
CC68K (XML Databases). Duration: 1h30.

2nd exam –  27th of October 2005 – Inside XML databases

All paper documents are authorised. Answer either in English or in Spanish. Each answer  must be 
justified. All the questions numbered with integers are independent and can thus be answered in any 
order. Marks are approximative and may change.

1. Numbering schemes (/15)

1.1. A variant of the Dewey numbering scheme (/10)

As the Dewey numbering, Path Identifiers (PIDs) encode complete root paths as sequences of o sets 
representing relative  positions among children.  The difference is  that  instead of  using UTF-8,  the 
number  of  bits  used  to  encode  a  given  o set  for  a   node  B  are  stored  in  the  DataGuide  node 
corresponding to the parent node of B. In the following, we suppose that an element is represented by a 
tuple  (Document-ID,  PID,  DataGuide  node  ID)  and  that  XML  documents  are  only  composed  of 
elements (no other node type). For all the questions related to the cost of an operation, we assume that a 
lookup in the DataGuide is much more faster than a lookup in the database.

a) Show that  the  numbering  scheme is  sufficient  to  reconstruct  the  whole XML structure  of  any 
document. 

We only have to proove that the scheme is equivalent to Dewey, which is trivial since looking at the 
dataguide (from the root to the parent of the corresponding node in the dataguide) gives use the exact 

b) Let  <a>  <b><c/><c/></b>  <b><d/><d><e/><f/></d><c/></b>  <c><c/><c/></c></a>; 
<a><b/><c/></a>;  <b><c/><d/></b>  be  three  XML  documents  stored  in  the  database.  Draw  the 
extended  DataGuide (consider  that  the  DataGuide  is  a  tree with  the  following constraint:  all  root 
elements have the same parent in this DataGuide) and the node representations of all the elements of 
these documents. For the sequence of offsets, use either a decimal or a binary notation. What is the 
minimum  size  for  the  representation  of  this  database (without  considering  the  storage  of  the 
DataGuide).

For the dataguide (between parenthesis are the number of bits needed for encoding, and curly braces 
are used for the dataguide structure),
Root (0) {
  a(2) { /* path /a elements can have up to 3 children => 2 bits */
    b(2) { /* /a/b elements can have up to 3 children => 2 etc. */
      c(0), 
      d(1) { e(0), f(0) } 
    },
    c(1) { c(0) }
  },
  b (1) { c(0), d(0) }
 }

The numbering is similar to Dewey except that (1) the root element is encoded with 0 bit (2) the offsets 
start from 0 (for instance, /a[1]/b[2]/d[1] is encoded as (1,0) or in binary 0100).

The maximum size is given by the graph (looking at the maximum number of bits for a leaf): it is 5 (for 



a – b – d – e for instance) + the maximum ID of a DataGuide node (10 => 4 bits); in total 9 bits are 
enough for this database. There can be  11 different PIDs (=> 4 bits). There are three documents (2 
bits). The size of the database is thus (9 bits + 4 bits + 2 bits) * 18 node

c) What are the possible reconstructions that can be made from one element representation?

Ancestors, nth child,  siblings, ancestor siblings just by looking at the DataGuide (to know the number 
of bits). Contrarily to Dewey, it is not possible to compute the representation of any element without 
knowing its sequence of node labels.

d) Let  the  different  decisions  be:  parent,  ancestor,  child,  nth   child,  following,  following-sibling, 
preceding,  preceding-sibling.  What  are  all  the  decisions  that  can  be  made  from  two  elements 
representations? For each decision that cannot be done, cite a numbering scheme that allows it (if it 
exists).

ancestor (and hence parent, child, descendant) can be made by looking at the dataguide: if the node is 
an ancestor (or a parent) in the DataGuide, then it is also a parent/ancestor in the XML document.

