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1 Introduction

The ideas of limit and continuity which we encounter in Euclidean spaces
occur in various other contexts e.g in function spaces. Set topology is the
study of limits and continuity in a general setting. The notion of limit is
based on the idea of nearness. These concepts are easier to perceive when
the notion of nearness is given by distance. The corresponding spaces are
called metric spaces. These are introduced in Chapter 2 and applications to
function spaces are discussed early. The desirability of finding limits leads
to the notion of completeness and compactness. As we go on, we find that
many of the arguments do not really need the notion of distance. This leads
to the concept of topological spaces which are discussed from Chapter 6
onward. The idea of compactness is discussed in general setting in Chapter
7 and the notion of connectedness (which is related to the Intermediate Value
Theorem) is discussed in Chapter 8. Under mild assumptions we can study
abstract toplogical spaces by constructing continuous functions to the real
line; the results known as Uryshon and Thitze’s theorem are discussed in
Chapter 10. The concepts of completeness and compactness come again in
the guise of the important Ascoli-Arzela theorem are discussed in Chapter
9. The necessary preliminary material is collected in Chapter 11. The are
11 problem sheets which do not exactly correspond to the chapters of the
notes. This notes is only a brief introduction to the subject and we refer
to Munkre’s Topology [Mu] for comprehensive treatment. More elementary
introductions are the books by Mendelson [M] and Croom [C].
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2 Metric Spaces

Basic Concepts

By a metric space we mean a set X together with a function d : X ×X →
[0,∞) which satisfies the following axioms:

M1 d(x, y) = 0 if and only if x = y;

M2 d(x, y) = d(y, x) for every x, y ∈ X;

M3 d(x, z) 6 d(x, y) + d(y, z) for every x, y and z ∈ X.

Elements of X are called points, a function d is called a metric on X,
and the value d(x, y) is called a distance between x and y. The axiom M2
says that a metric is symmetric, and the axiom M3 is called the triangle
inequality since it reflects the geometrical fact that the length of one side
of a triangle is less or equal to the sum of the lengths of the other two sides.

Examples

Example 2.1. The most important example of a metric space is the set of
all real numbers R with the metric d(x, y) = |x−y|. In the following we will
call this metric the usual metric in R.

Example 2.2. Let X be any set and let

d(x, y) =

{
0 x = y,

1 x 6= y.

Then d is a metric on X called the discrete metric.

Example 2.3. Any subset Y of a metric space (X, d) becomes a metric
space with the metric

dY (x, y) = d(x, y) for all x, y ∈ Y .

The pair (Y, dY ) is called a metric subspace of (X, d). We will refer to Y
as a subspace of X, rather than (Y, dY ) as a subspace of (X, d).
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Example 2.4. [Cartesian product of finite number of metric spaces].
Consider a finite collection of metric spaces (Xi, di) , 1 6 i 6 n, and let X be
the cartesian product

∏n
i=1 Xi. For x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈∏n

i=1 Xi, set

d(x, y) =

n∑

i=1

di(xi, yi).

Then d is a metric on X. Clearly, axioms M1-M2 are satisfied. To see that d
satisfies M3 take x = (x1, . . . , xn), y = (y1, . . . , yn) and z = (z1, . . . , zn) ∈ X.
Then

d(x, z) =
n∑

i=1

di(xi, zi) 6

n∑

i=1

[
di(xi, yi) + di(yi, zi)

]
= d(x, y) + d(y, z)

as required. The pair (X, d) defined above is called a metric product (or
just a product) of (Xi, di), 1 6 i 6 n, and the metric d is called a product
metric. (Other metrics are also used on

∏n
i=1 Xi).

Norms and normed vector spaces

We next define the class of metric spaces which are the most interesting in
analysis. Let X be a vector space over R (or C).

Definition 2.5. A norm is a function
∥∥·
∥∥ : X → R having the following

properties

N1
∥∥x
∥∥ ≥ 0 and

∥∥x
∥∥ = 0 if and only if x = 0.

N2
∥∥αx

∥∥ = |α| ·
∥∥x
∥∥ for all x ∈ X and α ∈ R.

N3
∥∥x + y

∥∥ 6
∥∥x
∥∥+

∥∥y
∥∥ for all x, y ∈ X.

The pair (X,
∥∥·
∥∥) is called a normed vector space.

Proposition 2.6. Let X be a normed space. Then

d(x, y) =
∥∥x − y

∥∥

is a metric on X.
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Proof. The axioms M1 and M2 are clear. If x, y and z ∈ X, then, in view
of N3,

d(x, z) =
∥∥x − z

∥∥ =
∥∥(x − y) + (y − z)

∥∥
6
∥∥x − y

∥∥+
∥∥y − z

∥∥ = d(x, y) + d(y, z),

and so the triangle inequality follows. �

Examples of normed spaces

Example 2.7. [Euclidean Space] Consider Rn and let

∥∥x
∥∥ =

[
n∑

i=1

x2
i

]1/2

for x = (x1, . . . , xn) ∈ Rn. Clearly, N1 and N2 are satisfied. To see that N3
holds we need the Cauchy inequality.

Lemma 2.8. For x, y ∈ Rn,

∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣ 6
[ n∑

i=1

|xi|2
]1/2

·
[ n∑

i=1

|yi|2
]1/2

.

Proof.

0 6

n∑

i,j=1

(xiyj − xjyi)
2 =

n∑

i,j=1

(x2
i y

2
j − 2xixjyiyj + x2

jy
2
i )

=

n∑

i=1

n∑

j=1

x2
i y

2
j +

n∑

i=1

n∑

j=1

x2
jy

2
i − 2

n∑

i=1

n∑

j=1

xixjyiyj

=
n∑

i=1

∥∥y
∥∥2

x2
i +

n∑

j=1

∥∥x
∥∥2

y2
j − 2

[ n∑

i=1

xiyi

]2

= 2
∥∥x
∥∥2 ·

∥∥y
∥∥2 − 2

[ n∑

i=1

xiyi

]2

�

As a corollary we have

Corollary 2.9.
∥∥x + y

∥∥ 6
∥∥x
∥∥+

∥∥y
∥∥ for all x, y ∈ Rn.
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Proof. In view of the Cauchy inequality we have

∥∥x + y
∥∥2

=

n∑

i=1

|xi + yi|2 =

n∑

i=1

x2
i + 2

n∑

i=1

xiyi +

n∑

i=1

y2
i

=
∥∥x
∥∥2

+ 2

n∑

i=1

xiyi +
∥∥y
∥∥2

6
∥∥x
∥∥2

+ 2
∥∥x
∥∥ ·
∥∥y
∥∥+

∥∥y
∥∥2

= (
∥∥x
∥∥+

∥∥y
∥∥)2.

By taking square roots of both sides we the desired inequality follows. �

Consequently,

d(x, y) =
∥∥x − y

∥∥ =

[
n∑

i=1

(xi − yi)
2

]1/2

defines a metric on Rn. We shall call this metric the Euclidean metric or
the standard metric.

Example 2.10. [Space of bounded functions. ] Let X be a non-empty
set. Call a function f : X → R bounded if there exists a constant M such
that |f(x)| 6 M for all x ∈ X. Denote by B(X) = B(X, R) the set of all
bounded functions from X to R, and define

‖f‖ = sup{|f(x)| | x ∈ X}.
Then ‖ · ‖ is a norm on B(X), and, in view of Proposition 2.6, this norm
defines a metric on B(X) by

d(f, g) =
∥∥f − g

∥∥ = sup{|f(x) − g(x)| | x ∈ X},
for f, g ∈ B(X).

Example 2.11. Let X be the set of all continuous functions f : [0, 1] → R.
For any f ∈ X we set

∥∥f
∥∥ =

∫ 1

0
|f(x)|dx.

Then ‖ · ‖ defines a norm on X which induces a metric on X by

d(f, g) =

∫ 1

0
|f(x) − g(x)|dx, f, g ∈ X
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Balls and diameter

Let x0 ∈ X and r > 0. The set

B(x0, r) = {x ∈ X | d(x0, x) < r}

is called an open ball with centre at x0 and radius r > 0, and the set

B(x0, r) = {x ∈ X | d(x0, x) 6 r}

is called a closed ball with centre at x0 and radius r > 0.
If A is a non-empty subset of X, then we define the distance between x
and A by

d(x,A) = inf{d(x, y) | y ∈ A}
and more generally if B is another non-empty subset of X, then the distance
between A and B is defined as

d(A,B) = inf{d(x, y) | x ∈ A, y ∈ B}.

For a non-empty subset A of X we define its diameter by setting

diam A = sup{d(x, y) | x, y ∈ A}.

Clearly, if A ⊂ B, then diam A 6 diam B. A subset A ⊂ X bounded if its
diameter is finite, that is, diam A < ∞.

Sequences and Convergence

Convergence of a sequence in a metric space is defined as in calculus.

Definition 2.12. Let {xn} be a sequence of points in (X, d) and x ∈ X.
The sequence {xn} is said to converge to x, if for every ε > 0 there exists
a positive integer k such that

d(xn, x) < ε for all n ≥ k.

A sequence {xn} is said to converge if there is x ∈ X to which it converges.
If there is no such x, then {xn} is said to diverge. If {xn} converges to x
we write limn xn = x0 or xn → x. The point x is called the limit of {xn}.

The definition can be expressed in terms of the convergence of sequences of
real numbers. Namely, a sequence {xn} converges to x ∈ X if and only if
d(xn, x) → 0 as n → ∞. We are justified in referring to the limit because of
the following proposition.
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Proposition 2.13. Let {xn} be a sequence in a metric space (X, d). Then
there is at most one point x ∈ X such that {xn} converges to x.

Proof. Arguing by contradiction we assume that xn → x and xn → y with
x 6= y. Then d(x, y) > 0 and we can apply the above definition of conver-
gence with ε = d(x, y)/2. We find a positive integer k such that

d(xn, x) < ε and d(xn, y) < ε, for n ≥ k.

By the triangle law

d(x, y) 6 d(x, xn) + d(xn, y) < ε + ε = d(x, y)

which gives a contradiction. Hence we conclude that it is impossible for a
sequence {xn} to converge to two different points. �

Given a sequence {xn} of points in X, consider a sequence {nk} such that
n1 < n2 < n3 < · · · . Then {xnk

} is called a subsequence of {xn}.
Proposition 2.14. If X =

∏n
i=1 Xi is the product of metric spaces (Xi, di),

1 6 i 6 n, and xm = (xm
1 , xm

2 , . . . , xm
n ) ∈ X, then xm → x = (x1, . . . , xn) ∈

X if and only if xm
i → xi in Xi for i = 1, . . . , n.

Proof. Recall that we consider X with the metric

d(x, y) =

n∑

i=1

di(xi, yi)

for x = (x1, . . . , xn), y = (y1, . . . , xn) ∈ X. Observe that

di(xi, yi) 6 d(x, y) 6 n · max{di(xi, yi) | 1 6 i 6 n}, x, y ∈ X. (1)

Let xm → x, where x = (x1, . . . , xn). Then given ε > 0 there exists k ∈ N

such that
d(xmm,x) < ε for m ≥ k.

In view of the left hand side inequality (1)

dj(x
m
j , xj) < ε for m ≥ k and j = 1, . . . , n.

So xm
j → xj as required. Conversely, assume that xm

j → xj for j = 1, . . . n.
Hence for a given ε > 0, there exists k(j) ∈ N such that

dj(x
m
j , xj) < ε/n for m ≥ k(j).

In view of the right hand side inequality in (1) we get

d(xm, x) 6 nmax{dj(x
m
j , xj) | j = 1, . . . , n} < ε

for all m > k := max{k(j) | j = 1, . . . , n}. Hence xn → x as required. �
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Definition 2.15. Two metrics d and d′ in X are called equivalent if

d(xn, x0) → 0 if and only if d′(xn, x0) → 0.

Example 2.16. Let d be a metric on X. Define

d′(x, y) =
d(x, y)

1 + d(x, y)
, x, y ∈ X. (2)

Then d′ is a metric on X (show this!) which is equivalent to d. In-

deed, if d(xn, x0) → 0, then d′(xn, x0) =
d(xn, x0)

1 + d(xn, x0)
→ 0. Conversely,

d(x, y) =
d′(x, y)

1 − d′(x, y)
. So if d′(xn, x0) → 0, then d(xn, x0) → 0. Note

that with respect to this equivalent metric, the space X is bounded since
d′(x, y) < 1 for all x, y ∈ X.

Example 2.17. Consider the product (X, d) of metric spaces (Xi, di). Re-
call that

d(x, y) =
n∑

i=1

di(xi, yi), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X.

Set
σ(x, y) = max{di(xi, yi)| 1 6 i 6 n}

ρ(x, y) =

[ n∑

i=1

di(xi, yi)
2

]1/2

.

Then d is equivalent to σ and ρ.

Open and closed sets

Definition 2.18. Let A ⊂ X. A point x ∈ A is called an interior point
of A, if B(x, r) ⊂ A for some r > 0. The collection of all interior points of
a set A is called the interior of A, and is denoted by A◦. A set A is called
open if A = A◦.

Obviously, the interior of any set is an open set. Hence open sets A are
characterized by equality A◦ = A.
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Example 2.19. The empty set ∅ and the whole space X are open in any
metric space X. If X is equipped with the discrete metric d, then any subset
of X is open.

Example 2.20. The set Q is not open in R with the usual metric but it
is open in (R, d), where d is the discrete metric in R. Indeed, if x ∈ Q and
r > 0, then for large n ∈ N, we have

x < x +

√
2

n
< x + r

so that x +
√

2/n ∈ B(x, r) but x +
√

2/n 6∈ Q. In the case of the discrete
metric, for every x ∈ Q, B(x, 1/2) = {x} ⊂ Q, so Q is open in (R, d).

Example 2.21. Let B(x,R) be an open ball in a metric space X. Then
B(x,R) is an open set. Indeed, let y ∈ B(x,R). We have to show that y is
an interior point of B(x,R), that is, B(y, r) ⊂ B(x, r) for some r > 0. Set
r = R − d(x, y). Then for any z ∈ B(y, r),

d(x, z) 6 d(x, y) + d(y, z) < d(x, y) + r = d(x, y) + [R − d(x, y)] = R.

Thus B(y, r) ⊂ B(x, r) as required.

PSfrag replacements

x

R

y

r

Figure 1: An open ball is an open set
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More terminology: if x ∈ X, then a set A ⊂ X is called a neighbourhood
of x, if x ∈ A◦.

Definition 2.22. A point x ∈ X is adherent to A provided that B(x, r) ∩
A 6= ∅ for all r > 0. The set of all the adherent points of A is called the
closure of A and is denoted by A. If A = A, then A is called closed.

Proposition 2.23. A point x is adherent to A if and only if there exists a
sequence in A converging to x.

Proof. Suppose that x ∈ A. In view of the definition, for each positive
integer n, there exists a point xn ∈ B(x, 1/n) ∩ A. Obviously, {xn} is the
sequence of points of A converging to x. Conversely, suppose that {xn} ⊂ A
and xn → x. Let r > 0. Then d(xn, x) < r for n greater than some k. Hence
xn ∈ B(x, r) ∩ A and x is adherent to A. �

Example 2.24. Let B(x, r) be a closed ball in X. Then it is a closed set
in X. To see this we have to show that all adherent points of B(x, r) are
contained in B(x, r). If y is adherent B(x, r), then yn → y for some sequence
{yn} ⊂ B(x, r). Since

d(y, x) 6 d(y, yn) + d(yn, x) 6 d(y, yn) + r → r,

it follows that y ∈ B(x, r) as required.

Example 2.25. The closure of an open ball B(x, r) does not have to co-
incide with a closed ball B(x, r). Indeed, consider X = R \ (0, 1) with the
usual metric, d(x, y) = |x − y|. Then

B(0, 1) = [−1, 0] but B(0, 1) = [−1, 0] ∩ {1}.

Example 2.26. A subset of metric space may be neither open nor closed.
For instance, [0, 1) is neither open nor closed in R. The same is true for Q.
On the other hand, a subset may be open and at the same time closed. In a
metric space equipped with the discrete metric any subset is both open and
closed.

The relation between interior and adherent points is given in the next propo-
sition.
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Proposition 2.27. A point x ∈ X is an adherent point of A if and only if
x is not an interior point of Ac.

Proof. Assume that x is adherent to A. Then for every open ball at x,
B(x, r) ∩ A 6= ∅. Hence there is no open ball B(x, r) contained in Ac which
means that x 6∈ (Ac)◦. Conversely, assume that x 6∈ (Ac)◦. Hence there is
no open ball B(x, r) contained in Ac. Hence B(x, r) ∩ A 6= ∅, for all r > 0,
which means that x is adherent to A. �

As a corollary we obtain.

Corollary 2.28. If A ⊂ X, then

X \ A = (X \ A)◦ and X \ A◦ = X \ A.

A set A is closed if and only if X \ A is open, and A is open if and only if
X \ A is closed.

Theorem 2.29 (Properties of Interiors and Closures).

(a) A◦ ⊂ A (a′) A ⊂ A

(b) (A◦)◦ = A◦ (b′) A = A

(c) A ⊂ B =⇒ A◦ ⊂ B◦ (c′) A ⊂ B =⇒ A ⊂ B

(d) (A ∩ B)◦ = A◦ ∩ B◦ (d′) A ∪ B = A ∪ B

(e)
⋃

i∈I

A◦
i ⊂

(
⋃

i∈I

Ai

)◦

(e′)
⋂

i∈I

Ai ⊂
⋂

i∈I

Ai

(f)

(
⋂

i∈I

Ai

)◦

⊂
⋂

i∈I

A◦
i (f ′)

⋃

i∈I

Ai ⊂
⋃

i∈I

Ai

Proof. (a) follows immediately from the definition of the interior point. To
see (b) note that A◦ is an open. (c): If A ⊂ B and x ∈ A◦, then B(x, r) ⊂
A ⊂ B. So x ∈ B◦. (d): Note that (A ∩ B)◦ ⊂ A◦ and (A ∩ B)◦ ⊂ B◦

so (A ∩ B)◦ ⊂ A◦ ∩ B◦. On the other hand A◦ ∩ B◦ is open and contained
in A ∩ B,so by (b), A◦ ∩ B◦ ⊂ (A ∩ B)◦. Proofs of (e) and (f) are left as
exercises. Proofs of (a’)-(f’) follows from the corresponding statements for
interiors by taking complements. �
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Theorem 2.30 (Properties of open and closed sets).

(a) ∅ and X are open (a′) ∅ and X are closed

(b) {Ai}i∈I open ⇒
⋃

i∈I

Ai open (b′) {Ai}i∈I closed ⇒
⋂

i∈I

Ai closed

(c) {Ai}m
i=1 open ⇒

m⋂

i=1

Ai open (c′){Ai}m
i=1 closed ⇒

m⋃

i=1

Ai is closed

(d) A◦ =the largest open set (d′) A =the smallest closed set

contained in A containing A

Proof. The parts (a) and (a’) are obvious.
(b) Let x ∈ ⋃i∈I Ai. Choose an index j ∈ I so that x ∈ Ai. Since Aj is
open, B(x, r) ⊂ Aj ⊂ ⋃

i∈I Ai. Hence any point x ∈ ⋃i∈I Ai is an interior
point, and so

⋃
i∈I Ai is open.

(c) Assume Ai ⊂ X, i = 1, . . . ,m are open subsets of X, and let x ∈ ⋂m
i=1 Ai.

Then x ∈ Ai for i = 1, . . . ,m. Since the sets Ai are open, B(x, ri) ⊂ Ai for
some ri > 0. Take r = min{r1, . . . , rm}. Then B(x, r) ⊂ ⋂m

i=1 Ai, and the
sets

⋂m
i=1 Ai is open.

(d) is left as an exercise. (a’)-(d’) are obtained from corresponding state-
ments for open sets by taking complements and applying Corollary 2.28 �

Theorem 2.31. Let Y be a subspace of X.

(a) B ⊂ Y is open in Y if and only if B = Y ∩ A for some open set A in
X.

(b) B ⊂ Y is closed in Y if and only if B = Y ∩ F , where F is closed in
X.

