Games with Incomplete Information Played by ''Bayesian'' Players, I-IIL.
Part I. The Basic Model

John C. Harsanyi

Management Science, Vol. 14, No. 3, Theory Series (Nov., 1967), 159-182.

Stable URL:
http://links jstor.org/sici?sici=0025-1909%28196711%2914%3 A3%3C159%3 AGWIIPB%3E2.0.CO%3B2-P

Management Science is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Nov 11 14:02:42 2004



MANAGEMENT SCIENCE
Vol. 14, No. 3, November, 1967
Printed in U.S.A.

GAMES WITH INCOMPLETE INFORMATION PLAYED
BY “BAYESIAN” PLAYERS, I-III

Part I. The Basic Model*{!
JOHN C. HARSANYI
University of California, Berkeley

The paper develops a new theory for the analysis of games with incomplete
information where the players are uncertain about some important parameters
of the game situation, such as the payoff functions, the strategies available to
various players, the information other players have about the game, etc. How-
ever, each player has a subjective probability distribution over the alternative
possibilities.

In most of the paper it is assumed that these probability distributions enter-
tained by the different players are mutually ‘‘consistent’’, in the sense that they
can be regarded as conditional probability distributions derived from a certain
“basic probability distribution’’ over the parameters unknown to the various
players. But later the theory is extended also to cases where the different
players’ subjective probability distributions fail to satisfy this consistency
assumption.

In cases where the consistency assumption holds, the original game can be
replaced by a game where nature first conducts a lottery in accordance with
the basic probablity distribution, and the outcome of this lottery will decide
which particular subgame will be played, i.e., what the actual values of the rele-
vant parameters will be in the game. Yet, each player will receive only partial
information about the outcome of the lottery, and about the values of these
parameters. However, every player will know the ‘“basic probability distribu-
tion’’ governing the lottery. Thus, technically, the resulting game will be a
game with complete information. It is called the Bayes-equivalent of the
original game. Part I of the paper describes the basic model and discusses vari-
ous intuitive interpretations for the latter. Part II shows that the Nash equi-
librium points of the Bayes-equivalent game yield “Bayesian equilibrium
points’’ for the original game. Finally, Part III considers the main properties of
the “basic probablity distribution”.
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will appear in subsequent issues of Management Science: Theory.
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Glossary of Mathematical Notation

I-game - - - A game with sncomplete information.

C-game - - - A game with complete information.

@G - - - The I-game originally given to us.

G* - - - The Bayesian game equivalent to G. (G* is a C-game.)

G** ... The Selten game equivalent to @ and to G*. (G** is likewise a C-game.)
R(R), (GF), 9U(G*™) - - - The normal form of G, G* and G** respectively.
$(@), 8(G*) - - - The semi-normal form of @ and G* respectively.

s; - - Some strategy (pure or mixed) of player ¢, with¢ = 1, --- | n.

S; = {si} --- Player ¢’s strategy space.

¢; - - - Player #’s attribute vector (or information vector).

C; = {a} - - - The range space of vector ¢; .

c= (c1,-+,¢y) -+ The vector obtained by combining the n vectorsc, - -+ , ¢a

into one vector.



GAMES WITH INCOMPLETE INFORMATION 161

C = {c} - -- The range space of vector c.
¢’ (cl, “et, Cis1, Cigy1, *** , Cn) -+ The vector obtained from vector ¢ by
omlttmg subvector c; .
C* = {¢'} -- - The range space of vector ¢'.
. Player 7’s payoff (expressed in utility units).
;= Ui(s1, +,8) = Vi(s1, "+, 831, +, ) -+ Player ¢’s payoff func-
tion.

Pi(ei, ooy €ty Cipay m0 0, C) = Pi(ci) = Rz’(ci | ¢.) - - - The subjective prob-
ability distribution entertained by player <.

R* = R*(e1, -+, ) = R*(¢c) --- The basic probability distribution of the
game.

R* = R*(ci, -+, €ty Ciy1, , €a|€:) = R*(c'|¢:;) -+ The conditional
probability distribution obtained from R* for a given value of vector c; .

k; - - - The number of different values that player 7’s attribute vector ¢; can take
in the game (in cases where this number is finite).

K = > fak;--- The number of players in the Selten game G** (when this
number is finite).

8" +-+ A normalized strategy of player 7. (It is a function from the range space
C; of player ¢’s attribute vector ¢, , to his strategy space S:.)

S * = {8} -+ The set of all normalized strategies s;* available to player 1.

- The expected-value operator.

S(xi) = Wi(s*, -+, 8.7) - -+ Player ¢’s normalized payoff function, stating his
unconditional payoff expectation.

&z | ¢) = Zi(s™, «++, 8. | ¢;) -+ Player ’s semi-normalized payoff function,
stating his conditional payoff expectation for a given value of his attribute
vector ¢; .

D --- A cylinder set, defined by the condition D = D; X -+ X D, , where
D1=C’1, o, D& Ch.

G(D) - -- For a given decomposable game G or G*, G(D) denotes the component,
game played in all cases where the vector ¢ lies in cylinder D. D is called the
defining cylinder of the component game G(D).

Special Notation in Certain Sections
In section 8 (Part I):

ao; denotes a vector consisting of those parameters of player ¢’s payoff function
U; which (in player j’s opinion) are unknown to all n players.

ax; denotes a vector consisting of those parameters of the function U; which (in
J’s opinion) are unknown to some of the players but are known to player k.

a0 = (@o1, ** - , (o) I8 & vector summarizing all information that (in j’s opinion)
none of the players have about the functions Uy, ---, U, .

ar = (a1, **+ , Q) 18 & vector summarizing all information that (in j’s opinion)
player & has about the functions Uy, - - - , U, , except for the information that
(in j’s opinion) all n players have about these functions.

b: is a vector consisting of all those parameters of player ¢’s subjective probability
distribution P; which (in player j’s opinion) are unknown to some or all of
the players k& <.
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In terms of these notations, player 7’s information vector (or attribute vector)
¢; can be defined as

C; = (a; s b,)

V.* denotes player ’s payoff function before vector a, has been integrated out.
After elimination of vector ao the symbol V; is used to denote player ¢’s payoff
function.

