Fall 2003 ARE211

PROBLEM SET #2- ANSWER KEY

Problem 1

Recall the definition of an open set:

A set S C X is said to be open in X w.rt. a metric d if ¥s € S Je > 0 such that B4(s,€) = {x €

X|d(x,s) <€} CS.

a) Show that the union S = Ui S; of arbitrarily many open sets S; is an open set.
(1) For any element s € S we know by the definition of an union of sets that it must belong to at
least one set Sy, i.e., Ik € | with s € Sy
(2) Since the set Sy is open, there is an e-ball around s that lies totally within the set Sy, i.e., 3¢ > 0
such that B4(s,€) = {x € X|d(x,s) < €} C Sk
(3) Since any set Sk that is part of the union S is a subset of the union S we know that the ¢-ball
from (2) also lies within S. In mathematical terms: By the definition of a union: Sy C S and
hence from (2) J& > 0 such that By(s,€) C Sk C S.
(4) Hence we can fit an e-ball around any element in the set and the ball lies within the set. The
definition for an open set is thus fullfilled.
b) Show that the intersection of finitely many open sets S; is an open set. Without loss of generality we
can consider sets S1,S,,...,.SywithN e Nand S = mi’\‘zlsi.
(1) For any element s € S we know by the definition of the intersection of sets that it must belong
toall sets Sji=1...N.
(2) Since all sets S; are open, there is an €-ball around s that lies totally within the set S; for all sets
Si, i.e., J& > 0 such that Bg)(s,si) = {x e X|d(x,s) <&} CSfori=1..N.

(3) Lete=min{g,i=1..N} > 0.



(4) By the construction of € we know that By(s,€) C BY(s,¢&;) for i = 1...N. (The ball with radius €
is contained in all the balls with the larger radius €;).
(5) We therefore know from (4) and (2) that B4(s,€) C S; for all i = 1...N and hence By(s,€) C S.
(6) Hence we can fit an e-ball around any element in the set and the ball lies within the set. The
definition for an open set is thus fullfilled.
c) What step in part (b) no longer holds in general if you consider infinitely many sets? This would be
step (3), i.e., the minimum of infinitely many elements soemtimes doesn’t exist.
d) Show that the intersection S = Nj¢ S; of arbitrarily many closed sets S; is a closed set.
(1) By definition a set S; is closed if its complement is open, i.e., the sets X \ S; is open for i € I.
(2) From part (a) we know that the union of arbitarily many open sets is open and we thus know
that Uie; (X\ Si) = X\ (Nje1Si) s open.
(3) Hence the intersection of arbitraily many closed sets Ni¢S; is closed as its complement X \

(Nie1Si) is open after (2).

Problem 2

Recall the definition and theorem from lecture notes #8:

(A) A point s € X is called an accumulation point of a set S C X if Ve > 0 the ball B4(s,€) contains a
point sy € S,S1 #5
(B) A point belongs to the boundary of a set S C X iff Ve > 0,3s,,53 € B4(S,€) such that s, € S and

sz € X\S.
Let’s consider the problems

a) Every accumulation point of a set S C X is a boundary point of S?
False: Consider for example the set S = (0,1) in the universe X = R and the Pythagorian metric.

All points of S are accumulation points, but none of them are boundary points.



b) Every boundary point of a set S C X is an accumulation point of S?
False: Consider for example the set S = {0} in the universe X = R and the Pythagorian metric. The
only element of S is a boundary point but not an accumulation point.
c) Every accumulation point s of a set S C X that is not an element of S is a boundary point of S?
True: You have to show that if s ¢ S than A = B.
(1) By assumption we are given that s does not belong to the set S, i.e., s & S
(2) We are given (A) and thus know that Ve > 0 the ball By(s,€) contains a point s; € S;s1 #3.
(3) Hence Ve > 0,3s, =51 and s3 = s € By(s,€) and by (2) we know that s, € S and by (1) we
know that s3 € X\ S. Consequently, s satisfies (B).
d) Every boundary points of a set S C X that is not an element of S is an accumulation point of S?
True: You have to show that if s ¢ S than B = A.
(1) By assumption we are given that s does not belong to the set S, i.e., S & S
(2) We are given (B) and thus know that Ve > 0 the ball By(s, €) contains points s, € Sand sz € X\ S.
(3) Hence, Ve > 0,3s; = s, with s; € By(s,€) by (2) and from (1) we know that s; # s. Conse-

quently, s satifies (A)

Problem 3

Let’s choose the following notation

(A) Sis closed

(B) cl(S)=S
You have to show that A < B.

