

9
Improving XML Performance

Objectives
● Optimize XML processing design.
● Parse XML documents efficiently.
● Validate XML documents efficiently.
● Optimize your XML Path Language (XPath) queries.
● Write efficient XSL Transformations (XSLT).

Overview
When you build .NET applications, you use XML extensively. It is used to represent
the message payload for Web services, and it is used by many Web applications to
pass data across application layers. XML is platform-neutral, making it one of the best
technologies for interoperability between disparate systems such as UNIX or
mainframes integration with Windows.

While XML is extremely flexible and relatively easy to use, for some applications it
may not be the best data representation. The text-based and verbose nature of XML,
and the fact that it includes metadata (element and attribute names), means that it is
not a compact data format. XML can require substantial processing effort.

The precise performance impact associated with processing XML depends on several
factors that include the size of the data, the parsing effort required to process the
data, the nature of any transformations that might be required, and the potential
impact of validation. You should analyze the way your application processes XML
because this area often accounts for a sizable portion of your application’s per-request
processing effort.

410 Improving .NET Application Performance and Scalability

This chapter starts by providing a brief overview of XML in the Microsoft .NET
Framework. It then highlights the main performance and scalability issues that tend
to arise as a result of inefficient XML processing. The chapter then presents guidelines
and recommendations that help you optimize the way you parse, validate, write, and
transform XML.

How to Use This Chapter
Use this chapter to help design and implement effective XML processing in your
applications. To get the most out of this chapter:
● Jump to topics or read from beginning to end. The main headings in this chapter

help you locate the topics that interest you. Alternatively, you can read the chapter
from beginning to end to gain a thorough appreciation of the issues that are
related to designing for performance and scalability.

● Use the checklist. Use the “Checklist: XML Performance” checklist in the
“Checklist” section of this guide to quickly view and evaluate the guidelines
presented in this chapter.

● Use the “Architecture” section of this chapter to understand how XML works.
By understanding the architecture, you can make better design and
implementation choices.

● Use the “Design Considerations” section of this chapter to understand the
high-level decisions that affect implementation choices for XML performance.

● Read Chapter 13, “Code Review: .NET Application Performance.”
● Measure your application performance. Read the “.NET Framework

Technologies” section of Chapter 15, “Measuring .NET Application Performance,”
to learn about the key metrics that you can use to measure application
performance. It is important for you to measure application performance so that
performance issues can be accurately identified and resolved.

● Test your application performance. Read Chapter 16, “Testing .NET Application
Performance,” to learn how to apply performance testing to your application. It is
important to apply a coherent testing process and to analyze the results.

● Tune your application performance. Read Chapter 17, “Tuning .NET Application
Performance,” to learn how to resolve performance issues identified through the
use of tuning metrics.

 Chapter 9: Improving XML Performance 411

Architecture
The .NET Framework provides a comprehensive set of classes for XML manipulation.
In addition to XML parsing and creation, these classes also support the World Wide
Web Consortium (W3C) XML standards. These W3C XML standards include
Document Object Model (DOM), XSLT, XPath 1.0, and XML Schema. The top-level
namespace that contains XML-related classes is System.Xml.

The following list briefly describes the major XML-related classes:
● XmlReader. The XmlReader abstract base class provides an API for fast,

forward-only, read-only parsing of an XML data stream. XmlReader is similar to
Simple API for XML (SAX), although the SAX model is a “push” model where the
parser pushes events to the application and notifies the application every time a
new node is read. Applications that use XmlReader can pull nodes from the
reader at will. The following are the three concrete implementations of
XmlReader:
● XmlTextReader. You use this class to read XML streams.
● XmlNodeReader. You use this class to provide a reader over a given

DOM-node subtree. It reads and then returns nodes from the subtree.
● XmlValidatingReader. You use this class to read and validate XML data,

according to predefined schemas that include document type definitions (DTD)
and W3C XML schemas.

● XmlWriter. The XmlWriter abstract base class is used to generate a stream of XML.
The .NET Framework provides an implementation in the form of the
XmlTextWriter class. You use this class as a fast, noncached, forward-only way
to generate streams or files that contain XML data.

● XmlDocument. The XmlDocument class is an in-memory or cached tree
representation of an XML document. You can use it to edit and navigate the
document. While XmlDocument is easy to use, it is very resource-intensive.
You should generally use XmlReader and XmlWriter for better performance.
XmlDocument implements the W3C DOM Level 1 and Level 2 recommendations,
although it has been tailored to the .NET Framework. For example, in the .NET
Framework, method names are capitalized, and common language runtime (CLR)
types are used.

● XslTransform. You use the XslTransform class to perform XSLT transformations.
It is located in the System.Xml.Xsl namespace.

