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B Abstract RNA interference (RNAI) is an evolutionarily conserved mechanism
for silencing gene expression. In primitive organisms, RNAi protects the genome from
viruses and other insertable genetic elements and regulates gene expression during de-
velopment. The antisense (guide) strand of short double-stranded RNAs is incorporated
into an RNA-induced silencing complex that can either suppress protein expression
or direct degradation of messenger RNAs that contain homologous sequence(s). The
discovery that RNAi works in mammalian cells has sparked intense investigation into
its role in normal mammalian cell function, its use as a tool to understand or screen for
genes functioning in cellular pathways in healthy and diseased cells and animals, and
its potential for therapeutic gene silencing. RNAi may provide an important new ther-
apeutic modality for treating infection, cancer, neurodegenerative disease, and other
illnesses, although in vivo delivery of small interfering RNAs into cells remains a

significant obstacle.

INTRODUCTION

RNA interference (RNAI) is a recently described mechanism for inhibiting gene
expression. It was originally identified in plants, fungi, and worms when intro-
duction of control sense oligonucleotides into cells unexpectedly led to reduced
gene expression (1-3). In a paradigmatic experiment, petunias surprisingly de-
veloped areas of hypopigmentation when transduced with the gene encoding an
enzyme required for pigment synthesis. RNAi-mediated gene silencing suppresses
gene expression by several mechanisms, including the targeted sequence-specific
degradation of mRNA, translational repression, and the maintenance of silenced
regions of chromatin. Silencing of endogenous genes regulates basic biological
processes, including the transition from one developmental stage to the next (4).
In addition, RNAI is used as a form of primitive immunity to protect the genome
from invasion by exogenous nucleic acids introduced by mobile genetic elements,

such as viruses and transposons.
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RNAI was first described in animal cells by Fire and colleagues in the nematode
Caenorhabditis elegans (1). They found that introducing long double-stranded
RNA (dsRNA) into C. elegans led to the targeted degradation of homologous
mRNA. RNAI is related to other gene-silencing phenomena, including posttran-
scriptional gene silencing in plants and quelling in the fungus Neurospora crassa
(2, 5, 6). Although these processes at first seemed unrelated, they all use dsSRNA
homologous to the silenced gene. Moreover, key proteins involved in RNAi in
disparate organisms are highly conserved (5-7). It now appears that RNAi is a
universal, omnipresent conserved mechanism in eukaryotic cells.

Interest in RNAi soared when Tuschl and colleagues showed that RNAIi also
occurs in mammalian cells (8). This raised the prospect of harnessing this potent
and specific gene-silencing mechanism for biomedical research and therapy. In the
past few years, there has been an RNAI revolution as researchers have sought to
understand how RNAi works to regulate gene expression, have used it to perform
reverse genetics in mammalian cells, and have begun to explore its potential ther-
apeutic use. What we know now about the molecular basis of RNAi and how it
regulates gene expression is clearly just the tip of the iceberg. This review intro-
duces the reader to this emerging revolution in gene regulation and its implications
for medicine.

