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Chapter 4

HIGHER ORDER DERIVATIVES

4.1. Iterated Partial Derivatives

In this chapter, we shall be concerned with functions of the type f : A → R, where A ⊆ R
n. We shall

consider iterated partial derivatives of the form

∂2f

∂x2
i

=
∂

∂xi

(
∂f

∂xi

)
and

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
,

where i, j = 1, . . . , n. An immediate question that arises is whether

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

when i �= j.

Example 4.1.1. Consider the function f : R
2 → R, defined by

f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) �= (0, 0),

0 if (x, y) = (0, 0).

It is easily seen that

∂f

∂x
=

x4y + 4x2y3 − y5

(x2 + y2)2
and

∂f

∂y
=

x5 − 4x3y2 − xy4

(x2 + y2)2

whenever (x, y) �= (0, 0). Furthermore,

∂f

∂x
(0, 0) = lim

x→0

f(x, 0) − f(0, 0)
x − 0

= 0 and
∂f

∂y
(0, 0) = lim

y→0

f(0, y) − f(0, 0)
y − 0

= 0.
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Note, however, that

∂2f

∂x∂y
(0, 0) = lim

x→0

∂f

∂y
(x, 0) − ∂f

∂y
(0, 0)

x − 0
= lim

x→0

x − 0
x − 0

= 1,

while

∂2f

∂y∂x
(0, 0) = lim

y→0

∂f

∂x
(0, y) − ∂f

∂x
(0, 0)

y − 0
= lim

y→0

−y − 0
y − 0

= −1,

so that

∂2f

∂x∂y
(0, 0) �= ∂2f

∂y∂x
(0, 0).

It can further be checked that

∂2f

∂x∂y
=

∂2f

∂y∂x
=

x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

whenever (x, y) �= (0, 0). Clearly at least one of these two iterated second partial derivatives

∂2f

∂x∂y
and

∂2f

∂y∂x

is not continuous at (0, 0).

THEOREM 4A. Suppose that the function f : A → R, where A ⊆ R
2 is an open set, has continuous

iterated second partial derivatives. Then

∂2f

∂x∂y
=

∂2f

∂y∂x

holds everywhere in A.

† Proof. Suppose that (x0, y0) ∈ A is chosen. Since A is open, there exists an open disc D(x0, y0, r) ⊆
A. For every (x, y) ∈ D(x0, y0, r), consider the expression

S(x, y) = f(x, y) − f(x, y0) − f(x0, y) + f(x0, y0).

For every fixed y, write

gy(x) = f(x, y) − f(x, y0),

so that

S(x, y) = gy(x) − gy(x0).

By the Mean value theorem on gy, there exists x̃ between x0 and x such that

gy(x) − gy(x0) = (x − x0)
∂gy

∂x
(x̃) = (x − x0)

(
∂f

∂x
(x̃, y) − ∂f

∂x
(x̃, y0)

)
.

By the Mean value theorem on ∂f/∂x, there exists ỹ between y0 and y such that

∂f

∂x
(x̃, y) − ∂f

∂x
(x̃, y0) = (y − y0)

∂2f

∂y∂x
(x̃, ỹ).
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Hence

∂2f

∂y∂x
(x̃, ỹ) =

S(x, y)
(x − x0)(y − y0)

.

Since ∂2f/∂y∂x is continuous at (x0, y0), and since (x̃, ỹ) → (x0, y0) as (x, y) → (x0, y0), we must have

∂2f

∂y∂x
(x0, y0) = lim

(x,y)→(x0,y0)

S(x, y)
(x − x0)(y − y0)

.

A similar argument with the roles of the two variables x and y reversed gives

∂2f

∂x∂y
(x0, y0) = lim

(x,y)→(x0,y0)

S(x, y)
(x − x0)(y − y0)

.

Hence

∂2f

∂y∂x
(x0, y0) =

∂2f

∂x∂y
(x0, y0)

as required. ©

4.2. Taylor’s Theorem

Recall that in the theory of real valued functions of one real variable, Taylor’s theorem states that for a
smooth function,

(1) f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 + . . . +

f (k)(x0)
k!

(x − x0)k + Rk(x),

where the remainder term

(2) Rk(x) =
∫ x

x0

(x − t)k

k!
f (k+1)(t) dt

satisfies

lim
x→x0

Rk(x)
(x − x0)k

= 0.

Remark. We usually prove this result by first using the Fundamental theorem of integral calculus to
obtain

f(x) − f(x0) =
∫ x

x0

f ′(t) dt.

Integrating by parts, we obtain∫ x

x0

f ′(t) dt =
[
(t − x)f ′(t)

]x

x0

−
∫ x

x0

(t − x)f ′′(t) dt = f ′(x0)(x − x0) +
∫ x

x0

(x − t)f ′′(t) dt.

Hence

f(x) − f(x0) = f ′(x0)(x − x0) +
∫ x

x0

(x − t)f ′′(t) dt,
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proving (1) and (2) for k = 1. The proof is now completed by induction on k and using integrating by
parts on the integral (2).

Our goal in this section is to obtain Taylor approximations for functions of the type f : A → R,
where A ⊆ R

n is an open set. Suppose first of all that x0 ∈ A, and that f is differentiable at x0. For
any x ∈ A, let

R1(x) = f(x) − f(x0) − (Df)(x0)(x − x0),

where (Df)(x0) denotes the total derivative of f at x0, and where x − x0 is interpreted as a column
matrix. Since f is differentiable at x0, we have

lim
x→x0

|f(x) − f(x0) − (Df)(x0)(x − x0)|
‖x − x0‖

= 0;

in other words,

lim
x→x0

|R1(x)|
‖x − x0‖

= 0.

