
PreciseJava.com - Best practices to improve performance in JDBC

Best practices to improve performance in JDBC
This topic illustrates the best practices to improve performance in JDBC with the following sections:

● Overview of JDBC

● Choosing the right Driver

● Optimization with Connection

● Set optimal row pre-fetch value

● Use Connection pool

● Control transaction

● Choose optimal isolation level

● Close Connection when finished

● Optimization with Statement

● Choose right Statement interface

● Do batch update

● Do batch retrieval using Statement

● Close Statement when finished

● Optimization with ResultSet

● Do batch retrieval using ResultSet

● Setup proper direction of processing rows

● Use proper getxxx() methods

● Close ResultSet when finished

● Optimization with SQL Query

● Cache the read-only and read-mostly data

● Fetch small amount of data iteratively instead of fetching whole data at once

● Key Points

Overview of JDBC
JDBC defines how a Java program can communicate with a database. This section focuses mainly on JDBC 2.0
API. JDBC API provides two packages they are java.sql and javax.sql . By using JDBC API, you can connect virtually
any database, send SQL queries to the database and process the results.

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (1 of 13)5/3/2005 14:34:54

http://www.precisejava.com/index.htm
http://www.precisejava.com/misc/contactus.htm
http://www.precisejava.com/index.htm
http://www.precisejava.com/index.htm

PreciseJava.com - Best practices to improve performance in JDBC

JDBC architecture defines different layers to work with any database and java, they are JDBC API interfaces and
classes which are at top most layer(to work with java), a driver which is at middle layer (implements the JDBC API
interfaces that maps java to database specific language) and a database which is at the bottom (to store physical
data). The following figure illustrates the JDBC architecture.

JDBC API provides interfaces and classes to work with databases. Connection interface encapsulates database
connection functionality, Statement interface encapsulates SQL query representation and execution functionality and
ResultSet interface encapsulates retrieving data which comes from execution of SQL query using Statement.

The following are the basic steps to write a JDBC program

 1. Import java.sql and javax.sql packages

 2. Load JDBC driver

 3. Establish connection to the database using Connection interface

 4. Create a Statement by passing SQL query

 5. Execute the Statement

 6. Retrieve results by using ResultSet interface

 7. Close Statement and Connection

We will look at these areas one by one, what type of driver you need to load, how to use Connection interface in the
best manner, how to use different Statement interfaces, how to process results using ResultSet and finally how to
optimize SQL queries to improve JDBC performance.

Note1: Your JDBC driver should be fully compatible with JDBC 2.0 features in order to use some of the suggestions
mentioned in this section.

Note2: This Section assumes that reader has some basic knowledge of JDBC.

Choosing right Driver
Here we will walk through initially about the types of drivers, availability of drivers, use of drivers in different situations,
and then we will discuss about which driver suits your application best.

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (2 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

Driver is the key player in a JDBC application, it acts as a mediator between Java application and database. It
implements JDBC API interfaces for a database, for example Oracle driver for oracle database, Sybase driver for
Sybase database. It maps Java language to database specific language including SQL.

JDBC defines four types of drivers to work with. Depending on your requirement you can choose one among them.

Here is a brief description of each type of driver :

Type of
driver Tier Driver mechanism Description

1 Two JDBC-ODBC
This driver converts JDBC calls to ODBC calls through JDBC-
ODBC Bridge driver which in turn converts to database calls.
Client requires ODBC libraries.

2 Two Native API - Partly - Java driver This driver converts JDBC calls to database specific native calls.
Client requires database specific libraries.

3 Three JDBC - Net -All Java driver
This driver passes calls to proxy server through network protocol
which in turn converts to database calls and passes through
database specific protocol. Client doesn't require any driver.

4 Two Native protocol - All - Java driver This driver directly calls database. Client doesn't require any
driver.

Obviously the choice of choosing a driver depends on availability of driver and requirement. Generally all the
databases support their own drivers or from third party vendors. If you don't have driver for your database, JDBC-
ODBC driver is the only choice because all most all the vendors support ODBC. If you have tiered requirement (two
tier or three tier) for your application, then you can filter down your choices, for example if your application is three
tiered, then you can go for Type three driver between client and proxy server shown below. If you want to connect to
database from java applet, then you have to use Type four driver because it is only the driver which supports that
feature. This figure shows the overall picture of drivers from tiered perspective.