THE SILENCING MECHANISM

RNAI pathways have been most fully described in Drosophila, but mammalian
complexes and mechanisms are thought to be similar. The effector molecules that
guide mRNA degradation are small [21- to 25-nucleotide (nt)] dsRNA, termed
small interfering RNAs (siRNAs), produced by the cleavage of long dsRNAs
(9-12) (Figure 1). These short RNAs are produced by the cytoplasmic, highly
conserved Dicer family of RNase III-like enzymes, resulting in a characteristic
21-23-nt dsRNA duplex with symmetric 2- to 3-nt 3’ overhangs (7, 13). RNAi
can also be initiated by introducing chemically synthesized siRNAs into cells. The
siRNAs are taken up into a multisubunit ribonucleoprotein complex called RISC
(RNA-induced silencing complex). The antisense (guide) strand of the siRNA
directs the endonuclease activity of RISC to the homologous (target) site on the
mRNA resulting in mRNA cleavage (recently reviewed in Reference 14).
Studies in Drosophila following the fate of introduced siRNAs have shown that
they are incorporated into a series of ribonucleoprotein complexes of increasing
size (15-17) (Figure 1). Although purified Dicer can process long dsRNA into
siRNAs in vitro, the principal siRNA-generating enzyme is actually a Dicer-R2D2
heterodimer, which remains associated with the siRNA. The RISC siRNA is ini-
tially duplexed but unwinds in the activated, mRNA cleavage-competent form
of RISC (“holoRISC”) (17). In addition to Dicer, R2D2, and the single-stranded
siRNA, activated RISC also contains the highly conserved Argonaute 2 (Ago2),
recently identified as the RNAi endonuclease (or Slicer) (18-22). Relatively lit-
tle is known about how RNAI is regulated. Recently, a highly conserved RNase,
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Figure 1 The classical RNA interference (RNAi) pathway in Drosophila. Long
double-stranded RNAs (dsRNAs) are processed by the R2D2/Dicer heterodimer into
small interfering RNAs (siRNAs) (15). The duplexed siRNA is unwound in an ATP-
dependent manner starting at the 5" terminus that has the lowest relative free energy of
base pairing (52, 53). This strand of the siRNA, the guide strand, is also preferentially
taken up by the RNA-induced silencing complex (RISC) in a step that requires the
Drosophila Armitage and Aubergine proteins (17). RISC also contains the Vasa in-
tronic gene (VIG), the Tudor staphylococcal nuclease (TSN), Argonaute 2 (AGO2), and
the Drosophila homolog of the Fragile-X related protein (dFXR) (18-20). The single-
stranded siRNA guides the endonuclease activity of the activated RISC (“holoRISC”)
to the homologous site on the mRNA, cleaving the mRNA (17).
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ERI-1, that degrades siRNAs was discovered in a C. elegans genetic screen for
mutations that had enhanced sensitivity to RNAi (23). This is the first evidence for
a regulatory mechanism to limit RNAi-mediated silencing.

MULTIPLE MECHANISMS OF SMALL-RNA-MEDIATED
GENE SILENCING

The endogenous RNAi pathway contributes significantly to regulating cellular
gene expression. Analysis of naturally occurring small RNA species has iden-
tified several classes of them, including siRNAs, microRNAs (miRNAs), and
repeat-associated siRNAs (rasiRNAs) (4, 24, 25). miRNAs are produced from
pre-miRNAs through a multistep maturation process (Figure 2) (26, 27). The pre-
miRNAs are hairpins with imperfect complementarity in their stems and frequent
bulges, mismatches and G:U wobble base pairings. Although the function of most
miRNAs remains unknown, the archetype miRNAs, let-7 and lin-4, regulate C. el-
egans larval development (4). miRNAs are expressed in a specific spatial and tem-
poral pattern during development in D. melanogaster or differentiation of mouse
embryonic stem cells; this observation further supports a role in development (25,
28). miRNAs appear to function by binding to sites (often in the 3’ untranslated
region) on the mRNA that have only partial sequence complementarity. Instead
of cleaving the target mRNA, miRNAs interfere with protein expression by an
unknown mechanism that may repress translation or possibly direct nascent pro-
teins for degradation. Although siRNAs and miRNAs are processed from different
dsRNA precursors, they appear to be functionally interchangeable, since an siRNA
will direct translational repression of a target site with partial complementarity,
whereas a miRNA can direct cleavage of a fully complementary target mRNA (29,
30).

