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Chapter 8

The yield strength, tensile strength, hardness
and ductility

Introduction

All solids have an elastic limit beyond which something happens. A totally brittle solid
will fracture, either suddenly (like glass) or progressively (like cement or concrete).
Most engineering materials do something different; they deform plastically or change
their shapes in a permanent way. It is important to know when, and how, they do this
— both so that we can design structures which will withstand normal service loads
without any permanent deformation, and so that we can design rolling mills, sheet
presses, and forging machinery which will be strong enough to impose the desired
deformation onto materials we wish to form. To study this, we pull carefully prepared
samples in a tensile-testing machine, or compress them in a compression machine
(which we will describe in a moment), and record the stress required to produce a given
strain.

Linear and non-linear elasticity; anelastic behaviour

Figure 8.1 shows the stress—strain curve of a material exhibiting perfectly linear elastic
behaviour. This is the behaviour characterised by Hooke’s Law {Chapter 3). All solids
are linear elastic at small strains — by which we usually mean less than 0.001, or 0.1%.
The slope of the stress—strain line, which is the same in compression as in tension, is of
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Fig. 8.1. Stress—sirain behaviour for a linear elastic solid. The axes are calibrated for a material such as steel.
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Fig. 8.2. Stress—strain behaviour for a non-linear elastic sofid. The axes are colibrated for o material such as
rubber.

course Young's Modulus, E. The area (shaded) is the elastic energy stored, per unit
volume: since it is an elastic solid, we can get it all back if we unload the solid, which
behaves like a linear spring.

Figure 8.2 shows a non-linear elastic solid. Rubbers have a stress-strain curve like this,
extending to very large strains (of order 5). The material is still elastic: if unloaded, it
follows the same path down as it did up, and all the energy stored, per unit volume,
during loading is recovered on unloading - that is why catapults can be as lethal as
they are.

Finally, Fig. 8.3 shows a third form of elastic behaviour found in certain materials. This
is called anelastic behaviour. All solids are anelastic to a small extent: even in the régime
where they are nominally elastic, the loading curve does not exactly follow the unioading
curve, and energy is dissipated (equal to the shaded area) when the solid is cycled.
Sometimes this is useful - if you wish to damp out vibrations or noise, for example; you
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Fig, 8.1. Stress—strain behaviour for an anelastic solid The oxes are calibrated for ['lb-re9|m.s
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can do so with polymers or with soft metals (like lead) which have a high damping
capacity (high anelastic loss). But often such damping is undesirable - springs and bells,
for instance, are made of materials with the lowest possible damping capacity (spring
steel, bronze, glass).

Load-extension curves for non-elastic (plastic) behaviour

Rubbers are exceptional in behaving reversibly, or almost reversibly, to high strains; as
we said, almost all materials, when strained by more than about 0.001 (0.1%), do something
irreversible: and most engineering materials deform plastically to change their shape
permanently. It we load a piece of ductile metal (like copper), for cxample in tension, we
get the following relationship between the load and the extension (Fig. 8.4). This can be
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Fig. B4. Lood—extension curve for a bar of ductile metal [e.g. annecled copper) pu"ﬁd in fension.

demaonstrated nicely by pulling a piece of plasticine (a ductile non-metallic material).
Initially, the plasticine deforms elastically, but at a small strain begins to deform
plastically, so that if the load is removed, the piece of plasticine is permanently longer
than it was at the beginning of the test: it has undergone plastic deformation (Fig. 8.5).
If you continue to pull, it continues to get longer, at the same time getting thinner
because in plastic deformation volume is conserved (matter is just flowing from place to
place). Eventually, the plasticine becomes unstable and begins to neck at the maximum
load point in the force—extension curve (Fig. 8.4). Necking is an instability which we
shall look at in more detail in Chapter 11. The neck then grows quite rapidly, and the
load that the specimen can bear through the neck decreases until breakage takes place.
The two pieces produced after breakage have a total length that is slightly less than the
length just before breakage by the amount of the elastic extension produced by the
terminal load.
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If we load a material in compression, the force-displacement curve is simply the
reverse of that for tension at small strains, but it becomes different at larger strains. As
the specimen squashes down, becoming shorter and fatter to conserve volume, the load
needed to keep it flowing rises (Fig. 8.6). No instability such as necking appears, and
the specimen can be squashed almost indefinitely, this process only being limited
eventually by severe cracking in the specimen or the plastic flow of the compression
plates.

Why this great difference in behaviour? After all, we are dealing with the same
material in either case.

Fig. 8.6.
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True stress—strain curves for plastic flow

The apparent difference between the curves for tension and compression is due solely
to the geometry of testing. If, instead of plotting load, we plot load divided by the actual
area of the specimen, A, at any particular elongation or compression, the two curves become
much more like one another. In other words, we simply plot true stress (see Chapter 3)
as our vertical co-ordinate (Fig. 8.7). This method of plotting allows for the thinning of
the material when pulled in tension, or the fattening of the material when
compressed.
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Fig. 8.7.

But the two curves still do not exactly match, as Fig. 8.7 shows. The reason is a
displacement of (for example) u = I;/2 in tension and compression gives different
strains; it represents a drawing out of the tensile specimen from [; to 1.51;, but a
squashing down of the compressive specimen from I, to 0.5l;. The material of the
compressive specimen has thus undergone mich more plastic deformation than the
material in the tensile specimen, and can hardly be expected to be in the same state, or
to show the same resistance to plastic deformation. The two conditions can be
compared properly by taking small strain increments

du ol
e = — = — @.1
{ )

about which the state of the material is the same for either tension or compression (Fig.
8.8). This is the same as saying that a decrease in length from 100 mm (/y) to 99 mm (D),
or an increase in length from 100 mm (/) to 101 mm (/) both represent a 1% change in
the state of the material. Actually, they do not quite give exactly 1% in both cases, of
course, but they do in the limit

d!
de = 'I— (82)
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Then, if the stresses in compression and tension are plotted against

" di i
€ = — = In (— (8.3)
b i g

the two curves exactly mirror one another (Fig. 8.9). The quantity € is called the true
strain (to be contrasted with the nominal strain u/ly (defined in Chapter 3)) and the
matching curves are frue stress/triee strain (o/€) curves. Now, a final catch. We can, from
our original load—extension or load-compression curves easily calculate €, simply by
knowing I; and taking natural logs. But how do we calculate o? Because volume is
conserved during plastic deformation we can write, at any strain,

ﬂn I.n - 1"“

provided the extent of plastic deformation is much greater than the extent of elastic
deformation (this is usually the case, but the qualification must be mentioned because

i
Area = plastic

work dissipated par unit valume in
causing a parmanant plasiic strain ¢

Fig. 8.9.
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volume is only conserved during elastic deformation if Poisson’s ratio v = (1.5; and, as
we showed in Chapter 3, it is near 0.33 for most materials). Thus

I
A = A{;[:'_ (8.4)
and
F Fi
== {8.5)
A Agly

all of which we know or can measure easily.

Plastic work

When metals are rolled or forged, or drawn to wire, or when polymers are injection-
moulded or pressed or drawn, energy is absorbed. The work done on a material to
change its shape permanently is called the plastic work; its value, per unit volume, is the
area of the cross-hatched region shown in Fig. 8.9; it may easily be found (if the stress—
strain curve is known) for any amount of permanent plastic deformation, €'. Plastic
work is important in metal- and polymer-forming operations because it determines the
forces that the rolls, or press, or moulding machine must exert on the material.

Tensile testing

The plastic behaviour of a material is usually measured by conducting a tensile test.
Tensile testing equipment is standard in all engineering laboratories. Such equipment
produces a load /displacement (F/u) curve for the material, which is then converted to
a nominal stress/nominal strain, or ¢,/€,, curve (Fig. 8.10), where

o, = i (8.6)
Ap
and
6 = - (8.7)

(see Chapter 3, and above)., Naturally, because Ap and [; are constant, the shape of the
a,/ €, curve is identical to that of the load-extension curve. But the a,/¢, plotting
method allows one to compare data for specimens having different (though now
standardised) A; and I, and thus to examine the properties of material, unaffected by
specimen size. The advantage of keeping the stress in nominal units and not converting
to frue stress (as shown above) is that the onset of necking can clearly be seen on the
o, /€, curve,
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Now, let us define the quantities usually listed as the results of a tensile test. The
easiest way to do this is to show them on the o, /€, curve itself (Fig. 8.11). They are:

Ty Yield strength (F/ A, at onset of plastic flow).

Tg15 0.1% Proof stress (F/Ag at a permanent strain of 0.1%) (0.2% proof stress is often
quoted instead. Proof stress is useful for characterising yield of a material that
yields gradually, and does not show a distinct yield point.)

oy Iensile strength (F/Ap at onset of necking).

€  (Plastic) strain after fracture, or tensile ductility. The broken pieces are put together
and measured, and € calculated from (I - I,)/1;, where | is the length of the
assembled pieces.

ﬁ__ Slope is Young's modulus, E
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Data

Data for the yield strength, tensile strength and the tensile ductility are given in Table 8.1
and shown on the bar-chart {Fig. 8.12). Like moduli, they span a range of about 10%
from about 0.1 MN m™2 (for polystyrene foams) to nearly 10°MN m™ (for diamond).

10° Ceramics Malals Paoiymers Composites
Diamond |
|
4 SiC
10 Sy
Silica glass
AlgOq, WE
TE, Zrd
SG:: EL}“SR Low-alloy
10° 4 steals t  EFRP
Cobait alloys
Mifmomnics CFRP
Staintess steel:
Alkali halides 4 Tialioys Drawn PE Reinforcad
“E Cu alloys Cirgwn rylon concrets
2 l Mild shesl Kewiar
£ 10 o ' Al alloys | GFRP
Es.\ H PRARMA
= v Mylen
B Commearcially Eponies 1 Woods, |
~emant {not. pure aloys P.5 I grein
reinforced) i P.P.
10" | Lead alioys Palyurethana
Polyethylane W Woods, 1
Ulra-pure } gran
metals ¢
i ) Foamed
polymers
¥
0.1

Fig. 8,12, Bar-chart of dala for yield strength, a,.

Most ceramics have enormous yield stresses. In a tensile test, at room temperature,
ceramics almost all fracture long before they yield: this is because their fracture
toughness, which we will discuss later, is very low. Because of this, you cannot measure
the yield strength of a ceramic by using a tensile test. Instead, you have to use a test
which somehow suppresses fracture: a compression test, for instance. The best and
easiest is the hardness test: the data shown here are obtained from hardness tests,
which we shall discuss in a moment.

Pure metals are very soft indeed, and have a high ductility. This is what, for
centuries, has made them so attractive at first for jewellery and weapons, and then for
other implements and structures: they can be worked to the shape that you want them
in; furthermore, their ability to work-harden means that, after you have finished, the
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Table 8.1 Yield strength, o, tensile strength, a7, and tensile ductility, <

Material o,/MNm~2 ors/MNm™2 €
Diamond 50000 - 0]
Silicon carbide, SiC 10000 - 0]
Silicon nitride, Si;N, 8000 - 0

Silica glass, SiO, 7200 - 0
Tungsten carbide, WC 6000 - 0
Niobium carbide, NbC 6000 - 0
Aluming, Al,O3 5000 - 0]
Beryllia, BeO 4000 - 0
Mullite 4000 - 0
Titanium carbide, TiC 4000 - 0
Zirconium carbide, ZrC 4000 - 0]
Tantalum carbide, TaC 4000 - 0
Zirconia, ZrQO, 4000 - 0

Soda glass (standard) 3600 - o
Magnesia, MgO 3000 - 0
Cobalt and alloys 180-2000 500-2500 0.01-6
Low-alloy steels (water-quenched and tempered) 500-1980 680-2400 0.02-0.3
Pressure-vessel steels 1500-1900 1500-2000 0.3-0.6
Stainless steels, austenitic 286-500 760-1280 0.45-0.65
Boron/epoxy composites (fension—compression) - 725-1730 -
Nickel alloys 200-1600 400-2000 0.01-0.6
Nickel 70 400 0.65
Tungsten 1000 1510 0.01-0.6
Molybdenum and alloys 560-1450 665-1650 0.01-0.36
Titanium and alloys 180-1320 300-1400 0.06-0.3
Carbon steels (water-quenched and tempered} 260-1300 500-1880 0.2-0.3
Tantalum and dlloys 330-10%90 400-1100 0.01-0.4
Cast irons 220-1030 400-1200 0-0.18
Copper alloys 60-960 250-1000 0.01-0.55
Copper 60 400 0.55
Cobalt/tungsten carbide cermets 400-900 900 0.02
CFRPs {tension—~compression) - 670-640 -
Brosses and bronzes 70-4640 230-8%90 0.01-0.7
Aluminium alloys 100-627 300-700 0.05-0.3
Aluminium 40 200 0.5
Stainless steels, ferritic 240-400 500-800 0.15-0.25
Zinc alloys 160-421 200-500 0.1-1.0
Concrete, steel reinforced (tension or compression) - 410 0.02
Alkali halides 200-350 - 0
Zirconium and alloys 100-365 240-440 0.24-0.37
Mild steel 220 430 0.18-0.25
Iron 50 200 0.3
Magnesium alloys 80-300 125-380 0.06-0.20
GFRPs - 100-300 -
Beryllium and dlloys 34-276 380-620 0.02-0.10
Gold 40 220 0.5
PMMA 60-110 110 0.03-0.05
Epoxies 30-100 30-120 -
Polyimides 52-90 - -
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Table 8.1 (Continued)

Merterial CI'},,.IFMN m-Z l.r]'s.-’fMN m< €]
Mylons 49-87 100 -
lce as - 0
Fure ductile meteds 20-80 200-400 0.5-1.5
Palystyrene 34-70 40-70 -
Sibver 55 300 D&
ABS/polycarbonate 55 60 -
Common woods [compression, || o grain) - 35-55 -
Lead ond alloys 11-55 | 4-70 0.2-0.8
Acrylic/PVC 45-48 - -
Tin ond alloys 7=45 14=60 0.3-0.7
Folypropylene 19=34 33-36 -
Palyurethane 26-3 58 -
Polyethylena, high density 20-30 az -
Concrete, non-reinforced, comprassion 20-30 - 0
MNatural rubber - 30 50
Polyethylena, low density 6-20 20 -
Common woods [compression, L to grain) - 4-10 -
Ultrapure f.c.c. metals 1-10 200-400 1-2
Foamed polymers, rigid 0.2-10 0.2-10 0.1-1
Polyurethane foom 1 1 0.1-1

metal is much stronger than when you started. By alloying, the strength of metals can
be further increased, though - in yield strength — the strongest metals still fall short of
most ceramics.