412 Improving .NET Application Performance and Scalability

● XPathNavigator. The XPathNavigator abstract base class provides random
read-only access to data through XPath queries over any data store. Data stores
include the XmlDocument, DataSet, and XmlDataDocument classes. To create
an XPathNavigator object, use the CreateNavigator method. XPathNavigator also
provides a cursor API for navigating a document. The XPathNavigator class is
located in the System.Xml.XPath namespace.

● XPathDocument. The XPathDocument class is optimized for XSLT processing and
for the XPath data model. You should always use XPathDocument with the
XslTransform class. The XPathDocument class is located in the
System.Xml.XPath namespace.

● XmlSerializer. You use the XmlSerializer class to perform object-to-XML
serialization and vice versa. It is located in the System.Xml.Serialization
namespace. You can use this class to convert the public properties and fields of
a .NET Framework object to XML format.

● XmlDataDocument. The XmlDataDocument class extends XmlDocument.
It provides both relational data representation of DataSet and hierarchical data
representation of DOM. Data can be manipulated by using DOM or DataSet
object. To load a DataSet with XML data, use the ReadXmlSchema class to build
a relational mapping. The XML data can then be loaded by using the ReadXml
method. To load a DataSet with relational data, specify the DataSet that contains
the relational data as the parameter in the XmlDataDocument constructor.

● XmlSchema. The XmlSchema class contains the definition of a schema. All XML
schema definition language (XSD) elements are children of the schema element.
XmlSchema represents the W3C schema element.

● XmlSchemaCollection. The XmlSchemaCollection class is a library of
XmlSchema objects that can be used with XmlValidatingReader to validate XML
documents. Typically, this is loaded once at application startup and then reused
across components.

 Chapter 9: Improving XML Performance 413

The main XML namespaces and principal types are shown in Figure 9.1.

System.Xml

System.Xml.Xsl

System.Xml.Xpath

XmlReader
XmlWriter

XmlDocument

XmlTextWriter

XmlNodeReader

XslTransform

XPathNavigatorXmlValidatingReader

XPathDocument

XmlTextReader

Figure 9.1
XML namespaces and principal types

Performance and Scalability Issues
The main XML-related issues that affect the performance and scalability of your
application are summarized in the following list. Subsequent sections in this chapter
provide strategies and technical implementation details to prevent or resolve each of
these issues.
● Resource consumption. Processing large XML documents can cause high CPU,

memory, and bandwidth utilization. XML is a verbose and text-based
representation. Therefore, XML documents are larger than binary representations
of the same data. These issues are magnified if users access your application over
low-bandwidth networks, or if many users connect to the application at the same
time.

● Extreme memory consumption. Using the DOM-model and the XmlDocument
or XPathDocument classes to parse large XML documents can place significant
demands on memory. These demands may severely limit the scalability of
server-side Web applications.

414 Improving .NET Application Performance and Scalability

● Inefficient transformations. Choosing the wrong transformation approach,
building inefficient XPath queries, or processing large and poorly-structured
source XML files can affect the performance of your application’s transformation
logic. You should transform application data to XML just before the data leaves
the boundaries of the application. Keeping the data in binary format is the most
efficient way to perform data manipulations.

● Inappropriate use of the DataSet. It is a common misconception that the DataSet
is an XML store. It is not designed to be an XML store, although it does provide
XML functionality. You cannot perform efficient XPath queries by using a DataSet,
and it cannot represent all forms of XML. The DataSet provides a disconnected
cache of data and is useful in some scenarios where you want to pass data across
application layers. However, it should not be used for general-purpose XML
manipulation of data.

● Failure to cache and to precompile schemas, style sheets, and XPath queries.
XML schemas, XSLT, and XPath must be interpreted before the .NET Framework
classes can process them. The .NET Framework classes that represent each of
these items provide a mechanism for preprocessing and caching the resources.
Preprocessing is also called compilation in some cases. For example, XSLT style
sheets should be precompiled and cached for repeated use, as should XML
schemas.

● Inefficient data retrieval. Retrieving XML data from a data source on a
per-request basis, rather than caching the data, can cause performance bottlenecks.

Design Considerations
Appropriate design decisions can help you address many XML-related performance
issues early in the application life cycle. The following recommendations help to
ensure that XML processing in your application does not lead to performance and
scalability issues:
● Choose the appropriate XML class for the job.
● Consider validating large documents.
● Process large documents in chunks if possible.
● Use streaming interfaces.
● Consider hard-coded transformations.
● Consider element and attribute name lengths.
● Consider sharing the XmlNameTable.

 Chapter 9: Improving XML Performance 415

Choose the Appropriate XML Class for the Job
To help you choose the appropriate .NET Framework class to process XML, consider
the following guidelines:
● Use XmlTextReader to process XML data quickly in a forward, read-only manner

without using validation, XPath, and XSLT services.
● Use XmlValidatingReader to process and to validate XML data. Process and

validate the XML data in a forward, read-only manner according to an XML
schema or a DTD.