In addition to regulating development, small RNAs also help preserve the in-
tegrity of the genome, by suppressing invading genetic material such as trans-
posons, retrotransposons, and viruses. This has been shown in genetic studies in
Drosophila, C. elegans, S. pombe, and plants. Some of the small RNAs in these
organisms are homologous to regions of repetitive DNA, termed rasiRNAs, in-
cluding transposons, retrotransposons, centromeric repeats, and satellite and mi-
crosatellite DNA (25, 31-34). Small RNAs in C. elegans and S. pombe recruit
and maintain regions of silenced chromatin containing these repetitive sequences
by activating sequence-specific DNA methylation and histone methylation and
by recruiting heterochromatin-associated proteins (35-39) (Figure 3). A protein
complex, termed RITS (RNA-induced initiation of transcriptional gene silenc-
ing), required for heterochromatin assembly in S. pombe, has been recently pu-
rified and found to contain Agol (a known component of the RNAi pathway),
the heterochromatin-associated protein Chpl, and the novel protein Tas3 (tar-
geting complex subunit 3) (40). Although transcriptional gene silencing has not
been demonstrated in any mammalian system, mammalian cells deficient in Dicer
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Figure 2 The miRNA pathway. The pre-miRNA is expressed in the nucleus from
endogenous long transcripts and is processed into ~70-nt hairpins by the RNase III
family member Drosha to become the pre-miRNA (26, 27). The pre-miRNA is ex-
ported to the cytoplasm by Exportin 5 (114) and is further cleaved by the R2D2/Dicer
heterodimer into the mature miRNA. The miRNA is loaded into RISC and guides it
to sites on the mRNA that have only partial sequence complementarity to the miRNA,
leading to repression of translation.
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Figure 3 The repeat-associated siRNA (rasiRNA) pathway (25). Transcription from
opposing promoters found in repetitive DNA elements, such as centromeric repeats
and satellite DNA, leads to the formation of long dsSRNAs. These long dsRNAs are
cleaved by Dicer, presumably the R2D2/Dicer heterodimer, into siRNAs. These are
unwound and taken up by the RNA-induced transcriptional silencing complex (RITS)
(40), which directs the establishment of silenced chromatin over the region of DNA
homologous to the siRNAs. This silenced chromatin is characterized by methylation of
the Lysine 9 residue of histone H3 and the recruitment of heterochromatin-associated

proteins (HP1 and HP2) in Drosophila polytene chromosomes (39).
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aberrantly accumulate transcripts from normally silenced centromeric repeat DNA,
and exogenously introduced siRNAs homologous to a promoter sequence can in-
hibit transcription and direct DNA methylation of the targeted sequence in human
cells (41, 41a). These results suggest that it is likely that RNALI is also naturally
used to maintain regions of heterochromatin in mammalian cells.

SPECIFICITY OF RNAi

In an initial study, transfection of dsRNAs shorter than 30 nt effectively silenced
gene expression by RNAI in a sequence-specific manner without activating inter-
feron pathway genes (8). In addition, introducing a single nucleotide change to
the siRNA sequence could abrogate siRNA-mediated silencing; this observation
implies that efficient silencing is highly sequence specific. The specificity of RNAi
has been best demonstrated by using RNALI to silence the pathogenic allele of a
gene while leaving the wild-type allele unaffected, the two alleles differing by a
single nucleotide (42—-44). siRNA-mediated suppression of viral gene expression
can lead to viral RNAIi escape variants with a single nucleotide change in the
siRNA binding site (45-47).

Nonetheless, some changes between the siRNA and the mRNA target sequences
can be tolerated without disrupting silencing (48, 49). Changes at the 3’ end of the
guide siRNA strand are relatively well tolerated, whereas changes in the middle
and at the 5’ end have an adverse effect (50). Although these conclusions were
initially based on a single siRNA:target mRNA, they have been validated by other
studies (4547, 51).

Thermodynamic profiling of siRNAs targeting several genes showed that
siRNAs with lower thermodynamic stability for base pairing at the 5’ end of their
antisense (guide) strand and in the middle of the siRNA were more effective at
RNAI than siRNAs that had stronger base pairing in these regions (52, 53). The
lower stability of the 5" end affects the uptake of the guide strand into RISC and
may also enhance RISC binding to the target mRNA, since mutations in this region
decrease the affinity of the siRNA for the target mRNA (29, 53, 54). Mutations
around the center of the sSiRNA:mRNA recognition site, between nucleotides 9 and
14 relative to the 5" end of the siRNA guide strand, also have a significant effect
on silencing.

Although RNAi mediated by the introduction of long dsRNA has been used
to silence gene expression in a wide variety of organisms including C. elegans,
plants, Drosophila, mosquito, and mouse oocytes, their use in vertebrate cells has
been limited owing to global suppression of gene expression by dsRNA-induced
activation of the interferon response (55) (Figure 4).