In sections 9-10 (Part I1):

a' and a” denote the two possible values of player 1’s attribute vector c; .

b' and b* denote the two possible values of player 2’s attribute vector ¢, .

rem = R¥(¢c; = d" and ¢, = b™) denotes the probability mass function correspond-
ing to the basic probability distribution R*.

Dim = Tim/(Tix -+ 7Th2) a0d Qem = Tim/(Tim -+ 72m) denote the corresponding
conditional probability mass functions.

" and 3° denote player 1’s two pure strategies.

#' and 2° denote player 2’s two pure strategies.

y™ = (y", y') denotes a normalized pure strategy for player 1, requiring the use
of strategy 3" if ¢; = @', and requiring the use of strategy ' if ¢, = d’.

2" = (2", 2") denotes a normalized pure strategy for player 2, requiring the use
of strategy #* if ¢, = b, and requiring the use of strategy 2° if ¢ = b%

In section 11 (Part I1):

a' and o® denote the two possible values that either player’s attribute vector c;
can take.

Tim = R*(c; = a" and ¢, = a™).

Dim a0d @i have the same meaning as in sections 9-10.

yi" denotes player ¢’s payoff demand.

y; denotes player ¢’s gross payoff.

z; denotes player ¢’s net payoff.

z;* denotes player 7’s net payoff in the case (¢ = d', ¢, = d’).

zi* denotes player ¢’s net payoff in the case (¢; = o, ¢; = a').

In section 13 (Part I11):

a, B, v, & denote specific values of vector c.

% Bi, i 8; denote specific values of vector c; .

a' ﬂ 7', & denote spemﬁc values of vector ¢', ete.

5 ('y |'y,) = Ric’ = v'|¢; = ;) denotes the probability mass function cor-
responding to player 7’s subjective probability distribution R; (when R; is a
discrete distribution).

™(y) = R*(¢ = v) denotes the probability mass function corresponding to the
basic probablhty distribution R* (when R* is a discrete dlstmbutlon)

® = {r"} denotes the set of all admissible probability mass functions »*.

FE denotes a similarity class, i.e., a set of nonnull points ¢ = @, ¢ = B, - - - similar
to one another (in the sense defined in Section 13).
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In section 16 (Part III):

R™ denotes the basic probability distribution R* as assessed by player (¢ = 1,
cee,n).

R* denotes a given player’s (player j’s) revised estimate of the basic probability
distribution R*,

¢s = (¢i, d;) denotes player j’s revised definition of player ¢’s attribute vector
¢;. (It is in general a larger vector than the vector c; originally assumed by
player j.)

R'; denotes player j’s revised estimate of player ’s subjective probability distribu-
tion R; .

1.

Following von Neumann and Morgenstern [7, p. 30], we distinguish between
games with complete information, to be sometimes briefly called C-games in this
paper, and games with incomplete information, to be called I-games. The latter
differ from the former in the fact that some or all of the players lack full informa-
tion about the ‘“rules” of the game, or equivalently about its normal form (or
about its extensive form). For example, they may lack full information about
other players’ or even their own payoff functions, about the physical facilities
and strategies available to other players or even to themselves, about the amount
of information the other players have about various aspects of the game situa-
tion, ete.

In our own view it has been a major analytical deficiency of existing game
theory that it has been almost completely restricted to C-games, in spite of the
fact that in many real-life economic, political, military, and other social situa-
tions the participants often lack full information about some important aspects
of the “game” they are playing.”

It seems to me that the basic reason why the theory of games with incomplete
information has made so little progress so far lies in the fact that these games
give rise, or at least appear to give rise, to an infinite regress in reciprocal expec-
tations on the part of the players, [3, pp. 30-32]. For example, let us consider any
two-person game in which the players do not know each other’s payoff functions.
(To simplify our discussion I shall assume that each player knows his own payoff
function. If we made the opposite assumption, then we would have to introduce
even more complicated sequences of reciprocal expectations.)

In such a game player 1’s strategy choice will depend on what he expects (or
believes) to be player 2’s payoff function U, , as the nature of the latter will be
an important determinant of player 2’s behavior in the game. This expectation

2 The distinction between games with complete and incomplete information (between C-
games and 7-games) must not be confused with that between games with perfect and imper-
fect information. By common terminological convention, the first distinction always refers
to the amount of information the players have about the rules of the game, while the second
refers to the amount of information they have about the other players’ and their own previ-
ous moves (and about previous chance moves). Unlike games with incomplete information,
those with imperfect information have been extensively discussed in the literature.
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about U, may be called player 1’s firsi-order expectation. But his strategy choice
will also depend on what he expects to be player 2’s first-order expectation about
his own (player 1’s) payoff function U, . This may be called player 1’s second-
order expectation, as it is an expectation concerning a first-order expectation.
Indeed, player 1’s strategy choice will also depend on what he expects to be
player 2’s second-order expectation—that is, on what player 1 thinks that player
2 thinks that player 1 thinks about player 2’s payoff function U, . This we may
call player 1’s third-order expectation—and so on ad infinitum. Likewise, player
2’s strategy choice will depend on an infinite sequence consisting of his first-
order, second-order, third-order, ete., expectations concerning the payoff func-
tions U; and U, . We shall call any model of this kind a sequential-expectations
model for games with incomplete information.

If we follow the Bayesian approach and represent the players’ expectations or
beliefs by subjective probablity distributions; then player 1’s firsi-order expecta-
tion will have the nature of a subjective probablity distribution P;'(Us) over all
alternative payoff functions U, that player 2 may possibly have. Likewise, player
2’s first-order expectation will be a subjective probablity distribution Py'(U;)
over all alternative payoff functions U, that player 1 may possibly have. On the
other hand, player 1’s second-order expectation will be a subjective probability
distribution Py*(Py') over all alternative first-order subjective probability ‘distri-
butions P’ that player 2 may possibly choose, etc. More generally, the kth-order
expectation (k > 1) of either player ¢ will be a subjective probability distribution
PF(PE™) over all alternative (k — 1)th-order subjective probability distribu-
tions P57 that the other player j may possibly entertain.’

