigenvector ui will be of order n× 1. Then,

XX ′ = ULU ′. (2.20)

Equations 2.19 and 2.20 jointly imply that the rectangular matrix X can
be written as

X = UL1/2Z ′, (2.21)

where L1/2 is the diagonal matrix of the positive square roots of the p
eigenvalues of X ′X. Thus, L1/2L1/2 = L. Equation 2.21 is the singular
value decomposition of the rectangular matrixX. The elements of L1/2,
λ

1/2
i are called the singular values and the column vectors in U and Z
are the left and right singular vectors, respectively.
Since L1/2 is a diagonal matrix, the singular value decomposition ex-
presses X as a sum of p rank-1 matrices,

X =
∑

λ
1/2
i uiz

′
i, (2.22)

where summation is over i = 1, . . . , p. Furthermore, if the eigenvalues have
been ranked from largest to smallest, the first of these matrices is the
“best” rank-1 approximation to X, the sum of the first two matrices is
the “best” rank-2 approximation of X, and so forth. These are “best”
approximations in the least squares sense; that is, no other matrix (of the
same rank) will give a better agreement with the original matrix X as
measured by the sum of squared differences between the corresponding
elements of X and the approximating matrix (Householder and Young,
1938). The goodness of fit of the approximation in each case is given by
the ratio of the sum of the eigenvalues (squares of the singular values)
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used in the approximation to the sum of all eigenvalues. Thus, the rank-1
approximation has a goodness of fit of λ1/

∑
λi, the rank-2 approximation

has a goodness of fit of (λ1 + λ2)/
∑

λi, and so forth.
Recall that there is an arbitrariness of sign for the eigenvectors obtained
from the eigenalysis of X ′X and XX ′. Thus, care must be exercised in
choice of sign for the eigenvectors in reconstructing X or lower-order ap-
proximations ofX when the left and right eigenvectors have been obtained
from eigenanalyses. This is not a problem when U and Z have been ob-
tained directly from the singular value decomposition of X.

Singular value decomposition is illustrated using data on average mini- Example 2.13
mum daily temperature X1, average maximum daily temperature X2, total
rainfall X3, and total growing degree days X4, for six locations. The data
were reported by Saeed and Francis (1984) to relate environmental con-
ditions to cultivar by environment interactions in sorghum and are used
with their kind permission. Each variable has been centered to have zero
mean, and standardized to have unit sum of squares. (The centering and
standardization are not necessary for a singular value decomposition. The
centering removes the mean effect of each variable so that the dispersion
about the mean is being analyzed. The standardization puts all variables
on an equal basis and is desirable in most cases, particularly when the
variables have different units of measure.) The X matrix is

X = (X1 X2 X3 X4 )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

.178146 −.523245 .059117 −.060996

.449895 −.209298 .777976 .301186
−.147952 .300866 −.210455 −.053411
−.057369 .065406 .120598 −.057203
−.782003 −.327028 −.210455 −.732264
.359312 .693299 −.536780 .602687

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The singular value decomposition of X into UL1/2Z ′ gives

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

−.113995 .308905 −.810678 .260088
.251977 .707512 .339701 −.319261
.007580 −.303203 .277432 .568364

−.028067 .027767 .326626 .357124
−.735417 −.234888 .065551 −.481125
.617923 −.506093 −.198632 −.385189

⎤
⎥⎥⎥⎥⎥⎥⎦

L1/2 =

⎡
⎢⎣
1.496896 0 0 0
0 1.244892 0 0
0 0 .454086 0
0 0 0 .057893

⎤
⎥⎦
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Z =

⎡
⎢⎣
.595025 .336131 .383204 .621382
.451776 .540753 .657957 .265663
.004942 .768694 .639051 .026450
.664695 .060922 .108909 .736619

⎤
⎥⎦ .

The columns ofU andZ are the left and right singular vectors, respectively.
The first column of U , u1, the first column of Z, z1, and the first singular
value, λ1 = 1.496896, give the best rank-1 approximation of X,

A1 = λ
1/2
1 u1z

′
1

= (1.4969)

⎛
⎜⎜⎜⎜⎜⎜⎝

−.1140
.2520
.0076

−.0281
−.7354
.6179

⎞
⎟⎟⎟⎟⎟⎟⎠
( .5950 .4518 .0049 .6647 )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−.101535 −.077091 −.000843 −.113423
.224434 .170403 .001864 .250712
.006752 .005126 .000056 .007542

−.024999 −.018981 −.000208 −.027927
−.655029 −.497335 −.005440 −.731725
.550378 .417877 .004571 .614820