Polymers, in general, have lower yield strengths than metals. The very strongest
(and, at present, these are produced only in small quantities, and are expensive) barely
reach the strength of aluminium alloys. They can be strengthened, however, by making
composites out of them: GFRF has a strength only slightly inferior to aluminium, and
CFRP is substantially stronger.

The hardness test

This consists of loading a pointed diamond or a hardened steel ball and pressing it into
the surface of the material to be examined. The further into the material the ‘indenter’
(as it is called) sinks, the softer is the material and the lower its yield strength. The frue
hardness is defined as the load (F) divided by the projected area of the ‘indent’, A. (The
Vickers hardness, H,, unfortunately was, and still is, defined as F divided by the total
surface area of the ‘indent’. Tables are available to relate H to H,.}

The yield strength can be found from the relation {derived in Chapter 11)

H = 3o, (8.8)

but a correction factor is needed for materials which work-harden appreciably.
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As well as being a good way of measuring the yield strengths of materials like
ceramics, as we mentioned above, the hardness test is also a very simple and cheap non-
destructive test for Ty There is no need to go to the expense of making tensile specimens,
and the hardness indenter is so small that it scarcely damages the material. So it can be
used for routine batch tests on materials to see it they are up to specification on o,
without damaging them.

Further reading
K. |. Pascoe, An Introduction to the Properiies of Engineering Materials, 3rd edition, Van Nostrand,

1978, Chap. 12
Smithells” Metals Eeference Book, 7th edition, Butterworth-Heinemann, 1992 (for data).

Revision of the terms mentioned in this chapter, and some useful relations

o, nominal stress

o, = F/Ay. (8.9)
7, frue sfress
a = F/A. (8,10}

€, nominal strain

Aﬂ
F-0 = [ Fag F - = F
I

-1

Fig. 8.14.
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u -1, !
€, = —, Or , or —-1, (B.11)
Iy Iy [
F=( -— — =) F-_l\ J--F
-.—_Iu——-" -t -
N
Lot

Fig. 8.15.

Relations between o, o, and ¢,

Assuming constant volume (valid if v = 0.5 or, if not, plastic deformation = elastic
deformation):

Al
A[!,E[] = .-"1.r, J"!.n = '{ = .r"‘l[_] t E"}. (B.12)
0
Thus
r
og=—=—(l1+¢) = o,(l +¢,) (813
A 0

€, true strain and the relation between € and ¢,

Ldl I
£ = — =1In|—|. (8.14)
" I I
Thus
e = In (1l +¢,) (8.15)

Small strain condition

For small €,

€ = €, from €=In(l+e¢,}, (5.16)

L

{T = T

from o =, + €, (8.17)

Uh

Thus, when dealing with most elastic strains (but not in rubbers), it 15 immaterial
whether € or g, or o or o, are chosen.
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Energy

The energy expended in deforming a material per unit volume is given by the area under
the stress—strain curve. For example,
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Elastic limit

In a tensile test, as the load increases, the specimen at first is strained elastically, that is
reversibly. Above a limiting stress — the elastic limit — some of the strain is permanent;
this is plastic deformation.

Yielding

The change from elastic to measurable plastic deformation.

Yield strength

The nominal stress at yielding. In many materials this is difficult to spot on the stress—
strain curve and in such cases it is better to use a proof stress.

Proof stress

The stress which produces a permanent strain equal to a specified percentage of the
specimen length. A common proof stress is one corresponding to 0.1% permanent
strain,

Strain hardening {work-hardening)

The increase in stress needed to produce further strain in the plastic region. Each strain
increment strengthens or hardens the material so that a larger stress is needed for
further strain.

arys, tensile strength (in old books, ultimate tensile strength, or UTS)

maximum F (8.21)

Fig. 8.18.

€, strain after fracture, or tensile ductility

The permanent extension in length (measured by fitting the broken pieces together)
expressed as a percentage of the original gauge length.

-
{—L—"——i’} % 100. (8.22)

[IZ'I
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Fig. 8.19.

Reduction in area at break

The maximum decreasc in cross-sectional area at the frachure expressed as a percentage
of the original cross-sectional area.

Strain after fracture and percentage reduction in area are used as measures of
ductility, i.e. the ability of a material to undergo large plastic strain under stress before
it fractures.



Chapter 9
Dislocations and yielding in crystals

Introduction

In the last chapter we examined data for the yield strengths exhibited by materials. But
what would we expect? From our understanding of the structure of solids and the
stiffness of the bonds between the atoms, can we estimate what the yield strength
should be? A simple calculation (given in the next section) overestimates it grossly. This
is because real crystals contain defects, dislocations, which move easily. When they
move, the crystal deforms; the stress needed to move them is the yield strength.
Dislocations are the carriers of deformation, much as electrons are the carriers of
charge.

The strength of a perfect crystal

As we showed in Chapter 6 (on the modulus), the slope of the interatomic force—
distance curve at the equilibrium separation is proportional to Young’s modulus E.
Interatomic forces typically drop off to negligible values at a distance of separation of
the atom centres of 2r,. The maximum in the force-distance curve is typically reached
at 1.25r, separation, and if the stress applied to the material is sufficient to exceed this
maximum force per bond, fracture is bound to occur. We will denote the stress at which
this bond rupture takes place by &, the ideal strength; a material cannot be stronger than
this. From Fig. 9.1

o = LEg,
0.257, E
26 = E = —,
To 4
E
G = —. 9.1)
8

More refined estimates of & are possible, using real interatomic potentials (Chapter 4):
they give about E/15 instead of E/8.

Let us now see whether materials really show this strength. The bar-chart (Fig. 9.2)
shows values of ¢,/E for materials. The heavy broken line at the top is drawn at the
level 0/E =1/15. Glasses, and some ceramics, lie close to this line — they exhibit their
ideal strength, and we could not expect them to be stronger than this. Most polymers,
too, lie near the line — although they have low yield strengths, these are low because the
moduli are low.
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All metals, on the other hand, have yield strengths far below the levels predicted by
our calculation — as much as a factor of 10° smaller. Even ceramics, many of them, yield
at stresses which are as much as a factor of 10 below their ideal strength. Why is
this?

Dislocations in crystals

In Chapter 5 we said that many important engineering materials (e.g. metals) were
normally made up of crystals, and explained that a perfect crystal was an assembly of
atoms packed together in a regularly repeating pattern.

But crystals (like everything in this world) are not perfect; they have defects in them.
Just as the strength of a chain is determined by the strength of the weakest link, so the
strength of a crystal - and thus of our material - is usually limited by the defects that
are present in it. The dislocation is a particular type of defect that has the effect of
allowing materials to deform plastically (that is, they yield) at stress levels that are
much less than .

i) Half plane

"Corg” of
dislocation

Diglocation “ne”

fFig. 9.3. An edge dislocation, [g) viewed from o continyum stendpoint [i.e. ignoring the atoms) and [b) showing
the posifions of the clems rear the dislocation.
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Figure 9.3(a) shows an edge dislocation from a continuum viewpoint (i.e. ignoring the
atoms). Such a dislocation is made in a block of material by cutting the block up to the
line marked L - L, then displacing the material below the cut relative to that above by
a distance b (the atom size} normal to the line L — |, and finally gluing the cut-and-
displaced surfaces back together. The result, on an atomic scale, is shown in the
adjacent diagram (Fig. 9.3(b)}; the material in the middle of the block now contains a
half-plane of atoms, with its lower edge lying along the line L - L: the dislocation line.
This defect is called an edge dislocation because it is formed by the edge of the half-
plane of atoms; and it is written briefly by using the symbol L.

Dislocation motion produces plastic sirain. Figure 9.4 shows how the atoms
rearrange as the dislocation moves through the crystal, and that, when one dislocation
moves entirely through a crystal, the lower part is displaced under the upper by the
distance b (called the Burgers vector). The same process is drawn, without the atoms,
and using the symbol L for the position of the dislocation line, in Fig. 9.5. The way in

ia)

(o)

Fig. #.4. How an edge dislocation moves through a crystal. |a) Shows how the atomic bonds at the centre of
the dislocation break and reform to allow the dislocation to move. [b) Shows o complete sequence for the
introduction of a distocalion into a crystal from the left-hand side, its migration through the crystal, and its
expulsion on the right-hand side; this process couses the lower half of the crystal to slip by o distance b under
the upper half,
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Fig. 9.5, Edge-dislocation comventions.



98  Engineering Materials 1

o
)
AL

Fig. 9.6. The ‘carpet-ruck’ analogy of an edge dislocotion,
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Fig. 9.7. A screw dislocation, (o) viewed from a confinuum standpoint and {b) showing the alom pasitions.
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which this dislocation works can be likened to the way in which a ballroom carpet can
be moved across a large dance floor simply by moving rucks along the carpet — a very
much easier process than pulling the whole carpet across the floor at one go.

In making the edge dislocation of Fig. 9.3 we could, after making the cut, have
displaced the lower part of the crystal under the upper part in a direction parallel to the
bottom of the cut, instead of normal to it. Figure 9.7 shows the result; it, too, is a
dislocation, called a screw dislocation (because it converts the planes of atoms into a
helical surface, or screw). Like an edge dislocation, it produces plastic strain when it
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Fig. 9.8. Sequence showing how a screw dislocation moves fhmugh a cryshl cousing the: lower half of the
crystal {g) to slip by a distance b under the upper half (x).
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Fig. 9.10. The ‘planking' arolegy of the screw dislocation. Imagine four planks resting side by side on o foctory
Boor, It is much easier to slide them ocross the floor one at a time than alt at the some fime
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Fig. 9.11. An electron microscope picture of dislocation lines in stuinless steel. The picture wos taken by firing
electrons through a very thin slice of steel about 100 nm thick. The dislocation lines here are only about 1000
atom diometers long becouse they have been ‘chopped off’ where they meet the top and bottom surfaces of the

thin slice. But a sugar-cube-sized piece of any engineering clloy contains about 10% km of dislocation line.
(Courtesy of Dr. Peter Southwick.)

moves (Figs 9.8, 9.9, 9.10). Its geometry is a little more complicated but its properties are
otherwise just like those of the edge. Any dislocation, in a real crystal, is either a screw
or an edge; or can be thought of as little steps of each. Dislocations can be seen by
electron microscopy. Figure 9.11 shows an example.

The force acting on a dislocation

A shear stress (1) exerts a force on a dislocation, pushing it through the crystal. For
yielding to take place, this force must be great enough to overcome the resistance to the
motion of the dislocation. This resistance is due to intrinsic friction opposing
dislocation motion, plus contributions from alloying or work-hardening; they are
discussed in detail in the next chapter. Here we show that the magnitude of the force
is b per unit length of dislocation.

We prove this by a virtual work calculation. We equate the work done by the applied
stress when the dislocation moves completely through the crystal to the work done
against the force f opposing its motion (Fig. 9.12). The upper part is displaced relative
to the lower by the distance b, and the applied stress does work {7/;/;) X b. In moving
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T

Fig. 9.12. The farce octing on a dislocation.

through the crystal, the dislocation travels a distance [, doing work against the
resistance, f per unit length, as it does so; this work is fl; l;. Equating the two gives

h = f (9.2)

This result holds for any dislocation — edge, screw or a mixture of both.

