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1 Introduction

The ideas of limit and continuity which we encounter in Euclidean spaces
occur in various other contexts e.g in function spaces. Set topology is the
study of limits and continuity in a general setting. The notion of limit is
based on the idea of nearness. These concepts are easier to perceive when
the notion of nearness is given by distance. The corresponding spaces are
called metric spaces. These are introduced in Chapter 2 and applications to
function spaces are discussed early. The desirability of finding limits leads
to the notion of completeness and compactness. As we go on, we find that
many of the arguments do not really need the notion of distance. This leads
to the concept of topological spaces which are discussed from Chapter 6
onward. The idea of compactness is discussed in general setting in Chapter
7 and the notion of connectedness (which is related to the Intermediate Value
Theorem) is discussed in Chapter 8. Under mild assumptions we can study
abstract toplogical spaces by constructing continuous functions to the real
line; the results known as Uryshon and Thitze’s theorem are discussed in
Chapter 10. The concepts of completeness and compactness come again in
the guise of the important Ascoli-Arzela theorem are discussed in Chapter
9. The necessary preliminary material is collected in Chapter 11. The are
11 problem sheets which do not exactly correspond to the chapters of the
notes. This notes is only a brief introduction to the subject and we refer
to Munkre’s Topology [Mu] for comprehensive treatment. More elementary
introductions are the books by Mendelson [M] and Croom [C].



2  Metric Spaces

Basic Concepts

By a metric space we mean a set X together with a function d : X x X —
[0, 00) which satisfies the following axioms:

M1 d(z,y) = 0 if and only if x = y;
M2 d(z,y) = d(y,x) for every z,y € X;
M3 d(z,z) < d(z,y) + d(y, z) for every x,y and z € X.

Elements of X are called points, a function d is called a metric on X,
and the value d(z,y) is called a distance between z and y. The axiom M2
says that a metric is symmetric, and the axiom M3 is called the triangle
inequality since it reflects the geometrical fact that the length of one side
of a triangle is less or equal to the sum of the lengths of the other two sides.

Examples

Example 2.1. The most important example of a metric space is the set of
all real numbers R with the metric d(z,y) = |z —y|. In the following we will
call this metric the usual metric in R.

Example 2.2. Let X be any set and let

0 z=u,
d(m,y):{l x#z

Then d is a metric on X called the discrete metric.

Example 2.3. Any subset Y of a metric space (X,d) becomes a metric
space with the metric

dy (z,y) = d(x,y) forall z,y € Y.

The pair (Y, dy) is called a metric subspace of (X, d). We will refer to YV’
as a subspace of X, rather than (Y, dy) as a subspace of (X, d).



Example 2.4. [Cartesian product of finite number of metric spaces].
Consider a finite collection of metric spaces (X;,d;) , 1 < i < n, and let X be
the cartesian product [[} | X;. For z = (21,...,2,) and y = (y1,...,Yn) €
[T, Xi, set

n
i=1
Then d is a metric on X. Clearly, axioms M1-M2 are satisfied. To see that d

satisfies M3 take x = (z1,...,24),y = (Y1,.-.,yn) and z = (21,...,2,) € X.
Then

n

d(x,2) =Y di(wi, z) <Y [di(wi,vi) + diyi, 21)] = d(w,y) + d(y, 2)
=1 =1

as required. The pair (X, d) defined above is called a metric product (or
just a product) of (X;,d;), 1 < i < n, and the metric d is called a product
metric. (Other metrics are also used on ] ; X;).

Norms and normed vector spaces

We next define the class of metric spaces which are the most interesting in
analysis. Let X be a vector space over R (or C).

Definition 2.5. A norm is a function HH : X — R having the following
properties

N1 ||z|| > 0 and ||| = 0 if and only if x = 0.
N2 ||laz|| = |a| - ||z|| for all z € X and o € R.
N3 ||z +y| < ||| + ||y|| for all 2,y € X.
The pair (X, ||-||) is called a normed vector space.
Proposition 2.6. Let X be a normed space. Then
d(z,y) = |lv =y

18 a metric on X.



Proof. The axioms M1 and M2 are clear. If x,y and z € X, then, in view
of N3,

d(w,2) = ||z = 2| = [|(z = ) + (v = 2)]|
Sl =vlf +lly = =l = (e, 9) + dly. 2),

and so the triangle inequality follows. |
Examples of normed spaces

Example 2.7. [Euclidean Space| Consider R™ and let

n
2
> 7
i=1

for x = (z1,...,2,) € R". Clearly, N1 and N2 are satisfied. To see that N3
holds we need the Cauchy inequality.

1/2

]| =

Lemma 2.8. For x,y € R",

n n 1/2 n
S| < [Slal| [
=1 i=1 =1

1/2

Proof.

n

n
0< Y (wayy —wjys)® = ) (afyf — 2wawjyay; + 25y7)

ij=1 ij=1
n n n n n n

_ 2 2 2.2

= E E Tyy; + E E iy — 2 E E TiTYiY;
=1 j—1 i1 j=1 =1 j—1

- ﬁ;wrynr?m% +jznguwu2y? - ZLZ”}”U"%T
= 2] |lo]* - 2[§ y]

As a corollary we have

Corollary 2.9.

lz+yll < llzll +llyl| ~ for all 2,y e R™.
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Proof. In view of the Cauchy inequality we have

n

n n n
o+ yll* =D ks +wif? = 3 wf + 23w+ 3wk
=1 i=1 i=1

i=1

n
= llall® + 23 iy + yll” < [l + 20l - ] + o
i=1

= (]l + [lIh*

By taking square roots of both sides we the desired inequality follows.

Consequently,

" 1/2
d(z,y) = ||z —y| = [Z(ﬂcz - yi)2]

i=1

defines a metric on R™. We shall call this metric the Euclidean metric or

the standard metric.

Example 2.10. [Space of bounded functions. | Let X be a non-empty
set. Call a function f : X — R bounded if there exists a constant M such
that |f(z)] < M for all z € X. Denote by B(X) = B(X,R) the set of all

bounded functions from X to R, and define
11 = sup{[f(z)| | = € X}.

Then || - || is a norm on B(X), and, in view of Proposition 2.6, this norm

defines a metric on B(X) by

d(f.9) = ||f = g|| = sup{|f(z) — g(=)| | = € X},
for f,g € B(X).

Example 2.11. Let X be the set of all continuous functions f : [0,1] — R.

For any f € X we set
1
7= [ 1@

Then || - || defines a norm on X which induces a metric on X by

1
d(f.g) = /0 @) - g@)ldr, fgeX



Balls and diameter

Let g € X and r > 0. The set
B(zg,r) ={x € X | d(zg,z) <71}

is called an open ball with centre at zg and radius r > 0, and the set

B(xg,r) ={x € X | d(zg,z) <1}

is called a closed ball with centre at xo and radius r > 0.

If A is a non-empty subset of X, then we define the distance between x
and A by
d(z, A) = inf{d(x,y) | y € A}

and more generally if B is another non-empty subset of X, then the distance
between A and B is defined as

d(A,B) =inf{d(z,y) |x € A, y € B}.
For a non-empty subset A of X we define its diameter by setting
diam A = sup{d(z,y) | z,y € A}.
Clearly, if A C B, then diam A < diam B. A subset A C X bounded if its
diameter is finite, that is, diam A < oo.
Sequences and Convergence

Convergence of a sequence in a metric space is defined as in calculus.

Definition 2.12. Let {x,} be a sequence of points in (X,d) and z € X.
The sequence {x,} is said to converge to x, if for every e > 0 there exists
a positive integer k such that

d(xp,x) <€ for alln > k.

A sequence {x,} is said to converge if there is x € X to which it converges.
If there is no such x, then {z,} is said to diverge. If {x,} converges to x
we write lim,, x,, = x¢ or x,, — x. The point = is called the limit of {z,}.

The definition can be expressed in terms of the convergence of sequences of
real numbers. Namely, a sequence {x,} converges to z € X if and only if
d(xy,z) — 0 as n — oco. We are justified in referring to the limit because of
the following proposition.



Proposition 2.13. Let {x,} be a sequence in a metric space (X,d). Then
there is at most one point x € X such that {x,} converges to x.

Proof. Arguing by contradiction we assume that x,, — = and x, — y with
x # y. Then d(z,y) > 0 and we can apply the above definition of conver-
gence with e = d(z,y)/2. We find a positive integer k such that

d(zp,x) <e and d(x,,y) <e, forn>k.
By the triangle law
d(z,y) < d(x,zn) + d(zn,y) <e+e=d(z,y)

which gives a contradiction. Hence we conclude that it is impossible for a
sequence {z,} to converge to two different points. |

Given a sequence {z,} of points in X, consider a sequence {ny} such that

ny <ng <nz < ---. Then {z,, } is called a subsequence of {z,}.
Proposition 2.14. If X =[], X; is the product of metric spaces (X;,d;),
1<i<n, and 2™ = (2,25, ...,2)") € X, then 2™ — xz = (x1,...,2,) €

X if and only if zi* — x; in X; fori=1,...,n.
Proof. Recall that we consider X with the metric

d(z,y) = di(xi, ;)
=1

for x = (z1,...,2n), y = (y1,...,2,) € X. Observe that
di(zi,yi) < d(z,y) < n-max{d;(v;,y;) | 1 <i<n}, zyeX (1)

Let 2™ — x, where x = (z1,...,x,). Then given € > 0 there exists kK € N
such that
d(z™m,x) <e form > k.

In view of the left hand side inequality (1)
dj(z]",zj) <e form>kandj=1,...,n

m 3 m A
So z' — x; as required. Conversely, assume that Tt — x; forj=1,...n.

Hence for a given £ > 0, there exists k(j) € N such that
dj(z}" z5) <e/n for m > k(j).
In view of the right hand side inequality in (1) we get
d(z™,r) < nmax{d;(x]",x;) |j=1,...,n} <e¢

for all m > k := max{k(j) | j =1,...,n}. Hence x,, — z as required. =~ W

10



Definition 2.15. Two metrics d and d' in X are called equivalent if
d(zn,x0) — 0 if and only if d'(zn,x0) — 0.
Example 2.16. Let d be a metric on X. Define

d'(x,y):%, z,y € X. (2)

Then d’ is a metric on X (show this!) which is equivalent to d. In-

d(zp,
deed, if d(z,,x0) — 0, then d'(x,,x0) = % — 0. Conversely,
d(my):M So if d'(xp,x0) — 0, then d(z,,xo) — 0. Note
; 1—d,($,y) ny L0 ) ny L0 .

that with respect to this equivalent metric, the space X is bounded since
d(z,y) <1 forall z,y € X.

Example 2.17. Consider the product (X, d) of metric spaces (X;,d;). Re-
call that

d(z,y) = di(w,y), ©=(x1,.,2n), Y= (Y1, ,¥n) € X.
i=1

Set

p(z,y) = Lil di(xi,?/i)ﬂ "

Then d is equivalent to ¢ and p.

Open and closed sets

Definition 2.18. Let A C X. A point x € A is called an interior point
of A, if B(x,r) C A for some r > 0. The collection of all interior points of
a set A is called the interior of A, and is denoted by A°. A set A is called
open if A = A°.

Obviously, the interior of any set is an open set. Hence open sets A are
characterized by equality A° = A.

11



Example 2.19. The empty set ) and the whole space X are open in any
metric space X. If X is equipped with the discrete metric d, then any subset
of X is open.

Example 2.20. The set Q is not open in R with the usual metric but it
is open in (R, d), where d is the discrete metric in R. Indeed, if z € Q and
r > 0, then for large n € N, we have

2
x<x+£<x+r
n

so that x + v/2/n € B(z,r) but z + v/2/n € Q. In the case of the discrete
metric, for every x € Q, B(z,1/2) = {z} C Q, so Q is open in (R, d).

Example 2.21. Let B(z, R) be an open ball in a metric space X. Then
B(z, R) is an open set. Indeed, let y € B(z, R). We have to show that y is
an interior point of B(z, R), that is, B(y,r) C B(x,r) for some r > 0. Set
r = R —d(z,y). Then for any z € B(y, ),

d(z,z) < d(z,y) +d(y,2) < d(z,y) +r =d(z,y) + [R —d(z,y)] = R.

Thus B(y,r) C B(z,r) as required.

e

Figure 1: An open ball is an open set

12



More terminology: if z € X, then a set A C X is called a neighbourhood
of x, if x € A°.

Definition 2.22. A point x € X is adherent to A provided that B(z,r)N
A # O for all v > 0. The set of all the adherent points of A is called the
closure of A and is denoted by A. If A = A, then A is called closed.

Proposition 2.23. A point x is adherent to A if and only if there exists a
sequence in A converging to x.

Proof. Suppose that z € A. In view of the definition, for each positive
integer n, there exists a point z,, € B(z,1/n) N A. Obviously, {z,} is the
sequence of points of A converging to x. Conversely, suppose that {z,} C 4
and x,, — x. Let r > 0. Then d(x,,z) < r for n greater than some k. Hence
Zn € B(z,r) N A and z is adherent to A. [ |

Example 2.24. Let B(z,r) be a closed ball in X. Then it is a closed set
in X. To see this we have to show that all adherent points of B(z,r) are
contained in B(x,r). If y is adherent B(x,r), then y,, — y for some sequence

{yn} C B(z,7). Since
10.2) < )+ ) < ) 77

it follows that y € B(x,r) as required.

Example 2.25. The closure of an open ball B(z,r) does not have to co-
incide with a closed ball B(z,r). Indeed, consider X = R\ (0,1) with the
usual metric, d(x,y) = |z — y|. Then

B(0,1) = [-1,0] but B(0,1) = [-1,0] N {1}.

Example 2.26. A subset of metric space may be neither open nor closed.
For instance, [0, 1) is neither open nor closed in R. The same is true for Q.
On the other hand, a subset may be open and at the same time closed. In a
metric space equipped with the discrete metric any subset is both open and
closed.

The relation between interior and adherent points is given in the next propo-
sition.

13



Proposition 2.27. A point x € X is an adherent point of A if and only if
x is not an interior point of A€.

Proof. Assume that z is adherent to A. Then for every open ball at =z,
B(x,7) N A # (). Hence there is no open ball B(z,r) contained in A¢ which
means that © ¢ (A°)°. Conversely, assume that = ¢ (A€)°. Hence there is
no open ball B(z,r) contained in A°. Hence B(z,r) N A # 0, for all » > 0,
which means that = is adherent to A. |

As a corollary we obtain.

Corollary 2.28. If A C X, then
X\A=(X\A\° and X\ A°=X\A.

A set A is closed if and only if X \ A is open, and A is open if and only if
X\ A is closed.

Theorem 2.29 (Properties of Interiors and Closures).

(a) A°C A (dyACA

(b) (A°)° = A° WYA=4

(¢AC B= A°C B° ((YAcB=ACB
(d) (AN B)° = A°N B° (dYAUB=AUB

(e) Jas € (U Ai> (@4 c 4

el el el el
m(ﬂm>cﬂ£ (U4 clJ4
icl i€l i€l i€l

Proof. (a) follows immediately from the definition of the interior point. To
see (b) note that A° is an open. (c¢): If A C B and = € A°, then B(x,r) C
A C B. Soxz € B° (d): Note that (AN B)° C A° and (AN B)° C B°
so (AN B)° C A° N B°. On the other hand A° N B° is open and contained
in AN Byso by (b), A°N B° C (AN B)°. Proofs of (e) and (f) are left as
exercises. Proofs of (a’)-(f’) follows from the corresponding statements for
interiors by taking complements. |

14



Theorem 2.30 (Properties of open and closed sets).

(a) 0 and X are open (a') 0 and X are closed
(b) {A;}ier open = U A; open (b") {A; }ier closed = ﬂ A; closed
iel el

(c) {A; 2, open = ﬂ A; open  (){A}, closed = U A; is closed
i=1 i=1
(d) A° =the largest open set (d') A =the smallest closed set

contained in A containing A

Proof. The parts (a) and (a’) are obvious.

(b) Let & € |J;c; Ai- Choose an index j € I so that x € A;. Since Aj is
open, B(z,r) C Aj C J;e; Ai- Hence any point x € (J;c; A is an interior
point, and so | J;c; A; is open.

(c) Assume A; C X,i=1,...,m are opensubsets of X, and let z € (2, A;.
Then z € A; for i = 1,...,m. Since the sets A; are open, B(z,r;) C A; for
some 1; > 0. Take r = min{ry,...,r,}. Then B(z,r) C %, A;, and the
sets (i, A; is open.

(d) is left as an exercise. (a’)-(d’) are obtained from corresponding state-
ments for open sets by taking complements and applying Corollary 2.28 B

Theorem 2.31. Let Y be a subspace of X.

(a) BCY isopen inY if and only if B=Y N A for some open set A in
X.

(b) B CY isclosed in'Y if and only if B =Y NF, where F is closed in
X.

Proof.

(a) Assume first that B = Y N A for some open set A in X. Take z € B.
Then there exists an open ball B(z,r) in X such that B(z,r) C A. But
then Y N B(x,r) C Y N A= B. Since the open ball in the subspace Y with
centre x € X and radius r > 0 is the intersection Y N B(z,r), the set B is
open in Y. Conversely, suppose that B is an open subset of the subspace Y.
Then for every x € B there exists r, such that the open ball B(z,7,)NY in
Y is contained in B. Then the open subset A = |J,p B(x,7,) of X satisfies
Y N A C B. Since any x € B also belongs to A, Y N A = B as required.

(b) A set Bis closed in Y if and only if Y\ B is open in Y. Hence if and
only if Y\ B =Y N A for some open subset A of X. Let F = X \ A. Then

15



Fisclosedin X and B=Y \[YNA4]=Y\A=YN[X\A4=XNF as
required. |

Theorem 2.32. Let X be the product of metric spaces (X;,d;), 1 <i < m.

