
SECOND HOUR EXAM SUGGESTED SOLUTIONS

1. Find the critical points (if any), and classify them as local maxima, minima or saddles, for the
function

f(x, y) = 2x2y + 2x2 + y2 . [15 pts.]

We have
∂f

∂x
= 4xy + 4x and

∂f

∂y
= 2x2 + 2y. The coördinates of the critical points are the solutions of

4xy+ 4x = 0 or x(y+ 1) = 0 and 2x2 + 2y = 0 or y = −x2, so either x = 0 = y or y = −1 and consequently
x = ±1. Thus there are three critical points: (0, 0), (1,−1) and (−1,−1). The discriminant of the problem
is D = fxxfyy − f2

xy = 4(y + 1) · 2 − (4x)2 = −16x2 + 8y + 8. Since D(0, 0) = 8 > 0, (0, 0) is a point of
definiteness, and because fyy ≡ 2 > 0 it must be a local minimum. On the other hand, D(±1,−1) = −16 < 0
so both these critical points are saddles.

2. Find the absolute minimum value of the function f(x, y) = 2x2 + y2− y on the disc x2 + y2 ≤ 1, and
also find the coördinates of the point(s) (x, y) at which the minimum is attained. This problem
must be done in two parts: find the critical points in the interior of the disc where x2 + y2 < 1, and also
find the minimum of f(x, y) subject to the constraint x2 + y2 = 1. That may be done by the method of
Lagrange multipliers, by parametrizing the unit circle (thus reducing the problem to a one-variable extremum
problem), or by any other correct method at your disposal. [15 pts.]

The (unconstrained) critical points of f are the solutions of the system 4x = 0 and 2y − 1 = 0, of which
there is only one, (0, 1/2). It lies in the interior of the disc, so it is a possible minimum point: the value
f(0, 1/2) = −1/4. On the boundary of the disc where the constraint x2 + y2 = 1 holds one can seek extrema
by the method of Lagrange multipliers. At an extremum one must have ∇f = λ∇(x2 + y2), which in
component form is the system 4x = λ2x, 2y − 1 = λ2y. If x = 0 then y = ±1 from the constraint. If
x 6= 0 then λ = 2 and therefore 2y − 1 = 4y or y = −1/2; the constraint then gives x = ±

√
3/2. We have

f(0, 1) = 0 and f(0,−1) = 2, while f(±
√

3/2,−1/2) = 9/4. It thus appears that the absolute minimum
value is −1/4, occurring at (0, 1/2). One can also approach the constrained problem by parametrizing the
constraint curve, which is a circle of radius 1 centered at the origin, by (say) x = cos t, y = sin t. Then
f(cos t, sin t) = 2 cos2 t+ sin2 t− sin t = cos2 t+ 1− sin t with derivative −2 cos t sin t− cos t. The zeros of the
derivative occur where x = cos t = 0 and thus y = sin t = ±1, or where −2 sin t− 1 = 0 or y = sin t = −1/2
and thus x = ±

√
3/2; the rest of the checking for extrema is the same as it was when Lagrange multipliers

were used. Still another approach would plug the constraint into the objective function, which then becomes
x2 + 1− y. Lagrange multipliers used on this function would lead to the equations 2x = λ2x and −1 = λ2y,
so either x = 0 or λ = 1 and thus y = −1/2, and then things finish up as before.(1)

3. Sketch the region in the xy-plane over which the integration∫ 1

0

∫ 1

y

x2exy dx dy

takes place, and write an iterated integral of the form
∫ b

a

∫ g2(x)

g1(x)

x2exy dy dx that represents the same

double integral. Evaluate the new integral (ONLY!). [10 pts.]

The 2-dimensional region of integration is the lower or right-hand half of the unit square [0, 1] × [0, 1] as
bisected by the line y = x. Integrating over this region in the y direction first will lead to the integral

∫ 1

0

∫ x

0

x2exy dy dx =
∫ 1

0

[
x2exy

x

]y=x

y=0

dx =
∫ 1

0

[ex
2 − 1]x dx =

[
ex

2 − x2

2

]1

0

=
e− 1

2
− 1

2
=
e

2
− 1 .

(1)
Note that when we rewrote the problem, the objective function changed and therefore so did the value of the Lagrange multiplier λ.
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4. Consider the integral
∫ 1

0

∫ √1−y2

0

2√
4− x2 − y2

dx dy. It is unpleasant to evaluate this integral in

rectangular coördinates. Sketch the region of integration, write an integral in polar coördinates that
represents the same double integral, and evaluate the polar-coördinate integral. {Note: the region is
bounded by the x-axis and the circle of radius 1 centered at the origin, and lies above the x-axis. Use the
chain rule for single-variable integrals carefully.} [15 pts.]

From the geometrical description of the region we see that in polar coördinates the limits of the integral are
as below: ∫ π/2

0

∫ 1

0

2√
4− r2

r dr dθ =
π

2
·
[
−2
√

4− r2
]1

0
= π · (2−

√
3) .

5. Set up, and then evaluate, an iterated integral in 3-dimensional rectangular or cylindrical coördinates

(your choice) whose value is the triple integral
∫ ∫ ∫

D

z dV , where D is the solid whose upper surface is the

paraboloid z = 12 − 2x2 − 2y2 and whose lower surface is the paraboloid z = x2 + y2. Make a sketch of
the part of the solid lying in the first octant (but be sure your integral includes all of the solid). [15 pts.]