Proof.
(a) Assume first that B = Y ∩ A for some open set A in X. Take x ∈ B.
Then there exists an open ball B(x, r) in X such that B(x, r) ⊂ A. But
then Y ∩ B(x, r) ⊂ Y ∩ A = B. Since the open ball in the subspace Y with
centre x ∈ X and radius r > 0 is the intersection Y ∩ B(x, r), the set B is
open in Y . Conversely, suppose that B is an open subset of the subspace Y .
Then for every x ∈ B there exists rx such that the open ball B(x, rx)∩Y in
Y is contained in B. Then the open subset A =

⋃
x∈B B(x, rx) of X satisfies

Y ∩ A ⊂ B. Since any x ∈ B also belongs to A, Y ∩ A = B as required.
(b) A set B is closed in Y if and only if Y \ B is open in Y . Hence if and
only if Y \ B = Y ∩ A for some open subset A of X. Let F = X \ A. Then
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F is closed in X and B = Y \ [Y ∩ A] = Y \ A = Y ∩ [X \ A] = X ∩ F as
required. �

Theorem 2.32. Let X be the product of metric spaces (Xi, di), 1 6 i 6 m.

(a) If Ai is open in Xi, 1 6 i 6 m, then the product A =
∏n

i=1 Ai is an
open subset of X =

∏n
i=1 Xi.

(b) If Fi is closed in Xi, 1 6 i 6 m, then F =
∏m

i=1 Fi is closed in the
product X =

∏m
i=1 Xi.

Proof.
(a) We prove the result for the product of two metric spaces X1 and X2.
Let a = (a1, a2) ∈ A ⊂ X. Since Ai is open in Xi, there exists ri such that
an open ball B(ai, ri) in Xi is contained in Ai. Let r = min{r1, r2}. We
claim that B(a, r) ⊂ A. Indeed, if x = (x1, x2) ∈ B(a, r), then d(a, x) < r
where x = (x1, x2),and since di(ai, xi) < d(a, x) < r 6 ri we conclude that
xi ∈ B(ai, ri). Hence xi ∈ Ai, i = 1, 2, so that x ∈ A.
(b) The proof follows from Proposition 2.14 �

Definition 2.33. The boundary of A in X, denoted by ∂A, is the set
A ∩ X \ A.

Hence x ∈ ∂A if for any r > 0 an open ball B(x, r) intersects A and X \A as
well. Clearly, the boundary is a closed set as an intersection of closed sets.

Example 2.34. Consider R with the usual metric. Then

∂([0, 1]) = ∂((0, 1)) = {0, 1}
∂(Q) = ∂(R \ Q) = R.

We shall show the last equality. Fix x ∈ R. If x ∈ Q, then

x 6= x +
1

n
∈ Q and x 6= x +

√
2

n
∈ Qc.

Since
x = lim

n
(x + 1/n) = lim

n
(x +

√
2/n),

it follows that x ∈ Q∩Qc. So Q ⊂ Q∩Qc = ∂Q. If x ∈ Qc, then x+1/n ∈ Qc

and there exists a sequence of rational numbers xn such that

x = lim(x + 1/n) = lim
n

xn.

Hence x ∈ Q ∩ Qc and ∂(Q) = ∂(Qc) = Q ∩ Qc = R.
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Definition 2.35. A point x ∈ X is called isolated if {x} is open. A space
X is called discrete if all of its points are isolated.

If x is an isolated point, then for some ε > 0, an open ball B(x, ε) ⊂ {x},
that is, B(x, ε) = {x} and if y 6= x, then d(x, y) ≥ ε. Conversely, if
inf{d(x, y) | y 6= x} > 0, then {x} is open. Note also that {x} is al-
ways closed. For example, consider N as subspace of R. Then it is discrete.
Also the space J = {1/n | n ∈ N} is discrete. In a discrete space any set
is open, since it is a union of one-point sets which are open. Also any set
is closed being a complement of an open set. Finally, a space is discrete
if and only if the only convergent sequences are those which are eventually
constant (Prove this!).

Definition 2.36. A subset A of a metric space is dense if A = X.

Example 2.37. The sets Q and Qc are dense in R with the usual metric.

Proposition 2.38. Let X be a metric space and A ⊂ X. Then A is dense if
and only if for every non-empty open set U of X, the intersection U∩A 6= ∅.
Definition 2.39. A subset A of X is called nowhere dense if (A)◦ = ∅.
Example 2.40. The sets of all natural numbers N or all integers Z are
nowhere dense in R with the usual metric. The set of real numbers R is
nowhere dense in R2 with the standard metric.

Example 2.41. [Cantor set] The Cantor set is subset of [0, 1] constructed
as follows:
Consider the interval C0 = [0, 1]. At the first step divide C0 into three equal
intervals [0, 1/3], [1/3, 2/3] and [2/3, 1] and remove the middle open interval
(1/3, 2/3). Denote the remaining intervals by C1 = [0, 1/3] ∪ [2/3, 1]. The
length of intervals which constitute C1 is equal to 2/3. In the second step we
perform the same operations as in the first step on each of the intervals of C1.
We remove intervals (1/9, 2/9) and (7/9, 8/9). Denote the four remaining
intervals by C2. Having finished the step (n − 1), we perform the nth step
and obtain the set Cn consisting of 2n intervals.
Each of the sets Cn is closed and bounded, and Cn+1 ⊂ Cn. The Cantor set
is defined as

C =

∞⋂

n=1

Cn
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It is non-empty and since for every n, Cn is closed, C is closed. The set
C does not contain any interval (show this!), and so, C has empty interior.
Hence C is nowhere dense.

3 Continuity

The definition of continuity is the ε − δ definition of calculus.

Definition 3.1. Let (X, d) and (Y, ρ) be metric spaces and let f : X → Y be
a function. The function f is said to be continuous at the point x0 ∈ X
if the following holds: for every ε > 0, there exists δ > 0 such that for all
x ∈ X if d(x, x0) < δ, then ρ(f(x), f(x0)) < ε. The function f is said to be
continuous if it is continuous at each point of X.

The following proposition rephrases the definition in terms of open balls.

Proposition 3.2. Let f : X → Y be a function from a metric space X to
another metric space Y and let x0 ∈ X. Then f is continuous at x0 if and
only if for every ε > 0 there exists δ > 0 such that

f(B(x0, δ)) ⊂ B(f(x0), ε).

Theorem 3.3. Let f : X → Y be a function from a metric space (X, d)
to another metric space (Y, ρ) and let x0 ∈ X. Then f is continuous at x0

if and only if for every sequence {xn} such that xn → x0, f(xn) → f(x0).
And f is continuous if and only if for every convergent sequence {xn} in X,

lim
n

f(xn) = f(lim
n

xn).

Proof. Suppose that f is continuous at x0 and let xn → x0. We will prove
that f(xn) → f(x0). Let ε > 0 be given. By the definition of continuity at
x0, there exists δ > 0 such that for all x ∈ X,

if d(x, x0) < δ, then ρ(f(x), f(x0)) < ε . (3)

Since xn → x0, there exists an integer k such that for all n ≥ k,

d(xn, x0) < δ. (4)

Combining (3) and (4), we get

ρ(f(xn), f(x0)) < ε for all n ≥ k. (5)
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Hence f(xn) → f(x0) as required. Conversely, arguing by contradiction
assume that f is not continuous at x0. To obtain a contradiction we will
construct a sequence {xn} such that xn → x0 but the sequence {f(xn)}
does not converge to f(x0). Since f is not continuous at x0, there is positive
ε > 0 such that for all δ > 0 there exists x satisfying d(x, x0) < δ but
ρ(f(x), f(x0)) ≥ ε. For each n, take δ = 1/n and then choose xn so that
d(xn, x0) < 1/n but ρ(f(xn), f(x0)) ≥ ε. Hence xn → x0 but the sequence
{f(xn)} does not converge to f(x0). The second part of the theorem is an
immediate consequence of the first. �

Global continuity has a simple formulation in terms of open and closed sets.

Theorem 3.4. Let f be a function from a metric space (X, d) to (Y, ρ).
Then f is continuous if and only if for every open set U ∈ Y , f−1(U) is
open in X.

Proof. Suppose first that f is continuous and U is open in Y . If x ∈ f−1(U),
then f(x) ∈ U . Since U is open in Y and f(x) ∈ U , there exists a positive
number ε such that B(f(x), ε) ⊂ U . In view of Proposition 3.2, there exists
δ > 0 such that f(B(x, δ)) ⊂ B(f(x), ε). Hence B(x, δ) ⊂ f−1(f(B(x, δ))) ⊂
f−1(U), so f−1(U) is open in X. Conversely, suppose that f−1(U) is open
in X for every open set U in Y . Let x ∈ X and let ε > 0 be given.
Since B(f(x), ε) is open in Y , the set f−1(B(f(x), ε)) is open in X. Since
x ∈ f−1(B(f(x), ε)), there exists δ > 0 such that B(x, δ) ⊂ f−1(B(f(x), ε)).
This implies that f(B(x, δ)) ⊂ B(f(x), ε), and in view of Proposition 3.2, f
is continuous. �

Theorem 3.5. Let f be a function from (X, d) to (Y, ρ). Then f is contin-
uous if and only if for every closed set F ⊂ Y , f−1(F ) is closed in X.

The proof is left as an exercise.

Theorem 3.6. Let X, Y and Z be three metric spaces.

(a) If f : X → Y and g : Y → Z are continuous, then the composition
g ˚ f is continuous.

(b) If f : X → Y is continuous, and A is a subspace of X, then the
restriction of f to A, f|A : A → Y , is continuous.

Proof. (a) Let xn → x0. Since f is continuous at x0, f(xn) → f(x0). Since
g is continuous at f(x0, g(f(xn)) → g(f(x0)). Hence g ˚f(xn) → g ˚f(x0).
The second statement follows from the first. Here is another proof of the

19



second statement. Let U be an open subset of Z. Since g is continuous,
g−1(U) is open in Y , and since f is continuous, f−1(g−1(U)) is open in X.
But f−1(g−1(U)) = (g ˚ f)−1(U) and so, (g ˚ f)−1(U) is open in X. Hence
g ˚ f is continuous.
(b) Note that f|A = f ˚ j, where j : A → X is the inclusion, i.e., defined by
j(x) = x for x ∈ X. Since for any open set U in X, j−1(U) = U ∩ A which
is open in A, it follows that j is continuous. So (b) follows from (a). �

Theorem 3.7. Let (X, d), (Y1, ρ1) and (Y2, ρ2) be metric spaces. Let f be a
function from X to Y1 and g a function from X to Y2. Define the function
h from X to the product Y1 × Y2 by

h(x) = (f(x), g(x)), for x ∈ X.

Then h is continuous at x0 if and only if f and g are continuous at x0. And
h is continuous if and only if both functions f and g are continuous.

The similar statement about functions from the direct product does not hold
in general. Suppose that f is a function from X × Y to Z. It may happen
that f discontinuous, though the maps x 7→ f(x, y) for every y ∈ Y and
y 7→ f(x, y) for every x ∈ X are all continuous. For example, consider a
function from R × R to R defined by

f(x, y) =





xy

x2 + y2
for (x, y) 6= (0, 0);

0 for (x, y) = (0, 0).

The function f is discontinuous at (0, 0) but all the functions x 7→ f(x, y)
and y 7→ f(x, y) are continuous.

Theorem 3.8 (The pasting lemma). Let X = A ∪ B, where A and B
are closed subspaces of X. Let f : A → Y and g : B → Y be continuous. If
f(x) = g(x) for all x ∈ A ∩ B, then the function h : X → Y defined by

h(x) =

{
f(x) if x ∈ A;

g(x) if x ∈ B

is continuous.

Proof. Let C be a closed subset of Y . Then h−1(C) = f−1(C) ∪ g−1(C).
Since f is continuous, f−1(C) is closed in A. But since A is closed f−1(C)
is closed in X. Similarly, g−1(C) is closed in X. So h−1(C) is closed in X
and the proof is finished. �

20



Uniform Continuity and Uniform Convergence

Definition 3.9. A mapping f from a metric space (X, d) to a metric space
(Y, ρ) is said to be uniformly continuous, if for every ε > 0, there exists
δ > 0 such that ρ(f(x), f(y)) < ε for all x, y ∈ X satisfying d(x, y) < δ.

Obviously, a uniformly continuous function is continuous.

Example 3.10. The function f(x) = x/(1 + x2) from R to R is uniformly
continuous. To see this observe that for any x < y, in view of the mean
value theorem of calculus, there exists t ∈ (0, 1) such that

|f(x) − f(y)| = |f ′(t)| · |x − y| =

∣∣∣∣
1 − t2

(1 + t2)2

∣∣∣∣ · |x − y| 6 |x − y|.

since |f ′(t)| 6 1. Hence for given ε, choose δ = ε. Then for any x, y sych
that d(x, y) = |x − y| < δ, we have

d(f(x), f(y)) = |f(x) − f(y)| 6 |x − y| = d(x, y) < δ = ε.

So f is uniformly continuous.

Example 3.11. The function f(x) = x2 for x ∈ R is not is uniformly
continuous. Indeed, for a given δ > 0 we can set

x = 1/δ + δ/2 and y = 1/δ,

then |x − y| = δ/2 < δ but |x2 − y2| > 1. However, if we consider the
same function on some bounded interval, say [−a, a], then the function is
uniformly continuous since if δ < ε/2a and x, y ∈ [−a, a] with |x − y| < δ,
then |x2 − y2| = |x − y| · |x + y| < 2a|x − y| < ε.

Let (X, d) and (Y, ρ) be metric space. Consider a sequence {fn} of functions
fn : X → Y and let f : X → Y .

Definition 3.12. The sequence {fn} is said to converge pointwise to f
if for every x ∈ X and for every ε > 0, there exists an index N such that

ρ(fn(x), f(x)) < ε for all n ≥ N .

The sequence {fn} is said to converge uniformly to f if for every ε > 0,
there exists an index N such that

ρ(fn(x), f(x)) < ε for all n ≥ N and all x ∈ X.
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Equivalently, {fn} converges uniformly to f on X if

sup{ρ(fn(x), f(x)) | x ∈ X} → 0.

The notion of uniform convergence of a sequence of functions is, in general,
more useful than that of pointwise convergence.

Theorem 3.13. Let {fn} be a sequence of continuous functions from a
metric space (X, d) to a metric space (Y, ρ). Suppose that {fn} converges
uniformly to f from X to Y . Then f is continuous.

In words, the uniform limit of continuous functions is continuous.

Proof. Let x0 ∈ X and let ε > 0 be given. Since {fn} converges uniformly
to f , there exists an index N such that for all n ≥ N and all x ∈ X,

ρ(fn(x), f(x)) < ε/3. (6)

Since fN is continuous at x0, we can choose δ > 0 so that

ρ(fN (x), fN (x0)) < ε/3 (7)

for all d(x, x0) < δ. Now if d(y, x0) < δ, then

ρ(f(y), f(x0)) 6 ρ(f(y), fN (y)) + ρ(fN (y), fN (x0)) + ρ(fN (x0), f(x0)).

Each term of the right-hand side is less than ε/3, the first and the third in
view of (6) and the second in view of (7). Thus

ρ(f(y), f(x0)) < ε

for all d(y, x0) < δ. This proves that f is continuous. �

4 Complete Spaces

Definition 4.1. Let (X, d) be a given metric space and let {xn} be a se-
quence of points of X. We say that {xn} is Cauchy (or satisfies the
Cauchy condition) if for every ε > 0 there exists k ∈ N such that

d(xn, xm) < ε for all n,m ≥ k.

Properties of Cauchy sequences are summarized in the following proposi-
tions.
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Proposition 4.2. If {xn} is a Cauchy sequence, then {xn} is bounded.

Proof. Take ε = 1. Since {xn} is Cauchy, there exists an index k such that
d(xn, xk) < 1 for all n ≥ k. Let R > 1 be such that than d(xi, xk) < R for
1 6 i 6 k − 1. Then xn ∈ B(xk, R) for all n, so {xn} is bounded. �

Proposition 4.3. If {xn} is convergent, then {xn} is a Cauchy sequence.

Proof. Assume that xn → x. Then for a given ε > 0 there exists k ∈ N such
that d(xn, x) < ε/2 for all n ≥ k. Hence taking any n,m ≥ k,

d(xn, xm) 6 d(xn, x) + d(x, xm) < ε/2 + ε/2 = ε.

So {xn} is Cauchy. �

Proposition 4.4. If {xn} is Cauchy and it contains a convergent subse-
quence, then {xn} converges.

Proof. Assume that {xn} is Cauchy and xkn
→ x. We will show that xn →

x. Let ε > 0. Since {xn} is Cauchy, there exists k′ such that d(xn, xkn
) < ε/2

for all n ≥ k′. Also since xkn
→ x, there exists k′′ such that d(xkn

, x) < ε/2
for all n ≥ k′′. Set k = max{k′, k′′}. Then for n ≥ k,

d(xn, x) 6 d(xn, xkn
) + d(xkn

, x) < ε/2 + ε/2 = ε

showing that xn → x. �

A Cauchy sequence need not converge. For example, consider {1/n} in the
metric space ((0, 1), | · |). Clearly, the sequence is Cauchy in (0, 1) but does
not converge to any point of the interval.

Definition 4.5. A metric space (X, d) is called complete if every Cauchy
sequence {xn} in X converges to some point of X. A subset A of X is called
complete if A as a metric subspace of (X, d) is complete, that is, if every
Cauchy sequence {xn} in A converges to a point in A.

By the above example, not every metric space is complete; (0, 1) with the
usual metric is not complete.

Theorem 4.6. The space R with the usual metric is complete.

Proof. Let {xn} be a Cauchy sequence in R. Then it is bounded, say |xn| 6

M . Set yn = inf{xk | k ≥ n}. Then {yn} is increasing and yn 6 M for all
n. Hence {yn} converges, say to x (see Proposition 11.11 in Appendix). We
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claim that also xn → x. To see this choose N so that |xn − xm| < ε/2 for
n,m ≥ N . In particular,

xN − ε/2 < xk < xN + ε/2 for all k ≥ N .

Hence
xN − ε/2 6 yn 6 xN + ε/2 for all n ≥ N .

Let n → ∞. Then
xN − ε/2 6 x 6 xN + ε/2,

or equivalently, |xN − x| 6 ε/2. Hence for n ≥ N ,

|xn − x| 6 |xn − xN | + |xN − x| < ε/2 + ε/2 = ε.

Thus {xn} converges to x. �

A subspace of a complete metric space may not be complete. However, the
following holds true.

Theorem 4.7. If (X, d) is a complete metric space and Y is a closed sub-
space of X, then (Y, d) is complete.

Proof. Let {xn} be a Cauchy sequence of points in Y . Then {xn} also
satisfies the Cauchy condition in X, and since (X, d) is complete, there
exists x ∈ X such that xn → x. But Y is also closed, so x ∈ Y showing that
Y is complete. �

Theorem 4.8. If (X, d) is a metric space, Y ⊂ X and (Y, d) is complete,
then Y is closed.

Proof. Let {xn} be a sequence of points in Y such that xn → x. We have
to show that x ∈ Y . Since {xn} converges in X, it satisfies the Cauchy
condition in X and so, it also satisfies the Cauchy condition in Y . Since
(Y, d) is complete, it converges to some point in Y , say to y ∈ Y . Since any
sequence can have at most one limit, x = y. So x ∈ Y and Y is closed. �

Theorem 4.9. If (Xi, di) are complete metric spaces for i = 1, . . . ,m, then
the product (X, d) is a complete metric space.

Proof. Let xn = (x1
n, . . . , xm

n ) and {xn} be a Cauchy sequence in (X, d).
Then for a given ε > 0 there exists k such that d(xn, xm) < ε for all n,m ≥ k.
Since

dj(x
j
n, xj

m) 6 d(xn, xm) < ε,
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it follows that {xj
n} is Cauchy in (Xj , dj) for j = 1, . . . m. Since (Xj , dj) is

complete, for j = 1, . . . ,m there exists xj ∈ Xj such that xj
n → xj . Then,

in view of Proposition 2.14, xn → x, where x = (x1, . . . , xm). �

Let (X, d) and (Y, d′) be metric spaces and let C(X,Y ) be the space of
continuous and bounded functions f : X → Y . If Y = R, we abbreviate
C(X, R) by C(X). Consider

ρ(f, g) := sup{d′(f(x), g(x)) | x ∈ X}

for f, g ∈ C(X,Y ).

Theorem 4.10. The space (C(X,Y ), ρ) is a complete metric space if (Y, d′)
is complete.