A next/previous sibling decision can be taken easily: given two representations r1 and r2, just look at 
the corresponding parent node DGP in the DataGuide. If it is not the same, then the two nodes are not 
siblings. If it is the same, take the bit number N associated to DGP and compare the last N bits of r1 
and r2; if last(N,r1) > (resp. <) last(N,r2) then r1 is the next (resp. previous) sibling of r2  

Following (a is following b if a is after in document order AND b is not an ancestor of  a)/preceding 
decisions can be made using the same process as previously. Let dg1 and dg2 be the corresponding DG 
nodes of elements 1 and 2. Let A be the first common ancestor of dg1 and dg2.  Let b be the cumulated 
number of bits of nodes from the root of the DG to A. If the first b bits of r1 gives a superior (resp. 
inferior) number to the first b bits of r2, then node 1 is following (resp. preceding)  b2.

e) Propose an enhancement of the DataGuide so that the ancestor/descendant decision is faster.

using the pre-size scheme for the DataGuide allows to retrieve any descendant just by looking at the 
[pre,pre+size] interval.
f) What kind of queries can be partially answered by a simple consultation of the DataGuide – that is 
the queries for which we can pre-compute the PIDs so that all the elements in the database can be 
searched by a simple lookup (« SELECT ... FROM xmldatabase WHERE PID in (X)? »).

Any query that do not contain a predicate other than a positional predicate.
g) What are the properties of the XML database that may affect the storage size? Give an example of a 
database for which this numbering scheme is adapted. Give an example of a database for which it is not 
and propose one or more numbering schemes which are more well suited.. 

The schema is bad if the nodes that share the same simple path (implies same DataGuide node) have a 
number of children that varies a lot. In this case, one case use the pre-size scheme. Very deep 
documents are also not really suited for this scheme.
h) Propose an enhancement of this numbering scheme if the DTD is known.

If we know the DTD, we can avoid to store the offset of an element for which we know the position. 
For example, if we have <!ELEMENT a (b,c,d,e,f)> then it is not necessary to store the offset of b, c, d, 
e and f as it is fixed (0-4).



1.2. Pre/post and descendant axis (/5)

For an element x, pre(x) and post(x) denote respectively the pre-order and the post-order number of x. 

a) With respect to elements a and b, characterise each of the 9 regions of the above graph (pre-post 
plane).

Recall that the space is partioned into r regions for an element (which are ancestor, following, 
preceding, and descendants). Hence,
1 => common ancestors of a and b
2 (4) => ancestors of b (a) only and also following of a (preceding of b)
3 (7) => elements following (preceding)  a and b
5 => nodes that are preceding b and following a
6 (8) => descendants of b (a) only
9 => empty (a and b cannot have a descendant in common)

b) We now want to evaluate the descendant axis of an XPath expression. In order to achieve this goal, 
we consider this sub-problem. Let A=(a1,...,an) and B=(b1,...,bn). be two  sequences of elements, both 
ordered in document order. We want to find all the descendants of A that are in B.

i. Without knowing anything on B, are there nodes that we do not have to consider in the set A? If 
yes, characterise those nodes using the pre/post. If no, justify.

Yes: if ai is an ancestor of  aj (that can only happen if i < j),  then we can ignore aj  since all the 
descendants aj of  ai are descendants of aj.

ii. Without knowing anything on A, are there nodes that we do not have to consider in the set B? If 
yes, characterise those nodes using the pre/post. If no, justify.

Without knowing A it is not possible since any element of B can be a descendant of A (except if 
b is the root of a document).

iii.For a given ai what is the portion of the pre-post space that we need to explore if we want to find 
the descendants of  ai  that are not a descendant of ai+1?

Let a be ai  and b be ai+1. Suppose that a is not an ancestor of b (otherwise, we have the standard 
inequality on pre/post). This correspond to the region 8 of the graph. Formally,
x is a descendant of a <=> pre(a) < pre(x)  and post(a) > post(x). 
x is not a descendant of b <=> pre(b) >= pre(x) OR post(b) <=  post(x).