In the case of n-person I-games the situation is, of course, even more compli-
cated. Even if we take the simpler case in which the players know at least their
own payoff functions, each player in general will have to form expectations about
the payoff functions of the other (n — 1) players, which means forming (n — 1)
different first-order expectations. He will also have to form expectations about
the (n — 1) first-order expectations entertained by each of the other (n — 1)
players, which means forming (n — 1)? second-order expectations, ete.

The purpose of this paper is to suggest an alternative approach to the analysis
of games with incomplete information. This approach will be based on construct-
ing, for any given I-game G, some C-game G* (or possibly several different C-
games G*) game-theoretically equivalent to G. By this means we shall reduce the
analysis of I-games to the analysis of certain C-games G*; so that the problem of

3 Probability distributions over some space of payoff functions or of probability distribu-
tions, and more generally probability distributions over function spaces, involve certain
technical mathematical difficulties [5, pp. 355-857]. However, as Aumann has shown [1] and
[2], these difficulties can be overcome. But even if we succeed in defining the relevant higher-
order probability distributions in a mathematically admissible way, the fact remains that
the resulting model—like all models based on the sequential-expectations approach—will be
extremely complicated and cumbersome. The main purpose of this paper is to describe an
alternative approach to the analysis of games with incomplete information, which com-
pletely avoids the difficulties associated with sequences of higher and higher-order recipro-
cal expectations.
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such sequences of higher and higher-order reciprocal expectations will simply not
arise.

As we have seen, if we use the Bayesian approach, then the sequential-expecta-
tions model for any given I-game G will have to be analyzed in terms of infinite
sequences of higher and higher-order subjective probability distributions, i.e.,
subjective probability distributions over subjective probablity distributions. In
contrast, under our own model, it will be possible to analyze any given I-game G
in terms of one unique probability distribution R* (as well as certain conditional
probablity distributions derived from R*).

For example, consider a two-person non-zero-sum game G representing price
competition between two duopolist competitiors where neither player has precise
information about the cost functions and the financial resources of the other
player. This, of course, means that neither player ¢ will know the true payoff
function U; of the other player j, because he will be unable to predict the profit
(or the loss) that the other player will make with any given choice of strategies
(i.e., price and output polices) s; and s, by the two players.

To make this example more realistic, we may also assume that each player has
some information about the other player’s cost functions and financial resources
(which may be represented, e.g., by a subjective probability distribution over the
relevant variables); but that each player ¢ lacks exact information about how
much the other player j actually knows about player ¢’s cost structure and finan-
cial position.

Under these assumptions this game G will be obviously an /-game, and it is
easy to visualize the complicated sequences of reciprocal expectations (or of sub-
jective probablity distributions) we would have to postulate if we tried to analyze
this game in terms of the sequential-expectations approach.

In contrast, the new approach we shall describe in this paper will enable us to
reduce this /-game G to an equivalent C-game G involving four random events
(i.e., chance moves) e, e, f1, and f», assumed to occur before the two players
choose their strategies s; and s, . The random event e;(¢ = 1, 2) will determine
player 7’s cost functions and the size of his financial resources; and so will com-
pletely determine his payoff function U; in the game. On the other hand, the
random event f; will determine the amount of information that player ¢ will ob-
tain about the cost functions and the financial resources of the other player
4(j = 1,2 and # 7), and will thereby determine the actual amount of information*
that player ¢ will have about player j’s payoff function U; .

Both players will be assumed to know the joint probability distribution
R*(ex, e, f1, f2) of these four random events.” But, e.g., player 1 will know the
actual outcomes of these random events only in the case of e; and fi, whereas

¢4 In terms of the terminology we shall later introduce, the variables determined by the
random events ¢; and f; will constitute the random vector ¢; (¢ = 1, 2), which will be called
player ¢’s information vector or attribute vector, and which will be assumed to determine
player ¢’s ‘“type’’ in the game (cf. the third paragraph below).

5 For justification of this assumption, see sections 4 and 5 below, as well as Part III of
this paper.
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player 2 will know the actual outcomes only in the case of e; and f; . (In our model
this last assumption will represent the facts that each player will know only his
own cost functions and financial resources but will not know those of his op-
ponent; and that he will, of course, know how much information he himself has
about the opponent but will not know exactly how much information the op-
ponent will have about him.)

As in this new game G* the players are assumed to know the probability distri-
bution R*(e1, e, 1, f2), this game G will be a C-game. To be sure, player 1 will
have no information about the outcomes of the chance moves e, and f, , whereas
player 2 will have no information about the outcomes of the chance moves e;
and f; . But these facts will not make G* a game with “incomplete” information
but will make it only a game with “imperfect” information (cf. Footnote 2
above). Thus, our approach will basically amount to replacing a game G involving
incomplete information, by a new game G* which involves complete but imperfect
information, yet which is, as we shall argue, essentially equivalent to G from a
game-theoretical point of view (see section 5 below).

As we shall see, this C-game G* which we shall use in the analysis of a given
I-game @ will also admit of an alternative intuitive interpretation. Instead of
assuming that certain important attributes of the players are determined by some
hypothetical random events at the beginning of the game, we may rather assume
that the players themselves are drawn at random from certain hypothetical popu-
lations containing a mixture of individuals of different “types”, characterized by
different attribute vectors (i.e., by different combinations of the relevant at-
tributes). For instance, in our duopoly example we may assume that each player
i(1 = 1, 2) is drawn from some hypothetical population II; containing individuals
of different “types,” each possible “type” of player ¢ being characterized by a
different attribute vector c;, i.e., by a different combination of production costs,
financial resources, and states of information. Each player ¢ will know his own
type or attribute vector ¢; but will be, in general, ignorant of his opponent’s.
On the other hand, both players will again be assumed to know the joint prob-
ability distribution R*(c; , c,) governing the selection of players 1 and 2 of differ-
ent possible types ¢; and ¢ from the two hypothetical populations II; and IT; .

It may be noted, however, that in analyzing a given I-game @, construction
of an equivalent C-game G™ is only a partial answer to our analytical problem,
because we are still left with the task of defining a suitable solution concept for
this C-game G™ itself, which may be a matter of some difficulty. This is so because
in many cases the C-game G* we shall obtain in this way will be a C-game of
unfamiliar form, for which no solution concept has been suggested yet in the
game-theoretical literature.’ Yet, since G* will always be a game with complete
information, its analysis and the problem of defining a suitable solution concept
for it, will be at least amenable to the standard methods of modern game theory.
We shall show in some examples how one actually can define appropriate solution
concepts for such C-games G*.