Proof. The verification that ρ is a metric is left as an exercise. Suppose that
Y is complete, and suppose that {fn} is a Cauchy sequence in C(X,Y ).
Then for every x ∈ X,

d′(fn(x), fm(x)) 6 ρ(fn, fm)

so that {fn(x)} is a Cauchy sequence on Y . Hence there exists a point,
denoted by f(x) ∈ Y , such that d′(fn(x), f(x)) → 0. In this way we obtain
a function f : X → Y which associate with a point x ∈ X a point which is
the limit of {fn(x)}. We must check that f is continuous and bounded, and
that ρ(fn, f) → 0. Let x ∈ X, and ε > 0. Then there exists N such that
d′(f(x), fN (x)) < ε/3, and an open ball B(x, δ) such that d′(fN (x), fN (y)) <
ε/3 for every y ∈ B(x, δ). It follows that for every y ∈ B(x, δ),

d′(f(x), f(y)) 6 d′(f(x), fN (x)) + d′(fN (x), fN (y)) + d′(fN (y), f(y)) < ε.

Hence f is continuous. Now given ε > 0, chose n0 such that ρ(fn, fm) < ε
for all n,m ≥ n0. Then for every x ∈ X,

d′(fn(x), f(x)) = lim
m→∞

d′(fn(x), fm(x)) 6 ε

for every n ≥ n0. This says that ρ(fn, f) 6 ε for n ≥ n0. It remains to show
that f is bounded. Take x, y ∈ X and let N ∈ N be such that

d′(f(x), fN (x)) < 1/2 and d′(f(y), fN (y)) < 1/2

Note that we can find such N since ρ(fn, f) → 0. Then

d′(f(x), f(y)) 6 d′(f(x), fN (x)) + d′(fN (x), fN (y)) + d′(fN (y), f(y))

< 1 + d′(fN (x), fN (y)) 6 1 + diamfN(X).
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Since x, y ∈ X were arbitrary, diamf(X) 6 1 + diamfN (X). Hence f is
bounded. The proof is completed. �

Corollary 4.11. The space (C(X), ρ) is complete.

Structure of complete metric spaces-Baire’s theorem

Let (X, d) be a metric space. If U and V are open and dense, then U ∩ V
is also open and dense. To see that U ∩ V is dense, we have to show that
O ∩ U ∩ V is non-empty for any open set O. Since U is dense, there is
u ∈ O ∩ U , and since O ∩ U is open, B(u, r) ⊂ O ∩ U for some r > 0. Since
V is dense, B(u, r)∩ V 6= ∅ so that, ∅ 6= B(u, r)∩ V ⊂ O ∩U ∩ V . If U and
V are assumed to be dense but not necessarily open, then the intersection
U ∩ V does not have to be dense. For example, let U be the set of rational
numbers and V the set of irrational numbers Qc. Then both sets are dense
in R with the usual metric, however, U∩V = ∅. Consider, now a sequence of
dense and open sets Un. In general, the intersection

⋂
n≥1 Un may be empty.

For example, consider (Q, d) with the usual metric d. Let {qn|n ∈ N} be
enumeration of rational numbers, and let Un = Q \ {qn}. Then each Un is
open since it is a complement of a closed set {qn}, and is dense . However,⋂

n≥1 Un =
⋂

n≥1

[
Q \ {qn}

]
= Q \ ⋃n≥1{qn} = ∅. The Baire theorem says

that if (X, d) is complete, then
⋂

n≥1 Un is dense.

Theorem 4.12. Let (X, d) be a complete metric space, and let {Un} be a
sequence of open and dense subsets of X. Then

⋂
n≥1 Un is dense.

Proof. It suffices to show that B(x, r) contains a point belonging to
⋂

n≥1 Un

for any open ball B(x, r). Since U1 is open and dense, B(x, r) ∩ U1 is non-
empty and open. So, there exists an open ball B(x1, R) with R < 1 such
that B(x1, R) ⊆ B(x, r) and B(x1, R) ⊆ U1. Taking r1 < R, we get that
B(x1, r1) ⊆ B(x, r) and B(x1, r1) ⊆ U1 Similarly, since U2 is open and
dense, there exists x2 and r2 < 1/2 such that B(x2, r2) ⊂ B(x1, r1) ∩ U2.
Continuing in this way we find a sequence of balls B(xn, rn) with rn < 1/n
and B(xn+1, rn+1) ⊆ B(xn, rn) ∩ Un. We claim that {xn} is Cauchy. By
construction, Bn(xn, rn) ⊂ B(xk, rk) for all n ≥ k. Given ε > 0 choose
k ∈ N so that 1/k < ε/2. Then, if n,m ≥ k,

d(xn, xm) 6 d(xn, xk) + d(xk, xm) < 1/k + 1/k < ε.

Because (X, d) is complete, {xn} converges, say to y. The point y lies in
all balls B(xk, rk) since xn ∈ B(xk, rk) for all n ≥ k and B(xk, rk) is closed
for all k, so that after taking a limit as n → ∞, y ∈ B(xk, rk) for all k. In
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particular, y ∈ B(x1, r1) ⊆ B(x, r) and y ∈ B(xn+1, rn+1) ⊂ Un for all n.
Consequently, y ∈ B(x, r) ∩⋂n≥1 Un, and the proof is finished. �

As a consequence we obtain the following theorem.

Theorem 4.13. If (X, d) is a complete metric space and {Fn} is a sequence
of nowhere dense subsets of X, then

⋃
Fn has empty interior.

Proof. Arguing by contradiction assume that
⋃

Fn has non-empty interior.
So B(x, r) ⊆ ⋃Fn for some x and r > 0. Define Un = X \ Fn. Clearly, Un

is open and we claim that it is dense. Indeed, if for some open set V , we
have V ∩ Un = ∅, then V ⊆ X \ Un = Fn contradicting that Fn has empty
interior. Consequently, in view of the above theorem,

⋂
n≥1 Un is dense. So

B(x, r) ∩⋂n≥1 Un 6= ∅. On the other hand, B(x, r) ⊆ ⋃Fn ⊆ ⋃Fn so that

∅ = B(x, r)∩
[
X \⋃n≥1 Fn

]
= B(x, r)∩⋂n≥1

[
X \Fn

]
= B(x, r)∩⋂n≥1 Un,

contradiction. �

Example 4.14. The metric space R with the standard metric space cannot
be written as a countable union of nowhere sets since it is complate. By
contrast, Q with the standard metric can be written as the union of one
point sets {qn}, where {qn|n ∈ N} is an enumeration of Q. Every one point
set {qn} is closed in Q and its interior is empty, so nowhere dense. This
does not contradict Baire’s theorem since Q with the standard metric is not
complete.

Applications

Theorem 4.15. Let (X, d) be a complete metric space, and let {fn} be a
sequence of continuous functions fn : X → R. Assume that the sequence
{fn(x)} is bounded for every x ∈ X. Then there exists a non-empty open set
U ⊂ X on which the sequence {fn} is bounded, that is, there is a constant
M such that |fn(x)| 6 M for all x ∈ U and all n ∈ N.

Proof. Since the function fn is continuous, the set f−1
n ([−m,m]) = {x ∈ X |

|fn(x)| 6 m} is closed for any pair of positive integers n and m. Thus,

Em = {x ∈ X | |fn(x)| 6 m for all n ∈ N} =
⋂

n

f−1([−m,m])

is closed for every m ∈ N. If x is any point in X, then |fn(x)| 6 k for some
k ∈ N and all n because {fn(x)} is bounded. Hence X =

⋃
m Em. In view
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of the Baire theorem, one of the sets Em has non-empty interior, say Em.
Setting U = E◦

m the conclusion follows. �

Theorem 4.16. There exists continuous function f : [0, 1] → R which is
not differentiable at every point point x ∈ [0, 1).

Proof. Recall that f has a right-hand derivative at x, if

lim
h→0+

[(f(x + h) − f(x))/h] exists.

We denote this limit by f ′
+(x). In particular, if f is differentiable at x ∈ [0, 1)

then f ′
+(x) exists and is equal to f ′(x). Consider the complete metric space

C([0, 1], R) with a metric d given by

d(f, g) = sup{|f(x) − g(x)||x ∈ [0, 1]}.

Let

M = {f ∈ C([0, 1], R) | exists x ∈ [0, 1) such that f ′
+(x) exists}

and let Mm, for m ≥ 2, be the set of all f ∈ C([0, 1], R) for which exists
some x ∈ [0, 1 − 1/m] such that

|f(x + h) − f(x∗)| 6 m · h for all h ∈ [0, 1/m].

Claim 1: M ⊂ ⋃
n≥2 Mm. Let f ∈ M . Then there exists x ∈ [0, 1) such

that f ′
+(x) exists. We will show that |f(x + h) − f(x)| 6 m · h for some

m ∈ N and all 0 6 0 6 1/m. Since

lim
h→0+

f(x + h) − f(x)

h
= f ′

+(x),

we have

lim
h→0+

∣∣∣∣
f(x + h) − f(x)

h

∣∣∣∣ = |f ′
+(x)|. (1)

Take an integer k ≥ 2 such that |f ′
+(x)| 6 k and x ∈ [0, 1 − 1/k]. In view of

(1), there exists 0 < δ < 1/k such that

|f(x + h) − f(x)| 6 k · h for all 0 6 h 6 δ.

Since f is continuous on a closed and bounded interval, there is C > 0
such that |f(x)| 6 C for all x ∈ [0, 1] (this is proved in the section on
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compactness). Let k′ be any integer so that 2C/δ < k′. Then, for δ 6 h 6 1
such that x + h 6 1,

|f(x + h) − f(x)| 6 |f(x + h)| + |f(x)| 6 2C =
2C

δ
· δ 6

2C

δ
· h 6 k′ · h.

Taking m = max{k, k′}, we have x ∈ [0, 1−1/m] and |f(x+h)−f(x)| 6 m·h
for all h ∈ [0, 1/m], so that f ∈ M..

Claim 2: Mm is closed for all m ≥ 2. To see this, take f ∈ Mm. We
will show that f ∈ Mm, that is, |f(x + h) − f(x)| 6 m · h for some x ∈
[0, 1−1/m] and all h ∈ [0, 1/m]. There exists (fk) ⊂ Mm such that d(fk, f) =
sup|fk(x) − f(x)|| x ∈ [0, 1]} → 0 as k → ∞. Since fk ∈ Mm, there exists
xk ∈ [0, 1 − 1/m] such that

|fk(xk + h) − fk(xk)| 6 m · h (2)

for all h ∈ [0, 1/m]. Since {xk} ⊆ [0, 1 − 1/m], there exists a subsequence
which converges to some point x ∈ [0, 1 − 1/m] . Without loss of generality
we may assume that xk → x ∈ [0, 1−1/m]. Hence, by the triangle inequality
and by (2),

|f(x + h) − f(x)| 6 |f(x + h) − f(xk + h)| + |f(xk + h) − fk(xk + h)|
+ |fk(xk + h) − fk(xk)| + |fk(xk) − fk(x)| + |fk(x) − f(x)|

6 |f(x + h) − f(xk + h)| + d(fk, f) + m · h
+ |fk(xk) − fk(x)| + d(fk, f)

for all 0 6 h 6 1/m. Since d(fk, f) → 0, and |f(x + h) − f(xk + h)| → 0,
and |f(x) − f(xk)| → 0, as k → ∞, we get that

|f(x + h) − f(x)| 6 m · h
for all 0 6 h 6 1/m. Consequently, f ∈ Mm and Mm is closed.

Claim 3: M ◦
m = ∅. Let f ∈ Mm, and let ε > 0. Then there exists a piecewise

linear function g : [0, 1] → R such that d(f, g) = sup{|f(x) − g(x)| | 0 6

x 6 1} < ε and |g′+(x)| > m for all x ∈ [0, 1]. That is, g ∈ B(f, ε) and
g 6∈ Mm. (Here B(f, ε) is a ball in C([0, 1], R) with centre at f and radius
ε). So M ◦

m = ∅.

In view of the Baire’s theorem, C([0, 1], R) 6= ⋃
m≥2 Mm since otherwise⋃

m≥2 Mm has non-empty interior. Hence there exists f ∈ C([0, 1], R) so
that f 6∈ ⋃

m≥2 Mm. Since M ⊆ ⋃
m≥2 Mm, f 6∈ M . Since M contains

all functions which are differentiable at least one point in [0, 1), f is not
differentiable at any x ∈ [0, 1) �
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graphs
of functions
f and g

0 1

Figure 2: The black curve is the graph of f and the grey curve is the graph
of g.

Contraction mapping principle-Banach fixed point theorem

Let (X, d) be a metric space and let f : X → X. A point x ∈ X is a fixed
point of f if f(x) = x. The solution of many classes of equations can be
regarded as fixed points of appropriate functions. In this section we give
conditions that guarantee the existence of fixed points of certain functions.
A function f : X → X is called a contraction if there exists α ∈ (0, 1) such
that

d(f(x), f(y)) 6 αd(x, y) (8)

for all x, y ∈ X.

Theorem 4.17 (Banach Fixed Point Theorem). Let f : X → X be a
contraction of a complete metric space. Then f has a unique fixed point p.
For any x ∈ X, define x0 = x and xn+1 = f(xn) for n ≥ 0. Then xn → p,
and

d(x, p) 6
d(x, f(x))

1 − α
. (9)

Proof. We start with the uniqueness of the fixed point of f . Assume that
p 6= q and that f(p) = p and f(q) = q. Then

d(p, q) = d(f(p), f(q)) 6 αd(p, q)

so that d(p, q) = 0 since a ∈ (0, 1). So p = q, contradicting our assumption.
Hence f has at most one fixed point. Fix any point x ∈ X, and let x0 = x
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and xn+1 = f(xn) for n ≥ 0. Then for any n,

d(xn+1, xn) = d(f(xn), f(xn−1)) 6 αd(xn, xn−1)

and,

d(xn+1, xn) 6 αd(xn, xn−1) 6 α2d(xn−1, xn−2) 6 · · · 6 αnd(x1, x0).

For m > n,

d(xm, xn) 6 d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

6
(
αn + αn+1 + · · · + αm−1

)
d(x1, x0) 6

( ∞∑

i=n

αi
)
d(x1, x0)

= αn
( ∞∑

i=0

αi
)
d(x1, x0) =

αnd(x1, x0)

1 − α
.

Since αn → 0 as n → ∞ (recall α ∈ (0, 1)), the sequence {xn} is Cauchy in
X. Since (X, d) is complete, there exists p ∈ X such that xn → p. Taking
a limit m → ∞ in the last inequality we find that

d(p, xn) 6
αnd(x1, x0)

1 − α
. (10)

Thus,

d(f(p), p) 6 d(f(p), xn+1) + d(xn+1, p) = d(f(p), f(xn)) + d(xn+1, p)

6 d(p, xn) + d(xn+1, p) 6
αnd(x1, x0)

1 − α
+

αn+1d(x1, x0)

1 − α

= αn · (1 + α)d(x1, x0)

1 − α
→ 0,

and therefore p = f(p). The inequality (9) follows from (10) by taking
n = 0. �

Here is an application of Banach fixed point theorem to the local existence
of solutions of ordinary differential equations.

Theorem 4.18 (Picard’s Theorem). Let U be an open subset of R2 and
let f : U → R be a continuous function which satisfies the Lipschitz condition
with respect to the second variable, that is,

|f(x, y1) − f(x, y2)| 6 α|y1 − y2|
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for all (x, y1), (x, y2) ∈ U , and some α > 0. Then for a given (x0, y0) ∈ U
there is δ > 0 so that the differential equation

y′(x) = f(x, y(x))

has a unique solution y : [x0 − δ, x0 + δ] → R such that y(x0) = y0.

Proof. Note that it is enough to show that there are δ > 0 and a unique
function y : [x0 − δ, x0 + δ] → R such that

y(x) = y0 +

∫ x

x0

f(t, y(t))dt.

Fix (x0, y0) ∈ U , then there exists δ > 0 and b > 0 such that if I =
[x0−δ.x0+δ] and J = [y0−b, y0+b], then I×J ⊂ U . Since f is continuous and
I × J is closed and bounded, f is bounded on I × J . That is, |f(x, y)| 6 M
for some M and all (x, y) ∈ U . Take δ smaller so that αδ < 1 and αM < b.
Denote by X the set of all continuous functions g : I → J . The set X with
the metric ρ(g, h) = sup{|g(x) − h(x)|, x ∈ I} is a complete metric space.
For g ∈ X, let

(Tg)(x) = y0 +

∫ x

x0

f(t, g(t))dt.

Then Tg : I → R is continuous since if x1, x2 ∈ I and x2 > x1, then

|(Tg)(x2)− (Tg)(x1)| =

∣∣∣∣
∫ x2

x1

f(t, g(t))dt

∣∣∣∣ 6

∫ x2

x1

|f(t, g(t))|dt 6 M |x2 − x1|.

For x0 6 x 6 x0 + δ,

|(Tg)(x)− y0| =

∣∣∣∣
∫ x

x0

f(t, g(t))dt

∣∣∣∣ 6

∫ x

x0

|f(t, g(t))|dt 6 M |x−x0| < Mδ < b

The same inequality holds for x0 − δ 6 x 6 x0, and so Tg ∈ X for any
g ∈ X. Since f is Lipschitz with respect to the second variable, we obtain
for g, h ∈ X and x ∈ [x0, x0 + δ],

|(Tg)(x) − (Th)(x)| =

∣∣∣∣
∫ x

x0

[f(t, g(t)) − f(t, h(t))] dt

∣∣∣∣

6

∫ x

x0

|f(t, g(t)) − f(t, h(t))|dt

6 α|x − x0|d(g, h) < αδd(g, h).
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Similarly, |(Tg)(x) − (Th)(x)| 6 α|x − x0|d(g, h) < αδd(g, h) for x ∈ [x0 −
δ, x0]. Since αδ < 1, T is a contraction and in view of Banach’s fixed point
theorem there exists a unique continuous function y : I → J such that

y(x) = (Ty)(x) = y0 +

∫ x

x0

f(t, y(t))dt.

�

Completions

The space (0, 1) with the usual metric is not complete but is a subspace
of the complete metric space [0, 1] with the usual metric. This example
illustrates the general situation: every metric space X may be regarded as
a subspace of a complete metric space X̃ in such a way that X = X̃.
We will need the following concept.

Definition 4.19. A bijective map f from (X, d) onto (Y, ρ) is called an
isometry if

ρ(f(x), f(y)) = d(x, y) for all x, y ∈ X.

If f : X → Y is an isometry, then f−1 : Y → X is also an isometry, and
the spaces (X, d) and (Y, ρ) are called isometric. Two isometric spaces can
be regarded as indistinguishable for all practical purposes that involve only
distance.

Definition 4.20. A completion of a metric space (X, d) is a pair consist-
ing of a complete metric space (X̃, d̃) and an isometry ϕ : X → ϕ(X) such
that ϕ(X) is dense in X̃.

Theorem 4.21. Let (X, d) be a metric space. Then (X, d) has a comple-
tion. The completion is unique in the following sense: If ((X1, d1), ϕ1) and
((X2, d2), ϕ2) are completions of (X, d), then (X1, d1) and (X2, d2) are iso-
metric. That is, there exists an isometry ϕ : X1 → X2 such that ϕ˚ϕ1 = ϕ2.

Proof.
Existence: Let B(X) be the space of bounded functions defined on X
equipped with the uniform norm σ(f, g) = supy∈X |f(y)− g(y)|. Fix a point
a ∈ X. With every x ∈ X we associate a function fx : X → R defined by

fx(y) = d(y, x) − d(y, a), y ∈ X.
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We have
|fx(y)| = |d(y, x) − d(y, a)| 6 d(x, a)

so that fx is bounded. Since

|fx1
(y) − fx2

(y)| 6 d(x1, x2) for all y ∈ X,

σ(fx1
, fx2

) = supy∈X{|fx1
(y) − fx2

(y)|} 6 d(x1, x2). On the other hand,

σ(fx1
, fx2

) ≥ |fx1
(x2) − fx2

(x2)| = d(x1, x2).

Hence
σ(fx1

, fx2
) = d(x1, x2),

and the map ϕ : X → C(X, R) defined by ϕ(x) = fx is an isometry onto
ϕ(X),

σ(ϕ(x1), ϕ(x2)) = d(x1, x2).

Denote by X ′ the closure of ϕ(X) in B(X) and let d′ be the metric on X ′

induced by σ. Since (B(X), σ) is complete and X ′ is closed in B(X), the
space (X ′d′) is complete.

Uniqueness:
The isometry ϕ1 : X → ϕ1(X) has an inverse ϕ−1

1 : ϕ1(X) → X. Then
ϕ2 ˚ ϕ−1

1 is an isometry from ϕ1(X) onto X2. Since ϕ1(X) is dense in

(X1, d1), ϕ2 ˚ ϕ−1
1 extends to the map ϕ : X1 → X2 satisfying

d2(ϕ(x), ϕ(y)) = d1(x, y), x, y ∈ X1.

