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Constructing a profitable schedule is of utmost importance to an airline because its profitability is critically
influenced by its flight offerings. We focus our attention on the steps of the airline schedule planning process

involving schedule design and fleet assignment. Airline schedule design involves determining when and where
to offer flights such that profits are maximized, and fleet assignment involves assigning aircraft types to flight
legs to maximize revenue and minimize operating cost. We present integrated models and solution algorithms
that simultaneously optimize the selection of flight legs for and the assignment of aircraft types to the selected
flight legs. Preliminary results, based on data from a major U.S. airline, suggest that significant benefits can be
achieved.
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In scheduled passenger air transportation, air-
line profitability is critically influenced by the air-
line’s ability to construct flight schedules contain-
ing flights at desirable times in profitable markets
(defined by origin-destination pairs). To produce
operational schedules, airlines engage in a complex
decision-making process, generally referred to as air-
line schedule planning. Because it is impossible to
simultaneously represent and solve the entire air-
line schedule planning problem, the many decisions
required in airline schedule planning have historically
been compartmentalized and optimized in a sequen-
tial manner.

The schedule planning step typically begins 12 months
prior to operation of the schedule and lasts approxi-
mately 9 months. It begins with route development, in
which the airline decides which city pairs it wants
to serve, based primarily on systemwide demand
information. Most of the time, the schedule planning
step starts from an existing schedule, with a well-
developed route structure. Changes are introduced to
the existing schedule to reflect changing demands and
environment; this is referred to as schedule development.
There are three major components in the schedule
development step.

The first step of schedule development, schedule
design, is arguably the most complicated step of
all and traditionally has been decomposed into two
sequential steps:

(1) frequency planning, in which planners determine
the appropriate service frequency in a market; and

(2) timetable development, in which planners place
the proposed services throughout the day, subject to
network considerations and other constraints.

The purpose of the second step of schedule devel-
opment, fleet assignment, is to assign available aircraft
to flight legs such that seating capacity on an assigned
aircraft matches closely with flight demand. If too
small an aircraft is assigned to a flight, many poten-
tial passengers are turned away, or spilled, resulting
in lost revenue. If too big an aircraft is assigned to a
flight, many empty seats, which can be utilized more
profitably elsewhere, are flown.

The objective of the third step of schedule develop-
ment, aircraft rotation, is to find a maintenance feasible
rotation (or routing) of aircraft, given a fleeted sched-
ule and the available number of aircraft of each type.
A maintenance feasible rotation, a sequence of connected
flight legs assigned to a specific aircraft respecting
the maintenance rules of the airline and regulatory
agencies, begins and ends at the same location.

Subsequent steps in the airline schedule plan-
ning process include revenue management and
crew scheduling. For a detailed overview, interested
readers are referred to Lohatepanont (2001).

Today, advanced technologies and a better under-
standing of the problems have allowed operations
researchers to begin integrating and globally opti-
mizing these decisions. In this paper, we present
integrated models and algorithms for airline sched-
ule design and fleet assignment. The schedule design
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problem involves determining when and where to
offer flights so that profits are maximized, while the
fleet assignment problem involves assigning aircraft
types to flight legs to maximize revenue and mini-
mize operating costs. Our integrated models simulta-
neously optimize the process of selecting flight legs to
include in the schedule and assigning aircraft types to
these legs. We present our computational experiences
using data from a major U.S. airline.

Our contributions in this paper include:
(1) a framework for considering demand and sup-

ply interactions in the context of airline schedule
design;

(2) two new integrated models and solution algo-
rithms for airline schedule design and fleet assign-
ment, namely,

• the integrated schedule design and fleet
assignment model and

• the approximate schedule design and fleet
assignment model;

(3) a proof of concept of our approach, with limited
computational results for problem instances provided
by a major U.S. airline.

In §1, we describe the nature of air travel demand,
supply, and their interactions in the context of air-
line schedule design. We give an overview of our
integrated models for schedule design and fleet
assignment in §2. We present integrated models and
algorithms for schedule design and fleet assignment
together with computational results in §§3 and 4.

1. Demand and Supply
Interactions

A crucial element in the construction of an airline
schedule is the interaction between demand and sup-
ply. In this section, we review relevant literature on
this issue. As will be seen, such understandings are
essential in developing a flight schedule.

Demand. For the purpose of schedule design and
fleet assignment, a market is defined by an origin and
destination pair. For example, Boston–Los Angeles is
a market, and Los Angeles–Boston is another dis-
tinct market, referred to as an opposite market. Boston–
San Francisco and Boston–Oakland are examples of
parallel markets because San Francisco and Oakland
are close enough to each other that passengers are
often indifferent as to which location is preferable.

For the purpose of schedule design for a given
airline, we are interested in its unconstrained market
demand (or more succinctly, market demand), that
is, the maximum demand the airline is able to cap-
ture. Unconstrained market demand is allocated to
itineraries, sequences of connecting flight legs, in each
market to determine unconstrained itinerary demand.
The term unconstrained is used to denote that the

quantity of interest is measured or computed without
taking into account capacity restrictions. For exam-
ple, unconstrained revenue is the maximum revenue
attainable by an airline, based only on unconstrained
demand and not on capacity offered; while constrained
revenue is the achievable revenue subject to capacity
constraints.

Simpson and Belobaba (1992a) illustrate that the
unconstrained market demand for a carrier is affected
by its flight schedule (with frequency of service being
one critical element). They also show that total market
demand can change as a result of changes in the flight
schedule. Specifically, additional demand can be stim-
ulated or, more precisely, diverted from other modes of
transportation when the number of itineraries/flights
(that is, supply) is increased (given that the demand
has not yet reached the maximum demand) and vice
versa. It is also true that supply is a function of
demand: The carrier purposefully designs its schedule
to capture the largest demands.

There are a number of demand forecasting mod-
els available. Most of these models are logit based
(Ben Akiva and Lerman 1985), while some are Quality
Service Index (QSI) based (as described in §3).

Supply. The airline develops its flight network
to compete for market demand. The first step in
developing the flight network is to adopt an appro-
priate network structure. Unlike other modes of
transportation in which the routes are restricted by
geography, most of the time the route structures
for air transportation are more flexible. Simpson
and Belobaba (1992b) present three basic network
structures, namely, a linear network, a point-to-point
(complete) network, and a hub-and-spoke network.