Other properties of dislocations

There are two remaining properties of dislocations that are important in understanding

the

{a)

(b)

plastic deformation of materials. These are:

Dislocations always glide on crystallographic planes, as we might imagine from
our earlier drawings of edge-dislocation motion. In f.c.c. crystals, for example, the
dislocations glide on {111} planes, and therefore plastic shearing takes place on {111}
in f.c.c. crystals.

The atoms near the core of a dislocation are displaced from their proper positions
and thus have a higher energy. In order to keep the total energy as low as possible,
the dislocation tries to be as short as possible - it behaves as if it had a line tension,
T, like a rubber band. Very roughly, the strains at a dislocation core are of order 1/2;
the stresses are therefore of order G/2 (Chapter 8) so the energy per unit volume of
core is GG/B. If we take the core radius to be equal to the atom size b, its volume, per
unit length, is wb*. The line tension is the energy per unit length (just as a surface
tension is an energy per unit area), giving

T G
T=—0GkW=——m0 (9.3)
B 2

where G is the shear modulus. In absolute terms, T is small (we should need = 10"
dislocations to hold an apple up) but it is large in relation to the size of a
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Gb? T
T 7= &2

2
Fig. 9.13. The line tension in a dislocation.

dislocation, and has an important bearing on the way in which obstacles obstruct
the motion of dislocations.

We shall be looking in the next chapter at how we can use our knowledge of how
dislocations work and how they behave in order to understand how materials deform
plastically, and to help us design stronger materials.

Further reading

A. H. Cottrell, The Mechanical Properties of Matter, Wiley, 1964, Chap. 9.
. Hull, Introduction to Dislocations, 2nd edition, Pergamon Press, 1975.
W. T. Read, Ir., Dislocations in Crystals, McGraw Hill, 1953,

I. P Hirth and ]. Lothe, Theory of Dislocations, McGraw Hill, 1968,



Chapter 10

Strengthening methods, and plasticity of
polycrystals

Introduction
We showed in the last chapter that:

{a} crystals contain dislocations;

(b) a shear stress 7, applied to the slip plane of a dislocation, exerts a force Tb per unit
length of the dislocation trying to push it forward;

(¢} when dislocations move, the crystal deforms plastically — that is, it yields.

In this chapter we examine ways of increasing the resistance to motion of a dislocation;
it is this which determines the dislocation yield strength of a single isolated crystal, of a
metal or a ceramic. But bulk engineering materials are aggregates of many crystals, or
grains. To understand the plasticity of such an aggregate, we have to examine also how
the individual crystals interact with each other. This lets us calculate the polycrystal yield
strength - the quantity that enters engineering design.

Strengthening mechanisms

A crystal yields when the force 7b (per unit length) exceeds f, the resistance (a force per
unit length) opposing the motion of a dislocation. This defines the dislocation vield
strength

5, = F (10.1)
b

Most crystals have a certain intrinsic strength, caused by the bonds between the atoms
which have to be broken and reformed as the dislocation moves. Covalent bonding,
particularly, gives a very large intrinsic lattice resistance, f; per unit length of dislocation.
It is this that causes the enormous strength and hardness of diamond, and the carbides,
oxides, nitrides and silicates which are used for abrasives and cutting toecls. But pure
metals are very soft: they have a very low lattice resistance. Then it is useful to increase
[ by solid solution strengthening, by precipitate or dispersion strengthening, or by work-
hardening, or by any combination of the three. Remember, however, that there is an
upper limit to the yield strength: it can never exceed the ideal strength {Chapter 9). In
practice, only a few materials have strengths that even approach it.
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Solid solution hardening

A good way of hardening a metal is simply to make itimpure. Impurities go into solution
in a solid metal just as sugar dissolves in tea. A good example is the addition of zinc to
copper to make the alloy called brass. The zinc atoms replace copper atoms to form a
random substitutional solid solution. At room temperature Cu will dissolve up to 30% Zn in
this way. The Zn atoms are bigger than the Cu atoms, and, in squeezing into the Cu
structure, generate stresses. These stresses ‘roughen’ the slip plane, making it harder for
dislocations to move; they increase the resistance f, and thereby increase the dislocation
yield strength, 7, {eqn. (10.1)). If the contribution to f given by the solid solution is f;; then
7, is increased by fi./b. In a solid solution of concentration C, the spacing nf dw-,uh'ed
atoms on the slip plane (or on any other plane, for that matter) varies as c ; and the
smaller the spacing, the ‘rougher’ is the slip plane. As a result, r, increases about
parabolically (i.e. as C*) with solute concentration (Fig. 10.1). Single-phase brass, bronze,
and stainless steels, and many other metallic alloys, derive their strength in this way.

Solid-solution
[er) brass

a Weight % Zn 30
{Pure Cu)

Fig. 10.1. Solid sclution hardening.

Precipitate and dispersion strengthening

If an impurity (copper, say) is dissolved in a metal or ceramic (aluminium, for instance)
at a high temperature, and the alloy is cooled to room temperature, the impurity may
precipitate as small particles, much as sugar will crystallise from a saturated solution
when it is cooled. An alloy of Al containing 4% Cu (‘Duralumin’), treated in this wav,
gives very small, closely spaced precipitates of the hard compound CuAl,. Most steels
are strengthened by precipitates of carbides, obtained in this way.*

*“The optimurmn precipitate is obtained by a more elaborate feal treateent: the alloy is solution beef-treated
(heated to disselve the impurity), guenched (cooled fast to room temperature, nsually by dropping it imto oil
or water! and finally fempered or gged for a controlled time and at a controlled temperature (to cause the
precipitate o form)
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Small particles can be introduced into metals or ceramics in other ways. The most
obvious is to mix a dispersoid (such as an oxide) into a powdered metal (aluminium
and lead are both treated in this way), and then compact and sinter the mixed
powders.

Either approach distributes small, hard particles in the path of a moving dislocation.
Figure 10.2 shows how they obstruct its motion. The stress 7 has to push the dislocation
between the obstacles. It is like blowing up a balloon in a bird cage: a very large
pressure is needed to bulge the balloon between the bars, though once a large enough
bulge is formed, it can easily expand further. The critical configuration is the semicircular
one (Fig. 10.2(c)): here the force thL on one segment is just balanced by the force 2T due
to the line tension, acting on either side of the bulge. The dislocation escapes (and
yielding occurs) when

2T
_ (10.2)

T .

YL
The cbstacles thus exert a resistance of f, = 2T/ L. Obviously, the greatest hardening is
produced by strong, closely spaced precipitates or dispersions (Fig. 10.2).

{a) Approach silualion
b L =

o O @

IEREE R LR

Forge #b per unit length

b} Sub-crilical situation

P T 2

{c) Critical situation
ol

IERE
i Th
T T

(d] Escape siluation 10°® L'm

te ittt

ki)

T T

Fig. 10.2. How dispersed precipitates help prevent the movement of dislocations, ond help prevent plastic flow
of moterials,
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Work-hardening

When crystals yield, dislocations move through them. Most crystals have several slip
planes: the fcc. structure, which slips on [111} planes (Chapter 5), has four, for
axampie. Dislocations on these intersecting planes interact, and obstruct each other,
and accumulate in the material.

The result is work-hardening: the steeply rising stress-strain curve after yield, shown
in Chapter B. All metals and ceramics work-harden. It can be a nuisance: if you want
to roll thin sheet, work-hardening quickly raises the vield strength so much that you
have to stop and anneal the metal (heat it up to remove the accumulated dislocations)
before you can go on. But it is also useful: it is a potent strengthening method, which
can be added to the other methods to produce strong materials.

Wiark
hardening
T, oy
poieEm < 05
Initial yislding
Shear strain. ¥

Fig. 10.3. Collision of dislocations leads to work-hardening.

The analysis of work-hardening is difficult. Its contribution [, to the total dislocation
resistance f is considerable and increases with strain (Fig. 10.3).

The dislocation yie|d strength

It is adequate to assume that the strengthening methods contribute in an additive way
to the strength. Then

PR LIRS L Y (10.3)

Strong materials either have a high intrinsic strength, f; (like diamond), or they rely on
the superposition of solid solution strengthening f... obstacles fo and work-hardening
fuu (like high-tensile steels). But before we can use this information, one problem
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remains: we have calculated the yield strength of an isolated crystal in shear. We want the
yield strength of a polycrystalline aggregate in tension.

Yield in polycrystals

The crystals, or grains, in a polycrystal fit together exactly but their crystal orientations
differ (Fig. 10.4). Where they meet, at grain boundaries, the crystal structure is disturbed,
but the atomic bonds across the boundary are numerous and strong enough that the
boundaries do not usually weaken the material.

o ® o
Material
™ ™ ®
o @ ...' o 0% © ® e— vapour
o0 ® 9000 ¥ o0
g o ® > P - 8,2 9.9, «— Surface of

material

Vacancy

Grain boundary

Fig. 10.4. Ball bearings can be used to simulate how atoms are packed together in solids. Our photograph
shows a ball-bearing model set up to show what the grain boundaries look like in a polycrystalline material. The
model also shows up another type of defect - the vacancy - which is caused by a missing atom.
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¥

Fig. 10.5. The progressive noture of yielding in a palyerystalline material.

Let us now look at what happens when a polycrystalline component begins to yield
{Fig. 10.5). Slip begins in grains where there are slip planes as nearly parallel to 7 as
possible, e.g. grain (1). Slip later spreads to grains like (2} which are not so favourably
oriented, and lastly to the worst oriented grains like (3). Yielding does not take place all
at once, therefore, and there is no sharp polycrystalline vield point on the stress—strain
curve. Further, gross (total) yvielding does not occur at the dislocation-yield strength 7,
because not all the grains arc oriented favourably for yielding. The gross-yield strength
is higher, by a factor called the Taylor factor, which is calculated {with difficulty) by
averaging the stress over all possible slip planes; it is close to 1.5

But we want the tensile yield strength, o, A tensile stress a creates a shear stress in the
material that has a maximum value of r = ¢/2. (We show this in Chapter 11 where we
resolve the tensile stress onto planes within the material.) To calculate o, from 7, we
combine the Taylor factor with the resolution factor to give . .

v, = 31, (10.4)

a1, is the quantity we want: the yield strength of bulk, polycrystalline solids. It is larger
than the dislocation shear strength 7, {by the factor 3) but is proportional to it. 5o all the
statements we have made about increasing 7, apply unchanged to o,

A whole science of alloy design for high strength has grown up in which alloys are
biended and heat-treated to achieve maximum 7, Important components that are
strengthened in this way range from lathe tools (‘high-speed’ steels) to turbine blades
('Nimonic” alloys based on nickel). We shall have more to say about strong solids when
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we come to look at how materials are selected for a particular job. But first we must
return to a discussion of plasticity at the non-atomistic, or continuum, level

Further reuding

A, H. Cottrell, The Mechanical Properties of Maiter, Wiley, 1964, Chap. 9.
R. W. K. Honeycombe, The Plastic Deformation of Metals, Arnold, 1968.



Chapter 11
Continuum aspects of plastic flow

Introduction

Plastic flow occurs by shear. Dislocations move when the shear stress on the slip plane
exceeds the dislocation yield strength 1, of a single crystal. If this is averaged over all
grain-orientations and slip planes, it can be related to the tensile yield strength o, of a
polycrystal by o, = 37, (Chapter 10). But in solving problems of plasticity, it is more
useful to define the shear yield strength k of a polycrystal. It is equal to o, /2, and differs
from 7, because it is an average shear-resistance over all orientations of slip plane.
When a structure is loaded, the planes on which shear will occur can often be identified
or guessed, and the collapse load calculated approximately by requiring that the stress
exceed k on these planes.

In this chapter we show that k = 6,/2, and use k to relate the hardness to the yield
strength of a solid. We then examine tensile instabilities which appear in the drawing
of metals and polymers.

The onset of yielding and the shear yield strength, k

A tensile stress applied to a piece of material will create a shear stress at an angle to the
tensile stress. Let us examine the stresses in more detail. Resolving forces in Fig. 11.1
gives the shearing force as

F sin 6.

The area over which this force acts in shear is

A

cos 0

and thus the shear stress, 7, is

Fsin® F
T=———=—sin6BcosH
A/cos 0
= o sin & cos 0. (11.1)

If we plot this against 8 as in Fig. 11.2 we find a maximum 7 at 8 = 45° to the tensile
axis. This means that the highest value of the shear stress is found at 45° to the tensile axis,
and has a value of o/2.
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Fig. 11.1. A tensile siress, F/A, produces o shear siress, 7, on an inclined plane in the stressed material,
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Fig. 11.2. Shear siresses in o material hove their maximum value on plones at 457 to the tensile axis.

