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Free oscillations of one- or two-layer water basins have been analyzed in previous notes. In the
analysis, the effect of the Coriolis force induced by the rotation of the earth was neglected. It is

shown here that such simplification is valid as long as the wavelengths considered are small enough.
Considering that the longest possible wavelength in a given water basin is of a scale similar to

its horizontal dimensions, then, in a given lake or reservoir, Coriolis effects can be neglected only
if those dimensions are small enough. It is also shown in what follows, that the dimensions for
which Coriolis effects cannot be neglected decrease substantially in the case of internal oscillations

in a stratified water body with respect to the non-stratified case. Finally, it is demonstrated here
that Coriolis effects give rise to two different types of waves, known as Poincaré and Kelvin waves,

respectively.
The problem of free oscillations influenced by Coriolis force in a non-stratified, one-layer water

basin is analyzed first.

Case 1: Non-stratified water basin

Consider a water basin with a depth h1 and a constant and uniform density ρ1. The linear

shallow water wave equations derived in previous notes are used, consisting of depth-averaged
Reynolds-averaged Navier-Stokes equations, which are further simplified by linearizing the non-

linear advection terms. Since only free oscillations are considered, it is assumed that no forcing
coming from surface or bottom shear stresses exists. On the other hand, the governing equations

must include the effect of the Coriolis force induced by the rotation of the earth. This imposes
the need for a two-dimensional analysis, in the horizontal x− y plane, since Coriolis force induces

horizontal circulations in the water basin. Therefore, the governing equations for the one-layer
water basin are three: momentum equations in the horizontal plane, and continuity equation for
the horizontal velocity components, all depth-averaged, linearized and accounting for Coriolis force.

With this considerations, the system of equations governing the Coriolis influenced oscillations
in the water basin is given by:
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where U1 and V1 denote the horizontal components in directions x and y, respectively, of the

depth-averaged velocities of the flow associated with the oscillations of the system, and ξ1(x, y) is
the vertical displacement of the free surface associated with those oscillations.

In the above system of equations f represents the Coriolis parameter, Coriolis frequency or
simply inertial frequency, which is positive in the northern hemisphere and negative in the southern

hemisphere. It can be shown that this parameter is given by:

f = 2Ω sin θ (4)

where Ω denotes the angular velocity of the earth and θ the latitude of the point upon which f is
determined. Since Ω = 2π/day = 7.27× 10−5 s−1, then, according to (4), f varies from a value of

±1.45× 10−4 s−1 at the poles to zero at the equator.
In order to determine the normal modes of oscillation, assume a progressive wave type of

response, for which the mean flow velocity and the free surface deformation are given by:

U1 = Υ1 exp(i(αx+ βy − ωt)) (5)

V1 = Ψ1 exp(i(αx+ βy − ωt)) (6)

ξ1 = Ξ1 exp(i(αx+ βy − ωt)) (7)

where α = 2π/λx, β = 2π/λy and ω = 2π/T , and λx, λy and T denote the wavelengths in the
horizontal directions x and y, and the period of the waves, respectively. Likewise, Υ1, Ψ1 and

Ξ1 denote the amplitudes of the velocity waves in the directions x and y and of the free surface
deformation wave, respectively.

In equations (5) to (7) the identity exp(ia) = cosa + i sin a has been used, for convenience,
to work with the progressive waves. Rigorously, expressions (5) to (7) involve complex numbers.

To avoid that, the respective complex conjugate should be added to each expression. In practice,
however, the algebra resulting from neglecting the complex conjugate is much simpler than when

such complex is considered in the analysis and the final result is exactly the same, when only the
real part of the solution is considered.

Replacing equations (5) to (7) in the system (1)-(3), the following algebraic problem for Υ1, Ψ1

and Ξ1 is obtained.

