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Let R be a rectangle in the plane defined by = € [¢,d],y € [a, b]. Suppose
that f(z,y) is a continuous function on R. We want to show that

/ /R F(z,y)dA = / d / " Fla,y)dyde

The proof will not depend on the order of integration in z and y, so reversing
their roles in the subsequent proof shows that the integral is unchanged when
integrating first with respect to x and then y.

We begin by fixing some notation. Let (xzo,...,x,,) be the endpoints of
a partition of [¢,d] into m parts. So in particular, zq = ¢ and z,, = d.
Similarly, let (yo,...,yn) be the endpoints of a partition of [a, b]. This gives
a partition of the rectangle R into mn cells.

Roughly, we know that as this partition gets finer and finer, i.e. mn gets

large, then
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Precisely, we mean that since f is continuous, the limit of the Riemann sums
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Recall that this just means that given any ¢ > 0 there is an N such that if
mn > N then

< €. (1)

izn:f(xiayj)ij Azx; — //Rf(x,y)dA

i=1 j=1




Now we want to use our intuition about the double sum. We notice
that the inner sum looks like a Riemann sum, which approximates a single
integral. In fact, for fixed index i, f(z;,y) is a continuous function of y so
we know that
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Because this limit exists, we again use the definition of the limit at infinity
to conclude that, given any small number ¢’ > 0, then for n large enough,
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So substituting this result into the expression (1) we have, for any ¢ > 0
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Note that
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since the sum over Awx; is just a partition of the interval [c,d]|. By choosing
¢’ small enough, we can guarantee that
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for any € > 0.

But this means that by definition,

Jim fj ( / bf(w)dy) Ao = [ /R f(z,y)dA.

The left-hand side of this equation is a Riemann sum:

nllféozz; (/abf(%y)dy> Ar; = /cd (/abf(xi,y)dy) dx

Comparing the two equalities, we conclude

J[ staia= | d ( / bf(a:hy)dy) dr.
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