A pure linear network is one in which all flight legs
connect all cities in one large uni- or bi-directional
tour. A pure point-to-point network is a complete
network, where there are services from every city to
every other city. A hub-and-spoke network contains
at least one hub airport. All spoke cities have flights
departing from and arriving to the hub airport(s). This
is the most prevalent network type for most major
U.S. carriers. Its main advantage derives from con-
necting opportunities at the hub airport(s), enabling
airlines to consolidate demand from several markets
onto each flight. Simpson and Belobaba (1992b) also
note that the hub-and-spoke network structure creates
more stable demand at the flight-leg level. By mix-
ing and consolidating demands from different mar-
kets on each flight leg, the hub-and-spoke network
can reduce variations in the number of passengers
at the flight-leg level because markets have different
demand distributions.

Demand and Supply Interactions. Hub-and-spoke
networks illustrate demand and supply interactions.
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To see this, consider removing a flight leg from a
connecting bank or complex. A bank or complex is a
set of flights arriving or departing a hub airport in
some period of time. Banks are typically designed
with a set of flight arrivals to the hub followed by
a sequence of departures from the hub to facilitate
passenger connections. The removal of a flight from a
hub can have serious ramifications on passengers in
many markets throughout the network. This occurs
because in addition to carrying local passengers from
the flight’s origin to its destination, the removed flight
carries a significant number of passengers from many
other markets containing that leg. From the view-
point of the passengers in those markets, the qual-
ity of service is deteriorated because the frequency
of service is decreased. The result can then be that
the carrier experiences a decrease in its unconstrained
market demands in the affected markets. The situa-
tion is the opposite when a flight leg is added to the
bank. For air transportation, Teodorovic and Krcmar-
Nozic (1989) show that flight frequencies and depar-
ture times are among the most important factors that
determine passengers’ choices of an air carrier when
there is a high level of competition.

An Example of Demand and Supply Interactions.
In this section, we present an example of how chang-
ing the flight schedule of an individual airline can
affect demand for that airline. Consider the example
in Figure 1(a), a market with four itineraries. Let the
first itinerary be in the morning and the last three
itineraries be in the afternoon.

Above each figure, the airline’s market demand is
specified for the case when all itineraries in the figure
are flown. These market demands are unconstrained,
which can be allocated to all itineraries of the airline
as shown. Specifically, in Figure 1(a), each itinerary
has 100 requests except the second itinerary, which
has 150 requests. (We can view the second itinerary
as a nonstop itinerary and the rest as connecting
itineraries.)
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Figure 1 An Example of Demand and Supply Interactions

In Figure 1(b), we assume that one of the optional
flights is deleted and, as a result, the last itinerary
no longer exists. Based on this new level of ser-
vice, the airline market demand reduces from 450
requests in Figure 1(a) to 410 requests in Figure 1(b).
These 410 requests can be allocated to the remaining
three itineraries as shown in Figure 1(b). Specifically,
some of the 100 potential customers previously on the
deleted itinerary will go to other airlines, and some
will remain with the airline. Those that remain with
the airline will request other itineraries still in the
schedule (Itineraries 1–3 in this case). We assume that
40 and 20 of the 100 requests previously on the fourth
itinerary will request the second and third itineraries,
respectively. The first itinerary does not receive any
additional requests because it is in the morning and
the 100 passengers prefer itineraries that depart close
to the time (the afternoon) of their original itinerary.
The second itinerary receives more requests than the
third because the former is nonstop while the latter is
connecting.

In Figure 1(c), we assume that two itineraries are
deleted. The same phenomenon occurs. Demand of
the airline reduces from 450 requests to 300 requests
as a result of deleting two optional flight legs. The lost
requests when two itineraries are deleted more than
double those when only one itinerary is deleted, illus-
trating the nonlinear relationship between demand
and supply.

2. Integrated Models for Schedule
Design and Fleet Assignment: An
Overview

Previous efforts to improve profitability of airline
schedules are described in, for example, Soumis et al.
(1980), Dobson and Lederer (1993), Marsten et al.
(1996), Berge (1994), Erdmann et al. (1999), and for a
survey: Etschmaier and Mathaisel (1984).

Marsten et al. (1996) present a framework for
incremental schedule design. In their approach, they
enumerate potential combinations of flight additions
and deletions. Given a schedule, demands are esti-
mated using a schedule evaluation model. Then, the
fleet assignment problem is solved on the given
schedule with the corresponding estimated demands.
Revenues are computed based on the passengers
transported, and costs are computed based on flight
operating costs of the fleeted schedule. The profits
from several sets of proposed additions and dele-
tions are then compared to identify the best set. In
this paper, we present an alternative approach, in
which flight-leg selection and fleet assignment are
simultaneously optimized.
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2.1. Framework
In developing our integrated models for airline sched-
ule design and fleet assignment, we assume our sched-
ule is daily; that is, the schedule repeats everyday.
Because conservation of aircraft, or balance, is always
maintained, we can count the number of aircraft in the
network by taking a snapshot of the network at a pre-
specified point in time, defined as the count time (for
example, 3:00 a.m.) and counting the number of air-
craft both in the air and on the ground at stations.

Our approach to schedule design is incremental;
that is, we do not attempt to build a schedule from
scratch. Instead a number of modifications are intro-
duced to a base schedule, that is, a schedule from the
current or previous season. This is, in fact, the prac-
tice in the industry—planners build a schedule for the
new season by making changes to the current sched-
ule. There are a few reasons for this:

(1) Building an entirely new schedule requires data
which might or might not be available to the airline;

(2) building an improved new schedule from
scratch is operationally impractical and computation-
ally difficult, if not intractable;

(3) frequently changing network structures require
significant investment at airport stations (for example,
gates, check-in counters); and
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Figure 2 Master Flight List Construction Diagram

(4) airlines prefer a degree of consistency from one
season to the next, especially in business markets in
which reliability and consistency are highly valued by
travelers.

By building the next season’s schedule from the
previous one, (1) airlines are able to use historical
booking and other important traffic forecast data;
(2) required planning efforts and time are manage-
able; (3) fixed investments at stations can be uti-
lized efficiently; and lastly, (4) consistency can be
easily maintained by introducing a limited number of
changes to the schedule.