∣∣∣∣∣∣∣

−iω −f iαg
f −iω iβg

iα iβ −i ωh1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

Υ1

Ψ1

Ξ1

∣∣∣∣∣∣∣
= 0 (8)

This is an eigenvalue problem. In order for a non-trivial solution for the amplitudes Υ1, Ψ1

and Ξ1 to exist, the matrix of coefficients must have a zero determinant. This condition yields the
dispersion relationship for the oscillations of the system, i.e., the relationship between the period

T and given wavelengths λx and λy, as:

−iα2gω − iβ2gω − if
2ω

h1
+ i

ω3

h1
= 0 (9)

Calling K2 = α2 + β2, where K is the composite wavenumber, then dispersion relationship in

this case is:
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K2gh1 + f2 = ω2 (10)

which gives:

ω

K
= ±

√
gh1√

1− (f/ω)2
(11)

If f/ω << 1 then the result c = ω/K = ±√gh1 for the celerity of the surface waves neglecting

Coriolis effects is recovered. In this case K represents simply the wavenumber in the direction
of propagation of the waves. Calling λ = 2π/K the respective wavelength, then the condition
f/ω << 1 can be written as:

λ

2π
<<

c

f
(12)

where c =
√
gh1. This relationship indicates that in order to neglect Coriolis effects, the wavelength

considered must be smaller than approximately c/f . This ratio is known as Rossby radius of
deformation. Assuming that the largest wavelength that can take place in a given lake or reservoir

is similar to its horizontal dimensions, then from this result it is concluded that in order to neglect
Coriolis effects in a given water body, its horizontal extension must be smaller than Rossby radius

of deformation. The Burger number (Antenucci and Imberger, 2001) is defined as:

Bu =
c/f

L
(13)

where L is a length scale characterizing the horizontal extension of the water body. Hence, Coriolis
effects are important only if the Burger number is smaller than about unity.

On the other hand, if f/ω is not negligible, then the celerity of the surface waves is clearly
modified due to Coriolis effect. Waves affected by Coriolis are called Poincaré waves, Sverdrup

waves, o simply, rotational gravitational waves. Equation (10) indicates that these waves can
propagate in any horizontal direction and follow the relation ω > f , that is, they are superinertial

waves (Csanady, 1967).
The symmetry of the dispersion relation (10) with respect to α and β means that the directions

x and y do not influence the wave field. This means that, actually, the x axis can be conveniently

oriented in the direction of propagation of the wave, so as to have λy = 0 and hence ∂ξ1/∂y = 0.
This implies that, for this orientation of the x axis, the wave fronts are parallel to y and therefore

there is no variation of the free surface elevation along y. From equation (2) it is concluded,
therefore, that the temporal variation of the transverse velocity V1 is governed by:

∂V1

∂t
= −fU1 (14)

This equation predicts the existence of non-vanishing transverse velocities, even though the wave
is propagating in direction x. This implies the existence of elliptic orbits for the fluid parcels

trajectories. Indeed, replacing (5) and (6) in (14) yields:

Ψ1 = −i f
w

Υ1 (15)

which, taking only the real part of the equations, yields:

Departamento de Ingenieŕıa Civil 3 Universidad de Chile



CI 71Q Hidrodinámica Ambiental

V1

U1

ωt = 3π/2

ωt = π/2

ωt = π ωt = 0

Figure 1: Orbit of a fluid parcel in a Poincaré wave in the southern hemisphere.

U1 = Υ1 cos(αx− ωt) (16)

V1 =
f

w
Υ1 sin(αx− ωt) (17)

From these equations it is concluded that the major axis of the orbits is oriented in the direction

of propagation of the waves, and the rotation is clockwise in the northern hemisphere, since f > 0
in that case, and counterclockwise in the south, as f < 0 there (Fig. 1). As the ratio f/ω decreases,

the elliptical orbits get narrower and narrower, approximating the rectilinear trajectory of the fluid
parcels that is characteristic of gravitational waves not affected by Coriolis, for which V1 = 0.

Consider now a situation for which the waves are affected by the boundaries of the water body.
In particular, consider a wave propagating in direction x, parallel to a solid wall. The presence
of the wall imposes a non-zero pressure gradient ∂ξ1/∂y, which nonetheless can relax to zero at a

certain distance normal to the wall. If in this case the transverse pressure gradient is balanced by
Coriolis force, fU1, then a gravitational wave with zero transverse velocity V1 and, consequently,

with rectilinear fluid parcels trajectories, is obtained.
Imposing the condition V1 = 0 in the system of equations (1)-(3) yields:

∂U1

∂t
+ g

∂ξ1

∂x
= 0 (18)

g
∂ξ1

∂y
+ fU1 = 0 (19)

∂U1

∂x
+

1

h1

∂ξ1

∂t
= 0 (20)

