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Duopoly in exhaustible resource
exploration and extraction

J.M. HARTWICK and P.A. SADORSKY
Queen’s University

Abstract. Strategic considerations  of exploration and extraction are investigated in a
two-player, two-period, two-stage perfect equilibrium framework. Relative to two ‘plant’
menopaoly, the duopolists explore more and extract more period by period. A mixed game
in which there is co-operation ‘upstream’ in exploration and Cournot competition ‘down-
strearn’ in quantitites exeracted is investigated. We also note that increasing returns to scale
in exploration can introduce an unstable solution with a corner solution the presumed stable
equilibrium.

Duapole dans I'exploration et I'extraction dans un secteur de ressource épuisable. les
auteurs examinent certaines considérations stratégiques dans les décisions d’exploration et
d’extraction dans un univers d’équilibre parfait en deux étapes quand il y a deux joueurs
et deux périodes. Par rapport aux résultats dans le cas d'un monopole avee deux unités
d’opération, les résultats, dans le cas de duopole, montrent que les duopoleurs explorent
davantage et extraient davantage période par période. Les auteurs analysent un jeu mixte
dans lequel il ¥ a coopération en amont dans "exploration et concurrence i la Cournot en
aval dans les quantités de ressource extraites. On montre que des rendements croissants &
'échelle dans 'exploration peuvent entrafner une solution intérieure instable et une solution
présumée d'équilibre dans un coin.

I. INTRODUCTION

Exploration can affect current cutput price when discoveries are relatively large.
Large discaveries are assaciated with finds of new oil fields or major ore bodies.
The phenomenon is inherently stochastic, regular, steady search with many small
ar negative (dry wells} hits and the occasional large finds.! One discoverer’s large
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I Arrow and Chang (1952} consider an agent exploring in a stochastic framework in which only
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hit inflicts capital losses on owners of known but unsold stock and this introduces
strategic considerations into exploration. Successful explorers can also ultimately
increase their market share of, say, ail. We first investigate this strategic rivalry in a
nen-stochastic framework. Rivals anticipate the effects of competitor's exploration
in a perfect equilibrium.? We deal with duopolist explorer-extractors in a two-stage
game. Each player explores in anticipation of playing a Cournot game in quantities
extracted in a second stage. We conjecture aver-exploration relative to pure price-
taking rivalry and observe aver-exploration relative to a ‘two-plant monapely.” We
present an illustrative numerical example, The interesting dimension of resource
exploration rivalry as distinct from say R&D rivalry is how success by a discoverer
not only leads to encroachment on a rival’s current and subsequent market but
inflicts a capital loss on the rival’s current known reserves.?

This paper is organized as follows. The second section introduces the basic
analytic model. The third section presents some numerical comparative static results
for the case of a linear market demand with quadratic extraction costs. [n section v
we discuss some extensions of our model. In particular, we show how our results on
strategic exploration can be extended to include stochastic exploration in a three-
stage game where nature makes the first move. Section v concludes the paper.
Strategic uncertainty is discussed in the appendix.

[[. TWO-PERIOD, TWO-PLAYER EXPLORATION AND EXTRACTION RIVALRY

Each player opens with some stock or known reserves, knows its extraction costs
and both deterministic exploration technology and market demand (either prices
ar demand schedules, depending on the competitive mode below). We will set out
the competitive (price-taking) case and two plant monopoly cases very briefly first
in order to provide a comparison with the price-setting duopoly case of particular
interest. Firm {'s profits are

7' =0'p(@" + 0 — QY — W)+ BLE + S — 09

2
DS S — QY | ~ S+ S~ @ G=12,
i=1 :
where 0 = firm i's output or exploration in period 1. Q¢ = §°.
§¢ = firm {'s reserves or known stock in period i.

small finds can occur. See also Pindyck (1980). Devarajan and Fisher (1982} and Lasserre (1985)
make exploration costs rise with cumulative discoveries.

2 Non-rivalrous exploration in a non-stochastic framework 1§ analysed in Pindyck (1978}

3 A parallel in R&D rivalry would be success by player § forcing player j to write off part of his
oF her fixed capital in addition to having part of his or her market share reduced. In Spencer and
Brander (1983}, for example, the duopaly rivalry in RA&D affects only current varlabh’, costs and
market shares, not fixed costs. See the Concluding Remarks betow.
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p{-) = the stationary demand schedule for output extracted by the twao
firms.

('} = the total extraction cost for firm .

xt = physical resources devoted to exploration by firm i in period 1.

wi(-} = the cost of exploration.