Our models take as input a master flight list, that is,
a list of flight legs composed of: (1) mandatory flights
and (2) optional flights.
Mandatory flights are flight legs that have to be

included in the flight schedule, while optional flights
are flight legs that may, but need not, be included.
Figure 2 depicts the construction of a master flight
list. We take as our starting point a base schedule
(Figure 2a), which is often the schedule from the pre-
vious season. The potential modifications include:

(1) Existing flight legs in the base schedule can be
deleted (Figure 2b), and
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(2) new flight legs can be added to the base sched-
ule (Figure 2c).

Flights identified in Figures 2(b) and 2(c) comprise
the optional flight list (Figure 2e). The mandatory list
contains those flight legs in the base schedule not
marked as optional (Figure 2d). The master flight list
(Figure 2f) is the combination of the mandatory and
optional flight lists. A master flight list must be pre-
pared by planners for input to our integrated models.

Apart from a master flight list, another crucial
input is the average unconstrained itinerary demands
associated with operating all of the flights in the
master flight list. We estimate these demands for a
given schedule using a schedule evaluation model. There
are several schedule evaluation models used in the
industry, for example, the Sabre® Airline Profitability
Model, and United Airlines’ Profitability Forecasting
Model. Details of these models, however, are often
difficult to obtain due to their proprietary nature.

The output of our models is a list of recommended
flight legs to include in a new schedule and an asso-
ciated fleet assignment.

Our models integrate the schedule design and
fleet assignment steps in the schedule develop-
ment subprocess. Notice, also, that we depart from
the traditional approach of sequentially performing
frequency planning and timetable development. In
our approach, market service frequency, departure
times (given a prespecified list of candidate flight
departures), and fleet assignments are all determined
simultaneously.

2.2. Underlying Assumptions

2.2.1. Demand Issues and Assumptions. There
are a number of assumptions underlying most fleet-
ing models, namely:

(1) Fare Class Differentiation: Most fleeting models
require that different fare class demands be aggre-
gated into one fare class. Kniker (1998) shows that
demands differentiated by fare class can be utilized
in fleet assignment models. To our knowledge, how-
ever, there have been no attempts to solve fare class
differentiated fleet assignment models on large-scale
problems.

(2) Demand Variation: Because fleeting models typi-
cally solve the daily problem (that is, the problem in
which the schedule is assumed to repeat each day
of the week), a representative daily demand is input
into the fleet assignment model. This requires that
demands from different days of the week (demand
varies by day of week) must be aggregated into a
representative demand.

(3) Observed vs. Unconstrained Demand: Fleet assign-
ment models take as input some form of uncon-
strained demand, that is, the maximum demand for
air travel that an airline can experience regardless

of the airline’s network capacity. All of the observed
demand data, however, is constrained demand, reflect-
ing network capacity. Hence, in practice, the demand
distribution for each leg is truncated at the capac-
ity of the fleet type assigned to that leg. Therefore,
using assumptions about demand distributions, these
observed data must be “unconstrained.”

(4) Demand Recapture: Recapture occurs when pas-
sengers spilled from their desired itineraries are
accommodated on alternate itineraries in the system.
Most fleet assignment models ignore recapture, partly
because it is difficult to observe. In this paper, we
employ the approach described in Barnhart et al.
(2001) to model recapture in the fleeting process.

(5) Flight-Leg Independence: Most fleet assignment
models assume flight-leg independence, that is, that
demand on one leg is independent of all other legs
and moreover, that flight revenue is leg specific.
A significant proportion of passengers, especially in
the U.S., travel on multileg itineraries, thus creat-
ing flight-leg interdependencies. These interdepen-
dencies introduce revenue estimation errors in the
fleet assignment models assuming leg independence.
Barnhart et al. (2001) discuss this assumption and
its ramifications and provide quantitative evidence
that fleet assignment models assuming independence
miss an important aspect of the fleet assignment prob-
lem. To capture flight-leg interdependencies, or net-
work effects, they introduce an itinerary-based fleet
assignment approach, which we use in our integrated
schedule planning models.

Barnhart et al. (2001) test the effects of several of
the above assumptions using their itinerary-based fleet
assignment model (IFAM). They show that using aver-
age demand data, ignoring the associated uncertainty
(or distribution), and accounting for network effects,
IFAM produces better assignments than the basic (leg-
based) fleet assignment models. Their experiments
also show that IFAM produces relatively consistent
fleetings over a limited range of recapture values.
Hence, IFAM is the core around which we build the
integrated schedule planning model presented in this
paper.

2.3. Notation
To facilitate the discussion of our integrated model,
we first list all notation in this section.

Parameters/Data
CAPi: the number of seats available on flight-leg i

(assuming fleeted schedule).
SEATSk: the number of seats available on aircraft of

fleet type k.
Nk: the number of aircraft in fleet-type k.
Nq : the number of flight legs in itinerary q.
Dp: the unconstrained demand for itinerary p, that

is, the number of passengers requesting itinerary p.
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Qi: the unconstrained demand on leg i when all
itineraries are flown.
farep: the fare for itinerary p.

f̃arep: the carrying cost-adjusted fare for itinerary p.
br

p: recapture rate from p to r ; the fraction of passen-
gers spilled from itinerary p that the airline succeeds
in redirecting to itinerary r .


p
i �=

{
1 if itinerary p includes flight leg i�

0 otherwise�
�D

p
q : demand correction term for itinerary p as a

result of cancelling itinerary q.

Sets
P : the set of itineraries in a market including the

null itinerary, indexed by p or r .
PO : the set of itineraries containing optional flight

legs, indexed by q.
A: the set of airports, or stations, indexed by o.
L: the set of flight legs in the flight schedule,

indexed by i.
LF : the set of mandatory flights, indexed by i.
LO : the set of optional flights, indexed by i.
K: the set of fleet types, indexed by k.
T : the sorted set of all event (departure or availabil-

ity) times at all airports, indexed by tj . The event at
time tj occurs before the event at time tj+1. Suppose
�T � = m; then t1 is the time associated with the first
event after the count time and tm is the time associ-
ated with the last event before the next count time.

N : the set of nodes in the timeline network indexed
by �k� o� tj �.

CL�k�: the set of flight legs that pass the count time
when flown by fleet-type k.

I�k� o� t�: the set of inbound flight legs to node
�k� o� tj �.

O�k�o� t�: the set of outbound flight legs from node
�k� o� tj �.

L�q�: the set of flight legs in itinerary q.