● Use XPathNavigator to obtain read-only, random access to XML data and to use
XPath queries. To create an XPathNavigator object over an XML document, you
must call the XPathDocument.CreateNavigator method.

● Use XmlTextWriter to write XML documents. You cannot use XmlTextWriter
to update XML documents.

● Use the XmlTextReader and XmlTextWriter, in combination, for simple
transformations rather than resorting to loading an XmlDocument or using XSLT.
For example, updating all the price element values in a document can be achieved
by reading with the XmlTextReader, updating the value and then writing to the
XmlTextWriter, typically by using the WriteNode method.

● Use the XmlDocument class to update existing XML documents, or to perform
XPath queries and updates in combination. To use XPath queries on the
XmlDocument, use the Select method.

● If possible, use client-side XML processing to improve performance and to reduce
bandwidth.

Consider Validating Large Documents
When you use the XmlDocument class to load a large document that contains errors
because the format is not correct, you waste memory and CPU resources. Consider
validating the input XML if there is a reasonable chance that the XML is invalid. In a
closed environment, you might consider validation an unnecessary overhead, but the
decision to use or not use validation is a design decision you need to consider.

You can perform the validation process and other operations at the same time
because the validation class derives from XmlReader. For example, you can use
XmlValidatingReader with XmlSerializer to deserialize and validate XML at the
same time. The following code fragment shows how to use XmlValidatingReader.

// payload is the Xml data
StringReader stringReader = new StringReader(payload);
XmlReader xmlReader = new XmlTextReader(stringReader);
XmlValidatingReader vreader = new XmlValidatingReader(xmlReader);
vreader.Schemas.Add(XmlSchema.Read(
 new XmlTextReader("xyz.xsd"), null));
vreader.ValidationType = ValidationType.Schema;
vreader.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);

416 Improving .NET Application Performance and Scalability

You can also use a validating read with XmlDocument by passing the validating
reader instance to the XmlDocument.Load method, as shown in the following code
fragment.

XmlDocument doc = new XmlDocument();
doc.Load(xmlValidatingReaderInstance);

Validation comes at a performance cost and there is a tradeoff here between
validating the XML documents early to catch invalid content as opposed to the
additional processing time that validation takes even in a streaming scenario.
Typically, using the XmlValidatingReader to validate an XML document is two to
three times slower than using the XmlTextReader without validation and deciding
on whether to perform validation depends on your particular application scenario.

Process Large Documents in Chunks If Possible
If you have very large XML documents to process, evaluate whether you can divide
the documents and then process them in chunks. Dividing the documents makes
processing them, by using XLST, more efficient.

Use Streaming Interfaces
Streaming interfaces, like the one provided by XmlTextReader, give better
performance and scalability, compared to loading large XML documents into the
XmlDocument or XPathDocument classes and then using DOM manipulation.

The DOM creates an in-memory representation of the entire XML document.
The XmlTextReader is different from the DOM because XmlTextReader only loads
4-kilobyte (KB) buffers into memory. If you use the DOM to process large XML files,
you can typically consume memory equivalent to three or four times the XML
document size on disk.

Consider Hard-Coded Transformations
Using XSLT may be overly complicated for certain simple transformations such
as changing a particular attribute value, replacing one node with another node,
or appending or removing nodes from a document.

If using XSLT appears to be an overly-complicated approach for a simple
transformation, you can use XmlReader and XmlWriter together to copy the
document from XmlReader to XmlWriter and then modify the document while
copying. The XmlWriter.WriteNode and XmlWriter.WriteAttributes methods receive
an XmlReader instance, and the method copies the node and its child nodes to
XmlWriter.

 Chapter 9: Improving XML Performance 417

The disadvantage of using the classes to perform the transformation is that you can
modify XSLT without having to recompile the code. However, in some situations,
it might be better to hard code a transformation. A simple example of a hard-coded
approach is shown in the following code fragment.

while(reader.Read())
{
 if(reader.LocalName == "somethingToChange")
 {
 writer.WriteStartElement("somethingChanged");
 writer.WriteAttributes(reader, false);
 //
 }
 else
 {
 writer.WriteNode(reader, false);
 }
}

Consider Element and Attribute Name Lengths
Consider the length of the element names and the length of the attribute names that
you use. These names are included as metadata in your XML documents. Therefore,
the length of an element or attribute name affects the document size. You need to
balance size issues with ease of human interpretation and future maintenance.
Try to use names that are short and meaningful.

Consider Sharing the XmlNameTable
Share the XmlNameTable class that is used to store element and attribute names
across multiple XML documents of the same type to improve performance.