¢ More particularly, this game G* will have the nature of a game with delayed commitment
(see section 11 in Part IT of this paper).
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2.

Our analysis of I-games will be based on the assumption that, in dealing with
incomplete information, every player 7 will use the Bayesian approach. That is,
he will assign a subjective joint probability distribution P; to all variables unknown
to him—or at least to all unknown ‘ndependent variables, i.e., to all variables not
depending on the players’ own strategy choices. Once this has been done he will
try to maximize the mathematical expectation of his own payoff x; in terms of
this probability distribution P;.7 This assumption will be called the Bayesian
hypothests.

If incomplete information is interpreted as lack of full information by the
players about the normal form of the game, then such incomplete information
can arise in three main ways.

1. The players may not know the physical outcome function Y of the game,
which specifies the physical outcome y = Y (s, ---, s,) produced by each
strategy n-tuple s = (s, -+, s,) available to the players.

2. The players may not know their own or some other players’ utility functions
X, which specify the utility payoff z; = X,(y) that a given player ¢ derives
from every possible physical outcome 7.

3. The players may not know their own or some other players’ strategy spates
Si, i.e., the set of all strategies s; (both pure and mixed) available to various
players <.

All other cases of incomplete information can be reduced to these three basic
cases—indeed sometimes this can be done in two or more different (but essen-
tially equivalent) ways. For example, incomplete information may arise by some
players’ ignorance about the amount or the quality of physical resources (equip-
ment, raw materials, etc.) available to some other players (or to themselves).
This situation can be equally interpreted either as ignorance about the physical
outcome function of the game (case 1), or as ignorance about the strategies avail-
able to various players (case 3). Which of the two interpretations we have to
use will depend on how we choose to define the ‘“strategies” of the players in
question. For instance, suppose that in a military engagement our own side does
not know the number of fire arms of a given quality available to the other side.

7 A subjective probability distribution P; entertained by a given player ¢ is defined in
terms of his own choice behavior, cf. [6]. In contrast, an objective probability distribution
P* ig defined in terms of the long-run frequencies of the relevant events (presumably as
established by an independent observer, say, the umpire of the game). It is often convenient
to regard the subjective probabilities used by a given player ¢ as being his personal estimates
of the corresponding objective probabilities or frequencies unknown to him.

8 If the physical outcome y is simply a vector of money payoffsy; , --- , y, to then players
then we can usually assume that any player ¢’s utility payoff z; = X;(y:) is a (strictly
increasing) function of his money payoff y; and that all players will know this. However,
the other players j may not know the specific mathematical form of player ¢’s utility func-
tion for money, X; . In other words, even though they may know player ¢’s ordinal utility
function, they may not know his cardinal utility function. That is to say, they may not know
how much sk he would be willing to take in order to increase his money payoff y; by given
amounts.
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This can be interpreted as inability on our part to predict the physical outcome
(i.e., the amount of destruction) resulting from alternative strategies of the
opponent, where any given “strategy”’ of his is defined as firing a given percentage
of his fire arms (case 1). But it can also be interpreted as inability to decide
whether certain strategies are available to the opponent at all, where now any
given “‘strategy” of his is defined as firing a specified number of fire arms (case 3).

Incomplete information can also take the form that a given player ¢ does not
know whether another player 7 does or does not have information about the
occurrence or non-occurrence of some specified event e. Such a situation will al-
ways come under case 3. This is so because in a situation of this kind, from a game-
theoretical point of view, the crucial fact is player ¢’s inability to decide whether
player 7 is in a position to use any strategy s, involving one course of action in
case event ¢ does occur, and another course of action in case event e does not
oceur. That is, the situation will essentially amount to ignorance by player ¢ about
the availability of certain strategies s;* to player j.

Going back to the three main cases listed above, cases 1 and 2 are both special
cases of ignorance by the players about their own or some other players’ payoff

functions U; = X;(Y) specifying the utility payoff x; = Uji(s1, - -+, sx) & given
player ¢ obtains if the n players use alternative strategy n-tuples s = (sy, -+ -,
Sn)-

Indeed, case 3 can also be reduced to this general case. This is so because the
assumption that a given strategy s; = s; is not available to player 7 is equivalent,
from a game-theoretical point of view, to the assumption that player ¢ will never
actually use strategy s (even though it would be physically available to him)
because by using s he would always obtain some extremely low (i.e., highly
negative) payoffs z; = Ui(sy, -+, 8, - -+, s,), whatever strategies s, - -+,
Si1, Sig1, - * , Sy the other players 1, --- ,7 — 1,7+ 1, - -+ , » may be using.

Accordingly, let S& ( 7 = 1orj 5% 1) denote the largest set of strategies s;
which in player 7’s opinion may be conceiwably included in player ¢'s strategy
space S; . Let Si¥ denote player ¢’s “true” strategy space. Then, for the purposes
of our analysis, we shall define player ¢’s strategy space S; as

(2.1) S: = Uiy 889,

We lose no generality by assuming that this set S; as defined by (2.1) is known
to all players because any lack of information on the part of some player j about
this set S; can be represented within our model as lack of information about the
numerical values that player 7’s payoff function z; = U(s1, -+, 8i, -+, Sa)
takes for some specific choices of s;, and in particular whether these values are
so low as completely to discourage player ¢ from using these strategies s; .’
Accordingly, we define an 7-game G as a game where every player j knows
the strategy spaces S; of all players< = 1, ---, 4, - -+, n but where, in general,
he does not know the payoff functions U; of these playersz =1, ---,4, -+, n.

¢ Likewise, instead of assuming that player j assigns subjective probabilities to events of
the form E = {s,° £ S}, we can always assume that he assigns these probabilities to events
of the form E = {U;(s1, *++,S8:, **+ ,8s) < x;° whenever s; = §;°}, ete.
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3.