§ix") = the discovery of stock made in period 1 to be extracted in period
2. S7(x%) is assumed positive, increasing, and concave in x' with
50y = 0. w'(x‘) is assumed to be positive and increasing in x'. We
shall assume that w'(0) = 0 and d*w' /dS™ Z 0 in the normal case
but shall comment on the case of increasing returns to exploration
effort; that is, the case of d’w’/dS™ < 0.

3 = the discount factor (equal to 1 /(1 +r)) where # is the discount rate,
say, equal to the rate of interest. '

Simplification is achieved by making the harizon exogencus. All stock is extracted
over two periods. We focus on the exploration-extraction rivalry per se, not on
attrition and withdrawal of a rival over an extended horizon, endogenously deter-
ntined.

i. Price-taking behaviour
With respect to quantity, firm § “follows’ the » per cent rule in rent an the marginal
ton

! ) (p2 — mch] G=1,2), @

i
—mc] =
[P () ( T+r
where p, is the exogenously determined price in period 1 and p; is the exogenously
determined price of output in period 2 and me) is the firm i’s marginal cost of
extraction in period k. With respect to exploration activity, we have

aw' 1 .. dS? ,
= (o) 5 ¢=12. ®

This is simply the rule that the cost of the marginal unit of exploration should
equal the value of its marginal product, suitably discounted and valued at ‘net
price,” py — mich.

2. Two ‘plant’ monopoly
A decision-maker maximizes the sum «' + 7 by choice of @', 0%, x', and x*.
With respect to quantity, in plant { we have

iy

—
3> 30!
|

. . 1 ) ) .
[mr) — mc|] = (-1-:) [mry —mes] — O
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apgaz:

..____..2.._:(51' +§() — )
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2
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where mr} is the marginal revenue in period k for plant i and 3, = Q' +Q?, With
respect to exploration, we have

d
d_“){— L _ ‘]@_F_ ! apl . ;A@
det  \Nl1+r [p2 = me3 dx! L+ ( ) a8t ax!
D
2

DY

.(sf+sf'<x*'>—Q‘>+( l ) o B
1+r a8’ dx'
(%)
2
(5 + Sy — 09 =1 2i#¢p O

In comparison with the price taking case, the monopelist considers the effect of
his or her discoveries on the second period price at the margin and the effect of
this price decline on his or her own guantity extracted in plant { plus the effect of
this price decline on the output in period 2 of plant j. 5, is an abbreviation for
SL4+8 " —0'+82+8%(x?)— Q2. The monapaly solution involves the simultaneous
choice of @', 02, x', and x%.

3. Non-co-operative subgame perfect duopoly

In this case each player knows and is committed to play a Cournot game in quan-
tities extracted once exploration levels are selected. Given a Cournot game in
quantities extracted, one can solve hackwards to a game pure in exploration levels.
If this game is Cournot in exploration levels, we label it non-co-operative. (Below
we consider the exploration levels selected co-operatively or as in the twa plant
monopoly.) [n the non-co-operative game, the players satisfy in the Cournot output
game;

P el — P +
mry — me| (l+r)[mr2 meh] {j— Y (8)

—_—

(6) can be solved (perbaps implicitly) to yield @' = f'(x!, %) and Q% =
FAx!, x?). If these equations are placed in (1) for Q' and Q2, we have a pair
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of profit functions in exploration levels (x!, x?) alone. The non-co-operative game
in exploration levels is defined as the solution x! and x? to the pair d='/dx! =0
and 9#° /9x* = 0. Given our specification of demand and costs, these two equations
are

aw'  (dpy dQ) i g, dst
(o) (it 2

L dpy ;  ds’ (o, eipiy Al
)y F e
\

ay.,
(i) | 7B |- esie -0

sy e

i=1,12 I%J)a (7

where dQ'/dx? and dQ?/dx' are defined from the reaction functions from the
Cournot game in quantities (or from the basic implicit equations, @' = fl(x!, x?)
and Q? = f2(x!, x%). The own effects dQ'/dx’ vanish above because dr’/dQ’ are
zero from (8). For our specification, one totally differentiates the pairs of equations
in (6) to ohtain

| N 1 pnl l . (- | RSPy
3 (mrl me; aé‘,zﬁ'l(m.v2 mcz))dQl 3 (mri e agﬁ(mr2 mcz]) 40>

_ 3 (mrll — mc! — Bl —mcé}) dxl — 2 (m:"ll — me! — Blmr) — mcé))

dx! dx?