(a) If A; is open in X;, 1 < i < m, then the product A = [[;, A; is an
open subset of X = [[i; Xi.
(b) If F; is closed in X;, 1 < i < m, then F = [["| F; is closed in the
product X =%, X;.
Proof.
(a) We prove the result for the product of two metric spaces X; and X.
Let a = (a1,a2) € A C X. Since A; is open in X;, there exists 7; such that
an open ball B(a;,r;) in X; is contained in A;. Let r = min{ry,r2}. We
claim that B(a,r) C A. Indeed, if x = (z1,22) € B(a,r), then d(a,z) < r
where x = (z1, z2),and since d;(a;,z;) < d(a,z) < r < r; we conclude that
x; € B(aj,r;). Hence x; € A;, 1 = 1,2, so that z € A.
(b) The proof follows from Proposition 2.14 |

Definition 2.33. The boundary of A in X, denoted by OA, is the set
ANX\ A

Hence z € 0A if for any r > 0 an open ball B(z,r) intersects A and X \ A as
well. Clearly, the boundary is a closed set as an intersection of closed sets.

Example 2.34. Consider R with the usual metric. Then

9([0,1]) = 9((0,1)) = {0,1}
9(Q) =R\ Q) =R.
We shall show the last equality. Fix z € R. If x € Q, then

V2

1
x#x—i—EGQ and x#az—i—?e@c.

Since
z = lim(z + 1/n) = lim(z 4+ v2/n),

it follows that z € QNQ°. So Q C QNQ° = dQ. If z € Q°, then z+1/n € Q°
and there exists a sequence of rational numbers x,, such that

z =lim(z 4+ 1/n) = limz,.
n

Hence » € @ N Q¢ and 9(Q) = 9(Q°) = QN Q° =R.

16



Definition 2.35. A point x € X is called isolated if {x} is open. A space
X is called discrete if all of its points are isolated.

If = is an isolated point, then for some ¢ > 0, an open ball B(z,¢) C {z},
that is, B(z,e) = {z} and if y # =z, then d(z,y) > e. Conversely, if
inf{d(z,y) | y # =} > 0, then {x} is open. Note also that {z} is al-
ways closed. For example, consider N as subspace of R. Then it is discrete.
Also the space J = {1/n | n € N} is discrete. In a discrete space any set
is open, since it is a union of one-point sets which are open. Also any set
is closed being a complement of an open set. Finally, a space is discrete
if and only if the only convergent sequences are those which are eventually
constant (Prove this!).

Definition 2.36. A subset A of a metric space is dense if A = X.

Example 2.37. The sets Q and Q¢ are dense in R with the usual metric.

Proposition 2.38. Let X be a metric space and A C X. Then A is dense if
and only if for every non-empty open set U of X, the intersection UNA # ).

Definition 2.39. A subset A of X is called nowhere dense if (4)° = ().

Example 2.40. The sets of all natural numbers N or all integers Z are
nowhere dense in R with the usual metric. The set of real numbers R is
nowhere dense in R? with the standard metric.

Example 2.41. [Cantor set| The Cantor set is subset of [0, 1] constructed
as follows:

Consider the interval Cy = [0, 1]. At the first step divide Cj into three equal
intervals [0,1/3], [1/3,2/3] and [2/3, 1] and remove the middle open interval
(1/3,2/3). Denote the remaining intervals by C; = [0,1/3] U [2/3,1]. The
length of intervals which constitute C is equal to 2/3. In the second step we
perform the same operations as in the first step on each of the intervals of C.
We remove intervals (1/9,2/9) and (7/9,8/9). Denote the four remaining
intervals by Cy. Having finished the step (n — 1), we perform the nth step
and obtain the set C,, consisting of 2" intervals.

Each of the sets C, is closed and bounded, and C},+1 C C),. The Cantor set

is defined as -
C=()Cn
n=1

17



It is non-empty and since for every n, C), is closed, C is closed. The set
C' does not contain any interval (show this!), and so, C' has empty interior.
Hence C' is nowhere dense.

3 Continuity

The definition of continuity is the € — § definition of calculus.

Definition 3.1. Let (X,d) and (Y, p) be metric spaces and let f : X —Y be
a function. The function f is said to be continuous at the point xg € X
if the following holds: for every € > 0, there exists § > 0 such that for all
x € X ifd(z,x0) <9, then p(f(x), f(xo)) <e. The function f is said to be
continuous if it is continuous at each point of X.

The following proposition rephrases the definition in terms of open balls.

Proposition 3.2. Let f: X — Y be a function from a metric space X to
another metric space Y and let xg € X. Then [ is continuous at xq if and
only if for every € > 0 there exists > 0 such that

f(B(z0,0)) € B(f(x0),¢)-

Theorem 3.3. Let f : X — Y be a function from a metric space (X,d)
to another metric space (Y, p) and let xo € X. Then f is continuous at x
if and only if for every sequence {x,} such that x, — xg, f(x,) — f(xo).
And f is continuous if and only if for every convergent sequence {z,} in X,

1irrbn flxy) = f(hrrbnxn)

Proof. Suppose that f is continuous at x¢ and let z,, — x¢. We will prove
that f(z,) — f(zo). Let € > 0 be given. By the definition of continuity at
xo, there exists § > 0 such that for all z € X,

if d(z,x0) < 0, then p(f(x), f(x0)) <e . (3)
Since z, — xg, there exists an integer k such that for all n > k,
d(zp,xo) < 0. (4)
Combining (3) and (4), we get

p(f(zy), f(zo)) < e for all n > k. (5)
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Hence f(x,) — f(xg) as required. Conversely, arguing by contradiction
assume that f is not continuous at xy. To obtain a contradiction we will
construct a sequence {x,} such that z,, — xo but the sequence {f(z,)}
does not converge to f(xg). Since f is not continuous at xg, there is positive
e > 0 such that for all 6 > 0 there exists z satisfying d(x,z¢) < ¢ but
p(f(x), f(xog)) > €. For each n, take 6 = 1/n and then choose z,, so that
d(xp,z0) < 1/n but p(f(zn), f(x0)) > €. Hence z,, — xo but the sequence
{f(x,)} does not converge to f(xp). The second part of the theorem is an
immediate consequence of the first. |

Global continuity has a simple formulation in terms of open and closed sets.

Theorem 3.4. Let f be a function from a metric space (X,d) to (Y,p).
Then f is continuous if and only if for every open set U € Y, f~1(U) is
open in X.

Proof. Suppose first that f is continuous and U is open in Y. If z € f~1(U),
then f(x) € U. Since U is open in Y and f(x) € U, there exists a positive
number ¢ such that B(f(z),e) C U. In view of Proposition 3.2, there exists
§ > Osuch that f(B(z,0)) C B(f(x),e). Hence B(x,6) C f~(f(B(x,6))) C
f1(U), so f~1(U) is open in X. Conversely, suppose that f~1(U) is open
in X for every open set U in Y. Let x € X and let ¢ > 0 be given.
Since B(f(x),¢) is open in Y, the set f~Y(B(f(x),¢)) is open in X. Since
x € f~YB(f(z),¢)), there exists § > 0 such that B(x,d) C f~1(B(f(x),¢)).
This implies that f(B(z,d)) C B(f(z),e), and in view of Proposition 3.2, f
is continuous. |

Theorem 3.5. Let f be a function from (X,d) to (Y,p). Then f is contin-
uous if and only if for every closed set F CY, f~Y(F) is closed in X.

The proof is left as an exercise.
Theorem 3.6. Let X, Y and Z be three metric spaces.

(a) If f: X =Y and g : Y — Z are continuous, then the composition
g - [ is continuous.

(b) If f : X — Y is continuous, and A is a subspace of X, then the
restriction of f to A, fla: A—Y, is continuous.

Proof. (a) Let x, — x¢. Since f is continuous at xg, f(x,) — f(zp). Since

g i continuous at f(zo, 9(f(wa)) — g(f(z0)). Hence g - f(za) = g - f(ao).
The second statement follows from the first. Here is another proof of the
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second statement. Let U be an open subset of Z. Since g is continuous,
g~ 1(U) is open in Y, and since f is continuous, f~(g~1(U)) is open in X.
But f~1(g7*(U)) = (g - f)~Y(U) and so, (g - f)~*(U) is open in X. Hence
g - f is continuous.

(b) Note that fj4 = f - j, where j : A — X is the inclusion, i.e., defined by
j(z) = x for x € X. Since for any open set U in X, j~1(U) = U N A which
is open in A, it follows that j is continuous. So (b) follows from (a). [

Theorem 3.7. Let (X,d), (Y1,p1) and (Ya, p2) be metric spaces. Let | be a
function from X to Y7 and g a function from X to Ys. Define the function
h from X to the product Y1 X Yo by

hx) = (f(z),9(x)),  forzeX.

Then h is continuous at xqg if and only if f and g are continuous at xqg. And
h is continuous if and only if both functions f and g are continuous.

The similar statement about functions from the direct product does not hold
in general. Suppose that f is a function from X x Y to Z. It may happen
that f discontinuous, though the maps x — f(x,y) for every y € Y and
y +— f(z,y) for every x € X are all continuous. For example, consider a
function from R x R to R defined by

f(z,y) = ;,;23:753/2 for (z,y) # (0,0);

0 for (x,y) = (0,0).

The function f is discontinuous at (0,0) but all the functions = — f(z,y)
and y — f(z,y) are continuous.

Theorem 3.8 (The pasting lemma). Let X = AU B, where A and B
are closed subspaces of X. Let f : A —Y and g: B — Y be continuous. If
f(z) =g(x) for all x € AN B, then the function h: X —'Y defined by

Mw:{ﬂ@ Jxe&
g(x) ifxeB
18 continuous.

Proof. Let C be a closed subset of Y. Then h=}(C) = f~}(C) U g~ 1(0).
Since f is continuous, f~!(C) is closed in A. But since A is closed f~1(C)
is closed in X. Similarly, g7!(C) is closed in X. So h=1(C) is closed in X
and the proof is finished. ]
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Uniform Continuity and Uniform Convergence

Definition 3.9. A mapping f from a metric space (X,d) to a metric space
(Y, p) is said to be uniformly continuous, if for every e > 0, there exists
d > 0 such that p(f(z), f(y)) < e for all x,y € X satisfying d(z,y) < d.

Obviously, a uniformly continuous function is continuous.

Example 3.10. The function f(z) = x/(1 + 22) from R to R is uniformly
continuous. To see this observe that for any x < y, in view of the mean
value theorem of calculus, there exists t € (0,1) such that

1—¢2

— iz —y| < |z -yl
e 2 —y| < |z -y

(@) = F@)] = 1F 1)) - o —y] = ‘

since |f'(t)] < 1. Hence for given e, choose 6 = . Then for any z,y sych
that d(z,y) = |z — y| < d, we have

d(f(x), f(y)) = [f(x) = FW) < e =yl = d(z,y) <d =e.

So f is uniformly continuous.

Example 3.11. The function f(z) = 2% for € R is not is uniformly
continuous. Indeed, for a given § > 0 we can set

x=1/0+6/2 and y=1/,

then |z —y| = §/2 < 6 but |22 — y?| > 1. However, if we consider the
same function on some bounded interval, say [—a,a], then the function is
uniformly continuous since if § < €/2a and z,y € [—a,a] with |z —y| < 4,
then |22 — y?| = |z —y| - |z + y| < 2a]z —y| < e.

Let (X, d) and (Y, p) be metric space. Consider a sequence { f,,} of functions

fn: X—Yandlet f: X =Y.

Definition 3.12. The sequence {f,} is said to converge pointwise to f
if for every x € X and for every e > 0, there exists an indexr N such that

p(fn(x), f(2)) <e for alln > N.

The sequence {f,} is said to converge uniformly to f if for every e > 0,
there exists an index N such that

p(fn(x), f(z)) <e forallm > N and all x € X.
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Equivalently, {f,} converges uniformly to f on X if

sup{p(fu (@), f(x)) | € X} — 0.

The notion of uniform convergence of a sequence of functions is, in general,
more useful than that of pointwise convergence.

Theorem 3.13. Let {f,} be a sequence of continuous functions from a
metric space (X,d) to a metric space (Y,p). Suppose that {f,} converges
uniformly to f from X toY. Then f is continuous.

In words, the uniform limit of continuous functions is continuous.

Proof. Let 9 € X and let € > 0 be given. Since {f,} converges uniformly
to f, there exists an index N such that for all n > N and all z € X,

p(fn(x), f(z)) <e/3. (6)
Since fy is continuous at xg, we can choose § > 0 so that
p(fn(x), fn(z0)) <e/3 (7)

for all d(x,z¢) < d. Now if d(y,xg) < ¢, then

p(f (), f(x0)) < p(f(y), fn (W) + p(fn(y), fn (o)) + p(f(20), f(0))-

Each term of the right-hand side is less than /3, the first and the third in
view of (6) and the second in view of (7). Thus

p(f(y), f(zo)) <e

for all d(y,zp) < d. This proves that f is continuous. n

4 Complete Spaces

Definition 4.1. Let (X,d) be a given metric space and let {x,} be a se-
quence of points of X. We say that {x,} is Cauchy (or satisfies the
Cauchy condition) if for every € > 0 there exists k € N such that

d(Tp, xm) < € for all n,m > k.

Properties of Cauchy sequences are summarized in the following proposi-
tions.
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Proposition 4.2. If {z,} is a Cauchy sequence, then {x,} is bounded.

Proof. Take € = 1. Since {z,} is Cauchy, there exists an index k such that
d(xy, ) < 1 for all m > k. Let R > 1 be such that than d(z;,z;) < R for
1<i<k—1. Then z,, € B(xy, R) for all n, so {x,} is bounded. [ |

Proposition 4.3. If {z,} is convergent, then {x,} is a Cauchy sequence.

Proof. Assume that x,, — x. Then for a given £ > 0 there exists k € N such
that d(x,,z) < e/2 for all n > k. Hence taking any n,m > k,

d(xp, Tm) < d(xn,z) +d(z,20) <e/2+€/2 =¢.
So {z,} is Cauchy. [

Proposition 4.4. If {z,} is Cauchy and it contains a convergent subse-
quence, then {x,} converges.

Proof. Assume that {z,} is Cauchy and zj, — =. We will show that z,, —
x. Let e > 0. Since {x,,} is Cauchy, there exists &’ such that d(z,, zx, ) < £/2
for all n > k. Also since xj, — z, there exists k" such that d(zg, ,z) < /2
for all n > k”. Set k = max{k’,k”}. Then for n > k,

d(zp,x) < d(zp,xp,) + d(zg,,x) <e/2+€/2=¢
showing that x,, — . |

A Cauchy sequence need not converge. For example, consider {1/n} in the
metric space ((0,1),] - |). Clearly, the sequence is Cauchy in (0,1) but does
not converge to any point of the interval.

Definition 4.5. A metric space (X,d) is called complete if every Cauchy
sequence {x,} in X converges to some point of X. A subset A of X is called
complete if A as a metric subspace of (X,d) is complete, that is, if every
Cauchy sequence {x,} in A converges to a point in A.

By the above example, not every metric space is complete; (0,1) with the
usual metric is not complete.

Theorem 4.6. The space R with the usual metric is complete.

Proof. Let {x,} be a Cauchy sequence in R. Then it is bounded, say |z, | <
M. Set y, = inf{zy | £ > n}. Then {y,} is increasing and y,, < M for all
n. Hence {y,} converges, say to = (see Proposition 11.11 in Appendix). We
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claim that also x,, — x. To see this choose N so that |z, — z,,| < £/2 for
n,m > N. In particular,

Ny —e/2<axp<zy+e/2 foralk>N.

Hence
N —€/2 <y, <axy+e/2 foraln>N.

Let n — oo. Then
zy —e/2<z<ay+¢e/2,

or equivalently, |xn — x| < /2. Hence for n > N,
|z — x| < |xn —zn| + 2oy — 2| <e/24¢/2 =-.
Thus {z,,} converges to . |

A subspace of a complete metric space may not be complete. However, the
following holds true.

Theorem 4.7. If (X,d) is a complete metric space and Y is a closed sub-
space of X, then (Y, d) is complete.

Proof. Let {z,} be a Cauchy sequence of points in Y. Then {z,} also
satisfies the Cauchy condition in X, and since (X,d) is complete, there
exists € X such that z,, — x. But Y is also closed, so z € Y showing that
Y is complete. u

Theorem 4.8. If (X,d) is a metric space, Y C X and (Y,d) is complete,
then Y s closed.

Proof. Let {x,} be a sequence of points in Y such that z,, — x. We have
to show that = € Y. Since {z,} converges in X, it satisfies the Cauchy
condition in X and so, it also satisfies the Cauchy condition in Y. Since
(Y,d) is complete, it converges to some point in Y, say to y € Y. Since any
sequence can have at most one limit, z = y. Sox € Y and Y is closed. W

Theorem 4.9. If (X;,d;) are complete metric spaces fori=1,...,m, then
the product (X, d) is a complete metric space.

Proof. Let x, = (xL,...,2™) and {z,} be a Cauchy sequence in (X,d).
Then for a given £ > 0 there exists k such that d(z,, z,,) < € for all n,m > k.
Since

dj(mZL,xZn) < d(xp, Tm) <&,
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it follows that {27} is Cauchy in (Xj,dj) for j =1,...m. Since (Xj;,d;) is
complete, for j = 1,...,m there exists z/ € X such that x}, — 2. Then,
in view of Proposition 2.14, x,, — x, where z = (z!,... 2™). |

Let (X,d) and (Y,d’) be metric spaces and let C(X,Y) be the space of
continuous and bounded functions f : X — Y. If Y = R, we abbreviate
C(X,R) by C(X). Consider

p(f,9) :==sup{d'(f(x),g(z)) | = € X}
for f,g € C(X,Y).

Theorem 4.10. The space (C(X,Y), p) is a complete metric space if (Y,d")
s complete.