Now, from what we have said in Chapters 9 and 10, if we are dealing with a single
crystal, the crystal will not in fact slip on the 45° plane - it will slip on the nearest lattice
plane to the 45° plane on which dislocations can glide (Fig. 11.3). In a polycrystal,
neighbouring grains each yield on their nearest-to-45° slip planes. On a microscopic
scale, slip occurs on a zig-zag path; but the average slip path is at 45° to the tensile axis.
The shear stress on this plane when yielding occurs is therefore 1= o, /2, and we define
this as the shear vield strength k: '

k = ﬂ'l‘,';:l_. []:.2}
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i F

Fig. 11.3, In o polycrysialline maleriol the overnge dip path is ot 45° 1o the lensile axis.

Example: Approximate calculation of the hardness of solids, This concept of shear yielding
- where we ignore the details of the grains in our polycrystal and treat the material as
a continuum - is useful in many respects. For example, we can use it to calculate the
loads that would make our material yield for all sorts of quite complicated
geometries.

A good example is the problem of the hardness indenter that we referred to in the
hardness test in Chapter 8. Then, we stated that the hardness

H =

= 3o,

| ™

{with a correction factor for materials that work-harden appreciably - most do). For
simplicity, let us assume that our material does not work-harden; so that as the indenter
is pushed into the material, the yield strength does not change. Again, for simplicity, we
will consider a two-dimensional model. (A real indenter, of course, is three-dimensional,
but the result is, for practical purposes, the same.)

F This A MOves up by
- we, but algo moves

u ) .
we {/ \/_2 ina dlractll::n;

This 4 movas
sileways oy u
- L

This & mowves
e CIOWN by 4

Fig- 11.4. The plastic flow of material under o hardness indenter — o simplified two-dimensional visualisofion.
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As we press a flat indenter into the material, shear takes place on the 45° planes of
maximum shear stress shown in Fig. 11.4, at a value of shear stress equal to k. By
equating the work done by the force F as the indenter sinks a distance u to the work
done against k on the shear planes, we get:

Ak . Ak 1
Fu =25 — X u2+42 XAk X u+4x — x —.
‘-.'2 "4.2 \'Iz

This simplifies to
F = 64k

from which
F
; = hk = ?-n'!,_

But F/A is the hardness, H: s0
H = 3o, (11.3)

(Strictly, shear occurs not just on the shear planes we have drawn, but on a myriad of
45° planes near the indenter. If our assumed geometry for slip is wrong it can be shown
rigorously by a theorem called the upper-bound theorem that the value we get for F at
yield - the so-called ‘limit" load - is always on the high side.)

Similar treatments can be used for all sorts of two-dimensional problems: for
caleulating the plastic collapse load of structures of complex shape, and for analysing
metal-working processes like forging, rolling and sheet drawing,

Plastic instability: necking in tensile loading

We now turn to the other end of the stress—strain curve and explain why, in tensile
straining, materials eventually start to neck, a name for plastic instability. It means that
flow becomes localised across one section of the specimen or component, as shown in
Fig. 11.5, and (if straining continues) the material fractures there. Plasticine necks
readily; chewing gum is very resistant to necking.

We analyse the instability by noting that if a force F is applied to the end of the
specimen of Fig. 11.5, then any section must carry this load. But is it capable of doing
507 Suppose one section deforms a little more than the rest, as the figure shows. Its
section is less, and the stress in it is therefore larger than elsewhere. If work-
hardening has raised the yield strength enough, the reduced section can still carry
the force F; but if it has not, plastic flow will become localised at the neck and the
specimen will fail there. Any section of the specimen can carry a force Ao, where A
is its area, and o its current strength. If Ar increases with strain, the specimen is
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r Section area

Fig. 11.5. The formation of o neck in a bar of material which is being deformed plastically.
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stable. If it decreases, it is unstable and will neck. The critical condition for the start

of necking is that

Ao = F = constant.
Then

Ado+odA =10

or

dor dA
() A

But volume is conserved during plastic flow, so

dA dl
—— = — = (3
A !
(prove this by differentiating Al = constant). So
do
= de
o
or
do
— = {T.
de

(11.4)

This equation is given in terms of true stress and true strain. As we said in Chapter 8,
tensile data are usually given in terms of nominal stress and strain. From Chapter &:

o= o, (1 +e,)

e=1In(l+¢)
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Fig. 11.6. The condition for necking.

If these are differentiated and substituted into the necking equation we get

dl:Tll
de,

=0 (11.5}

In other werds, on the point of instability, the nominal stress—strain curve is at its
maximum as we know experimentally from Chapter 8.

To see what is going on physically, it is easier to return to our first condition. At low
stress, if we make a little neck, the material in the neck will work-harden and will be
able to carry the extra stress it has to stand because of its smaller area; load will
therefore be continuous, and the material will be stabie. At high stress, the rate of work-
hardening is less as the true stress—true strain curve shows: i.e. the slope of the o/e
curve is less. Eventually, we reach a point at which, when we make a neck, the work-
hardening is only just enough to stand the extra stress. This is the point of necking,
with

der
de

= {J.

At still higher frue stress, do/de, the rate of work-hardening decreases further,
becoming insufficient to maintain stability — the extra stress in the neck can no lc}nger
be accommedated by the work-hardening produced by making the neck, and the neck
grows faster and faster, until final fracture takes place.

Consequences of plastic instability

Plastic instability is very important in processes like deep drawing sheet metal to form
car bodies, cans, etc. Obviously we must ensure that the materials and press designs are
chosen carefully to aveid instability.

Mild steel is a good material for deep drawing in the sense that it flows a great deal
before necking starts. It can therefore be drawn very deeply without breaking (Fig.
11.7).
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£a

Fig. 11.7. Mild steel can be drawn out a lot before it fails by necking.

Fig. 11.8. Aluminium alloy quickly necks when it is drawn ou.

[ ==
[}

Fig. 11.9. Polythene farms a stable neck when it is drawn out; drawn polythene is very sirong.



118  Engineering Materials 1

Aluminium alloy is much less good (Fig. 11.8) - it can only be drawn a little before
instabilities form. Pure aluminium is not nearly as bad, but is much too soft to use for
most applications.

Polythene shows a kind of necking that does nof lead to fracture. Figure 11.9 shows
its 7, /€, curve, At quite low stress

da,,

de,

becomes zero and necking begins. However, the neck never becomes unstable - it
simply grows in length - because at high strain the material work-hardens
considerably, and is able to support the increased stress at the reduced cross-section of
the neck. This odd behaviour is caused by the lining up of the polymer chains in the
neck along the direction of the neck - and for this sort of reason drawn (ie. “fully
necked’) polymers can be made to be very strong indeed - much stronger than the
undrawn polymers.

Unstable
iy I g

| Ligers bands —
i stable necking

T
>

Fig. 11.10. Mild steal often shows both stable and unstoble necks.

Finally, mild steel can sometimes show an instability like that of polythene. If the
steel is annealed, the stress/strain curve looks like that in Fig. 11.10. A stable neck,
called a Liiders Band, forms and propagates (as it did in polythene) without causing
fracture because the strong work-hardening of the later part of the stress,/strain curve
prevents this. Liiders Bands are a problem when sheet steel is pressed because they
give lower precision and disfigure the pressing.

Further reading

A. H. Cottrell, The Mechanical Properties of Matter, Wiley, 1964, Chap, 10.
C. R. Calladine, Engineering Plasticthy, Pergamon Press, 1969

W. A. Backofen, Deformation Processing, Addison-Wesley, 1972.

R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 1950.



Chapter 12
Case studies in yield-limited design

Introduction

We now examine three applications of our understanding of plasticity. The first
(material selection for a spring) requires that there be no plasticity whatever. The second
(material selection for a pressure vessel) typifies plastic design of a large structure. It is
unrealistic to expect no plasticity: there will always be some, at bolt holes, loading
points, or changes of section. The important thing is that yielding should not spread
entirely through any section of the structure — that is, that plasticity must not become
general. Finally, we examine an instance (the rolling of metal strip) in which yielding is
deliberately induced, to give large-strain plasticity.

Cask sTuDY 1: ELASTIC DESIGN: MATERIALS FOR SPRINGS

Springs come in many shapes and have many purposes. One thinks of axial springs (a
rubber band, for example), leaf springs, helical springs, spiral springs, torsion bars.
Regardless of their shape or use, the best materials for a spring of minimum volume is
that with the greatest value of {:-'yz /E. Here E is Young's modulus and o, the failure
strength of the material of the spring: its yield strength if ductile, its fracture strength
or modulus of rupture if brittle. Some materials with high values of this quantity are
listed in Table 12.1.

Table 12,1 Materials for springs

E Ty n}.‘-","E nr,"f
fGM m™) (MM mE) (AL m~7)
Brass [cald-rolled) 438 .38 532 = 102
Bronze (cold-rolled) 120 &40 3.41 533 =107
Phasphar bronze 770 4,94 &.43 = 1072
Beryllium copper 1380 159 11,5 = 1079

Stainless steel [cold-rakled) 1000 50 50 =107

Spring steel 1300 B.45 6.5 % 107
200
Mimonic (high-temp, spring) él4d 1.9 308 = 1077
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The argument, at its simplest, is as follows. The primary function of a spring is that
of storing elastic energy and — when required - releasing it again. The elastic energy
stored per unit volume in a block of material stressed uniformly to a stress o is:

{]'2

ue = —
2E

It is this that we wish to maximise. The spring will be damaged if the stress o exceeds the
yield stress or failure stress o,; the constraint is ¢ < o, 50 the maximum energy density
is

2

iy,

L,rl -t
2E

Torsion bars and leaf springs are less efficient than axial springs because some of the
material is not fully loaded: the material at the neutral axis, tor instance, 15 not loaded at
all. Consider - since we will need the equations in a moment - the case of a leaf spring,

The leat spring

Even leaf springs can take many different forms, but all of them are basically elastic
beams loaded in bending. A rectangular section elastic beam, simply supported at both
ends, loaded centrally with a force F, deflects by an amount

Ei
b= (12.1)

ignoring self-weight (Fig. 12.1). Here [ is the length of the beam, tits thickness, bits width,
and E is the modulus of the material of which it is made. The elastic energy stored in the
spring, per unit volume, is
1 Fd Fi2

2 bil SEb*

o _

{12.2)

Figure 12.2 shows that the stress in the beam is zero along the neutral axis at its centre,
and is a maximum at the surface, at the mid-point of the beam (because the bending
moment is biggest there). The maximum surface stress is given by

3H

_ o 12.3)
Y L

r.-z-*;r _____ L}'_.q__'_‘_** 3 |
|:--—-—-“‘:“—""——-.. ] A

g [y -

i

F
Fig. 12.1. A leal spring under load,
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Fig. 12.2, Stresses inside o leaf spring.

Now, to be successful, a spring must not undergo a permanent set during use: it must
always 'spring’ back. The condition for this is that the maximum stress (egn. (12.3))
always be less than the vield stress:

3Fi

= Oy {12.4)

i

Eliminating ¢ between this and eqn. (12.2) gives

e = l (E)
184\ E

This equation says: if in service a spring has to undergo a given deflection, &, under a
force F, the ratio of o,*/F must be high enough to avoid a permanent set. This is why
we have listed values of ¢,2/E in Table 12.1: the best springs are made of materials with
high values of this quantity. For this reason spring materials are heavily strengthened
(see Chapter 10): by solid solution strengthening plus work-hardening (cold-rolled,
single-phase brass and bronze), solid solution and precipitate strengthening (spring
steel), and so on. Annealing any spring material removes the work-hardening, and may
cause the precipitate to coarsen (increasing the particle spacing), reducing o, and
making the material useless as a spring.

Example: Springs for a cenitrifugal clutch. Suppose that you are asked to select a
material for a spring with the following application in mind. A spring-controlled clutch
like that shown in Fig. 12.3 is designed to transmit 20 horse power at 800rpm; the

127 Cantre of gravily
of beack

I
fep——

D —27 —=
490 6 = 6.35 mm

Block Dwmansions in mm

Spring

Fig. 12.3. Leaf springs in o centrifugal cluteh.
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clutch is to begin to pick up load at 600 rpm. The blocks are lined with Ferodo or some
other friction material. When properly adjusted, the maximum deflection of the springs
is to be 6.35mm (but the friction pads may wear, and larger deflections may occur; this
is a standard problem with springs — almost always, they must withstand occasional
extra deflections without losing their sets).