- dx? ()

mrl — me? — Blmry —~ mc3) g mrl —mct — Bl —me)\ |,
dt 0] Jaet+a( 30? )<

3 (mrf — mc} — Blmr — mc%)) det 3 (mrf ~ mc} -~ Blmrs - mc%})

N oxt dx?

cdx*(9)
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and solves for dQ'/dx!, dQ?/dx!, dQ'/dx?, and d0*/dx®. Tn (7), we make use
of 40! /dx2 and dQ? /dx‘, te salve the Cournot game (non-co-operative game) in
exploration levels.

Since (4) and (5) define the ‘two plant monopoly’ case, and (6) and (7) de-
fine the non-co-operative duopoly case, we can readily compare the two games,
Equations in (5) and (7) differ only in the first and last terms on the right-hand
sides. In the special case of a linear ‘industry,” examined in detail below, we have
dQ!/dx? = dQ*/dx* = 0 and the first and last terms in the pair of equations
in (7) vanish, suggesting that the monopolist takes account of the spillover of his
or her exploration activity from one ‘plant’ on the other whereas the duopolists
completely ignore the spillovers. This is an extreme case illustrating our argu-
ment duapolists “overexplore’ because they ignore the ‘damage’ their discoveries
have on rival’s market share and capital losses associated with known reserves
of stock. Though formally, discovery can only drive down future prices in our
first-order conditions for exploration effort, future prices are tied ta present prices
through the first-order conditions on quantities extracted. This is as it should be
- namely, discoveries to be mined in the future drive down current output price.
These effects lead to the capital losses mentioned. Nate in {7) that dS r'/ dx' > G and
a3, /oSt = =337, /3Q!. The sign of dQ¥ /dx' turns on how the demand schedule
is specified. The monapolist takes account of *plant’ {’s discovery on total profit,
whereas the non-co-operating duopolist takes account of his or her discovery on
his or her market share (industry price) and on the effect of his or her discovery
an his or her profit alone via the effect on his or her rivals extraction. This would
suggest intuitively that the duopolist will be dealing with a smaller ‘cross effect’
of marginal discovery, since his or her profits will be a fraction of total profits, and
thus the duopolist will cut back exploration relative to the monepoly less given
internalization of spillovers from exploration. Certainly in the example with a lin-
ear demand schedule, the monopolist explores in total less than the two duopolists
combined.*

4, Co-aperative exploration and Cournot ouput strategy*»°
In this case, given Q' = fl(x!, x?) and Q% = f2(x!, x*) implicitly defined from
the Coumot reaction function in (4), the duopolists maximize the sum of their

4 Comparing the duapoly case with the two-plant monopoly case is straightforward. since both
market structures can be considered to face the same downward sloping demand curve and in
cach case the equilibrium output price is determined endogenously. A direct comparison with
the competitive case is not s0 easy, since price is exogenous to the campetitive firm. We do in
fact canjecture that the duopolists overexplore relative o horh the two-plant monopely and the
competitive ease. The fact that duapolists over explore relative ta the competitive case has been
shown in 2 simple, open-loop model by Sadorsky {1988).

5 The case of co-operation downstream and campetition in exploration upstream 1§ another case.
We have not reparted on it, since it seems less empirically relevant.

6 Co-operative explaration and Cournot cutput strategy is certainly realistic. As a result of the
growing demand for crude il and dwindling supplies of existing reserves, firms are forced o
undertake more castly exploration to enlarge the reserve base. At the exploration stage the ber-
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profits by simultaneously choosing exploration levels x! and x?. Thus the Cournot
game in quantities is still defined by the Q! and Q% which solve (6) given x!
and x*. Equations (8) and (9) define dQ'/dx!, dQ*/dx!, dQ'/dx?, and dQ?[dx®.
Maximizing the sumn of profits, 7! and #* from (1) where Q' and 02 are implicit
functions of x!, and x2 yields the same basic pair of equations in (7) plus new
cross-effect terms indicated by braces. That is,

DD

dw' ds' I | G oAt 5 4

i By 22 o =
=B —meh) o+ 545w -8 S A
2
3y 3
+ (SE+S1(x?—) aﬁ_zds_l QQ@—Zd_Q—' . (10)
az ast  dx! az a0l dx!
I
DY D>
dw2 st . 2 aps 5 dS? > dQ!
= Blps — mc3) dx?_"'(s + 8%t - Q)ﬁaz 57 dx2+aQ‘ e
d d
+ 5" +5'xhH~0hHs -aﬂ._gdsmz Q[apl ._zlz_.c_i_Qj. (1
az st dx? az a0?  dx® [