Recently, several studies have shown that under some conditions even short
dsRNAs may activate PKR and induce a subset of interferon response genes (56—
58). However, no cytopathic effects were seen. In fact, gene expression profiles of
HeLa cells transfected with siRNAs showed only a partial overlap when compared
with treatments known to induce an interferon response (56). The nonspecific
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Figure 4 The interferon response. In mammalian cells, long dsRNA elicits a
sequence-nonspecific inhibition of gene expression resulting from activation of the
protein kinase PKR and 2/,5'-oligoadenylate synthetase (2',5'-OAS). Activation of
PKR induces phosphorylation of the translation initiation factor (EIF2«) and inhibits
translation initiation; activation of 2/,5'-OAS catalyzes the conversion of ATP into long
oligoadenylate chains [pppA(2'p5’A),] that in turn activate RNase L to degrade cellular
RNA. Long dsRNA can also activate cells to express and release interferons that act in
a paracrine and autocrine fashion to induce cell growth arrest and possible apoptosis
(55).

effects of siRNAs on gene expression depend on the siRNA concentration, spe-
cific sequence, and delivery method, as well as the cell type tested (56-58). High
siRNA concentrations consistently enhance nonspecific effects. Identifying highly
active siRNAs and decreasing siRNA concentrations can alleviate some nonspe-
cific effects while maintaining efficient silencing.

Sequence-specific off-target silencing of mRNA sequences that have partial
complementarity to the siRNA also occurs, either by siRNA-directed cleavage of
mRNAs or by repression of translation (29, 30, 54, 59). In some instances, siR-
NAs inhibit off-target gene expression when 15 nt, with as few as 11 contiguous
nucleotides, of the siRNA are complementary to an off-target mRNA sequence



RNA INTERFERENCE 409

(54). Either the sense or the antisense strand can cause off-target silencing. These
off-target effects are specific to the siRNA sequence and independent of the in-
tended target, since different siRNAs against the same target inhibit different genes
(54). Screening candidate siRNAs for homology with available sequence databases
can, in principle, predict and avoid many off-target effects. These studies have il-
lustrated that siRNA sequences must be chosen very carefully to maximize the
efficiency of gene silencing while minimizing nonspecific and off-target effects.

RNAi AND VIRUSES

Mammalian pathogens or diseases may either utilize or circumvent RNAi in
their pathogenesis. Plants use viral-induced gene silencing, an RNAi-related phe-
nomenon, as a primitive “immune system” to silence viral gene expression and
replication in response to dsRNAs produced in the life cycle of most plant viruses.
This has led some plant viruses to produce proteins that inhibit RNAI (reviewed
in Reference 60). In addition, pathogenic viroids (infectious RNAs that do not
encode any proteins) express miRNAs that probably cause disease by suppressing
host gene expression (61, 62). It is likely that some animal viruses also hijack or
harness the RNAi machinery as part of their life cycle. Epstein Barr virus—infected
cells were recently shown to contain unique miRNAs, the profile of which changed
with different latency states (63). Moreover, dSRNA binding proteins encoded by
vaccinia and influenza viruses interfere with RNAi-mediated antiviral effects in
Drosophila cells (64).

RNAi AND THE REGULATION OF DEVELOPMENT

Biochemical and bioinformatic approaches have identified several hundred human
miRNAs (reviewed in Reference 65). These miRNAs bind to sites, usually in the 3’
untranslated region, on the target mRNA with incomplete complementarity lead-
ing to inhibition of protein expression by an unknown mechanism (29). Because
miRNAs bind with low affinity to their target sequence, multiple binding sites,
possibly for more than one miRNA, may have to work in concert to silence gene
expression efficiently. Although the target genes of most miRNAs are unknown,
bioinformatic approaches have predicted putative mammalian miRNA targets (66).
In lower organisms, the target genes are often fundamental regulators of cellular
development that determine body patterning or transition from one developmen-
tal stage to another and include genes that encode for transcription factors and
apoptosis regulators (67, 68).

The first example of a miRNA functioning in a mammalian system is miRNA-
181 (69). It is highly expressed in hematopoietic tissues (bone marrow, spleen,
thymus), particularly in B lymphocytes. When hematopoietic stem cells trans-
duced with a retrovirus that expresses miRNA-181 are adoptively transferred into
irradiated mice, they develop preferentially into B cells. Although little is known
about miRNA-181, including its targets, it is likely to be the first of many ex-
amples of miRNA regulation of mammalian development and lineage-specific
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differentiation. The coordinate expression of miRNAs acting on the 3" untranslated
regions of mMRNA may turn out to have as great an effect on regulating expression
of key developmental, activation, and survival genes as the transcription factors
that bind to DNA at 5" promoter regions. Because miRNAs are so important in
development, it is reasonable to assume that the misregulation of miRNAs will
perturb normal developmental pathways, potentially leading to certain types of
cancers.