Mechanics

The force on the spring is
F = Mrw® (12.5)

where M is the mass of the block, r the distance of the centre of gravity of the block
from the centre of rotation, and w the angular velocity. The net force the block exerts on
the clutch rim at full speed is

Mriw? - w? (12.6)

where w; and w, correspond to the angular velocities at 800 and 600 rpm (the net force
must be zero for wy = wy, at 600 rpm). The full power transmitted is given by

4 Mr(ws - wi) X distance moved per second by inner rim of cluich at full
speed,

Le.
power = 4p Mriw] ~ w7} X w,r (12.7)

where , is the coefficient of static friction. r is specified by the design (the clutch
cannot be too big) and w, is a constant (partly a property of the clutch-lining material).
Both the power and w; and w, are specified in eqn. (12.7), so M is specified also; and
finally the maximum force on the spring, too, is determined by the design from F =
Mrw?. The requirement that this force deflect the beam by only 6.35 mm with the linings
just in contact is what determines the thickness, t, of the spring via eqn. (12.1) (l and b
are fixed by the design).

Metallic materials for the clutch springs

Given the spring dimensions (f =2 mm, b = 50mm, [ = 127 mm) and given & < 6.35 mm,
all specified by design, which material should we use? Eliminating F between eqns
(12.1) and (12.4) gives

o, 65 6 X 635 X2
=Ly — = — — = 4.7 % 1073, (12.8)
E i< 127 % 127
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Fig. 12.4. Multi-leaved springs {schematic).

As well as seeking materials with high values of ,>/E, we must also ensure that the
material we choose — if it is to have the dimensions specified above and also deflect
through 6.35 mm without yielding — meets the criterion of eqn. (12.8).

Table 12.1 shows that spring steel, the cheapest material listed, is adequate for this
purpose, but has a worryingly small safety factor to allow for wear of the linings. Only
the expensive beryllium-copper alloy, of all the metals shown, would give a significant
safety factor (o, /E = 11.5 X 107).

In many designs, the mechanical requirements are such that single springs of the
type considered so far would yield even if made from beryllium copper. This
commonly arises in the case of suspension springs for vehicles, etc., where both large
& (‘soft’ suspensions) and large F (good load-bearing capacity) are required. The
solution then can be to use multi-leaf springs (Fig. 12.4). t can be made small to give
large 3 without yield according to

oy 65t
s —, (12.9)
E 2

whilst the lost load-carrying capacity resulting from small { can be made up by having
several leaves combining to support the load.

Non-metallic materials

Finally, materials other than the metals originally listed in Table 12.1 can make good
springs. Glass, or fused silica, with cy/ E as large as 58 X 1073 is excellent, provided it
operates under protected conditions where it cannot be scratched or suffer impact
loading (it has long been used for galvanometer suspensions). Nylon is good -
provided the forces are low — having o, /E = 22 X 107, and it is widely used in
household appliances and children’s toys (you probably brushed your teeth with little
nylon springs this morning). Leaf springs for heavy trucks are now being made of
CFRP: the value of ¢,/E (6 X 107) is similar to that of spring steel, and the weight
saving compensates for the higher cost. CFRP is always worth examining where an
innovative use of materials might offer advantages.
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CASE STUDY 2: PLASTIC DESIGN: MATERIALS FOR A PRESSURE VESSEL

We shall now examine material selection for a pressure vessel able to contain a gas at
pressure p, first minimising the weight, and then the cost. We shall seek a design that
will not fail by plastic collapse (i.e. general yield). But we must be cautious: structures
can also tail by fast fracture, by fatigue, and by corrosion superimposed on these other
modes of failure. We shall discuss these in Chapters 13, 15 and 23, Here we shall
assume that plastic collapse is our only problem.

Pressure vessel of minimum weight

The body of an aircraft, the hull of a spacecraft, the fuel tank of a rocket: these are
examples of pressure vessels which must be as light as possible.

Sphera
radius
¥

ahe
.n".|.'l»~

Fig. 12.5. Thin-walled spherical pressure vessel.

The stress in the vessel wall (Fig. 12.5) is:

P

= , (12.10)
2t

r, the radius of the pressure vessel, is fixed by the design. For safety, o < a,/5, where
S is the safety factor. The vessel mass is

M = dmritp (12.11)
s0 that
M
F = - (12.12)
drp

Substituting for ¢ in eqn. (12.8) we find that

ay 5 P 4mrip ) 2mprp
s 2 M M

(12.13)
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Table 12.2 Materials for pressure vessaly

j
r P {UKE (USE) P B
Moteriol (MNM?) (Mg m) tonne™) o, e g e
Reinforced concrete 200 2.5 160 {240) 13 2.1
Alloy steel [pressure-vessel sieel) 1000 78 500 {750) 7.8 39
Milc steel 220 7.8 300 (450) 36 10,8
Alyminium alloy ADD a7 1100 {14650) 6.8 7.5
Fibreglass 200 1.8 2000 13000) 2.0 18
CFRP &00 1.5 50000 |75,000) 2.5 125
From eqn. (12.11) we have, for the mass,
2| P
M = S2mpr | — (12.14)
oy

so that for the lightest vessel we require the smallest value of {(p/o,). Table 12.2 gives
values of p/w, for candidate materials.

By far the lightest pressure vessel is that made of CFRP. Aluminium alloy and
pressure-vessel steel come next. Reinforced concrete or mild steel results in a very
heavy vessel.

Pressure vessel of minimum cost

If the cost of the material is p UKE(US$) tonne™ then the material cost of the vessel is

M = mnstantfr(—p ) (12.15)
¥

L)

Thus material costs are minimised by minimising p(p/o ). Data are given in Table 12.2.

The proper choice of material is now a quite different one. Reinforced concrete is now
the best choice — that is why many water towers, and pressure vessels for nuclear
reactors, are made of reinforced concrete. After that comes pressure-vessel steel - it offers
the best compromise of both price and weight. CFRI is very expensive.

CAsE STUDY 3: LARGE-STRAIN PLASTICITY — ROLLNG OF METALS

Forging, sheet drawing and rolling are metal-forming processes by which the section of a
billet or slab is reduced by compressive plastic deformation. When a slab is rolled (Fig.
12.6) the section is reduced from f, to I, over a length ! as it passes through the rolls.
At first sight, it might appear that there would be no sliding (and thus no friction)
between the slab and the rolls, since these move with the slab. But the metal is
elongated in the rolling direction, so it speeds up as it passes through the rolls, and
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Fig. 12.6. The rolling of metal sheet.

some slipping is inevitable. If the rolls are polished and lubricated (as they are for
precision and cold-rolling) the frictional losses are small. We shall ignore them here
(though all detailed treatments of rolling include them) and calculate the rolling torgue
for perfectly lubricated rolls.

From the geometry of Fig. 12.6

P+ir-xP=r?
or, if x = ¥ty - 1) is small (as it almost always is),

I = 'l.,';r[."] = fg:]-

The rolling force F must cause the metal to yield over the length I and width w (normal

to Fig. 12.6). Thus
F = rrywal.

If the reaction on the rolls appears halfway along the length marked [, as shown on the
lower roll, the torque is

Fi
T=—
2
o, wi?
=
giving

T=——"7—. (12.16)
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The torque required to drive the rolls increases with yield strength o, so hot-rolling
(when o, is low - see Chapter 17) takes less power than cold-rolling. It obviously
increases with the reduction in section (t; — t,). And it increases with roll diameter 2r;
this is one of the reasons why small-diameter rolls, often backed by two or more rolls
of larger diameter (simply to stop them bending), are used.

Rolling can be analysed in much more detail to include important aspects which we
have ignored: friction, the elastic deformation of the rolls, and the constraint of plane
strain imposed by the rolling geometry. But this case study gives an idea of why an
understanding of plasticity, and the yield strength, is important in forming operations,
both for metals and polymers.

Further reading

C. R. Calladine, Engineering Plasticity, Pergamon Press, 1969.

R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 1950.

W. A. Backofen, Deformation Processing, Addison-Wesley, 1972.

M. E Ashby, Materials Selection in Mechanical Design, Pergamon Press, Oxford, 1992.

M. F. Ashby and D. Cebon, Case Studies in Materials Selection, Granta Design, Cambridge, 1996.






D. Fast fracture, toughness and fatigue







Chapter 13
Fast fracture and toughness

Introduction

Sometimes, structures which were properly designed to avoid both excessive elastic
deflection and plastic yielding fail in a catastrophic way by fast fracture. Common to
these failures — of things like welded ships, welded bridges and gas pipelines and
pressure vessels under large internal pressures - is the presence of cracks, often the
result of imperfect welding. Fast fracture is caused by the growth — at the speed of
sound in the material — of existing cracks that suddenly became unstable. Why do they
do this?

Energy criterion for fast fracture

If you blow up a balloon, energy is stored in it. There is the energy of the compressed
gas in the balloon, and there is the elastic energy stored in the rubber membrane itself.
As you increase the pressure, the total amount of elastic energy in the system
increases,

If we then introduce a flaw into the system, by poking a pin into the inflated balloon,
the balloon will explode, and all this energy will be released. The membrane fails by
fast fracture, even though well below its yield strength. But if we introduce a flaw of the
same dimensions into a system with less energy in it, as when we poke our pin into a
partially inflated balloon, the flaw is stable and fast fracture does not occur. Finally, if we
blow up the punctured balloon progressively, we eventually reach a pressure at which
it suddenly bursts. In other words, we have arrived at a critical balloon pressure at
which our pin-sized flaw is just unstable, and fast fracture just occurs. Why is this?

To make the flaw grow, say by 1 mm, we have to tear the rubber to create 1 mm of
new crack surface, and this consumes energy: the tear energy of the rubber per unit
area X the area of surface torn. If the work done by the gas pressure inside the balloon,
plus the release of elastic energy from the membrane itself, is less than this energy the
tearing simply cannot take place - it would infringe the laws of thermodynamics.

We can, of course, increase the energy in the system by blowing the balloon up a bit
more. The crack or flaw will remain stable (i.e. it will not grow) until the system
{balloon plus compressed gas) has stored in it enough energy that, if the crack
advances, more energy is released than is absorbed. There is, then, a critical pressure for fast
fracture of a pressure vessel containing a crack or flaw of a given size.

All sorts of accidents (the sudden collapsing of bridges, sudden explosion of steam
boilers) have occurred - and still do = due to this effect. In all cases, the critical stress
— above which enough energy is available to provide the tearing energy needed to
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make the crack advance - was exceeded, taking the designer completely by surprise.
But how do we calculate this critical stress?

From what we have said already, we can write down an energy balance which must
be met if the crack is to advance, and fast fracture is to occur. Suppose a crack of length
a in a material of thickness t advances by 8a, then we require that: work done by loads
= change of elastic energy + energy absorbed at the crack tip, i.e.

BW = 8L + G tha (13.1)

where G_ is the energy absorbed per unit area of crack (not unit area of new surface), and
tda is the crack area.

G, is a material property — it is the energy absorbed in making unit area of crack, and
we call it the toughness (or, sometimes, the ‘critical strain energy release rate’). Its units
are energy m™> or Jm> A high toughness means that it is hard to make a crack
propagate (as in copper, for which G, = 10° ] m™). Glass, on the other hand, cracks very
easily; G, for glass is only = 10)m™.

Sallctape roll

"“hvﬂi;::

Fig. 13.1. How to determine G_ for Sellotape adhesive.

This same quantity G, measures the strength of adhesives. You can measure it for the
adhesive used on sticky tape (like Sellotape) by hanging a weight on a partly peeled
length while supporting the roll so that it can freely rotate (hang it on a pencil) as
shown in Fig. 13.1. Increase the load to the value M that just causes rapid peeling (= fast
fracture). For this geometry, the quantity 51I°! is small compared to the work done by
M (the tape has comparatively little ‘give’) and it can be neglected. Then, from our
energy formula,

W = G_faa
for fast fracture, In our case,
Mgba = G.lba,
Mg = G,
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and therefore,

Typically, t = 2em, M = 1kg and g = 10ms™, giving
G, = 500 m™.

This is a reasonable value for adhesives, and a value bracketed by the values of G, for
many polymers.

Naturally, in most cases, we cannot neglect 58U, and must derive more general
relationships. Let us first consider a cracked plate of material lvaded so that the
displacements at the boundary of the plate are fixed. This is a common mode of loading
a material - it occurs frequently in welds between large pieces of steel, for example —
and is one which allows us to calculate 3U® quite easily.

v oA

52 =] L
Thlc#t-ﬂﬂas 4":&-‘_
V/////*’/f///fl[

F

Fig. 13.2. Fost fracture in a lixed plote,

Fast fracture at fixed displacements

The plate shown in Fig. 13.2 is clamped under tension so that its upper and lower ends
are fixed. Since the ends cannot move, the forces acting on them can do no work, and
W = 0. Accordingly, our energy formula gives, for the onset of fast fracture,

-l = G taa. (13.2)

Now, as the crack grows into the plate, it allows the material of the plate near the crack
to relax, so that it becomes less highly stressed, and loses elastic energy. U™ is thus
negative, so that —5LI°! is positive, as it must be since G, is defined positive. We can
estimate 8U* in the way shown in Fig. 13.3.