Decision Variables
tr
p : the number of passengers requesting itinerary p

that the airline attempts to redirect to itinerary r .

fk� i �=
{

1 if flight leg i is assigned to fleet type k�

0 otherwise�

Zq �=


1 if itinerary q is included in the flight

network�

0 otherwise�
.

yk�o� t+j : the number of fleet-type k aircraft that are
on the ground at airport o immediately after time tj .

yk�o� t−j : the number of fleet-type k aircraft that are
on the ground at airport o immediately before time
tj . If t1 and t2 are the times associated with adjacent
events, then yk�o� t+1 = yk�o� t−2 .

3. Integrated Schedule Design and
Fleet Assignment Model

3.1. Demand Correction Terms
In this section we present, the integrated schedule design
and fleet assignment model (ISD-FAM). ISD-FAM is
built upon the itinerary-based fleet assignment model
(IFAM) by Barnhart et al. (2001). We assume that mar-
kets are independent of one another; that is, demands
in a market do not interact with demands in any other
markets. This enables us to adjust demand for each
market only if the schedule for that market is altered.
ISD-FAM adjusts demand as changes are made to
the schedule, using demand correction terms. For exam-
ple, the demand correction term �D

p
q corrects demand

on itinerary p when itinerary q is deleted (that is,
one or more flight legs in q are deleted) from the
flight network. Consider the example in Figure 3. Sup-
pose that the first and second itineraries are manda-
tory itineraries; that is, they contain only mandatory
flights. The third and fourth itineraries are optional
itineraries; that is, each of these itineraries contains
at least one optional flight. Suppose that the fourth
itinerary in Figure 3(b) is deleted. Then, the increase
of 40 passengers on the second itinerary and 20 pas-
sengers on the third itinerary represent the demand
correction terms on the second and third itineraries,
respectively. Mathematically, �D2

4 = +40, �D3
4 = +20,

and �D1
4 = 0. Thus, our demand correction terms can

capture the changes in itinerary demands when one
optional itinerary is deleted in a market. Assuming
that the effect is the same if only the third itinerary
is deleted, then �D1

3 = 0, �D2
3 = +40, and �D4

3 =
+20. When the third and fourth itineraries are deleted
simultaneously, the total demand increase on the first
itinerary is estimated to be �D1

3 + �D1
4 = 0 and on

the second itinerary is estimated to be �D2
3 + �D2

4 =
+80. The resulting market demand is estimated to be
330, however, the actual market demand when two
itineraries are deleted is 300. To estimate these new
demands accurately, a second-order degree correction

B
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term, �D2
3�4 = −30, is needed to adjust the demand

on the second itinerary when both the third and
fourth itineraries are deleted. In general, nth degree
correction terms might be needed to correct demand
exactly when n optional itineraries are deleted simul-
taneously from a market. In our current implementa-
tion, however, these higher-order correction terms are
omitted for tractability.

In our ISD-FAM formulation, demand correction
terms, �D

p
q� ∀p ∈ P are applied only if itinerary q is

deleted from the flight network. Zq , the itinerary status
variable, indicates whether or not itinerary q is oper-
ated, with Zq equal to one if itinerary q is operated
and zero otherwise. Notice that itinerary q is operated
only when all flight legs contained in q are operated.

3.2. Objective Function
In this formulation, average unconstrained itinerary
demands are computed with a schedule evaluation
model, for the schedule with all optional flights flown.
The objective of ISD-FAM is to maximize schedule
contribution, defined as revenue generated less oper-
ating cost incurred. The operating cost of a sched-
ule, denoted O, can be computed as

∑
i∈L

∑
k∈K Ck� ifk� i

for all fleet-flight assignments. The total revenue of
a schedule can be computed from the following
components:

(1) Initial unconstrained revenue (R):

R=∑
p∈P

farepDp� (1)

(2) Changes in unconstrained revenue due to market
demand changes (�R):

�R= ∑
q∈PO

(
fareqDq −

∑
p∈P� p �=q

farep�Dp
q

)
· �1−Zq�� (2)

(3) Lost revenue due to spill (S):

S=∑
p∈P

∑
r∈P

farept
r
p� (3)

(4) Recaptured revenue from recapturing spilled passen-
gers (M):

M=∑
p∈P

∑
r∈P

br
p farer t

r
p� (4)

Equation (1) is the initial unconstrained revenue
for the schedule containing all optional legs and the
associated unconstrained demands. The term fareq Dq

in Equation (2) is the total unconstrained revenue
of itinerary q. The term

∑
p∈P� p �=q farep�D

p
q is the

total change in unconstrained revenue on all other
itineraries p (�=q) in the same market due to deletion
of itinerary q. Recall that Zq equals one if q is flown
and zero otherwise. Thus, Equation (2) is the change
in unconstrained revenue if itinerary q is deleted.

Equations (3) and (4) measure the changes in rev-
enue due to spill and recapture, respectively. Recall
that spill occurs when passengers cannot be accom-
modated on their desired itineraries due to insuffi-
cient capacity. Some of these passengers are redirected
to alternate itineraries within the airline network.
Recapture occurs when some number of these redi-
rected passengers are accommodated on alternate
itineraries of that airline. In our work, the recapture
rate �br

p�, the successful rate of redirecting passen-
gers to itinerary r when itinerary p is capacitated,
is computed based on the Quality of Service Index
(QSI) (Kniker 1998). QSI is an industry measure of the
“attractiveness” of an itinerary relative to that of all
other itineraries (including competing airlines) in that
market. The sum of the QSI values corresponding to
all itineraries (including competitors) in a market is
equal to one. The sum of the QSI for one airline is an
approximate measure of its market share for that spe-
cific market. Let qp denote the QSI value of itinerary p.
Let Qm represent the sum of all QSI values in mar-
ket m for the particular airline; that is, Qm =∑

p∈m qp.
Then, the recapture rate, br

p is

br
p =

1�0 if p = r�
qr

1−Qm + qr

otherwise� (5)

This recapture rate is a measure of the probability
that a passenger spilled from itinerary p will accept
itinerary r as an alternative. (For more details, see
Barnhart et al. 2001.)

Mathematically, tr
p is the number of passengers

being redirected from itinerary p to itinerary r and
br

pt
r
p is the number of passengers who are recaptured

from itinerary p onto itinerary r . We denote t−p as spill
from itinerary p to a null itinerary and assign its asso-
ciated recapture rate, b−

p , a value of one. Passengers
spilled from itinerary p onto a null itinerary are not
recaptured on any other itinerary of the airline and
are lost to the airline.