In terms of this definition, let us consider a given I-game G from the point of
view of a particular player j. He can write the payoff function U of each player ¢
(including his own payoff function U; for ¢ = j) in a more explicit form as

31) zi=Ui(s1, - ,8) = Vi*(sl,--- » Sn; Qoiy @iy 5 Qsiy =" 5 i),

where V.*, unlike U, is a function whose mathematical form is (in player j’s
opinion) known to all n players; whereas ao; is a vector consisting of those parame-
ters of function U; which (in j’s opinion) are unknown to all players; and where
each ax; for k = 1, --- , n is a vector consisting of those parameters of function
U; which (in j’s opinion) are unknown to some of the players but are known to
player k. If a given parameter « is known both to players k and m (without being
known to all players), then this fact can be represented by introducing two
variables ox; and s with ax; = am: = «, and then making ax; a component of
vector ax; while making an; a component of vector am, .

For each vector ax; (K = 0, 1, ---, n), we shall assume that its range space
Ar; = {awi}, i.e., the set of all possible values it can take, is the whole Euclidian
space of the required number of dimensions. Then V;* will be a function from the
Cartesian product S; X -+ X 8, X Aos X -+« X An; to player ¢’s utility fine
=, , which is itself a copy of the real line R.

Let us define a; as the vector combining the components of all n vectors a ,

-, Grn . Thus we write

(3.2) ) a = (@, , Gin),

fork=0,1,---,4, ---,n. Clearly, vector a; summarizes the information that
(in player j’s opinion ) none of the players has about the » functions Uy, - -+ , U,
whereas vector ax(k = 1, ---, n) summarizes the information that (in j’s

opinion) player k has about these functions, except for the information that (in
j’s opinion) all n players share about them. For each vector a; , its range space
will be the set Ay = {ax} = A X +++ X Ain .

In equation (3.1) we are free to replace each vector ax:(k = 0, - -+ , n) by the
larger vector ax = (a@r1, ***, @i, *** , Gka), €ven though this will mean that in
each case the (n — 1) sub-vectors @, - -, Gii—y , Gty , *** , Gk Will occur
vacuously in the resulting new equation. Thus, we can write

(33) xi=Vi*(811"'ysn; a01a17"'1ai7"';an)'

For any given player 7 the n vectors ap, @1, -+ , Gim1, Giy1, ** * , @, in general
will represent unknown variables; and the same will be true for the (n — 1)
vectors b;, -+, bia, biy1, -+, by to be defined below. Therefore, under the
Bayesian hypothesis, player 7 will assign a subjective joint probability distribu-
tion

(84) Pi=Piao,01, " ,8i1,8ip1, " ,0n; b1, -+ ,bia,biy1, -+, bn)

to all these unknown vectors.
For convenience we introduce the shorter notations ¢ = (a1, ---, a,) and
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b= (b1, ---,bs). The vectors obtained from @ and b by omitting the sub-vector
a; and b; , respectively, will be denoted by o' and b". The corresponding range
spaces can be written as A = 4; X -+ X 4,;B = B X -+ X B,; A" =
A X - XAia XAipn X -+ XA,;B=B X -+ XBiy XBija X+
X B, .

Now we can write equations (3.3) and (3.4) as

(3.5) xi = Vi (s1, ", 8 ;00,0)
(3.6) P; = Py(ao,a’; b")

where P; is a probability distribution over the vector space 4o X A* X B'.

The other (n — 1) players in general will not know the subjective probability
distribution P; used by player 7. But player j (from whose point of view we are
analyzing the game) will be able to write P; for each player 7 (both 2 = j and
¢ ¥ 7) in the form

(3.7) Piao, a’;b") = Ri(ao, a’; b° | by),

where R;, unlike P;, is a function whose mathematical form is (in player j’s
opinion) known to all » players; whereas b; is a vector consisting of those parame-
ters of function P; which (in j’s opinion) are unknown to some or all of the players
k £ 1. Of course, player j will realize that player ¢ himself will know vector b;
since b; consists of parameters of player ¢’s own subjective probability distribu-
tion P;.

The vectors by, -+, bi1, biy1, - - , b, occurring in equation (3.4), which so
far have been left undefined, are the parameter vectors of the subjective prob-
ability distributions Py, ---, Pi1, Piy1, -+, Pa, unknown to player ¢. The
vector b’ oceurring in equations (3.6) and (3.7) is a combination of all these

vectors by, -+, bi1, biy1, -, by, and summarizes the information that (in
player j’s opinion) player 7 lacks about the other (n — 1) players’ subjective
probablhty distributions Py y ", P ’ Pi+1 y *t 0y Pn .

Clearly, funetion R; is a function yielding, for each specific value of vector b, ,
a probability distribution over the vector space A° X B-.

We now propose to eliminate the vector ao , unknown to all players, from equa-
tions (3.5) and (3.7). In the case of equation (3.5) this can be done by taking
expected values with respect to ao in terms of player +’s own subjective probability
distribution P;(ao, a’; b*) = Ri(ao, a’; b*| b;). We define

(3.8) Vilst, -+, 8n;a|bi) = Vi(s1, -+, 8n; @, b;)
= f ViF(sie+ -, 83 a0, ) dagRi(a0, a’; b°| b:).
49
Then we write

(39) Ty = Vi(sl y "ty S @ b’lr)l

where x; now denotes the expected value of player ¢’s payoff in terms of his own
subjective probability distribution.



GAMES WITH INCOMPLETE INFORMATION 171

In the case of equation (3.7) we can eliminate ay by taking the appropriate
marginal probability distributions. We define

(3.10) Pi(d',b") = f dapyPi(a0, a’; b°),
40

and

(3.11) Ria, b 1) = [ dapRe(an, a5 b [b0).
49

Then we write
(3.12) Pi(a’, b*) = Ry(a’, b*|by).
We now rewrite equation (3.9) as
(3.13) ti= Vs, 8a;8,b;,b) = Viss, +,8.;a0b),
where vector b° occurs only vacuously. Likewise we rewrite equation (3.12) as
(3.14) Pi(d’, b)) = Ri(a’,b" | ai, b),

where on the right-hand side vector a; occurs only vacuously.

Finally, we introduce the definitions ¢; = (a:, b:);¢ = (a,b);and ¢’ = (o, b°).
Moreover, we write C; = A; X B;; C = A X B;and C' = A* X B'. Clearly,
vector ¢; represents the total information available to player 7 in the game (if we
disregard the information available to all n players). Thus, we may call ¢; player
7’s information vector.