This new game is defined by the Q', 0%, x!, x* which solve the two equations
in (6), and (10), and (11), where dQ'/dx!, dQ?/dx', dQ'/dx?, and dQ?/dx?
are defined in (8) and (9). One conjectures that less exploration will be done
in this game relative to the non-co-operative duopoly game, because here each
internalizes his or her spillover from undertaking exploration in the exploration
phase of competition for profits. The sign of the first ‘new term’ in (10) is negative,
since dpa/d Y., < 0, which should induce less exploration; and the sign of the
second ‘new term’ tums on the sign of dQ'/dx!, which for the case of a linear
demand schednle is positive, making the sign of this ‘new term’ for a linear demand
schedule positive.

efits outweigh the costs if firms can join together and agree to share the casts of these high-cast
exploration prajects. In Canada the Hibemnia and Lloydminster mega projects are prime examples.
In the output market, however, these firms can still behave non-co-aperatively and compete for
market shares. We paint out that competition at the exploration stage and co-operation at the out-
put stage is not really an interesting possibility, since anti-trust laws limit the degree of collusion
in output markets.
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I11. LINEAR DEMAND AND QUADRATIC EXTRACTION COSTS

This example with discovery concave in effort yields mostly expected results.
Duapalists extract period by period more than the corresponding two-plant monop-
olist, and duopolists explore {and discover) more than the corresponding two-plant
monepelist. The mixed case of ‘downstream’ duopoly and “upstream’ co-operation
in exploration yields the striking results that exploration levels are the same as
those for the two-plant monopoly. Downstream quantities are larger for the mixed
case. In other words, fully anticipated rivalry downstream has no effect upstream
on the levels of exploration under co-operation (two plant monopaly).
The profit functions for the two players (firms or plants) are

=[A-BQ"'+QMQ' — '@ —wlx' + 54 - BE +5' ) — Q'

+87+ 877 — QS + ST — Q' - Bt ISt ST - Q' (2

=[4-B@Q" + 090" — Q@YW —wh’ + A - BES' +5'H - Qf

+82 4820 — QST+ S20 ) — 0P} — B ST+ S - 07 A
I, Two-plant monopoly
In this case we solve dr/dQ' = dn/dQ* = dn/dx' = Infox® = 0 where = =

x' + %, We can solve the first two equations for Q' and Q7 in terms of x" and x?

and parameters. These are then

S - P e 1—8
¢ _(1+5)Z +[28c2+2861+2c1c2 5 )4 (14)

2 _ L 2 c! 1—-4
2= (1+,6)Z +{ZBCZ+ZBC‘+2(;‘CQ} (1+g)A° (15)

where 2 = §04 Sixh). If Q! and Q2 from (14) and (15) are substituted into
dnfox! = ar/ax? = 0, we obtain

dx' 284 28 Zﬁ)

N adil _ 21 z_

Y st A (1+ﬁ)(8 ¢z (1+5 Bz (16)
dx? 284 23 28

Y R _ 2 1 L

R (1+ﬁ)(B 4 (Hﬁ)B? =0 (17)

This pair of non-linear equations defines the x! and x? for the pure monopoly
case. Given x! and x?, we abtain the solution values for Q! and Q% abave. For the
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TABLE |

inverse demand p = 10-(") discovery function E(xVSE = E* = 1.0

extraction cost S el=2=01 A=11+r=09

exploration cost wix' w! = w? =055 T for two-plant monapaly

reserves s'=582=24 D for duopoly

Mfor the mixed case
Ql Q2 Il 12

Base case T 1.982607 1.982607 2.313299 2.313300
D 2.358098 2.358098 4.977300 4977296
M 2.021767 2.021768 2.313298 2.313300

g =10.1483 T 1.986952 1.986950 2.263144 2.263128
D 2.367954 2.367954 4850182 4.850183
M 2047278 2.047277 2.263135 2.263128

§2=213 T 1.995980 1.952369 2.399977 2.424612
D 2.363753 2.332523% 5.030712 5.184702
M 2035141 1.991528 2.399983 2.424603

=011 T 1.992768 1.966214 2.342229 2.248544
D 2.361190 2.346082 4 998472 4 882118
M 2.027105 2.009748 2.342230 2.248545

w? =056 T 1.986263 1.974340 2.336840 2260519
D 2.360370 2.347825 4 988724 4.880999
M 2.025422 2013301 2.336833 2.260524

E*=10.99 T 1.986684 1.973388 2.339557 2.300254
D 2.360632 2.346638 5.001197 4.968813
M 225845 2.0125347 2.339559 2.300251

a Values for x' and ¥ are the same for the T (monopoly) and M (mixed) cases (see text).
b This is nat economically feasible, since (7 exceeds the initial reserves of size 2.3 in the first period.

case Si(x') = Ex?3 we solve some examples. Results are reported in table 1. We
discuss them helow.