“=" (1) You are given (A), i.e., the set S is closed.

(2) The closure of S is the intersection of all closed sets that contain S. Therefore, by construction

we know that S C cl(S).



(3) By (1), Sis closed and since the closure is constructed as the intersection of all closed sets that
contain S, we know that one set in the intersection is S itself. Hence cl(S) C S.
(4) Step (2) and (3) combined tells us that cl(S) =S
“«<" (1) You are given (B), i.e., cl(S) =S
(2) The closure of S is the intersection of all closed sets that contain S. From problem 1d we know
that the intersection of arbitarily many closed sets is closed again. Hence, cl(S) is a closed set.
(3) By (1) we know that S equals the closure of S and by (2) we know that the closure of S is always

closed. Hence, S is closed.

Problem 4

a) The set Sg = {(X1,X2) : X1 = 0,x2 > 0} is displayed in figure 1 below. It includes the black line

(including the point (0,0)).

FIGURE 1. The set S,: black line including the point (0,0)
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(i) The set S, is not open as any ball around the point (0,1) in the set S, includes the point (5,1)

which is not an element of S;. Hence the ball is not a subset of S,.



(ii) The set S5 is closed as its complement is open.
(iii) The set S is not compact as it is not bounded (x, can take on any positive value).
b) The set Sp = {(x1,%2) : 1 <x2 +x3 < 2} is displayed in figure 2 below. It consists of the shaded area

(including the border).

FIGURE 2. The set Sp: shaded area including the border
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(i) The set Sp is not open as any ball around the point (0,1) in the set S, includes the point (0,1— %)
which is not an element of Sy. Hence the ball is not a subset of Sy,
(ii) The set Sy is closed as its complement is open.
(iii) The set Sy is compact as it is bounded and closed.
c) The set S¢ = {(x1,X2) : 1 < x5 < 2} is displayed in figure 3 below. It consists of the shaded area
(including the border).
(i) The set Sc is not open as any ball around the point (1,0) in the set S¢ includes the point (1—£,0)
which is not an element of S¢. Hence the ball is not a subset of Se.
(if) The set S¢ is closed as its complement is open.

(iii) The set S¢ is not compact as it is not bounded (x» can take on any positive value).



FIGURE 3. The set S¢: shaded area including the border
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d) Theset Sq = {(x1,X2) :x1 =0V x2 =0, but not both } is displayed in figure 4 below. It includes the

black lines (excluding the point (0,0)).

FIGURE 4. The set Sq: black lines excluding the point (0,0)
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x1-axis

(i) The set Sq is not open as any ball around the point (1,0) in the set Sy includes the point (1, %)

which is not an element of Sy. Hence the ball is not a subset of Sq.



7

(if) The set Sq is not closed as its complement is not open as the point (0,0) is part of the comple-
ment and any ball around it includes the point (0, §) which is not an element of the complement.
Hence the ball is not a subset of the complement of Sq.

(iii) The set Sq is not compact as it is not closed.



8

Problem 5

a) int(cl(S)) =int(S) ?
False: Consider the counterexample X =R, S =R\ {0} and the Pythagorian metric.
Hence, cl(S) =R and int(cl(S)) = int(R) =R # R\ {0} = int(S).
b) cl(S)NS =57
True: The argument follows
(1) The closure of a set S is the intersection of all closed sets that contain S. Therefore, by con-
struction we know that S C cl(S).
(2) Using the fact that the inetrsection of a set with a subset always equals the subset we know:
cl(S)nsS=S
c) cl(int(S)) =S?
False: Consider the counterexample X =R, S =R\ {0} and the Pythagorian metric.
Hence, int(S) =R\ {0} and cl(int(S)) =cl(R\ {0}) =R #8S.
d) bd(cl(S)) =cl(bd(S)) ?
False: Consider the counterexample X =R, S =R\ {0} and the Pythagorian metric.

Hence, bd(cl(S)) = {} # {0} =cl(bd(S)).



Problem 6
Prove by induction that SR_; (2k — 1) = n? *)
(i) induction initialization: Forn =1
Left hand side of (*) forn=1: 54 _;(2k—1) =2x1—-1=1
Right hand side of (*) for n=1: 1> =1
The equality in (*) thus holds for n=1.
(i) induction hypothesis: ¥n = 1...n we have S§_; (2k — 1) = n?

(iii) induction step: n —n+1

n+1 n n+1
2k—1) = 2k—1 2k—1
k;( ) k= ( ) i k:;—kl( )
= i(Zk— 1)+((n+1)-1)
k=1

N——

n? from (ii)

= n’4+2n+1

— (A+1)?