Since b is not a descendant of a and that pre(b) > pre(a) then post(b) > post(a) from the previous 
inequality (with x -> b and b -> a). As x is a descendant of a, we know that post(a) > post(x) and 
hence that post(b) <= post(x) is impossible [we just eliminated the region 3]. 
Then we have the following region:
pre(x) in ] pre(a), pre(b) ]
post(x) in [ 0, post(a) [

iv. Suppose that for a given i and a given j, pre(bj) > pre(ai) and post(bj) > post(ai). Knowing ai+1, can 
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you characterise the region of the pre-post plane that will not contain any descendant of A?

That corresponds exactly to the graph with a and b. We know that b is not a descendant of a; 
furthermore, if pre(ai+1) > pre(bj) then we can skip all the b nodes until pre(bk) > pre(aj+1).

2. Locking and concurrency (/5)
A document model specification allow the following operations: from a node, one can access its nth 

child or its parent.

a)  Among  the  non-semantic  locking  mechanisms (...2PL),  what  are  those  that  do  not  verify  the 
serialisability property with this new document model?

Two possible answers:
I) Conceptually, if we apply the mechanisms (locking the nodes/pointer that are at least conceptually 
traversed), all schemes are OK
[prefered] II) Since the document models are different, it may happen for OO2PL. It is sufficient to 
give an example to prove it. For OO2PL, it is easy to see that if T1 reads the second child, and that T2 
inserts a child before it then we have a problem because only the pointers “2nd child” (for T1) and first 
child (T1) are locked.

b) Propose an adapted locking mechanism.
Depends on a) if you took the option (I), then nothing to do
If you took option (II), then you can simply adapt OO2PL.

3. Normal forms (/5)

a) Let a DTD be 
<!ELEMENT  artist  (name,  influence*)><!ELEMENT  name  (#PCDATA)><!ELEMENT  influence 
(#PCDATA)

Find all the trivial functional dependencies for this DTD.
All of the form p -> p' where p' is a prefix of p (and p does not end in #PCDATA) or the form p -> 
p/#PCDATA
and:
– /artist/influence -> /artist/name
– /artist -> /artist/name
+ of course all the FDs that are build from the previous one by adding a path in the left part.
b) Would it be possible to use functional dependencies with path of the form //element-node-test? If 
no, justify. If yes, propose an extension of FD for that kind of XPath.
The important is that a path = a value; given a tree tuple, an element with a given name can appear 
several times in the path from the root to the node. So no it is not possible in general (but it does 
depend on the DTD also).

c) Prove that functional dependencies used in XNF are a generalisation of functional dependencies of 
relational databases. 

First, we have to do a mapping relational schema to database schema. This can be done simply by 
mapping each attribute to a given element name. 
The DTD of such a mapping will be
<!ELEMENT (rows)>
<!ELEMENT row (attribute1, ...) >
<!ELEMENT (attribute1, attribute2, ...)>



<!ELEMENT attribute1 (#PCDATA)>
...
It is then easy to convert any relation instance into XML by using a “row” element for each tuple of the 
table.

A FD is then converted easily:
let a1 ... an -> b be a FD, then with our DTD this becomes
/attributes/row/a1/#PCDATA .... /attributes/an/#PCDATA -> /attributes/b/#PCDATA

In order to prove that this is a generalisation, we must show that if a functional dependency holds (does 
not hold) in the relational world, then it holds with the XML FDs.

Suppose that X(x1 ... xn) -> Y(y1 ... yp) holds, then for any rows r1 and r2, r1.X = r1.X => r1.Y = 
r1.Y.
Suppose that for any tree tuples t1 and t2, 
t1./attributes/row/x_i/#PCDATA = t2./attributes/row/x_i/#PCDATA.
By definition of a tree tuple, t1./attributes/row (the same for t2) corresponds to one and only one row 
element. As a row element corresponds to a row in the table, and that all the attribute values are equal 
for the set X, then the values are equal for the set Y.

The same when it does not hold by saying that we can find two rows (in the table) for which r1.Y is not 
equal to r2.Y, and that those two rows can be found in the corresponding XML file.
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