This figure illustrates the drivers that can be used for two tiered and three tiered applications. For both two and three
tiered applications, you can filter down easily to Type three driver but you can use Type one, two and four drivers for
both tiered applications. To be more precise, for java applications(non-applet) you can use Type one, two or four
driver. Here is exactly where you may make a mistake by choosing a driver without taking performance into
consideration. Let us look at that perspective in the following section.

Type 3 & 4 drivers are faster than other drivers because Type 3 gives facility for optimization techniques provided by
application server such as connection pooling, caching, load balancing etc and Type 4 driver need not translate
database calls to ODBC or native connectivity interface. Type 1 drivers are slow because they have to convert JDBC
calls to ODBC through JDBC-ODBC Bridge driver initially and then ODBC Driver converts them into database specific
calls. Type 2 drivers give average performance when compared to Type 3 & 4 drivers because the database calls
have to be converted into database specific calls. Type 2 drivers give better performance than Type 1 drivers.

Finally, to improve performance

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (3 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

1. Use Type 4 driver for applet to database communication.

2. Use Type 2 driver for two tiered applications for communication between java client and the database that gives
better performance when compared to Type1 driver

3. Use Type 1 driver if your database doesn't support a driver. This is rare situation because almost all major
databases support drivers or you will get them from third party vendors.

4.Use Type 3 driver to communicate between client and proxy server (weblogic, websphere etc) for three tiered
applications that gives better performance when compared to Type 1 & 2 drivers.

Optimization with Connection
java.sql package in JDBC provides Connection interface that encapsulates database connection functionality. Using
Connection interface, you can fine tune the following operations :

 1. Set optimal row pre-fetch value

 2. Use Connection pool

 3. Control transaction

 4. Choose optimal isolation level

 5. Close Connection when finished

Each of these operations effects the performance. We will walk through each operation one by one.

1. Set optimal row pre-fetch value

We have different approaches to establish a connection with the database, the first type of approach is :
 1. DriverManager.getConnection(String url)

 2. DriverManager.getConnection(String url, Properties props)

 3. DriverManager.getConnection(String url, String user, String password)

 4. Driver.connect(String url, Properties props)

When you use this approach, you can pass database specific information to the database by passing properties using
Properties object to improve performance. For example, when you use oracle database you can pass default number
of rows that must be pre-fetched from the database server and the default batch value that triggers an execution
request. Oracle has default value as 10 for both properties. By increasing the value of these properties, you can
reduce the number of database calls which in turn improves performance. The following code snippet illustrates this
approach.
 java.util.Properties props = new java.util.Properties();

 props.put("user","scott");

 props.put("password","tiger");

 props.put("defaultRowPrefetch","30");

 props.put("defaultBatchValue","5");

 Connection con = DriverManger.getConnection("jdbc:oracle:thin:@hoststring", props);

You need to figure out appropriate values for above properties for better performance depending on application's
requirement. Suppose, you want to set these properties for search facility, you can increase defaultRowPrefetch so
that you can increase performance significantly.

The second type of approach is to get connection from DataSource.

You can get the connection using javax.sql.DataSource interface. The advantage of getting connection from this
approach is that the DataSource works with JNDI. The implementation of DataSource is done by vendor, for example
you can find this feature in weblogic, websphere etc. The vendor simply creates DataSource implementation class
and binds it to the JNDI tree. The following code shows how a vendor creates implementation class and binds it to

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (4 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

JNDI tree.
 DataSourceImpl dsi = new DataSourceImpl();

 dsi.setServerName("oracle8i");

 dsi.setDatabaseName("Demo");

 Context ctx = new InitialContext();

 ctx.bind("jdbc/demoDB", dsi);

This code registers the DataSourceImpl object to the JNDI tree, then the programmer can get the DataSource
reference from JNDI tree without knowledge of the underlying technology.
 Context ctx = new InitialContext();

 DataSource ds = (DataSource)ctx.lookup("jdbc/demoDB");

 Connection con = ds.getConnection();

By using this approach we can improve performance. Nearly all major vendor application servers like weblogic,
webshpere implement the DataSource by taking connection from connection pool rather than a single connection
every time. The application server creates connection pool by default. We will discuss the advantage of connection
pool to improve performance in the next section.