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The goodness of fit of A1 to X is measured by

λ1∑
λi
=
(1.4969)2

4
= .56

or the sum of squares of the differences between the elements of X and
A1, the lack of fit, is 44% of the total sum of squares of the elements in X.
This is not a very good approximation.
The rank-2 approximation to X is obtained by adding to A1 the matrix

A2 = λ
1/2
2 u2z

′
2. This gives

A1 +A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

.027725 −.285040 .295197 −.089995

.520490 −.305880 .678911 .304370
−.120122 .209236 −.290091 −.015453
−.013380 −.037673 .026363 −.025821
−.753317 −.339213 −.230214 −.749539
.338605 .758568 −.479730 .576438

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which has goodness of fit

λ1 + λ2∑
λi

=
(1.4969)2 + (1.2449)2

4
= .95.
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In terms of approximatingX with the rank-2 matrixA1+A2, the goodness
of fit of .95 means that the sum of squares of the discrepancies between
X and (A1 +A2) is 5% of the total sum of squares of all elements in X.
The sum of squares of all elements in X is

∑
λi, the sum of squares of all

elements in (A1+A2) is (λ1+λ2), and the sum of squares of all elements in
[X− (A1+A2)] is (λ3+λ4). In terms of the geometry of the data vectors,
the goodness of fit of .95 means that 95% of the dispersion of the “cloud”
of points in the original four-dimensional space is, in reality, contained in
two dimensions, or the points in four-dimensional space very nearly fall on
a plane. Only 5% of the dispersion is lost if the third and fourth dimensions
are ignored.
Using all four singular values and their singular vectors gives the com-
plete decomposition ofX into four orthogonal rank-1 matrices. The sum of
the four matrices equals X, within the limits of rounding error. The anal-
ysis has shown, by the relatively small size of the third and fourth singular
values, that the last two dimensions contain little of the dispersion and can
safely be ignored in interpretation of the data.

The singular value decomposition is the first step in principal com- Principal
Component
Analysis

ponent analysis. Using the result X = UL1/2Z ′ and the property that
Z′Z = I, one can define the n× p matrix W as

W = XZ = UL1/2. (2.23)

The first column of Z is the first of the right singular vectors of X, or
the first eigenvector of X ′X. Thus, the coefficients in the first eigenvector
define the particular linear function of the columns of X (of the original
variables) that generates the first column ofW . The second column ofW
is obtained using the second eigenvector of X ′X, and so on. Notice that
W ′W = L. Thus, W is an n× p matrix that, unlike X, has the property
that all its columns are orthogonal. (L is a diagonal matrix so that all
off-diagonal elements, the sums of products between columns of W , are
zero.) The sum of squares of the ith column of W is λi, the ith diagonal
element of L. Thus, if X is an n× p matrix of observations on p variables,
each column of W is a new variable defined as a linear transformation of
the original variables. The ith new variable has sum of squares λi and all
are pairwise orthogonal. This analysis is called the principal component
analysis of X, and the columns of W are the principal components
(sometimes called principal component scores).
Principal component analysis is used where the columns ofX correspond
to the observations on different variables. The transformation is to a set
of orthogonal variables such that the first principal component accounts
for the largest possible amount of the total dispersion, measured by λ1, the
second principal component accounts for the largest possible amount of the
remaining dispersion λ2, and so forth. The total dispersion is given by the
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sum of all eigenvalues, which is equal to the sum of squares of the original
variables; tr(X ′X) = tr(W ′W ) =

∑
λi.

For the Saeed and Francis data, Example 2.13, each column of Z contains Example 2.14
the coefficients that define one of the principal components as a linear
function of the original variables. The first vector in Z,

z1 = ( .5950 .4518 .0049 .6647 )′ ,

has similar first, second, and fourth coefficients with the third coefficient
being near zero. Thus, the first principal component is essentially an aver-
age of the three temperature variables X1, X2, and X4. The second column
vector in Z,

z2 = ( .3361 −.5408 .7687 .0609 )′ ,

gives heavy positive weight to X3, heavy negative weight to X2, and mod-
erate positive weight to X1. Thus, the second principal component will be
large for those observations that have high rainfall X3, and small difference
between the maximum and minimum daily temperatures X2 and X1.
The third and fourth principal components account for only 5% of the to-
tal dispersion. This small amount of dispersion may be due more to random
“noise” than to real patterns in the data. Consequently, the interpretation
of these components may not be very meaningful. The third principal com-
ponent will be large when there is high rainfall and large difference between
the maximum and minimum daily temperatures,

z3 = (−.3832 .6580 .6391 −.1089 )′ .