Since X1 is complete, in view of the above equation, ϕ(X1) is closed in
X2. Since ϕ ˚ ϕ1 = ϕ2, ϕ2(X) ⊂ ϕ(X1). This implies that X2 = ϕ2(X) ⊆
ϕ(X1) = ϕ(X1) since ϕ(X1) is closed in X2. Consequently, ϕ(X1) = X2,
i.e., ϕ is surjective and the proof is completed. �

5 Compact Metric Spaces

We start with the classical theorem of Bolzano-Weierstrass.

Theorem 5.1 (Bolzano-Weierstrass). Let I be a closed and bounded in-
terval of R, and let {xn} be a sequence in I. Then there exists a subsequence
{xnk

} which convereges to a point in I.
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Proof. Without loss of generality we may assume that I = [0, 1]. Bisect the
interval [0, 1] and consider the two intervals [0, 1/2] and [1/2, 0]. One of these
subintervals must contain xn for infinitely many n. Call this subinterval I1.
Now bisect I1. Again, one the two subintervals contains xn for infinitely
many n. Denote this subinterval I2 the interval containing xn for infinitely
many n. Proceeding in this way we find a sequence of closed intervals In,
each one contained in the preceding one, each one half of the length of the
preceding one, and each containing xn for infinitely many n. Choose an
integer n1 so that xn1

∈ I1. Then choose n2 > n1 such that xn2
∈ I2.

Then choose n3 > n2 such that xn3
∈ I3, and so on. Continuing this way

we choose we find a sequence {xnk
} such that xnk

∈ Ik. If i, j ≥ k, then
xni

, xnj
∈ Ik and so

|xni
− xnj

| 6 1/2k.

Hence {xnk
} is Cauchy and since [0, 1] is complete, {xnk

} converges to a
point in [0, 1] �

Definition 5.2. A metric space (X, d) is called compact if every sequence
in X has a convergent subsequence. A subset Y of X is compact if every
sequence in Y has a subsequence converging to a point in Y .

Proposition 5.3. Let (X, d) be compact and Y a closed subset of X. Then
Y is compact.

Proof. Let {xn} be a sequence in Y . Since X is compact, the sequence {xn}
has a converging subsequence, say xnk

→ x. Since Y is closed, x ∈ Y . �

Proposition 5.4. Let X be a metric space and Y a compact subset of X.
Then Y is closed and bounded.

Proof. Take any x ∈ Y . There exists a sequence {xn} in Y converging to
x. Since Y is compact, the sequence {xn} has a converging subsequence,
say xnk

→ y with y ∈ Y . In view of the uniqueness of the limit, y = x.
Hence Y is closed. To see that Y is bounded, we argue by contradiction and
construct a sequence {xn} which does not have a converging subsequence.
Fix any point y ∈ X. For every n ∈ N, there exists a point xn ∈ Y so that
d(xn, y) ≥ n since otherwise Y ⊆ B(y, n) for some n. The sequence {xn}
contains converging subsequence since Y is compact. Say xnk

→ x ∈ Y .
Let ε = d(x, y), Then d(xnk

, x) 6 1 for all k ≥ N . Hence by the triangle
inequality,

d(x, y) ≥ d(y, xnk
) − d(x, xnk

) ≥ nk − 1 ≥ k − 1

for all k ≥ N , contradiction. Consequently, Y is bounded. �
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Combining Proposition 5.4 with Theorem 5.1 we get

Theorem 5.5. A subset Y of R is compact if and only if Y is bounded and
closed.

The result is also valid in Rn with the standard metric. A subset of Rn is
compact if and only if it is bounded and closed. This follows from the fact
that if Ai is a compact subset of (Xi, di) for 1 6 i 6 n, then A1×A2×· · ·×An

is compact in the product space X1 × X2 × · · ·Xn. In particular, using
Theorem 5.1, [−a, a]n is compact in Rn. So if A is bounded and closed in
Rn, then A is a subset of a compact set [−a, a]n, and then Proposition 5.3
implies that A is compact.

Theorem 5.5 does not hold true for general metric spaces.

Example 5.6. Consider the metric space ((C([0, 1], R), d) consisting of
all continuous functions on the interval [0, 1] with the supremum metric
d(f, g) = sup{|f(x)−g(x)||x ∈ [0, 1]}. Let A = {f1, f2, . . .}, where fi(x) = xi

for x ∈ [0, 1]. The set A is bounded since B(0, 2). For k > i, we have

|fk(x) − fi(x)| = xi · |xk−i − 1|.

Let i be fixed. Then for x close to 1, xi > 1/2 and for k large xk−i < 1/2.
Hence

|fk(x) − fi(x)| = xi · |xk−i − 1| > 1/4,

So d(fi, fk) ≥ 1/4 for k large. Let f ∈ A. We claim that f ∈ A. Indeed,
there exists a sequence {gk} ⊂ A such that d(gk, f) → 0. Hence {gk} is
Cauchy and there is N such that d(gN , gk) < 1/4 for all k ≥ N . Since gk ∈ A,
gk = fnk

. Hence d(fnN
, fnk

) < 1/4 for all k ≥ N . From d(fi, fk) ≥ 1/4 for
all k large, it follows that the set {nk} is bounded, that is, nk 6 m for some
m ∈ N and all k ∈ N . Hence for all k, gk ∈ {f1, f2, f3, . . . , fm} so that
the sequence {gk} has a constant subsequence, say gnl

= fi for some i 6 m
and all l. Since a subsequence of a convergent sequence converges to the
same limit, the sequence {gk} converges to fi, that is, f = fi. Hence A is
closed. To see that A is not compact, consider a sequence {fn}. If A were
compact, then a subsequence of {fn} converges to some fi ∈ A. But then
d(fi, fnk

) < 1/4 for large k contradicting d(fi, fk) ≥ 1/4 for large k.

Theorem 5.7. Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be
continuous. If a subset K ⊆ X is compact, then f(K) is compact in (Y, d′).
In particular, if (X, d) is compact, then f(X) is compact in Y .
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Proof. Let {yn} be any sequence in f(K), and let {xn} be a sequence in K
of points such that f(xn) = yn. Since K is compact, {xn} has a converging
subsequence to a point in K, say xnk

→ x with x ∈ K. Since f is continuous,
f(xnk

) → f(x). That is, ynk
→ f(x) and since f(x) ∈ f(K), f(K) is

compact. �

As a corollary we get

Corollary 5.8. Let f : X → R be a continuous function on a compact
metric space. Then f attains a maximum and a minimum value, that is,
there exist a and b ∈ X such that f(a) = inf{f(x)| x ∈ X} and f(b) =
sup{f(x)| x ∈ X}.

Proof. By Theorem 5.7, f(X) is compact and so, it is bounded and the
sup{f(x)| x ∈ X} is finite. Set C = sup{f(x)| x ∈ X}. By definition of
supremum, for every n ∈ N, there exists xn such that C − 1/n 6 f(xn) 6

C. The sequence {xn} has a converging subsequence, xnk
→ b because

X is compact. In view of the continuity of f , f(xnk
) → f(x), and since

C − 1/n 6 f(xn) 6 C, f(x) = C. Similarly, f(a) = inf{f(x)| x ∈ X}. �

Theorem 5.9. Suppose f : (X, d) → (Y, d′) is a continuous mapping defined
on a compact metric space X. Then f is uniformly continuous.

Proof. Suppose not. Then there is some ε > 0 such that for all δ > 0 there
exist points x, y with d(x, y) < δ but d′(f(x), f(y)) ≥ ε. Take δ = 1/n
and let xn, yn be points such that d(xn, yn) < 1/n but d′(f(xn), f(yn)) ≥ ε.
Compactness of X implies that there is a subsequence {xnk

} converging to
some point x ∈ X. Since d(xnk

, ynk
) < 1/nk → 0 as k → ∞, the sequence

{ynk
} converges to the same point x. Continuity of f implies that the

sequences {f(xnk
)}, {f(ynk

)} converge to f(x). Then d′(f(xnk
), f(x)) < ε/2

and d′(f(ynk
), f(x)) < ε/2 for k large, and so,

d′(f(xnk
, f(ynk

)) 6 d′(f(xnk
), f(x)) + d′(f(x), f(ynk

)) < ε

for k large, contradiction that d′(f(xn), f(yn)) ≥ ε for all n. �

Characterization of Compactness for Metric Spaces

Definition 5.10. Let (X, d) be a metric space and let A ⊆ X. If {Ui}i∈I

is a family of subsets of X such that A ⊂ ⋃i∈I Ui, then it is called a cover
of A, and A is said to be covered by the Ui’s. If each Ui is open, then
{Ui}i∈I is an open cover. If J ⊂ I and still A ⊆ ⋃i∈J Ui, then {Ui}i∈J is
a subcover.
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Definition 5.11. Let (X, d) be a metric space and let A ⊆ X. Then A has
the Heine-Borel property if for every open cover {Ui}i∈I of A, there is a
finite set F ⊆ I such that A ⊆ ⋃i∈S Ui.

Example 5.12. Consider a set X with a discrete metric. Then every one-
point set is open and the collection of all one-point sets is an open cover of
X. Clearly, this cover does not have any proper subcover. Hence, a discrete
metric space X has the Heine-Borel property if and only if X consists of a
finite number of points.

Definition 5.13. Let (X, d) be a metric space and A ⊆ X. Let ε > 0. A
finite subset S is called an ε-net for A if A ⊆ ⋃

x∈S B(x, ε). A set A is
called totally bounded if, for every ε > 0, there is an ε-net for A. That
is, for every ε > 0, there is a finite set S such that A ⊆ ⋃x∈S B(x, ε).

Every totally bounded set is bounded, for if x, y ∈ ⋃n
i=1 B(xi, ε), say x ∈

B(x1, ε), y ∈ B(x2, ε), then

d(x, y) 6 d(x, x1) + d(x1, x2) + d(x2, y) 6 2ε + max{d(xi, xj)| 1 6 i, j 6 n}.

The converse is in general false.

Example 5.14. Consider (R, d) with d(x, y) = min{|x−y|, 1}. Then (R, d)
is bounded since d(x, y) 6 1 for all x, y ∈ R. But (R, d) is not totally
bounded since it cannot be covered by a finite number of balls of radius 1/2.
Indeed, let S be any finite subset of R, and let x be the largest number in
S. If y ∈ S, then d(x + 1, y) = min{|x + 1 − y|, 1} = 1 and so there is no
1/2-net for R.

Theorem 5.15. Let A be a subset of a metric space (X, d). Then the
following conditions are equivalent:

(a) A is compact.

(b) A is complete and totally bounded.

(c) A has the Heine-Borel property.

Proof. We will show that (a) implies (b), (b) implies (c), (c) implies (a).

(a) implies (b):
Let {xn} be a Cauchy sequence in A. We have to show that it converges to
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a point in A. By compactness of A, some subsequence, {xnk
}, converges to

x ∈ A. Then xn → x. Indeed, let ε > 0. Choose n0 such that d(xn, xm) <
ε/2 for all n,m ≥ n0. Also choose k0 such that d(xnk

, x) < ε/2 for all
k ≥ k0. Then if k ≥ k0, is such that nk ≥ n0, then for m ≥ n0 we have,

d(xm, x) 6 d(xm, xnk
) + d(xnk

, x) < ε/2 + ε/2 = ε.

Hence we proved that A is complete.
Suppose that A is not totally bounded. Then there exists r so that A
cannot be covered by finitely many balls of radius r. We construct a se-
quence {xn} in A which does not have a converging subsequence. Take any
x1 ∈ A. Since B(x1, r) does not cover A, there is a point in A \ B(x1, r).
Call this point x2. Having chosen points x1, . . . ,xn, we choose xn+1 so
that it belongs to X \⋃n

i=1 B(xi, r). This is possible since A is not covered
by B(x1, r), . . . , B(xn, r). Continuing in this way we get a sequence {xn}
such that d(xn, xm) ≥ r for all n and m. Such a sequence cannot have
a convergent subsequence since if {xnk

} converges, then it is Cauchy and
d(xnk

, xnm) < r for large k and m. Hence A is no compact, contradiction.

(b) implies (c):
Let U = {Ui}i∈I be a collection of open sets covering A. Arguing by contra-
diction we assume that U does not contain a finite subcover. Total bound-
edness of A implies that there is a finite set of closed balls B1, . . . ,Bn of
radius 1 which cover A. If each of the sets A∩Bi can be covered by a finite
number of sets from U , then A can also be covered by a finite subcollec-
tion of sets from U . Therefore some A ∩ Bi, , denoted by B1, cannot be
covered by a finite number of sets from U . Since B1 is a subset of A and
A is totally bounded, B1 is totally bounded. So let B1

1 , . . . , B1
m be a finite

set of closed balls of radius 1/2 which cover B1. If each Bi
i ∩ B1 can be

finitely covered by sets from U , the same is true for B1. Therefore, some
B1

j ∩ B1, denoted by B2, cannot be covered by a finite number of sets from
U . Continuing in this way we obtain a sequence of closed sets Bn such that
· · · ⊂ Bn ⊂ Bn−1 ⊂ · · · ⊂ B1, none of which can be finitely covered and
diam Bn 6 1/n. From each Bn choose a point xn. The sequence {xn} is
Cauchy since for n,m ≥ k, xn, xn ∈ Bk and

d(xn, xm) 6 diam Bk
6 1/k.

By completness of A, the sequence {xn} converges, say xn → x. In fact,
x ∈ Bk for all k since xn ∈ Bk for all n ≥ k and since Bk is closed. In
particular, x ∈ A . Since U covers A, the point x belongs to some Ui, and
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therefore, B(x, ε) ⊂ Ui for some ε. If y ∈ Bn, then

d(x, y) 6 d(x, xn) + d(xn, y) 6 d(x, xn) + diam Bn 6 d(x, xn) + 1/n.

For large n, the right side is less than ε. So for large n, Bn ⊂ B(x, ε). Hence
Bn ⊂ Ui which shows that Bn can be finitely covered by sets from U . This
contradiction show that A has the Heine-Borel property.

(c) implies (a):
Suppose that A is not compact. Then there exists a sequence {xn} in A
with no convergent subsequence in A. Then for every x ∈ A, there exists
a ball B(x, εx) which contains xn for at most finitely many n. Otherwise,
there exists x such that for every r > 0, B(x, r) contains xn for infinitely
many n. Then, in particular, for every k, B(x, 1/k) contains xn for infinitely
many n. Choose n1 so that xn1

∈ B(x, 1). Since B(x, 1/2) contains xn for
infinitely many n, there is n2 > n1 such that xn2

∈ B(x, 1/2). In this
way we construct a subsequence {xnk

} such that xnk
∈ B(x, 1/k). This

implies xnk
→ x contradicting our assumption on {xn}. Now the family

{B(x, εx)}x∈A is an open cover of A from which it is impossible to choose
a finite number of balls which will cover A since any finite cover by these
balls contains xn for finitely many n and since A contains xn for all positive
integers. Consequently, A is compact. �

6 Topological Spaces

Our next aim is to push the process of abstraction a little further and define
spaces without distances in which continuous functions still make sense.
The motivation behind the definition is the criterion of continuity in terms
of open sets. This criterion tells us that a function between metric spaces
is continuous provided that the preimage of an open set is open. We make
the following definition.

Definition 6.1. Let X be a non-empty set. A topology on a set X is a
collection T of subsets of X satisfying the following properties:

O1 ∅ and X ∈ T ;

O2 if {Ui}i∈I ⊂ T , then
⋃

i∈I Ui ∈ T ;

O3 if U1, U2, . . . , Un ∈ T , then
⋂n

i=1 ∈ T ;

The pair (X, T ) is called a topological space. If X is a topological space
with topology T , we say that a subset U of X is an open set in X if U ∈ T .
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Here are some examples of topological spaces.

Example 6.2. Let (X, d) be a metric space. Then the family of open sub-
sets of X with respect to the metric d is a topology on X.

Example 6.3. Let X be any non-empty set. The collection of all subsets of
X, P(X), is a topology on X. This topology is called the discrete topol-
ogy. Every subset U of X is an open set. On the other extreme, consider
X and the collection {∅, X}. It is also a topology on X, and is called the
indiscrete topology or the trivial topology.

Example 6.4. Let X = R and let Tu be a collection of subsets of X consist-
ing of ∅, R, and the unbounded open intervals (−∞, a) for all a ∈ R. Then
Tu is a topology on R. Similarly, we can define a topology Tl consisting of
∅, R and all unbounded intervals (a,∞), a ∈ R.

Example 6.5. Let (X, T ) be a topological space and Y ⊆ X. Then
TY = {U ∩ Y | U ∈ T } is a topology on Y . It is called the subspace
topology or relative topology induced by T .

Definition 6.6. Suppose that T and T ′ are two topologies on X. If T ⊂ T ′

we say that T ′ is finer or larger than T . In this case we also say T is
coarser or smaller than T ′. Topologies T and T ′ are comparable if
T ′ ⊂ T and T ⊂ T ′

Along with a concept of open sets there is the companion concept of closed
set. If X is a topological space, then a set F ⊂ X is closed if F c = X \ F
is open. By de Morgan’s laws, the family of closed sets is closed under
arbitrary intersection of closed sets and finite unions. More precisely, the
class of closed sets has the following properties:

C1 X and ∅ are closed;

C2 If Fi is a closed set for every i ∈ I, then
⋂

i∈I Fi is closed;

C3 If F1, . . . Fn are closed, then
⋃n

i=1 Fi is closed.
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Given a subset A of a topological space X, its closure is the intersection
of all closed subsets of X containing A. The closure of A is denoted by A.
The interior of A, denoted by A◦, is the union of all open subsets of A.
If x ∈ X, then a set A ⊂ X is called a neighbourhood of x, if x ∈ A◦.

Basis

If X is a topological space with topology T , then a basis for T is a collection
B ⊂ T such that every member of T , i.e., every open set, is a union of
elements of B.

Example 6.7. The collection of all open balls forms a basis for the topology
of metric space.

Theorem 6.8. Let X be a set. Then a collection B of subsets of X is a
basis for a topology of X is and only if B has the following two properties:

(1) For every x ∈ X, there exists B ∈ B such that x ∈ B.

(2) If B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists B3 ∈ B such that
x ∈ B3 ⊂ B1 ∩ B2.

PSfrag replacements

x
B1

B2

B3

Proof. Any basis satisfies (1) since the whole space X is open, and (2) since
the intersection of two open sets B1 ∩ B2 is open. Conversely, assume that
B is a collection of subsets of X with properties (1) and (2). Define T to be
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the collection of all subsets of X that are unions of sets in B. We shall show
that T is topology. The condition (1) guarantees that X ∈ T . Clearly, an
arbitrary union of sets in T belongs to T in view of definition of T . Assume
that U, V ∈ T . We have to show that U ∩ V is the union of sets in B. Take
any x ∈ U∩V . Since U and V are unions of sets in B, there exist B1, B2 ∈ B
such that x ∈ B1 ⊂ U and x ∈ B2 ⊂ V . So x ∈ B1 ∩ B2, and, in view of
(2), there exists Bx ∈ B such that x ∈ B3 ⊂ B1 ∩ B2. Hence Bx ⊂ U ∩ V ,
and consequently,

U ∩ V =
⋃

x∈U∩V

Bx.

This shows that U ∩ V ∈ T . �

Hausdorff and normal spaces

Definition 6.9. A topological space X is called a Hausdorff space if for
every two points x, y ∈ X such that x 6= y, there exist disjoint open sets U
and V satisfying x ∈ U and y ∈ V . A space X is normal if for each pair
A,B of disjoint closed subsets of X, there exist disjoint open sets U and V
such that A ⊂ U and V ⊂ V .
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Continuity

Continuous functions in metric spaces were characterized in terms of open
and closed sets (see Theorem 3.4 and Theorem 3.5).This suggest the defini-
tion of continuity in topological spaces.

Definition 6.10. Let X and Y be topological spaces and let f : X → Y .
The map f is continuous at a point x0 if for every neighbourhood U of
f(x0) in Y there exists a neighbourhood V of x0 in X such that f(V ) ⊂ U .
Global continuity of f is defined in terms of open sets: f is continuous if
f−1(U) is open in X for every open set U in Y .
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If f : X → Y is bijective and f and f−1 are both continuous, f is called a
homeomorphism and X and Y are said to be homeomorphic. We call
a property topological if it is invariant under homeomorphism.