2. Use Connection pool

Creating a connection to the database server is expensive. It is even more expensive if the server is located on
another machine. Connection pool contains a number of open database connections with minimum and maximum
connections, that means the connection pool has open connections between minimum and maximum number that you
specify. The pool expands and shrinks between minimum and maximum size depending on incremental capacity. You
need to give minimum, maximum and incremental sizes as properties to the pool in order to maintain that functionality.
You get the connection from the pool rather directly .For example, if you give properties like min, max and incremental
sizes as 3, 10 and 1 then pool is created with size 3 initially and if it reaches it's capacity 3 and if a client requests a
connection concurrently, it increments its capacity by 1 till it reaches 10 and later on it puts all its clients in a queue.

There are a few choices when using connection pool.

1. You can depend on application server if it supports this feature, generally all the application servers support
connection pools. Application server creates the connection pool on behalf of you when it starts. You need to give
properties like min, max and incremental sizes to the application server.

2. You can use JDBC 2.0 interfaces, ConnectionPoolDataSource and PooledConnection if your driver implements
these interfaces

3. Or you can create your own connection pool if you are not using any application server or JDBC 2.0 compatible
driver.

By using any of these options, you can increase performance significantly. You need to take care of properties like
min, max and incremental sizes. The maximum number of connections to be given depends on your application's
requirement that means how many concurrent clients can access your database and also it depends up on your
database's capability to provide maximum number of connections.

3. Control transaction

In general, transaction represents one unit of work or bunch of code in the program that executes in it's entirety or
none at all. To be precise, it is all or no work. In JDBC, transaction is a set of one or more Statements that execute as
a single unit.

java.sql.Connection interface provides some methods to control transaction they are
 public interface Connection {

 boolean getAutoCommit();

 void setAutoCommit(boolean autocommit);

 void commit();

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (5 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

 void rollback();

 }

JDBC's default mechanism for transactions:

By default in JDBC transaction starts and commits after each statement's execution on a connection. That is the
AutoCommit mode is true. Programmer need not write a commit() method explicitly after each statement.

Obviously this default mechanism gives good facility for programmers if they want to execute a single statement. But it
gives poor performance when multiple statements on a connection are to be executed because commit is issued after
each statement by default, that in turn reduces performance by issuing unnecessary commits. The remedy is to flip it
back to AutoCommit mode as false and issue commit() method after a set of statements execute, this is called as
batch transaction. Use rollback() in catch block to rollback the transaction whenever an exception occurs in your
program. The following code illustrates the batch transaction approach.
try{

 connection.setAutoCommit(false);

 PreparedStatement ps = connection.preareStatement("UPDATE employee SET Address=? WHERE name=?");

 ps.setString(1,"Austin");

 ps.setString(2,"RR");

 ps.executeUpdate();

 PreparedStatement ps1 = connection.prepareStatement("UPDATE account SET salary=? WHERE name=?");

 ps1.setDouble(1, 5000.00);

 ps1.setString(2,"RR");

 ps1.executeUpdate();

 connection.commit();

 connection.setAutoCommit(true);

 }catch(SQLException e){ connection.rollback();}

 finally{

 if(ps != null){ ps.close();}

 if(ps1 != null){ps1.close();}

 if(connection != null){connection.close();}

 }

This batch transaction gives good performance by reducing commit calls after each statement's execution.

4. Choose optimal isolation level

Isolation level represent how a database maintains data integrity against the problems like dirty reads, phantom reads
and non-repeatable reads which can occur due to concurrent transactions. java.sql.Connection interface provides
methods and constants to avoid the above mentioned problems by setting different isolation levels.
public interface Connection {

 public static final int TRANSACTION_NONE = 0

 public static final int TRANSACTION_READ_COMMITTED = 2

 public static final int TRANSACTION_READ_UNCOMMITTED = 1

 public static final int TRANSACTION_REPEATABLE_READ = 4

 public static final int TRANSACTION_SERIALIZABLE = 8

 int getTransactionIsolation();

 void setTransactionIsolation(int isolationlevelconstant);

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (6 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

}

You can get the existing isolation level with getTransactionIsolation() method and set the isolation level with
setTransactionIsolation(int isolationlevelconstant) by passing above constants to this method.

The following table describes isolation level against the problem that it prevents :

Transaction Level Permitted Phenomena Performance impact

 Dirty
reads

 Non
Repeatable
reads

Phantom
reads

TRANSACTION_NONE N/A N/A N/A FASTEST
TRANSACTION_READ_UNCOMMITED YES YES YES FASTEST
TRANSACTION_READ_COMMITED NO YES YES FAST
TRANSACTION_REPEATABLE_READ NO NO YES MEDIUM
TRANSACTION_SERIALIZABLE NO NO NO SLOW

YES means that the Isolation level does not prevent the problem

NO means that the Isolation level prevents the problem

By setting isolation levels, you are having an impact on the performance as mentioned in the above table. Database
use read and write locks to control above isolation levels. Let us have a look at each of these problems and then look
at the impact on the performance.