XML classes like XmlTextReader and XmlDocument use the XmlNameTable class
to store elements and attribute names. When elements, attributes, or prefixes occur
multiple times in the document, they are stored only once in the XmlNameTable and
an atomized string is returned. When an element, attribute, or prefix is looked up,
an object comparison of the strings is performed instead of a more expensive string
operation.

The following code shows how to obtain access to and store the XmlNameTable
object.

System.Xml.XmlTextReader reader = new System.Xml.XmlTextReader("small.xml");
System.Xml.XmlNameTable nt = reader.NameTable;
// Store XmlNameTable in Application scope and reuse it
System.Xml.XmlTextReader reader2 = new System.Xml.XmlTextReader("Test.xml", nt);

418 Improving .NET Application Performance and Scalability

More Information

For more information about object comparisons, see MSDN article,
“Object Comparison Using XmlNameTable,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp.

Implementation Considerations
When you move from application design to development, you must carefully
consider the implementation details of your XML code.

When you write XML processing code, it is important for you to use the most
relevant .NET Framework classes. Do not use DataSet objects for general-purpose
XML manipulation of data.

When you are working with large XML documents, consider validating them first if
the cost of validation is less than the cost of redundant downstream processing. Also,
consider working with large XML documents in chunks. Consider caching schema
for repeated XML validation.

By following best-practice implementation guidelines, you can increase the
performance of your XML processing code. The following sections highlight
performance considerations for XML features and scenarios.

Parsing XML
The .NET Framework provides several ways to parse XML. The best approach
depends on your scenario:
● If you want to read the document once, use XmlTextReader. This provides

forward-only, read-only, and non-cached access to XML data. This model provides
optimized performance and memory conservation.

● If you need to edit and to query the document, use XmlDocument with the
Select command. This approach consumes large amounts of memory.

● If you want faster, read-only XPath query-based access to data, use
XPathDocument and XPathNavigator.

The .NET Framework does not provide a SAX model. The XmlReader approach
is similar and offers a number of advantages.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconobjectcomparisonusingxmlnametable.asp

 Chapter 9: Improving XML Performance 419

The following recommendations help you to ensure that XML parsing in your
application is as efficient as possible:
● Use XmlTextReader to parse large XML documents.
● Use XmlValidatingReader for validation.
● Consider combining XmlReader and XmlDocument.
● On the XmlReader use the MoveToContent and Skip methods to skip

unwanted items.

Use XmlTextReader to Parse Large XML Documents
Use the XmlTextReader class to process large XML documents in an efficient,
forward-only manner. XmlTextReader uses small amounts of memory. Avoid using
the DOM because the DOM reads the entire XML document into memory. If the
entire XML document is read into memory, the scalability of your application is
limited. Using XmlTextReader in combination with an XmlTextWriter class permits
you to handle much larger documents than a DOM-based XmlDocument class.

The following code fragment shows how to use XmlTextReader to process large
XML documents.

while (reader.Read())
{
 switch (reader.NodeType)
 {
 case System.Xml.XmlNodeType.Element :
 {
 if(reader.Name.Equals("patient")
 && reader.GetAttribute("number").Equals("25"))
 {
 doc = new System.Xml.XmlDocument();
 XmlNode node = doc.ReadNode(reader);
 doc.AppendChild(node);
 }
 break;
 }
 }
}

You can only use XmlTextReader and XmlValidatingReader to process files that are
up to 2 gigabytes (GB) in size. If you need to process larger files, divide the source file
into multiple smaller files or streams.

Use XmlValidatingReader for Validation
If you need to validate an XML document, use XmlValidatingReader. The
XmlValidatingReader class adds XML Schema and DTD validation support to
XmlReader. For more information, see “Validating XML” later in this chapter.

420 Improving .NET Application Performance and Scalability

Consider Combining XmlReader and XmlDocument
In certain circumstances, the best solution may be to combine the pull model and the
DOM model. For example, if you only need to manipulate part of a very large XML
document, you can use XmlReader to read the document, and then you can construct
a DOM that has only the data required for additional modification. This approach is
shown in the following code fragment.

while (reader.Read())
{
 switch (reader.NodeType)
 {
 case System.Xml.XmlNodeType.Element :
 {
 if(reader.Name.Equals("patient")
 && reader.GetAttribute("number").Equals("25"))
 {
 doc = new System.Xml.XmlDocument();
 XmlNode node = doc.ReadNode(reader);
 doc.AppendChild(node);
 }
 break;
 }
 }
}

On the XmlReader, Use the MoveToContent and Skip Methods to Skip
Unwanted Items
Use the XmlReader.MoveToContent method to skip white space, comments, and
processing instructions, and to move to the next content element. MoveToContent
skips to the next Text, CDATA, Element, EndElement, EntityReference, or
EndEntity node. You can also skip the current element by using the XmlReader.Skip
method.