2. Duopoly

In this case the ‘downstream’ Cournot game is played in Q' and Q?, and the ‘up-
stream’ game is played in x! and x? given that each player knows and is committed
to play 2 downstream game in Q' and Q2. The first-order conditions or reaction
functions ! /90! = 0 and dn? /dQ? = O (corresponding to the equations in (6))
are

LA -3 B\
Q@ =252 (l+ﬁ)+(l+ﬁ)z

B B ) B ,
+(I+ﬁ) (28+2CL)BZ _(W)Q (18)
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A (18 B\
Q= F e (1+ﬁ)+(l+ﬁ)z
Jii B ( B
+(l+ﬁ) (2B+202)BZ ﬂ(lB +2c2>Ql' (19)

Observe that B /(2B + 2¢ly < 1, implying that the reaction functions cross in a
way compatible with stability of convergences to the solution ' and Q7. Also,.
& /d(Q 2 < 0 ar the second-order conditions are satisfied. The solution to (18)
and (19} is

(_{_B | B +2c7 1—8
Q _(1+ﬁ)z +[382+4c161+4351+48c2 1+53 A 20
2 i) 2, B +2c! : 1_5)
@ = (I+ﬁ)z [332+4c1c2+43c1+43c2 )4 @b
These equations imply
dQ' g dS[(xL) arQE g ng(xg)
‘JxT:(Hﬁ) o d—g:(ﬁﬁ) T (22)

and dQ'/dx* = dQ*/dx! = 0. If one substitutes (20} and (21} in the proﬁts
functions in (12) and (13), one has two non-linear equations in x' and x®. The

first-order conditions are
o e (o ()~
a5 (I+ﬁ A— g (B+c)Z 7 BZ° =1 23

dx? 23 28 A
2 _ Iy72 |
—W 757 (w—-—l_t_ﬁ)A (w—-—l_'_ﬁ) (B +c5)2 (MI-F;G’)BZ =10, (24)

Comparison of (16) and (17), the monopoly case, with (23) and (24), the duopoly
case, reveals that only the ‘off-diagonal’ terms are larger for the monopoly case.
(23) and (24) can be viewed as the reduced-form reaction functions for the duopoly
game. We solved for @', 02, x!, and x2, for $'(x%) = E! - (x1)%5. The results are
reported in table 1. Note that the slope of the reaction function. in (23}, for example,

is
Jij das?
at (Hﬁ)ﬂ

A g\ T gl 23 dst
g (dx‘) d(xi)lﬂ(nﬁ) Breh o
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Stability of reactions requires that dx! /dx? ahove, corresponding to player 1's reac-
tion function, be less than dx'/dx?, corresponding to player 2°s reaction function,
that is, in the neighbourhood of the solution (x!, x?):

ds?
dx?

ds'\ 7 48! 28 ds!
tf — _
" (dx') dx)? (1+ﬁ) B +e) g

ds!
dxl

ds2\ 7 422 26 ds?
20 e _—
(a:x?) x5y (1+,8) B+ 73

For the symmetric case and d”S'/d(x')* < 0, stability obtains. Clearly, however,
for d2§' /d(x")? > 0 it is possible to have the above inequality reversed and observe
unstable reactions in the neighbourhood of the solution. In other words, increasing
returns to scaie in exploration can bring about instability of ‘the equilibrium.’
Ultimately, a stabie solution may be obtained at a boundary with one player’s not
exploring, a ‘natural manopoly.’?

3. Co-operation in exploration and downstream duopoly

This case displays the striking property that the same level of exploration is un-
dertaken as with pure monopoly, though downstream quantities extracted dgjfer
Equatlons (20 and (21) solve the downstrcam game in quantities given x' and
x%. One inserts for Q! and Q? in 7 = x! + n? from (20) and (21) and sclves for
dm/dx! = 0 and I /ax? = 0. The resulting equations turn out to be (16) and (17).
Hence our result on equal exploration efforts in the two different games. In table
1 we report on some numerical solutions.