Dirty read problem :

The following figure illustrates Dirty read problem :

Step 1: Database row has PRODUCT = A001 and PRICE = 10

Step 2: Connection1 starts Transaction1 (T1) .

Step 3: Connection2 starts Transaction2 (T2) .

Step 4: T1 updates PRICE =20 for PRODUCT = A001

Step 5: Database has now PRICE = 20 for PRODUCT = A001

Step 6: T2 reads PRICE = 20 for PRODUCT = A001

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (7 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

Step 7: T2 commits transaction

Step 8: T1 rollbacks the transaction because of some problem

The problem is that T2 gets wrong PRICE=20 for PRODUCT = A001 instead of 10 because of uncommitted read.
Obviously it is very dangerous in critical transactions if you read inconsistent data. If you are sure about not
accessing data concurrently then you can allow this problem by setting TRANSACTION_READ_UNCOMMITED or
TRANSACTION_NONE that in turn improves performance otherwise you have to use
TRANSACTION_READ_COMMITED to avoid this problem.

Unrepeatable read problem :

The following figure illustrates Unrepeatable read problem :

Step 1: Database row has PRODUCT = A001 and PRICE = 10

Step 2: Connection1 starts Transaction1 (T1) .

Step 3: Connection2 starts Transaction2 (T2) .

Step 4: T1 reads PRICE =10 for PRODUCT = A001

Step 5: T2 updates PRICE = 20 for PRODUCT = A001

Step 6: T2 commits transaction

Step 7: Database row has PRODUCT = A001 and PRICE = 20

Step 8: T1 reads PRICE = 20 for PRODUCT = A001

Step 9: T1 commits transaction

Here the problem is that Transaction1 reads 10 first time and reads 20 second time but it is supposed to be 10 always
whenever it reads a record in that transaction. You can control this problem by setting isolation level as
TRANSACTION_REPEATABLE_READ.

Phantom read problem :

The following figure illustrates Phantom read problem :

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (8 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

Step 1: Database has a row PRODUCT = A001 and COMPANY_ID = 10

Step 2: Connection1 starts Transaction1 (T1) .

Step 3: Connection2 starts Transaction2 (T2) .

Step 4: T1 selects a row with a condition SELECT PRODUCT WHERE COMPANY_ID = 10

Step 5: T2 inserts a row with a condition INSERT PRODUCT=A002 WHERE

 COMPANY_ID= 10

Step 6: T2 commits transaction

Step 7: Database has 2 rows with that condition

Step 8: T1 select again with a condition SELECT PRODUCT WHERE COMPANY_ID=10

 and gets 2 rows instead of 1 row

Step 9: T1 commits transaction

Here the problem is that T1 gets 2 rows instead of 1 row up on selecting the same condition second time. You can
control this problem by setting isolation level as TRANSACTION_SERIALIZABLE

Choosing a right isolation level for your program:

Choosing a right isolation level for your program depends upon your application's requirement. In single application
itself the requirement generally changes, suppose if you write a program for searching a product catalog from your
database then you can easily choose TRANSACTION_READ_UNCOMMITED because you need not worry about the
problems that are mentioned above, some other program can insert records at the same time, you don't have to
bother much about that insertion. Obviously this improves performance significantly.

If you write a critical program like bank or stocks analysis program where you want to control all of the above
mentioned problems, you can choose TRANSACTION_SERIALIZABLE for maximum safety. Here it is the tradeoff
between the safety and performance. Ultimately we need safety here.

If you don't have to deal with concurrent transactions your application, then the best choice is TRANSACTION_NONE
to improve performance.

Other two isolation levels need good understanding of your requirement. If your application needs only committed
records, then TRANSACTION_READ_COMMITED isolation is the good choice. If your application needs to read a row
exclusively till you finish your work, then TRANSACTION_REPEATABLE_READ is the best choice.

Note: Be aware of your database server's support for these isolation levels. Database servers may not support all of
these isolation levels. Oracle server supports only two isolation levels, TRANSACTION_READ_COMMITED and

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (9 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

TRANSACTION_SERIALIZABLE isolation level, default isolation level is TRANSACTION_READ_COMMITED.

