
XML Databases
Introduction

Benjamin Piwowarski

XML Birth: TDL
1970: “An Online System for Integrated Text Processing”

"to identify the structure and purpose of the parts of
text. ... The composition program would identify the
codes as calls to stored formats; the retrieval
program would use them for classification."

“There would be many uses for an online integrated
text processing system. A university press, for
example, may engage in demand publishing. Its
database, originally prepared for typesetting, could be
searched for material relevant to the subject of a
proposed publication.”

Text Description Language

XML Birth: GML (1973)

:h1.Chapter 1: Introduction
:p.GML supported hierarchical containers, such as
:ol
:li.Ordered lists (like this one),
:li.Unordered lists, and
:li.Definition lists
:eol.

 C. Goldfarb, E. Mosher and R. Lorie
“This analysis of the markup process suggests that it should be
possible to design a generalized markup language so that markup

would be useful for more than one application or computer system (...)”
 Well-formed + valid

Generalised Markup Language

The separation
of the

information content
of documents from their

format

Markup Language =

Proprietary/binary format

Data format A

Document

Application A

Load & process
(& save)

Validity

Data format B

Document

Application B

Load & process
(& save)

Validity

GML

Data format A

Document

Application A

Load & process
(& save)

Validity

Application B

Load & process
(& save)

(+) GML data format here is “readable” by a human
(+) GML is a structured format

Document
Internal representation

Document
Internal representation

Successor: SGML and XML

Markup Language Markup Language Instance A

Valid

Document A

Markup Language Instance B

Document B

Valid

Well-formed

XML Birth: SGML (1980-86)

 A Grammar:
Document Type Definition (DTD)
 Validation

 <Tags> to delimit structure
 But... quite complex

standard

HTML:
A famous SGML instance (1990-92)

<html>
<body>

<p> Hello world.

</body>

</html>

SGML is hard:
Example

 <anthology>
 <poem><title>The SICK ROSE</title>
<stanza>
<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>
</poem><poem> ... </poem>
</anthology>

1) An anthology contains a number of
poems and nothing else.
2) A poem always has a single title
element which precedes the first
stanza and contains no other elements.
3) Apart from the title, a poem consists
only of stanzas.
4) Stanzas consist only of lines and
every line is contained by a stanza.
5) Nothing can follow a stanza except
another stanza or the end of a poem.
6) Nothing can follow a line except
another line or the start of a new
stanza.

<anthology>
<><>The SICK ROSE
<stanza>
<>O Rose thou art sick.
<>The invisible worm,
<>That flies in the night
<>In the howling storm:

<poem> ...
</anthology>

SGML is hard:
Example

 <anthology>
 <poem><title>The SICK ROSE</title>
<stanza>
<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>
</poem><poem> ... </poem>
</anthology>

1) An anthology contains a number of
poems and nothing else.
2) A poem always has a single title
element which precedes the first
stanza and contains no other elements.
3) Apart from the title, a poem consists
only of stanzas.
4) Stanzas consist only of lines and
every line is contained by a stanza.
5) Nothing can follow a stanza except
another stanza or the end of a poem.
6) Nothing can follow a line except
another line or the start of a new
stanza.

<anthology>
<[1]><[2,3]>The SICK ROSE
[2,3]<stanza>
[4]<>O Rose thou art sick.
[4]<>The invisible worm,
[4]<>That flies in the night
[4]<>In the howling storm:
[3/5,1]
<poem> ...
</anthology>

XML Development Goals (W3C)

 Straightforward to use and easy to create
 Support of a variety of applications
 Compatibility with SGML
 Easy to write programs
 No optional features
 Human readable
 Terse

XML 1.0 (1998)

 W3C standard (version 1.1 in 2004)
 Simplification of SGML

 (Tree structure)
 Very regular language

 Simple yet powerful
 New grammars (XML Schema, ...)
 Separation of structure and formatting

(CSS)