Note that

(3) (Df)(x0)(x − x0) =
n∑

i=1

(
∂f

∂xi
(x0)

)
(xi − Xi),

where x0 = (X1, . . . , Xn).

We have therefore proved the following result on first-order Taylor approximations.

THEOREM 4B. Suppose that the function f : A → R, where A ⊆ R
n is an open set, is differentiable

at x0 ∈ A. Then for every x ∈ A, we have

f(x) = f(x0) +
n∑

i=1

(
∂f

∂xi
(x0)

)
(xi − Xi) + R1(x),

where x0 = (X1, . . . , Xn), and where

lim
x→x0

|R1(x)|
‖x − x0‖

= 0.

For second-order Taylor approximation, we have the following result.

THEOREM 4C. Suppose that the function f : A → R, where A ⊆ R
n is an open set, has continuous

iterated second partial derivatives. Suppose further that x0 ∈ A. Then for every x ∈ A, we have

(4) f(x) = f(x0) +
n∑

i=1

(
∂f

∂xi
(x0)

)
(xi − Xi) +

1
2

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
(x0)

)
(xi − Xi)(xj − Xj) + R2(x),

where x0 = (X1, . . . , Xn), and where

(5) lim
x→x0

|R2(x)|
‖x − x0‖2

= 0.

† Sketch of Proof. We shall attempt to demonstrate the theorem by making the extra assumption
that f has continuous iterated third partial derivatives. Consider the function

L : [0, 1] → R
n : t �→ (1 − t)x0 + tx;
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here L denotes the line segment joining x0 and x, and we shall make the extra assumption that this line
segment lies in A. Then consider the composition g = f ◦ L : [0, 1] → R, where g(t) = f((1 − t)x0 + tx)
for every t ∈ [0, 1]. We now apply (1) and (2) to the function g to obtain

g(1) = g(0) + g′(0) +
g′′(0)

2
+ R2,

where

R2 =
∫ 1

0

(t − 1)2

2
g′′′(t) dt.

Applying the Chain rule, we have

g′(t) = (Df)(L(t))(DL)(t) =

 ∂f

∂x1
(L(t)) . . .

∂f

∂xn
(L(t))

  x1 − X1
...

xn − Xn


=

n∑
i=1

(
∂f

∂xi
(L(t))

)
(xi − Xi),

so that

g′(0) =
n∑

i=1

(
∂f

∂xi
(L(0))

)
(xi − Xi) =

n∑
i=1

(
∂f

∂xi
(x0)

)
(xi − Xi).

Note that

g′(t) =
n∑

j=1

((
∂f

∂xj
◦ L

)
(t)

)
(xj − Xj).

It follows from the Chain rule and the arithmetic of derivatives that

g′′(t) =
n∑

j=1

((
D

∂f

∂xj

)
(L(t))(DL)(t)

)
(xj − Xj)

=
n∑

j=1

 ∂2f

∂x1∂xj
(L(t)) . . .

∂2f

∂xn∂xj
(L(t))

  x1 − X1
...

xn − Xn

 (xj − Xj)

=
n∑

j=1

(
n∑

i=1

(
∂2f

∂xi∂xj
(L(t))

)
(xi − Xi)

)
(xj − Xj)

=
n∑

i=1

n∑
j=1

(
∂2f

∂xi∂xj
(L(t))

)
(xi − Xi)(xj − Xj),

so that

g′′(0) =
n∑

i=1

n∑
j=1

(
∂2f

∂xi∂xj
(L(0))

)
(xi − Xi)(xj − Xj) =

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
(x0)

)
(xi − Xi)(xj − Xj).

Note that

g′′(t) =
n∑

j=1

n∑
k=1

((
∂2f

∂xj∂xk
◦ L

)
(t)

)
(xj − Xj)(xk − Xk).
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It can be shown, using the Chain rule and the arithmetic of derivatives, that

g′′′(t) =
n∑

i=1

n∑
j=1

n∑
k=1

(
∂3f

∂xi∂xj∂xk
(L(t))

)
(xi − Xi)(xj − Xj)(xk − Xk)

=
n∑

i=1

n∑
j=1

n∑
k=1

(
∂3f

∂xi∂xj∂xk
((1 − t)x0 + tx)

)
(xi − Xi)(xj − Xj)(xk − Xk).

Writing R2 = R2(x), we have established (4), where

R2(x) =
n∑

i=1

n∑
j=1

n∑
k=1

∫ 1

0

(t − 1)2

2

(
∂3f

∂xi∂xj∂xk
((1 − t)x0 + tx)

)
(xi − Xi)(xj − Xj)(xk − Xk) dt.

The function

(t − 1)2

2

(
∂3f

∂xi∂xj∂xk
((1 − t)x0 + tx)

)
is continuous, and hence bounded by M , say, in [0, 1]. Also

|xi − Xi|, |xj − Xj |, |xk − Xk| ≤ ‖x − x0‖,

so |R2(x)| ≤ n3M‖x − x0‖3, and so (5) follows. ©

The second-order term that arises in Theorem 4C is of particular importance in the determination
of the nature of stationary points later.

Definition. The quadratic function

(6) Hf(x0)(x − x0) =
1
2

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
(x0)

)
(xi − Xi)(xj − Xj)

is called the Hessian of f at x0.