The variable degree days X4 has little involvement in the second and third
principal components; the fourth coefficient is relatively small. The fourth
principal component is determined primarily by the difference between an
average minimum daily temperature and degree days,

z4 = ( .6214 .2657 −.0265 −.7366 )′ .

The principal component vectors are obtained either by the multiplica-
tion W = UL1/2 or W = XZ. The first is easier since it is the simple
scalar multiplication of each column of U with the appropriate λ1/2

i .

The principal component vectors for the Saeed and Francis data of Ex- Example 2.15



66 2. INTRODUCTION TO MATRICES

ample 2.13 are (with some rounding)

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

−.1706 .3846 −.3681 .0151
.3772 .8808 .1543 −.0185
.0113 −.3775 .1260 .0329

−.0420 .0346 .1483 .0207
−1.1008 −.2924 .0298 −.0279

.9250 −.6300 −.0902 −.0223

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The sum of squares of the first principal component, the first column ofW ,
is λ1 = (1.4969)2 = 2.2407. Similarly, the sums of squares for the second,
third, and fourth principal components are

λ2 = (1.2449)2 = 1.5498
λ3 = (.4541)2 = .2062
λ4 = (.0579)2 = .0034.

These sum to 4.0, the total sum of squares of the original three variables
after they were standardized. The proportion of the total sum of squares
accounted for by the first principal component is λ1/

∑
λi = 2.2407/4 = .56

or 56%. The first two principal components account for (λ1 + λ2)/4 =
3.79/4 = .95 or 95% of the total sum of squares of the four original variables.
Each of the original data vectors in X was a vector in six-dimensional
space and, together, the four vectors defined a four-dimensional subspace.
These vectors were not orthogonal. The four vectors in W , the principal
component vectors, are linear functions of the original vectors and, as such,
they fall in the same four-dimensional subspace. The principal component
vectors, however, are orthogonal and defined such that the first principal
component vector has the largest possible sum of squares. This means that
the direction of the first principal component axis coincides with the major
axis of the elipsoid of observations, Figure 2.3. Note that the “cloud” of
observations, the data points, does not change; only the axes are being
redefined. The second principal component has the largest possible sum
of squares of all vectors orthogonal to the first, and so on. The fact that
the first two principal components account for 95% of the sum of squares
in this example shows that very little of the dispersion among the data
points occurs in the third and fourth principal component dimensions. In
other words, the variability among these six locations in average minimum
and average maximum temperature, total rainfall, and total growing degree
days, can be adequately described by considering only the two dimensions
(or variables) defined by the first two principal components.
The plot of the first two principal components from the Saeed and Fran-
cis data, Figure 2.3, shows that locations 5 and 6 differ from each other
primarily in the first principal component. This component was noted ear-
lier to be mainly a temperature difference; location 6 is the warmer and has
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FIGURE 2.3. The first two principal components of the Saeed and Francis (1984)
data on average minimum temperature, average maximum temperature, total rain-
fall, and growing degree days for six locations. The first principal component pri-
marily reflects average temperature. The second principal component is a measure
of rainfall minus the spread between minimum and maximum temperature.



68 2. INTRODUCTION TO MATRICES

the longer growing season. The other four locations differ primarily in the
second principal component which reflects amount of rainfall and the dif-
ference in maximum and minimum temperature. Location 2 has the highest
rainfall and tends to have a large difference in maximum and minimum daily
temperature. Location 6 is also the lowest in the second principal compo-
nent indicating a lower rainfall and small difference between the maximum
and minimum temperature. Thus, location 6 appears to be a relatively hot,
dry environment with somewhat limited diurnal temperature variation.

2.9 Summary

This chapter has presented the key matrix operations that are used in
this text. The student must be able to use matrix notation and matrix
operations. Of particular importance are

• the concepts of rank and the transpose of a matrix;
• the special types of matrices: square, symmetric, diagonal, identity,
and idempotent;

• the elementary matrix operations of addition and multiplication; and
• the use of the inverse of a square symmetric matrix to solve a set of
equations.

The geometry of vectors and projections is useful in understanding least
squares principles. Eigenanalysis and singular value decomposition are used
later in the text.

2.10 Exercises

2.1. Let

A =

⎡
⎣ 1 0
2 4
−1 2

⎤
⎦ , B =

[
1 2 −1
0 3 −4

]
,

c′ = ( 1 2 0 ) , and d = 2, a scalar.

Perform the following operations, if possible. If the operation is not
possible, explain why.

