
Chapter 4

Constrained Optimization

4.1 Equality Constraints (Lagrangians)

Suppose we have a problem:

Maximize 5� (x1 � 2)2 � 2(x2 � 1)2

subject to
x1 + 4x2 = 3

If we ignore the constraint, we get the solution x1 = 2; x2 = 1, which is too large for the
constraint. Let us penalize ourselves � for making the constraint too big. We end up with a
function

L(x1; x2; �) = 5� (x1 � 2)2 � 2(x2 � 1)2 + �(3� x1 � 4x2)

This function is called the Lagrangian of the problem. The main idea is to adjust � so that we
use exactly the right amount of the resource.

� = 0 leads to (2; 1).
� = 1 leads to (3=2; 0) which uses too little of the resource.
� = 2=3 gives (5=3; 1=3) and the constraint is satis�ed exactly.
We now explore this idea more formally. Given a nonlinear program (P) with equality con-

straints:

Minimize (or maximize) f(x)
subject to
g1(x) = b1
g2(x) = b2
...

gm(x) = bm

a solution can be found using the Lagrangian:

L(x; �) = f(x) +
mX
i=1

�i(bi � gi(x))

(Note: this can also be written f(x)�Pm
i=1 �i(gi(x)� bi)).

Each �i gives the price associated with constraint i.
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The reason L is of interest is the following:

Assume x� = (x�

1; x
�

2; : : : ; x
�

n) maximizes or minimizes f(x) subject to the
constraints gi(x) = bi, for i = 1; 2; : : : ; m. Then either

(i) the vectors rg1(x�);rg2(x�); : : : ;rgm(x�) are linearly dependent,
or

(ii) there exists a vector �� = (��

1; �
�

2; : : : ; �
�

m) such thatrL(x�; ��) = 0.
I.e.

@L

@x1
(x�; ��) =

@L

@x2
(x�; ��) = � � �= @L

@xn
(x�; ��) = 0

and
@L

@�1
(x�; ��) = � � � = @L

@�m
(x�; ��) = 0

Of course, Case (i) above cannot occur when there is only one constraint. The following example
shows how it might occur.

Example 4.1.1

Minimize x1 + x2 + x23
subject to
x1 = 1
x21 + x22 = 1:

It is easy to check directly that the minimum is acheived at (x1; x2; x3) = (1; 0; 0). The associ-
ated Lagrangian is

L(x1; x2; x3; �1; �2) = x1 + x2 + x23 + �1(1� x1) + �2(1� x21 � x22):

Observe that
@L

@x2
(1; 0; 0; �1; �2) = 1 for all �1; �2;

and consequently @L
@x2

does not vanish at the optimal solution. The reason for this is the following.

Let g1(x1; x2; x3) = x1 and g2(x1; x2; x3) = x21 + x22 denote the left hand sides of the constraints.
Then rg1(1; 0; 0) = (1; 0; 0) and rg2(1; 0; 0) = (2; 0; 0) are linearly dependent vectors. So Case (i)
occurs here!

Nevertheless, Case (i) will not concern us in this course. When solving optimization problems
with equality constraints, we will only look for solutions x� that satisfy Case (ii).

Note that the equation

@L

@�i
(x�; ��) = 0

is nothing more than

bi � gi(x
�) = 0 or gi(x

�) = bi:

In other words, taking the partials with respect to � does nothing more than return the original
constraints.
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Once we have found candidate solutions x�, it is not always easy to �gure out whether they
correspond to a minimum, a maximum or neither. The following situation is one when we can
conclude. If f(x) is concave and all of the gi(x) are linear, then any feasible x

� with a corresponding
�� making rL(x�; ��) = 0 maximizes f(x) subject to the constraints. Similarly, if f(x) is convex
and each gi(x) is linear, then any x� with a �� making rL(x�; ��) = 0 minimizes f(x) subject to
the constraints.

Example 4.1.2
Minimize 2x21 + x22

subject to
x1 + x2 = 1

L(x1; x2; �) = 2x21 + x22 + �1(1� x1 � x2)

@L

@x1
(x�

1; x
�

2; �
�) = 4x�

1 � ��

1 = 0

@L

@x2
(x�

1; x
�

2; �
�) = 2x�

2 � ��

1 = 0

@L

@�
(x�

1; x
�

2; �
�) = 1� x�

1 � x�

2 = 0

Now, the �rst two equations imply 2x�

1 = x�

2. Substituting into the �nal equation gives the
solution x�

1 = 1=3, x�

2 = 2=3 and �� = 4=3, with function value 2/3.