C
ha

ng
es

:
S

G
M

L
to

 X
M

L

1. Differences Between XML and SGML
XML allows only documents that use the SGML declaration in this note. This declares all the following SGML features as NO:
DATATAG
OMITTAG
RANK
LINK (SIMPLE, IMPLICIT and EXPLICIT)
CONCUR
SUBDOC
FORMAL
Note that it differs from the reference concrete syntax in a number of ways:
It also declares no short reference delimiters; it follows that SHORTREF and USEMAP declarations cannot occur in XML
The PIC (processing instruction close) delimiter is ?>
Quantities and capacities are effectively unlimited
Names are case sensitive (NAMECASE GENERAL is NO)
Underscore and colon are allowed in names
Names can use Unicode characters and are not restricted to ASCII
The following constructs which are permitted in SGML when SHORTTAG is YES are not allowed in XML:
Unclosed start-tags
Unclosed end-tags
Empty start-tags
Empty end-tags
Attribute values in attribute specifications entered directly rather than as literals
Attribute specifications that omit the attribute name
NET delimiters can be used only to close an empty element. In SGML without the Web SGML Adaptations Annex, the NET delimiter is declared as />. With this approach, XML is not allowing null end-tags and is allowing net-enabling start-
tags only for elements with no end-tag. In SGML with the Web SGML Adaptations Annex, there is a separate NESTC (net-enabling start tag close) delimiter. This allows the XML <e/> syntax to be handled as a combination of a net-enabling
start-tag <e/ and a null end-tag >. With this approach, XML is allowing a net-enabling start-tag only when immediately followed by a null end-tag.
XML imposes the following restrictions not in SGML:
Entity references
Entity references must be closed with a REFC delimiter
References to external data entities in content are not allowed
General entity references in content are required to be synchronous
External entity references in attribute values are not allowed
Parameter entity references are allowed in the internal subset only within a declaration separator (that is, at a point where a markup declaration could occur)
Character references
Character references must be closed with a REFC delimiter
Named character references are not allowed
Numeric character references to non-SGML characters are not allowed
Entity declarations
A #DEFAULT entity cannot be declared
External SDATA entities are not allowed
External CDATA entities are not allowed
Internal SDATA entities are not allowed
Internal CDATA entities are not allowed
PI entities are not allowed
Bracketed text entities are not allowed
External identifiers must include a system identifier
Attributes cannot be specified for an entity
The replacement text of general text entities and external parameter entities is required to be well-formed
An ampersand in a parameter literal must be followed by a syntactically valid entity reference or numeric character reference
Attribute definition list declarations
Associated element type in attribute definition list declarations cannot be a name group
Attributes cannot be declared for a notation
CURRENT attributes are not allowed
Content reference attributes are not allowed
NUTOKEN(S) declared values are not allowed
NUMBER(S) declared values are not allowed
NAME(S) declared values are not allowed
A name token group must use the or connector
Attribute values specified as defaults in attribute definition list declarations must be literals (SGML allows them not to be even when SHORTTAG is NO)
Element type declarations
Associated element type in element type declaration cannot be a name group
In an element declaration, a generic identifier cannot be specified as a rank stem and rank suffix (SGML allows this even when the RANK feature is NO)
Minimization parameters in element declarations are not allowed
RCDATA declared content are not allowed
CDATA declared content are not allowed
Content models cannot use the and connector
Content models for mixed content have a restricted form
Inclusions are not allowed
Exclusions are not allowed
Comments
A parameter separator cannot contain comments; this means that markup declarations (other than comment declarations) cannot contain comments
Empty comment declarations (<!> in the reference concrete syntax) are not allowed
A comment declaration cannot contain more than one comment
In a comment declaration, an S separator is not allowed before the final MDC
Processing instructions
Processing instructions must start with a name (the PI target)
A processing instruction whose PI target is xml can only occur at the beginning of a external entity and must be an XML declaration if it occurs in the document entity, and otherwise an text declaration
A PI target must not match [Xx][Mm][Ll] unless it is xml
Marked sections
In marked section declarations, TEMP status keyword is not allowed
RCDATA marked sections are not allowed
INCLUDE/IGNORE marked sections are not allowed in the document instance
In a marked section declaration, a status keyword specification that contains no status keywords is not allowed
In a marked section declaration, a status keyword specification cannot contain more than one status keyword
Marked sections are not allowed in the internal subset
Parameter separators are not allowed in status keyword specifications in the document instance; in particular, parameter entity references are not allowed
Other
Names beginning with [Xx][Mm][Ll] are reserved
The SGML declaration must be implied and cannot be explicitly present in the document entity
When < and & occur as data, they must be entered as < and &
A parameter separator required by the formal syntax must always be present and cannot be omitted when it is adjacent to a delimiter
XML predefines the semantics of the attributes xml:space and xml:lang. It also reserves all attribute, element type and notation names beginning with [Xx][Mm][Ll].
XML requires that an SGML parser use an entity manager that behaves as follows:
Lines are terminated by newline (Unicode code #X000A) rather than being delimited by RS and RE as with a typical SGML entity manager
System identifiers are treated as URLs
The entity manager must support entities encoded in UTF-16 and UTF-8, and must be able automatically to detect which encoding an entity uses based on the presence of the byte order mark
The entity manager should be able to recognize the encoding declaration in the XML declaration and encoding PI and use it to determine the encoding of entity
XML imposes requirements on the information that a parser must make available to an application.
XML depends on the following changes to SGML made by Web SGML Adaptations Annex:
HCRO delimiter (for hex numeric character references); for XML this is &#x
EMPTYNRM feature that allows elements declared EMPTY to have end-tags
NESTC delimiter
Duplicate enumerated attribute tokens are allowed
Relaxation of rules on use of parameter entity references inside groups
Multiple ATTLIST declarations for a single element type
ATTLIST declarations which don't declare any attributes
KEEPRSRE feature that turns off SGML's rules for ignoring RSs and REs
Fully-tagged SGML documents; a document that is fully-tagged but not type-valid is a conforming SGML document; this makes all XML documents, including those that are well-formed but not valid, conforming SGML documents
Predefined data character entities in the SGML declaration (for lt, amp and so on)
Unlimited capacities and quantities
The Web SGML Adaptations Annex also enables some XML restrictions to be enforced in SGML:
SHORTTAG is unbundled, so the SGML declaration can allow attribute defaulting and NET without allowing other SHORTTAG constructs
The SGML declaration can assert that a document is integrally stored, which disallows improperly nested entity references in content