A comparison of the outcomes under three different strategic modes is contained
intable 1. T is the two-plant manopoly case, D the two-stage Cournat duapoly case,
and M the mixed case of downstream duopoly in quantities and upstream manopoly
or co-operation in extraction. The base case is symmetric, marginal extraction cost
is increasing in quantity, and discoveries are concave in effort. Demand is linear
in price. For the base case we observe that each of the duopalists delivers more in
period 1 than for T and M and explore almost twice as much as under T and M.
Competition thus promotes greater output and exploration (and discovery, since the
link is non-stochastic). We see our result numerically established earlier; namely,

7 A natural monapoly may result when one firm is substantially larger than the other. In this case
the largest firm has presumably more money to spend on research and development projects
relating to exploration technology. The increased spending on R&D may ultimately lead the larger
fiem o acquire a better exploration technology with increasing returns ta scale in the exploration
praoduction function.
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the T and M modes explore at the same intensity, though quantities delivered in
period 1 differ, being larger for the M mode.

Consider the comparative static results in table 1. A rise in the interest rate
{the discount factor changes from 0.9 to 0.85 in the second row group) shrinks
quantities and exploration levels.

A decline in initial stock reserves for firm 2 or plant 2 (52 is reduced from 2.4 to
2.3) induces more exploration by both players (firms or plants), reduces @ output
in period 1 slightly and induces Q' to rise relative to the base case. Increased initial
scarcity of one player's stock induces greater search activity and greater production
in period 1 by the other player. _

A rise in player 2’s extraction costs (parameter ¢? increases from 0.10 to 0.11)
induces a decline in 2's research effort and first-period production but an expansion
in firm 1's research effort and production in period 1.

A rise in player 2’s exploration costs (parameter w* rises from 0.55 ta 0.56)
induces less exploration by 2 and less production in period 1, while inducing more
exploration by player 1 and more production in period 1.

Finally a decline in the productivity of research effort for firm 2 (E? declines
from 1.0 to 0.99) induces less exploration by player 2 and less production in
period 1, while at the same time inducing more exploration by player 1 and more
production in period 1.

IV, EXTENSIONS

In this section we extend our results on strategic rivalry to the case where explo-
ration is stochastic. The easiest way to extend our model to allow for stochastic
exploration is to imagine a three stage game, where in the first stage nature informs
the players that exploration is uncertain. The players know the only source of un-
certainty s via a random variable ¢ where ¢ ~ 1p (0,0%),{ = 1,2. The players
know the distribuition of €'. The players don’t know, however, what realization €
will take on. In the second stage, firms choose their desired level of exploration
activity, and in the third stage they choose extraction levels conditional on the
chosen levels of exploration. Now consider the equations in the paper. If uncer-
tainty is intreduced additively to the exploration production function then we have
$'+ 8% +€,i = 1,2. Then equation (1) for profits becomes expected profits
E(n*), where ‘E> denotes the expectation operator. All our general results, equa-
tions (1) to (11}, go through with the addition of an ‘E" on the right-hand side of
these equations. Our first-grder conditions are now interpreted in terms of expected
marginal benefits and expected marginal costs. Our discussion foilowing equation
(9) is still valid.

Now let's consider the linear demand and quadratic extraction cost example.
The only source of randomness is through the additive disturbance term on the
exploration productien function. But, by canstruction, all our first-order conditions
(FoC) are linear in the choice variables. The expectation operator, £, is a linear
operator, and assuming E(el) = 0, the terms E(e) drop out of the first-order
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conditions. As an exampie consider equation (14). Introducing additive uncertainty
into the model yields (14).

=8+ S+ €
but
EZY = ES + 8 +e)y =8+ 8y = 27,

Hence, the expected value of (147 is just (14). In the case of a linear demand and
quadratic extraction costs with additive exploration uncertainty, all our results in
equations (14)—(24) go through and our results in table 1 remain valid. If instead
of E(e') = 0 we had E(¢') = u, then equations (14)—(24) would by augmented by
an additional constant term that contained the non-zero mean, .

Finally, let’s consider the case in which the stochasticity affects the exploration
function multiplicatively. We assume ¢ and S$(x') are independent. In this case
Zi=S"+ SN, i =1, 2 IfE()=0,Vi,i =1, 2 then E(Z") = §' and the
terms Z' in (14)—(24) would be replaced by S¢ If € and S*(x') are independent,
but E(e) = p, then our Z¢ terms in equations (14)—(24) would be replaced by
§¢ 4+ uSixy,

In summary, additive randomness of the form ¢! ~ 10(0,0?) in the linear de-
mand and quadratic extraction cost example does not alter our results in table 1.
A non-zero mean for the disturbance term would change the entries of table 1 (if
& # 1) but not the rankings of the three cases we reported on. And finally, multi-
plicative uncertainty of the form S'(x‘)¢! would not alter our basic results, provided
E(S'(x)e) = StxNE(e), but would of course alter the numerical values of table 1
if s 1.