Since f(x1; x2) is convex (its Hessian matrix H(x1; x2) =

 
4 0
0 2

!
is positive de�nite) and

g(x1; x2) = x1 + x2 is a linear function, the above solution minimizes f(x1; x2) subject to the
constraint.

4.1.1 Geometric Interpretation

There is a geometric interpretation of the conditions an optimal solution must satisfy. If we graph
Example 4.1.2, we get a picture like that in Figure 4.1.

Now, examine the gradients of f and g at the optimum point. They must point in the same
direction, though they may have di�erent lengths. This implies:

rf(x�) = ��rg(x�)

which, along with the feasibility of x�, is exactly the condition rL(x�; ��) = 0 of Case (ii).

4.1.2 Economic Interpretation

The values ��

i have an important economic interpretation: If the right hand side bi of Constraint i
is increased by �, then the optimum objective value increases by approximately ��

i�.

In particular, consider the problem

Maximize p(x)
subject to

g(x) = b,
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0

2/3

lambda

1/3

1

1

f = g

f(x)=2/3

g(x)=1

x*

Figure 4.1: Geometric interpretation

where p(x) is a pro�t to maximize and b is a limited amount of resource. Then, the optimum
Lagrange multiplier �� is the marginal value of the resource. Equivalently, if b were increased by �,
pro�t would increase by ���. This is an important result to remember. It will be used repeatedly
in your Managerial Economics course.

Similarly, if

Minimize c(x)

subject to

d(x) = b,

represents the minimum cost c(x) of meeting some demand b, the optimum Lagrange multiplier ��

is the marginal cost of meeting the demand.

In Example 4.1.2

Minimize 2x21 + x22
subject to

x1 + x2 = 1,

if we change the right hand side from 1 to 1:05 (i.e. � = 0:05), then the optimum objective function
value goes from 2

3
to roughly

2

3
+
4

3
(0:05) =

2:2

3
:
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If instead the right hand side became 0:98, our estimate of the optimum objective function value
would be

2

3
+
4

3
(�0:02) = 1:92

3

Example 4.1.3 Suppose we have a re�nery that must ship �nished goods to some storage tanks.
Suppose further that there are two pipelines, A and B, to do the shipping. The cost of shipping x
units on A is ax2; the cost of shipping y units on B is by2, where a > 0 and b > 0 are given. How
can we ship Q units while minimizing cost? What happens to the cost if Q increases by r%?

Minimize ax2 + by2

Subject to
x+ y = Q

L(x; y; �) = ax2 + by2 + �(Q� x� y)

@L

@x
(x�; y�; ��) = 2ax� � �� = 0

@L

@y
(x�; y�; ��) = 2by� � �� = 0

@L

@�
(x�; y�; ��) = Q� x� � y� = 0

The �rst two constraints give x� = b
a
y�, which leads to

x� =
bQ

a+ b
; y� =

aQ

a+ b
; �� =

2abQ

a+ b

and cost of abQ2

a+b
. The Hessian matrix H(x1; x2) =

 
2a 0
0 2b

!
is positive de�nite since a > 0 and

b > 0. So this solution minimizes cost, given a; b; Q.
If Q increases by r%, then the RHS of the constraint increases by � = rQ and the minimum

cost increases by ��� = 2abrQ2

a+b
. That is, the minimum cost increases by 2r%.

Example 4.1.4 How should one divide his/her savings between three mutual funds with expected
returns 10%, 10% and 15% repectively, so as to minimize risk while achieving an expected return of
12%. We measure risk as the variance of the return on the investment (you will learn more about
measuring risk in 45-733): when a fraction x of the savings is invested in Fund 1, y in Fund 2 and
z in Fund 3, where x+ y + z = 1, the variance of the return has been calculated to be

400x2 + 800y2 + 200xy + 1600z2+ 400yz:

So your problem is

min 400x2 + 800y2 + 200xy + 1600z2 + 400yz
s:t: x + y + 1:5z = 1:2

x + y + z = 1

Using the Lagrangian method, the following optimal solution was obtained

x = 0:5 y = 0:1 z = 0:4 �1 = 1800 �2 = �1380
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where �1 is the Lagrange multiplier associated with the �rst constraint and �2 with the second
constraint. The corresponding objective function value (i.e. the variance on the return) is 390.
If an expected return of 12.5% was desired (instead of 12%), what would be (approximately) the
correcponding variance of the return?

Since � = 0:05, the variance would increase by

��1 = 0:05� 1800 = 90:

So the answer is 390+90=480.

Exercise 34 Record'm Records needs to produce 100 gold records at one or more of its three
studios. The cost of producing x records at studio 1 is 10x; the cost of producing y records at
studio 2 is 2y2; the cost of producing z records at studio 3 is z2 + 8z.