Assume a solution given by a progressive wave in the direction x but with an unknown structure
in direction y:

U1 = Υ1(y) exp(i(αx− ωt)) (21)

ξ1 = Ξ1(y) exp(i(αx− ωt)) (22)

Replacing these in the system of equations (18)-(20) yields:
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−iωΥ1 + igαΞ1 = 0 (23)

g
∂Ξ1

∂y
+ fΥ1 = 0 (24)

iαΥ1 − i
ω

h1
Ξ1 = 0 (25)

From equations (23) and (25) Ξ1 is given by:

Ξ1(α2gh1 − ω2) = 0 (26)

so in order for a non-trivial solution for Ξ1 to exist, it is required that:

ω2

α2
= gh1 (27)

which gives:

c =
ω

α
= ±

√
gh1 (28)

which is the celerity of the progressive wave considered in this new case, and which is identical to

the celerity of gravity waves not affected by Coriolis.
To determine the transverse structure of the wave, equation (24) is used in combination with

(25), which yields:

∂Ξ1

∂y
± f

c
Ξ1 = 0 (29)

with c given by (27). Obviously, the only solution of this equation that makes physical sense is
that for which the amplitude of the wave decays away from the coast, i.e.:

Ξ1 = Ξ10 exp(−f
c
y) (30)

where Ξ10 denotes the amplitude of the wave at the coast (y = 0).
Replacing this result in (25) and using (27) yields:

Υ1 = Ξ10

√
g

h1
exp(−f

c
y) (31)

So, replacing back in (21) and (22), the following relationships for the mean velocity and the
surface deformation are finally obtained:

U1 = Ξ10

√
g

h1
exp(−f

c
y) cos(αx − ωt) (32)

ξ1 = Ξ10 exp(−f
c
y) cos(αx− ωt) (33)

where only the real part of equations (21) and (22) has been considered.
Equations (32) and (33) show an exponential decay of the wave amplitude in direction y , at a

rate given by the Rossby radius of deformation: f/c (Fig. 2).
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Figure 2: Transverse profile of a Kelvin wave propagating in direction x.

The waves resulting from this analysis are called Kelvin waves. Therefore, Poincaré and Kelvin

waves are two possible and different responses of the water body to the Coriolis effect. Fig. 3 shows
the dispersion relationship obtained from the present analysis for both wave types. Note that while

Poincaré waves are always superinertial (ω > f), Kelvin waves can be both subinertial (ω < f) or
superinertial.

Case 2: Two-layer stratified water basin

In this case it is necessary to apply the linearized depth-averaged RANS equations with Coriolis

effects to each layer, in both horizontal directions x and y. A system of six equations is obtained:

∂U1

∂t
+ g

∂ξ1

∂x
− fV1 = 0 (34)

∂V1

∂t
+ g

∂ξ1

∂y
+ fU1 = 0 (35)

∂U1

∂x
+
∂V1

∂y
+

1

h1

∂ξ1

∂t
− 1

h1

∂ξ2

∂t
= 0 (36)

∂U2

∂t
+ g

ρ1

ρ2

∂ξ1

∂x
+ g

(ρ2− ρ1)

ρ2

∂ξ2

∂x
− fV2 = 0 (37)

∂V2

∂t
+ g

ρ1

ρ2

∂ξ1

∂y
+ g

(ρ2− ρ1)

ρ2

∂ξ2

∂y
+ fU2 = 0 (38)

∂U2

∂x
+
∂V2

∂y
+

1

h2

∂ξ2

∂t
= 0 (39)

where Ui and Vi denote the depth-averaged velocity components in directions x and y, respectively,
in each layer i, with i = 1 denoting the surface layer and i = 2 the bottom layer, of the flow associ-

ated with the oscillations of the system, and ξ1(x, y) and ξ2(x, y) denote the vertical displacement
of the free surface and density interface, respectively, associated with those oscillations. Likewise,

h1 and h2 denote the thicknesses of the surface and bottom layers, respectively, and ρ1 and ρ2

denote the water density in those same layers, respectively.

To determine the normal modes of oscillation of the Poincaré waves in the two-layer system,
a progressive wave type of response is assumed, where the depth-averaged velocity components in

each layer and the deformation of the free surface and density interface are given by:
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Figure 3: Dispersion relationship for Poincaré and Kelvin waves.