Let us examine a small cube of material of unit volume inside our plate. Due to the
load F this cube is subjected to a stress o, producing a strain €. Each unit cube therefore
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e = E

I

Fig. 13.3. The release of slored strain enargy o3 a crack grows.

has strain energy L of %oe, or o2/ 2E. If we now introduce a crack of [cngth @, we can
consider that the material in the dotted region relaxes (to zero stress) so as to lose all
its strain energy. The energy change is

ot watt

U = - — —.
o2E 2

As the crack spreads by length a, we can calculate the appropriate 8U*' as

die o® 2nat
L = bl = —-— — Ba
da 28 2
The critical condition {egn. (13.2)) then gives
ol
oF F

at onset of fast fracture.

Actually, our assumption about the way in which the plate material relaxes is
obviously rather crude, and a rigorous mathematical solution of the elastic stresses and
strains around the crack indicates that our estimate of 81! is too low by exactly a factor
of 2. Thus, correctly, we have

U'E'ﬂ'ﬂ

- —

which reduces to

c#

o m = VEG, (13.3)

at fast fracture.

Fast fracture at fixed loads

Another, obviously very common way of loading a plate of material, or any other
component for that matter, is simply to hang weights on it (fixed loads) (Fig. 13.4). Here
the situation is a little more complicated than it was in the case of fixed displacements.
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I
rp
Fig. 13.4. Fast fracture of a dead-loaded plate.

As the crack grows, the plate becomes less stiff, and relaxes so that the applied forces
move and do work. 8W is therefore finite and positive. However, 83U is now positive
also (it turns out that some of 8W goes into increasing the strain energy of the plate) and
our tinal result for fast fracture is in fact found to be unchanged.

The fast-fracture condition

et us now return to our condition for the onset of fast fracture, knowing it to be
general* tor engineering structures

Ty = \IIEGF .

The left-hand side of our equation says that fast fracture will occur when, in a material
subjected to a stress o, a crack reaches some critical size a: or, alternatively, when material
confaining cracks of size a is subjected to some critical stress o. The right-hand side of our
result depends on material properties only; E is obviously a material constant, and G,, the
energy required to generate unit area of crack, again must depend only on the basic
properties of our material. Thus, the important point about the equation is that the
critical combination of stress and crack length at which fast fracture commences is a material
constant,

The term o/ma crops up so frequently in discussing fast fracture that it is usually
abbreviated to a single symbol, K, having units MNm™%; it is called, somewhat
unclearly, the stress intensity factor. Fast fracture therefore occurs when

K=K

where K_ (= JEG,) is the critical stress intensity factor, more usually called the fracture
toughness.
To summarise:

G, = toughness (sometimes, critical strain energy release rate). Usual units:

kK] m™;

*But see note at end of this rh.apte'r.
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K. = VEG, = fracture toughness (sometimes: critical stress intensity factor). Usual
units: MNm™;
K = o\ ma = stress intensity factor*. Usual units: MN m™".

Fast fracture occurs when K = K..

Data for G, and K.

K, can be determined experimentally for any material by inserting a crack of known
length a into a piece of the material and loading until fast fracture occurs. G, can be
derived from the data for K, using the relation K, = \EG,. Figures 13.5 and 13.6 and
Table 13.1 show experimental data for K. and G, for a wide range of metals, polymers,
ceramics and composites. The values of K. and G, range considerably, from the least
tough materials, like ice and ceramics, to the toughest, like ductile metals; polymers
have intermediate toughness, G, but low fracture toughness, K. (because their moduli
are low). However, reinforcing polymers to make composites produces materials having
good fracture toughnesses. Finally, although most metals are tough at or above room

Ceramics Metals Polymers Composites

10°
Pure ductite
metals
Rotor steels
2 HY 130
10 Mild steel
Ti alloys Fibreglass
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Fig. 13.5. Toughness, G, (values at room temperature unless starred).

*But see note at end of this chapter.
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temperature, when many (e.g. b.c.c. metals like steels, or h.c.p. metals) are cooled
sufficiently, they become quite brittle as the data show.

Obviously these figures for toughness and fracture toughness are extremely
important — ignorance of such data has led, and can continue to lead, to engineering
disasters of the sort we mentioned at the beginning of this chapter. But just how do
these large variations between various materials arise? Why is glass so brittle and
annealed copper so tough? We shall explain why in Chapter 14.

A note on the Stress Intensity, K

On pp. 134 and 135 we showed that

K = U\,;T.'H = i EG:-

at onset of fast fracture. Strictly speaking, this result is valid only for a crack through
the centre of a wide plate of material. In practice, the problems we encounter seldom
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Table 13.1 Toughness, G, and Fracture toughness, K,

Material G, (k)/m?) K, [MM/m*)
Pure ductile metals [e.g. Cu, Mi, Ag, Al 100-1000 100-350
Rotor steels (4533; Discalloy) 220-240 204-214
Pressure-vessel steels [HY130) 150 170
High-strength steels [HSS} 15-118 50-154
Mild steel 100 140
Titanium alloys (Tidaldv) 26-114 55=115
GFRPs 10-100 2040
Fibraglass (glossfibre aposxy) 40-100 42-60
Aluminium alloys (high strength—low sirength) 8-30 23-45
CFRPs 5=30 32-45
Cammon woods, crack L fo grain 8-20 11-13
Boron-fibre epoxy 17 4é
h?};::p:-lﬂrbnn stee! 13 51
P ene ] 3
Polyethylene [low density] &7 1
'Pnl;mll‘lﬁem [hgh cL!rlsi'l}r] &7 2?
ABS polystyrene 5 4
Mylan 2-4 3
Steel-reinforced cement 0.2-4 10-15
Cast iron 0.2-3 &—20
P e 2 2
Cfnl:n‘s:;:nwond;, erock || to grain 0.5-2 0.5-1
P rbonate 0.4=1 1.0-2.6
Cobalt/tungsten carbide cermets 0.3-0.5 14-14
PraviA, 0.3-0.4 09-1.4
Wy 0.1-0.3 0.3-0.5
Granite [Westerly Granite) 0.1 3
ter 0.1 0.5
Silicon nitricde, Si;M, Q.1 4-5
lium 0.08 4
Silicon carbide SiC 0.05 3
Magnesig, MgQ 0.04 3
Cemenl/ concrete, unrainforoad 0.03 0.2
Calcite {marble, imestone) 002 0.9
Alumina, AlLO, 0.02 3-5
Shale {oilshale) 0.02 0.4
Soda glass 0.01 0.7-08
Electrical porcelain 0.01 1
ice 0.003 02

*Valuas at room temperature unlass starred.

satisfy this geometry, and a numerical correction to o/ma is required to get the strain

energy calculation right. In general we write:

E =Y a/ma,

where Y is the numerical correction factor. Values of Y can be found from tables in
standard reference books such as that listed under Further Reading. However,
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provided the crack length a is small compared to the width of the plate W, it is usually
safe to assume that ¥ = 1.

Further reading

R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th edition, 1996,

B.R. Lawn and T. R. Wilshaw, Fracture of Britile Solids, Cambridge University Press, 1975, Chap.
3.

I. E Knott, Fundamentals of Frachure Mechanics, Butterworths, 1973, Chap. 4.

H. Tada, P. Paris and G. Irwin, The Stress Analysis of Cracks Hamdbook, Del Research Corporation,
St Louis, 1973 {for Tabulation of Stress [ntensities).



Chapter 14
Micromechanisms of fast fracture

[n Chapter 13 we showed that, if a material contains a crack, and is sufficiently stressed,
the crack becomes unstable and grows — at up to the speed of sound in the material -
to cause catastrophically rapid fracture, or fast fracture at a stress less than the yield
stress. We were able to quantify this phenomenon and obtained a relationship for the
onset of fast fracture

Ul,':‘ifﬂ' = 1;.EGE
or, in more succinct notation,

K = K, for fast fracture.

[t is helptul to compare this with other, similar, ‘failure’ criteria:

a = a, for yielding,
M = M, for plastic collapse,
P/A = H for indentation.

(Here M is the moment and M,, the fully-plastic moment of, for instance, a beam; P/A
is the indentation pressure and H the hardness of, for example, armour plating.) The
left-hand side of each of these equations describes the loading conditions; the right-hand
side is a material property. When the left-hand side (which increases with load) equals
the right-hand side (which is fixed), failure occurs.

Some materials, like glass, have low G, and K_, and crack easily; ductile metals have
high G, and K, and are very resistant to fast-fracture; polymers have intermediate G,
but can be made tougher by making them into composites; and (finally) many metals,
when cold, become brittle - that is, G, and K, fall with temperature. How can we
explain these important observations?

Mechanisms of crack propagation, 1: ductile tearing

Let us first of all look at what happens when we load a cracked piece of a ductile metal

- in other words, a metal that can flow readily to give large plastic deformations (like
pure copper; or mild steel at, or above, room temperature). If we load the material
sufficiently, we can get fracture to take place starting from the crack. If you examine the
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Fatigue crack
No. 2

Fast-fracture
surface

Fatigue crack
No. |

Fig. 14.1. Before it broke, this steel bolt held a seat onto its mounting at Milan airport. Whenever someone sat
down, the lower part of the cross-section went into tension, causing a crack to grow there by metal fatigue
{Chapter 15; crack No. 1). When someocne got up again, the upper part went into tension, causing fatigue
crack No. 2 to grow. Eventually the bolt failed by fast fracture from the larger of the two fatigue cracks. The
victim was able to escape with the fractured bolt!

surfaces of the metal after it has fractured (Fig. 14.1) you see that the fracture surface
is extremely rough, indicating that a great deal of plastic work has taken place. Let us
explain this observation. Whenever a crack is present in a material, the stress close to
the crack, oy,ca), Is greater than the average stress o applied to the piece of material; the
crack has the effect of concentrating the stress. Mathematical analysis shows that the
local stress ahead of a sharp crack in an elastic material is

/ a
Olocal = O+ O 'z—r' (141)

The closer one approaches to the tip of the crack, the higher the local stress becomes,
until at some distance r, from the tip of the crack the stress reaches the yield stress, o,
of the material, and plastic flow occurs (Fig. 14.2). The distance r,, is easily calculated
by setting 0o, = 0, in eqn. (14.1). Assuming r, to be small compared to the crack
length, a, the result is

a’a
r = —
Y 2032,
KZ
= ) (14.2)
217(73,

The crack propagates when K is equal to K ; the width of the plastic zone, r,, is then
given by eqn. (14.2) with K replaced by K.. Note that the zone of plasticity shrinks
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Fig. 14.2. Crock propogation by ductile teoring.

rapidly as o, increases: cracks in soft metals have a large plastic zone; cracks in hard
ceramics have a small zone, or none at all.

Even when nominally pure, most metals contain tiny inclusions (or particles) of
chemical compounds formed by reaction between the metal and impurity atoms.
Within the plastic zone, plastic flow takes place around these inclusions, leading to
elongated cavities, as shown in Fig. 14.2. As plastic flow progresses, these cavities link
up, and the crack advances by means of this ductile tearing. The plastic flow at the crack
tip naturally turns our initially sharp crack into a blun! crack, and it turns out from the
stress mathematics that this crack blunting decreases oy, so that, at the crack tip itself,
Tloeal 15 just sufficient to keep on plastically deforming the work-hardened material
there, as the diagram shows.

The important thing about crack growth by ductile tearing is that it consumes a lot of
energy by plastic flow; the bigger the plastic zone, the more energy is absorbed. High
energy absorption means that G, is high, and so is K... This is why ductile metals are so
tough. Other materials, too, owe their toughness to this behaviour - plasticine is one,
and some polymers also exhibit toughening by processes similar to ductile tearing.

Mechanisms of crack propagation, 2: cleavage

If vou now examine the fracture surface of something like a ceramic, or a glass, you see
a very different state of affairs. Instead of a very rough surface, indicating massive local
plastic deformation, you see a rather featureless, flat surface suggesting little or no
plastic deformation. How is it that cracks in ceramics or glasses can spread without
plastic flow taking place? Well, the local stress ahead of the crack tip, given by our
formula

fa

nll:ll:'a]. =0+ ”'\.'I #
| 2r
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Fig. 14.3. Crack propagafion by cleavage.

can clearly approach very high values very near to the crack tip provided that blunting
of our sharp crack tip does not occur. As we showed in Chapter 8, ceramics and glasses
have very high yield strengths, and thus very little plastic deformation takes place at
crack tips in these materials. Even allowing for a small degree of crack blunting, the
local stress at the crack tip is still in excess of the ideal strength and is thus large enough
to literally break apart the interatomic bonds there; the crack then spreads between a
pair of atomic planes giving rise to an atomically flat surface by cleavage. The energy
required simply to break the interatomic bonds is much less than that absorbed by
ductile tearing in a tough material, and this is why materials like ceramics and glasses
are so brittle. It is also why some steels become brittle and fail like glass, at low
temperatures — as we shall now explain.