(a) Formulate the nonlinear program of producing the 100 records at minimum cost.
(b) What is the Lagrangian associated with your formulation in (a)?
(c) Solve this Lagrangian. What is the optimal production plan?
(d) What is the marginal cost of producing one extra gold record?
(e) Union regulations require that exactly 60 hours of work be done at studios 2 and 3 combined.

Each gold record requires 4 hours at studio 2 and 2 hours at studio 3. Formulate the problem of
�nding the optimal production plan, give the Lagrangian, and give the set of equations that must
be solved to �nd the optimal production plan. It is not necessary to actually solve the equations.

Exercise 35 (a) Solve the problem

max 2x+ y

subject to 4x2 + y2 = 8

(b) Estimate the change in the optimal objective function value when the right hand side increases
by 5%, i.e. the right hand side increases from 8 to 8.4.

Exercise 36

(a) Solve the following constrained optimization problem using the method of Lagrange multipliers.

max ln x+ 2 ln y + 3 ln z

subject to x+ y + z = 60

(b) Estimate the change in the optimal objective function value if the right hand side of the con-
straint increases from 60 to 65.
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4.2 Equality and Inequality Constraints

How do we handle both equality and inequality constraints in (P)? Let (P) be:

Maximize f(x)
Subject to
g1(x) = b1
...

gm(x) = bm
h1(x) � d1
...

hp(x) � dp

If you have a program with � constraints, convert it into � by multiplying by �1. Also convert
a minimization to a maximization.

The Lagrangian is

L(x; �; �) = f(x) +
mX
i=1

�i(bi � gi(x)) +
pX

j=1

�j(dj � hj(x))

The fundamental result is the following:

Assume x� = (x�

1; x
�

2; : : : ; x
�

n) maximizes f(x) subject to the constraints
gi(x) = bi, for i = 1; 2; : : : ; m and hj(x) � dj , for j = 1; 2; : : : ; p. Then
either

(i) the vectors rg1(x�); : : : ;rgm(x�), rh1(x�); : : : ;rhp(x�) are lin-
early dependent, or

(ii) there exists vectors �� = (��

1; : : : ; �
�

m) and �� = (��

1; : : : ; �
�

p) such
that

rf(x�)�
mX
i=1

��

irgi(x�)�
pX

j=1

��

jrhj(x�) = 0

��

j (hj(x
�)� dj) = 0 (Complementarity)

��

j � 0

In this course, we will not concern ourselves with Case (i). We will only look for candidate
solutions x� for which we can �nd �� and �� satisfying the equations in Case (ii) above.

In general, to solve these equations, you begin with complementarity and note that either ��

j

must be zero or hj(x�)� dj = 0. Based on the various possibilities, you come up with one or more
candidate solutions. If there is an optimal solution, then one of your candidates will be it.

The above conditions are called the Kuhn{Tucker (or Karush{Kuhn{Tucker) conditions. Why
do they make sense?

For x� optimal, some of the inequalities will be tight and some not. Those not tight can be
ignored (and will have corresponding price ��

j = 0). Those that are tight can be treated as equalities
which leads to the previous Lagrangian stu�. So
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��

j (hj(x
�)� dj) = 0 (Complementarity)

forces either the price ��

j to be 0 or the constraint to be tight.

Example 4.2.1
Maximize x3 � 3x

Subject to
x � 2

The Lagrangian is

L = x3 � 3x+ �(2� x)

So we need

3x2 � 3� � = 0

x � 2

�(2� x) = 0

� � 0

Typically, at this point we must break the analysis into cases depending on the complementarity
conditions.

If � = 0 then 3x2 � 3 = 0 so x = 1 or x = �1. Both are feasible. f(1) = �2, f(�1) = 2.
If x = 2 then � = 9 which again is feasible. Since f(2) = 2, we have two solutions: x = �1 and

x = 2.

Example 4.2.2 Minimize (x� 2)2 + 2(y � 1)2

Subject to
x+ 4y � 3
x � y

First we convert to standard form, to get

Maximize �(x� 2)2 � 2(y � 1)2

Subject to
x+ 4y � 3
�x+ y � 0

L(x; y; �1; �2) = �(x� 2)2 � 2(y � 1)2 + �1(3� x � 4y) + �2(0 + x� y)

which gives optimality conditions

�2(x� 2)� �1 + �2 = 0

�4(y � 1)� 4�1 � �2 = 0

�1(3� x� 4y) = 0
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�2(x� y) = 0

x+ 4y � 3

�x+ y � 0

�1; �2 � 0

Since there are two complementarity conditions, there are four cases to check:
�1 = 0; �2 = 0: gives x = 2, y = 1 which is not feasible.
�1 = 0; x� y = 0: gives x = 4=3; y = 4=3; �2 = �4=3 which is not feasible.
�2 = 0; 3� x � 4y = 0 gives x = 5=3; y = 1=3; �1 = 2=3 which is O.K.
3� x� 4y = 0; x� y = 0 gives x = 3=5; y = 3=5; �1 = 22=25; �2 = �48=25 which is not feasible.
Since it is clear that there is an optimal solution, x = 5=3; y = 1=3 is it!

