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Consider a water body of finite extension L in the x direction, that is stratified in two layers
of thicknesses h1 and h2, respectively, with densities ρ1 and ρ2, respectively, where the subindex

1 denotes the upper layer and the subindex 2 the lower layer (Fig. 1). For stable stratification,
ρ1 < ρ2, obviously. Consider now wind blowing over the free surface in the x direction. A shear

stress τs is thus exerted on the free surface in the same direction. This shear stress is equivalent
to a vertical transfer of longitudinal momentum to the initially still water volume and a flow is
stablished within that volume in response.

Applying the Reynolds averaged Navier-Stokes equations to each layer of Fig. 1, assuming flow
only in the x− z plane, yields:
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where ui and wi denote the horizontal and vertical components of flow velocity induced by the wind
in layer i, respectively, with i = 1, 2; p̂i denotes the piezometric pressure in layer i; (τxx)i and (τzz)i
denote normal stresses in layer i, in the longitudinal and vertical directions, respectively; and (τxz)i
and (τzx)i denote shear stresses in layer i, in the longitudinal and vertical directions, respectively.

Applying the continuity equation for incompressible fluid to each layer yields:
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Neglecting non-linear terms in the left hand side of equations (1) and (2), assuming as a first
order approximation that the wind induced flow velocities are small, and that the pressure in each

layer is hydrostatic, those equations are reduced to:
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Suppose the wind induces displacements ξ1 and ξ2 of the free surface and density interface

between layers 1 and 2, respectively (Fig. 2). In each layer the pressure is hydrostatic, therefore:
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Figure 1: Two-layer stratified fluid with wind shear stress acting in the x direction.

p̂i = pi + ρigz = constant (6)

where pi denotes the thermodynamic pressure in layer i, which varies with x and z. It is easy to
see that for points A and B in Fig. 3: pA = 0 and pB = ρ1g(h1 + ξ1 − ξ2). With this result, the

respective piezometric pressures are then:

p̂1 = p̂A = ρ1g(h1 + h2 + ξ1) (7)

p̂2 = p̂B = ρ1g(h1 + ξ1 − ξ2) + ρ2g(h2 + ξ2) (8)

from where the longitudinal piezometric pressure gradients in layers 1 and 2 are obtained:
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Replacing these expressions in equation (4) yields, for each layer:
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These equations are now depth-averaged by integrating vertically within each layer, to obtain
equations that predict the time evolution of the depth-averaged wind induced velocity in each layer:
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Figure 2: Definition of free surface and density interface displacements, ξ1 y ξ2, respectively.
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Figure 3: Determining the piezometric pressure in layers 1 and 2.

Considering that ξ1 and ξ2 are independent of z and defining the depth-averaged velocities in
each layer as:
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yields:
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In the depth-averaged equations, the only relevant shear stresses are those acting on the free

surface, (τzx)h1+h2 = τs, on the density interface, (τzx)h2 = τi, and on the bottom wall, (τzx)0 = τf .
The system of equations (17) and (18) is similar to the classic result proposed by Spigel and

Imberger (1980) and Heaps (1984).
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The steady state situation is attained when ∂Ui/∂t = 0, that is, when the wind induced flow in

each layer is completely developed. In such situation, equations (17) and (18) yield expressions to
evaluate the steady state slopes of the free surface and density interface displacements:
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Since the wind induced flow is driven by the surface shear, τs, it is convenient to express the
previous result as:
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Defining the wind shear velocity as: u∗s =
√
τs/ρ1, then these equations can be rewritten as:
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From this result two different cases can be analyzed:

Case 1: Water basin with no stratification

This case corresponds to a one-layer water basin of depth h1 and constant density ρ1. Wind

induced shear tilts the free surface with a positive slope dξ1/dx, which increases the water surface
elevation at the downwind end of the basin and lowers it at the upwind end due to conservation of

volume (Fig. 4). This response is known as wind set-up.
Associated with the set-up of the free surface there is an oscillatory motion of the whole system,

consisting of a periodic variation of the water surface slope that gives rise to a periodic alternation
of the water surface elevation at the end walls of the basin. This motion is known as seiche and is
generated particularly when the wind stops. A specific analysis of this motion will be addressed in

a different lecture note.
In a one-layer basin, equation (23) changes to:
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) (25)

However, it can be shown, both theoretically and experimentally, that the bottom shear stress,
τb, is generally small compared with τs, the ratio of the two being of the order of 1 to 4 %, and

therefore it can be neglected in the previous equation. With this assumption, the slope of the free
surface is given by:
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(26)
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Figure 4: Wind set-up in a non-stratified water basin.