Elementary properties of continuous functions

(1) If f : X → Y and g : Y → Z are continuous maps between topological
spaces, then the composition g ˚ f : X → Z is continuous.

(2) If f : X → R and g : X → R are continuous, then h : X → R2 given
by h(x) = (f(x), g(x)) is continuous.

(3) If A is a subspace of X, then the inclusion map i : A → X is continuous
(this follows from the definition of the topology on the subspace A). If
f : X → Y is continuous, where Y is another topological space, then
the restriction map h : A → Y defined by h(x) = f(x) for x ∈ A, is
continuous. This follows from (1) using the fact that h = f ˚ i.

7 Compact Topological Spaces

Theorem 4.15 gives three equivalent characterizations of compactness for
metric spaces: the Bolzano-Weierstrass property, completeness together with
total boundedness and the Heine-Borel property. In the case of general
topological spaces the most useful is the Heine-Borel property. A subset
Y of a topological space (X, T ) is called compact it if for every collection
U = {Ui}i∈I of open sets such that A =⊆ ⋃i∈I Ui, there is a finite J ⊆ I for
which Y ⊆ ⋃i∈J Ui. DeMorgan’s laws lead to the following characterization
of compactness in terms of closed sets.

Definition 7.1. A family {Fi}i∈I of closed subsets of X is said to have the
finite intersection property if

⋂
i∈J Fi 6= ∅ for all finite J ⊆ I.

Theorem 7.2. A topological space X has is compact if and only if for every
family {Fi}i∈I of closed subsets of X having the finite intersection property,⋂

i∈I Fi 6= ∅.

Proof. Assume that X is compact. Let {Fi}i∈I be a collection of closed sets
having the finite intersection property. Arguing by contradiction assume
that

⋂
i∈Fi

= ∅. Denoting by Ui = X \ Fi we have
⋃

i∈I Ui =
⋃

i∈I [X \
Fi] = X \ ⋂i∈I Fi = X. So {Ui}i∈I is an open cover of X. Hence there
are Ui1 , . . . , Uik such that X = Ui1 ∪ · · · ∪ Uik . But then ∅ = X \ X =

X \ ⋃k
l=1 Uil =

⋂n
l=1 Fil , contradicting the assumption that {Fi} has the
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finite intersection property. Conversely, suppose that for every collection
{Fi}i∈I having the finite intersection property we have

⋂
i∈I Fi 6= ∅. Take

any open covaer {Ui}i∈I of X, and define Fi = X \Ui. Then Fi’s are closed
and

⋂
i∈I Fi =

⋂
i∈I [X \ Ui] = X \ ⋃i∈I Ui = ∅. So {Fi} does nor have the

finite intersection property (otherwise
⋂

i∈I Fi 6= ∅). So there is a finite set
J ⊆ I such that

⋂
i∈J Fi = ∅. But then X =

⋃
i∈J [X \Fi] =

⋃
i∈J Ui showing

that X is compact. �

Theorem 7.3. A closed subspace of a compact topological space is compact

Proof. Let K be a closed subset of a topological space X, and let {Ui∈J} be
an open cover of X. Then the collection {U}i∈J ∪ {Kc} is a family of open
subsets of X that covers X. Since X is compact, there is a finite subfamily
of this family that covers X. The corresponding subfamily of {Ui∈J} covers
Y .

�

Theorem 7.4. If X is a Hausdorff space, then every compact subset of X
is closed.

Proof. Let K be a compact subset of X. Since X is Hausdorff, for every
x ∈ Kc and every y ∈ K, there are disjoint open sets Uxy and Vxy such that
x ∈ Uxy and y ∈ Vxy. Then for every x ∈ Kc, {Vxy}y∈K is an open cover of
K. Since K is compact, there exist y1, . . . yn ∈ K such K ⊆ ⋃n

i=1 Vxyi
. Set

U =
⋂n

i=1 Uxyi
. Then U is open, U ∩ K = ∅, and x ∈ U . Thus x ∈ U ⊆ K c

showing that Kc is open, and consequently, that K is closed. �

Theorem 7.5. A compact Hausdorff space is normal

Proof. Let A and B be disjoint closed subsets of a compact Hausdorff space.
In view of Theorem 7.3, the sets A and B are compact. Proceeding like in the
proof of the previous theorem, we find for every x ∈ B disjoint open sets Vx

and Ux such that x ∈ Vx and A ⊆ Ux. Then the open sets {Vx}x∈B cover B.
Consequently, there exist x1, . . . , xn ∈ B such that B ⊆ Vx1

∪· · ·∪Vxn := V .
Then U := Ux1

∩ · · · ∩ Uxn is open, U ∩ V = ∅, and A ⊆ U,B ⊆ V . �

Theorem 7.6. Suppose that f : X → Y is a continuous map between
topological spaces X and Y . If K ⊆ X is a compact set, then f(K) is a
compact subset of Y . In particular, if X is compact, then f(X) is compact.

Proof. Let U be an open cover of f(K). That is, U consists of open subsets
of Y such that their union contains f(K). The continuity of f implies that
for any set U ∈ U , f−1(U) is an open subset of X. Moreover, the family
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{f−1(U) | U ∈ U} is an open cover of K. Indeed, if x ∈ K, then f(x) ∈
f(K), and so f(x) ∈ U for some U ∈ U . This implies that x ∈ f−1(U). Since
K is compact, K ⊆ ⋃n

i=1 f−1(Ui) for some n. It follows that f(K) ⊆ ⋃n
i=1 Ui

which proves that f(K) is a compact subset of Y . This completes the proof
of the theorem. �

Theorem 7.7. Let f be a continuous bijective function from a compact
topological space X to a Hausdorff topological space Y . Then the inverse
function f−1 : Y → X is continuous.

Proof. Denote by g = f−1 : Y → X. We have to show that g−1(K) is closed
in Y for any closed set K in X. Since f is a bijection, g−1(A) = f(A) for
any subset of Y . So g−1(K) = f(K). Since K is closed and X compact, K
is also compact. By the previous result, f(K) is compact in Y and since Y
is Hausdorff, f(K) is closed. So g−1(K) is closed in Y , as required. �

Example 7.8. Let S1 be the unit circle in R2 of radius 1 and centre (0, 0).
We consider S1 as a subspace of R2. Let f : [0, 2π) → S1 be given by
f(x) = (cos x, sinx) for x ∈ [0, 2π). Show that f is a continuous bijection
but the inverse map f−1 : S1 → [0, 2π) is not continuous. Why doesn’t this
contradict Theorem 6.7?

8 Connected Spaces

A pair of non-empty and open sets U , V of a topological space X is called
a separation of X if U ∩ V = ∅ and X = U ∪ V . A topological space X is
called disconnected if there is a separation of X, and otherwise is called
connected. A subset Y of X is said to be connected if it is connected
as a subspace of X, that is, Y is not the union of two non-empty sets
U, V ∈ |mathcalT Y such that U ∩ V = ∅.

Example 8.1. The set X containing at least two points and considered
with the discrete topology is disconnected, however, X with the indiscrete
topolgy is connected.

Example 8.2. The subspace R \ {0} of R is disconnected since R \ {0} =
A ∪ B, where A = {r ∈ R | r < 0} and B = {r ∈ R | r > 0}. If X = Q is
considered as subspace of R, then X is disconnected since X = A ∪ B with
A = Q ∩ (−∞, r) and B = Q ∩ (r,∞), where r is irrational.
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A “2-valued” function is a function from X to {0, 1}, where {0, 1} is consid-
ered with discrete topology.

Theorem 8.3. A space X is connected if and only if every 2-valued contin-
uous function on X is constant. Equivalently, X is disconnected if and only
if there exists a 2-valued continuous function from X onto {0, 1}
Proof. Suppose that X is connected and f : X → {0, 1} is continuous. Let
A = f−1({0}) and B = f−1({1}). The sets A, B are open, disjoint and
X = A∪B. So one of A, B has to be empty. Conversely, assume that every
continuous 2-valued function is constant. Assume that X = A ∪ B, A and
B are open, and A ∩ B = ∅. Define

f(x) =

{
0 if x ∈ A,

1 if x ∈ B.

Clearly, the function f is continuous. So f is constant, say f(x) = 0 for all
x ∈ X. But then A = X and B = ∅. Hence X is connected as claimed. �

Theorem 8.4. Let f : X → Y be a continuous function between spaces X
and Y . If X is connected, then the image f(X) is connected.

Proof. Let g : f(X) → {0, 1} be continuous. Then the composition g ˚ f :
X → {0, 1} is continuous, hence constant since X is connected. Hence g is
constant on f(X) and the result follows in view of Theorem 8.3. �

Theorem 8.5. If A is a connected subset of a space X, then A is also
connected.

Proof. Let f : A → {0, 1} be continuous. Then f|A is continuous, and so,

f is constant on A. Say f = 0 on A. We claim that f = 0 on A. Suppose
f(x) = 1 for some x ∈ A. The set {1} is open in {0, 1} and since f is
continuous f−1({1}) is an open subset of A. Thus say f−1({1}) = U ∩ A
for some open set U in X. This mean that f = 1 on U ∩ A. Since x ∈ A,
U ∩ A 6= ∅, say y ∈ U ∩ A. Then f(y) = 1 since y ∈ U ∩ A ⊆ U ∩ A, but
one the other hand f(y) = 0 since f = 0 on A. Therefore, A is connected
as claimed. �

Example 8.6. The union of connected subspaces does not have to be con-
nected. Consider R with the usual topology. Then the sets (−∞, 0) and
(0,∞) are connected subspaces of R, but the union (−∞, 0)∪(0,∞) = R\{0}
is disconnected.
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Theorem 8.7. If {Ai}i∈I is a family of connected subsets of X such that⋂
i∈I Ai 6= ∅, then A =

⋃
i∈I Ai is connected.

Proof. Let f : A → {0, 1} be continuous. Then f|Ai
is continuous for every

i, so it is constant. Since
⋂

i∈I Ai 6= ∅, we must have the same constant on
every Ai. Hence f is constant and A is connected. �

As an application of this theorem we have the following

Theorem 8.8. If for any two points in a space X there exists a connected
subspace of X containing these two points, then X is connected.

Proof. Fix a point a ∈ X. For b ∈ X denote by C(b) a connected subspace
of X containing a and b. Then X =

⋃
b∈X C(b). Since a ∈ ⋂b∈X C(b), the

result follows from the previous theorem. �

Let x ∈ X and let Cx be the union of all the connected subsets of X
containing x. Each Cx is called a component (or connected component)
of X.

Proposition 8.9. Let Cx be the connected component of X containing x.
Then

(a) for each x ∈ X, Cx is connected and closed; and

(b) for any two x, y ∈ X, either Cx = Cy or Cx ∩ Cy = ∅.

Proof. The set Cx is connected in view of Theorem 8.7, and by Theorem
8.5, Cx is connected. Hence by the definition of Cx, Cx ⊂ Cx, so Cx = Cx

and Cx is closed. If Cx∩Cy 6= ∅, then Cx ∪Cy is connected by Theorem 8.7.
So again by the definition of Cx Cx ∪ Cy ⊂ Cx. Hence Cy ⊂ Cx, Similarly,
Cx ⊂ Cy, so Cx = Cy as required. �

Example 8.10. If X is equipped with the discrete topology, then every
subset of X is open and closed. Hence the connected components of X are
sets consisting of one point.

Next we shall determine the connected subsets of R. By an interval I ⊂ R

we mean a subset of R having the following property: if x, y ∈ I and x 6

z 6 y, then z ∈ I.

Theorem 8.11. A subset of R is connected if and only if it is an interval.
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Proof. Suppose that J ⊂ R is not an interval. Then there are x, y ∈ J and
z 6∈ J with x < z < y. Then define A = (−∞, z) ∩ J and B = (z,∞) ∩ J .
Clearly, A, B are disjoint, non-empty, relatively open, and A ∪ B = J . So
J is not connected. Conversely, suppose that J is an interval. We will show
that J is connected. Let f : J → {0, 1} be continuous, and suppose that
f is not constant. Then there are x1 and y1 ∈ J such that f(x1) = 0 and
f(y1) = 1. For simplicity assume that x1 < y1. Let a be the midpoint
of [x1, y1]. If f(a) = 0, then set x2 = 0 and y2 = y1, and otherwise,
x2 = x1 and y2 = a. So x1 6 x2 6 y2 < y1, |x2 − y2| 6 2−1|x1 − y1|,
and f(xi) 6= f(yi). Iterating this procedure we find a sequences {xn} and
{yn} with the following properties: x1 6 x2 6 · · · 6 xn < yn 6 · · · 6 y1,
|xn − yn| 6 2−1|xn−1 − yn−1| 6 2n−1|x1 − y1|, and f(xn) = 0, f(yn) = 1.
Since R is complete, {xn} converges to some z, and since |xn − yn| → 0,
yn → z. Clearly, z ∈ J . Hence 0 = limn f(xn) = f(z) = limn f(yn) = 1, a
contradiction. So f is constant, and this implies that J is connected. �

We can apply the last theorem to analyze the structure of open subsets of R.
We claim that any open set U ⊂ R is a countable union of pairwise disjoint
open intervals. Indeed, let x ∈ U and let Ix be the connected component of
U containing x. Thus, Ix is an interval. If y ∈ Ix, then there is δ > 0 such
that (y− δ, y + δ) ⊂ U since U is open. Hence Ix ∪ (y− δ, y + δ) is connected
and since Ix is a connected component, (y − δ, y + δ) ⊂ Ix. So Ix is an open
interval, and U is a union of open intervals (its components). Since each
must contain a different rational number, U is at most countable union of
disjoint open intervals.
Here is an important application of Theorem 8.11.

Theorem 8.12 (Intermediate Value Theorem). Let f be a continuous
function defined on a connected space X. Then for any x, y ∈ X and any
r ∈ R such that f(x) 6 r 6 f(y) there exists c ∈ X such that f(c) = r.

Proof. The set f(X) is a connected subset of R. Hence f(X) is an interval,
and since f(x), f(y) ∈ f(X), it has to contain r. �

Definition 8.13. A space X is called path connected if for any two points
p and q ∈ X, there exists a continuous function f : [0, 1] → X such that
f(0) = p and f(1) = q. The function f is called a path from f(0) to f(1).

If X is path connected, then X is connected but the converse is false in
general as the following example shows.
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Example 8.14. Denote by X = {(t, sin(π/t)) | t ∈ [0, 2]} ⊂ R2. Let
ϕ : R2 → R be the projection onto the first coordinate, that is, ϕ(x, y) = x.
Then ϕ : X → (0, 2] is a homeomorphism and since (0, 2] is connected so
is X. Therefore, X = ({0} × [−1, 1]) ∪ X = J ∪ X is connected, where we
abbreviated J = {0}× [−1, 1]. We shall show that X is not path connected.
Arguing by contradiction assume that f : [0, 1] → X is a continuous path
in X such that f(0) ∈ J and f(1) ∈ X. Consider f−1(J). It is closed in
[0, 1] and contains 0. Let a = sup{t ∈ [0, 1], t ∈ f−1(J)}. Since f(1) ∈ X,
a < 1. Since f is continuous, there exists δ > 0 such that f(a + δ) ∈ X.
Write f(t) = (x(t), y(t)). Then x(a) = 0 and x(t) > 0, y(t) = sin(π/x(t))
for t ∈ (0, a + δ]. For every large n find rn such that 0 < rn < x(a + 1/n)
and sin(π/rn) = (−1)n. Since the function x is continuous by the Inter-
mediate Value Theorem there is tn ∈ (a, a + δ] such that x(tn) = rn and
y(tn) = (−1)n. So tn → a but y(tn) does not converge contradicting the
fact that f is continuous. Hence X is not path connected.

9 Product Spaces

We define a topology on a finite product of topological spaces. Consider a
finite collection X1, . . . , Xn of topological spaces. The product topology
on the product X = X1 × · · · ×Xn is the topology for which a basis of open
sets is given by “rectangles”

{U1 × · · · × Un | Uj is open in Xj for 1 6 j 6 n}. (11)

Observe that the intersection of two such sets is again a set of this form.
Indeed,

(U1 × · · · × Un) ∩ (V1 × · · · × Vn) = (U1 ∩ V1) × · · · × (Un ∩ Vn)

Consequently, the family (11) forms a basis. Let πj : X → Xj be the
projection of X onto the jth factor, defined by

πj(x1, . . . , xn) = xj, (x1, . . . , xn) ∈ X.

For an open set Uj ⊂ Xj , we have

π−1
j (Uj) = X1 × · · · × Xj−1 × Uj × Xj+1 × · · · × Xn

which is a basic open set. Hence each projection πj is continuous.
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PSfrag replacements

U1

U2

V1

V2

X1

X2 (U1 ∩ V1) × (U2 ∩ V2)

Theorem 9.1. Let X be the product of the topological spaces X1, . . . , Xn,
and let πj be the projection of X onto Xj. The product topology for X is
the smallest topology for which each of the projections πj is continuous.

Proof. Let T be another topology on X such that the projections πj are
T -continuous. Take open sets Uj ⊂ Xj , 1 6 j 6 n. Then each π−1

j (Uj)
belongs to T since πj is T -continuous. Since

π−1
1 (U1) ∩ · · · ∩ π−1

n (Un) = U1 × · · · × Un

the basic set U1×· · ·×Un belongs to T and T includes the product topology.
�

Call a function f from one topological space to another open if it maps
open sets onto open sets.

Theorem 9.2. Let X be the product of the topological spaces X1, . . . , Xn.
Then each projection πj of X onto Xj is open.

Proof. Let U = U1 × · · · × Un be a basic open set in X. Then πj(U) = Uj ,
and since the maps preserve unions, the image of any open set is open.

�

Theorem 9.3. Let Y be a topological space and let f be a continuous map
from Y to the product X = X1 ×· · ·×Xn. Then f is continuous if and only
if πj ˚ f is continuous for all 1 6 j 6 n.

Proof. If f is continuous, the πj ˚f is continuous as a composition of contin-
uous maps. Conversely, suppose that πj ˚ f is continuous for all 1 6 j 6 n.
Take a basic open set U = U1 × · · · × Un in X. Then

f−1(U) = (π1 ˚ f)−1(U1)) ∩ · · · (πn ˚ f)−1(Un))
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is a finite intersection of open sets and hence is open. Since the inverses of
functions preserve unions, the inverse image of any open set is open, and
consequently, f is continuous. �

We next study which properties of topological spaces are valid for the prod-
uct X = X1 × · · · × Xm whenever they hold for X1, X, . . . , Xm.

Theorem 9.4. Let X be the product of Hausdorff spaces X1, . . . , Xn. Then
X is Hausdorff.

Proof. Take two different points x = (x1, . . . , xn), y = (y1, . . . , yn), and
choose an index i so that xi 6= yi. Since Xi is Hausdorff, there exist open
sets Ui and Vi in Xi such that Ui ∩ Vi = ∅. Then π−1

i (Ui) and π−1
i (Vi) are

open and disjoint sets containing x and y, respectively. Consequently, X is
Hausdorff as required.

�

Theorem 9.5. Let X be the product of path-connected spaces X1, . . . , Xn.
Then X is path-connected.

Proof. Take two points x = (x1, . . . , xn), y = (y1, . . . , yn) in X. Since each
Xj is path-connected, for each 1 6 j 6 n there exists a path γj : [0, 1] → Xj

from xj to yj. Define γ : [0, 1] → X by setting

γ(t) = (γi(t), . . . , γn(t)), t ∈ [0, 1].

Then γ is a path connecting x with y. So X is path-connected. �

To study connectedness of the product of connected spaces we will need the
following fact. Fix points x2 ∈ X2, . . . xn ∈ Xn and define a map h : X1 → X
by setting h(x1) = (x1, . . . , xn). Then h is a homeomorphsim of X1 onto
the “slice” X1 × {x2} × · · · × {xn} of X. Indeed, if U = U1 × · · · × Un is
a basic open set in X, then h−1(U) = U1 is open so that h is continuous.
Since the inverse of h is equal to π1|X1×{x2}×···×{xn}, h−1 is continuous and
h is a homeomorphism. Similarly, for each j fixed and fixed points xi ∈ Xi,
i 6= j, the map Xj → {x1} × · · · {xj−1} × Xj × {xj+1} × · · · × {xn} is a
homeomorphism.