Ui = Υi exp(i(αx+ βy − ωt)) (40)

Vi = Ψi exp(i(αx+ βy − ωt)) (41)

ξi = Ξi exp(i(αx+ βy − ωt)) (42)

where i = 1, 2 denote surface or bottom layers, respectively. Just as in the non-stratified case,

α = 2π/λx, β = 2π/λy, ω = 2π/T , and λx, λy and T denote the wavelengths and period of the
oscillations, respectively. Likewise, Υi, Ψi and Ξi denote the amplitudes of the velocity waves in
each layer i and surface and interface deformation waves, respectively. Replacing these expressions

in the system of equations (34)-(39), the following algebraic problem for Υi, Ψi and Ξi is obtained:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−iω −f iαg 0 0 0

f −iω iβg 0 0 0
iα iβ −i ωh1

0 0 i ωh1

0 0 iαg ρ1
ρ2
−iω −f iαg

(ρ2−ρ1)
ρ2

0 0 iβg ρ1
ρ2

f −iω iβg (ρ2−ρ1)
ρ2

0 0 0 iα iβ −i ωh2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

Υ1

Ψ1

Ξ1

Υ2

Ψ2

Ξ2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (43)

This is, again, an eigenvalue problem. In order for a non-trivial solution for the amplitudes Υi,
Ψi and Ξi to exist, the coefficient matrix must have a determinant equal to zero. Imposing such

condition yields:

−f
4ω2

h1h2
+ 2

f2ω4

h1h2
− ω6

h1h2
+ (α2 + β2)2g2ω2(

ρ1

ρ2
− 1)+

(α2 + β2)(−f2gω2 + gω4)(
1

h1
+

1

h2
) = 0 (44)

Simplifying the above equation, introducing the composite wave number: K2 = α2 + β2 and

the definition: c2
i = (ρ2−ρ1)

ρ2
g h1h2
h1+h2

, gives:

K2

c2
i

(ω2 − f2)−K4 − (ω2 − f2)2

c2
i g(h1 + h2)

= 0 (45)

equation that represents the dispersion relationship for long waves of small amplitude in a two-layer

stratified water basin affected by Coriolis force (internal Poincaré waves). It is convenient to note
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that the third term of the left hand side of the equation is of a lesser order of magnitude than the

rest of the terms in the equation. Taking this into consideration, it is easy to verify that, without
important errors, equation (45) can be approximated by the following relationship:

K2c2
i + f2 = ω2 (46)

which gives:

ω

K
= ± ci√

1− (f/ω)2
(47)

If f/ω << 1 then the celerity of internal waves not affected by Coriolis is recovered: ω/K = ±ci.
In this case K simply represents the wave number in the direction of propagation of the waves.
Calling λ = 2π/K the corresponding wavelength, then the condition f/ω << 1 can be written as:

λ

2π
<<

ci
f

(48)

Since ci, according to its definition, corresponds to the celerity of internal gravity waves not

affected by Coriolis in a two-layer stratified water basin, then it is concluded that in order to neglect
Coriolis effects upon internal Poincaré waves, the wavelength considered must be lower than about
ci/f . This ratio is known as internal Rossby radius of deformation. Assuming that the longest

wavelength that can occur in a given lake or reservoir is similar to its horizontal dimensions, then
to neglect Coriolis effects on the internal waves those dimensions must be smaller than the internal

Rossby radius of deformation. This condition can be expressed in terms of an internal Burger
number (Antenucci and Imberger, 2001):

Bui =
ci/f

L
(49)

where, again, L is a length scale characterizing the horizontal extension of the water body. Hence,
for Coriolis effects to be important in the two-layer stratified water basin, the internal Burger

number must be smaller than about unity. Since ci is clearly smaller than c, the internal Burger
number, Bui, is obviously smaller than Bu, and the dimensions required for the stratified water
body not to be affected by Coriolis are reduced considerably with respect to the non-stratified

situation.
The symmetry of the dispersion relation (47) with respect to α and β implies that the x axis

can be conveniently oriented in the direction of propagation of the wave, so that λy = 0, and
∂ξi/∂y = 0. This means that for this orientation of the x axis, wave fronts are parallel to y and

therefore there is no variation of the elevation of the free surface and density interface along y.
From (35) and (38) it is thus concluded that, in this case, the time variation of the transverse

velocities V1 and V2 is governed by the relationship:

∂Vi
∂t

= −fUi (50)

with i = 1, 2. Just as in the previously studied non-stratified case, this equation predicts the

existence of non-zero transverse velocities in the system, even though the waves propagate unidi-
rectionally along x, which indicates the existence of elliptic orbits for the trajectories of fluid parcels

in the water basin, just as it was shown for the non-stratified case.
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Consider now Kelvin waves, which are affected by the boundaries of the water basin. For waves

propagating in the direction x, parallel to a solid wall, the wall imposes a non-zero transverse
pressure gradient ∂ξi/∂y, which nevertheless vanishes at some distance away from it. If in this

case the transverse pressure gradient in each layer is balanced by the Coriolis force in each layer,
fUi, then the surface and internal waves in the system will have a zero transverse velocity, Vi, and

consequently fluid parcels will have rectilinear trajectories.
Imposing the condition Vi = 0 in the system of equations (34)-(39), yields:

∂U1

∂t
+ g

∂ξ1

∂x
= 0 (51)

g
∂ξ1

∂y
+ fU1 = 0 (52)

∂U1

∂x
+

1

h1

∂ξ1

∂t
− 1

h1

∂ξ2

∂t
= 0 (53)

∂U2

∂t
+ g

ρ1

ρ2

∂ξ1

∂x
+ g

(ρ2− ρ1)

ρ2

∂ξ2

∂x
= 0 (54)

g
ρ1

ρ2

∂ξ1

∂y
+ g

(ρ2 − ρ1)

ρ2

∂ξ2

∂y
+ fU2 = 0 (55)

∂U2

∂x
+

1

h2

∂ξ2

∂t
= 0 (56)

Consider, just as in the previous section for a non-stratified water body, a solution for the Kelvin

waves consisting of a progressive wave in direction x, but with an unknown structure in direction
y:

Ui = Υi(y) exp(i(αx− ωt)) (57)

ξi = Ξi(y) exp(i(αx− ωt)) (58)

with i = 1, 2. Replacing these definitions in the system of equations (51)-(56), yields:

−iωΥ1 + iαgΞ1 = 0 (59)

g
d Ξ1

dy
+ fΥ1 = 0 (60)

iαΥ1 − i
ω

h1
Ξ1 + i

ω

h1
Ξ2 = 0 (61)

−iωΥ2 + iαg
ρ1

ρ2
Ξ1 + iαg

(ρ2− ρ1)

ρ2
Ξ2 = 0 (62)

g
ρ1

ρ2

d Ξ1

dy
+ g

(ρ2− ρ1)

ρ2

d Ξ2

dy
+ fΥ2 = 0 (63)

iαΥ2 − i
ω

h2
Ξ2 = 0 (64)

which corresponds to the expected eigenvalue problem for the amplitudes Υi and Ξi for the Kelvin
waves in the stratified case. This problem results to be identical to that solved in previous lecture
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notes for gravity waves without Coriolis effects. Indeed, from this set of equations it is possible to

obtain:

∣∣∣∣∣∣∣∣∣∣

−ω αg 0 0
α − ω

h1
0 ω

h1

0 αg ρ1
ρ2
−ω αg

(ρ2−ρ1)
ρ2

0 0 α − ω
h2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

Υ1

Ξ1

Υ2

Ξ2

∣∣∣∣∣∣∣∣∣
= 0 (65)

which is identical to the equivalent problem of internal gravity waves in a two-layer stratified water

basin not affected by Coriolis, and which has the already obtained solution for the celerity of
internal waves:

ω

α
= ±

√
(ρ2 − ρ1)

ρ2
(
h1h2

h1 + h2
) g (66)

which now represents the celerity of internal Kelvin waves. It is concluded that the latter have a

celerity ω/α equal to that of internal gravity waves not affected by Coriolis: ci.
The transverse structure of the Kelvin waves is obtained by solving equations (60) and (63).

Using the rest of the equations of the system (59)-(64) it is easy to show that:

Ξ2 = Ξ20 exp(− f
ci
y) (67)

Ξ1 = −(ρ2 − ρ1)

ρ1
(

h2

h1 + h2
) Ξ20 exp(− f

ci
y) (68)

where Ξ20 denotes the amplitude of the internal wave at the coast (y = 0).
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