5. Close Connection when finished

Closing connection explicitly allows garbage collector to recollect memory as early as possible. Remember that when
you use the connection pool, closing connection means that it returns back to the connection pool rather than closing
direct connection to the database.

Optimization with Statement
Statement interface represents SQL query and execution and they provide number of methods and constants to work
with queries. They also provide some methods to fine tune performance. Programmer may overlook these fine tuning
methods that result in poor performance. The following are the tips to improve performance by using statement
interfaces

 1. Choose the right Statement interface

 2. Do batch update

 3. Do batch retrieval using Statement

 2. Close Statement when finished

1. Choose right Statement interface

There are three types of Statement interfaces in JDBC to represent the SQL query and execute that query, they are
Statement, PreparedStatement and CallableStatement.

Statement is used for static SQL statement with no input and output parameters, PreparedStatement is used for
dynamic SQL statement with input parameters and CallableStatement is used for dynamic SQL satement with both
input and output parameters, but PreparedStatement and CallableStatement can be used for static SQL statements
as well. CallableStatement is mainly meant for stored procedures.

PreparedStatement gives better performance when compared to Statement because it is pre-parsed and pre-
compiled by the database once for the first time and then onwards it reuses the parsed and compiled statement.
Because of this feature, it significantly improves performance when a statement executes repeatedly, It reduces the
overload incurred by parsing and compiling.

CallableStatement gives better performance when compared to PreparedStatement and Statement when there is a
requirement for single request to process multiple complex statements. It parses and stores the stored procedures in
the database and does all the work at database itself that in turn improves performance. But we loose java portability
and we have to depend up on database specific stored procedures.

2. Do batch update

You can send multiple queries to the database at a time using batch update feature of statement objects this reduces
the number of JDBC calls and improves performance. Here is an example of how you can do batch update,
statement.addBatch("sql query1");

statement.addBatch(" sql query2");

statement.addBatch(" sql query3");

statement.executeBatch();

All three types of statements have these methods to do batch update.

3. Do batch retrieval using Statement

You can get the default number of rows that is provided by the driver. You can improve performance by increasing
number of rows to be fetched at a time from database using setFetchSize() method of the statement object.

Initially find the default size by using

Statement.getFetchSize(); and then set the size as per your requirement
Statement.setFetchSize(30);

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (10 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

Here it retrieves 30 rows at a time for all result sets of this statement.

4. Close Statement when finished

Close statement object as soon as you finish working with that, it explicitly gives a chance to garbage collector to
recollect memory as early as possible which in turn effects performance.
Statement.close();

Optimization with ResultSet
ResultSet interface represents data that contains the results of executing an SQL Query and it provides a number of
methods and constants to work with that data. It also provides methods to fine tune retrieval of data to improve
performance. The following are the fine tuning tips to improve performance by using ResultSet interface.

 1. Do batch retrieval using ResultSet

 2. Set up proper direction for processing the rows

 3. Use proper get methods

 4. Close ResultSet when finished

1. Do batch retrieval using ResultSet

ResultSet interface also provides batch retrieval facility like Statement as mentioned above. It overrides the Statement
behaviour.

Initially find the default size by using

ResultSet.getFetchSize(); and then set the size as per requirement
ResultSet.setFetchSize(50);

This feature significantly improves performance when you are dealing with retrieval of large number of rows like
search functionality.

2. Setup proper direction of processing rows

ResultSet has the capability of setting the direction in which you want to process the results, it has three constants for
this purpose, they are
FETCH_FORWARD, FETCH_REVERSE, FETCH_UNKNOWN

Initially find the direction by using

ResultSet.getFetchDirection(); and then set the direction accordingly
ResultSet.setFetchDirection(FETCH_REVERSE);

3. Use proper getxxx() methods

ResultSet interface provides lot of getxxx() methods to get and convert database data types to java data types and is
flexibile in converting non feasible data types. For example,

getString(String columnName) returns java String object.

columnName is recommended to be a VARCHAR OR CHAR type of database but it can also be a NUMERIC, DATE etc.

If you give non recommended parameters, it needs to cast it to proper java data type that is expensive. For example
consider that you select a product's id from huge database which returns millions of records from search
functionality, it needs to convert all these records that is very expensive.

So always use proper getxxx() methods according to JDBC recommendations.