Proof. The verification that p is a metric is left as an exercise. Suppose that
Y is complete, and suppose that {f,} is a Cauchy sequence in C'(X,Y).
Then for every =z € X,

' (fu(x), fm(2)) < p(fr; fm)

so that {f,(z)} is a Cauchy sequence on Y. Hence there exists a point,
denoted by f(x) € Y, such that d'(f,(z), f(x)) — 0. In this way we obtain
a function f: X — Y which associate with a point £ € X a point which is
the limit of {f,(x)}. We must check that f is continuous and bounded, and
that p(fn,f) — 0. Let x € X, and € > 0. Then there exists N such that
d(f(x), fn(x)) < e/3, and an open ball B(z, §) such that d'(fn(z), fn(y)) <
/3 for every y € B(x,0). It follows that for every y € B(z,0),

d(f(z), f(y)) < d(f(2), fn(@)) + d' (fn (@), fn (@) +d (), f(y) <e

Hence f is continuous. Now given € > 0, chose ng such that p(f,, fin) <€
for all n,m > ng. Then for every z € X,

A (fu@), F(@)) = Tim_d(fal@), fm(@)) <&

for every n > ng. This says that p(fy,, f) < € for n > ng. It remains to show
that f is bounded. Take z,y € X and let N € N be such that

d(f(x), fn(x)) <1/2 and d'(f(y), fn(y)) <1/2
Note that we can find such N since p(fy, f) — 0. Then

d'(f(z), f(y)) < d(f(z), fn(2) +d (fn(@), fn () +d (fn(y), f(y))
<1+ d(fn(2), [n(y) < 1+ diamfy(X).
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Since z,y € X were arbitrary, diamf(X) < 1 + diamfy(X). Hence f is
bounded. The proof is completed. |

Corollary 4.11. The space (C(X), p) is complete.

Structure of complete metric spaces-Baire’s theorem

Let (X,d) be a metric space. If U and V are open and dense, then U NV
is also open and dense. To see that U NV is dense, we have to show that
O NUNYV is non-empty for any open set O. Since U is dense, there is
u € ONU, and since ONU is open, B(u,r) C ONU for some r > 0. Since
V is dense, B(u,r) NV # 0 so that, ) # B(u,r)NV CcONUNV. If U and
V' are assumed to be dense but not necessarily open, then the intersection
U NV does not have to be dense. For example, let U be the set of rational
numbers and V' the set of irrational numbers Q¢. Then both sets are dense
in R with the usual metric, however, UNV = (). Consider, now a sequence of
dense and open sets Uy,. In general, the intersection (,~, U, may be empty.
For example, consider (Q,d) with the usual metric d. Let {g,|n € N} be
enumeration of rational numbers, and let U,, = Q \ {¢,}. Then each U, is
open since it is a complement of a closed set {g,}, and is dense . However,

ﬂnZI U, = ﬂnzl [(@ \ {qn}] =Q\ Un21{q7z} = (). The Baire theorem says
that if (X, d) is complete, then (1,5, Uy is dense.

Theorem 4.12. Let (X,d) be a complete metric space, and let {Un} be a
sequence of open and dense subsets of X. Then (),~; Uy is dense.

Proof. 1t suffices to show that B(z,r) contains a point belonging to (1, ~, Uy,
for any open ball B(z,r). Since U; is open and dense, B(xz,r) N Uy is non-
empty and open. So, there exists an open ball B(z1, R) with R < 1 such
that B(z1,R) C B(z,r) and B(x1,R) C U;. Taking r1 < R, we get that
B(x1,71) € B(x,r) and B(z1,71) C U Similarly, since U, is open and
dense, there exists ro and ro < 1/2 such that B(xs,72) C B(wy,71) N Us.
Continuing in this way we find a sequence of balls B(z,,,) with r, < 1/n
and B(2pi1,7m11) € B(xp,ms) N U,. We claim that {z,} is Cauchy. By
construction, B, (2,r,) C B(zg,7%) for all n > k. Given € > 0 choose
k € N so that 1/k < e/2. Then, if n,m > k,

d(zpn, m) < d(zy, x) + d(Tg, 2m) < 1/k+1/k <.
Because (X,d) is complete, {x,} converges, say to y. The point y lies in

all balls B(xy, 1) since z,, € B(xy, ) for all n > k and B(xy,ry) is closed
for all k, so that after taking a limit as n — oo, y € B(xy, 7)) for all k. In
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particular, y € B(xy,71) C B(z,r) and y € B(xp11,7ns1) C Uy, for all n.
Consequently, y € B(z,r) N ﬂnzl U,,, and the proof is finished. |

As a consequence we obtain the following theorem.

Theorem 4.13. If (X,d) is a complete metric space and {F,} is a sequence
of nowhere dense subsets of X, then |J F,, has empty interior.

Proof. Arguing by contradiction assume that |J F,, has non-empty interior.
So B(x,r) C |JF), for some x and r > 0. Define U,, = X \ F,. Clearly, U,
is open and we claim that it is dense. Indeed, if for some open set V, we
have VNU, =0, then V C X\ U, = [, contradicting that F,, has empty
interior. Consequently, in view of the above theorem, (), -, Uy is dense. So
B(z,7) NN,>1 Un # 0. On the other hand, B(x,r) C |JF, C JF, so that

0= B(x,m)N [X\Un21m = B(%T)ﬂﬂng[X\F_n} = B(z,7)N(,>1 Un,

contradiction. [ |

Example 4.14. The metric space R with the standard metric space cannot
be written as a countable union of nowhere sets since it is complate. By
contrast, Q@ with the standard metric can be written as the union of one
point sets {g,}, where {g,|n € N} is an enumeration of Q. Every one point
set {gn} is closed in Q and its interior is empty, so nowhere dense. This
does not contradict Baire’s theorem since Q with the standard metric is not
complete.

Applications

Theorem 4.15. Let (X,d) be a complete metric space, and let {f,} be a
sequence of continuous functions f, : X — R. Assume that the sequence
{fn(x)} is bounded for every x € X. Then there exists a non-empty open set
U C X on which the sequence {f,} is bounded, that is, there is a constant
M such that |fn(x)| < M for all z € U and all n € N.

Proof. Since the function f,, is continuous, the set f,, }([-m,m]) = {z € X |
| fn(x)| < m} is closed for any pair of positive integers n and m. Thus,

Epm={z € X ||falx)| <m for all n €N} =(")f""([-m,m])

is closed for every m € N. If z is any point in X, then |f,(z)| < k for some
k € N and all n because {f,(z)} is bounded. Hence X = |J,, E,. In view
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of the Baire theorem, one of the sets F,, has non-empty interior, say FE,,.
Setting U = FE,, the conclusion follows. [

Theorem 4.16. There exists continuous function f : [0,1] — R which is
not differentiable at every point point x € [0,1).

Proof. Recall that f has a right-hand derivative at x, if

i [(F(+h) = ()R] exists.

We denote this limit by f/ (). In particular, if f is differentiable at = € [0, 1)
then f/ () exists and is equal to f’(x). Consider the complete metric space
C([0,1],R) with a metric d given by

d(f,9) = sup{[f(z) — g(z)x € [0,1]}.
Let
M ={f € C([0,1],R) | exists x € [0,1) such that f! () exists}

and let M,,, for m > 2, be the set of all f € C([0,1],R) for which exists
some z € [0,1 — 1/m] such that

|f(x+h)— f(zs)| <m-h forall h €0,1/m].

Claim 1: M C U,59 M. Let f € M. Then there exists z € [0,1) such
that f/ (z) exists. We will show that |f(z 4+ h) — f(z)| < m - h for some
m € N and all 0 < 0 < 1/m. Since

h) —

we have ,
Jim [HEEN IO g )

Take an integer k > 2 such that |f/ (z)] < k and 2 € [0,1 —1/k]. In view of
(1), there exists 0 < 6 < 1/k such that

|f(x+h)— f(z)| <k-h forall 0 < h <.

Since f is continuous on a closed and bounded interval, there is C' > 0
such that |f(z)] < C for all z € [0,1] (this is proved in the section on
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compactness). Let k¥’ be any integer so that 2C/6 < k’. Then, for 6 < h <1

such that ¢ + h < 1,

2C 2C
6

F+h) = f@)| < |f@+ W)+ |f@)] <20 = == 6 <

Taking m = max{k, k'}, we have z € [0,1—1/m] and |f(x+h)— f(x)] < m-h
for all h € [0,1/m], so that f € M.

Claim 2: M, is closed for all m > 2. To see this, take f € M,,. We
will show that f € M,,, that is, |f(x + h) — f(z)| < m - h for some x €
[0,1—1/m] and all h € [0,1/m]. There exists (fx) C My, such that d(fx, f) =
sup|fx(z) — f(x)|| = € [0,1]} — 0 as k — oo. Since fr € M,,, there exists
xy, € [0,1 — 1/m] such that

|fe(rp +h) = fe(zp) <m-h (2)

for all h € [0,1/m]. Since {zr} C [0,1 — 1/m], there exists a subsequence
which converges to some point z € [0,1 — 1/m] . Without loss of generality
we may assume that x; — x € [0,1—1/m]. Hence, by the triangle inequality
and by (2),

|f(x+h) = f(@)| <|f(z+h) = fler+h)| + |f(zk + k) — fe(zr + 1)
+ [ fe(zk +h) — fe(zi)| + | fe(zr) = fr(@)| + | fe(z) — f(2)]
<|fx+h) = flek +h)| +d(fe, /) +m-h
+ | fr(@r) — fu(z)| + d(fr, f)

for all 0 < h < 1/m. Since d(fx, f) — 0, and |f(x + h) — f(xx + h)] — 0,
and |f(x) — f(xg)| — 0, as k — oo, we get that

[f(x+h)—flz) <m-h

for all 0 < h < 1/m. Consequently, f € M,, and M,, is closed.

Claim 3: M}, = (. Let f € M,;,, and let € > 0. Then there exists a piecewise
linear function ¢ : [0,1] — R such that d(f,g) = sup{|f(z) — g(x)| | 0 <
z < 1} < e and |¢) (z)] > m for all z € [0,1]. That is, g € B(f,e) and
g & My,. (Here B(f,¢) is a ball in C(]0, 1], R) with centre at f and radius
). So My, = 0.

“h <K -h.

In view of the Baire’s theorem, C([0,1],R) # ,,>2 Mm since otherwise
U,,>2 My, has non-empty interior. Hence there exists f € C([0,1],R) so
that f & U, 59 M. Since M C U, w9 Mm, f & M. Since M contains
all functions which are differentiable at least one point in [0,1), f is not
differentiable at any z € [0,1) [ ]
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graphs
of functions
fand g

Figure 2: The black curve is the graph of f and the grey curve is the graph
of g.

Contraction mapping principle-Banach fixed point theorem

Let (X,d) be a metric space and let f: X — X. A point z € X is a fixed
point of f if f(x) = x. The solution of many classes of equations can be
regarded as fixed points of appropriate functions. In this section we give
conditions that guarantee the existence of fixed points of certain functions.
A function f : X — X is called a contraction if there exists o € (0, 1) such
that

d(f(x), f(y)) < ad(z,y) (8)
for all z,y € X.

Theorem 4.17 (Banach Fixed Point Theorem). Let f : X — X be a
contraction of a complete metric space. Then f has a unique fixed point p.
For any x € X, define xg = x and xp11 = f(x,) for n > 0. Then x,, — p,

and
(e, f(2))

11—«

(9)

Proof. We start with the uniqueness of the fixed point of f. Assume that
p # q and that f(p) = p and f(q) = ¢. Then

d(p,q) = d(f(p), f(q)) < ad(p,q)

so that d(p,q) = 0 since a € (0,1). So p = g, contradicting our assumption.
Hence f has at most one fixed point. Fix any point x € X, and let zog = =

d(z,p) <
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and x,+1 = f(x,) for n > 0. Then for any n,
d(Tnt1,n) = d(f(zn), f(2n-1)) < ad(zn, zp1)
and,
A(Tpy1, %) < d(Tp, Tno1) < 2d(Tp_1,Tp_2) < - < a"d(x1,x0).
For m > n,

d(.%'m, xn) < d(wru xn—i—l) + d(xn—f—h xn+2) +--+ d<xm—1axm)
< (@ +a" 4+ o™ Hd(21,20) < (Z ai)d(arl,mo)

o) ‘ ng :
= an (Z Ozz)d(l'l, $0) = 701 1(i104$0) .
=0

Since @™ — 0 as n — oo (recall o € (0, 1)), the sequence {x,} is Cauchy in
X. Since (X,d) is complete, there exists p € X such that z,, — p. Taking
a limit m — oo in the last inequality we find that

d(p,z,) < 2oL T0) (10)

l—«o

"d(z, @ a"td(zy,
< d(p,zn) + d(zps1,p) < Cf(_l(; 0) +1d£ ;, 0)

_ .4 +a)d(z1,20) 0.
l1-a

and therefore p = f(p). The inequality (9) follows from (10) by taking
n =0. |

Here is an application of Banach fixed point theorem to the local existence
of solutions of ordinary differential equations.

Theorem 4.18 (Picard’s Theorem). Let U be an open subset of R? and
let f:U — R be a continuous function which satisfies the Lipschitz condition
with respect to the second variable, that is,

\f(x,y1) - f(xvyz)’ < a’yl - yZ‘
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for all (x,y1), (z,y2) € U, and some o > 0. Then for a given (xg,y9) € U
there is § > 0 so that the differential equation

Y (@) = f(z,y(x))
has a unique solution y : [xg — J,x0 + 6] — R such that y(xo) = yo.

Proof. Note that it is enough to show that there are § > 0 and a unique
function y : [xg — 0, x9 + 0] — R such that

y(z) =yo + /x f(t,y(t))dt.

Fix (xg,y0) € U, then there exists 6 > 0 and b > 0 such that if [ =
[xo—0.20+0] and J = [yo—b, yo+Db], then I x.J C U. Since f is continuous and
I x J is closed and bounded, f is bounded on I x J. That is, |f(z,y)] < M
for some M and all (x,y) € U. Take § smaller so that ad < 1 and aM < b.
Denote by X the set of all continuous functions g : I — J. The set X with
the metric p(g,h) = sup{|g(x) — h(z)|,z € I} is a complete metric space.
For g € X, let

(Tg)(x) = yo + / ’ f(t, g(t))dt.

Then Tg : I — R is continuous since if x1,z9 € I and z9 > 1, then

[ f(t,g(t>)dt‘ < [ 715t a0t < Mz — |

1

[(Tg)(w2) — (Tg)(x1)| =

For zg <z < z9+ 6,

|(T'g)(x) —yo| =

x x

[ statnat] < [ istegto)lar < Mo anl < ag5 <
xo xo

The same inequality holds for zg — § < z < zg, and so Tg € X for any

g € X. Since f is Lipschitz with respect to the second variable, we obtain
for g,h € X and z € [xg, x0 + 9],

[(Tg)(x) = (Th)(x)| =

| Ute.gte) - st ) e
< / £t g(t) — £t h(t))de

< O[|.’£ - :E0|d(g? h) < Oé(;d(g,h)
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Similarly, |(Tg)(x) — (Th)(x)| < alz — xold(g,h) < add(g,h) for z € [xg —
J, zp]. Since ad < 1, T is a contraction and in view of Banach’s fixed point
theorem there exists a unique continuous function y : I — J such that

y(2) = (Ty)(z) = yo + / "t y(t)dt.

Completions

The space (0,1) with the usual metric is not complete but is a subspace
of the complete metric space [0,1] with the usual metric. This example
illustrates the general situation: every metric space X may be regarded as
a subspace of a complete metric space X in such a way that X = X.

We will need the following concept.

Definition 4.19. A bijective map f from (X,d) onto (Y,p) is called an
isometry if

p(f(x), f(y) = d(z,y) for all z,y € X.

If f:X — Y is an isometry, then f~!:Y — X is also an isometry, and
the spaces (X, d) and (Y, p) are called isometric. Two isometric spaces can
be regarded as indistinguishable for all practical purposes that involve only
distance.

Definition 4.20. A completion of a metric space (X,d) is a pair consist-
ing of a complete metric space (X, d) and an isometry ¢ : X — o(X) such
that o(X) is dense in X.

Theorem 4.21. Let (X,d) be a metric space. Then (X,d) has a comple-
tion. The completion is unique in the following sense: If ((X1,d1),¢1) and
((Xa,d2),¢2) are completions of (X,d), then (X1,d1) and (Xa,ds) are iso-
metric. That is, there exists an isometry ¢ : X1 — Xo such that ¢ - 1 = ps.

Proof.

Existence: Let B(X) be the space of bounded functions defined on X
equipped with the uniform norm o(f, g) = sup,cx |f(y) — g(y)|. Fix a point
a € X. With every x € X we associate a function f, : X — R defined by

fe(y) = d(y, ) — d(y,a), yeX.
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We have
[fe(W)| = d(y, z) — d(y,a)| < d(z,a)
so that f, is bounded. Since

|fm1(y)_f:v2(y)| <d($1,$2) for allyeX,
U(f:vlaf:m) = SupyeX{|f:B1 (y) - f:m(y)” < d($1’x2)' On the other hand?

U(f:maf:vz) > |f11('x2) - fmz(x2)| = d(xl’xQ)'

Hence
0(fars fao) = d(z1,22),

and the map ¢ : X — C(X,R) defined by ¢(z) = f; is an isometry onto

(X)),
o(p(z1), p(z2)) = d(z1,22).

Denote by X’ the closure of ¢(X) in B(X) and let d’ be the metric on X’
induced by o. Since (B(X),0) is complete and X’ is closed in B(X), the
space (X'd') is complete.

Uniqueness:

The isometry ¢; : X — ¢1(X) has an inverse <p1_1 :¢1(X) — X. Then
@2 - o' is an isometry from ¢1(X) onto Xo. Since ¢;(X) is dense in
(X1,d1), p2 - cpl_l extends to the map ¢ : X; — X» satisfying

do(p(x), o(y)) = di(z,y), z,y€Xi.

Since X is complete, in view of the above equation, ¢(X;) is closed in
Xa. Since ¢ - 1 = a2, pa(X) C p(X71). This implies that Xo = pa(X)

©(X1) = p(X1) since p(X1) is closed in Xy. Consequently, p(X;) = Xo,
i.e., @ is surjective and the proof is completed.

N

5 Compact Metric Spaces

We start with the classical theorem of Bolzano-Weierstrass.

Theorem 5.1 (Bolzano-Weierstrass). Let I be a closed and bounded in-
terval of R, and let {x,} be a sequence in I. Then there exists a subsequence
{zp, } which convereges to a point in I.

34



Proof. Without loss of generality we may assume that I = [0, 1]. Bisect the
interval [0, 1] and consider the two intervals [0, 1/2] and [1/2,0]. One of these
subintervals must contain x,, for infinitely many n. Call this subinterval I;.
Now bisect ;. Again, one the two subintervals contains x,, for infinitely
many n. Denote this subinterval I the interval containing x,, for infinitely
many n. Proceeding in this way we find a sequence of closed intervals I,,,
each one contained in the preceding one, each one half of the length of the
preceding one, and each containing x, for infinitely many n. Choose an
integer ny so that x,, € I;. Then choose ny > n; such that z,, € I.
Then choose n3 > ng such that z,, € I3, and so on. Continuing this way
we choose we find a sequence {z,, } such that x,, € I. If i,j > k, then
Tn;, Tn; € Ix and so
|[Zn; — ;| < 1/2%.