Remark. The expression (4) can be rewritten in the form

(7) f(x) = f(x0) + (Df)(x0)(x − x0) + Hf(x0)(x − x0) + R2(x),

where (Df)(x0)(x − x0), the matrix product of the total derivative (Df)(x0) with the column matrix
x − x0, is given by (3), and where the Hessian Hf(x0)(x − x0) is given by (6).

Example 4.2.1. Consider the function f : R
2 → R, defined by f(x, y) = x2y + 3y − 2 for every

(x, y) ∈ R
2, near the point (x0, y0) = (1,−2). Clearly f(1,−2) = −10. We have

∂f

∂x
= 2xy and

∂f

∂y
= x2 + 3.

Also

∂2f

∂x2
= 2y and

∂2f

∂y2
= 0 and

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2x.

Hence

∂f

∂x
(1,−2) = −4 and

∂f

∂y
(1,−2) = 4.
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Also

∂2f

∂x2
(1,−2) = −4 and

∂2f

∂y2
(1,−2) = 0 and

∂2f

∂x∂y
(1,−2) =

∂2f

∂y∂x
(1,−2) = 2.

Since

f(x, y) = f(1,−2) +
((

∂f

∂x
(1,−2)

)
(x − 1) +

(
∂f

∂y
(1,−2)

)
(y + 2)

)
+

1
2

((
∂2f

∂x2
(1,−2)

)
(x − 1)2 +

(
∂2f

∂x∂y
(1,−2)

)
(x − 1)(y + 2)

+
(

∂2f

∂y∂x
(1,−2)

)
(x − 1)(y + 2) +

(
∂2f

∂y2
(1,−2)

)
(y + 2)2

)
+ R2(x, y)

= −10 − 4(x − 1) + 4(y + 2) − 2(x − 1)2 + 2(x − 1)(y + 2) + R2(x, y),

it follows that the second-order Taylor approximation of f at (1,−2) is given by

−10 − 4(x − 1) + 4(y + 2) − 2(x − 1)2 + 2(x − 1)(y + 2),

and the Hessian of f at (1,−2) is given by

−2(x − 1)2 + 2(x − 1)(y + 2).

Example 4.2.2. Consider the function f : R
2 → R, defined by f(x, y) = ex cos y for every (x, y) ∈ R

2,
near the point (x0, y0) = (0, 0). Clearly f(0, 0) = 1. We have

∂f

∂x
= ex cos y and

∂f

∂y
= −ex sin y.

Also

∂2f

∂x2
= ex cos y and

∂2f

∂y2
= −ex cos y and

∂2f

∂x∂y
=

∂2f

∂y∂x
= −ex sin y.

Hence

∂f

∂x
(0, 0) = 1 and

∂f

∂y
(0, 0) = 0.

Also

∂2f

∂x2
(0, 0) = 1 and

∂2f

∂y2
(0, 0) = −1 and

∂2f

∂x∂y
(0, 0) =

∂2f

∂y∂x
(0, 0) = 0.

Since

f(x, y) = f(0, 0) +
((

∂f

∂x
(0, 0)

)
(x − 0) +

(
∂f

∂y
(0, 0)

)
(y − 0)

)
+

1
2

((
∂2f

∂x2
(0, 0)

)
(x − 0)2 +

(
∂2f

∂x∂y
(0, 0)

)
(x − 0)(y − 0)

+
(

∂2f

∂y∂x
(0, 0)

)
(x − 0)(y − 0) +

(
∂2f

∂y2
(0, 0)

)
(y − 0)2

)
+ R2(x, y)

= 1 + x +
1
2
x2 − 1

2
y2 + R2(x, y),
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it follows that the second-order Taylor approximation of f at (0, 0) is given by

1 + x +
1
2
x2 − 1

2
y2,

and the Hessian of f at (0, 0) is given by

1
2
x2 − 1

2
y2.

Example 4.2.3. Consider the function f : R
3 → R, defined by f(x, y, z) = x2y + xz3 + y2z2 for every

(x, y, z) ∈ R
3, near the point (x0, y0, z0) = (1, 1, 1). Clearly f(1, 1, 1) = 3. We have

∂f

∂x
= 2xy + z3 and

∂f

∂y
= x2 + 2yz2 and

∂f

∂z
= 3xz2 + 2y2z.

Also

∂2f

∂x2
= 2y and

∂2f

∂y2
= 2z2 and

∂2f

∂z2
= 6xz + 2y2.

Furthermore,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2x and

∂2f

∂x∂z
=

∂2f

∂z∂x
= 3z2 and

∂2f

∂y∂z
=

∂2f

∂z∂y
= 4yz.

Hence

∂f

∂x
(1, 1, 1) = 3 and

∂f

∂y
(1, 1, 1) = 3 and

∂f

∂z
(1, 1, 1) = 5.

Also

∂2f

∂x2
(1, 1, 1) = 2 and

∂2f

∂y2
(1, 1, 1) = 2 and

∂2f

∂z2
(1, 1, 1) = 8.

Furthermore,

∂2f

∂x∂y
(1, 1, 1) = 2 and

∂2f

∂x∂z
(1, 1, 1) = 3 and

∂2f

∂y∂z
(1, 1, 1) = 4.