The contribution maximizing objective function of
ISD-FAM is therefore

MaxR−�R−S+M−O� (6)

Given unconstrained demands for the schedule,
the initial unconstrained revenue (R) is a constant
and we can remove it from the objective function.
If we reverse the signs of the rest of the terms in
Equation (6), we obtain an equivalent cost-minimizing
objective function

MinO+ �S−M�+�R� (7)

Additional cost items that can be included are
passenger-related costs, which are composed of, but
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not limited to,
(1) passenger carrying costs (for example, meals,

luggage handling) and
(2) cost per revenue dollar (for example, reserva-

tion commission).
These cost items can be incorporated into the

model by deducting them from the revenue (or
fare) obtained from a passenger. Thus, in the model,
instead of using farep to denote revenue obtained from

a passenger traveling on itinerary p, we use f̃arep, the
net revenue from a passenger traveling on itinerary p.

3.3. Formulation
ISD-FAM can be formulated as shown in (8)–(20):

Min
∑
i∈L

∑
k∈K

Ck� ifk� i +
∑
p∈P

∑
r∈P

�f̃arep − br
p f̃arer �t

r
p

+ ∑
q∈PO

(
f̃areqDq −

∑
p∈P� p �=q

f̃arep �Dp
q

)
· �1−Zq� (8)

subject to ∑
k∈K

fk� i = 1 ∀ i ∈ LF � (9)

∑
k∈K

fk� i ≤ 1 ∀ i ∈ LO� (10)

yk�o� t− +
∑

i∈I�k� o� t�

fk� i − yk�o� t+ −
∑

i∈O�k�o� t�

fk� i = 0

∀ �k� o� t� ∈N� (11)∑
o∈A

yk�o� tn
+ ∑

i∈CL�k�

fk� i ≤Nk ∀k ∈K� (12)

∑
p∈P

∑
q∈PO


p
i �Dp

q �1−Zq�+
∑
k∈K

CAPkfk� i +
∑
r∈P

∑
p∈P


p
i t

r
p

−∑
r∈P

∑
p∈P


p
i b

p
r t

p
r ≥Qi ∀ i ∈ L� (13)

∑
q∈PO

�Dp
q �1−Zq�+

∑
r∈P

tr
p ≤Dp ∀p ∈ P� (14)

Zq −
∑
k∈K

fk� i ≤ 0 ∀ i ∈ L�q�� (15)

Zq −
∑

i∈L�q�

∑
k∈K

fk� i ≥ 1−Nq ∀ q ∈ PO� (16)

fk� i ∈ �0�1� ∀k ∈K�∀ i ∈ L� (17)

Zq ∈ �0�1� ∀ q ∈ PO� (18)

yk�o� t ≥ 0 ∀ �k� o� t� ∈N� (19)

tr
p ≥ 0 ∀p� r ∈ P� (20)

Constraints (9), the cover constraints for manda-
tory flights, ensure that every mandatory flight is
assigned to a fleet type. Constraints (10) are cover
constraints for optional flights allowing the model to
choose whether or not to fly flight i in the schedule.
If flight i is selected, a fleet type has to be assigned

to it. Constraints (11) ensure conservation of aircraft
flows. Constraints (12) are count constraints guar-
anteeing that only available aircraft are used. Con-
straints (13) are capacity constraints ensuring for each
flight i that the number of passengers on i does not
exceed the capacity assigned to i. Constraints (14)
are demand constraints restricting the number of pas-
sengers spilled from an itinerary to the demand for
that itinerary. The term

∑
q∈PO �D

p
q �1 − Zq� in con-

straints (14) corrects the unconstrained demand for
itinerary p ∈ P when optional itineraries q ∈ PO are
deleted. Similarly, the term

∑
p∈P

∑
q∈PO 

p
i �D

p
q �1− Zq�

in constraints (13) represents corrected demand but at
the flight level. Constraints (15)–(16) are itinerary sta-
tus constraints that control the �0�1� variable, Zq , for
itinerary q. Specifically, constraints (15) ensure that Zq

takes on value zero if at least one leg in q is not flown,
and constraints (16) ensure that Zq takes on value one
if all legs in q are flown.

Passenger Flow Adjustment. Notice that ISD-FAM
employs two mechanisms to adjust passenger flows:
(1) demand correction terms and (2) recapture rates.

Both mechanisms accomplish the objective of reac-
commodating passengers on alternate itineraries
when desired itineraries are not available, but with
different underlying assumptions. To illustrate, con-
sider itineraries p ∈ P , q ∈ PO , and r ∈ P in a market
m. With demand correction terms, ISD-FAM attempts
to capture demand and supply interactions by adjust-
ing the unconstrained demand on alternate itineraries
p ∈ P in market m when an optional itinerary q ∈ PO

�p �= q� is deleted, utilizing demand correction terms
�D

p
q ’s. In so doing, the total unconstrained demand of

the airline in market m is altered by Dq −
∑

p∈P� p �=q �D
p
q

when itinerary q is deleted.
With recapture rates, ISD-FAM attempts to reallo-

cate passengers on alternate itineraries r ∈ P in market
m when an itinerary p ∈ P is capacitated, utilizing the
recapture rates br

p’s. This mechanism, however, does
not affect the total unconstrained demand of the air-
line in market m.

An understanding of this difference is important to
the introduction of our model in the next section.

3.4. Solution Approach
ISD-FAM takes as input the master flight list, recap-
ture rates, demand data, demand correction terms,
and fleet composition and size. In theory, using a
schedule evaluation model, we could estimate exactly
all correction terms and include all of them in ISD-
FAM. Then, by solving ISD-FAM once, an optimal
schedule is determined. This strategy is impractical,
however, because exponentially many runs of the
schedule evaluation model (one run for each possi-
ble combination of flight additions and deletions) are
necessary to estimate the correction terms.
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Consequently, we adopt the solution algorithm,
outlined in Figure 4. Instead of trying to estimate all
demand correction terms at the outset, we use rough
estimates of these terms and revise them iteratively as
needed. Specifically, we initially obtain demand esti-
mates for the full schedule (containing all flights from
the master flight list) using a schedule evaluation
model. In Step 1 of our approach in Figure 4, we solve
ISD-FAM (detailed in §3.4.1) to obtain a fleeted sched-
ule. In Step 2, a schedule evaluation model is called
to determine the new set of demands for the schedule
resulting from Step 1. Given these demand estimates
and the fleeted schedule, in Step 3 we solve the pas-
senger mix model (PMM), presented by Kniker (1998).
(The PMM formulation, cast as a multicommodity
flow problem with specialized variables is detailed in
the Appendix.) To solve PMM, column and row gen-
eration techniques are used to manage problem size.
PMM takes as input a fleeted schedule and determin-
istic unconstrained itinerary demands and outputs a
revenue-maximizing flow of passengers. The objective
function value of the model is referred to as PMM rev-
enue. It represents a maximum, not expected, schedule

START

STOP

Has the
STOPPING

CRITERIA

been met
?