For example, consider the following XML input.

<?xml version="1.0">
<!DOCTYPE price SYSTEM "abc">
<!--the price of the book -->
<price>123</price>

The following code finds the price element “123.4” and then converts the text content
to a double:

if (readr.MoveToContent() == XmlNodeType.Element && readr.Name =="price")
{
 _price = XmlConvert.ToDouble(readr.ReadString());
}

 Chapter 9: Improving XML Performance 421

For more information about how to use the MoveToContent method, see MSDN
article, “Skipping Content with XmlReader” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp.

More Information
For more information about XMLReader, see MSDN article “Comparing XmlReader
to SAX Reader,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpguide/html/cpconcomparingxmlreadertosaxreader.asp.

For more information about how to parse XML, see the following Microsoft
Knowledge Base articles:
● 301228, “HOW TO: Read XML Data from a Stream in .NET Framework SDK,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;301228
● 301233, “HOW TO: Modify and Save XML with the XmlDocument Class in .NET

Framework SDK” at http://support.microsoft.com/default.aspx?scid=kb;en-us;301233

Validating XML
You can validate XML to ensure that a document conforms to a schema definition.
This involves verifying that the document includes the necessary elements and
attributes in the correct sequence. This is often referred to as validating the content
model of the document. Validating XML can also involve data type checking. The
preferred approach is to validate XML documents against XML schema definitions
(XSD schemas). However, you can also validate XML against Document Type
Definitions (DTD) and XML-Data Reduced Schemas (XDR) schemas.

Validation introduces additional performance overhead. If there is a strong likelihood
that clients will pass invalid XML to your application, you should validate and reject
bad data early to minimize redundant processing effort. In a closed environment
where you can make certain guarantees about the validity of input data, you might
consider validation to be unnecessary overhead.

If you do use validation, consider the following to help minimize the validation
overhead:
● Use XmlValidatingReader.
● Do not validate the same document more than once.
● Consider caching the schema.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSkippingContentWithXmlReader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcomparingxmlreadertosaxreader.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcomparingxmlreadertosaxreader.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;301228
http://support.microsoft.com/default.aspx?scid=kb;en-us;301233

422 Improving .NET Application Performance and Scalability

Use XmlValidatingReader
A lot of specialized code is required to validate an XML document to ensure
that the document matches the rules defined in a schema or a DTD. By using
XmlValidatingReader, you avoid writing this code by hand. It also means that after
validation, your application can make assumptions about the condition of the data.
Permitting your application to make assumptions about the data can reduce the
quantity of error-handling code that you would otherwise have to write.

Do Not Validate the Same Document More Than Once
Make sure that you do not waste processor cycles by validating the same source
document multiple times.

Consider Caching the Schema
If you repeatedly validate input XML against the same schema on a per-request basis,
consider loading the schema once and retaining it in memory for later requests. This
avoids the overhead of parsing, loading, and compiling the schema multiple times.
The following code fragment shows how to cache a schema in an
XmlSchemaCollection object.

XmlTextReader tr = new XmlTextReader("Books.xml");
XmlValidatingReader vr = new XmlValidatingReader(tr);
XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.Add("urn:bookstore-schema", "Books.xsd");
vr.Schemas.Add(xsc);

Validation comes at a cost. Typically, using the XmlValidatingReader to validate a
document is two to three times slower than using the XmlTextReader to simply parse
the XML, so ensure that this is worth the cost in your particular application scenario.

More Information
For more information about XML validation, see Microsoft Knowledge Base article
307379, “HOW TO: Validate an XML Document by Using DTD, XDR, or XSD in
Visual C# .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;307379.

Writing XML
If your application needs to generate XML, you can write XML by using the
XmlDocument or the XmlTextWriter classes. The XmlTextWriter class performs
better, but you should use XmlDocument if you need to manipulate the XML in
memory before you write the XML to a byte stream.

http://support.microsoft.com/default.aspx?scid=kb;en-us;307379

 Chapter 9: Improving XML Performance 423

Use XmlTextWriter
Using XmlTextWriter is the preferred way to write XML. The XmlTextWriter class
creates XML in a forward-only cursor style. It also takes care of XML encoding,
handling of special characters, adding quotes to attribute values, namespace
declarations, and insertion of end tags. By performing these tasks, XmlTextWriter
helps ensure the output is well-formed. The following code fragment shows how to
use XmlTextWriter to create XML.