Hence {z,, } is Cauchy and since [0,1] is complete, {x,, } converges to a
point in [0, 1] |

Definition 5.2. A metric space (X, d) is called compact if every sequence
in X has a convergent subsequence. A subsetY of X is compact if every
sequence in Y has a subsequence converging to a point in'Y .

Proposition 5.3. Let (X,d) be compact and 'Y a closed subset of X. Then
Y is compact.

Proof. Let {x,} be a sequence in Y. Since X is compact, the sequence {x,}
has a converging subsequence, say x,, — x. Since Y is closed, z €Y. W

Proposition 5.4. Let X be a metric space and Y a compact subset of X.
Then Y is closed and bounded.

Proof. Take any = € Y. There exists a sequence {z,} in Y converging to
x. Since Y is compact, the sequence {z,} has a converging subsequence,
say Tp, — y with y € Y. In view of the uniqueness of the limit, y = x.
Hence Y is closed. To see that Y is bounded, we argue by contradiction and
construct a sequence {x,} which does not have a converging subsequence.
Fix any point y € X. For every n € N, there exists a point z,, € ¥ so that
d(xn,y) > n since otherwise Y C B(y,n) for some n. The sequence {z,}
contains converging subsequence since Y is compact. Say z,, — x € Y.
Let € = d(x,y), Then d(zy,,z) < 1 for all £ > N. Hence by the triangle
inequality,

for all kK > N, contradiction. Consequently, Y is bounded. |
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Combining Proposition 5.4 with Theorem 5.1 we get

Theorem 5.5. A subset Y of R is compact if and only if Y is bounded and
closed.

The result is also valid in R™ with the standard metric. A subset of R" is
compact if and only if it is bounded and closed. This follows from the fact
that if A; is a compact subset of (X;,d;) for 1 < i < n, then A1 x Ay x---x A,
is compact in the product space X; x X3 x --- X,,. In particular, using
Theorem 5.1, [—a,a]™ is compact in R™. So if A is bounded and closed in
R™, then A is a subset of a compact set [—a,a]™, and then Proposition 5.3
implies that A is compact.

Theorem 5.5 does not hold true for general metric spaces.

Example 5.6. Consider the metric space ((C([0,1],R),d) consisting of
all continuous functions on the interval [0,1] with the supremum metric
d(f,g) = sup{|f(z)—g(x)||x € [0,1]}. Let A = {f1, fo,...}, where fi(z) = 2"
for x € [0,1]. The set A is bounded since B(0,2). For k > i, we have

() = fi(z)] = 2’ - 2" = 1].

Let i be fixed. Then for z close to 1, ¢ > 1/2 and for k large 2*~% < 1/2.
Hence

|fe(z) = fi(z)] =2’ - |57 =1 > 1/4,

So d(fi, fr) > 1/4 for k large. Let f € A. We claim that f € A. Indeed,
there exists a sequence {gp} C A such that d(gg, f) — 0. Hence {gx} is
Cauchy and there is N such that d(gn,gx) < 1/4forall k > N. Since g, € A,
Gk = fn,. Hence d(fny, fn,) < 1/4 for all k > N. From d(f;, fr) > 1/4 for
all k large, it follows that the set {ny} is bounded, that is, ny < m for some
m € N and all k£ € N. Hence for all k, g € {f1, fo, f3,..., fm} so that
the sequence {g;} has a constant subsequence, say g,, = f; for some i < m
and all [. Since a subsequence of a convergent sequence converges to the
same limit, the sequence {g} converges to f;, that is, f = f;. Hence A is
closed. To see that A is not compact, consider a sequence {f,}. If A were
compact, then a subsequence of {f,} converges to some f; € A. But then
d(fi, fn,) < 1/4 for large k contradicting d(f;, fz) > 1/4 for large k.

Theorem 5.7. Let (X,d) and (Y,d') be metric spaces and let f : X — Y be
continuous. If a subset K C X is compact, then f(K) is compact in (Y,d’).
In particular, if (X, d) is compact, then f(X) is compact in'Y.

36



Proof. Let {y,} be any sequence in f(K), and let {z,} be a sequence in K
of points such that f(x,) = y,. Since K is compact, {z,,} has a converging
subsequence to a point in K, say x,, — = with z € K. Since f is continuous,
f(zn,) — f(x). That is, y,, — f(x) and since f(z) € f(K), f(K) is
compact. [

As a corollary we get

Corollary 5.8. Let f : X — R be a continuous function on a compact
metric space. Then f attains a mazimum and a minimum value, that is,
there exist a and b € X such that f(a) = inf{f(z)| = € X} and f(b) =
sup{f(z)| x € X}.

Proof. By Theorem 5.7, f(X) is compact and so, it is bounded and the
sup{f(x)| x € X} is finite. Set C' = sup{f(z)| x € X}. By definition of
supremum, for every n € N, there exists z,, such that C — 1/n < f(z,) <
C. The sequence {z,} has a converging subsequence, x,, — b because
X is compact. In view of the continuity of f, f(z,,) — f(x), and since

C—1/n< f(z,) < C, f(x) =C. Similarly, f(a) = inf{f(z)|z€ X}. N

Theorem 5.9. Suppose f : (X,d) — (Y,d') is a continuous mapping defined
on a compact metric space X. Then f is uniformly continuous.

Proof. Suppose not. Then there is some ¢ > 0 such that for all § > 0 there
exist points z,y with d(z,y) < 0 but d'(f(x), f(y)) > . Take 6 = 1/n
and let z,,y, be points such that d(z,,y,) < 1/n but d'(f(xn), f(yn)) > €.
Compactness of X implies that there is a subsequence {z,, } converging to
some point € X. Since d(xy,,Yn,) < 1/np — 0 as k — oo, the sequence
{yn,} converges to the same point z. Continuity of f implies that the

sequences { f(zn,)}, {f(yn,)} converge to f(x). Then d'(f(zy,), f(z)) < e/2
and d'(f(yn, ), f(x)) < €/2 for k large, and so,

d'(f (@, f(yn,)) < d'(f(@n,), f(@) + d (f(2), fyn,)) <
for k large, contradiction that d'(f(x,), f(yn)) > € for all n. |

Characterization of Compactness for Metric Spaces

Definition 5.10. Let (X,d) be a metric space and let A C X. If {U;}ier
is a family of subsets of X such that A C |J;c; Us, then it is called a cover
of A, and A is said to be covered by the U;’s. If each U; is open, then
{Ui}ier is an open cover. If J C I and still A C | J;c; Us, then {U;}icy is
a subcover.
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Definition 5.11. Let (X, d) be a metric space and let A C X. Then A has
the Heine-Borel property if for every open cover {U;}icr of A, there is a
finite set F C I such that A C |J;cq Ui.

Example 5.12. Consider a set X with a discrete metric. Then every one-
point set is open and the collection of all one-point sets is an open cover of
X. Clearly, this cover does not have any proper subcover. Hence, a discrete
metric space X has the Heine-Borel property if and only if X consists of a
finite number of points.

Definition 5.13. Let (X,d) be a metric space and A C X. Lete > 0. A
finite subset S is called an e-net for A if A C |J,cqB(w,e). A set A is
called totally bounded if, for every e > 0, there is an e-net for A. That
is, for every e > 0, there is a finite set S such that A C |J,cq B(z,¢).

Every totally bounded set is bounded, for if z,y € (J;, B(x;,¢), say = €
B(zy,¢),y € B(xa,¢), then

d(z,y) < d(z,z1) +d(x1,22) + d(z2,y) < 26 + max{d(z;,z;)| 1 <i,j < n}.

The converse is in general false.

Example 5.14. Consider (R, d) with d(z,y) = min{|z —y|,1}. Then (R, d)
is bounded since d(z,y) < 1 for all z,y € R. But (R,d) is not totally
bounded since it cannot be covered by a finite number of balls of radius 1/2.
Indeed, let S be any finite subset of R, and let z be the largest number in
S. Ify € S, then d(z 4+ 1,y) = min{|z + 1 — y|,1} = 1 and so there is no
1/2-net for R.

Theorem 5.15. Let A be a subset of a metric space (X,d). Then the
following conditions are equivalent:

(a) A is compact.
(b) A is complete and totally bounded.
(¢) A has the Heine-Borel property.

Proof. We will show that (a) implies (b), (b) implies (c), (c) implies (a).
(a) implies (b):
Let {z,} be a Cauchy sequence in A. We have to show that it converges to
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a point in A. By compactness of A, some subsequence, {z,, }, converges to
x € A. Then x,, — z. Indeed, let € > 0. Choose ng such that d(z,,x,) <
e/2 for all n,m > ng. Also choose ko such that d(z,,,z) < /2 for all
k > ko. Then if k > kg, is such that n; > ng, then for m > ny we have,

d(zm, ) < d(xm, xn, ) + d(@n,,x) <e/2+e/2=c¢.

Hence we proved that A is complete.

Suppose that A is not totally bounded. Then there exists r so that A
cannot be covered by finitely many balls of radius r. We construct a se-
quence {x,} in A which does not have a converging subsequence. Take any
x1 € A. Since B(x1,7) does not cover A, there is a point in A \ B(z1,7).
Call this point x2. Having chosen points 1, ...,x,, we choose x,y1 so
that it belongs to X \ J;_; B(z;,r). This is possible since A is not covered
by B(x1,r),...,B(x,,r). Continuing in this way we get a sequence {z,}
such that d(zp,z,) > r for all n and m. Such a sequence cannot have
a convergent subsequence since if {x,, } converges, then it is Cauchy and
d(zp,,xn,,) < r for large k and m. Hence A is no compact, contradiction.
(b) implies (c):

Let U = {U; }ier be a collection of open sets covering A. Arguing by contra-
diction we assume that U does not contain a finite subcover. Total bound-
edness of A implies that there is a finite set of closed balls By, ...,B, of
radius 1 which cover A. If each of the sets AN B; can be covered by a finite
number of sets from U, then A can also be covered by a finite subcollec-
tion of sets from Y. Therefore some A N B;, , denoted by B!, cannot be
covered by a finite number of sets from Y. Since B! is a subset of A and
A is totally bounded, B! is totally bounded. So let Bi,..., Bl be a finite
set of closed balls of radius 1/2 which cover B. If each B! N B! can be
finitely covered by sets from U, the same is true for B!. Therefore, some
B]1 N B!, denoted by B2, cannot be covered by a finite number of sets from
U. Continuing in this way we obtain a sequence of closed sets B™ such that
... C B" C B"! C .- C B', none of which can be finitely covered and
diam B™ < 1/n. From each B™ choose a point x,. The sequence {z,} is
Cauchy since for n,m > k, x,,x, € B and

d(y, ) < diam B¥ < 1/k.

By completness of A, the sequence {z,} converges, say x,, — x. In fact,
x € B for all k since x,, € BF for all n > k and since B* is closed. In
particular, x € A . Since U covers A, the point x belongs to some U;, and
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therefore, B(x,e) C U; for some €. If y € B™, then
d(z,y) < d(xz,zy) + d(zy,y) < d(z,x,) +diam B" < d(z,z,) + 1/n.

For large n, the right side is less than . So for large n, B™ C B(z,e). Hence
B™ C U; which shows that B™ can be finitely covered by sets from ¢/. This
contradiction show that A has the Heine-Borel property.

(c) implies (a):

Suppose that A is not compact. Then there exists a sequence {z,} in A
with no convergent subsequence in A. Then for every x € A, there exists
a ball B(z,e,) which contains z,, for at most finitely many n. Otherwise,
there exists  such that for every r > 0, B(x,r) contains z,, for infinitely
many n. Then, in particular, for every k, B(z,1/k) contains x,, for infinitely
many n. Choose n; so that x,, € B(z,1). Since B(z,1/2) contains x,, for
infinitely many n, there is ny > n; such that z,, € B(x,1/2). In this
way we construct a subsequence {x,, } such that z,, € B(z,1/k). This
implies x,, — x contradicting our assumption on {z,}. Now the family
{B(x,e5)}zeca is an open cover of A from which it is impossible to choose
a finite number of balls which will cover A since any finite cover by these
balls contains z,, for finitely many n and since A contains x,, for all positive
integers. Consequently, A is compact. |

6 Topological Spaces

Our next aim is to push the process of abstraction a little further and define
spaces without distances in which continuous functions still make sense.
The motivation behind the definition is the criterion of continuity in terms
of open sets. This criterion tells us that a function between metric spaces
is continuous provided that the preimage of an open set is open. We make
the following definition.

Definition 6.1. Let X be a non-empty set. A topology on a set X is a
collection T of subsets of X satisfying the following properties:

Ol Qand X € T;

02 if {Uitier C T, then U;jc; Ui €T

03 ifU1,Us,..., U, €T, then (., €T;

The pair (X,7T) is called a topological space. If X is a topological space
with topology T , we say that a subset U of X is an open set in X if U € 7.
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Here are some examples of topological spaces.

Example 6.2. Let (X, d) be a metric space. Then the family of open sub-
sets of X with respect to the metric d is a topology on X.

Example 6.3. Let X be any non-empty set. The collection of all subsets of
X, P(X), is a topology on X. This topology is called the discrete topol-
ogy. Every subset U of X is an open set. On the other extreme, consider
X and the collection {@), X}. It is also a topology on X, and is called the
indiscrete topology or the trivial topology.

Example 6.4. Let X = R and let 7;, be a collection of subsets of X consist-
ing of (), R, and the unbounded open intervals (—oo, a) for all a € R. Then
7, is a topology on R. Similarly, we can define a topology 7; consisting of
), R and all unbounded intervals (a, ), a € R.

Example 6.5. Let (X,7) be a topological space and ¥ C X. Then
Ty ={UNY | U € T} is a topology on Y. It is called the subspace
topology or relative topology induced by 7.

Definition 6.6. Suppose that T and T' are two topologies on X. If T C T’
we say that T' is finer or larger than 7. In this case we also say T is

coarser or smaller than 7'. Topologies T and T' are comparable if
T'cT andT CT'

Along with a concept of open sets there is the companion concept of closed
set. If X is a topological space, then a set F' C X is closed if FF¢* = X \ F
is open. By de Morgan’s laws, the family of closed sets is closed under
arbitrary intersection of closed sets and finite unions. More precisely, the
class of closed sets has the following properties:

C1 X and 0 are closed;

C2 If F; is a closed set for every i € I, then (., F; is closed;

el

C3 If Fi,... F, are closed, then U:‘L:1 F; is closed.
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Given a subset A of a topological space X, its closure is the intersection
of all closed subsets of X containing A. The closure of A is denoted by A.
The interior of A, denoted by A°, is the union of all open subsets of A.
If x € X, then a set A C X is called a neighbourhood of z, if x € A°.

Basis

If X is a topological space with topology 7, then a basis for 7 is a collection
B C T such that every member of 7, i.e., every open set, is a union of
elements of B.

Example 6.7. The collection of all open balls forms a basis for the topology
of metric space.

Theorem 6.8. Let X be a set. Then a collection B of subsets of X is a
basis for a topology of X is and only if B has the following two properties:

(1) For every x € X, there exists B € B such that x € B.

(2) If B1,Bs € B and © € By N By, then there exists By € B such that
xr € B3 C B1 N Bs.

Proof. Any basis satisfies (1) since the whole space X is open, and (2) since
the intersection of two open sets B1 N By is open. Conversely, assume that
B is a collection of subsets of X with properties (1) and (2). Define 7 to be
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the collection of all subsets of X that are unions of sets in B. We shall show
that 7 is topology. The condition (1) guarantees that X € 7. Clearly, an
arbitrary union of sets in 7 belongs to 7 in view of definition of 7. Assume
that U,V € 7. We have to show that U NV is the union of sets in B. Take
any x € UNV. Since U and V are unions of sets in B, there exist By, By € B
such that x € B C U and x € Bo C V. So z € By N By, and, in view of
(2), there exists B, € B such that x € B3 C By N By. Hence B, CU NV,
and consequently,
unv= |J B
zelUnVv
This shows that UNV € 7. |

Hausdorff and normal spaces

Definition 6.9. A topological space X is called a Hausdorff space if for
every two points x,y € X such that x # y, there exist disjoint open sets U
and V satisfying x € U and y € V. A space X is normal if for each pair
A, B of disjoint closed subsets of X, there exist disjoint open sets U and V
such that ACU and V C V.

U \%
| V ' ‘
Continuity

Continuous functions in metric spaces were characterized in terms of open
and closed sets (see Theorem 3.4 and Theorem 3.5).This suggest the defini-
tion of continuity in topological spaces.

Definition 6.10. Let X and Y be topological spaces and let f : X — Y.
The map f is continuous at a point xq if for every neighbourhood U of
f(zo) in'Y there exists a neighbourhood V' of xo in X such that f(V) C U.
Global continuity of f is defined in terms of open sets: f is continuous if
F~YU) is open in X for every open set U inY .
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If f: X — Y is bijective and f and f~! are both continuous, f is called a
homeomorphism and X and Y are said to be homeomorphic. We call
a property topological if it is invariant under homeomorphism.

Elementary properties of continuous functions

(1) If f: X - Y and g : Y — Z are continuous maps between topological
spaces, then the composition g - f: X — Z is continuous.

(2) If f: X - Rand g: X — R are continuous, then h : X — R? given
by h(xz) = (f(x),g(z)) is continuous.

(3) If Ais a subspace of X, then the inclusion map i : A — X is continuous
(this follows from the definition of the topology on the subspace A). If
f: X — Y is continuous, where Y is another topological space, then
the restriction map h : A — Y defined by h(x) = f(z) for z € A, is
continuous. This follows from (1) using the fact that h = f - 4.

7 Compact Topological Spaces

Theorem 4.15 gives three equivalent characterizations of compactness for
metric spaces: the Bolzano-Weierstrass property, completeness together with
total boundedness and the Heine-Borel property. In the case of general
topological spaces the most useful is the Heine-Borel property. A subset
Y of a topological space (X,7) is called compact it if for every collection
U = {U}icr of open sets such that A =C | J;; Us, there is a finite J C I for
which Y C (J;c; Ui DeMorgan’s laws lead to the following characterization
of compactness in terms of closed sets.