The solid in question lies over the disc in the xy-plane bounded by the circle that lies under the circle in
which the two paraboloids intersect. This is the solution set of 12− 2x2− 2y2 = x2 + y2, or 4 = x2 + y2, the
circle of radius 2 centered at the origin. The symmetry of the solid about the z-axis tells us that cylindrical
coördinates are to be preferred, so the iterated integral will have the form∫ 2π

0

∫ 2

0

∫ 12−2r2

r2
z dz r dr dθ = 2π

∫ 2

0

[
z2

2

]z=12−2r2

z=r2

r dr = π

∫ 2

0

[
(12− 2r2)2 − r4

]
r dr

= π

∫ 2

0

(144r − 48r3 + 3r5) dr = π

(
72 · 22 − 12 · 24 +

1
2
· 26 − 0

)
= 128π .

6. Consider the “spherical cap” cut by the cylinder x2 + y2 = 1 from the part of the sphere x2 + y2 + z2 = 2
that lies above the xy-plane. Sketch the spherical cap. Then find its surface area. {Note: You may
set up this problem in rectangular, cylindrical or spherical coördinates, but you will probably find that the
resulting integral is most difficult in rectangular coördinates. You may therefore transform it, if necessary,
to another coördinate system after setting it up. By the way, a correct answer will contain the constant

√
2.}

[15 pts.]

If we set up the problem in rectangular coördinates first, the spherical cap will be part of the graph of

z =
√

2− x2 − y2. The first partials are
∂z

∂x
=

−x√
2− x2 − y2

and
∂z

∂y
=

−y√
2− x2 − y2

, so the element of

surface area is given by

dS =

√(
∂z

∂x

)2

+
(
∂z

∂y

)2

+ 1 dAxy =

√
x2 + y2 + (2− x2 − y2)

2− x2 − y2
dAxy =

√
2√

2− x2 − y2
dAxy .

At this stage it is clear that the integration should be carried out in cylindrical coördinates (or polar
coördinates in the plane, which comes to the same thing). The region of integration in the plane is the disc
with radius 1 and center at the origin, so the integral takes the form

S =
∫ 2π

0

∫ 1

0

√
2 r dr dθ√
2− r2

= 2π
√

2
[
−
√

2− r2
]1

0
= 2π

√
2
[√

2− 1
]

= 2π(2−
√

2) .

Actually, the easiest integrals occur if the problem is set up in spherical coördinates. One needs to remember
(or derive) the fact that the element of area on a sphere of radius a is dS = a2 sinφdφ dθ. With that fact
available, however, the integral takes the form

S =
∫ 2π

0

∫ π/4

0

2 sinφdφ dθ = 4π
[
− cosφ

]π/4
0

= 4π

(
1−
√

2
2

)
= 2π(2−

√
2) .
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The limit φ = π/4 comes from the observation that a cross-section through the z-axis of the sphere and
cylinder shows that the spherical cap subtends one of the angles of an isosceles right triangle (with hypotenuse√

2 and side 1).

7. Evaluate the line integral
∫
C

F • dr where the vector field F(x, y) = 〈2xy3 + 1, 3x2y2 − 2y〉 and the

parametrized curve C is given by r(t) = 〈sin t, 1−cos t〉, where 0 ≤ t ≤ π. {Note: You know at least two ways
to approach this problem; both will give the same result and you may use whichever method you prefer.}

[15 pts.]

To run the “cross-partials equal” test we need
∂(2xy3 + 1)

∂y
= 6xy2 to equal

∂(3x2y2 − 2y)
∂x

= 6xy2, which

it does. So F has a potential. A trial integral of its i-component gives x2y3 + x, but
∂(x2y3 + x)

∂y
= 3x2y2

lacks the term −2y; the potential f(x, y) = x2y3 + x− y2 has ∇f = 〈2xy3 + 1, 3x2y2 − 2y〉 as we want. The

curve C begins at (0, 0) and ends at (0, 2), so

∫
C

F • dr = f(0, 2)−f(0, 0) = −2 ·2−0 = −4. Of course there

is a hard way to do anything: on the curve one has F(sin t, 1− cos t) = 〈(2 sin t)(1− cos t)3 + 1, (3 sin2 t)(1−
cos t)2 − 2(1 − cos t)〉 and

dr
dt

= 〈cos t, sin t〉, so one can parametrize the curve, express everything in terms

of the parameter t, and integrate over 0 ≤ t ≤ π to get∫
C

F • dr =∫ π

0

[(
2 sin (t) (1− cos (t))3 + 1

)
cos (t) +

(
3 (sin (t))2 (1− cos (t))2 − 2 + 2 cos (t)

)
sin (t)

]
dt =∫ π

0

[
2 sin (t) cos (t)− 6 sin (t) (cos (t))2 + 12 sin (t) (cos (t))3 − 5 sin (t) (cos (t))4 + cos (t) + sin (t)

]
dt =[

sin2 t+ 2 cos3 t− 3 cos4 t+ cos5 t+ sin t− cos t
]π

0
= (−2− 3− 1 + 1)− (2− 3 + 1− 1) = −4 ,

the same result.
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