From another point of view, we can regard vector ¢; as representing certain
physical, social, and psychological attributes of player ¢ himself, in that it sum-
marizes some crucial parameters of player ¢’s own payoff function U; as well as
the main parameters of his beliefs about his social and physical environment.
(The relevant parameters of player 4’s payoff function U; again partly represent
parameters of his subjective utility function X; and partly represent parameters
of his environment, e.g., the amounts of various physical or human resources
available to him, etc.) From this point of view, vector ¢; may be called player
i’s attribute vector.

Thus, under this model, the players’ incomplete information about the true
nature of the game situation is represented by the assumption that in general
the actual value of the attribute vector (or information vector) ¢; of any given
player 7 will be known only to player ¢ himself, but will be unknown to the
other (n — 1) players. That is, as far as these other players are concerned,
¢; could have any one of a number—possibly even of an infinite number—of
alternative values (which together form the range space C; = {ci} of vector ¢;).
We may also express this assumption by saying that in an I-game @, in general,
the rules of the game as such allow any given player ¢ to belong to any one of
a number of possible “types’’, corresponding to the alternative values his attri-
bute vector ¢; could take (and so representing the alternative payoff functions
U. and the alternative subjective probability distributions P, that player ¢
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might have in the game). Each player is always assumed to know his own actual
type but to be in general ignorant about the other players’ actual types.
Equations (3.13) and (3.14) now can be written as

(3.15) i = Vi(s1, -+ ,83¢) = Vilst, -+ ,8;€, " *,Cn)

(3.16) Py(c") = Ri(c c)
or
(317) P,,;(Cl,"',c,;_l,ci.H,"‘,Cn>=Ri(Cl,"',Ci—1,Ci+1,"',Cnlci)-

We shall regard equations (3.15) and (3.17) [or (3.16)] as the standard forms
of the equations defining an 7-game G, considered from the point of view of some
particular player j.

Formally we define the standard form of a given I-game @ for some particular
player 7 as an ordered set G such that

(3.18) G= {Sl,"‘,Sn;Cl, Tty On;Vl, "',Vn;RI; "';Rn}

where for z = 1, -+, n we write S; = {s;}; C; = {ci}; moreover, where V; is
a function from the set S; X -+ X S, X C1 X -+ X C, to player ¢’s utility
line =; (which is itself a copy of the real line R); and where, for any specific value
of the vector ¢;, the function B; = R.( ¢'| ¢;) is a probability distribution over
theset C*' = Cy X +++ X Cict X Cipg X +++ X Cy.

4.

Among C-games the natural analogue of this I-game G will be a C-game G*
with the same payoff functions V; and the same strategy spaces S;. However,
in G* the vectors ¢; will have to be reinterpreted as being random vectors (chance
moves) with an objective joint probability distribution

(4.1) R* = R*(c1, *++ , ¢a) = R*(c)

known to all n players.”” (If some players did not know R*, then G* would not
be a C-game.) To make G* as similar to @ as possible, we shall assume that
each vector ¢; will take its values from the same range space C; in either game.
Moreover, we shall assume that in game G*, just as in game G, when player 4
chooses his strategy s;, he will know only the value of his own random vector

¢; but will not know the random vectors ¢;, -+, €i_1, Cit1, *** , €, Of the other
(n — 1) players. Accordingly we may again call ¢; the information vector of
player 3.

Alternatively, we may again interpret this random vector c; as representing
certain physical, social, and psychological attributes of player ¢ himself. (But,
of course, now we have to assume that for all n players these attributes are de-
termined by some sort of random process, governed by the probability distribu-
tion R*.) Under this interpretation we may again call ¢; the attribute vector of
player <.

10 Assuming that a joint probability distribution R* of the required mathematical form
exists (see section 5 below, as well as Part III of this paper).
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We shall say that a given C-game G* is in standard form if

1. the payoff functions V; of G* have the form indicated by equation (3.15);

2. the vectors ¢, -+-, ¢, oceurring in equation (3.15) are random vectors
with a joint probability distribution R* [equation (4.1)] known to all players;

3. each player 7 is assumed to know only his own vector ¢; , and does not
know the vectors ¢i, -+, Ci1, Ciy1, * * * , Co Of the other players when he chooses
his strategy s; .

Sometimes we shall again express these assumptions by saying that the rules
of the game allow each player ¢ to belong to any one of a number of alternative
types (corresponding to alternative specific values that the random vector c;
can take); and that each player will always know his own actual type, but in
general will not know those of the other players.

Formally we define a C-game G™ in standard form as an ordered set G* such
that

(4.2) G* = {81,y 8n;Cry o, Cn; Vi, -+, Va; R,
Thus, the ordered set G* differs from the ordered set G [defined by equation
(3.18)] only in the fact that the n-tuple Ry, - -, R, occurring in @ is replaced

in G* by the singleton R*. \

If we consider the normal form of a game as a special limiting case of a standard
form (viz. as the case where the random vectors ¢i, -+, ¢, are empty vectors
without components), then, of course, every C-game has a standard form.
But only a C-game G* containing random variables (chance moves) will have
a standard form non-trivially different from its normal form.

Indeed, if G* contains more than one random variable, then it will have
several different standard forms. This is so because we can always obtain new
standard forms G**—intermediate between the original standard form G*
and the normal form G***—if we suppress some of the random variables occur-
ring in G, without suppressing all of them (as we would do if we wanted to
obtain the normal form G*** itself). This procedure can be called partial nor-
malization as distinguished from the full normalization, which would yield the
normal form G***.1

5.

