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1. Optimization without constraints

Given a function of two variables, z = f(x, y), it is often useful to find the points,

(x0, y0), (x1, y1), (x2, y2), . . .

where the function attains optimal values, i.e., relative minimum or relative maximum values.
A f(x, y) has a relative maximum [minimum] value at the point (x0, y0) if

f(x0, y0) ≥ f(x, y) [f(x0, y0) ≤ f(x, y)]

for all points (x, y) that are sufficiently close to (x0, y0). The value z0 = f(x0, y0) is an absolute
maximum [minimum] value, if z0 is greater than [less than] all other values of the function.

As in the case of functions of one variable, the first step to finding relative maxima and minima
is to find critical points of the function in question. The point (x0, y0) is a critical point of the
function f(x, y) if

fx(x0, y0) = 0 and fy(x0, y0) = 0.

Example 1.1.
Find the critical points of f(x, y) = x3 + 2xy − 2y2 − 10x + 3. To do this we solve the pair of

equations {
fx = 3x2 + 2y − 10 = 0
fy = 2x− 4y = 0

The second equation implies that x = 2y, and substituting this into the first equation gives the
(quadratic) equation in x

3x2 + x− 10 = 0,

which has two solutions x1 = −2 and x2 = 5/3. So the critical points in this case are (x1, y1) =
(−2,−1) and (x2, y2) = (5/3, 5/6).

This principle applies when there are three, four or more variables as well:
Fact 1. The (relative) extreme value(s) of the function

f(x1, x2, . . . , xn)

occur at the solution(s) of the system of equations

fx1(x1, x2, . . . , xn) = 0
fx2(x1, x2, . . . , xn) = 0

...
fxn

(x1, x2, . . . , xn) = 0.
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Example 1.2.
Find the critical points of the function

f(x, y, z) = x2 + 2y2 + 5z2 − 2xy − 4yz + 2x− 2y − 2z + 13.

We need to solve the system of equations given by setting the three first order derivatives of f equal
to 0:

fx = 2x− 2y + 2 = 0
fy = −2x + 4y − 4z − 2 = 0

fz = −4y + 10z − 2 = 0

From the first equation we see that x = y−1, and from the third equation we see that z = (1+2y)/5.
We substitute for x and z into the second equation, which gives

−2(y − 1) + 4y − 4(1 + 2y)/5− 2 = 0 =⇒ 2
5
y − 4

5
= 0 =⇒ y0 = 2.

So x0 = 2− 1 = 1 and z0 = (1 + 4)/5 = 1, and the (only) critical point is (x0, y0, z0) = (1, 2, 1).

2. The second derivative test

As in the case of functions of one variable, we need a method to determine whether the value
of the function at the critical point is a (relative) maximum or minimum value. And, as in that
case, there is a second derivative test that we can use. However, as the number of variables grows
so does the complexity of the corresponding second derivative test, so I will only present the second
derivative test for functions of two variables.
Fact 2 (The second derivative test). Suppose that (x0, y0) is a critical point of the function f(x, y).
To determine whether the critical point f(x0, y0) is a relative minimum value, relative maximum
value or neither, we compute the discriminant of f :

D(x, y) = fxx(x, y) · fyy(x, y)− [fxy(x, y)]2,

and evaluate D(x0, y0) and fxx(x0, y0). There are four cases:
1. If D(x0, y0) > 0 and fxx(x0, y0) > 0 then f(x0, y0) is a relative minimum value.
2. If D(x0, y0) > 0 and fxx(x0, y0) < 0 then f(x0, y0) is a relative maximum value.
3. If D(x0, y0) < 0 then the point (x0, y0, f(x0, y0)) is a saddle point. In this case f(x0, y0) is

neither a minimum nor a maximum. It’s called a saddle point because the graph often looks
like a saddle around that point — going up in two directions and going down in two others.

4. If D(x0, y0) = 0 then the test does not give any information about the point — it could fall
into any of the cases above.

Comment: As with all second derivative tests, this test only classifies relative extreme values.
If we need to determine whether a given value is an absolute extreme value (or not), then other
considerations are necessary.
Example 2.1.