4. Close ResultSet when finished

Close ResultSet object as soon as you finish working with ResultSet object even though Statement object closes the
ResultSet object implicitly when it closes, closing ResultSet explicitly gives chance to garbage collector to recollect

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (11 of 13)5/3/2005 14:34:54

PreciseJava.com - Best practices to improve performance in JDBC

memory as early as possible because ResultSet object may occupy lot of memory depending on query.
ResultSet.close();

Optimization with SQL Query
This is one of the area where programmers generally make a mistake

If you give a query like
Statement stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery("select * from employee where name=RR");

The returned result set contains all the columns data. you may not need all the column data and want only salary for
RR.

The better query is "select salary from employee where name=RR"

It returns the required data and reduces unnecessary data retrieval.

Cache the read-only and read-mostly data
Every database schema generally has read-only and read-mostly tables. These tables are called as lookup tables.
Read-only tables contain static data that never changes in its life time. Read-mostly tables contain semi dynamic data
that changes often. There will not be any sort of writing operations in these tables.

If an application reads data from these tables for every client request, then it is redundant, unnecessary and
expensive. The solution for this problem is to cache the read-only table data by reading the data from that table once
and caching the read-mostly table data by reading and refreshing with time limit. This solution improves performance
significantly. See the following link for source code of such caching mechanism.
http://www.javaworld.com/javaworld/jw-07-2001/jw-0720-cache.html

You can tweak this code as per application requirement. For read-only data, you need not refresh data in its life time.
For read-mostly data, you need to refresh the data with time limit. It is better to set this refreshing time limit in
properties file so that it can be changed at any time.

Fetch small amount of data iteratively instead of fetching whole data at once
Applications generally require to retrieve huge data from the database using JDBC in operations like searching data.
If the client request for a search, the application might return the whole result set at once. This process takes lot of
time and has an impact on performance. The solution for the problem is

1. Cache the search data at the server-side and return the data iteratively to the client. For example, the search
returns 1000 records, return data to the client in 10 iterations where each iteration has 100 records.

2. Use Stored procedures to return data iteratively. This does not use server-side caching rather server-side
application uses Stored procedures to return small amount of data iteratively.

Out of these solutions the second solution gives better performance because it need not keep the data in the cache
(in-memory). The first procedure is useful when the total amount of data to be returned is not huge.

Key Points

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (12 of 13)5/3/2005 14:34:54

http://www.javaworld.com/javaworld/jw-07-2001/jw-0720-cache.html

PreciseJava.com - Best practices to improve performance in JDBC

1. Use Type two driver for two tiered applications to communicate from java client to database that gives
better performance than Type1 driver.

2. Use Type four driver for applet to database communication that is two tiered applications and three tiered
applications when compared to other drivers.

3. Use Type one driver if you don't have a driver for your database. This is a rare situation because all major
databases support drivers or you will get a driver from third party vendors.

4. Use Type three driver to communicate between client and proxy server (weblogic, websphere etc) for
three tiered applications that gives better performance when compared to Type 1 &2 drivers.

5. Pass database specific properties like defaultPrefetch if your database supports any of them.
6. Get database connection from connection pool rather than getting it directly
7. Use batch transactions.
8. Choose right isolation level as per your requirement. TRANSACTION_READ_UNCOMMITED gives best

performance for concurrent transaction based applications. TRANSACTION_NONE gives best performance
for non-concurrent transaction based applications.

9. Your database server may not support all isolation levels, be aware of your database server features.
10. Use PreparedStatement when you execute the same statement more than once.
11. Use CallableStatement when you want result from multiple and complex statements for a single request.
12. Use batch update facility available in Statements.
13. Use batch retrieval facility available in Statements or ResultSet.
14. Set up proper direction for processing rows.
15. Use proper getXXX() methods.
16. Close ResultSet, Statement and Connection whenever you finish your work with them.
17. Write precise SQL queries.
18. Cache read-only and read-mostly tables data.
19. Fetch small amount of data iteratively rather than whole data at once when retrieving large amount of data

like searching database etc.

Feed back
We appreciate and welcome your comments on this section. Email comments@precisejava.com

Copyright © 2001-2003, Ravi Kalidindi and Rohini Datla. All rights reserved.

http://www.precisejava.com/javaperf/j2ee/JDBC.htm (13 of 13)5/3/2005 14:34:54

mailto:comments@precisejava.com
http://www.precisejava.com/misc/copyright.htm

	precisejava.com
	PreciseJava.com - Best practices to improve performance in JDBC