Suppose that G is an I-game (considered from player j’s point of view) while
G* is a C-game, both games being given in standard form. To obtain complete
similarity between the two games, it is not enough if the strategy spaces Si,

-, S, , the range spaces C1, ---, C,, and the payoff functions V,, ---, V,

1t Partial normalization involves essentially the same operations as full normalization
(see section 7 below). It involves taking the expected values of the payoff functions V; with
respect to the random variables to be suppressed, and redefining the players’ strategies
where necessary. However, in the case of partial normalization we also have to replace the
probability distribution R* of the original standard form G*, by a marginal probability
distribution not containing the random variables to be suppressed. (In the case of full
normalization no such marginal distribution has to be computed because the normal form
G*** will not contain random variables at all.)
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of the two games are the same. It is necessary also that each player 7 in either
game should always assign the same numerical proabability p to any given
specific event E. Yet in game G player ¢ will assess all probabilities in terms of
his subjective probability distribution Ri(c| c;); whereas in game G*—since
vector ¢; is known to him—he will assess all probabilities in terms of the ob-
jective conditional probability distribution R*(c¢’| ¢;) generated by the basic
probability distribution R*(c) of the game G*. Therefore, if the two games are
to be equivalent, then numerically the distributions Ri(c’|¢;) and R*(¢| ¢;)
must be identically equal.

This leads to the following definition. Let G be an I-game (as considered by
player 7), and let G* be a C-game, both games being given in standard form.
We shall say that G and G* are Bayes-equivalent for player j if the following
conditions are fulfilled:

1. The two games must have the same strategy spaces S;, ---, S, and the
same range spaces Cy, -+, Cy.
2. They must have the same payoff functions Vi, «---, V,.

3. The subjective probability distribution R; of each player ¢ in G must satisfy
the relationship

(5.1) Ri(c'| ) = R*(c'| ¢2),

where R*(¢) = R*(c:, ¢') is the basic probability distribution of game G* and
where

(52) ¥ o) = B*(ei, ) / [ doR¥(ai, e
ct
In view of equations (5.1) and (5.2) we can write
(5-3) R*(C) = R*(Ci, Ci) = Ri(Ci|Ci)’_/;i d(cf)R*(Ci, Ci)-

In contrast to equation (5.2), which ceases to have a clear mathematical mean-
ing when the denominator on its right-hand side becomes zero, equation (5.3)
always retains a clear mathematical meaning.

We propose the following postulate.

Postulate 1. Bayes-equivalence. Suppose that some I-game G and some C-game
G* are Bayes-equivalent for player j. Then the two games will be completely
equivalent for player j from a game-theoretical standpoint; and, in particular,
player j’s strategy choice will be governed by the same decision rule (the same
solution concept) in either game.

This postulate follows from the Bayesian hypothesis, which implies that
every player will use his subjective probabilities exactly in the same way as he
would use known objective probabilities numerically equal to the former. Game
@ (as assessed by player 7) and game G* agree in all defining characteristics,
including the numerical probability distributions used by the players. The only
difference is that in G the probabilities used by each player are subjective prob-
abilities whereas in G* these probabilities are objective (conditional) probabili-
ties. But by the Bayesian hypothesis this difference is immaterial.
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Of course, under the assumptions of the postulate, all we can say is that
for player j himself the two games are completely equivalent for game-theoretical
purposes. We cannot conclude on the basis of the information assumed that the
two games are likewise equivalent also for some other players & 5% j. In order
to reach this latter conclusion we would have to know that G' and G* would
preserve their Bayes-equivalence even if G were analyzed in terms of the func-
tions Vy, ---, V,and Ry, -+, R, postulated by these other players k, instead
of being analyzed in terms of the functions Vy, ---, V,and Ry, ---, R, postu-
lated by player j himself. But so long as we are interested only in the decision
rules that player j himself will follow in game @, all we have to know are the
functions Vi, -+, V,and Ry, -« -, R, that player j will be using.

Postulate 1 naturally gives rise to the following questions. Given any I-game
@, is it always possible to construct a C-game G Bayes-equivalent to G? And,
in cases where this is possible, is this C-game G* always unique? These questions
are tantamount to asking whether for any arbitrarily chosen n-tuple of subjective
probability distributions Ry(c'| ¢1), -+ -, Ra(c”| ¢a), there always exists a prob-
ability distribution R*(¢;, -+, ¢,) satisfying the functional equation (5.3),
and whether this distribution R* is always unique in cases where it does exist.
As these questions require an extended discussion, we shall answer them in
Part IIT of this paper (see Theorem III and the subsequent heuristic discussion).
We shall see that a given I-game G will have a C-game analogue G* only if G
itself satisfies certain consistency requirements. On the other hand, if such a
C-game analogue G™ exists for G then it will be “essentially”” unique (in the sense
that, in cases where two different C-games Gy*, and G,* are both Bayes-equiva-
lent to a given I-game G, it will make no difference whether we use Gv* or G,*
for the analysis of G). In the rest of the present Part I of this paper, we shall
restrict our analysis to I-games G for which a Bayes-equivalent C-game analogue
G* does exist.

As we shall make considerable use of Bayes-equivalence relationships between
certain I-games G and certain C-games G* given in standard form, it will be
convenient to have a short designation for the latter. Therefore, we shall intro-
duce the term Bayesian games as a shorter name for C-games G* given in stand-
ard form. Depending on the nature of the I-game G we shall be dealing with in
particular cases, we shall also speak of Bayesian two-person zero-sum games,
Bayesian bargaining games, etc.

6.

In view of the important role that Bayesian games will play in our analysis,
we shall now consider two alternative (but essentially equivalent) models for
these games, which for some purposes will usefully supplement the model we
have defined in Sections 4 and 5.

So far we have defined a Bayesian game G* as a game where each player’s

payoff x; = Vi(s1, -+, 8a; &, -+, ¢,) depends, not only on the strategies
S1, -+, S, chosen by the n players, but also on some random vectors (informa-
tion vectors or attribute vectors) ¢, - - -, ¢, . It has also been assumed that all

players will know the joint probability distribution R*(cy, -+, ¢x) of these
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random vectors, but that in general the actual value of any given vector ¢,
will be known only to player + himself whose information vector (or attribute
vector) it represents. This model will be called the random-vector model for
Bayesian games.

An alternative model for Bayesian games can be described as follows. The
actual individuals who will play the roles of players 1, ---, n in game G* on
any given occasion, will be selected by lof from certain populations I, , --- , II,
of potential players. Each population II; from which a given player ¢ is to be
selected will contain individuals with a variety of different attributes, so that
every possible combination of attributes (i.e., every possible “type” of player 7),
corresponding to any specific value ¢; = ¢ that the attribute vector ¢; can take
in the game, will be represented in this population II;. If in population II; a
given individual’s attribute vector c; has the specific value ¢; = ¢, then we shall
say that he belongs to the attribute class ¢. Thus, each population II; will be
partitioned into that many attribute classes as the number of different values
that player ¢’s attribute vector ¢; can take in the game.