Economic Interpretation

The economic interpretation is essentially the same as the equality case. If the right hand side
of a constraint is changed by a small amount �, then the optimal objective changes by ���, where
�� is the optimal Lagrange multiplier corresponding to that constraint. Note that if the constraint
is not tight then the objective does not change (since then �� = 0).

Handling Nonnegativity

A special type of constraint is nonnegativity. If you have a constraint xk � 0, you can write
this as �xk � 0 and use the above result. This constraint would get a Lagrange multiplier of its
own, and would be treated just like every other constraint.

An alternative is to treat nonnegativity implicitly. If xk must be nonnegative:

1. Change the equality associated with its partial to a less than or equal to zero:

@f(x)

@xk
�
X
i

�i
@gi(x)

@xk
�
X
j

�j
@hj(x)

@xk
� 0

2. Add a new complementarity constraint:

0
@@f(x)

@xk
�
X
i

�i
@gi(x)

@xk
�
X
j

�j
@hj(x)

@xk

1
Axk = 0

3. Don't forget that xk � 0 for x to be feasible.
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Su�ciency of conditions

The Karush{Kuhn{Tucker conditions give us candidate optimal solutions x�. When are these
conditions su�cient for optimality? That is, given x� with �� and �� satisfying the KKT conditions,
when can we be certain that it is an optimal solution?

The most general condition available is:

1. f(x) is concave, and

2. the feasible region forms a convex region.

While it is straightforward to determine if the objective is concave by computing its Hessian
matrix, it is not so easy to tell if the feasible region is convex. A useful condition is as follows:

The feasible region is convex if all of the gi(x) are linear and all of the hj(x) are convex. If this

condition is satis�ed, then any point that satis�es the KKT conditions gives a point that maximizes
f(x) subject to the constraints.

Example 4.2.3 Suppose we can buy a chemical for $10 per ounce. There are only 17.25 oz avail-
able. We can transform this chemical into two products: A and B. Transforming to A costs $3 per
oz, while transforming to B costs $5 per oz. If x1 oz of A are produced, the price we command for
A is $30� x1; if x2 oz of B are produced, the price we get for B is $50� x2. How much chemical
should we buy, and what should we transform it to?

There are many ways to model this. Let's let x3 be the amount of chemical we purchase. Here
is one model:

Maximize x1(30� x1) + x2(50� 2x2)� 3x1 � 5x2 � 10x3
Subject to
x1 + x2 � x3 � 0
x3 � 17:25

The KKT conditions are the above feasibility constraints along with:
30� 2x1 � 3� �1 = 0
50� 4x2 � 5� �1 = 0
�10 + �1 � �2 = 0
�1(�x1 � x2 + x3) = 0
�2(17:25� x3) = 0
�1; �2 � 0

There are four cases to check:
�1 = 0; �2 = 0. This gives us �10 = 0 in the third constraint, so is infeasible.
�1 = 0; x3 = 17:25. This gives �2 = �10 so is infeasible.
�x1�x2+x3 = 0, �2 = 0. This gives �1 = 10; x1 = 8:5; x2 = 8:75; x3 = 17:25, which is feasible.

Since the objective is concave and the constraints are linear, this must be an optimal solution. So
there is no point in going through the last case (�x1� x2+ x3 = 0, x3 = 17:25). We are done with
x1 = 8:5; x2 = 8:75; and x3 = 17:25.

What is the value of being able to purchase 1 more unit of chemical?
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This question is equivalent to increasing the right hand side of the constraint x3 � 17:25 by 1
unit. Since the corresponding lagrangian value is 0, there is no value in increasing the right hand
side.

Review of Optimality Conditions.

The following reviews what we have learned so far:

Single Variable (Unconstrained)
Solve f 0(x) = 0 to get candidate x�.

If f 00(x�) > 0 then x� is a local min.
f 00(x�) < 0 then x� is a local max.

If f(x) is convex then a local min is a global min.
f(x) is concave then a local max is a global max.