Definition 7.1. A family {F;}icr of closed subsets of X is said to have the
finite intersection property if (. ; F; # 0 for all finite J C I.

Theorem 7.2. A topological space X has is compact if and only if for every
family {F;}icr of closed subsets of X having the finite intersection property,

Nier Fi # 0.

Proof. Assume that X is compact. Let {F;};cr be a collection of closed sets
having the finite intersection property. Arguing by contradiction assume
that (e, = 0. Denoting by U; = X \ F; we have U;c; Ui = U;er[X \
F] = X\ Njer Fi = X. So {Ui}ier is an open cover of X. Hence there
are U;,,...,U;, such that X = U;; U---UU;,. But then ) = X \ X =

X\ Ule Ui, = (=, Fi,, contradicting the assumption that {F;} has the
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finite intersection property. Conversely, suppose that for every collection
{Fi}icr having the finite intersection property we have (;,c; F; # (. Take
any open covaer {U;}ier of X, and define F; = X \ U;. Then F;’s are closed
and Nic; Fi = Nier X \ U] = X \ Uie; Ui = 0. So {F;} does nor have the
finite intersection property (otherwise (;,c; F; # 0). So there is a finite set
J C I such that ;. ; F; = 0. But then X = (J,c;[X\ Fi] = U, Us showing
that X is compact. |

Theorem 7.3. A closed subspace of a compact topological space is compact

Proof. Let K be a closed subset of a topological space X, and let {U;cs} be
an open cover of X. Then the collection {U};c; U {K°} is a family of open
subsets of X that covers X. Since X is compact, there is a finite subfamily
of this family that covers X. The corresponding subfamily of {U;c;} covers
Y.

|

Theorem 7.4. If X is a Hausdorff space, then every compact subset of X
1s closed.

Proof. Let K be a compact subset of X. Since X is Hausdorff, for every
x € K and every y € K, there are disjoint open sets Uy, and V,, such that
x € Uyy and y € V. Then for every x € K¢, {V,y}yeck is an open cover of
K. Since K is compact, there exist y1,...y, € K such K C (J"; Vay,. Set
U=i2;Usy. Then U is open, UNK =0, and z € U. Thus z € U C K°
showing that K¢ is open, and consequently, that K is closed. |

Theorem 7.5. A compact Hausdorff space is normal

Proof. Let A and B be disjoint closed subsets of a compact Hausdorff space.
In view of Theorem 7.3, the sets A and B are compact. Proceeding like in the
proof of the previous theorem, we find for every x € B disjoint open sets V,
and U, such that = € V,, and A C U,. Then the open sets {V, },ep cover B.
Consequently, there exist x1,...,2, € Bsuch that BC V,, U---UV, :=V.
Then U :=U,, N---NU,, isopen, UNV =0, and ACU,BCV. [ |

Theorem 7.6. Suppose that f : X — Y is a continuous map between
topological spaces X and Y. If K C X is a compact set, then f(K) is a
compact subset of Y. In particular, if X is compact, then f(X) is compact.

Proof. Let U be an open cover of f(K). That is, U consists of open subsets
of Y such that their union contains f(K). The continuity of f implies that
for any set U € U, f~1(U) is an open subset of X. Moreover, the family
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{f~Y(U) | U € U} is an open cover of K. Indeed, if + € K, then f(z) €
f(K), and so f(z) € U for some U € U. This implies that z € f~*(U). Since
K is compact, K C JI, f~1(U;) for some n. It follows that f(K) C UL, U;
which proves that f(K) is a compact subset of Y. This completes the proof
of the theorem. [ |

Theorem 7.7. Let f be a continuous bijective function from a compact
topological space X to a Hausdorff topological space Y. Then the inverse
function f~1:Y — X is continuous.

Proof. Denote by g = f~!: Y — X. We have to show that ¢! (K) is closed
in Y for any closed set K in X. Since f is a bijection, g71(A) = f(A) for
any subset of Y. So g7 '(K) = f(K). Since K is closed and X compact, K
is also compact. By the previous result, f(K) is compact in Y and since Y
is Hausdorff, f(K) is closed. So g~!(K) is closed in Y, as required. |

Example 7.8. Let S! be the unit circle in R? of radius 1 and centre (0,0).
We consider S! as a subspace of R%. Let f : [0,2r) — S' be given by
f(z) = (cosx,sinzx) for € [0,27). Show that f is a continuous bijection
but the inverse map f~!: S — [0,27) is not continuous. Why doesn’t this
contradict Theorem 6.77

8 Connected Spaces

A pair of non-empty and open sets U, V of a topological space X is called
a separation of X if UNV =@ and X = UUV. A topological space X is
called disconnected if there is a separation of X, and otherwise is called
connected. A subset Y of X is said to be connected if it is connected
as a subspace of X, that is, Y is not the union of two non-empty sets

U,V € |mathcalTy such that UNV = 0.

Example 8.1. The set X containing at least two points and considered
with the discrete topology is disconnected, however, X with the indiscrete
topolgy is connected.

Example 8.2. The subspace R\ {0} of R is disconnected since R \ {0} =
AUB, where A={reR|r<0land B={reR|r>0} If X =Qis
considered as subspace of R, then X is disconnected since X = AU B with
A=QnN(—o0,r) and B =Qn (r,00), where r is irrational.
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A “2-valued” function is a function from X to {0,1}, where {0, 1} is consid-
ered with discrete topology.

Theorem 8.3. A space X is connected if and only if every 2-valued contin-
uwous function on X is constant. FEquivalently, X is disconnected if and only
if there exists a 2-valued continuous function from X onto {0,1}

Proof. Suppose that X is connected and f : X — {0,1} is continuous. Let
A = f71({0}) and B = f~({1}). The sets A, B are open, disjoint and
X = AUB. So one of A, B has to be empty. Conversely, assume that every
continuous 2-valued function is constant. Assume that X = AU B, A and
B are open, and AN B = (). Define

0 if x € A,
f(m)_{1 if 2 € B.

Clearly, the function f is continuous. So f is constant, say f(x) = 0 for all
z € X. But then A = X and B = (). Hence X is connected as claimed. W

Theorem 8.4. Let f : X — Y be a continuous function between spaces X
and Y. If X is connected, then the image f(X) is connected.

Proof. Let g : f(X) — {0,1} be continuous. Then the composition g - f :
X — {0,1} is continuous, hence constant since X is connected. Hence g is
constant on f(X) and the result follows in view of Theorem 8.3. [

Theorem 8.5. If A is a connected subset of a space X, then A is also
connected.

Proof. Let f: A — {0,1} be continuous. Then J14 is continuous, and so,
f is constant on A. Say f = 0 on A. We claim that f = 0 on A. Suppose
f(x) = 1 for some x € A. The set {1} is open in {0,1} and since f is
continuous f~!({1}) is an open subset of A. Thus say f~'({1}) = UNA
for some open set U in X. This mean that f = 1 on U N A. Since z € A,
UNA#(,say yc UNA. Then f(y) = 1sincey € UNA CUnNA, but
one the other hand f(y) = 0 since f = 0 on A. Therefore, A is connected
as claimed. |

Example 8.6. The union of connected subspaces does not have to be con-
nected. Consider R with the usual topology. Then the sets (—o0,0) and
(0, 00) are connected subspaces of R, but the union (—oo,0)U(0, 00) = R\{0}
is disconnected.
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Theorem 8.7. If {A;}icr is a family of connected subsets of X such that
Nicr Ai # 0, then A =J,c; Ai is connected.

Proof. Let f: A — {0,1} be continuous. Then |4, is continuous for every
i, s0 it is constant. Since (),c; A; # 0, we must have the same constant on
every A;. Hence f is constant and A is connected. |

As an application of this theorem we have the following

Theorem 8.8. If for any two points in a space X there exists a connected
subspace of X containing these two points, then X is connected.

Proof. Fix a point a € X. For b € X denote by C(b) a connected subspace
of X containing a and b. Then X = (J,cx C(b). Since a € (,cx C(b), the
result follows from the previous theorem. |

Let x € X and let C, be the union of all the connected subsets of X
containing x. Each C, is called a component (or connected component)
of X.

Proposition 8.9. Let C,. be the connected component of X containing x.
Then

(a) for each x € X, C, is connected and closed; and
(b) for any two x,y € X, either Cy = Cy or C; N Cy = 0.

Proof. The set C, is connected in view of Theorem 8.7, and by Theorem
8.5, C, is connected. Hence by the definition of C,, C, C Cy, so Cp = Cy,
and Cj is closed. If C, NCy # 0, then C; UC), is connected by Theorem 8.7.
So again by the definition of C;; C, U C, C C,. Hence Cy C C,, Similarly,
C, C Cy, so C; = C as required. [ |

Example 8.10. If X is equipped with the discrete topology, then every
subset of X is open and closed. Hence the connected components of X are
sets consisting of one point.

Next we shall determine the connected subsets of R. By an interval I C R
we mean a subset of R having the following property: if z,y € I and z <
z <y, then z € 1.

Theorem 8.11. A subset of R is connected if and only if it is an interval.
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Proof. Suppose that J C R is not an interval. Then there are x,y € J and
z ¢ J with x < z < y. Then define A = (—o00,2) NJ and B = (z,00) N J.
Clearly, A, B are disjoint, non-empty, relatively open, and AU B = J. So
J is not connected. Conversely, suppose that J is an interval. We will show
that J is connected. Let f : J — {0,1} be continuous, and suppose that
f is not constant. Then there are z; and y; € J such that f(x1) = 0 and
f(y1) = 1. For simplicity assume that x; < y;. Let a be the midpoint
of [z1,11]. If f(a) = 0, then set xo = 0 and ys = yi1, and otherwise,
zg = xp and yp = a. So 21 < x2 < Y2 < w1, |w2 — Y2 < 27w — ),
and f(z;) # f(y;). Iterating this procedure we find a sequences {x,} and
{yn} with the following properties: x1 < 29 < -+ <z, < yp < -+ < Y1,
|Tn — ynl| < 2_1|$n71 — Yn-1| < 2n_1|$1 — 1], and f(xn) = 0, f(yn) = 1.
Since R is complete, {x,} converges to some z, and since |z, — y,| — O,
yn — 2. Clearly, z € J. Hence 0 = lim,, f(z,,) = f(2) = lim, f(y,) =1, a
contradiction. So f is constant, and this implies that J is connected. |

We can apply the last theorem to analyze the structure of open subsets of R.
We claim that any open set U C R is a countable union of pairwise disjoint
open intervals. Indeed, let x € U and let I, be the connected component of
U containing x. Thus, I, is an interval. If y € I, then there is § > 0 such
that (y — 6,y +9) C U since U is open. Hence I, U (y —d,y + ) is connected
and since I, is a connected component, (y — 0,y +9) C I,. So I, is an open
interval, and U is a union of open intervals (its components). Since each
must contain a different rational number, U is at most countable union of
disjoint open intervals.

Here is an important application of Theorem 8.11.

Theorem 8.12 (Intermediate Value Theorem). Let f be a continuous
function defined on a connected space X. Then for any x,y € X and any
r € R such that f(x) < r < f(y) there exists c € X such that f(c) =r.

Proof. The set f(X) is a connected subset of R. Hence f(X) is an interval,
and since f(x), f(y) € f(X), it has to contain 7. |

Definition 8.13. A space X is called path connected if for any two points
p and q € X, there exists a continuous function f :[0,1] — X such that
f(0) =p and f(1) = q. The function f is called a path from f(0) to f(1).

If X is path connected, then X is connected but the converse is false in
general as the following example shows.
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Example 8.14. Denote by X = {(t,sin(r/t)) | t € [0,2]} C R2 Let
¢ : R? — R be the projection onto the first coordinate, that is, o(z,y) = .
Then ¢ : X — (0,2] is a homeomorphism and since (0, 2] is connected so
is X. Therefore, X = ({0} x [-1,1]) UX = J U X is connected, where we
abbreviated J = {0} x [~1,1]. We shall show that X is not path connected.
Arguing by contradiction assume that f : [0,1] — X is a continuous path
in X such that f(0) € J and f(1) € X. Consider f~1(J). It is closed in
[0,1] and contains 0. Let a = sup{t € [0,1],¢ € f~1(J)}. Since f(1) € X,
a < 1. Since f is continuous, there exists 6 > 0 such that f(a +0) € X.
Write f(t) = ((t),y(t)). Then z(a) = 0 and z(t) > 0, y(t) = sin(7w/z(t))
for t € (0,a + d]. For every large n find r, such that 0 < r, < z(a + 1/n)
and sin(7/ry,) = (—1)". Since the function = is continuous by the Inter-
mediate Value Theorem there is ¢,, € (a,a + ¢] such that z(t,) = r, and
y(tn) = (=1)™. So t, — a but y(t,) does not converge contradicting the
fact that f is continuous. Hence X is not path connected.

9 Product Spaces

We define a topology on a finite product of topological spaces. Consider a
finite collection X7, ..., X, of topological spaces. The product topology
on the product X = X7 x --- x X,, is the topology for which a basis of open
sets is given by “rectangles”

{Ui x---xU, | Ujis open in X for 1 < j < n}. (11)

Observe that the intersection of two such sets is again a set of this form.
Indeed,

Uy x---xU)N(Vix---xV,)=(U1NV) x - x (U,NVy,)

Consequently, the family (11) forms a basis. Let 7; : X — X; be the
projection of X onto the jth factor, defined by

(@1, .. ) =25, (T1,...,2n) € X,
For an open set U; C X, we have
W;l(Uj):Xl Xoee XXj_l XUjXXj+1 X---XXn

which is a basic open set. Hence each projection 7; is continuous.
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Theorem 9.1. Let X be the product of the topological spaces X1,..., Xy,
and let w; be the projection of X onto X;. The product topology for X is
the smallest topology for which each of the projections m; is continuous.

Proof. Let T be another topology on X such that the projections 7; are
T-continuous. Take open sets U; C Xj, 1 < j < n. Then each W;l(Uj)
belongs to 7 since 7; is 7-continuous. Since

m U) N0 (U) = Uy x - x Uy,

the basic set Uy x - - - x U, belongs to 7 and 7 includes the product topology.
|

Call a function f from one topological space to another open if it maps
open sets onto open sets.

Theorem 9.2. Let X be the product of the topological spaces X1,...,X,.
Then each projection m; of X onto X; is open.

Proof. Let U = Uy x --- x U, be a basic open set in X. Then 7;(U) = Uj,
and since the maps preserve unions, the image of any open set is open.

Theorem 9.3. Let Y be a topological space and let f be a continuous map
from'Y to the product X = X1 x---x X,,. Then f is continuous if and only
if mj o f 1s continuous for all 1 < j < n.

Proof. 1f f is continuous, the 7; - f is continuous as a composition of contin-
uous maps. Conversely, suppose that m; - f is continuous for all 1 < j < n.
Take a basic open set U = Uy X --- x Uy, in X. Then

FHU) = (= HTHOD) N (= £)7HUR))
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is a finite intersection of open sets and hence is open. Since the inverses of
functions preserve unions, the inverse image of any open set is open, and
consequently, f is continuous. |

We next study which properties of topological spaces are valid for the prod-
uct X = Xy x --- x X,, whenever they hold for X, X ..., X,,.

Theorem 9.4. Let X be the product of Hausdorff spaces X1,...,X,. Then
X is Hausdorff.

Proof. Take two different points z = (z1,...,2,), ¥ = (Y1,...,Yn), and
choose an index i so that z; # y;. Since X; is Hausdorff, there exist open
sets U; and V; in X; such that U; N V; = (. Then W;l(UZ’) and W;l(‘/i) are
open and disjoint sets containing x and y, respectively. Consequently, X is
Hausdorff as required.

Theorem 9.5. Let X be the product of path-connected spaces X1,..., X,.
Then X is path-connected.

Proof. Take two points = = (z1,...,Zn), ¥ = (Yy1,...,Yn) in X. Since each
X is path-connected, for each 1 < j < n there exists a path v; : [0,1] — X
from x; to y;. Define v : [0,1] — X by setting

V() = (@), -, m(t), te[0,1].
Then + is a path connecting x with y. So X is path-connected. |

To study connectedness of the product of connected spaces we will need the
following fact. Fix points 9 € Xo,...x, € X,, and defineamap h: X; — X
by setting h(z1) = (z1,...,2,). Then h is a homeomorphsim of X; onto
the “slice” X7 x {xo} X -+ x {zp} of X. Indeed, it U = Uy x --- x Uy, is
a basic open set in X, then h~1(U) = U; is open so that h is continuous.
Since the inverse of h is equal to T1|x, x{ws}x---x{wn}> h~! is continuous and
h is a homeomorphism. Similarly, for each j fixed and fixed points z; € X,
i # j, the map X; — {a1} x - {zj_1} x Xj x {zjp1} x - x {z,} is a
homeomorphism.

Theorem 9.6. Let X be the product of connected spaces X1,...,X,. Then
X is connected.
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Proof. We prove the theorem for the product of two connected spaces X and
Xy. We apply Theorem 8.8. Take two points a = (ay,a2),b = (by,b2) € X
and consider sets C1 = {(z,b2) € X | z € X1} and Cy = {(a1,y) € X |y €
Xo}. By the above remark, the sets C,Cy are connected. Then, in view of
Theorem 8.7, C' = C; UC}y is connected since C1NCy = {(a1,b2)}. Applying
Theorem 8.8, the space X is connected since a,b € C. [ |

To study compactness of the product of compact spaces we need the follow-
ing lemma.

Lemma 9.7. Let Y be a topological space and let B be a basis for the topology
of Y. If every open cover of Y by sets in B has a finite subcover, then Y is
compact.

Proof. Let {U;}icr be an open cover of Y. For each y € Y, choose V}, € B
and an index j so that y € V,, C U;. The family {V,},cy forms an open
cover of Y by sets belonging to B. In view of the assumption, there exists a
finite number of the V,,’s that cover Y. Since each of these V,’s is contained
in at least one of the U;’s, we obtain a finite number of U;’s that cover Y.

Hence Y is compact.
|

Theorem 9.8 (Tichonoff’s Theorem for the finite product). Let X
be the product of compact spaces X1,...,X,. Then X is compact.