(1)
Solve ISD-FAM
(See Figure 5)

(3)
Solve PMM with demand from

(2) and schedule from (1)

(5)
Identify itineraries with

inaccurate revenue
estimates in (1)

(6)
Revise

demand correction terms

(2)
Calculate new demand for the

resulting schedule

NO

YES

(4)

Figure 4 The Solution Approach for ISD-FAM, Estimating Demand
Correction Terms as Needed

revenue (the underlying assumptions do not always
hold). In Step 4, we compute:

(1) the difference between our current and previous
solution and

(2) the closeness of the revenue estimates of Steps 1
and 3.

If either of these computed values are beneath
our defined threshold values, the algorithm is termi-
nated; otherwise itineraries with inaccurate revenue
estimates in the ISD-FAM solution are identified in
Step 5 and their associated demand correction terms
are updated (in Step 6) using the demand information
obtained from solving the schedule evaluation model
in Step 2. ISD-FAM is then resolved and the procedure
repeats.

At every iteration, however, existing demand cor-
rection terms are updated and/or new ones are intro-
duced, hence, capturing more exactly demand and
supply interactions. Thus, if higher-order correction
terms are included, the algorithm will converge in a
finite number of iterations. This, however, can take
many iterations if the model’s solution is highly
sensitive to the values of the demand correction
terms.

3.4.1. Solution Algorithm for ISD-FAM. The al-
gorithm for solving ISD-FAM is depicted in Figure 5.
We first construct a restricted master problem (RMP)
excluding constraints (14) and including only spill
variables corresponding to null itineraries. Then, the
LP relaxation of the RMP is solved using column and
row generation. Negative reduced-cost columns cor-
responding to spill variables and violated constraints
(14) are added to the RMP, and the RMP is resolved
until the ISD-FAM LP relaxation is solved. Given the
solution to the ISD-FAM LP relaxation, branch-and-
bound is invoked to find an integer solution. Because
column generation at nodes within the branch-and-
bound tree is nontrivial to implement using available
optimization software, we employ a heuristic IP solu-
tion approach in which branch-and-bound allows col-
umn and row generation only at the root node and
after the integer solution is found. Row (and column)
generation occurs after an integer solution is obtained
if any constraints are violated by the current solution.
In this case, column and row generation allows the
best passenger flow decisions to be determined, for
the selected flight schedule and fleeting.

3.5. Computational Results
We perform computational tests for ISD-FAM as out-
lined in Figure 6. Using a Period I schedule as our
base schedule, planners provide a master flight list
including both mandatory and optional flight legs.
Using this master flight list, planners generate a pro-
posed schedule for Period II, the planners’ schedule,
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Step 1
Build Restricted

Master Problem
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Feasibility
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Figure 5 The ISD-FAM Solution Algorithm (Step 1 in Figure 4) for Specified Demand Correction Terms

which is compared to the ISD-FAM-generated sched-
ule. A schedule evaluation model is used to generate
a new set of demands for both the planners’ schedule
and the ISD-FAM-generated schedule. The PMM is
then solved to obtain PMM revenues for the Period II
schedules. Finally, PMM contributions are computed
by subtracting operating costs from PMM revenues.
In most cases, PMM contributions for an ISD-FAM-
generated schedule differs from the ISD-FAM objec-
tive function value, called ISD-FAM contribution. The
difference between PMM and ISD-FAM contributions
for a schedule measures the revenue discrepancy result-
ing from using demand estimates based on a flight
schedule that does not match the resulting ISD-FAM
flight schedule.

We perform our experiments on actual data, includ-
ing the planners’ schedules, provided by a major U.S.
airline. Table 1 shows the characteristics of the net-
works in our two data sets. All runs are performed
on an HP C-3000 workstation computer with two
GB RAM, running CPLEX 6.5.

Tables 2 and 3 show the problem sizes and ISD-
FAM run-times, and solution results for data sets
D1 and D2, respectively. For data set D1, ISD-
FAM generates a considerably improved schedule
compared to the planners’ schedules, achieving an
increase in the daily contribution of $561,776. Assum-
ing that unconstrained demand is an average of daily

demands and that the airline operates this schedule
365 days, these daily improvements translate to over
$200 million per year. The revenue discrepancy for
data set D1 is $187,263 per day, suggesting that more
iterations of the algorithm, leading to more accurate
estimates of demand, could result in even greater
improvements.

For data set D1, ISD-FAM achieves significant
improvements through savings in operating costs
(from operating fewer flights) rather than by gen-
erating higher revenues (Table 4). Additionally, the
ISD-FAM solution requires significantly fewer aircraft
to operate the schedule. Each aircraft removed from
the schedule can represent substantial savings to the
airline because the airline can increase profitability
by employing the aircraft elsewhere, such as in new
markets.

Although ISD-FAM captures interactions between
demand and supply through demand correction
terms, it suffers from tractability issues for larger size
problems. For data set D2, while the LP relaxation
could be solved in 66 hours (46 iterations of col-
umn and row generations), ISD-FAM ran for three
plus days without achieving an integer solution. In
the next section, we explore an approximate schedule
design model that does not continuously adjust
demand as the schedule changes.
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Figure 6 Testing Methodology

4. Approximate Schedule Design and
Fleet Assignment Model

4.1. An Approximate Treatment of Demand and
Supply Interactions

In this section, we present the fundamental con-
cept, model formulation, and solution algorithm of

Table 1 Data Characteristics

No. of Flight Legs No. of No. of No. of
Data Set Mand. Opt. Total Itineraries Fleets Aircraft

D1 645 108 753 60,347 4 166
D2 588 260 848 67,805 4 166

Table 2 Problem Sizes (RMPs) and Solution Times

Data Set D1 Data Set D2

No. of columns 48,742 65,447
No. of rows 30,206 60,910
No. of nonzeros 164,676 344,517
No. of iterations to solve LP relaxation 34 46
LP relaxation solution time 11.1 hrs 66 hrs
Solution time 12.7 hrs 3+ days∗

∗Solution is not available.