Al low temperatures metals having b.c.c. and h.c.p. structures become brittle and fail
by cleavage, even though they may be tough at or above room temperature. In fact,
only those metals with an f.c.c. structure (like copper, lead, aluminium) remain
unaffected by temperature in this way. In metals not having an f.c.c. structure, the
motion of dislocations is assisted by the thermal agitation of the atoms (we shall talk in
more detail about thermally activated processes in Chapter 18). At lower temperatures
this thermal agitation is less, and the dislocations cannot move as easily as they can at
room temperature in response to a stress — the intrinsic lattice resistance (Chapter 10)
increases, The result is that the yield strength rises, and the plastic zene at the crack tip
shrinks until it becomes so small that the fracture mechanism changes from ductile
tearing to cleavage. This effect is called the ductile-to-brittle transition; for steels it can be
as high as =0°C, depending on the composition of the steel; steel structures like ships,
bridges and oil rigs are much more likely to fail in winter than in summer.

A somewhat similar thing happens in many polymers at the glass—rubber transition that
we mentioned in Chapter 6. Below the transition these polymers are much more brittle
than above it, as you can easily demonstrate by cooling a piece of rubber or polyethylene
in liquid nitrogen. (Many other polymers, like epoxy resins, have low G, values at all
temperatures simply because they are heavily cross-linked at all temperatures by covalen!
bonds and the material does not flow at the crack tip to cause blunting.)
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Composites, including wood

As Figs. 13.5 and 13.6 show, composites are tougher than ordinary polymers. The low
toughness of materials like epoxy resins, or polyester resins, can be enormously
increased by reinforcing them with carbon fibre or glass fibre. But why is it that putting
a second, equally (or more) brittle material like graphite or glass into a brittle polymer
makes a tough composite? The reason is the fibres act as crack stoppers (Fig. 14.4).

Fig. 14.5. Hubber-hughanad Fnhameri.

The sequence in the diagram shows what happens when a crack runs through the
brittle matrix towards a fibre. As the crack reaches the fibre, the stress field just ahead
of the crack separates the matrix from the fibre over a small region (a process called
debonding) and the crack is blunted so much that its motion is arrested. Naturally, this
only works if the crack is running normal to the fibres: wood is very tough across the
grain, but can be split easily (meaning that G, is low) along it. One of the reasons why
tibre composites are so useful in engineering design —in addition to their high stiffnesses
that we talked about in Chapter 6 — is their high foughness produced in this way. Of
course, there are other ways of making polymers tough. The addition of small particles
(fillers’) of various sorts to polymers can modify their properties considerably. Rubber-
toughened polymers (like ABS), for example, derive their toughness from the small
rubber particles they contain. A crack intersects and stretches them as shown in Fig.
14.5. The particles act as little springs, clamping the crack shut, and thereby increasing
the load needed to make it propagate.

Avoiding brittle alloys

Let us finally return to the toughnesses of metals and alloys, as these are by far the most
important class of materials for highly stressed applications. Even at, or above, room
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temperature, when nearly all commeon pure metals are tough, alloying of these metals
with other metals or elements (e.g. with carbon to produce steels) can reduce the
toughness. This is because alloying increases the resistance to dislocation motion
(Chapter 10), raising the yield strength and causing the plastic zone to shrink. A more
marked decrease in toughness can cccur if enough impurities are added to make
precipitates of chemical compounds formed between the metal and the impurities. These
compounds can often be very brittle and, if they are present in the shape of extended
plates (e.g. sigma-phase in stainless steel; graphite in cast iron), cracks can spread along
the plates, leading to brittle fracture. Finally, heat treatments of alloys like steels can
produce different crystal structures having great hardness (but also therefore great
brittleness because crack blunting cannot occur). A good example of such a material is
high-carbon steel after quenching into water from bright red heat: it becomes as brittle
as glass. Proper heat treatment, following suppliers’ specifications, is essential if
materials are to have the properties you want. You will see an example of the
unexpected results of faulty heat treatment in a Case Study given in Chapter 16.

Further reading

B. R. Lawn and T. B. Wilshaw, Fracture of Brittle Solids, Cambridge University Press, 1975, Chaps.
6and 7.
1. F Knott, Fundamentals of Fracture Mechanics, Butterworths, 1973, Chap. &,



Chapter 15

Fatigue failure

Introduction

In the last two chapters we examined the conditions under which a crack was stable,
and would not grow, and the condition

K =K,

under which it would propagate catastrophically by fast fracture. If we know the
maximum size of crack in the structure we can then choose a working load at which
fast tracture will not occur.

But cracks can form, and grow slowly, at loads lower than this, if either the stress is
cycled or if the environment surrounding the structure is corrosive (most are). The first
process of slow crack growth - fatiyue — is the subject of this chapter. The second -
corrosion — is discussed later, in Chapters 21 to 24.

More formally: if @ component or structure is subjected to repeated siress cycles, like the
loading on the connecting rod of a petrol engine or on the wings of an aircraft - it may

Table 15.1
/ \J
Fatigue of uneracked components Fatigue of cracked shructures

Cracks pre-exist; propogation contralled
fracture. Exomples: almest any large structure,
particularly those containing welds: bridges,

ships, pressure vessels,

Mo crocks pra-exist; initiotion-contralled
frachure. Examples: almost any small

components like gudgeon pins, ball races,
gear teeth, axles, cronk shafts, drive shofts.

|

Low cycle fatigue

High cycle fatigus

Fatigue ot stresses below general yield; =104
cycles to Fracture. Examples: oll rotating or
vibrating systems like wheels, axles, engine
components.

Fatigue ot stresses above general yield; <104
cycles to bracture. Exomplas: core componants
of nuclear reactors, air-fromes, turbine
components, any component subiau:'r ta
occasional everloods.
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fail at stresses well below the tensile strength, o, and often below the yield strength, ,, of the
material. The processes leading to this failure are termed ‘fatigue’. When the clip of
your pen breaks, when the pedals fall off your bicycle, when the handle of the
refrigerator comes away in your hand, it is usually fatigue which is responsible.

We distinguish three categories of fatigue (Table 15.1).

Fatigue behaviour of uncracked components

Tests are carried out by cycling the material either in tension (compression) or in
rotating bending (Fig. 15.1). The stress, in general, varies sinusoidally with time,

}F

Stress,

N, time

Fig. 15.1. Fatigue testing.

though modern servo-hydraulic testing machines allow complete control of the wave

shape.
We define:
Omax T Omin Omax ~— Tmin
Acg = Omax =~ Omine Om = ;o Og =
2 2

where N = number of fatigue cycles and Ny = number of cycles to failure. We will
consider fatigue under zero mean stress (o, = 0) first, and later generalise the results
to non-zero mean stress.
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Fig. 15.2. Initintisn-controlled high-cycle fatique = Basguin's Laow.

For high-cycle fatigue of uncracked components, where neither o, nor |o,;,| are above
the yield stress, it is found empirically that the experimental data can be fitted to an
equation of form

AaNi = Cy. (15.1)

This relationship is called Basquin’s Law. Here, a is a constant (between % and ., for most
materials) and C, is a constant also.

For low-cycle fatigue of un-cracked components where o, or |o,,,| are above o,
Basquin’s Law no longer holds, as Fig. 15.2 shows. But a linear plot is obtained if the
plastic strain range Ae™, defined in Fig. 15.3, is plotted, on logarithmic scales, against
the cycles to failure, Ny (Fig. 15.4). This result is known as the Coffin-Manson Lauw:

AePNE = G, (15.2)

where b (0.5 to 0.6) and C; are constants.

r

Cycle e .
yighd ik
siran

oh — Ae”

Y/ I

Fig. 15.3. The plastic sirain rangs, Ae®, in low-cycle latigue.
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Fig. 15.5. Goodman's Bule - the eMect of o tensile mean stress on initiation-controlled F\:ﬁgm.

These two laws (given data for g, b, C; and C;) adequately describe the fatigue failure
of unnotched components, cycled at constant amplitude about a mean stress of zero.
What do we do when Ac, and o, vary?

When material is subjected to a mean tensile stress (i.e. o, > 0) the stress range must
be decreased to preserve the same Ny according to Goodman's Rule (Fig. 15.5)

AL
Adyy = Aoy (1 - —) (15.3)

Trg,

(Here Aay is the cyclic stress range for failure in Ny cycles under zero mean stress, and
Ao, is the same thing for a mean stress of o,,,.) Goodman's Rule is empirical, and does
not always work — then tests simulating service conditions must be carried out, and the
results used for the final design. But preliminary designs are usually based on this
rule.

When, in addition, Ao varies during the lifetime of a component, the approach
adopted is to sum the damage according to Miner’s Rule of cumulative damage:
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Fig. 15.6. Summing domage due to inifiation-conirolled fatigue.

N;
S— =1 (15.4)
i Nﬁ

Here Nj; is the number of cycles to fracture under the stress cycle in region i, and N;/N
is the fraction of the lifetime used up after N; cycles in that region. Failure occurs when
the sum of the fractions is unity (eqn. (15.4)). This rule, too, is an empirical one. It is
widely used in design against fatigue failure; but if the component is a critical one,
Miner’s Rule should be checked by tests simulating service conditions.

Fatigue behaviour of cracked components

Large structures — particularly welded structures like bridges, ships, oil rigs, nuclear
pressure vessels — always contain cracks. All we can be sure of is that the initial length
of these cracks is less than a given length — the length we can reasonably detect when
we check or examine the structure. To assess the safe life of the structure we need to
know how long (for how many cycles) the structure can last before one of these cracks
grows to a length at which it propagates catastrophically.

Data on fatigue crack propagation are gathered by cyclically loading specimens
containing a sharp crack like that shown in Fig. 15.7. We define

AK = Koy — Knin = Acyma

The cyclic stress intensity AK increases with time (at constant load) because the crack
grows in tension. It is found that the crack growth per cycle, da/dN, increases with AK
in the way shown in Fig. 15.8.

In the steady-state régime, the crack growth rate is described by

da
— = AAK" (15.5)
dN

where A and m are material constants. Obviously, if a, (the initial crack length) is given,
and the final crack length (a/) at which the crack becomes unstable and runs rapidly is
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Fig. 15.7. Fafigue-crack growth in pre-cracked components.

known or can be calculated, then the safe number of cycles can be estimated by
integrating the equation

N “  da
Ny = j dN = f - , (15.6)
0 . ABK"

remembering that AK = Acy/ma. Case Study 3 of Chapter 16 gives a worked example of
this method of estimating fatigue life.

Fatigue mechanisms

Cracks grow in the way shown in Fig. 15.9. In a pure metal or polymer (left-hand
diagram), the tensile stress produces a plastic zone (Chapter 14) which makes the crack



152  Engineering Materials 1

+ Fast traciure

l

|

.
K

log AK
Fig. 15.8. Fatigue crock-grewth rates for pre-cracked material,

|
%ﬂ

G

.

Fig. 15.9. How fatigue cracks grow.

tip stretch open by the amount &, creating new surface there. As the stress is removed
the crack closes and the new surface folds forward, extending the crack (roughly, by 5).
On the next cycle the same thing happens again, and the crack inches forward, roughly
at da/dN = &. Note that the crack cannot grow when the stress is compressive because
the crack faces come into contact and carry the load (crack closure).

We mentioned in Chapter 14 that real engineering alloys always have little inclusions
in them. Then (right-hand diagram of Fig. 15.9), within the plastic zone, holes form and
link with each other, and with the crack tip. The crack now advances a little faster than
before, aided by the holes.

In pre-cracked struciures these processes determine the fatigue life. In uncracked
components subject to low-cycle fatigue, the general plasticity quickly roughens the
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Fig. 15.10. How cracks form in low-cycle fatigue. Once formed, they grow as thown in Fig. 15.9.

Plastic flow at
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Fig- 15.11. How crocks form in high-cyce fatigue.

surface, and a crack forms there, propagating first along a slip plane ('Stage 1" crack)
and then, by the mechanism we have described, normal to the tensile axis (Fig.
15.100

High-cycle fatigue is different. When the stress is below general yield, almost all of
the life is taken up in initiating a crack. Although there is no general plasticity, there is
local plasticity wherever a notch or scratch or change of section concentrates stress. A
crack ultimately initiates in the zone of one of these stress concentrations (Fig. 15.11)
and propagates, slowly at first, and then faster, until the component fails. For this
reason, sudden changes of section or scratches are very dangerous in high-cycle
tatigue, often reducing the fatigue life by orders of magnitude.
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Chapter 16

Case studies in fast fracture and fatigue failure

Introduction

In this third set of Case Studies we examine three instances in which failure by crack-
propagation was, or could have become, a problem. The first is the analysis of an
ammonia tank that failed by fast fracture. The second concerns a common problem: the
checking, for safety reasons, of cylinders designed to hold gas at high pressure. The last
is o fatigue problem: the safe life of a reciprocating engine known to contain a large
crack.