The issue of strategic uncertainty is considerably more complicated, since one
has to have assumptions on what each player knows and believes and how the play
of the game is to be organized. In the appendix we report some resuits from a
game with strategic stock size uncertainty but no exploration.

V. CONCLUDING REMARKS

We have considered a market failure in exploration. for exhaustible resources aris-
ing from the large size of players relative to the market. We considered duapoly
outcomes. In a two- stage duopoly game we observed more exploration and pro-
duction early on than occurs in a pure monopoly or partial monopoly. Duopoly in
output markets did not affect exploration levels in a mixed maodel relative to a pure
monopaly model for a particular example. Though our analysis may not have clear
policy implications it is of interest in comparing R&D activity and exploration
activity, since the two-stage game framework has been made use of recently in
R&D ecanomics (e.g., Spencer and Brander 1983 and d’ Aspremont and Jacquemin
1987).
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In our model, where firms undertake exploration activity before extraction be-
gins, successful exploration when output markets are imperfectly competitive not
only leads to increased market shares, but also inflicts a capital ioss on the rival's
cirrent knewn reserves. We assume that market shares depend on own and rival’s
marginal revenue. It is also assumed that a higher marginal revenue leads to a
higher market share while a higher marginal revenue for rivals leads to a reduction
in own market shares. When discoveries are large, exploration can affect future as
well as current output prices. Current discoveries add to existing supplies and de-
press future selling prices. But since current prices are tied to future prices through
the resource stock constraint, one firm's large discovery may drive down future
and present prices whereby inflicting capital losses on rival owners of known but
unsold stock.

In the R&D literature, one of the primary motives for undertaking R&D is to
reduce costs. Spencer and Brander 1983 show that in an imperfectly competitive
output market, where firms undertake R&D before production takes place, firms
may use R&D for strategic purposes rather than just to minimize costs. In the
Spencer and Brander model firms® market shares depend on their own and rivals’
marginal cost. It is assumed that a lower own marginal cost leads to a higher market
share while a lower marginal cost for rivals leads to a reduction in own market
shares. Thus the difference between our model and the Spencer and Brander model
is that in our model firms may use exploration for strategic purposes not only to
increase own market shares but also to inflict capital losses on rivals.

The Spencer-Brander R&D game can be readily reformuiated and made similar
to our game of exploration and extraction. In the R&D game, there will be one apen-
ended period. Firm i’s output is produced with a variable input L/ and knowledge
capital K% as in @F = (L', K*). Variable casts are w* per unit of L!, and knowledge
capital is augmented by investment /* costing s° per unit and increasing K* by g*(f).
Let there be an industry inverse demand schedule p(Q! + Q). Firm s profit is
then p(Q' + QM (L, K + g' () — w'L! — sI'. In a sense of priorness, an R&D
game is played conditicnal on a game in output levels being played downstream.
We suppose implicitly that investment in new knowledge is not leaked to the rival,
although such a model could be investigated (¢’ Aspremont and Jacquemin). Thus
property rights problems are not essential here. Two differences in this model and
the exploration-extraction model are (1} in the latter, even in perfect competition,
these are rents to be used to pay for exploration activity, whereas in the R&D
game there is a shadow price corresponding to the value of additional knowledge.
Qutput price will lie above current operating or variable costs. Exploration and
R&D investment are paid for in semewhat different ways in the twe models, (2)
In the R&D game there is only an implicit capital joss on existing knowledge
as competition increases; that is, the shadow price of X' changes as competition
increases or decreases, whereas in the exploration-extraction game the capital losses
an existing reserves from more competition are directly observed as output price
changes. Presumably the &' in the R&D pame is marketabje as, say, patents, and
its value depends on the marginal product of the knowledge and the price of
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output produced with the patents. The shadow price p df'/d [K* + g'(J) will
change with the intensity of competition (duopoly vs monopoly for example.) These
differences in the models are really of a secend-order significance. The Spencer-
Brander formulation focuses on cost functions rather than the production function
and contains no potential capital loss term.

APPENDIX

Strategy in the context of uncertainty is considerably more complicated, since one
has to have assumptions about what each player knows and believes and how the
‘play’ is to be organized. See for example Kreps (1984) and Harris (1987). Lewis,
Lindsey, and Ware (1986) present a subtle, two-person, three-period game between
owners of the backstop and owners of a stock of a mineral. Amaong a family
of possible outcomes of the game, one has to decide on plausible equifibrium
outcomes.