Multiple Variable (Unconstrained)
Solve rf(x) = 0 to get candidate x�.
If H(x�) is positive de�nite then x� is a local min.
H(x�) is negative de�nite x� is a local max.

If f(x) is convex then a local min is a global min.
f(x) is concave then a local max is a global max.

Multiple Variable (Equality constrained) Form Lagrangian L(x; �) = f(x) +
P

i �i(bi � gi(x))
Solve rL(x; �) = 0 to get candidate x� (and ��).
Best x� is optimum if optimum exists.

Multiple Variable (Equality and Inequality constrained)
Put into standard form (maximize and � constraints)
Form Lagrangian L(x; �) = f(x) +

P
i �i(bi � gi(x)) +

P
j �j(dj � hj(x))

Solve
rf(x)�Pi �irgi(x)�

P
j �jrhj(x) = 0

gi(x) = bi
hj(x) � dj
�j(dj � hj(x)) = 0
�j � 0

to get candidates x� (and ��, ��).

Best x� is optimum if optimum exists.
Any x� is optimum if f(x) concave, gi(x) convex, hj(x) linear.

4.3 Exercises

Exercise 37 Solve the following constrained optimization problem using the method of Lagrange
multipliers.

max 2 lnx1 + 3 lnx2 + 3 lnx3

s.t. x1 + 2x2 + 2x3 = 10
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Exercise 38 Find the two points on the ellipse given by x21+4x22 = 4 that are at minimum distance
of the point (1; 0). Formulate the problem as a minimization problem and solve it by solving the
Lagrangian equations. [Hint: To minimize the distance d between two points, one can also minimize
d2. The formula for the distance between points (x1; x2) and (y1; y2) is d2 = (x1�y1)2+(x2�y2)2.]

Exercise 39 Solve using Lagrange multipliers.

a) min x21 + x22 + x23 subject to x1 + x2 + x3 = b, where b is given.

b) max
p
x1 +

p
x2 +

p
x3 subject to x1 + x2 + x3 = b, where b is given.

c) min c1x
2
1+ c2x

2
2+ c3x

2
3 subject to x1+x2+x3 = b, where c1 > 0, c2 > 0, c3 > 0 and b are given.

d) min x21 + x22 + x23 subject to x1 + x2 = b1 and x2 + x3 = b2, where b1 and b2 are given.

Exercise 40 Let a, b and c be given positive scalars. What is the change in the optimum value
of the following constrained optimization problem when the right hand side of the constraint is
increased by 5%, i.e. a is changed to a+ 5

100
a.

max by � x4

s.t. x2 + cy = a

Give your answer in terms of a, b and c.

Exercise 41 You want to invest in two mutual funds so as to maximize your expected earnings
while limiting the variance of your earnings to a given �gure s2. The expected yield rates of Mutual
Funds 1 and 2 are r1 and r2 respectively, and the variance of earnings for the portfolio (x1; x2) is
�2x21 + �x1x2 + �2x22. Thus the problem is

max r1x1 + r2x2

s.t. �2x21 + �x1x2 + �2x22 = s2

(a) Use the method of Lagrange multipliers to compute the optimal investments x1 and x2 in
Mutual Funds 1 and 2 respectively. Your expressions for x1 and x2 should not contain the
Lagrange multiplier �.

(b) Suppose both mutual funds have the same yield r. How much should you invest in each?

Exercise 42 You want to minimize the surface area of a cone-shaped drinking cup having �xed
volume V0. Solve the problem as a constrained optimization problem. To simplify the algebra,
minimize the square of the area. The area is �r

p
r2 + h2. The problem is,

min �2r4 + �2r2h2

s.t.
1

3
�r2h = V0:

Solve the problem using Lagrange multipliers.

Hint. You can assume that r 6= 0 in the optimal solution.
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Exercise 43 A company manufactures two types of products: a standard product, say A, and a
more sophisticated product B. If management charges a price of pA for one unit of product A and
a price of pB for one unit of product B, the company can sell qA units of A and qB units of B,
where

qA = 400� 2pA + pB ; qB = 200 + pA � pB:

Manufacturing one unit of product A requires 2 hours of labor and one unit of raw material. For
one unit of B, 3 hours of labor and 2 units of raw material are needed. At present, 1000 hours of
labor and 200 units of raw material are available. Substituting the expressions for qA and qB, the
problem of maximizing the company's total revenue can be formulated as:

max 400pA + 200pB � 2p2A � p2B + 2pApB

s.t. �pA � pB � �400
�pB � �600

(a) Use the Khun-Tucker conditions to �nd the company's optimal pricing policy.

(b) What is the maximum the company would be willing to pay for

{ another hour of labor,

{ another unit of raw material?
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