(a) c′A

(b) A′c
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(c) B′ +A

(d) c′B

(e) A− d

(f) (dB′ +A).

2.2. Find the rank of each of the following matrices. Which matrices are
of full rank?

A =

⎡
⎢⎣
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

⎤
⎥⎦ B =

⎡
⎢⎣
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎤
⎥⎦

C =

⎡
⎢⎢⎣
1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1

⎤
⎥⎥⎦ .

2.3. Use B in Exercise 2.2 to compute D = B(B′B)−1B′. Determine
whether D is idempotent. What is the rank of D?

2.4. Find aij elements to make the following matrix symmetric. Can you
choose a33 to make the matrix idempotent?

A =

⎡
⎢⎢⎣
1 2 a13 4
2 −1 0 a24
6 0 a33 −2

a41 8 −2 3

⎤
⎥⎥⎦ .

2.5. Verify that A and B are inverses of each other.

A =
[
10 5
3 2

]
B =

[ 2
5 −1

− 3
5 2

]
.

2.6. Find b41 such that a and b are orthogonal.

a =

⎛
⎜⎜⎝

2
0

−1
3

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

6
−1
3

b41

⎞
⎟⎟⎠ .

2.7. Plot the following vectors on a two-dimensional coordinate system.

v1 =
(
1
1

)
v2 =

(
4
1

)
v3 =

(
1

−4
)
.

By inspection of the plot, which pairs of vectors appear to be orthog-
onal? Verify numerically that they are orthogonal and that all other
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pairs in this set are not orthogonal. Explain from the geometry of
the plot how you know there is a linear dependency among the three
vectors.

2.8. The three vectors in Exercise 2.7 are linearly dependent. Find the
linear function of v1 and v2 that equals v3. Set the problem up as a
system of linear equations to be solved. Let V = (v1 v2 ), and let
x′ = (x1 x2 ) be the vector of unknown coefficients. Then, V x = v3
is the system of equations to be solved for x.

(a) Show that the system of equations is consistent.
(b) Show that there is a unique solution.
(c) Find the solution.

2.9. Expand the set of vectors in Exercise 2.7 to include a fourth vector,
v′

4 = ( 8 5 ). Reformulate Exercise 2.8 to include the fourth vector
by including v4 in V and an additional coefficient in x. Is this system
of equations consistent? Is the solution unique? Find a solution. If
solutions are not unique, find another solution.

2.10. Use the determinant to determine which of the following matrices has
a unique inverse.

A =
[
1 1
4 10

]
B =

[
4 −1
0 6

]
C =

[
6 3
4 2

]
.

2.11. Given the following matrix,

A =
[
3

√
2√

2 2

]
,

(a) find the eigenvalues and eigenvectors of A.
(b) What do your findings tell you about the rank of A?

2.12. Given the following eigenvalues with their corresponding eigenvectors,
and knowing that the original matrix was square and symmetric,
reconstruct the original matrix.

λ1 = 6 z1 =
(
0
1

)

λ2 = 2 z2 =
(
1
0

)
.

2.13. Find the inverse of the following matrix,

A =

⎡
⎣ 5 0 0
0 10 2
0 2 3

⎤
⎦ .
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2.14. Let

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 .2 0
1 .4 0
1 .6 0
1 .8 0
1 .2 .1
1 .4 .1
1 .6 .1
1 .8 .1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

242
240
236
230
239
238
231
226

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(a) Compute X ′X and X ′Y . Verify by separate calculations that
the (i, j) = (2, 2) element in X ′X is the sum of squares of
column 2 in X. Verify that the (2, 3) element is the sum of
products between columns 2 and 3 of X. Identify the elements
in X ′Y in terms of sums of squares or products of the columns
of X and Y .

(b) Is X of full column rank? What is the rank of X ′X?

(c) Obtain (X ′X)−1. What is the rank of (X ′X)−1? Verify by ma-
trix multiplication that (X ′X)−1X ′X = I.

(d) Compute P = X(X ′X)−1X ′ and verify by matrix multiplica-
tion that P is idempotent. Compute the trace tr(P ). What is
r(P )?

2.15. Use X as defined in Exercise 2.14.

(a) Find the singular value decomposition of X. Explain what the
singular values tell you about the rank of X.

(b) Compute the rank-1 approximation of X; call it A1. Use the
singular values to state the “goodness of fit” of this rank-1 ap-
proximation.

(c) Use A1 to compute a rank-1 approximation of X ′X; that is,
compute A′

1A1. Compare tr(A′
1A1) with λ1 and tr(X ′X).