RNAi AS A TOOL TO UNDERSTAND GENE FUNCTION
IN VITRO AND IN VIVO

RNAI is a powerful research tool for reverse genetic studies, which determine the
function of a gene by its disruption. Target genes can be silenced by transfec-
tion of chemically or enzymatically synthesized siRNAs or by DNA-based vector
systems that encode short hairpin RNAs (shRNAs) that are processed intracellu-
larly into siRNAs (Figure 5). Typically, RNAi-mediated silencing is incomplete
(a “knockdown,” not a “knockout”), although in some cases, the targeted mRNA
is undetectable even with ultrasensitive PCR assays (70). Transfection of siRNAs
into rapidly dividing cells has a maximal silencing effect 2-3 d posttransfection,
with silencing lasting up to a week. This is presumably due to dilution of the siRNA
with each cell division. However, siRNA-mediated silencing can persist for sev-
eral weeks in terminally differentiated, nondividing cells, such as macrophages
or neurons (71, 72). To prolong silencing, DNA vectors have been developed that
effectively express siRNAs or siRNA precursors (e.g., ShRNAs), using expres-
sion systems based on adenovirus, adeno-associated virus, oncoretroviruses, and
lentiviruses (14, 73). Viral expression systems also have the advantage of being able
to infect and deliver siRNAs efficiently into cells that are refractory to traditional
lipid-based transfection protocols.

The sequencing of the human genome has catalogued most of the genes ex-
pressed in humans and some other organisms. This sequencing information and
the ubiquitous nature of the RNAi machinery have opened up the potential to si-
lence practically any gene in the human genome, as well as the genomes of many
other organisms. This approach has been pursued most extensively in C. elegans
but more recently in Drosophila and human cells (74-77). Since gene silencing
can be induced systemically in C. elegans by feeding bacteria that express long
dsRNAs (78), bacterial expression libraries that silence practically all C. elegans
genes have been produced and used to screen for genes involved in fundamental
worm processes, such as early embryogenesis (74), longevity, or fat metabolism. In
flies, which lack an interferon response, comprehensive libraries of ~500 base-pair
dsRNAs representing sequences from >90% of all Drosophila mRNAs have been
used for powerful high-throughput screening to identify unknown genes involved
in cell viability (75).

Although large-scale mammalian siRNA screens are more challenging, the first
RNAI screens in mammalian cells have recently been accomplished (76, 77). These
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Figure 5 Strategies to introduce or express siRNA in cells. Dicer can cleave both
endogenously expressed and exogenously introduced substrates. The endogenous sub-
strates include the hairpin-structured pre-miRNA and long dsRNA produced by tran-
scription from opposing promoters, as well as hairpin RNA that can be introduced
directly into the cells or can be produced by transcription from plasmid or viral vec-
tors. An RNAI response can also be generated by introducing in vitro synthesized
siRNAs or by expressing individual sense and antisense strands of the siRNA from a
vector containing tandem promoters (14).

screens use retroviral vectors to express ShRNAs in cells, using high-throughput
synthesis and cloning methods to produce libraries designed to silence expression
of much of the mammalian genome (Figure 6). In lower organisms libraries of long
dsRNAs can be used for screening, whereas mammalian screens require expres-
sion of short dSRNAs so as not to trigger an interferon response. Algorithms can
be used to design shRNAs that are likely to silence any known gene. To maximize
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Figure 6 Genomic RNAIi screens in mammalian cells. Several shRNAs (typically
2-5 sequences) designed to target a large subset of genes are cloned into an shRNA
expression vector. These are packaged into retroviral particles and used to infect the
cell of interest. This is usually accomplished in a large-format (for example, 96 well
plate) approach. Cells are then screened for particular phenotypes. For example, Berns
and colleagues used an RNAI library containing 23,742 shRNAs targeting 7914 human
genes to identify novel proteins that modulate pS3-mediated cell cycle arrest (77).

silencing and distinguish off-target effects, several siRNA sequences (usually 3—6)
are chosen for each target. The library of shRNA-expressing infected cells can then
be screened to identify candidate genes in any biological pathway and potential
therapeutic drug targets. One of the first mammalian screens identified new candi-
date genes involved in p53-mediated cell cycle arrest (77). Better understanding of
the mechanism of RNAi will facilitate development of more effective algorithms
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for designing shRNAs and of expression vectors for more efficient gene-silencing
libraries.