Table 3 Contribution Comparison

ISD-FAM Schedule

Daily
Planners’ Schedule

($/day) ($/day) Improvement

Data Set D1
ISD-FAM contribution N/A 1,908,867
PMM contribution 1,159,828 1,721,604 561,776
Revenue discrepancy N/A 187,263

Table 4 Resulting Schedule Characteristics

Planners’ Schedule Data Set D1

No. of flights flown 717 668
No. of optional flights not flown 0 85
No. of aircraft used 166 157
No. of aircraft not used 0 9

our approximate schedule design and fleet assignment
model (ASD-FAM). ASD-FAM utilizes recapture rates
to approximately capture the interactions between
demand and supply. We demonstrate that although
recapture rates do not alter total unconstrained
demand, capacity constraints on other itineraries and
recapture rates indirectly dictate the maximum num-
ber of passengers the airline can reaccommodate
within the system.

To illustrate, consider Market A–B in Figure 7. Sup-
pose that there are two nonstop flights, i and j , and
two one-leg itineraries, p and r , where p is on i and r is
on j . Thus, tr

p denotes the number of passengers redi-
rected from flight-leg i to flight-leg j . Suppose further
that the average unconstrained demand on itinerary
p is 70 and that there are 20 empty seats available
on flight-leg j . If ASD-FAM deletes flight-leg i (and
therefore itinerary p) from the schedule, 70 passengers
previously on itinerary p need reaccommodation. Sup-
pose that the recapture rate is 0.5. Because there are 20
seats available on flight-leg j , ASD-FAM will attempt
to redirect 40 passengers from p to r (20 of whom will

j: 20 seats
available

B

i: 70 extra
passengers

A r r

p p
b t = 20

p p
b t

− −
= 30

Net Lost:
20 + 30 passengers

Figure 7 An Example of Reduced Effective Market Share Due to
Modified Recapture Rates
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be successfully reaccommodated) and will spill 30 to
the null itinerary. Thus, in this example, the demand is
effectively reduced by 20+ 30= 50 passengers because
of the deletion of flight-leg i. This example illustrates
that recapture rates and capacity restrictions can cause
effective market demand to be less than or equal to the
initial market demand, even when deleting flight-leg i
is assumed to have no direct effect on market demand.
Notice, however, that the recapture rates employed in
this manner are for the purpose of shifting demands
from deleted itineraries to remaining itineraries. Thus,
these recapture rate values are not likely to equal those
in IFAM, which are strictly for the purpose of reaccom-
modating passengers when flight capacities are con-
strained. For this reason, we refer to recapture rates
employed in ASD-FAM as modified recapture rates, b̃r

p.

4.2. Formulation
The approximate schedule design and fleet assign-
ment model is formulated as

Min
∑
i∈L

∑
k∈K

Ck� ifk� i +
∑
p∈P

∑
r∈P

� f̃arep − b̃r
p f̃arer �t

r
p (21)

subject to ∑
k∈K

fk� i = 1 ∀ i ∈ LF � (22)

∑
k∈K

fk� i ≤ 1 ∀ i ∈ LO� (23)

yk�o� t− +
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i∈I�k� o� t�

fk� i − yk�o� t+ −
∑

i∈O�k�o� t�

fk� i = 0

∀ �k� o� t� ∈N� (24)∑
o∈A

yk�o� tn
+ ∑

i∈CL�k�

fk� i ≤Nk ∀k ∈K� (25)

∑
k∈K

CAPkfk� i +
∑
r∈P

∑
p∈P


p
i t

r
p

−∑
r∈P

∑
p∈P


p
i b̃

p
r t

p
r ≥Qi ∀ i ∈ L� (26)

∑
r∈P

tr
p ≤Dp ∀p ∈ P� (27)

fk� i ∈ �0�1� ∀k ∈K� ∀ i ∈ L� (28)

yk�o� t ≥ 0 ∀ �k� o� t� ∈N� (29)

tr
p ≥ 0 ∀p� r ∈ P� (30)

ASD-FAM is a special case of ISD-FAM, in which
all demand correction terms are removed. As a result,
the objective function (Equation 21) and constraints
(26) and (27) are modified. To offset this, a set of mod-
ified recapture rates (b̃r

p) is employed in ASD-FAM to
approximate changes in market demand as the flight
schedule is altered.

Table 5 Problem Sizes (RMPs) and Solution Times

Data Set D1 Data Set D2

No. of columns 35,633 38,837
No. of rows 2,999 3,326
No. of nonzeros 55,039 61,655
No. of iterations to solve LP relaxation 31 28
LP relaxation solution time 23 mins 41 mins
Solution time 39 mins 78 mins

4.3. Solution Approach
The accuracy of ASD-FAM is critically linked to
the modified recapture rates (b̃r

p) because they are the
only mechanism through which market demand is
adjusted and through which passengers can be reallo-
cated. Finding the set of modified recapture rates that
accurately capture supply and demand interactions
might require several iterations or, even worse, might
be impossible. In our experiments, we let b̃r

p = br
p for

the case when all itineraries in a market are operated.
The solution algorithm for ASD-FAM is the ISD-

FAM algorithm, outlined in Figure 4, with some
modifications. Initially, demand estimates for the full
schedule (containing all flights from the master flight
list) are obtained using a schedule evaluation model.
In Step 1, ASD-FAM is solved using the ISD-FAM
algorithm (outlined in §3.4.1) to obtain a fleeted
schedule. In Step 2, the new set of demands for
the schedule resulting from Step 1 is obtained from a
schedule evaluation model. Given these demand esti-
mates and the fleeted schedule, in Step 3 we solve
PMM to obtain the PMM revenue. In Step 4, the stop-
ping criteria, as used in ISD-FAM, are evaluated. If
the stopping criteria are not met, itineraries with inac-
curate revenue estimates in the ASD-FAM solution
are identified in Step 5, and their modified recapture
rates are revised (in Step 6) using the demand infor-
mation from Step 2. ASD-FAM is then resolved and
the procedure repeats.