2.16. Use X ′X as computed in Exercise 2.14.

(a) Compute the eigenanalysis of X ′X. What is the relationship
between the singular values of X obtained in Exercise 2.15 and
the eigenvalues obtained for X ′X?

(b) Use the results of the eigenanalysis to compute the rank-1 ap-
proximation of X ′X. Compare this result to the approximation
of X ′X obtained in Exercise 2.15.

(c) Show algebraically that they should be identical.
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2.17. Verify that

A =
1
15

⎡
⎣ 3 −13 8
12 −7 2

−12 17 −7

⎤
⎦

is the inverse of

B =

⎡
⎣ 1 3 24 5 6
8 7 9

⎤
⎦ .

2.18. Show that the equations Ax = y are consistent where

A =

⎡
⎣ 1 23 3
5 7

⎤
⎦ and y =

⎛
⎝ 69
21

⎞
⎠ .

2.19. Verify that

A− =
1
18

[ −10 16 −4
8 −11 5

]
is a generalized inverse of

A =

⎡
⎣ 1 23 3
5 7

⎤
⎦ .

2.20. Verify that

A− =

⎡
⎢⎢⎢⎢⎢⎣

− 1
10 − 2

10
4
9

0 0 1
9

1
10

2
10 − 2

9

⎤
⎥⎥⎥⎥⎥⎦

is a generalized inverse of

A =

⎡
⎣ 1 2 32 4 6
3 3 3

⎤
⎦ .

2.21. Use the generalized inverse in Exercise 2.20 to obtain a solution to
the equations Ax = y, where A is defined in Exercise 2.20 and y =
( 6 12 9 )′. Verify that the solution you obtained satisfies Ax = y.

2.22. The eigenanalysis of

A =
[
10 3
3 8

]
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in Section 2.7 gave

A1 =
[
8.0042 5.7691
5.7691 4.1581

]
and A2 =

[
1.9958 −2.7691

−2.7691 3.8419

]
.

Verify the multiplication of the eigenvectors to obtain A1 and A2.
Verify that A1 + A2 = A, and that A1 and A2 are orthogonal to
each other.

2.23. In Section 2.6, a linear transformation of y1 = ( 3 10 20 )
′ to x1 =

( 33 17 −3 )′ and of y2 = ( 6 14 21 )
′ to x2 = ( 41 15 1 )

′ was
made using the matrix

A =

⎡
⎣ 1 1 1

−1 0 1
−1 2 −1

⎤
⎦ .

The vectors of A were then standardized so that A′A = I to produce
the orthogonal transformation of y1 and y2 to

x∗
1 = ( 33/

√
3 17/

√
2 −3/√6 )′

and
x∗

2 = ( 41/
√
3 15/

√
2 1/

√
6 )′ ,

respectively. Show that the squared distance between y1 and y2 is
unchanged when the orthogonal transformation is made but not when
the nonorthogonal transformation is made. That is, show that

(y1 − y2)
′(y1 − y2) = (x

∗
1 − x∗

2)
′(x∗

1 − x∗
2)

but that

(y1 − y2)
′(y1 − y2) �= (x1 − x2)′(x1 − x2).

2.24. (a) Let A be an m×n matrix and B be an n×m matrix. Then show
that tr(AB) = tr(BA).
(b) Use (a) to show that tr(ABC) = tr(BCA), where C is anm×m
matrix.

2.25. Let a∗ be an m× 1 vector with a∗′a∗ > 0. Define a = a∗/(a∗′a∗)1/2

and A = aa′. Show that A is a symmetric idempotent matrix of rank
1.

2.26. Let a and b be two m× 1 vectors that are orthogonal to each other.
Define A = aa′ and B = bb′. Show that AB = BA = 0, a matrix
of zeros.
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2.27. Gram–Schmidt orthogonalization. An orthogonal basis for a space
spanned by some vectors can be obtained using the Gram–Schmidt
orthogonalization procedure.

(a) Consider two linearly independent vectors v1 and v2. Define
z1 = v1 and z2 = v2 − v1c2.1, where c2.1 = (v′

1v2)/(v′
1v1).

Show that z1 and z2 are orthogonal. Also, show that z1 and z2
span the same space as v1 and v2.

(b) Consider three linearly independent vectors v1, v2, and v3. De-
fine z1 and z2 as in (a) and z3 = v3 − c3.1z1 − c3.2z2, where
c3.i = (z′

iv3)/(z′
izi), i = 1, 2. Show that z1, z2, and z3 are

mutually orthogonal and span the same space as v1, v2, and v3.