CASE sTUDY 1: FAST FRACTURE OF AN AMMONIA TANK

Figure 16.1 shows part of a steel tank which came from a road tank vehicle. The tank
consisted of a cylindrical shell about 6 m long. A hemispherical cap was welded to each
end of the shell with a circumferential weld. The tank was used to transport liquid
ammonia. [n order to contain the liquid ammaonia the pressure had to be equal to the
saturation pressure (the pressure at which a mixture of liquid and vapour is in
equilibrium). The saturation pressure increases rapidly with temperature: at 20°C the
absolute pressure 1s 8.57 bar; at 50°C it is 20.33 bar. The gauge pressure at 50°C is 19.33
bar, or 1.9MN m~2. Because of this the tank had to function as a pressure vessel. The
maximum operating pressure was 2.07 MN m~ gauge. This allowed the tank to be used
safely to 50°C, above the maximum temperature expected in even a hot climate.
While liquid was being unloaded from the tank a fast fracture occurred in one of the
circumferential welds and the cap was blown off the end of the shell. In order to decant

Shell =70 Circumfarantial
wald

Fig. 16.1. The weld between the shell and the end cop of the pressure vessel. Dimensions in mm.
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the liquid the space above the liquid had been pressurised with ammonia gas using a
compressor. The normal operating pressure of the compressor was 1.83MN m™; the
maximum pressure (set by a safety valve) was 2.07 MN m™. One can imagine the effect
on nearby people of this explosive discharge of a large volume of highly toxic
vapour.

Details of the Failure

The geometry of the failure is shown in Fig. 16.2. The initial crack, 2.5mm deep, had
formed in the heat-affected zone between the shell and the circumferential weld. The
defect went some way around the carcumference of the vessel. The cracking was
intergranular, and had occurred by a process called stress corrosion cracking (see
Chapter 23). The final fast fracture nccurred by transgranular cleavage (see Chapter 14).
This indicates that the heat-affected zone must have had a very low fracture toughness.
In this case study we predict the critical crack size for fast fracture using the fast
fracture equation.

fracture
by
fransgranular
cleavage

Initial
intargranular
crack

Fig. 16.2. The geomelry of the failure. Dimensions in mm.
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Material properties

The tank was made from high-strength low-alloy steel with a veild strength of
TI2ZMNm™ and a fracture toughness of BOMN m™'2 The heat from the welding
process had altered the structure of the steel in the heat-affected zone to give a much
greater yield strength (940MNm™) but a much lower fracture toughness
(39 MN m /),

Caleulation of critical stress for fast fracture

The longitudinal stress o in the wall of a cylindrical pressure vessel containing gas at
pressure p is given by

pr

2t
pmvtdcd that the wall is thin (f << r). p = LEIMNm’ 2 r=1067mm and t = 7mm, so
o = 140 MN m™2, The fast fracture equation is

o

Yo wa = K_.

Because the crack penetrates a long way into the wall of the vessel, it is necessary to
take into account the correction factor Y (see Chapter 13). Figure 16.3 shows that ¥ =
1.92 for our crack. The critical stress for fast fracture is given by

K. 39

g =——= — = 220 MN m™2,
Yo ma 1.92w.0.0025

Fig. 16.3. Y value for the crack. Dimensions in mm.



158  Engineering Materials 1

The critical stress is 64% greater than the longitudinal stress. However, the change in
section from a cylinder to a sphere produces something akin to a stress concentration;
when this is taken into account the failure is accurately predicted.

Conclusions and recommendations

This case study provides a good example of the consequences of having an inadequate
fracture toughness. However, even if the heat-affected zone had a high toughness, the
crack would have continued to grow through the wall of the tank by stress-corrosion
cracking until fast fracture occurred. The critical crack size would have been greater,
but failure would have occurred eventually. The only way of avoiding failures of this
type is to prevent stress corrosion cracking in the first place.

CASE STUDY 2: COMPRESSED AIR TANKS FOR A SUPERSONIC WIND TUNMEL

The supersonic wind tunnels in the Aerodynamic Laboratory at Cambridge University
are powered by a bank of twenty large cylindrical pressure vessels. Each time the
tunnels are used, the vessels are slowly charged by compressors, and then quickly
discharged through a tunnel. How should we go about designing and checking
pressure vessels of this type to make sure they are safe?

Criteria for design of safe pressure vessels

First, the pressure vessel must be safe from plastic collapse: that is, the stresses must
everywhere be below general yield. Second, it must not fail by fast fracture: if the
largest cracks it could contain have length 22 (Fig. 16.4), then the stress intensity K =
oy ma must everywhere be less than K. Finally, it must not fail by fatigue: the slow
growth of a crack to the critical size at which it runs.

Fig. 16.4. Cracks in the wall of o pressure vessel.
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The hoop stress o in the wall of a cylindrical pressure vessel containing gas at
pressure p is given by

pr

rr ,
i

provided that the wall is thin (f << r).
For general yielding,

o = o,

For fast fracture,

ryma = K.

Failure by general yield or fast fracture

Figure 16.5 shows the loci of general yielding and fast fracture plotted against crack
size. The yield locus is obviously independent of crack size, and is simply given by o
= o, The locus of fast fracture can be written as

Kc(l)
F=—1\1—Il.:
v\

which gives a curved relationship between o and a. If we pressurise our vessel at point
A on the graph, the material will yield before fast fracture; this yielding can be detected
by strain gauges and disaster avoided. If we pressurise at point B, fast fracture will
occur at a stress less than o,, without warning and with catastrophic consequences; the
point where the two curves cross defines a critical flaw size at which fracture by general
yield and by fast fracture coincide. Obviously, if we know that the size of the largest
flaw in our vessel is less than this critical value, our vessel will be safe (although we

— Gereral yialding

o 1
n 5 —-___l- . Fasi fraciure o« = | (ka)

Al e P, - 8
i 1 a
Mininnum flaw size for frachure Critarion for leak belore break
behora yield (with facior of satety of 2)

Fig. 16.5. Fracture mades for a edindrical pressure vessel,
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Fig. 16.6. Design against yield and fast fracture for o eylindrical pressure vessel.

should also, of course, build in an appropriate safety factor 5 as well - as shown by the
dash - dot line on Fig. 16.5).

Figure 16.6 shows the general yield and fast fracture loci for a pressure-vessel steel
and an aluminium alloy. The critical flaw size in the steel is =9mm; that in the
aluminium alloy is =1 mm. It is easy to detect flaws of size 9mm by ultrasonic testing,
and pressure-vessel steels can thus be accurately tested non-destructively for safety -
vessels with cracks larger than 9mm would not be p.aﬁ!;ed for service. Flaws of 1 mm
size cannot be measured so easily or accurately, and thus aluminium is less safe to
use.

Failure by fatigue

In the case of a pressure vessel subjected to cyclic londing (as here) cracks can grow by
fatigue and a vessel initially passed as safe may subsequently become unsafe due to
this crack growth. The probable extent of crack growth can be determined by making
fatigue tests on pre-cracked pieces of steel of the same type as that used in the pressure
vessel, and the safe vessel litetime can be estimated by the method illustrated in Case
Study 3.

Extra safety: leak before break

It is worrying that a vessel which is safe when it enters service may become unsafe by
slow crack growth - either by fatigue or by stress corrosion. If the consequences of
catastrophic failure are very serious, then additional safety can be gained by designing
the vessel so that it will leak before it breaks (like the partly inflated balloon of Chapter
13). Leaks are easy to detect, and a leaking vessel can be taken out of service and
repaired. How do we formulate this leak-before-break condition?

If the critical flaw size for fast fracture is less than the wall thickness (t) of the vessel,
then fast fracture can occur with no warning. But suppose the critical size (2a.,) is
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greater than ¢ — then gas will leak out through the crack before the crack is big enough
to run. To be on the safe side we shall take

20, = 2L
The stress is defined by

]
Oy Tl gy

= K,
so that the permissible stress is

K,
o= —
vt
as illustrated on Fig. 16.5.
There is, of course, a penalty to be paid for this extra safety: either the pressure must
be lowered, or the section of the pressure vessel increased - often substantially.

Pressure tesling

In many applications a pressure vessel may be tested for safety simply by hydraulic
testing to a pressure that is higher — typically 1.5 to 2 times higher — than the normal
operating pressure. Steam boilers (Fig. 16.7) are tested in this way, usually once a year.
If failure does not occur at twice the working pressure, then the normal operating stress
is at most one-half that required to produce fast fracture. If failure does occur under

Fig. 16.7. A pressure vessel in action — the boiler of the arficulated steam locomotive Merddin Emrys, built in
1879 and stil hauling passengers on the Fesliniog narrow-gauge railway in North Wales.
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hydraulic test nobody will get hurt because the stored energy in compressed water is
small. Periodic testing is vital because cracks in a steam boiler will grow by fatigue,
corrosion, stress corrosion and so on.

CASE STUDY 3: THE SAFETY OF THE STRETHAM ENGINE

The Stretham steam pumping engine (Fig. 16.8) was built in 1831 as part of an extensive
project to drain the Fens for agricultural use. In its day it was one of the largest beam
engines in the Fens, having a maximum power of 105 horsepower at 15 rpm (it could

Fig. 16.8. Parl of the Siretham stearn pumping engine. In the foreground are the crank and the lower end of the
connecting rod. Also visible are the flywheel (with separate spokes and rim segments, all pegged together), the
ecceniric drive to the valve-gear end, in the background, an early Ireadle-driven lathe for on-the-spot repairs.
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lift 30 tons of water per revolution, or 450 tons per minute); it is now the sole surviving
steam pump of its type in East Anglia.”

The engine could still be run for demonstration purposes. Suppose that you are
called in to assess its safety. We will suppose that a crack 2¢m deep has been found in
the connecting rod - a cast-iron rod, 21 feet long, with a section of 0.04m?. Will the
crack grow under the cyclic loads to which the connecting rod is subjected? And what
is the likely life of the structure?

Mechanics

The skress in the crank shaft is calculated approximately from the power and speed as
follows. Bear in mind that approximate calculations of this sort may be in error by up
to a factor of 2 - but this makes no difference to the conclusions reached below.
Referring to Fig. 16.9:

Power = 105 horsepower
= 7.8 X 10%]s7,
Speed = 15rpm = 0.25revs ™,

Stroke = 8 feet = 2.44m,

Force ® 2 X stroke X speed = power,

7.8 » 10*
.. Force = - =64 ¥ 10'N.
2 X244 % 025

Nominal stress in the connecting rod = F/A = 64 x 10°/0.04 = 16 MN m~
approximately.

Fig. 16.9. Schematic of the Stretham engine.

*Until a couple of centuries ago much of the eastern part of England which is now called East Anglia was a
vast area of desolate marshes, or fens, which stretched from the Morth Sea as far inland as Cambridge.
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Failure by fost fracture

For cast iron, K, = 18MNm %,
First, could the rod fail by fast fracture? The stress intensity is:

K=o/m = 1.6/m0.02MNm™ = 0.40MNm =

It is s0 much less than K, that there is no risk of fast fracture, even at peak load.

Failure by fatigue

The growth of a fatigue crack is described by
da
— = A(AK)™. (16.1)
dN

For cast iron,

A =43 %x10%m (MNm )=,
m o= 4.

We have that
AK = Aoma

where Ao is the range of the tensile stress (Fig. 16.10). Although Ao is constant (at
constant power and speed), AK increases as the crack grows. Substituting in eqn. (16.1)
gives

da

= AAd'w?a®
dN

and
1 da

dN = ——— —.
{AAF'®?) @

Al increases
as crack
a4 K} extends ~
1,60 MN m2 ¥ i
- iR
0 L x 4 A L A L.

Fig. 16.10. Crack growth by atigue in the Stretham engine.
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Integration gives the number of cycles to grow the crack from a, to a;:

1 1 1
N=—— 1
(AAOA '1T2) {al az}

for a range of a small enough that the crack geometry does not change appreciably. Let
us work out how long it would take our crack to grow from 2cm to 3 cm. Then

1 1 1
N = -
4.3 X 1078 (1.6)* 2 {0.02 0.03]
= 5.9 X 10° cycles.

This is sufficient for the engine to run for 8 hours on each of 832 open days for
demonstration purposes, i.e. to give 8 hours of demonstration each weekend for 16
years. A crack of 3 cm length is still far too small to go critical, and thus the engine will
be perfectly safe after the 5.9 X 10° cycles. Under demonstration the power delivered
will be far less than the full 105 horsepower, and because of the Aot dependence of N,
the number of cycles required to make the crack grow to 3 cm might be as much as 30
times the one we have calculated.

The estimation of the total lifetime of the structure is more complex — substantial
crack growth will make the crack geometry change significantly; this will have to be
allowed for in the calculations by incorporating a correction factor, Y.

Conclusion and recommendation

A simple analysis shows that the engine is likely to be safe for limited demonstration
use for a considerable period. After this period, continued use can only be sanctioned
by regular inspection of the growing crack, or by using a more sophisticated
analysis.
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