Since

f(x, y, z) = f(1, 1, 1) +
((

∂f

∂x
(1, 1, 1)

)
(x − 1) +

(
∂f

∂y
(1, 1, 1)

)
(y − 1) +

(
∂f

∂z
(1, 1, 1)

)
(z − 1)

)
+

1
2

( (
∂2f

∂x2
(1, 1, 1)

)
(x − 1)2 +

(
∂2f

∂y2
(1, 1, 1)

)
(y − 1)2 +

(
∂2f

∂z2
(1, 1, 1)

)
(z − 1)2

+ 2
(

∂2f

∂x∂y
(1, 1, 1)

)
(x − 1)(y − 1) + 2

(
∂2f

∂x∂z
(1, 1, 1)

)
(x − 1)(z − 1)

+ 2
(

∂2f

∂y∂z
(1, 1, 1)

)
(y − 1)(z − 1)

)
+ R2(x, y, z)

= 3 + 3(x − 1) + 3(y − 1) + 5(z − 1) + (x − 1)2 + (y − 1)2 + 4(z − 1)2

+ 2(x − 1)(y − 1) + 3(x − 1)(z − 1) + 4(y − 1)(z − 1) + R2(x, y, z),

it follows that the second-order Taylor approximation of f at (1, 1, 1) is given by

3+3(x−1)+3(y−1)+5(z−1)+(x−1)2+(y−1)2+4(z−1)2+2(x−1)(y−1)+3(x−1)(z−1)+4(y−1)(z−1),
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and the Hessian of f at (1, 1, 1) is given by

(x − 1)2 + (y − 1)2 + 4(z − 1)2 + 2(x − 1)(y − 1) + 3(x − 1)(z − 1) + 4(y − 1)(z − 1).

4.3. Stationary Points

In this section, we study stationary points using an approach which allows us to generalize our technique
for functions of two real variables. Throughout this section, we shall consider functions of the type
f : A → R, where A ⊆ R

n is an open set. We shall assume that f has continuous iterated second partial
derivatives.

Definition. A point x0 ∈ A is said to be a stationary point of f if the total derivative (Df)(x0) = 0,
where 0 denotes the zero 1 × n matrix.

Remark. In other words, x0 ∈ A is a stationary point of f if

∂f

∂xi
(x0) = 0

for every i = 1, . . . , n.

Definition. A point x0 ∈ A is said to be a (local) maximum of f if there exists a neighbourhood U
of x0 such that f(x) ≤ f(x0) for every x ∈ U .

Definition. A point x0 ∈ A is said to be a (local) minimum of f if there exists a neighbourhood U of
x0 such that f(x) ≥ f(x0) for every x ∈ U .

Definition. A stationary point x0 ∈ A that is not a maximum or minimum of f is said to be a saddle
point of f .

Our first task is to show that if f is differentiable, then every maximum or minimum of f is a
stationary point of f . Note that this may not be the case if the function f is not differentiable, as can
be observed for the function f : R → R : x �→ |x| at the point x = 0.

THEOREM 4D. Suppose that the function f : A → R, where A ⊆ R
n is an open set, is differentiable.

Suppose further that x0 ∈ A is a maximum or minimum of f . Then x0 is a stationary point of f .

† Proof. Suppose that x0 ∈ A is a maximum of f . Consider the restriction of f to a line through x0.
More precisely, consider the points x0 + th ∈ R

n, where 0 �= h ∈ R
n is fixed. Since A is open, there

exists an open interval I containing t = 0 and such that {x0 + th : t ∈ I} ⊆ A. Consider now the line
segment

L : I → R
n : t �→ x0 + th.

Since the function f has a maximum at x0, it follows that the function

g = f ◦ L : I → R,

where g(t) = f(x0 + th) for every t ∈ I, has a maximum at t = 0. By the Chain rule, g is differentiable.
Since

g′(0) = lim
t→0

g(t) − g(0)
t − 0

,
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it clearly follows that

g′(0) = lim
t→0+

g(t) − g(0)
t − 0

≤ 0 and g′(0) = lim
t→0−

g(t) − g(0)
t − 0

≥ 0,

and so g′(0) = 0, whence (Dg)(0) = 0. Again, by the Chain rule, we have

(Dg)(0) = (Df)(L(0))(DL)(0).

It is easy to check that (DL)(0) = h, and so (Df)(L(0))h = 0. Since h �= 0 is arbitrary, we must have
(Df)(x0) = (Df)(L(0)) = 0. The case when x0 ∈ A is a minimum of f can be studied by considering
the function −f . ©

It is a consequence of (7) that if f has a stationary point at x0 ∈ A, then

(8) f(x) = f(x0) + Hf(x0)(x − x0) + R2(x).

It follows that the Hessian Hf(x0)(x−x0) plays a crucial role in the determination of the nature of the
stationary point. Recall that the Hessian is given by (6). Let us write h = x− x0 and h = (h1, . . . , hn).
Then (6) becomes

Hf(x0)(h) =
1
2

n∑
i=1

n∑
j=1

(
∂2f

∂xi∂xj
(x0)

)
hihj =

n∑
i=1

n∑
j=1

αijhihj ,

where, for every i, j = 1, . . . , n, we have

αij =
1
2

∂2f

∂xi∂xj
(x0).

A function of the type

(9) g(h) = g(h1, . . . , hn) =
n∑

i=1

n∑
j=1

βijhihj

is called a quadratic function. Note that if we write

B =

 β11 . . . β1n
...

...
βn1 . . . βnn

 and h =

 h1
...

hn

 ,

then

g(h) = htBh.