static void WriteQuote(XmlWriter writer, string symbol,
 double price, double change, long volume)
{
 writer.WriteStartElement("Stock");
 writer.WriteAttributeString("Symbol", symbol);
 writer.WriteElementString("Price", XmlConvert.ToString(price));
 writer.WriteElementString("Change", XmlConvert.ToString(change));
 writer.WriteElementString("Volume", XmlConvert.ToString(volume));
 writer.WriteEndElement();
}

public static void Main(){
 XmlTextWriter writer = new XmlTextWriter(Console.Out);
 writer.Formatting = Formatting.Indented;
 WriteQuote(writer, "MSFT", 74.125, 5.89, 69020000);
 writer.Close();
}

The previous code produces the following output.
<Stock Symbol="MSFT">
 <Price>74.125</Price>
 <Change>5.89</Change>
 <Volume>69020000</Volume>
</Stock>

XPath Queries
XML Path Language (XPath) provides a general-purpose query notation that you
can use to search and to filter the elements and the text in an XML document. Query
performance varies depending on the complexity of the query and the size of the
source XML document. Use the following guidelines to optimize the way your
application uses XPath:
● Use XPathDocument to process XPath statements.
● Avoid the // operator by reducing the search scope.
● Compile both dynamic and static XPath expressions.

424 Improving .NET Application Performance and Scalability

Use XPathDocument to Process XPath Statements
If your application contains large amounts of intensive XPath or XSLT code, use
XPathDocument, instead of XmlDataDocument or XmlDocument, to process XPath
statements. However, a common scenario is to use XSLT to transform the default
XML representation of a DataSet, in which case you can use the XmlDataDocument
class for small-sized DataSet objects.

The XPathDocument class provides a fast, read-only cache for XML document
processing by using XSLT. It provides an optimized in-memory tree structure that
you can view by using the XPathNavigator interface. To move between a selected set
of nodes by using an XPath query, use the XPathNodeIterator as shown in the
following code.

XPathDocument Doc = new XPathDocument(FileName);
XPathNavigator nav = Doc.CreateNavigator();
XPathNodeIterator Iterator = nav.Select("/bookstore/book");
while (Iterator.MoveNext())
{
 Console.WriteLine(Iterator.Current.Name);
}

Avoid the // Operator by Reducing the Search Scope
Use path-specific XPath expressions, instead of the // operator, because the // operator
performs a recursive descent and then searches the entire subtree for matches. Look
for opportunities to reduce the search scope by restricting the search to specific
portions of the XML subtree.

For example, if you know that a particular item only exists beneath a specific parent
element, begin the search from that parent element and not from the root element.
The following code fragment shows how to search an entire XML document and
how to search beneath a specific element.

XPathDocument doc = new XPathDocument("books.xml");
XPathNavigator nav = doc.CreateNavigator();
// this will search entire XML for matches
XPathExpression Expr = nav.Compile("//price");
// this will reduce the search scope
XPathExpression Expr2 = nav.Compile("books/book/price");

 Chapter 9: Improving XML Performance 425

Compile Both Dynamic and Static XPath Expressions
The XPathNavigator class provides a Compile method that you can use to compile
a string that represents an XPath expression. If you use the Select method repeatedly
instead of passing a string each time, use the Compile method to compile and then
reuse the XPath expression. The Compile method returns an XPathExpression object.
The following code fragment shows how to use the Compile method.

XPathDocument doc = new XPathDocument("one.xml");
XPathNavigator nav = doc.CreateNavigator();
XPathExpression Expr = nav.Compile("/invoices/invoice[number>20]");
// Save Expr in application scope and reuse it
XPathNodeIterator iterator = nav.Select(Expr);
while (iterator.MoveNext())
{
 str = iterator.Current.Name;
}

You can also compile dynamic expressions. For more information, see MSDN
article, “Adding Custom Functions to XPath,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp.

More Information
For more information about using XPath expressions, see the following Microsoft
Knowledge Base articles:
● 308333, “HOW TO: Query XML with an XPath Expression by Using Visual C#

.NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;308333
● 301111, “HOW TO: Navigate XML with the XPathNavigator Class by Using

Visual Basic .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;301111
● 317069, “HOW TO: Execute XPath Queries by Using the System.Xml.XPath

Classes,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;317069.

XSLT Processing
Extensible Stylesheet Language Transformation (XSLT) specifies a transformation
language for XML documents. You can use XSLT to transform the content of an XML
document into another XML document that has a different structure. Or, you can use
XSLT to transform an XML document into a different document format, such as
HTML or comma-separated text.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml10212002.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;308333
http://support.microsoft.com/default.aspx?scid=kb;en-us;301111
http://support.microsoft.com/default.aspx?scid=kb;en-us;317069

426 Improving .NET Application Performance and Scalability

The .NET Framework XSLT processor is implemented by the XslTransform class
in the System.Xml.Xsl namespace. You typically perform XSLT processing by using
either the DOM or the XPathDocument class. The XPathDocument class offers
superior performance. Typically, transformations that use the XPathDocument class
are 20 to 30 percent faster than transformations that use the XmlDocument class once
the documents have been loaded. Actual percentages depend on your XSLT, input
document, and computer.