The right hand side of this equation has the structure of a Froude number. Defining Fr∗ =
u∗s/
√
gh1, then the free surface slope is simply expressed as:

∂ξ1

∂x
= Fr2

∗ (27)

Case 2: Two-layer stratified basin

This is the case for which equations (23) and (24) were deduced. Usually it is assumed that the

interfacial shear stress, τi, just as the bottom shear stress, is negligible compared with τs. With this
classical assumption (Spigel and Imberger, 1980) the free surface and interfacial slopes associated
with the response of the stratified water basin to wind, are given by:
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where Ri0 denotes the dimensionless parameter known as Richardson Number :
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∂ξ2
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From these expressions it is concluded that the free surface tilt of the two-layer stratified basin
is identical to that of the one-layer non-stratified basin. It can also be concluded that the density
interface has a negative slope, indicating that the tilt is opposite to that of the free surface, with a
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Figure 5: Wind induced free surface and density interface tilt in a two-layer stratified basin.

lower interface elevation at the downwind end of the basin and a higher interface elevation at the
upwind end (Fig. 5). The ratio of the interface to free surface slopes results to be:

∂ξ2/∂x

∂ξ1/∂x
= − ρ1

∆ρ
(33)

which, given that the density difference between the surface and bottom layers, ∆ρ, is generally
small, indicates that the inclination of the density interface is much larger than that of the free

surface and that the latter can ultimately be neglected with respect to the former.
Just as it occurs with the free surface, the density interface can also undergo an oscillatory

motion known as internal seiche. This behavior will be analyzed in a different lecture note.
It is interesting to note that the Richardson number Ri0 is inversely proportional to the wind

induced surface shear stress. This means, from (32), that large wind speeds are associated with
large interfacial slopes or important tilts of the density interface. Given that to satisfy volume

conservation the interface pivots around the middle point along the basin, a situation may occur,
at large enough wind speeds, for which the density interface goes all the way up to the free surface
at the upwind end of the water basin (Fig. 6). This phenomenon is known as upwelling and its

occurrence implies a much more complex behavior of the hydrodynamics of the system, since the
density gradients have in this case important horizontal components. The existence of upwelling

may force the use of 2-D or 3-D models to predict the behavior of the stratification in the system,
instead of 1-D models that are only able to capture vertical variations of the stratification. Besides,

the occurrence of upwelling has important environmental consequences, as it implies the irruption
in the surface layer of colder water from the hypolimnion with typically worse quality than the

original surface water.
For a basin of longitudinal extension L, the interfacial slope predicted by (32) gives a condition

for upwelling to occur:

h1

L
Ri0 ≈

1

2
(34)

The dimensionless parameter W = (h1/L)Ri0, is known as Wedderburn Number (Imberger and
Patterson, 1989). It provides a criterion to determine whether a given wind event will generate
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Figure 6: Upwelling due to strong tilting of the density interface associated to strong winds and

shallow surface layer. Free surface set-up has been neglected for simplicity.

upwelling. In practice, a threshold value W = 1 is used, such that upwelling will tend to occur for

values of the Wedderburn number lower than unity.
The concept of the Wedderburn number as a criterion for upwelling has been generalized by

Imberger and Patterson (1989). They define a different parameter called Lake Number, which is
computed taking into account a continuous stratification, ρ(z), of the water body, not only the
two-layer case as in the analysis made here so far. As the wind stress is exerted on the free

surface, a net force acts that tend to overturn the density structure of the water column. At critical
equilibrium, the moment exerted by the wind about the center of volume of the water body (located

at an elevation zv) will be exactly balanced by a restoring moment exerted by gravity acting on
the center of mass (located at an elevation zm). Due to the stratification: zm < zv . The critical

equilibrium condition is given by:

∫

As
ρs u

2
∗s dA (zs − zv) = M g (zv − zm) sinβ (35)

where As is the surface area where a generally variable wind shear velocity, u∗s, is applied; ρs
denotes the density of surface water; zs is the elevation of the free surface; M is the total mass of
the stratified water body and β is the angle with respect to the vertical subtended by the centers

of volume and mass (Fig. 7).
If the wind is not strong enough to cause upwelling, the critical equilibrium condition is not met

and the restoring moment of gravity is larger than the overturning moment exerted by the wind.
The Lake number is defined as:

LN =
M g (zv − zm) sin β∫
As

ρs u2∗s dA (zs − zv)
(36)

The geometry and density structure of the water body define M , the total volume, V , zm and
zv :

M =

∫ zs

0
ρ(z) A(z) dz (37)
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Figure 7: Change in location of center of mass of a stratified water body due to wind induced

surface shear stress.

V =

∫ zs

0
A(z) dz (38)

zm =

∫ zs
0 z ρ(z) A(z) dz

M
(39)

zv =

∫ zs
0 z A(z) dz

V
(40)

Replacing these definitions in (36), assuming that u∗s is uniform across the surface of the water
body, gives:

LN =
g St sin β

ρs u2∗s As (zs − zv)
(41)

where St given by:

St = M (zv − zm) =

∫ zs

0
(zv − z) ρ(z) A(z) dz (42)

is called the stability of the water body.
The angle β can be estimated for the critical condition as that for which the metalimnion

intersects the free surface, so that:

β =
zs − zT
L/2

(43)

where zT denotes the elevation of the center of the metalimnion (where the hypothetical thermocline

would be located), and L is the fetch of the wind in the lake. The fetch is scaled using the surface

area, such that: L/2 ≈ A1/2
s . With this result, the Lake number is given by:

LN =
g St (1− zT /zs)

ρs u2∗s A
3/2
s (1− zv/zs)

(44)

For large values of the Lake number the stratification is severe and dominate the forces induced
by the wind stress. Under these circumstances, stratification is expected to be mainly horizontal.

On the contrary, small values of the Lake number are associated with strong winds and weak
stratification, a situation for which upwelling may occur.
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