Clearly for any real number λ ∈ R, we have

(10) g(λh) = (λh)tB(λh) = λ2htBh = λ2g(h);

hence the term “quadratic”.

Definition. A quadratic function g : R
n → R is said to be positive definite if g(0) = 0 and g(h) > 0

for every non-zero h ∈ R
n.

Definition. A quadratic function g : R
n → R is said to be negative definite if g(0) = 0 and g(h) < 0

for every non-zero h ∈ R
n.
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THEOREM 4E. Suppose that the function f : A → R, where A ⊆ R
n is an open set, has continuous

iterated second partial derivatives. Suppose further that x0 ∈ A is a stationary point of f .
(a) If the Hessian Hf(x0)(x − x0) = Hf(x0)(h) is positive definite, then f has a minimum at x0.
(b) If the Hessian Hf(x0)(x − x0) = Hf(x0)(h) is negative definite, then f has a maximum at x0.

Example 4.3.1. Consider the function f : R
2 → R, defined by

f(x, y) = x3 + y3 − 3x − 12y + 4.

Then

(Df)(x, y) =
(

∂f

∂x

∂f

∂y

)
= ( 3x2 − 3 3y2 − 12 ) .

For stationary points, we need 3x2−3 = 0 and 3y2−12 = 0, so there are four stationary points (±1,±2).
Now

∂2f

∂x2
= 6x and

∂2f

∂y2
= 6y and

∂2f

∂x∂y
= 0.

At the stationary point (1, 2), we have

∂2f

∂x2
(1, 2) = 6 and

∂2f

∂y2
(1, 2) = 12 and

∂2f

∂x∂y
(1, 2) = 0.

Hence the Hessian of f at (1, 2) is given by

1
2

((
∂2f

∂x2
(1, 2)

)
(x − 1)2 +

(
∂2f

∂y2
(1, 2)

)
(y − 2)2 + 2

(
∂2f

∂x∂y
(1, 2)

)
(x − 1)(y − 2)

)
= 3(x − 1)2 + 6(y − 2)2

and is positive definite. It follows that f has a minimum at (1, 2). At the stationary point (−1,−2), we
have

∂2f

∂x2
(−1,−2) = −6 and

∂2f

∂y2
(−1,−2) = −12 and

∂2f

∂x∂y
(−1,−2) = 0.

Hence the Hessian of f at (−1,−2) is given by

1
2

((
∂2f

∂x2
(−1,−2)

)
(x + 1)2 +

(
∂2f

∂y2
(−1,−2)

)
(y + 2)2 + 2

(
∂2f

∂x∂y
(−1,−2)

)
(x + 1)(y + 2)

)
= −3(x + 1)2 − 6(y + 2)2

and is negative definite. It follows that f has a maximum at (−1,−2). At the stationary point (1,−2),
we have

∂2f

∂x2
(1,−2) = 6 and

∂2f

∂y2
(1,−2) = −12 and

∂2f

∂x∂y
(1,−2) = 0.

Hence the Hessian of f at (1,−2) is given by

1
2

((
∂2f

∂x2
(1,−2)

)
(x − 1)2 +

(
∂2f

∂y2
(1,−2)

)
(y + 2)2 + 2

(
∂2f

∂x∂y
(1,−2)

)
(x − 1)(y + 2)

)
= 3(x − 1)2 − 6(y + 2)2.
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Let us investigate the function

Hf(1,−2)(h1, h2) = 3h2
1 − 6h2

2

more closely. Note that

Hf(1,−2)(h1, 0) = 3h2
1 ≥ 0 and Hf(1,−2)(0, h2) = 0 − 6h2

2 ≤ 0.

In this case, Theorem 4E does not give any conclusion. In fact, both stationary points (1,−2) and
(−1, 2) are saddle points.

Remark. To prove Theorem 4E, we need the following result in linear algebra. Suppose that a
quadratic function of the type (9) is positive definite. Then there exists a constant M > 0 such that for
every h ∈ R

n, we have

(11) g(h) ≥ M‖h‖2.

To see this, consider the restriction

gS : S → R : h �→ g(h)

of the function g to the unit sphere S = {h ∈ R
n : ‖h‖ = 1}. The function gS is continuous in S and

has a minimum value M > 0, say. Then for any non-zero h ∈ R
n, we have, noting (10), that

g(h) = g

(
‖h‖ h

‖h‖

)
= ‖h‖2g

(
h
‖h‖

)
= ‖h‖2gS

(
h
‖h‖

)
≥ M‖h‖2.

Hence (11) holds for any non-zero h ∈ R
n. Clearly it also holds for h = 0.

† Sketch of Proof of Theorem 4E. We shall attempt to demonstrate the theorem by making the
extra assumption that iterated third partial derivatives exist and are continuous. At a stationary point
x0, the expression (8) is valid, and can be rewritten in the form

f(x) − f(x0) = Hf(x0)(x − x0) + R2(x),

where R2(x) satisfies (5). Suppose that Hf(x0)(x − x0) is positive definite. Then by our remark on
linear algebra, there exists M > 0 such that

Hf(x0)(x − x0) ≥ M‖x − x0‖2

for every x ∈ R
n. On the other hand, it follows from (5) that

|R2(x)| ≤ 1
2
M‖x − x0‖2,

provided that ‖x − x0‖ is sufficiently small. Hence

f(x) − f(x0) ≥
1
2
M‖x − x0‖2 ≥ 0,

provided that ‖x− x0‖ is sufficiently small, whence f has a minimum at x0. The negative definite case
can be studied by considering the function −f . ©