The following recommendations help you optimize XSLT processing in your
application. XSLT frequently uses XPath queries to select parts of an XML document.
Therefore, the efficiency of your XPath queries directly affects XSLT performance.
● Use XPathDocument for faster XSLT transformations.
● Consider caching compiled style sheets.
● Split complex transformations into several stages.
● Minimize the size of the output document.
● Write efficient XSLT.

Use XPathDocument for Faster XSLT Transformations
The XPathDocument class provides a fast, read-only cache for XML document
processing by using XSLT. Use this class for optimum performance. The following
code fragment shows how to use this class.

XslTransform xslt = new XslTransform();
xslt.Load(someStylesheet);
XPathDocument doc = new XPathDocument("books.xml");
StringWriter fs = new StringWriter();
xslt.Transform(doc, null, fs, null);

Consider Caching Compiled Style Sheets
If your application performs a common transformation by using the same style sheet
on a per-request basis, consider caching the style sheet between requests. This is a
strong recommendation because it saves you having to recompile the style sheet
every time you perform a transformation. In a .NET application, you compile the
.NET application once into an executable file and then run it many times. The same
applies to XSLT.

 Chapter 9: Improving XML Performance 427

The following code fragment shows the XslTransform class being cached in the
ASP.NET application state. Note that the XslTransform class is thread-safe.

protected void Application_Start(Object sender, EventArgs e)
{
 //Create the XslTransform and load the style sheet.
 XslTransform xslt = new XslTransform();
 xslt.Load(stylesheet);
 //Save it to ASP.NET application scope
 Application["XSLT"] = xslt;
}
private void Page_Load(object sender, System.EventArgs e)
{
 // Re-use the XslTransform stored in the application scope
 XslTransform xslt = Application["XSLT"];
}

Caching Extension Objects
You can use Extension objects to implement custom functions that are referenced
in XPath query expressions that are used in an XSLT style sheet. The XSLT processor
does not automatically cache Extension objects. However, you can cache
XsltArgumentList objects that are used to supply Extension objects. This approach
is shown in the following code fragment.

// Create the XslTransform and load the style sheet.
XslTransform xslt = new XslTransform();
xslt.Load(stylesheet);
// Load the XML data file.
XPathDocument doc = new XPathDocument(filename);
// Create an XsltArgumentList.
XsltArgumentList xslArgCache = new XsltArgumentList();
// Add an object to calculate the circumference of the circle.
Calculate obj = new Calculate();
xslArgCache.AddExtensionObject("urn:myObj", obj);
// Create an XmlTextWriter to output to the console.
XmlTextWriter writer = new XmlTextWriter(Console.Out);
// Transform the file.
xslt.Transform(doc, xslArgCache, writer);
writer.Close();
// Reuse xslArgCache
........
xslt.Transform(doc2, xslArgCache, writer2);

428 Improving .NET Application Performance and Scalability

Split Complex Transformations into Several Stages
You can incrementally transform an XML document by using multiple XSLT style
sheets to generate the final required output. This process is referred to as pipelining
and is particularly beneficial for complex transformations over large XML
documents.

More Information

For more information about how to split complex transformations into several
stages, see Microsoft Knowledge Base article 320847, “HOW TO: Pipeline XSLT
Transformations in .NET Applications,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;320847.

Minimize the Size of the Output Document
Try to keep the output document size to a minimum. If you are generating HTML,
there are a couple of ways to do this.

First, use cascading style sheets to apply formatting instead of embedding formatting
metadata in the HTML. Second, consider how your HTML is indented, and avoid
unnecessary white space. To do so, set the indent setting to no as shown in the
following XSLT fragment.

<xsl:output method="html" indent="no"/>

By default, the value of the indent attribute is yes.

Write Efficient XSLT
When you develop XLST style sheets, start by making sure that your XPath queries
are efficient. For more information, see “XPath Queries” earlier in this chapter. Here
are some common guidelines for writing efficient XSLT style sheets:
● Do not evaluate the same node set more than once. Save the node set in a

<xsl:variable> declaration.
● Avoid using the <xsl:number> tag if you can. For example, use the Position

method instead.
● Use the <xsl:key> tag to solve grouping problems.
● Avoid complex patterns in template rules. Instead, use the <xsl:choose> tag in

the rule.
● Be careful when you use the preceding[-sibling] or the following[-sibling] axes.

Use of these axes often involves algorithms that significantly affect performance.
● Do not sort the same node set more than once. If necessary, save it as a result tree

fragment, and then access it by using the node-set() extension function.

http://support.microsoft.com/default.aspx?scid=kb;en-us;320847
http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

 Chapter 9: Improving XML Performance 429

● To output the text value of a simple #PCDATA element, use the <xsl:value-of> tag
in preference to the <xsl:apply-templates> tag.