Theorem 9.6. Let X be the product of connected spaces X1, . . . , Xn. Then
X is connected.
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Proof. We prove the theorem for the product of two connected spaces X1 and
X2. We apply Theorem 8.8. Take two points a = (a1, a2), b = (b1, b2) ∈ X
and consider sets C1 = {(x, b2) ∈ X | x ∈ X1} and C2 = {(a1, y) ∈ X | y ∈
X2}. By the above remark, the sets C1, C2 are connected. Then, in view of
Theorem 8.7, C = C1∪C2 is connected since C1∩C2 = {(a1, b2)}. Applying
Theorem 8.8, the space X is connected since a, b ∈ C. �

To study compactness of the product of compact spaces we need the follow-
ing lemma.

Lemma 9.7. Let Y be a topological space and let B be a basis for the topology
of Y . If every open cover of Y by sets in B has a finite subcover, then Y is
compact.

Proof. Let {Ui}i∈I be an open cover of Y . For each y ∈ Y , choose Vy ∈ B
and an index j so that y ∈ Vy ⊂ Uj . The family {Vy}y∈Y forms an open
cover of Y by sets belonging to B. In view of the assumption, there exists a
finite number of the Vy’s that cover Y . Since each of these Vy’s is contained
in at least one of the Uj’s, we obtain a finite number of Uj ’s that cover Y .
Hence Y is compact.

�

Theorem 9.8 (Tichonoff’s Theorem for the finite product). Let X
be the product of compact spaces X1, . . . , Xn. Then X is compact.

Proof. We consider only the product of two compact spaces X1 and X2. let
R be a cover of X1×X2 by basic open sets of the form U ×V , U open in X1

and V open in X2. In view of Lemma 9.7, it is enough to show that R has a
finite subcover. Fix z ∈ X2. The slice X1 ×{z} is compact. Hence there are
finitely many sets U1 × V1, . . . , Un × Vn in R covering the slice X ×{z}. We
may assume that z ∈ Vj for all 1 6 j 6 n. The set V (z) = V1 ∩ · · · ∩ Vn is
an open set containing z, and the set π−1

2 (V (z)) is covered by sets Uj × Vj ,
1 6 j 6 n. The collection {V (z)}z∈X2

is an open cover of X2, and since
X2 is compact, X2 = V (z1) ∪ · · · ∪ V (zl) for some finite number of points
zj ∈ X2. Then X = π−1

2 (V (z1)) ∪ · · · ∪ π−1
2 (V (zl)). Each π−1

2 (V (zj)) is
covered by finitely many sets in R. Consequently, X can be covered by
finitely many sets in R, and, in view of Lemma 9.7, X is compact.

�
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Compactness in function spaces: Ascoli-Arzela the-

orem

Next we study compact subsets of the space of continuous functions. Let
X be a compact topological space and (M,σ) a complete metric space. By
C(X,M) we denote the set of all continuous functions from X to M . We
consider C(X,M) with the metric

d(f, g) = sup{σ(f(x), g(x)) | x ∈ X}

Definition 9.9. Let X be a topological space and (M,σ) a compact metric
space, and let F be a family of functions from X to M . The family F is called
equicontinuous at x ∈ X if for every ε > 0 there exists a neighbourhood
Uε of x such that

σ(f(y), f(x)) < ε for all y ∈ Uε and all f ∈ F .

The family F is called equicontinuous if it is equicontinuous at each x ∈
X.

Example 9.10. Consider two metric spaces (X, ρ) and (M,σ). Given M >
0 let F be a set of all functions f : X → Y such that

σ(f(x), f(y)) 6 Mρ(x, y)

for all x, y ∈ X. Then F is an equicontinuous family of functions. For if
ε > 0, take Uε = B(x, ε/M). Then if y ∈ Uε and f ∈ F , we have

σ(f(x), f(y)) 6 Mρ(x, y) < M · ε/M = ε.

Theorem 9.11 (Ascoli-Arzela Theorem). Let X be a compact space and
let (M,σ) be a complete metric space. Let F ⊂ C(X,Y ). Then the closure
F is compact in C(X,M) if and only if two of the following conditions hold:

(1) F is equicontinuous.

(2) for each x ∈ X. the set F(x) = {f(x) | f ∈ F} has a compact closure
in M .
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Proof. Since C(X,M) is a complete metric space, F is compact if and only
if F is totally bounded. Assume first that the conditions (1) and (2) are
satisfied. In view of the above remark we have to show that F is totally
bounded. Given ε > 0, for each x ∈ X there exists an open neighbourhood
V (x) such that if y ∈ V (x), then σ(f(x), f(y)) < ε for all f ∈ F . Since
{V (x)}x∈X is an open cover of X and X is compact by assumption, there
exist a finite number of points x1, . . . , xn such that V (x1), . . . , V (xn) cover
X. The sets F(xj) are totally bounded in M , hence so is the union S =
F(x1) ∪ · · · ∪ F(xn). Let {a1, . . . , am} be an ε-net for S. For every map
ϕ : {1, . . . , n} → {1, . . . ,m} denote by

Bϕ = {f ∈ F | σ(f(xj), aϕ(j)) < ε for all j = 1, . . . , n}.

Observe that there is only a finite number of sets Bϕ and every f ∈ F
belongs to one of such sets. Moreover, if f, g ∈ F , then

σ(f(y), g(y)) 6 σ(f(y), f(xk)) + σ(f(xk), aϕ(k))

+ σ(aϕ(k), g(xk)) + σ(g(xk), g(y))

< ε + ε + ε + ε = 4ε

for all y ∈ V (xk). So if f, g ∈ Bϕ, then d(f, g) < 4ε. Consequently, the
diameter of Bϕ is < 4ε, and since there are finitely many such Bϕ and they
cover F , the set F is totally bounded.
Conversely, assume that F is totally bounded. Note that the mapping Ψ :
F → M given by Ψ(f) = f(x) is distance decreasing, i.e.,

σ(Ψ(f),Ψ(g)) = σ(f(x), g(x)) 6 d(f, g).

It follows that for every x ∈ X, the set F(x) ⊂ M is totally bounded
and (2) holds. To see that (1) holds, let ε > 0 and let f1, . . . , fn be an
ε-net of F . Given x ∈ X we find open neighbourhood V (x) of x such that
σ(fj(x), fj(y)) < ε for all y ∈ V (x) and all j = 1, . . . , n. Then if f ∈ F
choose an index j so that d(f, fk) < ε. It follows that if y ∈ V (x), then

σ(f(x), f(y)) 6 σ(f(x), fj(x)) + σ(fj(x), fj(y)) + σ(fj(y), f(y))

< ε + ε + ε = 3ε.

Therefore, the family F is equicontinuous at x, and since x was an arbitrary
point of X, F is equicontinuous as required. �

Corollary 9.12. Let X be a compact topological space and Y a compact
metric space. Let F be an equicontinuous a of C(X,Y ). Then every sequence
in F has a uniformly convergent subsequence.
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Definition 9.13. A family F of maps f : X → Y , where Y is a metric
space is called pointwise bounded if {f(x) | f ∈ F} is bounded in Y for
every x ∈ X.

Lemma 9.14. Assume that X is a compact metric space and let F be an
equicontinuous and pointwise bounded family in C(X). Then there is a
constant M such that f(X) ⊂ [−M,M ] for all f ∈ F .

Proof. For each x ∈ X, there is Mx such that |f(x)| 6 Mx for all f ∈ F .
Since F is equicontinuous, for each x there is an open set Ux such that
|f(x) − f(y)| 6 1 for all f ∈ F and y ∈ Ux. Then

|f(y)| 6 |f(y) − f(x)| + |f(x)| 6 1 + Mx = Kx

for all y ∈ Ux. The sets Ux form an open covering of X and since X
is compact, there exists a finite subcovering Ux1

, . . . , Uxn . Set now M =
max{Kx1

, . . . ,Kxn . Then |f(x)| 6 M for all x ∈ M . �

Corollary 9.15 (Arzelá - Ascoli Theorem, classical version). Let X
be a compact topological space. Assume that F is a pointwise bounded and
equicontinuous subset of C(X). Then every sequence in F has a uniformly
convergent subsequence.

Proof. In view of the above exercise the set F is uniformly bounded, that
is, |f(x)| 6 M for all f ∈ F and x ∈ X. Set Y = [−M,M ]. Then Y is
compact in R, and F is a subset of C(X,Y ). So the corollary follows from
Corollary 9.12. �

10 Uryshon’s and Thietze’s Theorems

We show the existence of continuous functions on normal topological spaces.
We start with the following characterisation of normal spaces.

Lemma 10.1. A topological space X is normal if and only if for every closed
subset A ⊂ X and every open subset B ⊂ X containing A , there exists an
open set U such that A ⊂ U ⊂ U ⊂ B.

Proof. Assume first that X is normal and A and B are as above. Then the
sets A and X \ B are closed and disjoint. So, in view of normality of X,
there exist open disjoint sets U and V such that A ⊂ U and X \ B ⊂ V .
Then U ⊂ X \ V ⊂ B, so that U has the required properties.
Conversely, let A and B be closed disjoint subsets of X. Then V = X \ B
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is open and A ⊂ V . By assumption there exists an open set U such that
A ⊂ U ⊂ U ⊂ V . Then U and X \U are disjoint open sets satisfying A ⊂ U
and B ⊂ X \ U . So X is normal and the proof is completed. �

Theorem 10.2 (Urysohn’s Lemma). Let A and B be closed subspace of
a normal space X. Then we can find a continuous function f : X → [0, 1]
such that f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

Proof. For the proof recall that a dyadic rational number is a number which

can be written in the form p =
m

2n
. with n, m being integers. Set V = X \B,

an open set which contains A. By Lemma 10.1, there exists an open set U1/2

such that
A ⊂ U1/2 ⊂ U1/2 ⊂ V.

Applying Lemma 10.1 again to the open set U1/2 containing A and to the

open set V containing U 1/2, we obtain open sets U1/4 and U3/4 such that

A ⊂ U1/4 ⊂ U1/4 ⊂ U1/2 ⊂ U1/2 ⊂ U3/4 ⊂ U3/4 ⊂ V.

Continuing in this way, we associate to each such number p ∈ D an open
subset Up ⊂ X having the following properties

Up ⊂ Uq, 0 < p < q < 1, (12)

A ⊂ Uq, 0 < p < 1, (13)

Up ⊂ V, 0 < p < 1. (14)

Next we shall construct the function f which is continuous and such that
the sets ∂Up are level sets of f on which f assumes the value p. Define
f(x) = 0 if x ∈ Up for all p > 0 and f(x) = sup{p| x 6∈ Up} otherwise.
Clearly, 0 6 f 6 1, f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B. It
remains to show that f is continuous. Take x ∈ X. We only consider the
case that 0 < f(x) < 1. (The remaining cases f(x) = 0 and f(x) = 1 are
left as an exercise). Let ε > 0 and choose dyadic rationals p and q such that
0 < p, q < 1 and

f(x) − ε < p < f(x) < q < f(x) + ε.

Then x 6∈ Ur for dyadic rationals r between p and f(x) so that, in view
of (12), x 6∈ U p. On the other hand x ∈ Uq. So W = Uq \ Up is an open
neighbourhood of x. Then p 6 f(y) 6 q for any y ∈ W which shows that
|f(x) − f(y)| < ε for all y ∈ W . Hence f is continuous and the proof is
completed. �
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Theorem 10.3 (Thietze’s extension theorem). Let A be a closed subset
of a normal space X and let f be a bounded continuous real valued function
on A. Then there exists a bounded continuous function h : X → R such that
f = h on A.

Proof. Set a0 = sup{|f(a)|| a ∈ A}. (Note that a < ∞ since f is bounded).
Define sets

B0 = {a ∈ A| f(a) 6 −a0/3} C0 = {a ∈ A| f(a) ≥ −a0/3}.

Since f is continuous on A and A is closed, the sets B and C are closed and
disjoint subsets of X. Taking a linear combination of constant function and
the function from Uryshon’s lemma, we find a continuous function g0 : X →
R such that −a0/3 6 g0 6 a0/3, g0 = −a0/3 on B0 and g0 = a0/3 on C0.
In particular,

|g0| 6 a0/3

|f − g0| 6 2a0/3.

Iterating this process we construct the sequence of functions {gn} satisfying

|gn| 6 2na0/3
n+1 (15)

|f − g0 − g1 − · · · − gn| 6 2n+1a0/3
n+1 on A. (16)

Indeed, suppose that the functions g0, . . . , gn−1 have been constructed. To
construct gn+1, set

an−1 = sup{|f(a) − g0(a) − g1(a) − · · · − gn−1(a)|| a ∈ A},

and repeat the above argument with an−1 replacing a0 and f − g0 − g1 −
· · · − gn−1 replacing f . This gives the function gn such that

|gn| 6 an−1/3

|f − g0 − g1 − · · · − gn| 6 2an−1/3 on A.

Since an−1 6 2na0/3
n, the function gn satisfies (15)-(16). Set

hn = g0 + · · · + gn, n ≥ 1.

If n > m, then

|hn − hm| = |gm+1 + · · · + gn| 6

((
2

3

)m+1

+ · · · +
(

2

3

)n)
· a0

3

6

(
2

3

)m+1

· a0.
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Consequently, {hn} is Cauchy in C(X, R). Hence there exists a continuous
function h : X → R such that hn → h. In addition,

|h| = |limhn| = lim|hn| 6 lim
n∑

k=0

|gk| 6
a0

3

∞∑

k=1

(
2

3

)n

= a0,

so that h is a bounded. Finally, in view of (16), |f − h| = lim|f − hn| 6

lim 2na0/3
n+1 → 0 on A, so that f = h on A. The proof is completed.

�

Both theorems are valid in metric spaces as the following theorem shows.

Theorem 10.4. Every metric space is normal.

Proof. Let A and B be disjoint closed subsets of X. Define

f(x) = inf{d(x, a)| a ∈ A}

for x ∈ X. Observe that f(x) = 0 if and only if x ∈ A since A is closed.
The function f is continuous. Similarly, let g(x) = {d(x, b)| b ∈ B}. Then g
is continuous and g(x) = 0 if and only if x ∈ A. Since A and B are disjoint,
f(x) + g(x) > 0 for all x ∈ X. Set

h(x) =
f(x)

f(x) + g(x)
, x ∈ X

Then h is continuous, h(x) = 0 if and only if x ∈ A and h(x) = 1 if and only
if x ∈ B. Take now U = {x| h(x) > 3/4} and V = {x| h(x) < 1/4}. Clearly,
U ∩ V = ∅, U, V are open, and A ⊂ U , B ⊂ V , so that X is normal. �

11 Appendix

Sets

A set is considered to be a collection of objects. The objects of a set A are
called elements (or members) of A. If x is an element of a set A we write
x ∈ A, and if x is not an element of A we write x 6∈ A. Two sets A and B
are called equal, A = B, if A and B have the same elements. A set A is a
subset of a set B, written A ⊂ B, if every element of A is also an element
of B. The empty set ∅ has no elements; it has the property that it is a
subset of any set, that is, ∅ ⊂ A for any set A. Given two sets A and B we
define:
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(a) the union A ∪ B of A and B as the set

A ∪ B = {x | x ∈ A or x ∈ B};

(b) the intersection A ∩ B of A and B as the set

A ∩ B = {x | x ∈ A and x ∈ B};

(c) the set difference A \ B of A and B as the set

A \ B = {x | x ∈ A and x 6∈ B}.

Sets A and B are called disjoint if A ∩ B = ∅. The concept of union
and intersection of two sets extends to unions and intersections of arbitrary
families of sets. By a family of sets we mean a nonempty set F whose
elements are sets themselves. If F is a family of sets, then

⋃

A∈F

A = {x | x ∈ A for some A ∈ F}
⋂

A∈F

A = {x | x ∈ A for all A ∈ F}.

When it is understood that all sets under considerations are subsets of a
fixed set X, then the complement Ac of a set A ⊂ X is defined by

Ac = X \ A = {x ∈ X | x 6∈ A}.

In this situation we have deMorgan’s laws:

(
⋃

i∈I

Ai

)c

=
⋂

i∈I

Ac
i ,

(
⋂

i∈I

Ai

)c

=
⋃

i∈I

Ac
i .

The set of all subsets of a given set X is called the power set and is denoted
by P(X).
If X and Y are sets, their cartesian product X × Y is the set consisting
of ordered pairs (x, y) with x ∈ X and y ∈ Y .
Given two sets X and Y , a relation from X to Y is subset R of X ×Y . We
say that R is a relation on X if X ×X, that is, R ⊂ X ×X. Quite often we
write xRy instead of (x, y) ∈ R.
The most important example of a relation is a function. A relation f from
X to Y is called a function if for each x ∈ X there exists exactly one y ∈ Y
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such that xfy. If xfy, we write y = f(x); y is called the value of f at x.
We also will write f : X → Y to mean that f is a function from X to Y .
Here X is called the domain of f , and the set {f(x) | x ∈ X} is called the
range of f . If f : X → Y is a function, A ⊂ X and B ⊂ Y , then the image
of A and the preimage of B under f are sets defined by

f(A) = {f(x) | x ∈ A}, f−1(B) = {x | f(x) ∈ B}.

We say that f is injective, or one-one, if f(x) = f(y) only when x = y,
and we say that f is surjective, or onto, if f(X) = Y , that is, if the image
of f is the whole of Y . A function which is both injective and surjective
is called bijective. Sometimes we will use words a “map” or a “mapping”
instead of a function. Unions and Intersections behave nicely under inverse
image:

f−1

(
⋃

i∈I

Ai

)
=
⋃

i∈I

f−1Ai.

f−1

(
⋂

i∈I

Ai

)
=
⋂

i∈I

f−1Ai.

f−1(Ac) =
(
f−1(A)

)c
.

Given two functions f : X → Y and g : Y → Z, we define the composition
g ˚ f of f and g as the function g ˚ f : X → Z defined by the equation
g ˚ f(x) = g(f(x)). If f : X → Y is one-one, then f has the inverse f−1.
The inverse f−1 is defined on the range f(X) and takes values in X; it is
given by the formula f−1(y) = x if and only if f(x) = y.

Countable and Uncountable Sets

A set A is called finite if for some n ∈ N, there is a bijection f from
{1, . . . , n} to A. The number n is uniquely determined and is called the
cardinality of A. We denote this fact by ]A = n or card(A) = n. If
A is not finite, then it is called infinite. If A is infinite, then there is an
injective function f from the set of natural numbers N into A. If there exists
a bijection between N and A, then we say that X is countably infinite
(or just countable). So A is countably infinite if and only if its elements can
be listed in an infinite sequence X = {x1, x2, . . .}. If there is no bijection
between N and A, then A is called uncountable.

Example 11.1. The set Z of all integers is countably infinite. To see this
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consider the function f : N → Z defined by

f(n) =

{
n/2 if n is even;

−(n − 1)/2 if n is odd.

Check that the function f is a bijection from N to Z so that Z is countably
infinite.

Example 11.2. Consider the interval I = [0, 1]. Then I is uncountable.
Seeking a contradiction, suppose that I is countable. Hence all elements of
I can be listed as an infinite sequence {x1, x2, . . .}:

x1 = 0.a1
1a

1
2a

1
3 · · ·

x2 = 0.a2
1a

2
2a

2
3 · · ·

x3 = 0.a3
1a

3
2a

3
3 · · ·

...
...

Define

bn =

{
1 if an

n 6= 1

2 if an
n = 1

and x = 0.b1b2b3 · · · . Then x ∈ [0, 1] but it is not a member of {xn}, con-
tradiction.

Proposition 11.3. Let A be a non-empty set. Then the following are equiv-
alent:

(a) A is countable.

(b) There exists a surjection f : N → A.

(c) There exists an injection g : A → N.

Proof. Assume that A is countable. If A is countably infinite, then there
exists a bijection f : N → A. If A is finite, then there is bijection h :
{1, . . . , n} → A for some n. Define f : N → A by

f(i) =

{
h(i) if 1 6 i 6 n,

h(n) if i > n.
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Check that f is a surjection. So the implication (a) =⇒ (b) is proved. To
prove the implication (b) =⇒ (c). Let f : N → A be a surjection. Define
g : A → N by the equation g(a) = smallest number in f−1(a). Since f is
a surjection, f−1(a) is non-empty for any a ∈ A, so that g is well-defined.
Next check that if a 6= a′, then f−1(a) and f−1(a′) are disjoint, so they have
different smallest elements. The injectivity of g follows. Now the implication
(c) ⇒ (a). Assume that g : A → N is injective. We want to show that A is
countable. Note that g from A to g(A) is a bijection. So it suffices to show
that any subset B of N is countable. This is obvious when B is finite. Hence
assume that B is an infinite subset of N. We define a bijection h : N → B.
Let h(1) be the smallest element of B. Since B is infinite, it is non-empty
and so h(1) is well-defined. Having already defined h(n − 1), let h(n) be
the smallest element of the set {k ∈ B | k > h(n − 1)}. Again this set
is non-empty, so h(n) is well-defined. Now check that the function h is a
bijection from N to B. �

Corollary 11.4. The set N × N is countable.