Lentiviral vectors that express shRNAs have been used to produce transgenic
animals with stably silenced gene expression (79, 80). This approach has been
utilized mostly in mice but can be applied to other organisms not amenable to tradi-
tional, homologous recombination-based gene knockout approaches (81). Embry-
onic stem cells or eight-cell embryos infected with shRNA-expressing lentiviruses
can generate animals in which gene expression is permanently silenced in all cells
or in certain cell lineages by appropriate choice of promoters driving ShRNA ex-
pression (Figure 7a). The use of inducible promoters and tissue-specific promoters
allows for the controlled expression of the shRNA in response to an inducer (for
example, tetracycline) or in specific cell types or tissues, respectively (82—84).
Moreover, because RNAi sequences vary in the extent of silencing, it is possible to
produce mice with graded degrees of silencing of a particular gene (85). Because
producing a knockdown mouse only requires inserting a single transgene, whereas
making a knockout mouse involves removing a part of the gene on both chromo-
somes, silenced mice can be generated with a few months of work, compared to the
few years generally required to produce knockout mice. When hematopoietic stem
cells are infected with shRNA-encoding lentiviruses in vitro and transplanted into
lethally irradiated mice, silencing of gene expression is limited to hematopoietic
cells (Figure 7b) (80).

RNAi AS A THERAPEUTIC

Some have touted RNAI as the next new class of therapeutics. Because all cells
are thought to contain the machinery to carry out RNAi and all genes are potential
targets, the possible applications for medicine are, in principle, unlimited. This
widespread applicability, coupled with relative ease of synthesis and low cost of
production (especially compared to proteins such as antibodies or recombinant
growth factors at the concentration needed for therapeutic effects), makes siRNAs
an attractive new class of small-molecule drugs. In addition, siRNAs are chemi-
cally stable and can be stored lyophilized without refrigeration. Once in cells, the
anticipated duration of silencing is predicted to vary from ~35 d to several weeks,
so dosing as an injectable drug seems feasible. RNAi drug development builds on
the lessons learned from clinical studies administering antisense oligonucleotides.
Antisense suppression of gene expression is generally much less effective (~100-
1000-fold less active on a molar basis) (86), works for only some genes, and
achieves less efficient silencing than siRNAs do (73).

The sequence specificity of RNAi, even when off-target effects are considered,
promises potent therapies with little toxicity due to off-target gene silencing. This
high specificity also implies that the application of RNAIi in some instances, such
as to treat viral infections or cancer, might lead to resistance due to sequence
mutations. This has proved to be the case in several in vitro studies suppressing
viral replication by RNAi [e.g., poliovirus (45) and HIV-1 (46, 47)]. However,
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Figure7 Some strategies for in vivo RNAI. (a) Transgenic shRNA-mediated knock-
down mice. The transduced embryonic stem cells or embryos can be implanted into
pseudopregnant female mice; progeny will express the SiRNA and silence the gene of
interest. (b) Reconstitution of the mouse hematopoietic system with shRNA-expressing
stem cells. (¢) The injection of viral constructs into the central nervous system of
mice can lead to localized gene silencing. For example, the intracerebellar injection of
adeno-associated viruses expressing sShRNAs against ataxin-1 led to a loss of inclusion
body formation and improved motor coordination (112). (d) The hydrodynamic (high-
pressure, high-volume, rapid) injection of siRNAs into the tail vein of mice leads to
the uptake (“hydroporation”) of siRNAs into a variety of tissues including the liver,
pancreas, lung, and spleen (99).
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unlike resistance to other small molecules, which leads to an expensive and time-
consuming search for new therapeutic agents, resistance to RNAi may be overcome
by introducing a new siRNA that targets a different site on the same mRNA.
Moreover, siRNAs that target conserved sequences or multiple sequences at once
may provide a way around this problem.