4.4. Functions of Two Variables

We now attempt to link the Hessian to the discriminant. Suppose that a function f : A → R, where
A ⊆ R

2 is an open set, has continuous iterated second partial derivatives. Suppose further that f has a
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stationary point at (x0, y0). Then the Hessian is given by

1
2

( (
∂2f

∂x2
(x0, y0)

)
(x − x0)2 +

(
∂2f

∂x∂y
(x0, y0)

)
(x − x0)(y − y0)

+
(

∂2f

∂y∂x
(x0, y0)

)
(x − x0)(y − y0) +

(
∂2f

∂y2
(x0, y0)

)
(y − y0)2

)

=
1
2

( x − x0 y − y0 )


∂2f

∂x2
(x0, y0)

∂2f

∂y∂x
(x0, y0)

∂2f

∂x∂y
(x0, y0)

∂2f

∂y2
(x0, y0)


 x − x0

y − y0

 .

Remark. We need the following result in linear algebra. The quadratic function

g(x, y) = (x y )
(

a b
b c

) (
x
y

)
,

where a, b, c ∈ R, is positive definite if and only if a > 0 and ac − b2 > 0. To see this, note that

g(x, y) = ax2 + 2bxy + cy2.

Suppose first of all that a > 0 and ac − b2 > 0. Completing squares, we have

(12) g(x, y) = a

(
x +

b

a
y

)2

+
(

c − b2

a

)
y2 ≥ 0,

with equality only when

y = 0 and x +
b

a
y = 0;

in other words, when (x, y) = (0, 0). Suppose now that a = 0. Then g(x, y) = 2bxy + cy2 clearly cannot
be positive definite (why?). It follows that if g(x, y) is positive definite, then a �= 0 and (12) holds, with
strict inequality whenever (x, y) �= (0, 0). Setting y = 0, we conclude that we must have a > 0. Setting
x = −by/a, we conclude that we must have ac − b2 > 0.

We have essentially proved the following result.

THEOREM 4F. Suppose that the function f : A → R, where A ⊆ R
2 is an open set, has continuous

iterated second partial derivatives. Suppose further that (x0, y0) ∈ A is a stationary point of f .
(a) If

∂2f

∂x2
(x0, y0) > 0 and ∆ = det


∂2f

∂x2
(x0, y0)

∂2f

∂y∂x
(x0, y0)

∂2f

∂x∂y
(x0, y0)

∂2f

∂y2
(x0, y0)

 > 0,

then f has a minimum at (x0, y0).
(b) If

∂2f

∂x2
(x0, y0) < 0 and ∆ = det


∂2f

∂x2
(x0, y0)

∂2f

∂y∂x
(x0, y0)

∂2f

∂x∂y
(x0, y0)

∂2f

∂y2
(x0, y0)

 > 0,

then f has a maximum at (x0, y0).
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Remark. The reader may wish to re-examine Example 4.3.1 using this result.

4.5. Constrained Maxima and Minima

In this last section, we consider the problem of finding maxima and minima of functions of n variables,
where the veriables are not always independent of each other but are subject to some constraints. In
the case of one constraint, we have the following useful result.

THEOREM 4G. Suppose that the functions f : A → R and g : A → R, where A ⊆ R
n is an open

set, have continuous partial derivatives. Suppose next that c ∈ R is fixed, and S = {x ∈ A : g(x) = c}.
Suppose further that the function f |S, the restriction of f to S, has a maximum or minimum at x0 ∈ S,
and that (∇g)(x0) �= 0. Then there exists a real number λ ∈ R such that (∇f)(x0) = λ(∇g)(x0).

Remarks. (1) The restriction of f to S ⊆ A is the function f |S : S → R : x �→ f(x).

(2) The number λ is called the Lagrange multiplier.

(3) Note that (∇g)(x0) is a vector which is orthogonal to the surface S at x0. It follows that if f
has a maximum or minimum at x0, then (∇f)(x0) must be orthogonal to the surface S at x0.

† Sketch of Proof of Theorem 4G. We shall only consider the case n = 3. Suppose that I ⊆ R

is an open interval containing the number 0. Suppose further that

L : I → R
3 : t �→ L(t) = (L1(t), L2(t), L3(t))

is a path on S, with L(0) = x0, so that L(t) ∈ S for every t ∈ I. Consider first of all the function
h = g ◦ L : I → R. Clearly h(t) = g(L(t)) = c for every t ∈ I. It follows that

(Dh)(0) =
dh

dt
(0) = 0.

On the other hand, it follows from the Chain rule that

(Dh)(0) = (Dg)(L(0))(DL)(0) = (∇g)(x0) · (L′
1(0), L′

2(0), L′
3(0)),

so that (∇g)(x0) is perpendicular to (L′
1(0), L′

2(0), L′
3(0)), a tangent vector to S at x0. Since L is

arbitrary, it follows that (∇g)(x0) must be perpendicular to the tangent plane to S at x0. Consider next
the function k = f ◦L : I → R. If f |S has a maximum or minimum at x0, then clearly k has a maximum
or minimum at t = 0. It follows that

(Dk)(0) =
dk

dt
(0) = 0.

