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LECTURE NOTES
Determining Efficient Frontier

• Efficient Frontier With No Short Sales

• Efficient Frontier With Riskless Lending and Borrowing
• Analytical Solution of the Portfolio Selection Problem
• Efficient Frontier With Additional Constraints

Version of February 23, 2002

Efficient Frontier with No Short Sales

• We can trace efficient frontier with no short sales using techniques 
similar to those used when short sales were allowed.  We can start with 
finding the global minimum variance portfolio:
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• Notice, we have new constraint: all portfolio weights must be positive.
• Similarly we can find the maximum return portfolio:
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Efficient Frontier with No Short Sales

• When short sales are not permitted all the efficient portfolios will lie 
between the minimum variance portfolio and the maximum return 
portfolio. Now we can trace the efficient frontier by solving a series of 
optimization problems for a series of target portfolio returns Rpj:
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Efficient Frontier with No Short Sales
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• Portfolio C - global minimum 
variance portfolio

• Portfolio B - maximum return 
portfolio
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Markowitz’s Corner Portfolios

• Efficient frontier contains infinite number of portfolios.
• In 1952 Markowitz developed a critical-line method for determining 

the efficient frontier.
• Critical-line algorithm identifies a number of corner portfolios that 

completely describe the whole efficient frontier.  Every efficient 
portfolio is a linear combination of two corner portfolios immediately 
adjacent to it.

• Details of the critical-line algorithm are beyond the scope of this 
course.  Interested students can find description of the algorithm in 
Macro-Investment Analysis by William Sharpe 
(http://www.stanford.edu/~wfsharpe/mia/opt/mia_opt3.htm)

• Critical-line method can be implemented in Visual Basic as a custom 
Excel function.  For example, Corner Portfolios spreadsheet 
(http://webpage.pace.edu/mkishinevsky/software/djia-cp.xls ) provides 
custom function =CRITLINEOPT for determining a set of corner 
portfolios.

Markowitz’s Corner Portfolios

• =CRITLINEOPT function has the following syntax:
=CRITLINEOPT(lbd,ubd,er,cv,stats), where
– lbd is a lower boundary.  It can be a number, single cell, or row or 

column range.
– ubd is an upper boundary.  It can be a number, single cell, or row 

or column range.
– er is a row or column range of expected returns.
– cv is a variance-covariance matrix.
– stats is a logical value specifying whether to return additional 

statistics (default value is FALSE).
• Standard “no short sales” problem has lbd=0, and ubd=1.
• =CRITLINEOPT function returns an array of values.  If we have N 

stocks and solution produces M corner portfolios, the array has M+1 
rows and either N (if stats is FALSE) or N+1 (if stats is TRUE) 
columns.  The first cell of the first row reports the number of corner 
portfolios.  Rows 2 to M+1 report compositions of corner portfolios.  If 
stats is TRUE, the last column of rows 2 to M+1 contains risk 
tolerances of corner portfolios.
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Efficient Frontier with Riskless Lending and Borrowing

σ

R

σ

R

A

Borrowing

Lending

σA

RA

RF

Portfolio return:

Portfolio risk:

Since σF=0, 

Solving for X, and substituting 
into the expression for return 
yields
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Efficient Frontier with Riskless Lending and Borrowing
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• Portfolio A in the previous 
example could be any portfolio

• Combination along RFB are 
superior to combination along 
RFA

• There is no combination 
superior to RFG

• Portfolio G - market portfolio
• Line RFGH - capital market line
• Separation theorem

– All investors who believed  
they faced the  efficient 
frontier and riskless lending 
and borrowing rates would 
hold the same portfolio of 
risky assets.
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Efficient Frontier with Lending but Not Borrowing At 
Riskless Rate
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Different Rates
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Analytical Solution
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• There is a single portfolio of risky 
assets which is preferred to all 
other portfolios

• Optimum portfolio P can be 
found by solving the following 
problem:

• This is constrained optimization 
problem

• We can solve this problem 
analytically when

– Short sales are allowed
– We can borrow and lend at 

the risk-free rate

Analytical Solution
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We can write RF as RF times 1

Substitute it into the objective function

Theta reaches maximum in the point where
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Analytical Solution

Application of simple rules of differentiation yields:
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After solving this system for Zk, we can find Xk from:

Analytical Solution: Determining the Derivative
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For two-asset portfolio:
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Analytical Solution: Determining the Derivative

In order to find derivative of v with respect to X1 we will use the 
derivative chain rule:
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Combining these results we get:
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Analytical Solution: Determining the Derivative
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Analytical Solution: Implementation with Excel

• Let us consider the system of equations for Z-coefficients:

• Using matrix notation we can write this equation as:
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Where:

Z – row vector of Z-coefficients
S – variance/covariance matrix
R – row vector of expected returns

• Solution to this system is found by multiplying left and right part of the 
equation by inverse of variance/covariance matrix:

( ) 1
FR −×−= SRZ

Analytical Solution: Implementation with Excel

• Consider familiar example of four assets:
Asset AA EK JNJ MSFT
Mean Return -0.000806341 0.011140271 0.021681 0.056378775
Standard Deviation 0.096023339 0.058905929 0.066868 0.106090009

Variance/Covariance Matrix
0.009220482 0.002771406 0.003461 0.001676178
0.002771406 0.003469908 0.000841 -2.2102E-05
0.003460818 0.000841261 0.004471 0.004967685
0.001676178 -2.2102E-05 0.004968 0.01125509

• Assume that risk free rate is 5% per year, or .05/12 = 0.00417 per 
month.  By defining named range rfr for the cell with annual risk free 
rate we can find row vector of Z-coefficients using the following Excel 
formula: =MMULT((mean-rfr/12),MINVERSE(S))

• Then we can name the row of Z-coefficients as z_1, and compute the 
weights of the tangent portfolio as: =z_1/SUM(z_1)

Risk Free Rate 0.05
Z-vector -2.372021388 4.223528619 -1.171890421 5.517767455
X-vector -0.382745572 0.681501814 -0.189094362 0.89033812

Risk Return
Risk-Free Asset 0 0.05
Tangent Portfolio, rfr = 0.05 0.310623151 0.647965417
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Analytical Solution: Implementation with Excel

• If riskless lending and borrowing is not available we still can trace 
efficient frontier without use of the Solver.  We can compute 
composition of two tangent portfolios using arbitrary risk-free rates, 
and then trace efficient frontier using these two portfolios.

• For example we can select second risk-free rate at 60%:
Alternative r.f.r 0.6
Z-vector 0.127835666 -8.706967595 -10.56373096 5.193147899
X-vector -0.009164034 0.624168135 0.757272171 -0.37227627

Risk Return
Risk-Free Asset 0 0.6
Tangent Portfolio, rfr = 0.6 0.202373209 0.028690595

Asset A: rfr=0.05 B: rfr=0.6
Mean Return 0.647965417 0.028690595
Std. Dev. 0.310623151 0.202373209
Covariance -0.003438451

Weight A Weight B
0.310623151 0.647965417 1 0
0.302623002 0.632483546 0.975 0.025
0.294711756 0.617001676 0.95 0.05
0.286896767 0.601519805 0.925 0.075

Incorporation of Additional Constraints

• So far we have considered two types of constraints
– Constraints on portfolio return
– Constraints on portfolio risk

• But we can formulate and solve optimization problem that takes into 
account the following constraints:
– Portfolio dividend yield
– Upper limit of portfolio weights
– Lower limit on portfolio weights
– Upper limit of investment into particular industry
– Limit on transaction costs
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Incorporation of Additional Constraints

• For example, portfolio manager might be required to select a minimum 
variance portfolio that has target expected return RP and target 
dividend yield DP.  In this case optimization problem can be 
formulated as following:
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