Several recent studies using highly sensitive microarray analyses have shown
that siRNAs can have off-target effects by silencing unintended genes (54, 87).
Although differences in expression for most genes are well within the normal
variations of the assay, a few genes may vary in expression by >2-3-fold in a
sequence-dependent manner. These off-target effects can be minimized by mod-
ifying the siRNAs to prevent incorporation of the sense strand into RISC and
by choosing sequences with minimal complementarity to known genes in the
database, particularly at the 5’ end of the guide strand (88). In addition, at high
concentrations or when siRNAs are expressed as shRNAs from viral vectors, some
interferon response genes may be triggered. siRNAs may also activate the dSRNA
Toll-like receptor TLR3 on macrophages and dendritic cells, inducing these cells
to mature and produce Type I interferons (89). Because these effects are concen-
tration dependent, finding siRNAs that are active at low concentrations should help
to abrogate some of them. It is unclear whether these off-target effects will prove
a significant source of in vivo toxicity.

Delivery remains a major hurdle for RNAI therapy, since siRNAs do not cross
the mammalian cell membrane unaided and since many of the transfection methods
used for in vitro studies cannot be used in most in vivo settings. There are two
strategies for delivering siRNAs in vivo (reviewed in Reference 90). One is to
stably express siRNA precursors, such as shRNAs, from viral vectors (Figure 5)
using gene therapy; the other is to deliver synthetic siRNAs by complexing or
covalently linking the duplex RNA with lipids and/or delivery proteins.

RNAi-based gene therapy may make the most sense for correcting dominant
genetic defects, such as inherited neurodegenerative diseases like Huntington’s
disease or amyotrophic lateral sclerosis (91). Several papers have demonstrated
silencing of a pathogenic, dominant allele that differs by a single nucleotide from
the wild-type allele (4244, 92). Gene therapy provides the opportunity for long-
term correction of an underlying and persistent problem by using lentiviral vectors
that integrate into the genome and can be used to transduce hematopoietic stem
cells and other slowly dividing progenitor cells in a variety of tissues (Figure
7b). As gene therapy vectors continue to improve, the infection efficiency and
level and persistence of gene expression will probably improve, as will the abil-
ity to transduce progenitor cells, while maintaining progenitor cell pluripotency.
The pseudotyping of lentiviral vectors with different envelope glycoproteins may
be used to target particular cell types. Alternatively, the expression of shRNAs
in particular tissues or cell types can be achieved by expressing shRNAs from
tissue-specific or inducible promoters. One of the main concerns with current
gene therapy approaches is insertional mutagenesis from preferential integration
of retroviral vectors into actively transcribed genes, including protooncogenes.
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This has led to hematological malignancies in young patients with severe com-
bined immunodeficiency (SCID) disease treated with retroviral-based gene therapy
(93). It may be possible to address this problem by designing vectors that integrate
into specific, well-defined regions of the genome, as has been accomplished in
mice.

Treatment with synthetic siRNAs as small-molecule drugs would avoid the
problems inherent in current retroviral-based gene therapy. The main obstacle
to the use of siRNA drugs is delivery into the cytosol, where they need to be
for silencing. Naked siRNAs are not efficiently taken up even by mammalian
cells, such as macrophages and dendritic cells, that are actively sampling their
environment by pinocytosis (70, 94). A further obstacle is the extremely short
in vivo half-life of siRNAs (measuring seconds to minutes) due to rapid renal clear-
ance. In addition, although most endogenous RNases are inactive against dsRNAs,
some serum RNases can degrade siRNAs, leading to an in vitro serum half-life of
~1 h. The in vivo retention time of the siRNAs can be increased by complexing
with lipids or protein carriers to limit renal filtration. In principle, complexes can
be designed to enhance the rate of uptake into the cell and, potentially, direct the
siRNAs to specific cell types. Coupling of siRNAs to basic fusogenic peptides
has been reported to facilitate the transport of siRNAs across the cell membrane
(95). siRNAs complexed to polyethyleneimine administered intranasally inhibited
pulmonary influenza infection (96). Effective cell-specific delivery by coupling
siRNAs to cell surface receptor ligands or antibodies could greatly reduce poten-
tial toxicity. Chemical modification, such as capping the ends of the siRNA strands
or substitution of the 2’-hydroxyl groups of the ribose moieties with other chemical
groups, has been shown to protect siRNAs from digestion by endogenous RNases
(49,50, 97). Although these modifications can increase the stability of the siRNAs,
they may reduce the efficacy of silencing (98).