Proof. We consider only the product of two compact spaces X; and Xs. let
R be a cover of X1 x X5 by basic open sets of the form U x V', U open in X;
and V open in X5. In view of Lemma 9.7, it is enough to show that R has a
finite subcover. Fix z € Xg. The slice X7 x {z} is compact. Hence there are
finitely many sets Uy x Vi,...,U, x V,, in R covering the slice X x {z}. We
may assume that z € Vj forall 1 < j <n. Theset V(2) =VinN---NV, is
an open set containing z, and the set 772_1(V(z)) is covered by sets U; x Vj,
1 < j < n. The collection {V(z)}.ex, is an open cover of X5, and since
Xy is compact, Xo = V(z1) U -+ U V(z) for some finite number of points
zj € Xo. Then X = 7y {(V(21)) U--- Umy H(V(%)). Bach 7, (V(z;)) is
covered by finitely many sets in R. Consequently, X can be covered by
finitely many sets in R, and, in view of Lemma 9.7, X is compact.
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Compactness in function spaces: Ascoli-Arzela the-
orem

Next we study compact subsets of the space of continuous functions. Let
X be a compact topological space and (M, o) a complete metric space. By
C(X,M) we denote the set of all continuous functions from X to M. We
consider C'(X, M) with the metric

d(f,9) = sup{o(f(x),9(x)) | x € X}

Definition 9.9. Let X be a topological space and (M,o) a compact metric
space, and let F be a family of functions from X to M. The family F is called
equicontinuous at x € X if for every e > 0 there exists a neighbourhood
U: of ¢ such that

o(f(y), f(x)) <e forally € U. and all f € F.

The family F is called equicontinuous if it is equicontinuous at each x €
X.

Example 9.10. Consider two metric spaces (X, p) and (M, o). Given M >
0 let F be a set of all functions f : X — Y such that

o(f(x), f(y)) < Mp(z,y)

for all z,y € X. Then F is an equicontinuous family of functions. For if
e >0, take U, = B(x,e/M). Then if y € U and f € F, we have

o(f(x), f(y) < Mp(z,y) <M -e/M =e.

Theorem 9.11 (Ascoli-Arzela Theorem). Let X be a compact space and
let (M, o) be a complete metric space. Let F C C(X,Y). Then the closure
F is compact in C(X, M) if and only if two of the following conditions hold:

(1) F is equicontinuous.

(2) for each x € X. the set F(x) = {f(x) | f € F} has a compact closure
in M.
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Proof. Since C(X, M) is a complete metric space, F is compact if and only
if F is totally bounded. Assume first that the conditions (1) and (2) are
satisfied. In view of the above remark we have to show that F is totally
bounded. Given € > 0, for each z € X there exists an open neighbourhood
V(z) such that if y € V(z), then o(f(x), f(y)) < € for all f € F. Since
{V(x)}rex is an open cover of X and X is compact by assumption, there
exist a finite number of points x1, ..., z, such that V(z1),...,V(z,) cover
X. The sets F(x;) are totally bounded in M, hence so is the union S =
Flxy)U---UF(xy). Let {a1,...,an} be an e-net for S. For every map
v:{1,...,n} — {1,...,m} denote by

By, ={f € F|o(f(xj),apy) <eforall j=1,...,n}.

Observe that there is only a finite number of sets B, and every f € F
belongs to one of such sets. Moreover, if f,g € F, then

a(f(y),9(y) < a(f(y), f(zx)) + o(f(zr), apm))
+ o(ap), 9(@k)) + o(g(zk), 9(y))
<ed+e+et+e=A4¢

for all y € V(xy). So if f,g € By, then d(f,g) < 4e. Consequently, the
diameter of B, is < 4e, and since there are finitely many such B, and they
cover F, the set F is totally bounded.

Conversely, assume that F is totally bounded. Note that the mapping V¥ :
F — M given by U(f) = f(z) is distance decreasing, i.e.,

o(W(f),¥(9) = o(f(x),9(x)) < d(f,9)-

It follows that for every z € X, the set F(x) C M is totally bounded
and (2) holds. To see that (1) holds, let ¢ > 0 and let fi,...,f, be an
e-net of F. Given x € X we find open neighbourhood V' (z) of x such that
o(fj(x), fi(y)) < eforally e V() and all j = 1,...,n. Thenif f € F
choose an index j so that d(f, fx) < e. It follows that if y € V(x), then

o(f(@), f(y) <o(f(x), fi(x) +a(fi(@), f;(y) +o(f;), f(y))
<ete+e=3e

Therefore, the family F is equicontinuous at x, and since x was an arbitrary
point of X, F is equicontinuous as required. |

Corollary 9.12. Let X be a compact topological space and Y a compact
metric space. Let F be an equicontinuous a of C(X,Y'). Then every sequence
in F has a uniformly convergent subsequence.
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Definition 9.13. A family F of maps f : X — Y, where Y is a metric
space is called pointwise bounded if {f(x) | f € F} is bounded in'Y for
every x € X.

Lemma 9.14. Assume that X is a compact metric space and let F be an
equicontinuous and pointwise bounded family in C(X). Then there is a
constant M such that f(X) C [-M,M] for all f € F.

Proof. For each x € X, there is M, such that |f(z)| < M, for all f € F.
Since F is equicontinuous, for each x there is an open set U, such that

|f(x) — f(y)| <1forall feF andye€ U, Then

FWI<Ify) = f@)+[f(@)] <1+ My = K,

for all y € U,. The sets U, form an open covering of X and since X
is compact, there exists a finite subcovering U,,,...,U;,. Set now M =
max{Ky,,..., K, . Then |f(z)| < M for all x € M. [ |

Corollary 9.15 (Arzeld - Ascoli Theorem, classical version). Let X
be a compact topological space. Assume that F is a pointwise bounded and
equicontinuous subset of C(X). Then every sequence in F has a uniformly
convergent subsequence.

Proof. In view of the above exercise the set F is uniformly bounded, that
is, |f(z)| < M for all f € Fand z € X. Set Y = [-M,M]. Then Y is
compact in R, and F is a subset of C(X,Y’). So the corollary follows from
Corollary 9.12. |

10 Uryshon’s and Thietze’s Theorems

We show the existence of continuous functions on normal topological spaces.
We start with the following characterisation of normal spaces.

Lemma 10.1. A topological space X is normal if and only if for every closed
subset A C X and every open subset B C X containing A , there exists an
open set U such that ACU C U C B.

Proof. Assume first that X is normal and A and B are as above. Then the
sets A and X \ B are closed and disjoint. So, in view of normality of X,
there exist open disjoint sets U and V' such that A C U and X \ B C V.
Then U € X \ V C B, so that U has the required properties.

Conversely, let A and B be closed disjoint subsets of X. Then V = X \ B
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is open and A C V. By assumption there exists an open set U such that
AcUcCU C V. Then U and X \ U are disjoint open sets satisfying A C U
and B C X \ U. So X is normal and the proof is completed. ]

Theorem 10.2 (Urysohn’s Lemma). Let A and B be closed subspace of
a normal space X. Then we can find a continuous function f: X — [0,1]

such that f(a) =0 for alla € A and f(b) =1 for allb € B.

Proof. For the proof recall that a dyadic rational number is a number which
can be written in the form p = 2% with n, m being integers. Set V = X\ B,

an open set which contains A. By Lemma 10.1, there exists an open set Uy /
such that
ACUyypCUjpCV.

Applying Lemma 10.1 again to the open set U;/; containing A and to the
open set V' containing Ul/g, we obtain open sets Uy 4 and U/ such that

ACUy s CUy g CUyjp CUyjp CU3pq CUzp4 C V.

Continuing in this way, we associate to each such number p € D an open
subset U, C X having the following properties

U, c Uy, 0<p<q<l, (12)
AcCU,, 0<p<l, (13)
U,CV, 0<p<l (14)

Next we shall construct the function f which is continuous and such that
the sets QU, are level sets of f on which f assumes the value p. Define
f(z) =0if x € Uy for all p > 0 and f(z) = sup{p| z ¢ Uy} otherwise.
Clearly, 0 < f <1, f(z) =0 for all x € A and f(x) =1 for all x € B. It
remains to show that f is continuous. Take x € X. We only consider the
case that 0 < f(x) < 1. (The remaining cases f(z) = 0 and f(z) = 1 are
left as an exercise). Let € > 0 and choose dyadic rationals p and ¢ such that
0<p,g<1and

f(z)—e<p<flz)<qg<f(z)+e

Then = ¢ U, for dyadic rationals r between p and f(x) so that, in view
of (12), z ¢ U,. On the other hand x € U;. So W = U, \ U,, is an open
neighbourhood of x. Then p < f(y) < ¢q for any y € W which shows that
|f(x) = f(y)| < e for all y € W. Hence f is continuous and the proof is
completed. |
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Theorem 10.3 (Thietze’s extension theorem). Let A be a closed subset
of a normal space X and let f be a bounded continuous real valued function
on A. Then there exists a bounded continuous function h : X — R such that

f="honA.

Proof. Set ag = sup{|f(a)|| a € A}. (Note that a < oo since f is bounded).
Define sets

By ={a€ A f(a) < —ap/3} Co={a €A fla) > —ag/3}.

Since f is continuous on A and A is closed, the sets B and C' are closed and
disjoint subsets of X. Taking a linear combination of constant function and
the function from Uryshon’s lemma, we find a continuous function g¢ : X —
R such that —agp/3 < go < ao/3, go = —ap/3 on By and gy = ag/3 on Cj.
In particular,

l9o| < ao/3
|f — g0 < 2a0/3.

Iterating this process we construct the sequence of functions {g, } satisfying

|gn| < 2%ag/3"*! (15)
If —g0—g1— - —gn <2"ap/3""" on A. (16)
Indeed, suppose that the functions g, ..., gn—1 have been constructed. To
construct g,1, set
an—1 = sup{[f(a) — go(a) — g1(a) — -+ — gn—1(a)|| a € A},

and repeat the above argument with a,,_1 replacing ag and f — go — g1 —
-+ — gn—1 replacing f. This gives the function g, such that

‘gn’ < an—1/3
lf—g0o—g1— - —gn| <2an_1/3 on A.

Since a,—1 < 2"ag/3", the function g,, satisfies (15)-(16). Set
hn=go+-+gn, n=>1

If n > m, then

2\ ™! 2\"\ a
‘hn_hm’:’gm+1++gn’<<<§> ++<§> >§0
9 m+1
<(5) -
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Consequently, {h,} is Cauchy in C(X,R). Hence there exists a continuous
function h : X — R such that h, — h. In addition,

n a 00 9 n
|| = [lim Ay | = Tim|hy,| < limkzo‘gk’ < 30;<§> .

so that h is a bounded. Finally, in view of (16), |f — h| = lim|f — h,| <
lim 2"aq /3"t — 0 on A, so that f = h on A. The proof is completed.
[ |

Both theorems are valid in metric spaces as the following theorem shows.
Theorem 10.4. Every metric space is normal.

Proof. Let A and B be disjoint closed subsets of X. Define
f(z) = inf{d(z,a)| a € A}

for z € X. Observe that f(x) = 0 if and only if € A since A is closed.
The function f is continuous. Similarly, let g(x) = {d(x,b)| b € B}. Then g
is continuous and g(z) = 0 if and only if x € A. Since A and B are disjoint,
f(z) 4+ g(x) >0 for all x € X. Set

f(z)
f@) +g(x)’
Then h is continuous, h(z) = 0 if and only if x € A and h(z) = 1 if and only

if z € B. Take now U = {x| h(z) > 3/4} and V = {z| h(x) < 1/4}. Clearly,
UNV =0,U,V are open, and A C U, B C V, so that X is normal. |

h(z) = reX

11 Appendix

Sets

A set is considered to be a collection of objects. The objects of a set A are
called elements (or members) of A. If = is an element of a set A we write
x € A, and if z is not an element of A we write x ¢ A. Two sets A and B
are called equal, A = B, if A and B have the same elements. A set A is a
subset of a set B, written A C B, if every element of A is also an element
of B. The empty set () has no elements; it has the property that it is a
subset of any set, that is, ) C A for any set A. Given two sets A and B we
define:
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(a) the union AU B of A and B as the set

AUB={x|z € Aorz € B},

(b) the intersection AN B of A and B as the set

ANB={z |z € Aandz € B};

(c) the set difference A\ B of A and B as the set

A\B={z |z € Aandz ¢ B}.

Sets A and B are called disjoint if AN B = (). The concept of union
and intersection of two sets extends to unions and intersections of arbitrary
families of sets. By a family of sets we mean a nonempty set F whose
elements are sets themselves. If F is a family of sets, then

UA:{x|x€Af0rsomeA€f}
AceF

[ A={x|zec Aforall Ac F}.
AeF

When it is understood that all sets under considerations are subsets of a
fixed set X, then the complement A€ of a set A C X is defined by

A=X\A={zeX|zdA.

In this situation we have deMorgan’s laws:

(UAz)c:ﬂAfa <ﬂAi>c:UAg.

iel el el el

The set of all subsets of a given set X is called the power set and is denoted
by P(X).

If X and Y are sets, their cartesian product X x Y is the set consisting
of ordered pairs (z,y) with x € X and y € Y.

Given two sets X and Y, a relation from X to Y is subset R of X xY. We
say that R is a relation on X if X x X, that is, R C X x X. Quite often we
write xRy instead of (z,y) € R.

The most important example of a relation is a function. A relation f from
X to Y is called a function if for each x € X there exists exactly one y € Y
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such that zfy. If xfy, we write y = f(z); y is called the value of f at x.
We also will write f : X — Y to mean that f is a function from X to Y.
Here X is called the domain of f, and the set {f(z) | x € X} is called the
range of f. If f: X — Y is a function, A C X and B C Y, then the image
of A and the preimage of B under f are sets defined by

f(A) ={f(x) |z € A}, fH(B) =A{z| f(z) € B}.

We say that f is injective, or one-one, if f(z) = f(y) only when z = y,
and we say that f is surjective, or onto, if f(X) =Y, that is, if the image
of f is the whole of Y. A function which is both injective and surjective
is called bijective. Sometimes we will use words a “map” or a “mapping”
instead of a function. Unions and Intersections behave nicely under inverse

image:
o (U A@) =Urta.

i€l el
f1 (ﬂ A@) =/ "4
i€l el

A = (f1A)"
Given two functions f : X — Y and g : Y — Z, we define the composition
g - f of fand g as the function g - f : X — Z defined by the equation
g - f(x)=g(f(z)). If f: X — Y is one-one, then f has the inverse f~!.
The inverse f~! is defined on the range f(X) and takes values in X; it is
given by the formula f~!(y) = z if and only if f(z) = y.

Countable and Uncountable Sets

A set A is called finite if for some n € N, there is a bijection f from
{1,...,n} to A. The number n is uniquely determined and is called the
cardinality of A. We denote this fact by 4 = n or card(A) = n. If
A is not finite, then it is called infinite. If A is infinite, then there is an
injective function f from the set of natural numbers N into A. If there exists
a bijection between N and A, then we say that X is countably infinite
(or just countable). So A is countably infinite if and only if its elements can
be listed in an infinite sequence X = {x1,z9,...}. If there is no bijection
between N and A, then A is called uncountable.

Example 11.1. The set Z of all integers is countably infinite. To see this
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consider the function f : N — Z defined by

n/2 if n is even;
fay={ " o
—(n—1)/2 if n is odd.

Check that the function f is a bijection from N to Z so that Z is countably
infinite.

Example 11.2. Consider the interval I = [0,1]. Then I is uncountable.
Seeking a contradiction, suppose that I is countable. Hence all elements of
I can be listed as an infinite sequence {z1, 2, ...}:

T = O.a%a%aé---

To = O.a%agag xx

T3 = O.a‘z’agag e

Define
1 ifalr #1
by, =
2 ifa?=1
and z = 0.b1bab3---. Then z € [0,1] but it is not a member of {z,}, con-
tradiction.

Proposition 11.3. Let A be a non-empty set. Then the following are equiv-
alent:

(a) A is countable.
(b) There exists a surjection f: N — A.
(c) There exists an injection g : A — N.

Proof. Assume that A is countable. If A is countably infinite, then there
exists a bijection f : N — A. If A is finite, then there is bijection h :
{1,...,n} — A for some n. Define f: N — A by

f(i):{h(i) if1<i<n,

h(n) if i > n.
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Check that f is a surjection. So the implication (a) = (b) is proved. To
prove the implication (b) = (c¢). Let f : N — A be a surjection. Define
g : A — N by the equation g(a) = smallest number in f~!(a). Since f is
a surjection, f~!(a) is non-empty for any a € A, so that g is well-defined.
Next check that if a # a’, then f~!(a) and f~!(a’) are disjoint, so they have
different smallest elements. The injectivity of g follows. Now the implication
(¢) = (a). Assume that g : A — N is injective. We want to show that A is
countable. Note that g from A to g(A) is a bijection. So it suffices to show
that any subset B of N is countable. This is obvious when B is finite. Hence
assume that B is an infinite subset of N. We define a bijection h: N — B.
Let h(1) be the smallest element of B. Since B is infinite, it is non-empty
and so h(1) is well-defined. Having already defined h(n — 1), let h(n) be
the smallest element of the set {k € B | k > h(n —1)}. Again this set
is non-empty, so h(n) is well-defined. Now check that the function A is a
bijection from N to B. [ |

Corollary 11.4. The set N x N is countable.

Proof. In view of the previous proposition, it is enough to construct an
injective function f : NxN — N. For example, let f(n,m) = 2"3™. Suppose
that 273™ = 2F3!. If n < k, then 3™ = 273!, The left side of this equality
is an odd number whereas the right is an even number. So n = k, and
3™ = 3!. But then also m = [. Hence f is injective as required. |

Proposition 11.5. If A and B are countable, then A X B is countable.

Proof. Since A and B are countable, there exist surjective functions f : N —
Aand g : N — B. Define h : NxN — Ax B by h(n,m) = (f(n),g(m)). The
function h is surjective and N x N is countable, so A x B is countable. W

Corollary 11.6. The set Q of all rational numbers is countable.

Proposition 11.7. If I is a countable set and A; is countable for every
i €I, then U;c; Ai is countable.