Proof. In view of the previous proposition, it is enough to construct an
injective function f : N×N → N. For example, let f(n,m) = 2n3m. Suppose
that 2n3m = 2k3l. If n < k, then 3m = 2k−n3l. The left side of this equality
is an odd number whereas the right is an even number. So n = k, and
3m = 3l. But then also m = l. Hence f is injective as required. �

Proposition 11.5. If A and B are countable, then A × B is countable.

Proof. Since A and B are countable, there exist surjective functions f : N →
A and g : N → B. Define h : N×N → A×B by h(n,m) = (f(n), g(m)). The
function h is surjective and N × N is countable, so A × B is countable. �

Corollary 11.6. The set Q of all rational numbers is countable.

Proposition 11.7. If I is a countable set and Ai is countable for every
i ∈ I, then

⋃
i∈I Ai is countable.

Proof. For each i ∈ I, there exists a surjection fi : N → Ai. Moreover, since
I is countable, there exists a surjection g : N → I. Now define h : N × N →⋃

i∈I Ai by h(n,m) = fg(n)(m). Check that h is surjective so that
⋃

i∈i Ai is
countable. �
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Real numbers, Sequences

The set of all real numbers, R, has the following properties:

(a) the arithmetic properties,

(b) the ordering properties, and

(c) the completeness property.

The arithmetic properties start with the fact that any two real numbers a, b
can be added to produce a real number a+ b, the sum of a and b. The rules
for addition are a+b = b+a, (a+b)+c = a+(b+c). There is a real number
0, called zero, such that a + 0 = 0 + a = a for all real numbers a. Each
real number a has a negative −a such that a + (−a) = 0. Besides addition,
we have multiplication; two real numbers a, b can be multiplied to produce
the product of a and b, a · b. The rules for multiplication are ab = ba and
(ab)c = a(bc). There is a real number 1, called one, such that a1 = 1a = a,
and for each a 6= 0, there is a reciprocal 1/a such that a(1/a) = 1.
The ordering properties start with the fact that there is a subset R+ of R, the
set of positive real numbers. The set R+ is characterized by the property:
if a, b ∈ R+, then a + b and ab ∈ R+. The fact that a ∈ R+ is denoted by
0 < a. The set of negative real numbers R− = −R+ is the set of negatives
of elements in R+. For every a ∈ R, we have a ∈ R+ or a = 0 or a ∈ R−.
The notation a < b (or b > a) means that b − a ∈ R+. We also write a 6 b
to mean a < b or a = b. The order properties of real numbers are as follows:

(a) a < b and b < c, then a < c.

(b) a < b and c > 0, then ac < bc.

(c) a < b and c ∈ R, then a + c < b + c.

(d) a < b and a, b > 0, then 1/b < 1/a.

If A ⊂ R, a number M is called an upper bound for A if a 6 M for all
a ∈ A. Similarly, m is a lower bound for A if m 6 a for all a ∈ A. A
subset A of R is called bounded above if it has an upper bound, and is
called bounded below if it has a lower bound. If A has an upper and lower
bound, then is called bounded. A given subset of R may have several upper
bounds. If A has an upper bound M such that M 6 b for any upper bound
b of A, then we call M a least upper bound of A or supremum of A,
and denote it by M = supA. Similarly, a real number m is called greatest
lower bound of A or infimum of A if m is a lower bound of A and b 6 m
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for all lower bounds b of A. If m is the greatest lower bound of A, we write
m = inf A.
The completeness property of R asserts that every non-empty subset
A ⊂ R that is bounded above has a least upper bound, and that every non-
empty subset S ⊂ R which is bounded below has a greatest lower bound.
Useful characterisations of a least upper bound and a greatest lower bound
are contained in the following propositions:

Proposition 11.8. Let A ⊂ R be bounded above. Then a = supA if and
only if x 6 a for any x ∈ A, and for any ε > 0 there exists x ∈ A such that
a < x + ε.

Proof. Assume first that a = supA. Clearly, x 6 a for any x ∈ A. Take
ε > 0. If for all x ∈ A, x + ε 6 a, then x 6 a − ε for all x. Hence
a − ε is an upper bound of A contradicting the definition of a as the least
upper bound of A. Conversely, from x 6 a for any x ∈ A follows that a
is an upper bound of A. Assume that there is an upper bound b such that
b < a. Then we get a contradiction with the fact that for any ε > 0 there
exists x ∈ A such that a < x + ε. Let ε := (a − b)/2 and x ∈ A. Then
x + ε 6 b + ε = (a + b)/2 < a. �

There is also a similar characterisation of inf A provided that A is bounded
from below.

Proposition 11.9. Let A ⊂ R be bounded from below. Then a = inf A if
and only if a 6 x for any x ∈ A, and for any ε > 0 there exists x ∈ A such
that x − ε < a.

The proof of the proposition follows from the previous one by observing
two facts: if A is bounded from below than the set −A = {x | −x ∈ A} is
bounded from above and that sup(−A) = − inf A.

It is useful to introduce the extended real number system, R = R ∪
{−∞,∞} by adjoining symbols ∞ and −∞ subject to the ordering rule
−∞ < a < ∞ for all a ∈ R. If A is not bounded above, then we write
supA = ∞, and if A is not bounded below we write

∫
A = −∞. For

example, we have inf R = −∞ and supR = ∞. We also have sup ∅ = −∞
and inf ∅ = ∞, and for all non-empty sets A, inf A 6 supA. With this
terminology, the completeness property asserts that every subset of R has a
least upper bound and a greatest lower bound. The arithmetic operations
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on R can be partially extended to R. In particular we have:

±∞ + r = r + ±∞ = ±∞ for r ∈ R

(∞) + (∞) = ∞, and (−∞) + (−∞) = −∞.

Subtraction is defined in a similar way with the exception that

(∞) + (−∞) and (−∞) + (∞)

are not defined. We also define multiplication by

r(±∞) = (±∞)r =

{
±∞, if r > 0,

∓∞, if r < 0,

and
(±∞)(±∞) = ∞, (±∞)(∓∞) = −∞.

The multiplication 0 · (±∞) is not defined.
If a is an upper bound of A and a ∈ A, then a is a maximum of A, and
we write a = maxA. Similarly, if a ∈ A is a lower bound of A, then a is a
minimum of A and this fact is denoted by a = minA. If A and B ⊂ R,
then A + B = {a + b | a ∈ A, b ∈ B}, A + a = {x + a | x ∈ A}, and
aA = {ax | x ∈ A}. Here are some properties of supremum and infimum:

(a) monotonicity property: A ⊂ B, then supA 6 supB and inf B 6

inf A.

(b) reflection property: sup(−A) = − inf A and inf(−A) = − supA.

(c) translation property: sup(A + a) = supA + a and inf(A + a) =
inf A + a.

(d) dilation property: sup(aA) = a supA and inf(aA) = a inf A pro-
vided that a > 0

(e) addition property: sup(A + B) = supA + supB and inf(A + B) =
inf A + inf B.

A sequence of real numbers is a function f : N → R. We often write the
sequence as {f(n)} or {fn}. A sequence {an} of real numbers is said to
converge to a real number a if for every ε > 0 there is an integer n0 such
that if n ≥ n0, then |an − a| < ε. In this situation we call a the limit of
{an}; a convergent sequence has a unique limit. We also write an → a or
limn→∞ an = a. A sequence {an} which does not converge to any limit in
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R is said to diverge. We say that an → ∞, if for every M > 0, there is
n0 such that an > M for all n ≥ n0. Similarly, an → −∞, if for every
M < 0 there exists n0 such that an < M for all n ≥ n0. A sequence {an}
is bounded if |an| < M for some number M and all n ∈ N. A convergent
sequence is always bounded. Here are some elementary properties of limits
of sequences:

Proposition 11.10. Let {an} and {bn} be convergent sequences to a and
b, respectively. Let c ∈ R. Then we have:

(a) {can} converges to ca.

(b) the sequence {an + bn} converges to a + b

(c) the sequence {an · bn} converges to a · b

(d) if bn 6= 0 for all n and b 6= 0, then the sequence {an/bn} converges to
a/b

A sequence {an} is called monotone increasing if an 6 an+1 for all n ∈ N.
It is monotone decreasing if an ≥ an+1 for all n ∈ N.

Proposition 11.11. If {an} is a monotone increasing sequence that is
bounded above, an 6 M for all n, then {an} is convergent. If {an} is
monotone increasing and it is unbounded from above, then an → ∞. If {an}
is monotone decreasing and it is bounded below, M 6 an for all n, then {an}
is convergent, and if {an} is unbounded from below, then an → ∞.

Proof. If {an} is unbounded from above, then for every M there is k such
that ak > M . Since the sequence is increasing, an ≥ ak ≥ M for all
n ≥ k. Thus an → ∞. Next assume that {an} is bounded above. Then
a := sup{an | n ∈ N} < ∞. Let ε > 0. By the definition of supremum,
an 6 a for all n and there is an integer n0 such that a < an0

+ε. Since {an} is
monotone increasing, an 6 a < an + ε for all n ≥ n0, that is, |an −a| < ε for
all n ≥ n0. Thus the sequence converges to a. The proof for monotonically
decreasing sequences is similar and is left as an exercise. �

Let {an} be a sequence. If 0 < n1 < n2 < . . . are positive integers, then
{ank

} is called a subsequence of {an}.

Proposition 11.12. If {an} is a convergent sequence with the limit a, then
every subsequence of {an} converges to a. Conversely, if a sequence {an}
has the property that each of its subsequences is convergent, then {an} itself
converges.
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Proof. Let {ank
} be a subsequence of {an}. For a given ε > 0 choose n0

such that |an − a| < ε for all n > n0. Note that if k > n0, then nk > n0

and so |ank
− a| < ε for all k > n0. Therefore, {ank

} converges to a. The
converse follows from the fact that the sequence {an} is a subsequence of
itself. �

Let {an} be a bounded sequence. For each n ∈ N, let bn = supm≥n am =
sup{an, an+1, . . .}. Then {bn} is monotone decreasing, and it is bounded
since {an} is bounded. In view of Proposition 11.11, {bn} converges. The
limit is called upper limit of {an}. Similarly, let cn = infm≥n am =
inf{an, an+1, . . .}. Then {cn} is monotone increasing, and it is bounded
since {an} is bounded. The limit of {cn} is called lower limit of {an}. If
{an} is not bounded above, then its upper limit is equal to ∞, and if {an}
is not bounded below, then its lower limit is equal to −∞. Summarizing

lim sup an = lim an = inf
n≥m

sup
k≥n

ak = lim
n→∞

sup
k≥n

ak

lim inf an = lim an = sup
n≥m

inf
k≥n

ak = lim
n→∞

inf
k≥n

ak.

A useful characterisation of the upper limit is the following proposition.

Proposition 11.13. Let {an} be a sequence in R. Then the following are
equivalent:

(a) lim an = a;

(b) for every b > a, an < b for all but finitely many n and for every c < a,
an > c for infinitely many n.

Proof. Assume lim an = a. Then for any b > a, there exists m such that
supn≥m an < b. In particular, an < b for all n ≥ m. Since the sequence
{supn≥m an} is decreasing and convergent to a, it follows that a 6 supn≥m an

for all m. Hence if c < a, then for every m there exists n ≥ m such that
c < an. This shows the implication (a) =⇒ (b). Conversely, assume that
(b) holds. Then for every b > a, there exists m such that an < b for all
n ≥ m. Hence supn≥m an 6 b. This implies that lim sup an 6 b for every
b > a so that lim supan 6 a. If for every c < a and for every m there
exists n ≥ m such that an > c, then for every m, supn≥m an ≥ c. This gives
lim sup an > c and since this holds for every c < a, we have lim supan ≥ a.
Thus lim supan = a and the implication (b) =⇒ (a) is proved. �
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As an exercise formulate and prove the corresponding statement for the
lower limit. The basic properties of the upper and the lower limits are listed
in the following proposition:

Proposition 11.14. If {an} and {bn} are sequences of real numbers, then:

(a) lim sup(−an) = − lim inf an and lim inf(−an) = − lim sup an.

(c) lim sup(can) = c lim sup an and lim inf(can) = c lim inf an for any c >
0.

(d) lim sup(an + bn) 6 lim supan + lim sup bn and lim inf an + lim inf bn 6

lim inf(an + bn).

(e) lim inf an 6 lim sup an, with equality if and only if {an} converges. In
this case lim supan = lim an.

(f) If {ank
} is a subsequence of {an}, then lim inf an 6 lim inf ank

6

lim supank
6 lim sup an.

The proof is left as an exercise.

Theorem 11.15 (Bolzano-Weierstrass Theorem).
Let {an} be a bounded sequence in R. Then there is a subsequence that
converges.

Proof. Set a = lim supan. We will construct inductively a subsequence
{ank

} of {an} which converges to a. In view of Proposition 11.13, there
exists n1 such that an1

> a − 1. Having obtained n1 < n2 < · · · < nk such
that anj

> a − 1/j for 1 6 j 6 k, we find, again by applying Proposition
11.13, nk+1 > nk such that ank+1

> a − 1/(k + 1). Hence a 6 lim inf ank
6

lim sup ank
6 lim sup an = a. So lim ank

= a and the proof is finished. �

12 Problem Sheets

12.1 Problem Sheet 1

1. Check if the following functions are metrics on X.

(a) d(x, y) = |x2 − y2| for x, y ∈ X = R

(b) d(x, y) = |x2 − y2| for x, y ∈ X = (−∞, 0]

(c) d(x, y) = |arctan x − arctan y| for x, y ∈ X = R
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2. Let X = R2 and let d be the usual metric. Denote by 0 = (0, 0) and
define

d0(x, y) =

{
0 if x = y;

d(x,0) + d(0, y) if x 6= y.

Verify that d0 is a metric X. (The metric d0 is called the post office metric).

3. Let X = R2. For x = (x1, x2) and y = (y1, y2) define

d(x, y) =





1/2 if x1 = y1 and x2 6= y2 or if x1 6= y1 and x2 = y2;

1 if x1 6= y1 and x2 6= y2;

0 otherwise.

Verify that d is a metric and that the rectangles in the figure hav different
“area” if d is used to measure the length of sides.

4.

(a) Show that if 0 6 a 6 b, then
a

1 + a
6

b

1 + b
.

(b) If a, b, c ≥ 0 and a 6 b + c, show that
a

1 + a
6

b

1 + b
+

c

1 + c
.

(c) Use (b) to show that if d is a metric on X, then

d̃(x, y) =
d(x, y)

1 + d(x, y)
for x, y ∈ X

is a metric on X.

5. Let (Xi, di) be a metric space for 1 6 i 6 n and let X =
∏n

i=1 Xi. Define

d2(x, y) =

[ n∑

i=1

di(xi, yi)
2

]1/2

,

d∞(x, y) = max{di(xi, yi) | 1 6 i 6 n},
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where x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ X. Verify that d2 and d∞ are
metrics on X.

6. Fix a positive integer n. Denote by Pn the set of all polynomials p(x) =
akx

k + ak−1x
k−1 + · · · + a1x + a0 with real coefficients ai and k 6 n. For

p(x) = akx
k + ak−1x

k−1 + · · · + a1x + a0 ∈ Pn set

∥∥p
∥∥ = max{|a0|, |a1|, . . . , |ak|}.

Verify that
∥∥·
∥∥ is a norm on Pn.

7. Sketch the open ball B(0, 1) in the metric space (R3, di), where di is
defined by

d1(x, y) = |x1 − y1| + |x2 − y2| + |x3 − y3|
d2(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

d∞(x, y) = max{|x1 − y1|, |x2 − y2|, |x3 − y3|}.

for x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3.

8. Show that diam B(x0, r) 6 2r. Give an example showing that the strict
inequality is possible.

12.2 Problem Sheet 2

1. Calculate d(A,B) for the following pairs of subsets in R2 equipped with
the standard metric:

(a) A = {(x, 0)| x ∈ R} and B = {(x, 1)| x ∈ R}.

(b) A is the set of points on the x-axis whose x-coordinate satisfies 2n <
x < 2n + 1 for some n ∈ Z and B is the set of points on the line line
y = 1 for which 2m − 1 < x < 2m for some m ∈ Z.

(c) A = B(x0, r0) and B = B(x1, r1) where x0, x1 ∈ R2.

2. Let d and d′ be two metrics on X such that

αd(x, y) 6 d′(x, y) 6 βd(x, y)

for all x, y ∈ X and positive constants α and β. Show that d and d′ are
equivalent.Give an example of X and two equivalent metrics in X for which
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the above inequality does not hold. Use the above fact to show that

d1(x, y) =
n∑

i=1

|xi − yi|

d2(x, y) =

[
n∑

i=1

|xi − yi|2
]1/2

d∞(x, y) = max{|xi − yi| | i = 1, . . . , n}.
are equivalent on X = Rn.

3 Consider the set X = [−1, 1] as a subspace of R a metric subspace of
R with the standard metric. Which of the following sets are open in X?
Which are open in R? Which are closed in X and which are closed in R?

(a) A = {x ∈ X | 1/2 < |x| < 2}

(b) B = {x ∈ X | 1/2 < |x| 6 2}

(c) C = {x ∈ R | 1/2 6 |x| < 1}

(d) D = {x ∈ R | 1/2 6 |x| 6 1}

(e) E = {x ∈∈ R | 0 < |x| 6 1 and 1/x 6∈ Z}

4. Sketch (where possible) the following sets, and decide whether it is an
open subset, or a closed subset, or neither of R2 with the standard metric:

(a) A = {(x, y)| − 1 < x 6 1 and − 1 < y < 1}

(b) B = {(x, y)| xy = 0}

(c) C = {(x, y)| x ∈ Q, y ∈ R}

(d) D = {(x, y)| − 1 < x < 1 and y = 0}

(e) E =
⋃∞

n=1{(x, y)|x = 1/n and |y| 6 n}

5. Find the interior, the closure and the boundary of each of the following
subsets of R2 with the standard metric:
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(a) A = {(x, y)) | x > 0 and y 6= 0}

(b) B = {(x, y) | x ∈ N, y ∈ R}

(c) C = A ∪ B

(d) D = {(x, y) | x is rational}

(e) F = {(x, y) | x 6= 0 and y 6 1/x}

6. Let A be a subset of a metric space X. Is the interior of A equal to the
interior of the closure of A. Is the closure of the interior of A equal to the
closure of A itself?

7 Consider a collection Ai of subsets of a metric space X. Show that

⋃

i∈I

A◦
i ⊂

(
⋃

i∈I

Ai

)◦ ⋂

i∈I

Ai ⊂
⋂

i∈I

Ai

(
⋂

i∈I

Ai

)◦

⊂
⋂

i∈I

A◦
i

⋃

i∈I

Ai ⊂
⋃

i∈I

Ai

8. Let U be open in X and let A be closed in X. Show that U \ A is open
in X and A \ U is closed in X.

9. Let X and Y be metric spaces and A, B are non-empty subsets of X
and Y , respectively.

(a) Prove that if A × B is open in X × Y , then A and B are open in X
and Y , respectively.

(b) Prove that if A×B is closed in X × Y , then A and B are closed in X
and Y , respectively.

12.3 Problem Sheet 3

1. Show that A◦ and ∂A are disjoint, and A = A◦ ∪ ∂A. Conclude A is
open if and only if ∂A = A \ A.

2. Show that A is closed if and only if ∂A ⊂ A.

3. Let A,B ⊂ X. Show that ∂(A ∪ B) ⊂ ∂A ∪ ∂B and give an example in
R in which these sets are different. Show that if A∩B = ∅, then ∂(A∪B) =
∂A ∪ ∂B.
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4. Let X and Y be metric spaces and A, B are dense subsets of X and Y ,
respectively. Show that A × B is dense in X × Y .

5. Let (X, d) be a metric space and let a be a fixed point of X. Show that

|d(x, a) − d(y, a)| 6 d(x, y) (17)

for all x, y ∈ X.

6 Use (17) to show the following result. Let A be a dense subset of (X, d).
Show that a sequence {xn} of points on X converges to x if and only if

d(xn, a) → d(x, a)

for all a ∈ A.