Several studies have demonstrated efficient in vivo delivery of siRNAs and
therapeutic benefit in mice. The first demonstration of effective in vivo siRNA
delivery took advantage of a high-pressure injection method (called hydrodynamic
delivery) originally developed to deliver antisense oligonucleotides and plasmid
DNA. When siRNAs are rapidly injected intravenously in large volumes, cells in
the liver and other highly vascular tissues, such as the kidney and lung, efficiently
take up siRNAs (99, 100). It is postulated that the sudden volume load induces
right-sided heart failure and the resulting high venous pressures “hydroporate”
siRNAs into the cells (101). Hydrodynamic delivery was used to deliver siRNAs
that targeted Fas to protect mice in two models of autoimmune hepatitis (71).
siRNAs were taken up by ~90% of hepatocytes and silenced both Fas mRNA
and protein in the liver by ~80%-90%. Gene expression was silenced without
diminution for 10 d, began to return at 2 weeks, and had returned to normal within
3 weeks, which suggests that infrequent dosing might be feasible for treating
liver disease. In fulminant hepatitis induced by intraperitoneal injection with Fas
antibody, all the control mice died within a few days, whereas >80% of Fas-
siRNA treated mice survived (Figure 7d). Similarly, expression of hepatitis B
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proteins from transduced hepatitis B replicons can be reduced in the liver of mice
by hydrodynamic delivery of siRNAs targeting viral genes (102, 103).

Although effective in mice, hydrodynamic delivery is unlikely to be applicable
to human therapy. Nonetheless, regional delivery of siRNAs via small-volume local
injection into a tissue via catheterization of regional veins or local injection into
the cerebrospinal fluid may be a clinically viable alternative. Intrathecal injection
of siRNAs targeting the gene for a pain-related cation channel protein alleviated
chronic neuropathic pain in a rat model (104). Injection of Fas siRNAs in a small
volume into the renal vein in mice provides protection from ischemia-reperfusion
injury of the kidney comparable to hydrodynamic delivery (105).

Some lipid-mediated transfection methods that work in vitro can also be used
for in vivo delivery. In one study, pretreatment by intraperitoneal injection of
cationic liposomes containing siRNAs that targeted TNF-« provided protection
from sepsis induced by lipopolysaccharides (106). Intravenous immunoliposome
delivery has shown efficacy in delivering siRNAs across the blood-brain barrier
into glioma cells in the central nervous system (101). Lipid-complexed siRNAs
also can be introduced locally, e.g., to silence gene expression in the vagina (D.
Palliser, J. Lieberman, unpublished). For localized delivery, electrical currents have
been used to introduce siRNAs into the retina and muscle cells by electroporation
(107). A beneficial effect on tumor growth has also been demonstrated by local
injection of siRNAs mixed in an atelocollagen gel (108). In addition, parasites in
the blood take up siRNAs and could be potential therapeutic targets (109, 110).

The therapeutic potential of RNAi achieved through vectored expression of
shRNAs has been shown in mouse models using adeno-associated viruses, retro-
viruses, and lentiviruses (83, 111, 112). Both adenoviral and lentiviral vectors
expressing shRNAs have been injected into the central nervous system and shown
to silence a CAG repeat gene implicated in spinocerebellar atrophy with reduced
pathogenic protein aggregation (Figure 7c¢) (44, 91, 112). Targeted silencing of
the mutant gene but not its wild-type allele slowed the development of ataxia.
In vitro silencing of genes implicated in other progressive neurodegenerative dis-
eases, including Alzeimer’s disease, Huntington’s disease, and amyotrophic lateral
sclerosis, suggests that this group of challenging diseases may be fruitful targets
for early clinical studies. For a gene therapy approach to engineer lymphocytes
and macrophages resistant to HI'V-1 infection, hematopoietic stem cells infected
in vitro with lentiviruses expressing sequences designed to silence HIV rev were
injected into SCID mice transplanted with human thymus and fetal liver grafts
(113). The differentiated macrophages and T cells were resistant to in vitro HIV-
1 challenge, which suggests that lentiviral vector-based siRNA delivery can be
adapted for clinical use.

Development of RNAi-based therapeutics is in its infancy. It is too soon to
predict whether the promise of harnessing RNAI for treatment will be realized.
However, early clinical studies are likely soon to begin assessing the use of this new
class of therapeutics to tackle some of the more challenging diseases in medicine,
including chronic infection, cancer, and neurodegenerative disease.
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