4.4. Computational Results
We evaluate ASD-FAM on the two medium-size
schedules used for testing ISD-FAM. (Table 1
describes the characteristics of the data sets.) The test-
ing procedure is as outlined in Figure 6. A Period I
schedule serves as our basis for constructing a master
flight list. ASD-FAM is solved on this master flight
list to obtain an ASD-FAM-generated Period II sched-
ule. A schedule evaluation model is used to generate
a new set of demands for the ASD-FAM-generated
schedule. PMM is then solved to obtain the PMM con-
tributions, which are compared with the ASD-FAM
contributions.

The problem sizes and ASD-FAM solution times
for the two problems are reported in Table 5. From
Table 6, it can be seen that ASD-FAM solutions
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Table 6 Contribution Comparision

ASD-FAM Schedule
Planners’
Schedule

($/day) ($/day) Improvement

Data Set D1
ASD-FAM contribution N/A 1,999,094
PMM contribution 1,159,828 1,742,349 582,521
Revenue discrepancy N/A 256,745

Data Set D2
ASD-FAM contribution N/A 2,079,504
PMM contribution 1,159,828 1,888,948 729,120
Revenue discrepancy N/A 190,556

are significantly improved compared to the planners’
solutions. In data set D1 and D2, daily improve-
ments of $582,521 and $729,120 are achieved, respec-
tively. Assuming schedules repeat daily with similar
demand for every day of the year, these improve-
ments translate into annual improvements of approx-
imately $210 and $270 million, respectively. The
revenue discrepancy of $256,745 per day for data set
D1 exceeds that of the ISD-FAM solution, as expected.

Table 7 presents the characteristics of the resulting
schedules. Similar to ISD-FAM, ASD-FAM achieves
significant improvements through savings in operat-
ing costs (from operating fewer flights) rather than
through the generation of higher revenues. We also
note that ASD-FAM solutions require significantly
fewer aircraft to operate the schedule.

Finally, we note that ASD-FAM outperforms ISD-
FAM, a couterintuitive result given that ASD-FAM is
an approximation of ISD-FAM. The improved ASD-
FAM performance results from its reduced complex-
ity (relative to ISD-FAM) and, hence, our ability to
generate more integer solutions.

4.5. Full-Size Problems
Unlike ISD-FAM that cannot be solved for data set D2,
ASD-FAM is solvable for full-size schedules. Table 8

Table 7 Resulting Schedule Characteristics

Planners’
Schedule Data Set D1 Data Set D2

No. of flights flown 717 660 614
No. of optional flights not flown 0 93 234
No. of aircraft used 166 154 148
No. of aircraft not used 0 12 18

Table 8 Data Characteristics

No. of Flight Legs No. of No. of No. of
Data Set Mand. Opt. Total Itineraries Fleets Aircraft

F1 — 1,993 1,993 179,965 8 350
F2 — 1,988 1,988 180,114 8 350

Table 9 Contribution Comparison

Planners’ Schedule ASD-FAM Schedule

($/day) ($/day) Improvement

Data Set F1
ASD-FAM contribution N/A 36,932,000
PMM contribution 36,387,000 37,375,000 988,000
Revenue discrepancy N/A −443,000

Data Set F2
ASD-FAM contribution N/A 36,124,000
PMM contribution 35,668,000 36,072,000 404,000
Revenue discrepancy N/A 52,000

Table 10 Resulting Schedule Characteristics

Data Set F1 Data Set F2

Planners’ Planners’
Schedule ASD-FAM Schedule ASD-FAM

No. of flights flown 1,619 1,545 1,591 1,557

Table 11 Problem Sizes (RMPs) and
Solution Times

Data Set F1 Data Set F2

Solution time 16 hrs 19 hrs

gives the characteristics of two additional data sets,
each accompanied by the associated planners’ sched-
ules. Notice that in both data sets, all flights are
optional. They represent full-size problems at a major
U.S. airline. The runs are performed at the airline
using their implementation of our prototype ASD-
FAM model, on a six-processor computer, with two
GB RAM, running Parallel CPLEX 6.

Table 9 summarizes the results on these full-size
problems. In data set F1, ASD-FAM achieves a daily
improvement of $988,000 over the planners’ sched-
ule. In data set F2, the improvement is smaller at
$404,000 per day. In both of these data sets, ASD-
FAM produces schedules that operate fewer flight
legs (Table 10).

We can clearly appreciate the complexity of these
problems when we look at their solution times,
reported in Table 11. Note that these are run-times on
a six-processor workstation, running parallel CPLEX.
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Appendix. The Passenger Mix Model
The passenger mix model (PMM) (Kniker 1998) takes a fleeted schedule
(that is, each flight leg is assigned one fleet type) and unconstrained
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itinerary demand as input and finds a flow of passengers over this
schedule maximizing fleeting contribution, or equivalently mini-
mizing assignment cost. Because the schedule is fleeted, flight oper-
ating costs are fixed and only passenger carrying and spill costs
are minimized. The objective of the model, then, is to identify the
best mix of passengers from each itinerary on each flight leg. The
solution algorithm spills passengers on less profitable itineraries to
accommodate passengers on more profitable itineraries. Hence, the
PMM is

Given a fleeted flight schedule and the unconstrained
itinerary demands, find the flow of passengers over the net-
work that minimizes carrying plus spill cost, such that �1�
the total number of passengers on each flight does not exceed
the capacity of the flight, and �2� the total number of pas-
sengers on each itinerary does not exceed the unconstrained
demand of that itinerary.

Using previously defined notations, the mathematical formula-
tion for PMM is
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The objective function minimizes the difference of spill and
recapture. Constraints (A.2) are the capacity constraints. For leg i,
the term
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p can be viewed as the number of

passengers who are spilled from their desired itinerary p. For leg i,
the term
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p is the number of passengers

who are recaptured by the airline. (Note that we assume b
p
p = 1.)

CAPi is the capacity of the aircraft assigned to leg i, and Qi is the
unconstrained demand on flight-leg i, namely,

Qi =
∑
p∈P


p
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Constraints (A.3) are the demand constraints restricting the total
number of passengers spilled from itinerary p to the unconstrained
demand for itinerary p. tr

p must be greater than zero but need not be
integer because we model the problem based on average demand
data, which can be fractional.
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