Consider an example of a game involving pure stock size uncertainty (i.e., one
with no exploration activity). Firm 1 knows its stock size before it “delivers,” but
firm 2 does not. Firm 1 moves first and knows firm 2’s stock size. Firm 2 moves
second with its initial quantity delivered. In the second period, both firms ‘dump’
their remaining stock. We restrict each firm to ane of two initial “deliveries’ (i.e.,
large or smail). Firm 2 has priors on the likely size of Firm 1’s total stock. Firm
1’s first move constitutes a ‘signal’ to Firm 2 upon which Firm 2 updates its priors
on whether the stock size is large or small.

Our example is based on a linear demand schedule known to both firms. We
calculated actual profits, given nature’s move, for possible player sequences.? The
game is iliustrated in figure 1.

Firm 1's stock size is uncertain. It becomes known to Firm [ who moves first
with action L (large extraction) or § (small extraction). Firm 2 responds with action
L (large extraction from its stock size) or § (small extraction from its stock size).
Pay-affs are listed for Firm 1 above Firm 2 at each terminal node.

Firm 1’s pay-offs are recorded above those of Firm 2. Firm 1 does better playing
S, whether his stock is large or small. Thus Firm 2 can glean no information from
Firm 1’s ficst mave. The reasonable response for Firm 2 is not to revise its priors
after Firm 1 moves. If Firm 2 knew 1’s stock were small, playing § (small) would
be its best response, and if Firm 2 knew 1’s stock were large, playing L (large)
would be its best response. However, given its beliefs (probabilities), given its
uncertainty about Firm 1°s stock, its expected pay-off is higher from playing L
{namely 0.6(486.9) + 0. 4(473.4)). Given priors 0.99 on | having a small stock

§ The inverse industry demand curve is p = 50 ~ @, where p 15 price and 0 15 the sum of the
cutrent outputs of the two firms. Firm ! has a large extraction in the initial period of twelve
uttits or a small extraction of ten units. Firm 2 has a small extraction in the initial period of
eight units or a large extraction of nine units. Firm 2's stock size is fifteen units and the discount
factor 1 /{1 + r) is 0.9. What is not extracted in period 1 is completely extracted in the second
period. Natwre deals Firm | a stock size of twenty units with probability 0.6 or eigheeen units
with probability 0.4.
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FIGURE [

and 0.01 on 1 having a large stock, playing § would then be 2°s best response, on
average. This game is simple to analyse because Firm 2 playing § is a dominant
strategy. Determining the best play sequence is complicated when a variety of play
sequences (sequential equilibria) are plausible candidates for being the ‘optimal’
solution (play sequence).

Figure 2 shows the same game as in Figure 1 but with different pay-offs. We
note that Firm | always does better when Firm 2 responds with S. Hence Firm 1
wauld like to ‘communicate’ by his first move to induce Firm 2 to respond with
S. However, Firm 2 does better playing L when it thinks 1’s stock size is in fact
L and does betier playing § when it thinks 1’s stock size is in fact §. Thus there
is the potential for conflict, something we did not observe in the extraction game
above. Note also that if Firm 2 knew 1’s stock size for certain, whether Firm 1
plays L or § does not affect 2°s prospective pay-offs (600 or 601 for 1§ and 602
ar 601 for 1L).

In Kreps's words, this extensive game has ‘two sorts of sequential equilibria.’
In the first sort, 1 always plays §, irrespective of whether 1S or 1L is true, and 2
responds with § if it thinks 18 is true and with L if it thinks 1L is true, Firm 2’5
belief ‘structure” for this sort of equilibria is of course supported by the off-the-
equilibrium-path belief that if 1 played L, then 1 must have a large stock. There
are randomized versions of this sort of equilibrium (see Harris 1987, 107-9).

The second sort of equilibrium has 1 play £, irrespective of whether 15 or 1L
is true, and 2 respends with L if 1 were to play § and with § if 1 were to play L.
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FIGURE 2

This requires out-of-equilibrium beliefs: if 1 plays §, one is most likely to have a
large stock. These second sorts of equilibrium (including randomized versions) can
be ruled out as “unintuitive,” that is, invoking the intuitive criterion (Kreps 1984).
See also Grossman and Perry (1986). For a more detailed analysis of this and very
similar examples, see Kreps (1984) and Harris (1987, chap. 5).

We observe then that duopoly with stock size uncertainty takes us to the frontiers
of game theory, to the frontiers of optimal choice action in the face of uncertainty
about the best interpretation of one's rival’s action. The interesting case of un-
certainty about the pay-off to exploration and duopaly in extraction would be a
significant extension of the framework above, since resaurces would be committed
to purchase information in the face of downstream strategic uncertainty.
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