7. Use (17) to show that the function f : X → R defined by f(x) = d(x, a),
x ∈ X, is continuous.

8. Define f : R → R and g : R → R by

f(x) =

{
−1 if x ≥ 0

1 if x < 0
and g(x) =

{
x if x ≥ 0

1 if x < 0.

Show that f and g are not continuous at x = 0.

9. Let (X, dX ) and (Y, dY ) be metric spaces. Show that f : X → Y is
continuous if and only if

f(A) ⊂ f(A)

for all subsets A of X.

10. Let (X, dX ) and (Y, dY ) be metric spaces. Show that f : X → Y is
continuous if and only if

f−1(B) ⊂ f−1(B).

for all subsets B of Y .

12.4 Problem Sheet 4

1. Let Y be a subset of a metric space (X, d). Show that

Y = {x ∈ X|d(x, Y ) = 0}.

Show that the function
f(x) = d(x, Y )

is continuous on X. Conclude that
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(a) B(Y, ε) = {x ∈ X| d(x, Y ) < ε} is open in X, and

(b) B[Y, ε] = {x ∈ X| d(x, Y ) 6 ε} is closed in X.

2. Let A and B be disjoint non-empty closed subsets of a metric space X.
Define

f(x) =
d(x,A)

d(x,A) + d(x,B)
for x ∈ X.

Show that f is a continuous function on X whose image is in [0, 1], and that
f(x) = 0 if and only if x ∈ A and f(x) = 1 if and only if x ∈ B. Next define
sets U = f−1([0, 1/2)) and V = f−1((1/2, 1]). Show that U and V are open
and disjoint, and that A ⊆ U , B ⊆ V .

3. Which of the following functions are uniformly continuous?

(a) f(x) = sinx on [0,∞)

(b) g(x) =
1

1 − x
on (0, 1)

(c) h(x) =
√

x on [0,∞)

(d) k(x) = sin(1/x), on (0, 1)

4. Which of the following sequences converge uniformly on [0, 1].

(a) fn(x) =
x

1 + nx

(b) gn(x) =
xn

1 + xn

5. Let (X, d) and (Y, ρ) be metric spaces and let f : X → Y . Show that f
is uniformly continuous if and only if for any two sequences {xn} and {yn}
such that d(xn, yn) → 0 it follows that ρ(f(xn), f(yn)) → 0.

6. Suppose that {xn} is a sequence in a metric space (X, d) such that
d(xn, xn+1) 6 2−n for all n ∈ N. Prove that {xn} is a Cauchy sequence.

7. Suppose that {xn} and {yn} are Cauchy sequences in a metric space
(X, d). Prove that the sequence of real numbers {d(xn, yn)} converges.

8. Decide if the following metric spaces are complete:
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(a) ((0,∞), d), where d(x, y) = |x2 − y2| for x, y ∈ (0,∞).

(b) ((−π/2, π/2), d), where d(x, y) = |tan x−tan y| for x, y ∈ (−π/2, π/2).

12.5 Problem Sheet 5

1. Let X = (0, 1]be equipped with the usual metric d(x, y) = |x− y|. Show

that (X, d) is not complete. Let d̃(x, y) =

∣∣∣∣
1

x
− 1

y

∣∣∣∣ for x, y ∈ X. Show that

d̃ is a metric on X that is equivalent to d, and that (X, d̃) is complete.

2. Consider the space X consisting of all continuous functions f : [a, b] → R.
For f, g ∈ X, define

d(f, g) =

∫ b

a
|f(x) − g(x)| dx.

Show that d is a metric on X. Is (X, d) complete?

3. Cantor’s Intersection Theorem Let (X, d) be a complete metric space
and let {Fn} be a sequence of non-empty closed subsets of X such that
Fn+1 ⊆ Fn for all n and diam(Fn) → 0 as n → 0. Prove that

⋂
n∈N

Fn

consists of exactly one point.
Show that, if any of the conditions,

(i) (X, d) is complete, (ii) Fn is closed, (iii) diam(Fn) → 0

is omitted, then
⋂

n∈N
Fn may be empty.

4. Suppose that (X, d) and (Y, d̃) are metric spaces and that f : X → Y is
a bijection such that both f and f−1 are uniformly continuous. Show that
(X, d) is complete if and only if (Y, d̃) is complete.

5. Let {fn} be a sequence of continuous functions fn : R → R with the
property that {fn(x)} is unbounded for all x ∈ Q. Using Baire’s theorem
show that there is at least one x ∈ Qc such that {fn(x)} is unbounded.

6. Let (X, d) and (Y, d̃) be metric spaces such that (X, d) is complete. Let
{fn} be a sequence of continuous functions from X to Y such that {fn(x)}
converges for every x ∈ X. Using Baire’s theorem show that for every
ε > 0 there exist k ∈ N and a non-empty open subset U of X such that
d̃(fn(x), fm(x)) < ε for all x ∈ U and all n,m ≥ k.
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12.6 Problem Sheet 6

1.

(a) Let f(x) = x2 for x ∈ (0, a], and let X = (0, a] with the usual metric.
Find for what values of a is f a contraction. Show that f : X → X
does not have a fixed point.

(b) Let f(x) = x +
1

x
for x ≥ 1, and let X = [1,∞) with the usual metric

d. Show that f : X → X, that d(f(x), f(y)) < d(x, y) for all x 6= y
but f does not have a fixed point.

Reconcile (a) and (b) with Banach fixed point theorem.

2. Consider f : R2 → R2 given by f(x) = Ax, where

A =

[
0.7 0.8
0.2 −0.05

]
.

Is f a contraction if R2 is equipped with the metric d1, d2, d∞?

3. Consider the system of nonlinear equations

x1 = b1 + sin(a11x1) + sin(a12x2) + · · · + sin(a1nxn),

x2 = b2 + sin(a21x1) + sin(a22x2) + · · · + sin(a2nxn),

...
...

xn = bn + sin(an1x1) + sin(an2x2) + · · · + sin(annxn),

where aik, 1 6 i, k 6 n, and bk, 1 6 k 6 n, are given real numbers. Show
that the system has a unique solution x = (x1, . . . , xn) if

∑
16i,k6n a2

ik < 1.

4. For f ∈ C([0, 1], R), define

(Tf)(x) = ex +
1

2
· f(x)

1 + f(x)2
, x ∈ [0, 1].

Show that (Tf) ∈ C([0, 1], R) and that T : C([0, 1], R) → C([0, 1], R) is a
contraction. Use this fact to show that there exists exactly one function
f ∈ C([0, 1], R) such that

f(x)3 − exf(x)2 +
1

2
f(x) = ex

for all x ∈ [0, 1].
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The next problems provide a different construction of the completion of
(X, d).

An equivalence relation on a set X is a relation ∼ having the following
three properties:

(a) (Reflexivity) x ∼ x for every x ∈ X

(b) (Symmetry) If x ∼ y, then y ∼ x

(c) (Transitivity) If x ∼ y and y ∼ z, then x ∼ z.

The equivalence class determined by x, denoted by [x], is defined by
[x] = {y ∈ X|y ∼ x}. We have [x] = [y] if and only if x ∼ y.

5. Let (X, d) be a metric space and let X∗ be the set of Cauchy sequences
x = {xn} in (X, d). Define a relation ∼ in X∗ be declaring x = {xn} ∼ y =
{yn} to mean d(xn, yn) → 0.

(a) Show that ∼ is an equivalence relation.

Denote by [x] the equivalence class of x ∈ X∗, and let X̃ denote the
set of these equivalence classes.

(b) Show that if x = {xn} and y = {yn} ∈ X∗, then limn→∞ d(xn, yn)
exists. Show that if x′ = {x′

n} ∈ [x] and y′ = {y′n} ∈ [y], then

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′
n, y′n).

For [x], [y] ∈ X̃ , define

D([x], [y]) = lim
n→∞

d(xn, yn).

Note that the definition of D is unambiguous in view of the above
equality.

(c) Show that (X̃,D) is a complete metric space.
Hint: Let [xn] is Cauchy in (X̃,D). Then xn = {xn

1 , xn
2 , xn

3 , . . .} is
Cauchy in (X, d). So for every n ∈ N, there exists kn ∈ N such that

d(xn
m, xn

kn
) < 1/n for all m ≥ kn.

Set x = {x1
k1

, x2
k2

, x3
k3

, . . .}. Then show that x is Cauchy in (X, d) and
D([xn], [x]) → 0.
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(d) If x ∈ X, let ϕ(x) be the equivalence class of the constant sequence
x = (x, x, x, . . .). That is, ϕ(x) = [x] = [{x, x, x, . . .}]. Show that
ϕ : X → ϕ(X) is an isometry.

(e) Show that ϕ(X) is dense in (X̃,D).
Hint: Let [x] ∈ X̃ with x = {x1, x2, x3, . . .}. Denote by xn the con-
stant sequence {xn, xn, xn, . . .} and show that D([xn], [x]) → 0.

12.7 Problem Sheet 7

1. Let (X, d) be a complete metric space and f : X → X be a function
such that

d(f(x), f(y)) 6 αd(x, y)

for all x, y ∈ B(x0, r0), where 0 < α < 1 and d(x0, f(x0))/(1 − α) = r0.
Show that f has a unique fixed point p ∈ B(x0, r0).

2. (a) Let I = [x0 − a, x0 + a] and let r > 0. If f, g : I → R are continuous,
define

d(f, g) = sup{e−r(x−x0)|f(x) − g(x)||x ∈ I}.
Show that d defines a metric on C(I, R) which is equivalent to the supremum
metric ρ(f, g) = sup{|f(x) − g(x)|| x ∈ I}.
(b) Let K = I × J where I = [x0 − a, x0 + a], J = [y0 − b, y0 + b], and
let f : K → R be a continuous function satisfying |f(t, y1) − f(t, y2)| 6

α|y1 − y2| for all (t, y1), (t, y2) ∈ K. Let C = sup{|f(t, y)|| (t, y) ∈ K}, and
let δ = min{a, b/C}. For a continuous function y : [x0 − δ, x0 + δ] → J , set

Ty(x) = y0 +

∫ x

x0

f(t, y(t))dt, x ∈ [x0 − δ, x0 + δ].

Show that T : C([x0 − δ, x0 + δ], J) → C([x0 − δ, x0 + δ], J) is a contraction
with respect to the metric d(y1, y2) = sup{e−2α(x−x0)|f(x) − g(x)||x ∈ I}.
Remark: The above device simplifies the last step in the prove of Picard’s
theorem given in lectures. Recall that in the last step we had to take δ > 0
such that Cδ < 1 in order to guarantee that T is a contraction with respect
to ρ. Using d we don’t have to adjust δ.

3. Let I = [x0 −a, x0 +a] and let U = I ×R. Let f : U → R be continuous.

(a) Let y0, y1 ∈ R. Show that a continuous function y : I → R is a solution
of

y′′(x) = f(x, y(x)), x ∈ I

y(x0) = y0

y′(x0) = y1
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if and only if

y(x) = y0 + (x − x0)y1 +

∫ x

x0

(x − s)f(s, y(s))ds, x ∈ I.

(b) Assume, in addition, that f satisfies the Lipschitz condition with respect
to the second variable, |f(x, y1)−f(x, y2)| 6 α|y1−y2| for all (x, y1), (x, y2) ∈
U , and some α > 0. Prove that for given y0, y1 ∈ R there exists δ > 0 such
that the equation y′′(x) = f(x, y(x)) has a unique solution y : [x0 − δ, x0 +
δ] → R satisfying y(x0) = y0 and y′(x0) = y1.

4. Let (X, d) be a metric space with the property that if Y is any non-
empty closed subset of X and f : Y → Y is any contraction, then f has a
fixed point. Show that (X, d) is complete.

Hint: Arguing by contradiction assume that there exists a Cauchy sequence
which does not converge in X. We may assume that xn 6= xm for all n 6= m.
For x ∈ X, let F (x) = inf{d(x, xn)|n ∈ N}. Show that F (x) > 0 for all
x. Choose α ∈ (0, 1) and define sequence of integers {nk} as follows. Set
n1 = 1, let n2 be an integer satisfying n2 > n1 and d(xi, xj) 6 αF (xn1

) for
all integers i, j ≥ n2. If n1, n2, . . . , nk−1 are chosen, then nk > nk−1 is an
integer such that d(xi, xj) 6 αF (xnk−1

) for all integers i, j ≥ nk. Now let
Y = {xn1

, xn2
, xn3

, . . .} and let f : Y → Y be given by f(xnk
) = xnk+1

for
all k ≥ 1. Show that Y is closed, f is a contraction but does not have a
fixed point.

5. Let A be a dense subset of a metric space (X, d), and let (Y, ρ) be com-
plete. Consider a uniformly continuous function f : A → Y . Show that
there exists a unique uniformly continuous function F : X → Y such that
F (x) = f(x) for all x ∈ A.

12.8 Problem Sheet 8

1.
Show that if (X, dX ) and (Y, dY ) are compact metric spaces, then the prod-
uct metric space (X × Y, d) is compact. (Here d is the product metric).

2.
Show that if A1, . . . ,Ak are compact subsets of a metric space (X, d), then⋃k

i=1 Ai is compact.

3.
Which of the following subsets of R and R2 are compact? (R and R2 are
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considered with the usual metrics).

(a) A = Q ∩ [0, 1]

(b) B = {(x, y) ∈ R2|x2 + y2 = 1}
(c) C = {(x, y) ∈ R2|x2 + y2 < 1}}
(d) D = {x||x| + |y| 6 1}
(e) E = {x|x ≥ 1 and 0 6 y 6 1/x}
4.
Consider (Q, d) where d is the usual metric. Give an example of a set in this
metric space that is closed and bounded but is not compact.

5.
Let A be a non-empty compact subset of a metric space (X, d).

(a) Let x ∈ X. Show that d(x,A) = d(x, a) for some a ∈ A.

(b) Let U ⊆ X be open and A ⊆ U .

Show that there exists ε > 0 such that S = {x ∈ X|d(x,A) < ε} ⊆ U . Does
this hold if A is only closed but not compact?

6.
Show that if A is a totally bounded subset of a metric space (X, d), then
for every ε > 0 there exists a finite subset {a1, . . . , an} of A such that
A ⊆ ⋃n

i=1 B(ai, ε).

7.
Show that a metric space (X, d) is totally bounded if and only if every se-
quence {xn} ⊆ X contains a Cauchy subsequence.

8.
Let X be a compact metric space and let U be an open cover of X. Show
that there exists a number r > 0 with the property: For every x ∈ X, there
exists U ∈ U such that B(x, r) ⊆ U . The number r is called a Lebesgue’s
number of the cover U .

12.9 Problem Sheet 9

1.
Show that (X, T ) is a topological space.

(a) Let X be infinite set. Let

T = {A ⊆ X| A = ∅ or A = X or X \ A is finite}.

This is called co-finite topology or finite complement topology.
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(b) Let X be uncountable set. Define T by

T = {A ⊆ X| A = ∅ or A = X or X \ A is countable}.

This is called co-countable topology or countable complement topol-
ogy.

(c) Let X = R and let

T = {A ⊆ R| A = ∅ or A = R or A = (a,∞) with a ∈ R}.

2.
Let B = {[a, b)| a, b ∈ R}. Show that B is a basis for a topology on R. This
topology, denoted Tl, is called the lower-limit topology on R. Show that
the lower-limit topology is larger than the usual topology on R . Find the
closures of [a, b), (a, b), (a, b] and [a, b] in (R, Tl).

3.
Let T = {A ⊆ R| 0 6∈ A or A = R}. Show that T is a topology on R. What
are the closed sets in (R, T )? What is {1}? Is this topology Hausdorff?

4.
Let A,B be a subsets of a topological space (X.T ). Show that A ∩ B ⊆ A∩B
and A ∪ B = A ∪ B.

5.
Let A ⊂ X where (X, T ) is a topological space. Show that X \ A = X \ A◦

and (X \ A)◦ = X \ A.

6.
Prove the following statements about continuous functions and discrete and
indiscrete topological spaces.

(a) If X is discrete, then every function f : X → Y , where Y is any topo-
logical spaces, is continuous.

(b) If X is not discrete, then there exists a topological space Y and a func-
tion f : X → Y that is not continuous.

(c) If Y is an indiscrete topological space, then every function f : X → Y ,
where X is any topological space, is continuous.

(d) If Y is not indiscrete, then there exists a topological sapce X and a
function f : X → Y that is not continuous.

7
Let X be infinite set and let T be a co-finite topology on X. Show that any
continuous function f : X → R is constant. (R is equipped with the usual
metric topology).
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8.
Let X and Y be topological spaces and let B be a base of open sets for Y .
Show that a function f : X → Y is continuous if and only if f−1(U) is open
in X for every U ∈ B.

9.
(a) Show that (a, b) is homeomorphic to (c, d), (c,∞) and R. (All spaces
are equipped with the usual topology).

(b) Show that R2 \ {(0, 0)} is homeomorphic to R2 \ B((0, 0), 1).

10.
A topological property is a property that, if possessed by a topological
space X, is also possessed by any topological space homeomorphic to X.

(a) Show that if f : X → Y is a homeomorphism, then f(U) is open in Y
for any open set U ⊆ X.

(b) Show that Hausdorff is a topological property.

(c) Is completeness a topological property of metric spaces?

12.10 Problem Sheet 10

1.
Let (X, T ) be a compact topological space and let A,B are closed subsets
of (X, T ). Show that A ∪ B is compact.

2.
Let X = (0, 1) and let

T = {A ⊆ R| A = ∅ or A = (0, 1) or A = (0, 1 − 1/n) for n ≥ 2}.

Show that every open set A different than X is compact. Is X compact?

3.
Let T be a co-countable topology on R, that is,

T = {A ⊆ R| A = ∅ or R \ A is countable}.

Is [0, 1] compact in (R, T )? What are the compact sets in (R, T )?

4.
Consider (R,M), where M is the usual metric topology in R. Let

T = {A ⊂ R| A = ∅ or R \ A is compact in (R,M)}.

(a) Show that T is a topology on R.
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(b) Show that (R, T ) is compact but not Hausdorff.

5.
Let A be closed and let B be compact in (X, T ). Show that A∩B is compact.

6.
Let (X, T ) be compact and let f : X → R be a continuous function. Show
that f is bounded, that is, there is M > 0 such that |f(x)| 6 M for all
x ∈ X. Show that f attains its maximum and its minimum value.

7.
Let (X, T ) be compact and (Y,S) Hausdorff. Show that if f : X → Y is a
continuous bijection, then f is a homeomorphism.

8.
Let (X, T ) be a compact Hausdorff space and let T ′ be another topology on
X. Show that:

(a) if T ⊆ T ′ but T 6= T ′, then (X, T ′) is Hausdorff but not compact.

(b) if T ′ ⊆ T but T 6= T ′, then (X, T ′) is compact but not Hausdorff.

Hint: Use Problem 7.

9.
Let X be infinite set with the co-finite topology T . Show that (X, T ) is
connected.

10.
Is the topological space (R, T ) from Problem 4 connected?

12.11 Problem Sheet 11

1.
Show that if A is a connected subspace of a topological space (X, T ) and if
A ⊂ B ⊂ A, then B is connected.

2.
If A and B are connected subsets of a topological space (X, T ) such that
A ∩ B 6= ∅, then A ∪ B is connected.

3.
Let {An} be a sequence of connected subsets of a topological space (X, T )
such that An ∩ An+1 6= ∅ for all n ∈ N. Prove that

⋃
n∈N

An is connected.

4.
Let (X, d) be a metric space. Call a function f : X → R locally constant if
for every x there exists r > 0 such that f |B(x,r) : B(x, r) → R is constant.
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Show that if (X, d) is connected, then every locally constant function is con-
stant.

5.
A metric space (X, dX ) is called a chain connected if for every pair x, y
of points in X and every ε > 0, there are finitely many points x = x0, x1,
x2, . . . xn = y such that dX(xi+1, xi) < ε for i = 0, 1, . . . , n − 1. Prove that
a compact, chain connected metric space is connected.

6.
A point p ∈ X is called a cut point if X \ {p} is disconnected. Show that
the property of having a cut point is a topological property.

7.
Show that no two of the intervals (a, b), (a, b], and [a, b] are homeomorphic.

8.
Show that R and R2 are not homeomorphic (R and R2 are equipped with
the usual topologies) .

9.
Let A be countable set. Show that R2 \ A is path connected.

10.
Show that if A is an open connected subset of Rn, then A is path connected.
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