Proof. For each i € I, there exists a surjection f; : N — A;. Moreover, since
I is countable, there exists a surjection g : N — I. Now define h : N x N —
User Ai by h(n,m) = fyn)(m). Check that h is surjective so that [ J;; A; is
countable. |
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Real numbers, Sequences

The set of all real numbers, R, has the following properties:
(a) the arithmetic properties,
(b) the ordering properties, and
(c) the completeness property.

The arithmetic properties start with the fact that any two real numbers a, b
can be added to produce a real number a + b, the sum of @ and b. The rules
for addition are a+b = b+a, (a+b)+c = a+ (b+c). There is a real number
0, called zero, such that a + 0 = 0 + a = a for all real numbers a. Each
real number a has a negative —a such that a + (—a) = 0. Besides addition,
we have multiplication; two real numbers a, b can be multiplied to produce
the product of a and b, a - b. The rules for multiplication are ab = ba and
(ab)e = a(bc). There is a real number 1, called one, such that al = la = q,
and for each a # 0, there is a reciprocal 1/a such that a(1/a) = 1.

The ordering properties start with the fact that there is a subset R™ of R, the
set of positive real numbers. The set R is characterized by the property:
if a,b € RT, then a + b and ab € RT. The fact that a € R™ is denoted by
0 < a. The set of negative real numbers R~ = —R™ is the set of negatives
of elements in R™. For every a € R, we have a € RT ora =0or a € R™.
The notation a < b (or b > a) means that b —a € R*. We also write a < b
to mean a < b or a = b. The order properties of real numbers are as follows:

a <band b < c, then a < c.

(a)

(b) a < band ¢ >0, then ac < be.

(¢) a<band ce R, thena+c<b+ec.
(d) a<banda,b>0,then 1/b< 1/a.

If A C R, anumber M is called an upper bound for A if a < M for all
a € A. Similarly, m is a lower bound for A if m < a for alla € A. A
subset A of R is called bounded above if it has an upper bound, and is
called bounded below if it has a lower bound. If A has an upper and lower
bound, then is called bounded. A given subset of R may have several upper
bounds. If A has an upper bound M such that M < b for any upper bound
b of A, then we call M a least upper bound of A or supremum of A,
and denote it by M = sup A. Similarly, a real number m is called greatest
lower bound of A or infimum of A if m is a lower bound of A and b < m
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for all lower bounds b of A. If m is the greatest lower bound of A, we write
m = inf A.

The completeness property of R asserts that every non-empty subset
A C R that is bounded above has a least upper bound, and that every non-
empty subset S C R which is bounded below has a greatest lower bound.
Useful characterisations of a least upper bound and a greatest lower bound
are contained in the following propositions:

Proposition 11.8. Let A C R be bounded above. Then a = sup A if and
only if © < a for any x € A, and for any € > 0 there exists x € A such that
a<x+e.

Proof. Assume first that ¢ = sup A. Clearly, z < a for any x € A. Take
e > 0. Ifforall z € A, x +¢ < a, then x < a — ¢ for all . Hence
a — ¢ is an upper bound of A contradicting the definition of a as the least
upper bound of A. Conversely, from x < a for any z € A follows that a
is an upper bound of A. Assume that there is an upper bound b such that
b < a. Then we get a contradiction with the fact that for any € > 0 there
exists z € A such that a < x +¢e. Let € := (a —b)/2 and z € A. Then
r+e<b+e=(a+b)/2<a. [ ]

There is also a similar characterisation of inf A provided that A is bounded
from below.

Proposition 11.9. Let A C R be bounded from below. Then a = inf A if
and only if a < x for any x € A, and for any € > 0 there exists x € A such
that x — € < a.

The proof of the proposition follows from the previous one by observing
two facts: if A is bounded from below than the set —A = {z | —x € A} is
bounded from above and that sup(—A) = — inf A.

It is useful to introduce the extended real number system, R = R U
{—00,00} by adjoining symbols co and —oo subject to the ordering rule
—00 < a < oo for all @ € R. If A is not bounded above, then we write
supA = oo, and if A is not bounded below we write [ A = —oo. For
example, we have inf R = —oco and supR = co. We also have supl) = —co
and inf() = oo, and for all non-empty sets A, inf A < sup A. With this
terminology, the completeness property asserts that every subset of R has a
least upper bound and a greatest lower bound. The arithmetic operations
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on R can be partially extended to R. In particular we have:

foo+r=r+xoco==200 forrelR
(0) + (00) =00, and (—o0)+ (—o0) = —o0.

Subtraction is defined in a similar way with the exception that
(00) +(=00) and  (—00) 4 (c0)
are not defined. We also define multiplication by

+oo, ifr >0,
Foo, ifr <0,

r(£o0) = (foo)r = {

and
(o0)(£o0) = 00, (£o0)(Foo) = —00.

The multiplication 0 - (+00) is not defined.

If @ is an upper bound of A and a € A, then a is a maximum of A, and
we write a = max A. Similarly, if a € A is a lower bound of A, then a is a
minimum of A and this fact is denoted by ¢ = min A. If A and B C R,
then A+ B={a+blac A be B}, A+ta={zr+a |z e A}, and
aA = {ax | z € A}. Here are some properties of supremum and infimum:

(a) monotonicity property: A C B, then sup A < sup B and inf B <
inf A.

(b) reflection property: sup(—A) = —inf A and inf(—A) = — sup A.

(c) translation property:sup(4A + a) = supA + a and inf(A + a) =
inf A+ a.

(d) dilation property: sup(aA) = asup A and inf(aA) = ainf A pro-
vided that a > 0

(e) addition property: sup(A+ B) =sup A +sup B and inf(A+ B) =
inf A + inf B.

A sequence of real numbers is a function f : N — R. We often write the
sequence as {f(n)} or {f,}. A sequence {a,} of real numbers is said to
converge to a real number q if for every € > 0 there is an integer ng such
that if n > ng, then |a, — a|] < €. In this situation we call a the limit of
{an}; a convergent sequence has a unique limit. We also write a,, — a or
lim,, o0 @, = a. A sequence {a,,} which does not converge to any limit in
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R is said to diverge. We say that a,, — oo, if for every M > 0, there is
ng such that a,, > M for all n > ng. Similarly, a, — —oo, if for every
M < 0 there exists ng such that a, < M for all n > ng. A sequence {ay,}
is bounded if |a,| < M for some number M and all n € N. A convergent
sequence is always bounded. Here are some elementary properties of limits
of sequences:

Proposition 11.10. Let {a,} and {b,} be convergent sequences to a and
b, respectively. Let ¢ € R. Then we have:

(a) {can} converges to ca.
(b) the sequence {ay + b,} converges to a + b
(c) the sequence {a, - b,} converges to a-b

(d) if by, # 0 for all n and b # 0, then the sequence {a,/b,} converges to
a/b

A sequence {a,,} is called monotone increasing if a,, < a,41 for all n € N.
It is monotone decreasing if a,, > a,11 for all n € N.

Proposition 11.11. If {a,} is a monotone increasing sequence that is
bounded above, a, < M for all n, then {a,} is convergent. If {a,} is
monotone increasing and it is unbounded from above, then a, — oo. If {a,}
is monotone decreasing and it is bounded below, M < ay, for alln, then {a,}
is convergent, and if {a,} is unbounded from below, then a, — oco.

Proof. If {a,} is unbounded from above, then for every M there is k such
that ap > M. Since the sequence is increasing, a, > ap > M for all
n > k. Thus a, — oco. Next assume that {a,} is bounded above. Then
a = sup{a, | n € N} < oo. Let ¢ > 0. By the definition of supremum,
an < a for all n and there is an integer ng such that a < an,+e¢. Since {a,} is
monotone increasing, a,, < a < a, +¢ for all n > ng, that is, |a, —a| < ¢ for
all n > ng. Thus the sequence converges to a. The proof for monotonically
decreasing sequences is similar and is left as an exercise. |

Let {a,} be a sequence. If 0 < n; < ng < ... are positive integers, then
{an, } is called a subsequence of {a,}.

Proposition 11.12. If {a,} is a convergent sequence with the limit a, then
every subsequence of {a,} converges to a. Conversely, if a sequence {a,}
has the property that each of its subsequences is convergent, then {a,} itself
converges.
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Proof. Let {an,} be a subsequence of {a,}. For a given ¢ > 0 choose ng
such that |a, — a| < € for all n > ng. Note that if & > ng, then ny > ng
and so |a,, —a| < € for all k& > ng. Therefore, {a,, } converges to a. The
converse follows from the fact that the sequence {a,} is a subsequence of
itself. |

Let {a,} be a bounded sequence. For each n € N, let b,, = sup,,,;>,, am =
sup{an, @ni1,-..}. Then {b,} is monotone decreasing, and it is bounded
since {a,} is bounded. In view of Proposition 11.11, {b,} converges. The
limit is called upper limit of {a,}. Similarly, let ¢, = infy,>pan =
inf{an,an+1,...}. Then {c,} is monotone increasing, and it is bounded
since {a,} is bounded. The limit of {¢,} is called lower limit of {a,}. If
{a,} is not bounded above, then its upper limit is equal to oo, and if {a,}
is not bounded below, then its lower limit is equal to —oo. Summarizing

limsup a, = lima, = inf supar = lim supay
n>m k>n n—00 p>n

liminf a,, = lim a,, = sup inf a; = lim inf ay.
n>mk>n n—oo k>n

A useful characterisation of the upper limit is the following proposition.

Proposition 11.13. Let {a,} be a sequence in R. Then the following are
equivalent:

(a) lima, = a;

(b) for every b > a, a,, < b for all but finitely many n and for every ¢ < a,
an > c for infinitely many n.

Proof. Assume lima, = a. Then for any b > a, there exists m such that
SUp,,;>m an < b. In particular, a, < b for all n > m. Since the sequence
{Sup;>m an } is decreasing and convergent to a, it follows that a < sup,,~,, an
for all m. Hence if ¢ < a, then for every m there exists n > m such that
¢ < ap. This shows the implication (a) = (b). Conversely, assume that
(b) holds. Then for every b > a, there exists m such that a,, < b for all
n > m. Hence sup,,>,, @, < b. This implies that limsupa, < b for every
b > a so that limsupa, < a. If for every ¢ < a and for every m there
exists m > m such that a,, > ¢, then for every m, sup,,~,, a, > c. This gives
lim sup a,, > ¢ and since this holds for every ¢ < a, we have limsupa,, > a.
Thus limsup a,, = @ and the implication (b) = (a) is proved. [
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As an exercise formulate and prove the corresponding statement for the
lower limit. The basic properties of the upper and the lower limits are listed
in the following proposition:

Proposition 11.14. If {a,} and {b,} are sequences of real numbers, then:
(a) limsup(—a,) = —liminf a,, and liminf(—a,) = —limsup a,,.

(c¢) limsup(ca,) = climsup a,, and liminf(ca,) = climinf a,, for any ¢ >
0.

(d) limsup(ay, + b,) < limsupa, + limsupb,, and liminf a,, + lim inf b,, <
liminf(a, + by,).

(e) liminf a,, < limsup a,, with equality if and only if {a,} converges. In
this case limsup a,, = lima,,.

(f) If {an,} is a subsequence of {an}, then liminfa, < liminfa,, <
lim sup a,,, < limsup a,.

The proof is left as an exercise.

Theorem 11.15 (Bolzano-Weierstrass Theorem).
Let {an} be a bounded sequence in R. Then there is a subsequence that
converges.

Proof. Set a = limsupa,. We will construct inductively a subsequence
{an,} of {a,} which converges to a. In view of Proposition 11.13, there
exists n; such that a,, > a — 1. Having obtained n; < ny < --- < ny such
that an; > a — 1/j for 1 < j < k, we find, again by applying Proposition
11.13, ngy1 > ny such that a,, ., >a—1/(k+1). Hence a < liminf a,, <
limsup a,,, < limsupa, = a. So lima,, = a and the proof is finished. |

12 Problem Sheets

12.1 Problem Sheet 1

1. Check if the following functions are metrics on X.
(a) d(z,y) = [2* —¢?| for z,y € X =R
(b) d(l‘,y) = |$2 - y2| for x,y € X = (—O0,0]

(¢) d(z,y) = |arctanx — arctany| for z,y € X =R
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2. Let X = R? and let d be the usual metric. Denote by 0 = (0,0) and

define
0 if x =y
d()(l',y) = . Y
d(z,0)+d(0,y) iy

Verify that dy is a metric X. (The metric dg is called the post office metric).
3. Let X = R?. For x = (z1,22) and y = (y1,y2) define

1/2 if x1 =y and o # yo or if 1 # y1 and xo = yo;

d(z,y) =1 if 21 # y1 and 22 # yo;
0 otherwise.

Verify that d is a metric and that the rectangles in the figure hav different
“area” if d is used to measure the length of sides.

4.
a

(a) Show that if 0 < a < b, then T+ a < 1L+b

a b c

< + .
l+a " 1+b 1+4c
(c) Use (b) to show that if d is a metric on X, then

7 d(x7y)
d(z,y) = m

(b) If a,b,c > 0 and a < b+ ¢, show that

for x,y € X

is a metric on X.

5. Let (X;,d;) be a metric space for 1 < ¢ < nand let X = [, X;. Define
n 1/2
d2(x7y) = |:Z dz(xlayl)2:| )
i=1
doo(,y) = max{d;(z;,y;) | 1 <i < n},
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where z = (x1,...,2z,) and y = (y1,...,yn) € X. Verify that dy and do, are
metrics on X.

6. Fix a positive integer n. Denote by P, the set of all polynomials p(x) =
apz® + ap_125 1 4+ - + ayx + ap with real coefficients a; and k < n. For
p(z) = apa® + ap_12" 1 + -+ a1z + ag € P, set

HpH = maX{|a0|, |a1|a s ’ak|}

Verify that HH is a norm on P,.
7. Sketch the open ball B(0,1) in the metric space (R3,d;), where d; is

defined by
di(z,y) = [v1 — y1| + |72 — yo| + |23 — y3]
da(z,y) = V(21 —y1)? + (22 — ¥2)? + (23 — y3)?
doo(,y) = max{|z1 — y1|, T2 — y2|, |x3 — y3|}.

for o = (21,22, 23) and y = (y1,42,y3) € R>.
8. Show that diam B(zg,r) < 2r. Give an example showing that the strict
inequality is possible.

12.2 Problem Sheet 2

1. Calculate d(A, B) for the following pairs of subsets in R? equipped with
the standard metric:

(a) A={(z,0)|z € R} and B = {(z,1)| =z € R}.

(b) A is the set of points on the x-axis whose z-coordinate satisfies 2n <
x < 2n + 1 for some n € Z and B is the set of points on the line line
y = 1 for which 2m — 1 < x < 2m for some m € Z.

(c) A= B(xg,70) and B = B(z1,r1) where zg,z; € R2.

2. Let d and d’ be two metrics on X such that

ad(x,y) < d'(z,y) < Bd(z,y)

for all z,y € X and positive constants o and 3. Show that d and d’ are
equivalent.Give an example of X and two equivalent metrics in X for which
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the above inequality does not hold. Use the above fact to show that

v,y) = |z — yil
i=1
n 1/2
y) = [Z |lzi — yz|2]
i=1

doo(z,y) = max{|z; —y;| | i =1,...,n}.
are equivalent on X = R".

3 Consider the set X = [—1,1] as a subspace of R a metric subspace of
R with the standard metric. Which of the following sets are open in X7
Which are open in R? Which are closed in X and which are closed in R?

(a) A={reX|1/2<|z| <2}

(b) B={xe X |1/2 < |z| <2}

(c) C={xeR|1/2< |z| <1}

(d) D={zeR|1/2<|z| <1}

() E={rceR|0< |z|<1and 1l/x & Z}

4. Sketch (where possible) the following sets, and decide whether it is an
open subset, or a closed subset, or neither of R? with the standard metric:

(a) A={(z,y)] —1<z<land —1<y<1}
(b) B ={(z,y)| 2y = 0}

(€ C={(z,y)lzcQyeR}

(d) D={(z,y)| -1 <z < landy =0}

(e) E=Ur2i{(z,9)lz = 1/nand [y| < n}

5. Find the interior, the closure and the boundary of each of the following
subsets of R? with the standard metric:
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(a) A={(z,y)) [z >0and y # 0}
(b) B={(z,y) [z €N,y e R}

(c) C=AUB

(d) D = {(z,y) | « is rational}

(e) F={(z,y)|z#0andy<1/z}

6. Let A be a subset of a metric space X. Is the interior of A equal to the
interior of the closure of A. Is the closure of the interior of A equal to the
closure of A itself?

7 Consider a collection A; of subsets of a metric space X. Show that

UA?C(UAZ) N4
i€l el i€l i€l
(ﬂAZ) <4 UTcUa

iel el iel iel

8. Let U be open in X and let A be closed in X. Show that U \ A is open
in X and A\ U is closed in X.

9. Let X and Y be metric spaces and A, B are non-empty subsets of X
and Y, respectively.

(a) Prove that if A x B is open in X x Y, then A and B are open in X
and Y, respectively.

(b) Prove that if A x B is closed in X x Y, then A and B are closed in X
and Y, respectively.

12.3 Problem Sheet 3

1. Show that A° and JA are disjoint, and A = A° U 9A. Conclude A is
open if and only if 904 = A\ A.

2. Show that A is closed if and only if 0A C A.

3. Let A, B C X. Show that 0(AU B) C 0A U JB and give an example in
R in which these sets are different. Show that if ANB = (), then (AU B) =
0AUOB.
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4. Let X and Y be metric spaces and A, B are dense subsets of X and Y,
respectively. Show that A x B is dense in X x Y.

5. Let (X,d) be a metric space and let a be a fixed point of X. Show that
|d(z,a) — d(y,a)] < d(z,y) (17)
for all z,y € X.
6 Use (17) to show the following result. Let A be a dense subset of (X, d).
Show that a sequence {z,} of points on X converges to z if and only if
d(zp,a) — d(z,a)
for all a € A.

7. Use (17) to show that the function f : X — R defined by f(z) = d(z,a),
x € X, is continuous.

8. Define f:R—Rand g: R — R by

-1 ifz>0 z ifz>0
pe— - d p— -
J(@) { 1 ifz<0 and - g(x) {1 if x <O.

Show that f and g are not continuous at = 0.