● Avoid using inline script. Use extensions written in Microsoft Visual C# or
Microsoft Visual Basic .NET to pass it as a parameter to the Transform call, and
then bind to it by using the <xsl:param> tag. However, if you cache the style sheet
in your application as described earlier, this achieves the same result. It then is
perfectly acceptable to use script in the style sheet. In other words, this is just a
compile-time issue.

● Factor common queries into nested templates. For example, if you have two
templates that match on “a/b/c” and “a/b/d,” factor the templates into one
common template that matches on “a/b.” Have the common template call
templates that match on “c” and “d.”

More Information
For more information about XSLT processing, see the following Microsoft Knowledge
Base articles:
● 325689, “INFO: Performance of XSLT Transformations in the .NET Framework,”

at http://support.microsoft.com/default.aspx?scid=kb;en-us;325689
● 313997, “INFO: Roadmap for Executing XSLT Transformations in .NET

Applications,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;313997
● 307322, “HOW TO: Apply an XSL Transformation to an XML Document by Using

Visual C# .NET,” at http://support.microsoft.com/default.aspx?scid=kb;en-us;307322
● 300929, “HOW TO: Apply an XSL Transformation from an XML Document to an

XML Document by Using Visual Basic .NET,” at http://support.microsoft.com
/default.aspx?scid=kb;en-us;300929

● 320847, “HOW TO: Pipeline XSLT Transformations in .NET Applications,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

Summary
When you build .NET applications, you use XML extensively. Whether you read XML
from a simple configuration file, retrieve XML from a database, or access a Web
service, knowing how to work with XML in the .NET Framework is essential. The
performance guidelines presented in this chapter help you understand the necessary
tradeoffs when you use System.Xml.

While the flexibility and power of XML are well documented, the text-based nature of
XML and the metadata that is conveyed in an XML document mean that XML is not a
compact data format. XML may require substantial processing effort. It is important
for you to analyze how your application uses XML to ensure that XML processing
does not create performance bottlenecks. The key factors that affect performance are
parsing effort, XLST processing, and schema validation.

http://support.microsoft.com/default.aspx?scid=kb;en-us;325689
http://support.microsoft.com/default.aspx?scid=kb;en-us;313997
http://support.microsoft.com/default.aspx?scid=kb;en-us;307322
http://support.microsoft.com/default.aspx?scid=kb;en-us;300929
http://support.microsoft.com/default.aspx?scid=kb;en-us;300929
http://support.microsoft.com/default.aspx?scid=kb;en-us;320847

430 Improving .NET Application Performance and Scalability

Additional Resources
For more information about XML performance, see the following resources:
● For a printable checklist, see the “Checklist: XML Performance” checklist in the

“Checklists” section of this guide.
● Chapter 4, “Architecture and Design Review of a .NET Application for

Performance and Scalability.”
● Chapter 13, “Code Review: .NET Application Performance.”
● Chapter 15, “Measuring .NET Application Performance.”
● Chapter 16, “Testing .NET Application Performance.”
● Chapter 17, “Tuning .NET Application Performance.”
● For more information about XML, see the “Microsoft XML Developer Center”

at http://msdn.microsoft.com/xml. This site regularly publishes articles on XML and
the .NET Framework, including best practices for application development.

http://msdn.microsoft.com/xml

Checklist:
XML Performance

How to Use This Checklist
This checklist is a companion to Chapter 9, “Improving XML Performance.”

Design Considerations

Check Description

 Choose the appropriate XML class for the job.

 Consider validating large documents.

 Process large documents in chunks, if possible.

 Use streaming interfaces.

 Consider hard-coded transformations.

 Consider element and attribute name lengths.

 Consider sharing the XmlNameTable.

Parsing XML

Check Description

 Use XmlTextReader to parse large XML documents.

 Use XmlValidatingReader for validation.

 Consider combining XmlReader and XmlDocument.

 On the XmlReader, use the MoveToContent and Skip methods to skip unwanted items.

Validating XML

Check Description

 Use XmlValidatingReader.

 Do not validate the same document more than once.

 Consider caching the schema.

886 Improving .NET Application Performance and Scalability

Writing XML

Check Description

 Use XmlTextWriter.

XPath Queries

Check Description

 Use XPathDocument to process XPath statements.

 Avoid the // operator by reducing the search scope.

 Compile both dynamic and static XPath expressions.

XSLT Processing

Check Description

 Use XPathDocument for faster XSLT transformations.

 Consider caching compiled style sheets.

 Consider splitting complex transformations into several stages.

 Minimize the size of the output document.

 Write efficient XSLT.