I’ll apply the second derivative to the critical points that we found in Example 1.1 for the function
f(x, y) = x3 + 2xy − 2y2 − 10x + 3. First we compute

fxx = 6x, fyy = −4, fxy = 2 and D = −24x− 4.

Next, D(5/3, 5/6) = −44 < 0, so the point (5/3, 5/6,−7.648) is a saddle point on the graph of
z = f(x, y). On the other hand, D(−2,−1) = 44 > 0 and fxx(−2,−1) = 48, so f(−2,−1) = 7 is a
relative minimum value. In this case, we can tell immediately that 7 is not the absolute minimum,
because the value of the function at the saddle point is lower than 7.
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2.1. Quadratic functions in two variables. A quadratic function in two variables has the form

(1) q(x, y) = ax2 + bxy + cy2 + dx + ey + f.

To find the critical point(s) for this function we solve the pair of linear equations:{
qx = 2ax + by + d = 0
qy = bx + 2cy + e = 0

In general a pair of linear equations in two variables can have either 0, 1 or infinitely many solutions,
and this can be determined by the coefficients in the equation. For the pair of equations above, there
is exactly one solutions if and only if

4ac− b2 6= 0.
Assuming that this is the case, we continue by computing the discriminant in order to apply the
second derivative test.

qxx = 2a, qyy = 2c, qxy = b and D = 4ac− b2.

This means that there is exactly one critical point for a quadratic function exactly when its discrim-
inant is not 0!

The critical point gives a saddle point if D < 0. If on the other hand, D > 0, then the second
derivative test implies that the critical point yields a relative maximum (if a < 0) or a relative
minimum (if a > 0). Now, because there is only one critical point that relative maximum or
minimum value is actually the absolute maximum or minimum!

Summarizing all of this we have the following:
Fact 3. The quadratic function q(x, y) = ax2 + bxy + cy2 + dx + ey + f has exactly one critical
point (x0, y0) if and only if the discriminant D = 4ac− b2 is not equal to 0. In this case, if D < 0
(4ac < b2) then the point (x0, y0, q(x0, y0)) is a saddle point on the graph of z = q(x, y). If D > 0
(4ac > b2) and a < 0 then q(x0, y0) is the absolute maximum value of the function, and if a > 0
then q(x0, y0) is the absolute minimum value of the function.

Examples: g(x, y) = 2x2 − 3xy + y2 + 3x − y + 11, we have D = 8 − 9 = −1 < 0, so we already
know that the critical point we will find is a saddle point. (The critical point is (3, 5) — verify this!)
h(u, v) = −3u2 + 2uv − v2 + 2u + 6v + 13, we find the critical point by solving the equations

−6u + 2v = −2 and 2u− 2v = −6.

The solution is (2, 5). Next we compute D = 12− 4 = 8 > 0, and huu = −3 < 0, so h(2, 5) = 30 is
the absolute maximum value of h(u, v).

3. Optimization with constraints

In the previous section we wanted to find extreme values for a given function without any fur-
ther conditions. This is useful, but in many cases the problem we are trying to solve imposes
constraints on the variables in question. For example we might want to maximize a production
function Q(x, y, z), but we are constrained by a budget that restricts the quantities of the inputs x,
y and z that we can use. This kind of constraint typically has the form ax + by + cz = B.

In the general case (using three variables to be concrete) we want to optimize the function f(x, y, z)
subject to the condition

(2) g(x, y, z) = c.

This means that we only consider triples (x, y, z) that satisfy the equation (2). The constraint
imposed by (2) defines a surface in three dimensions (three dimensions in this case, because there
are three variables). For example, if the constraint is g(x, y, z) = x2 + y2 + z2 = 9, then the surface
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in question is the sphere (surface of a ball) of radius 3, centered at (0, 0, 0). If g(x, y, z) = 2x−3y+z,
then the surface in question is a plane. So, in effect, we are looking for the ‘best’ (smallest or largest)
values of f(x, y, z) on that surface.