On the other hand, it follows from the Chain rule that

(Dk)(0) = (Df)(L(0))(DL)(0) = (∇f)(x0) · (L′
1(0), L′

2(0), L′
3(0)),

so that (∇f)(x0) is perpendicular to (L′
1(0), L′

2(0), L′
3(0)). Since L is arbitrary, it follows as before that

(∇f)(x0) must also be perpendicular to the tangent plane to S at x0. Since (∇f)(x0) and (∇g)(x0) �= 0
are perpendicular to the same plane, there exists a real number λ ∈ R such that (∇f)(x0) = λ(∇g)(x0).
©
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Example 4.5.1. We wish to find the distance from the origin to the plane x−2y−2z = 3. To do this,
we consider the function

f : R
3 → R : (x, y, z) �→ x2 + y2 + z2,

which represents the square of the distance from the origin to a point (x, y, z) ∈ R
3. The points (x, y, z)

under consideration are subject to the constraint g(x, y, z) = 3, where

g : R
3 → R : (x, y, z) �→ x − 2y − 2z.

We now wish to minimize f subject to this constraint. Using the Lagrange multiplier method, we know
that the minimum is attained at a point (x, y, z) which satisfies

(∇f)(x, y, z) = λ(∇g)(x, y, z)

for some real number λ ∈ R. Note that

(∇f)(x, y, z) = (2x, 2y, 2z) and (∇g)(x, y, z) = (1,−2,−2).

Hence we need to solve the equations

(2x, 2y, 2z) = λ(1,−2,−2) and x − 2y − 2z = 3.

Substituting the former into the latter, we obtain λ = 2/3. This gives (x, y, z) = (1/3,−2/3,−2/3).
Clearly f(x, y, z) = 1 at this point. Hence the minimum distance is equal to 1, the square root of
f(x, y, z) at this point.

Example 4.5.2. We wish to find the volume of the largest rectangular box with edges parallel to the
coordinate axes and inscribed in the ellipsoid

(13)
x2

a2
+

y2

b2
+

z2

c2
= 1.

Clearly the box is given by [−x, x] × [−y, y] × [−z, z] for some positive x, y, z ∈ R satisfying (13), with
volume equal to 8xyz. We therefore wish to maximize the function

f : R
3 → R : (x, y, z) �→ 8xyz,

subject to the constraint g(x, y, z) = 1, where

g : R
3 → R : (x, y, z) �→ x2

a2
+

y2

b2
+

z2

c2
.

Using the Lagrange multiplier method, we know that the maximum is attained at a point (x, y, z) which
satisfies

(∇f)(x, y, z) = λ(∇g)(x, y, z)

for some real number λ ∈ R. Note that

(∇f)(x, y, z) = (8yz, 8xz, 8xy) and (∇g)(x, y, z) =
(

2x

a2
,
2y

b2
,
2z

c2

)
.

Hence we need to solve the equations (13) and

(14) (8yz, 8xz, 8xy) = λ

(
2x

a2
,
2y

b2
,
2z

c2

)
.
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Since x, y, z > 0, it follows from (14) that

(15) 8xyz =
2λx2

a2
=

2λy2

b2
=

2λz2

c2
,

so that combining with (13), we have

24xyz =
2λx2

a2
+

2λy2

b2
+

2λz2

c2
= 2λ

(
x2

a2
+

y2

b2
+

z2

c2

)
= 2λ,

whence λ = 12xyz. Substituting this into the left hand side of (15), we deduce that

x2

a2
=

y2

b2
=

z2

c2
=

1
3
,

giving

(x, y, z) =
(

a√
3
,

b√
3
,

c√
3

)
and f(x, y, z) =

8abc

3
√

3
.

Remark. In Example 4.5.2, we clearly have constrained minima at points such as (a, 0, 0). Note,
however, that we have dispensed with such trivial cases by considering only positive values of x, y, z.
Note that (15) is obtained only under such a specialization.

In the case of more than one constraint, we have the following generalized version of Theorem 4G.

THEOREM 4H. Suppose that the functions f : A → R and gi : A → R, where A ⊆ R
n is an open

set and i = 1, . . . , k, have continuous partial derivatives. Suppose next that c1, . . . , ck ∈ R are fixed, and
S = {x ∈ A : gi(x) = ci for every i = 1, . . . , k}. Suppose further that the function f |S, the restriction
of f to S, has a maximum or minimum at x0 ∈ S, and that (∇g1)(x0), . . . , (∇gk)(x0) are linearly
independent over R. Then there exist real numbers λ1, . . . , λk ∈ R such that

(∇f)(x0) = λ1(∇g1)(x0) + . . . + λk(∇gk)(x0).

Example 4.5.3. We wish to find the distance from the origin to the intersection of xy = 12 and
x + 2z = 0. To do this, we consider the function

f : R
3 → R : (x, y, z) �→ x2 + y2 + z2,

which represents the square of the distance from the origin to a point (x, y, z) ∈ R
3. The points (x, y, z)

under consideration are subject to the constraints g1(x, y, z) = 12 and g2(x, y, z) = 0, where

g1 : R
3 → R : (x, y, z) �→ xy and g2 : R

3 → R : (x, y, z) �→ x + 2z.

We now wish to minimize f subject to these constraints. Using the Lagrange multiplier method, we
know that the minimum is attained at a point (x, y, z) which satisfies

(∇f)(x, y, z) = λ1(∇g1)(x, y, z) + λ2(∇g2)(x, y, z)

for some real numbers λ1, λ2 ∈ R. Note that

(∇f)(x, y, z) = (2x, 2y, 2z) and (∇g1)(x, y, z) = (y, x, 0) and (∇g2)(x, y, z) = (1, 0, 2).