Simplifications

XML Properties

 A Tree like structure = DOAG with one root
 Root node: Document (virtual)
 Inner node: Element
 Leaf nodes:

 Content
 Comment
 Processing instructions

Mr. the XML document
<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE book SYSTEM "/etc/services/printers.dtd">
<driver id="driver/appledmp">
 <name>appledmp</name>
<url>http://www.ghostscript.com/doc/gnu/7.05/Devices.htm#Apple<
/url>
 <execution>
 <ghostscript/>
 <prototype>gs -q -dBATCH -dPARANOIDSAFER -dQUIET -dNOPAUSE
-sDEVICE=appledmp%A%Z -sOutputFile=- -</prototype>
 </execution>
 <printers>
 <printer>
 <id>printer/Apple-Dot_Matrix</id><!-- Apple Dot Matrix -->
 </printer>
 </printers>
</driver>

XML: Other changes
 Encoding, etc.
 The grammar is optional: separation of

 XML Graph (validity)
 Grammar-authorized subgraphs (well-

formedness)

 Separation between
 Format
 Information Content

 Content (eg. XHTML)
 Presentation (eg. CSS)

 Summary of (X)ML advantages

 Increased lifespan
 Communication between applications
 Documents can be modified with a simple

text editor
 Information can be processed by external

applications easily and partially
 Semantic

 Summary: With(out) XML

<?xml version="1.0"?>
<w:wordDocument
xmlns:w="http://schemas.microsoft.com/office/word/2003/wordml">
 <w:body>
 <w:p>
 <w:r>
 <w:rPr><w:b/></w:rPr><w:t>Hello World</w:t>
 </w:r>
 </w:p>
 </w:body>
</w:wordDocument>

[...]
00001470 00 00 00 00 00 00 00 00 00 00 02 00 d9 00 00 00 |................|
00001480 48 00 65 00 6c 00 6c 00 6f 00 20 00 77 00 6f 00 |H.e.l.l.o. .w.o.|
00001490 72 00 6c 00 64 00 0d 00 00 00 00 00 00 00 00 00 |r.l.d...........|
000014a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00001680 00 04 00 00 18 04 00 00 fc 00 00 00 00 00 00 00 |................|
[...]

Where to the XML come from?

 Web
 XHTML
 RDF
 ...

 More and more applications
 Open office
 Future Microsoft Office

Data or document?

 Data-centric XML
 Machine consumption
 Very regular
 XML is “superfluous”

 Document-centric XML
 Human consumption
 Less regular or irregular structure
 Mixed content

Data-centric

 <SalesOrder SONumber="12345">
 <Customer CustNumber="543">
 <CustName>ABC Industries</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Customer>
 <OrderDate>981215</OrderDate>
 <Item ItemNumber="1">
 <Part PartNumber="123">
...

Document-centric

<Product>
 <Intro>
 The <ProductName>Turkey Wrench</ProductName> from

<Developer>Full
 Fabrication Labs, Inc.</Developer> is <Summary>like a

monkey wrench, but not as big.</Summary>
 </Intro>
 <Description><Para>The turkey wrench, which comes in

<i>both right- and left-
 handed versions (skyhook optional)</i>, is made of the
...

XML usages

 XML Databases
 Manage collection of XML documents
 Retrieve the information faster
 Query languages, XML storage and indexing

 XML Information Retrieval
 Constraints on Content and Structure
 Evaluation

XML Databases
Plan del curso

I XML Standards

 Plain XML
 Processing: SAX/DOM
 XML Grammars

 DTD
 Schema
 Others

 Applications
 XHTML + CSS, MathML, SVG, Semantic Web,

...

II Query Languages

 Fragment selection
 XPath/XPointer (and others)

 Document transformation
 XSL/XQuery

 Updating XML documents
 XML Views / Active XML

III XML Databases

 Relational vs Native
 XML documents storage

How to store?
How to update?

 Retrieving XML fragments
 XML databases properties

 ACID and XML databases
 Compression
 Security

IV XML Information Retrieval

 Motivations
 What to retrieve?

 Definition of relevance

 How to retrieve?
 Query languages

 Evaluation
 Metrics

Evaluación

¿?

 Dos controles
 Hasta “XML Query Languages”
 Hasta “XML Databases”

 Examen
 Proyecto

Some references

 GML
http://www.sgmlsource.com/history/roots.html
http://publibz.boulder.ibm.com/cgi-
bin/bookmgr_OS390/BOOKS/DSM05M00/CCONTENTS

 XML en castellano
http://www.programacion.net/html/xml/principal.htm

 O'Reilly
http://www.xml.com