As in the previous section, the first step is to find critical points. If we simply proceed as in §1,
by solving the system

fx(x, y, z) = 0, fy(x, y, z) = 0 and fz(x, y, z) = 0,

we may find critical points, but there is no guarantee that the points we find will satisfy equation
(2). We are looking for a different kind of critical point in this scenario, and to find it we use
the method of Lagrange multipliers1.

Lagrange’s idea was to form the auxiliary function, (sometimes called the Lagrangian function),

(3) F (x, y, z, λ) = f(x, y, z)− λ[g(x, y, z)− c].

The new variable λ is an auxiliary variable that is called the multiplier. Lagrange proved that
Fact 4. The (relative) extreme values of the function f(x, y, z) subject to the constraint g(x, y, z) = c
occur at the (x, y, z)-coordinates of the critical points of the function

F (x, y, z, λ) = f(x, y, z)− λ[g(x, y, z)− c].

Comments: (i) This is a method of finding relative extreme values, and other ideas need to be
used to further conclude that the values you find are (or are not) absolute extreme values.
(ii) As far as the basic problem of locating extreme values, the particular value of the auxiliary
variable λ is usually not important, we only use it to help find x, y and z. In applications, however,
the multiplier often has important interpretations and uses.

The critical point(s) of F (x, y, z, λ) are found the usual way: compute the first order partial
derivatives of F , set them all equal to 0 and find the solution(s) of the system of equations that this
gives. The partial derivatives of F (x, y, z, λ) are

Fx(x, y, z, λ) = fx(x, y, z)− λ · gx(x, y, z)
Fy(x, y, z, λ) = fy(x, y, z)− λ · gy(x, y, z)
Fz(x, y, z, λ) = fz(x, y, z)− λ · gz(x, y, z)
Fλ(x, y, z, λ) = −[g(x, y, z)− c].

Next, we have to set all four partial derivatives equal to 0. If you do this then you will see that Fact
4 is equivalent to
Fact 5. The extreme values of f(x, y, z) subject to the constraint g(x, y, z) = c occur at the solu-
tion(s) of the system of equations

(4)

fx(x, y, z) = λ · gx(x, y, z),
fy(x, y, z) = λ · gy(x, y, z),
fz(x, y, z) = λ · gz(x, y, z),
g(x, y, z) = c.


Note that we now have 4 variables and 4 equations. Solutions of this system will be quadruples

(x0, y0, z0, λ0), (x1, y1, z1, λ1), . . .

The critical points that we seek are the (x, y, z)-coordinates of these points, namely the triples,

(x0, y0, z0), (x1, y1, z1), . . .

1Joseph-Louis Lagrange was a French mathematician, who was active in the second half of the 18th century and

the beginning of the 19th century.
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Example 3.1.

Find critical points for f(x, y, z) = x2 +y2 +4z2 subject to the constraint x+2y +z = 42. In this
example the constraining function is g(x, y, z) = x + 2y + z, so we have fx = 2x, fy = 2y, fz = 8z,
gx = 1, gy = 2 and gz = 1. Fact 5 gives us the four equations

2x = λ

2y = 2λ

8z = λ

x + 2y + z = 42

The first three equations may all be solved simply for λ giving

λ = 2x = y = 8z.

From this it follows that y = 8z and x = 4z, and we can substitute these expressions in the fourth
equation to get

4z + 2 · 8z + z = 42 =⇒ 21z = 42 =⇒ z = 2.

So x = 8 and y = 16 and the critical point in this case is (8, 16, 2).

As in the case of unconstrained optimization problems there do exist second derivative tests for
constrained optimization problems. Also as in the unconstrained case, these tests become more
complicated as the number of variables (and constraints) grows, so for now we will not bother with
testing the critical values that we find using Lagrange’s method. We will assume that the critical
point(s) that we find provide the optimal value(s) that we are seeking.

4. Linear constraints

In many applications the constraint is linear. This means that equation (2) has the form

(5) ax + by + cz = d.

In this case the surface defined by the constraint is a plane. The partial derivatives of g are easy to
compute: gx = a, gy = b and gz = c, and inserting these values into the system (4), we obtain the
system

fx(x, y, z) = aλ,
fy(x, y, z) = bλ,
fz(x, y, z) = cλ,

ax + by + cz = d.