Hence we need to solve the equations

(2x, 2y, 2z) = λ1(y, x, 0) + λ2(1, 0, 2) and xy = 12 and x + 2z = 0.
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Eliminating λ1 and λ2 from this system of five equations, we conclude (after a fair bit of calculation)
that

(x, y, z) =

(
±2 4

√
36
5

,±6 4

√
5
36

,∓ 4

√
36
5

)
and f(x, y, z) = 12

√
5.

Hence the minimum distance is equal to
√

12
√

5, the square root of f(x, y, z) at this point.

Problems for Chapter 4

1. For each of the following functions, find the second-order Taylor approximation at the given point:
a) f(x, y) = x cos(xy) + y sin(xy); (x0, y0) = (0, 0)
b) f(x, y, z) = exzy2 + sin y cos z + x2z; (x0, y0, z0) = (0, π, 0)

2. Consider the function f : R
2 → R defined by

f(x, y) = x3 − y3 − 3xy + 4.

a) Show that the total derivatives (Df)(−1, 1) = 0 and (Df)(0, 0) = 0.
b) Find the second-order Taylor approximations to f(x, y) at the points (−1, 1) and (0, 0).
c) Find the Hessians (Hf)(−1, 1) and (Hf)(0, 0).
d) Is (Hf)(−1, 1) positive definite? Negative definite? Comment on the result.
e) Is (Hf)(0, 0) positive definite? Negative definite?
f) Find the discriminant of f at (0, 0).
g) Comment on your observations in (e), (f) and the second part of (a).

3. Consider the function f : R
2 → R, defined by

f(x, y) =
x4 − 4x3 + 4x2 − 3

1 + y2
.

a) Find the total derivative (Df)(x, y).
b) Show that the three stationary points are (0, 0), (1, 0) and (2, 0).
c) Evaluate the partial derivatives ∂2f/∂x2, ∂2f/∂y2 and ∂2f/∂x∂y, and find the Hessian of f

at each of the stationary points.
d) Show that the Hessian of f at (0, 0) and at (2, 0) are positive definite.
e) Find the discriminant of f at (1, 0).
f) Classify the stationary points.

4. Consider the function f : R
2 → R, defined by f(x, y) = x3 + y3 + 9x2 + 9y2 + 12xy.

a) Show that (0, 0), (−10,−10), (−4, 2) and (2,−4) are stationary points.
b) Find the Hessian of f at (0, 0) and show that it is positive definite.
c) Find the Hessian of f at (−10,−10) and show that it is negative definite.
d) Classify the stationary points (0, 0) and (−10,−10).
e) Find the discriminant of f at the other two stationary points, and classify these stationary

points.

5. Consider the function f : R
3 → R, defined by f(x, y, z) = x2 + y2 + z2 − 6xy + 8xz − 10yz.

a) Show that (Df)(x, y, z) = 0 leads to a system of three linear equations with unique solution
(x, y, z) = (0, 0, 0).

b) Without any calculation, can you write down the Hessian of f at (0, 0, 0)?
c) If you cannot do (b), then proceed to calculate the Hessian of f at (0, 0, 0). Then try to

understand the surprise (assuming that your calculation is correct).
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6. Consider the function f : R
2 → R, defined by f(x, y) = 4x2 − 12xy + 9y2.

a) Show that f has infinitely many stationary points.
b) Show that the Hessian at any stationary point of f is given by the same function (2x − 3y)2.
c) Can you classify these stationary points?

[Hint: Dispense with the theorems and have some fun instead.]

7. Consider the function f : R
2 → R, defined by f(x, y) = (y − x2)(y − 2x2).

a) Show that (0, 0) is a stationary point of f .
b) Find the Hessian of f at (0, 0). Is it positive definite? Negative definite?
c) Show that on any line through the origin, f has a minimum at (0, 0).

[Hint: Consider three cases: y = 0, x = 0 and y = αx where α is any non-zero real number.]
d) Draw a picture of the two parabolas y = x2 and y = 2x2 on the plane. Note that f(x, y) is a

product of two factors which are non-zero at any point (x, y) not on the parabolas. Shade in
one colour the region in R

2 for which f(x, y) > 0, and in another colour the region in R
2 for

which f(x, y) < 0. Convince yourself that f has a saddle point at (0, 0).

8. Follow the steps indicated below to find the shortest distance from the origin to the hyperbola
x2 + 8xy + 7y2 = 225. Write f(x, y) = x2 + y2 and g(x, y) = x2 + 8xy + 7y2. We shall minimize
f(x, y) subject to the constraint g(x, y) = 225.
a) Let λ be a Lagrange multiplier. Show that the equation (∇f)(x, y) − λ(∇g)(x, y) = 0 can

be rewritten as a system of two homogeneous linear equations in x and y, where some of the
coefficients depend on λ.

b) Clearly (x, y) �= (0, 0). It follows that the system of homogeneous linear equations in (a) has
non-trivial solution, and so the determinant of the corresponding matrix is zero. Use this fact
to find two roots for λ.

c) Show that one of the roots λ in (b) leads to no real solution of the system, while the other root
λ leads to a solution. Use this solution to minimize f(x, y).

d) What is the shortest distance from the origin to the hyperbola?

9. Find the point on the paraboloid z = x2 + y2 which is closest to the point (3,−6, 4).

10. Find the extreme values of z on the surface 2x2 + 3y2 + z2 − 12xy + 4xz = 35.