9. Let (X,dx) and (Y,dy) be metric spaces. Show that f : X — Y is
continuous if and only if

f(A) C f(A)
for all subsets A of X.

10. Let (X,dx) and (Y,dy) be metric spaces. Show that f : X — Y is
continuous if and only if

f(B) c 71(B).
for all subsets B of Y.

12.4 Problem Sheet 4
1. Let Y be a subset of a metric space (X, d). Show that
Y = {z € X|d(z,Y) = 0}.

Show that the function
f(z) =d(z,Y)

is continuous on X. Conclude that
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(a) B(Y,e) ={z € X|d(z,Y) < e} is open in X, and

(b) B[Y,e] ={z € X|d(x,Y) < e} is closed in X.

2. Let A and B be disjoint non-empty closed subsets of a metric space X.
Define
d(x,A)

(z,A) + d(z, B)

Show that f is a continuous function on X whose image is in [0, 1], and that
f(z) =01if and only if x € A and f(z) =1 if and only if x € B. Next define
sets U = f~1([0,1/2)) and V = f~1((1/2,1]). Show that U and V are open
and disjoint, and that A C U, BCV.

for x € X.

fa) =<

3. Which of the following functions are uniformly continuous?

(a) f(z) =sinz on [0,00)

(b) glx) = —— on (0,1)

— X

(¢) h(z) = +/x on [0,00)
(d) k(x) =sin(1/z), on (0,1)

4. Which of the following sequences converge uniformly on [0, 1].

() Jule) = 77
() (o) =

5. Let (X,d) and (Y, p) be metric spaces and let f : X — Y. Show that f
is uniformly continuous if and only if for any two sequences {z,} and {y,}
such that d(z,,y,) — 0 it follows that p(f(z,), f(yn)) — 0.

6. Suppose that {z,} is a sequence in a metric space (X,d) such that
d(xp, Tpt1) < 27" for all n € N. Prove that {z,} is a Cauchy sequence.

7. Suppose that {x,} and {y,} are Cauchy sequences in a metric space
(X,d). Prove that the sequence of real numbers {d(x,,y,)} converges.

8. Decide if the following metric spaces are complete:
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(a) ((0,00),d), where d(z,y) = |22 — y?| for x,y € (0,00).
(b) ((—=m/2,7/2),d), where d(x,y) = |[tanx —tany| for z,y € (—7/2,7/2).

12.5 Problem Sheet 5
1. Let X = (0,1]be equipped with the usual metric d(z,y) = | — y|. Show
that (X, d) is not complete. Let d(z,y) =

1 1
— ——‘ for x,y € X. Show that
r oy

d is a metric on X that is equivalent to d, and that (X, d) is complete.

2. Consider the space X consisting of all continuous functions f : [a,b] — R.
For f,g € X, define

b
d(f,9) :/ |f(z) — g(x)] dx.

Show that d is a metric on X. Is (X, d) complete?

3. Cantor’s Intersection Theorem Let (X,d) be a complete metric space
and let {F,} be a sequence of non-empty closed subsets of X such that
Fny1 € F, for all n and diam(F,) — 0 as n — 0. Prove that (,.yFy
consists of exactly one point.

Show that, if any of the conditions,

(i) (X,d) is complete, (ii) F, is closed, (i) diam(F,)—0

is omitted, then (1), .y . may be empty.

4. Suppose that (X, d) and (Y, d) are metric spaces and that f: X — Y is
a bijection such that both f and f *i are uniformly continuous. Show that
(X, d) is complete if and only if (Y, d) is complete.

5. Let {f,} be a sequence of continuous functions f, : R — R with the
property that {f,(z)} is unbounded for all x € Q. Using Baire’s theorem
show that there is at least one z € Q° such that {f,(x)} is unbounded.

6. Let (X,d) and (Y, d) be metric spaces such that (X, d) is complete. Let
{fn} be a sequence of continuous functions from X to Y such that {f,(x)}
converges for every x € X. Using Baire’s theorem show that for every
€ > 0 there exist £ € N and a non-empty open subset U of X such that

d(fn(x), fm(z)) < e for all x € U and all n,m > k.
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12.6 Problem Sheet 6
1.

(a) Let f(x) = 22 for x € (0,a], and let X = (0,a] with the usual metric.
Find for what values of a is f a contraction. Show that f: X — X
does not have a fixed point.

1
(b) Let f(z) =x+ — for x > 1, and let X = [1,00) with the usual metric
x

d. Show that f: X — X, that d(f(x), f(y)) < d(z,y) for all z # y
but f does not have a fixed point.

Reconcile (a) and (b) with Banach fixed point theorem.
2. Consider f:R? — R? given by f(z) = Az, where

0.7 0.8
A= [0.2 —0.05} ‘

Is f a contraction if R? is equipped with the metric di, do, doo?
3. Consider the system of nonlinear equations

x1 = by +sin(ay1x1) + sin(ajaze) + - - - + sin(a1p,zy),

9 = bo + sin(ag1x1) + sin(agawe) + - - - + sin(ag,zy),

Ty, = by + sin(anp121) + sin(anaza) + - - - + sin(appzy ),
where a;, 1 < i,k < n, and b, 1 < k < n, are given real numbers. Show
that the system has a unique solution x = (z1,...,x,) if Zlgz‘,kgn az, < 1.
4. For f € C([0,1],R), define
1 z
TH@) =+ 5 T,
Show that (T'f) € C(]0,1],R) and that T : C([0,1],R) — C([0,1],R) is a

contraction. Use this fact to show that there exists exactly one function
f € C([0,1],R) such that

z € [0,1].

F@)f = f@) + 3 f @) = e

for all = € [0, 1].
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The next problems provide a different construction of the completion of
(X,d).

An equivalence relation on a set X is a relation ~ having the following
three properties:

(a) (Reflexivity) = ~ x for every x € X
(b) (Symmetry) If © ~ y, then y ~ x
(c) (Transitivity) If z ~ y and y ~ z, then = ~ z.
The equivalence class determined by x, denoted by [z], is defined by

[z] ={y € X|y ~ x}. We have [z] = [y] if and only if x ~ y.

5. Let (X,d) be a metric space and let X* be the set of Cauchy sequences
x = {x,} in (X, d). Define a relation ~ in X* be declaring x = {z,} ~y =
{yn} to mean d(z,,y,) — 0.

(a) Show that ~ is an equivalence relation.

Denote by [x] the equivalence class of x € X*, and let X denote the
set of these equivalence classes.

(b) Show that if x = {z,,} and y = {y,} € X*, then lim,, . d(zp, yn)
exists. Show that if x’ = {z],} € [x] and y’ = {y},} € [y], then

For [x], [y] € X, define

D([X]v [Y]) = lim d(mnayn)

n—oo
Note that the definition of D is unambiguous in view of the above

equality.

(¢) Show that (X, D) is a complete metric space.
Hint: Let [x"] is Cauchy in (X, D). Then x™ = {zf,2h,2%,...} is
Cauchy in (X,d). So for every n € N, there exists k,, € N such that

d(xp,,zy ) <1/n for all m > ky,.

mo

Set x = {x}ﬂ,x%yx%y ...}. Then show that x is Cauchy in (X, d) and
D([x"],[x]) — 0.
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(d) If z € X, let p(x) be the equivalence class of the constant sequence
x = (z,z,z,...). That is, ¢(x) = [x] = [{z,z,2,...}]. Show that
¢ : X — ¢(X) is an isometry.

(e) Show that ¢(X) is dense in (X,D).
Hint: Let [x] € X with x = {x1,x9,23,...}. Denote by x" the con-
stant sequence {zp, Tp, Tp,...} and show that D([x"], [x]) — 0.

12.7 Problem Sheet 7

1. Let (X,d) be a complete metric space and f : X — X be a function
such that

d(f(z), f(y)) < ad(z,y)
for all z,y € B(xg,70), where 0 < a < 1 and d(zo, f(20))/(1 — a) = 70.
Show that f has a unique fixed point p € B(xg, 7).
2. (a) Let I =[zg—a,zp+al and let r > 0. If f, g : I — R are continuous,
define
d(f,g) = sup{e”""")| f(z) — g(x)||x € I}.
Show that d defines a metric on C'(I, R) which is equivalent to the supremum

metric p(f, g) = sup{|f(z) — g(x)|| z € I}.

(b) Let K =1 x J where I = [zg —a,z9 + al, J = [yo — b,yo + b], and
let f: K — R be a continuous function satisfying |f(¢t,y1) — f(¢,y2)] <
alyy — yof for all (¢t,y1), (t,y2) € K. Let C = sup{|f(t,y)|| (t,y) € K}, and
let § = min{a,b/C'}. For a continuous function y : [x¢ — 0,29 + 6] — J, set

Ty(x) = yo + / " y()dt, @€ [y — b,20+ 0.

Show that T : C([zo — J, 20 + 9], J) — C([zo — 0,29 + 0], J) is a contraction
with respect to the metric d(yy,y2) = sup{e 24@=20)| f(z) — g(z)||z € I}.
Remark: The above device simplifies the last step in the prove of Picard’s
theorem given in lectures. Recall that in the last step we had to take § > 0
such that Cd < 1 in order to guarantee that 7" is a contraction with respect
to p. Using d we don’t have to adjust 4.

3. Let I =[zg—a,xg+a]andlet U = xR. Let f: U — R be continuous.
(a) Let yo,y1 € R. Show that a continuous function y : I — R is a solution

of
y'(x) = f(z,y(x)), xel
y(wo) = Yo
Y (z0) = 1
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if and only if

xT
y(x) =yo + (z — zo)y1 + / (x —s)f(s,y(s))ds, z€l.
o
(b) Assume, in addition, that f satisfies the Lipschitz condition with respect
to the second variable, |f(x,y1)— f(x,y2)| < alyr—ysl for all (x,y1), (x,y2) €
U, and some a > 0. Prove that for given yg,y1 € R there exists § > 0 such
that the equation y”(z) = f(x,y(x)) has a unique solution y : [zg — §,x¢ +
d] — R satisfying y(xg) = yo and ¢'(x¢) = y1.

4. Let (X,d) be a metric space with the property that if Y is any non-
empty closed subset of X and f:Y — Y is any contraction, then f has a
fixed point. Show that (X, d) is complete.

Hint: Arguing by contradiction assume that there exists a Cauchy sequence
which does not converge in X. We may assume that x,, # x,, for all n # m.
For z € X, let F(x) = inf{d(z,z,)|n € N}. Show that F(z) > 0 for all
x. Choose a € (0,1) and define sequence of integers {ny} as follows. Set
ni = 1, let ny be an integer satisfying no > ny and d(z;, z;) < aF(zy,) for
all integers 7,7 > no. If nq, ng, ..., ng_1 are chosen, then ng > ni_1 is an
integer such that d(z;,z;) < aF(xy,_,) for all integers i,j > ny. Now let
Y = {Zn, Tngs Tng, ...} and let f:Y — Y be given by f(z,,) = zp, ., for
all k > 1. Show that Y is closed, f is a contraction but does not have a
fixed point.

5. Let A be a dense subset of a metric space (X, d), and let (Y, p) be com-
plete. Consider a uniformly continuous function f : A — Y. Show that

there exists a unique uniformly continuous function F' : X — Y such that
F(z) = f(z) for all x € A.

12.8 Problem Sheet 8

1.
Show that if (X, dx) and (Y, dy) are compact metric spaces, then the prod-
uct metric space (X x Y,d) is compact. (Here d is the product metric).

2.
Show that if Aj, ...,A; are compact subsets of a metric space (X,d), then
Ule A; is compact.

3.
Which of the following subsets of R and R? are compact? (R and R? are
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considered with the usual metrics).
(a) A:Qm[()?l]

(b) B ={(z,y) € R?|2* +y* = 1}
(©) C={(z.y) € R+ < 1}}
(d) D= {z|lz| +ly[ < 1}

() E={zjlr>1and 0<y < 1/z}
4.

Consider (Q, d) where d is the usual metric. Give an example of a set in this
metric space that is closed and bounded but is not compact.

5.

Let A be a non-empty compact subset of a metric space (X, d).

(a) Let x € X. Show that d(z, A) = d(z, a) for some a € A.

(b) Let U C X be open and A C U.

Show that there exists ¢ > 0 such that S = {z € X|d(z, A) < e} C U. Does
this hold if A is only closed but not compact?

6.
Show that if A is a totally bounded subset of a metric space (X,d), then
for every ¢ > 0 there exists a finite subset {ai,...,a,} of A such that

A - U?:l B(ai,&?).

7.
Show that a metric space (X,d) is totally bounded if and only if every se-
quence {z,} € X contains a Cauchy subsequence.

8.

Let X be a compact metric space and let U be an open cover of X. Show
that there exists a number r > 0 with the property: For every x € X, there
exists U € U such that B(z,r) C U. The number r is called a Lebesgue’s
number of the cover U.

12.9 Problem Sheet 9

1.
Show that (X,7) is a topological space.
(a) Let X be infinite set. Let

T={ACX| A=0or A= X or X \ A is finite}.

This is called co-finite topology or finite complement topology.
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(b) Let X be uncountable set. Define 7 by
T={ACX| A=0or A= X or X \ A is countable}.

This is called co-countable topology or countable complement topol-
ogy.
(c) Let X =R and let

T={ACR| A=0or A=Ror A= (a,00) with a € R}.

2.
Let B ={]a,b)| a,b € R}. Show that B is a basis for a topology on R. This
topology, denoted 7;, is called the lower-limit topology on R. Show that
the lower-limit topology is larger than the usual topology on R . Find the
closures of [a,b), (a,b), (a,b] and [a,b] in (R, 7;).

3

Let 7 ={ACR|0¢ Aor A=R}. Show that 7 is a topology on R. What
are the closed sets in (R,7)? What is {1}? Is this topology Hausdorff?

4.

Let A, B be a subsets of a topological space (X.7T). Show that AN B C ANB
and AUB =AU B.

5.

Let A C X where (X,7) is a topological space. Show that X \ A = X\ A°
and (X \ A)° = X \ A.

6.

Prove the following statements about continuous functions and discrete and
indiscrete topological spaces.

(a) If X is discrete, then every function f : X — Y, where Y is any topo-
logical spaces, is continuous.

(b) If X is not discrete, then there exists a topological space Y and a func-
tion f: X — Y that is not continuous.

(¢) If'Y is an indiscrete topological space, then every function f: X — Y,
where X is any topological space, is continuous.

(d) If Y is not indiscrete, then there exists a topological sapce X and a
function f: X — Y that is not continuous.

7

Let X be infinite set and let 7 be a co-finite topology on X. Show that any
continuous function f : X — R is constant. (R is equipped with the usual
metric topology).
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8.

Let X and Y be topological spaces and let B be a base of open sets for Y.
Show that a function f : X — Y is continuous if and only if f~1(U) is open
in X for every U € B.

9.

(a) Show that (a,b) is homeomorphic to (¢, d), (¢,00) and R. (All spaces
are equipped with the usual topology).

(b) Show that R?\ {(0,0)} is homeomorphic to R?\ B((0,0),1).

10.

A topological property is a property that, if possessed by a topological
space X, is also possessed by any topological space homeomorphic to X.
(a) Show that if f : X — Y is a homeomorphism, then f(U) is open in Y
for any open set U C X.

(b) Show that Hausdorff is a topological property.

(c) Is completeness a topological property of metric spaces?

12.10 Problem Sheet 10

1.
Let (X,7) be a compact topological space and let A, B are closed subsets
of (X, 7). Show that AU B is compact.

2.
Let X = (0,1) and let

T={ACR|A=0or A=(0,1) or A= (0,1—1/n) for n > 2}.

Show that every open set A different than X is compact. Is X compact?

3.
Let 7 be a co-countable topology on R, that is,

T ={ACR|A=0orR\ Ais countable}.

Is [0,1] compact in (R,7)? What are the compact sets in (R, 7)?

4.
Consider (R, M), where M is the usual metric topology in R. Let

T={ACR| A=0or R\ A is compact in (R, M)}.

(a) Show that 7 is a topology on R.
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(b) Show that (R,7) is compact but not Hausdorff.

5.
Let A be closed and let B be compact in (X, 7). Show that ANDB is compact.

6.

Let (X,7) be compact and let f : X — R be a continuous function. Show
that f is bounded, that is, there is M > 0 such that |f(z)| < M for all
x € X. Show that f attains its maximum and its minimum value.

7.
Let (X,7T) be compact and (Y, S) Hausdorff. Show that if f: X — Y isa
continuous bijection, then f is a homeomorphism.

8.

Let (X,7) be a compact Hausdorff space and let 7’ be another topology on
X. Show that:

(a) if 7 C 7' but 7 # 7', then (X,7’) is Hausdorff but not compact.

(b) if 7/ C T but 7 # T, then (X,7") is compact but not Hausdorff.
Hint: Use Problem 7.

9

Let X be infinite set with the co-finite topology 7. Show that (X,7) is
connected.

10.
Is the topological space (R,7) from Problem 4 connected?

12.11 Problem Sheet 11

1.
Show that if A is a connected subspace of a topological space (X,7) and if
A C B C A, then B is connected.

2.
E A and B are connected subsets of a topological space (X,7) such that
ANB#0, then AU B is connected.

3.
Let {A,} be a sequence of connected subsets of a topological space (X,7T)
such that A, N A,41 # 0 for all n € N. Prove that | J,, o An is connected.

4.
Let (X, d) be a metric space. Call a function f : X — R locally constant if
for every x there exists r > 0 such that f\B(x’,ﬂ) : B(z,r) — R is constant.
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Show that if (X, d) is connected, then every locally constant function is con-
stant.

5.

A metric space (X,dx) is called a chain connected if for every pair z,y
of points in X and every & > 0, there are finitely many points z = zg, x1,

x9,... Ty =y such that dx(z41,2;) < e for i =0,1,...,n — 1. Prove that
a compact, chain connected metric space is connected.
6

A point p € X is called a cut point if X \ {p} is disconnected. Show that
the property of having a cut point is a topological property.

7.
Show that no two of the intervals (a,b), (a,b], and [a, b] are homeomorphic.

8.
Show that R and R? are not homeomorphic (R and R? are equipped with
the usual topologies) .

9.
Let A be countable set. Show that R?\ A is path connected.

10.
Show that if A is an open connected subset of R™, then A is path connected.
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