Assuming that a, b and c are all nonzero2, we can eliminate λ from the first three equations, and
obtain the triple equation

(6)
fx

a
=

fy

b
=

fz

c
,

which, together with the linear constraint, (5), yields the critical points in this scenario. Example
3.1 was like this.

Example 4.1.

2If one of them is 0, e.g., a = 0, then we still obtain a simple system: fx = 0,
fy

b
=

fz

c
, and by + cz = d. Similar

systems arise when one or more of the other constants are 0.
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Let f(x, y, z) = x2 + 3y2 + 2z2, and find the critical points for this function subject to the
constraint

x− 2y + 4z = 31.

We compute the partial derivatives of f and plug them into the system (6) to obtain
2x

1
=

6y

−2
=

4z

4
.

So, z = 2x and y = −2x/3. We substitute these values into the constraint, yielding

x− 2(−2x/3) + 4(2x) = 31 =⇒ x = 3,

hence y = −2, z = 6 and the critical point is (3,−2, 6). In this case f(3,−2, 6) = 93 is the minimum
value of f on the plane defined by the constraint. You can verify this by substituting

x = 2y + 4z + 31

in the function f(x, y, z). This gives the quadratic function of two variables

q(y, z) = (2y + 4z + 31)2 + 3y2 + 2z2,

(without any constraint!) to which you can apply the methods of §1.
The method of Lagrange multipliers works equally well with functions of 2 variables, 4 variables

etc. Let h(u, v) = u3/4 · v6/5, and let’s find the maximum value of this function subject to the
constraint u + v = 13, and the additional condition that u > 0 and v > 0. The system (6) reduces
to

3
4
u−1/4v6/5 =

6
5
u3/4v1/5

in this case. Since, u > 0 and v > 0 we may multiply this equation by u1/4v−1/5, which gives
3v/4 = 6u/5, or v = 24u/15. Substituting this into the constraint gives u = 5 and so v = 8. The
maximum value is then h(5, 8) = 40.544 . . . .

How do we know that this is the maximum value? Well, the constraint together with the
additional condition of positivity define the segment in the plane shown below (with the critical
point marked for your viewing pleasure).

2 4 6 8 10 12
u

2

4

6

8

10

12

v

Figure 1. Constrained segment for (u, v).
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The same basic theorem that guarantees absolute minima and maxima for a continuous function
on closed subintervals of the x-axis, (section 14.2 in the text), also applies to this case. It is easy to
see that the minimum value, 0, occurs at both endpoints, (0, 13) and (13, 0), which means that the
maximal value will occur at the critical point that we found.

5. Applications

The Cobb-Douglas production function. This a function of the form

Q = C · uαvβwγ ,

where u, v and w are the number of units of the inputs, U, V and W used in production. C, α,
β and γ are strictly positive constants. We assume that each unit of U costs $pu, each unit of V
costs $pv, each unit of W costs $pw and the manufacturer has a total annual budget of $B to spend
on these inputs. The problem is then to decide how to allocate the budget in order to maximize
output. This is an archetypical constrained optimization problem: maximize Q, subject to the
budget constraint

pu · u + pv · v + pw · w = B.

Notice that this budget constraint is linear. We find the partial derivatives of Q and plug them into
the triple equation (6) to obtain

(7)
αuα−1vβwγ

pu
=

βuαvβ−1wγ

pv
=

γuαvβwγ−1

pw
.

To simplify, we multiply the triple equation by pupvpw (to clear denominators), and divide by
uα−1vβ−1wγ−1 (to get rid of the exponents). This leaves us with the kinder, gentler equation

αpvpwvw = βpupwuw = γpupvuv.

If we cancel the w from the first two parts of the equation and cancel the v from the first and third
parts of the equation and rearrange the constants, we get

v =
βpu

αpv
· u and w =

γpu

αpw
· u.

Substituting these expressions into the budget constraint above, and solving for u, then going back
and solving for v and for w, we find that production is maximized when3

u =
α

α + β + γ
· B

pu
, v =

β

α + β + γ
· B

pv
, w =

γ

α + β + γ
· B

pw
.

Comments: (a) The partial derivatives Qu, Qv and Qw are the marginal products of inputs U, V
and W, respectively. These are the amounts by which output will increase if one additional unit
of the corresponding input is used. The quotients Qu/pu, Qv/pv and Qw/pw are the marginal
products of a dollar’s worth of U, V and W respectively. These are the amounts by which
output will increase if one additional dollars worth of the corresponding input is used.

Equation (7) says that output is maximized when an extra dollar’s worth of U increases output
by the same amount as an extra dollar’s worth of V or an extra dollar’s worth of W. The value of
the multiplier λ at the critical point is equal to this common value of Qu/pu, Qv/pv and Qw/pw

when output is maximized. That is λ is the marginal product of $1, or more generally, the marginal
product of money. Assuming that output is maximized subject to the budget constraint, increasing
that budget by $1 will increase output by λ units.

3You are strongly encouraged to take the time to work out the simple algebraic steps described here and verify

the solution.
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Conversely, it will cost $1/λ to produce one additional unit of output, when production is opti-
mized. In other words, 1/λ is the marginal cost for this production function.

(b) The Cobb-Douglas model is not restricted to three variables. It can have as many variables
as there are resources that contribute to production. If there are two variables then the function
will have the form Q = Cuαvβ . If there are n variables, then the function will have the form
Q = Cuα1

1 uα2
2 · · ·uαn

n , where uk is the number of units of the resource Uk being used in the production
process. The budget constraint in the case of n resources is

p1u1 + p2u2 + · · ·+ pnun = B,

where pk is the cost of one unit of Uk. Analogously to the case of three variables that we just did,
we can apply the method of Lagrange multipliers to show that production is maximized when the
number of units of Uk used is

uk =
(

αk

α1 + α2 + · · ·+ αn

)
· B

pk

for each k from 1 to n.

Utility. Utility functions are used in a variety of situations. A good way to think of ‘utility’ is
as a measure of satisfaction or benefit. For example a household consumes a variety of products,
from food, shelter and education to toys, movies and earmuffs. Each product yields a certain benefit
and/or satisfaction to the household, and the total utility to the household is a function of the
amounts of each product that they consume. Needless to say, most households have finite incomes
and so they cannot consume without limit, and a typical problem in this context is to maximize the
utility function subject to the income (or budget) constraint.
Example 5.1.

Suppose that a utility function is given by

U(x, y, z) = 2 lnx + 3 ln y + 5 ln z,

where x, y and z are the number of units of commodities X, Y and Z consumed by a household
in one month. Find the levels of consumption of these commodities that maximize utility if the
household’s annual budget for these commodities is B = $52500 and the price per unit of X, Y and
Z are px = 15, py = 25 and pz = 35, respectively.

Simply put, we want to maximize U(x, y, z) subject to the budget constraint

px · x + py · y + pz · z = 52500.

This is a linear constraint and we can use the method outlined in §4. Equation (6) in that section
gives the double equation

(8)
Ux

px
=

Uy

py
=

Uz

pz
(= λ),

or more explicitly
2

15x
=

3
25y

=
5

35z
,

because Ux = 2
x , Uy = 3

y and Uz = 5
z in this case. By inverting we can solve for y and z in terms of

x:
25y

3
=

15x

2
=⇒ y =

45
50

x and
35z

5
=

15x

2
=⇒ z =

15
14

x.



9

Substituting these expressions in the budget constraint we obtain

15x + 25 · 45
50

x + 35 · 15
14

x = 52500 =⇒ 75x = 52500,

so the utility maximizing levels of consumption are x0 = 700, y0 = 630 and z0 = 750.
Comment. The expressions Ux/px, Uy/py and Uz/pz are the marginal utilities of a dollar’s
worth of X, Y and Z respectively. In other words, Ux/px is the additional utility that you will gain
by spending one more dollar on commodity X, and likewise for Y and Z. Thus, utility is maximized
when an extra dollar’s worth of X increases utility by the same amount as an extra dollar’s worth of
Y, or an extra dollar’s worth of Z. The multiplier, λ, is the common value of these marginal utilities,
and is sometimes called the marginal utility of income, (because household budgets are often simply
equal to the household disposable income).