As to the random process selecting n players from the n populations II ,
-+, I, , we shall assume that the probability of players 1, - - - , n being selected
from any specific n-tuple of attribute classes ¢,’, -+, ¢, will be governed”
by the probability distribution R*(e;, - - , ¢.). We shall also retain the hssump-
tions that this probability distribution R* will be known to all » players, and
that each player ¢ will also know his own attribute class ¢; = ¢; but, in general,
will not know the other players’ attribute classes ¢, = ¢, -+, ¢ci1 = i1,
Cis1 = Ciq1, ***, Cy = Co. As in this model the lottery by which the players
are selected occurs prior to any other move in the game, it will be called the
prior-lottery model for Bayesian games.

Let G be a real-life game situation where the players have incomplete infor-
mation, and let G* be a Bayesian game Bayes-equivalent to G (as assessed by a
given player 7). Then this Bayesian game G, interpreted in terms of the prior-
lottery model, can be regarded as a possible representation (of course a highly
schematic representation) of the real-life random social process which has ac-
tually created this game situation G. More particularly, the prior-lottery model
pictures this social process as it would be seen by an outside observer having
information about some aspects of the situation but lacking information about
some other aspects. He could not have enough information to predict the attri-
bute vectors ¢; = ¢, -++, ¢» = ¢, of the n individuals to be selected by this
social process to play the roles of players 1, - -+ , n in game situation G. But he
would have to have enough information to predict the joint probability distri-
bution R* of the attribute vectors ¢;, «-- , ¢, of these n individuals, and, of

12 Under our assumptions in general the selection of players1, - -+ , n from the respective
populations I, , - -+ , II, will not be statistically independent events because the probability
distribution B*(c1, -+ , ¢,) in general will not permit of factorization into » independent
probability distributions Ri*(c1), -+, Ra*(cs). Therefore, strictly speaking, our model
postulates simultaneous random selection of a whole player n-tuple from a population I
of all possible player n-tuples, where I is the Cartesian product IT = II; X -+ X I .
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course, also to predict the mathematical form of the payoff functions Vi,

+, Va. (But he could not have enough information to predict the payoff
functions Uy, ---, U, because this would require knowledge of the attribute
vectors of all n players.)

In other words, the hypothetical observer must have exactly all the informa-
tion common to the n players, but must not have access to any additional infor-
mation private to any one player (or to any sectional group of players—and,
of course, he must not have access to any information inaccessible to all of the
n players). We shall call such an observer a properly informed observer. Thus,
the prior-lottery model for Bayesian games can be regarded as a schematic
representation of the relevant real-life social process as seen by a properly in-
formed outside observer.

As an example, let us again consider the price-competition game G with in-
complete information, and the corresponding Bayesian game G*, discussed in
Section 1 above. Here each player’s attribute vector ¢; will consist of the varia-
bles defining his cost functions, his financial resources, and his facilities to collect
information about the other player.”” Thus, the prior-lottery model of G* will
be a model where each player is chosen at random from some population of
possible players with different cost funections, different financial resources, and
different information-gathering facilities. We have argued that such a model can
be regarded as a schematic representation of the real-life social process which
has actually produced the assumed competitive situation, and has actually
determined the cost functions, financial resources, and information-gathering
facilities, of the two players.

Dr. Selten has suggested™ a third model for Bayesian games, which we shall
call the Selten model or the posterior-lottery model. Its basic difference from the
prior-lottery model consists in the assumption that the lottery selecting the
active participants of the game will take place only after each potential player
has chosen the strategy he would use in case he were in fact selected for active
participation in the game.

More particularly, suppose that, the attribute vector ¢; of player 7 (¢ = 1,

-, n) can take k; different values in the game. (We shall assume that all
ks are finite but the model can be easily extended also to the infinite case.)
Then, instead of having one randomly selected player 7 in the game, we shall
assume that the role of player ¢ will be played at the same time by k; different
players, each of them representing a different value of the attribute vector c; .
The set of all k; individuals playing the role of player ¢ in the game will be called
the role class 7. Different individuals in the same role class 7 will be distinguished
by subsecripts as players 41, %, --- . Under these assumptions, obviously the
total number of players in the game will not be n but rather will be the larger
(usually much larger) number

(6.1) K=2Mk

18 Cf. Footnote 4 above.
14 In private communication (ef. Footnote 1 above).
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It will be assumed that each player 7, from a given role class 7 will choose
some strategy s; from player ¢’s strategy space S; . Different members of the same
role class ¢ may (but need not) choose different strategies s; from this strategy
space S; .

After all K players have chosen their strategies, one player ,, from each role
class 7 will be randomly selected as an active player. Suppose that the attribute
vectors of the n active players so selected will be ¢; = ¢, --- , ¢. = ¢, and
that these players, prior to their selection, have chosen the strategies s; = s,

-, 8, = .. Then each active player i, , selected from role class 7, will obtain
a, payoff

(6.2) X; = V’i(sloy Y sno; 610) ) cno)-

All other (K — n) players not selected as active players will obtain zero payoffs.

It will be assumed that, when the n active players are randomly selected from
the n role classes, the probability of selecting individuals with any specific
combination of attribute vectors ¢; = ¢, -+ -, ¢, = ¢, will be governed by the
probability distribution R*(¢;, -+ - , ¢,)."

It is easy to see that in all three models we have discussed—in the random-
vector model, the prior-lottery model, and the posterior-lottery madel—the
players’ payoff functions, the information available to them, and the probability
of any specific event in the game, are all essentially the same.” Consequently,

15 In actual fact, we could just as well assume that each player would choose his strategy
only after the lottery, and after being informed whether this lottery has selected him as an
active player or not. (Of course if we made this assumption then players not selected as
active players could simply forget about choosing a strategy at all.) From a game-theoreti-
cal point of view this assumption would make no real difference so long as each active player
would have to choose his strategy without being told the names of the other players selected
as active players, and in particular without being told the attribute classes to which these
other active players would belong.

Thus the fundamental theoretical difference between our second and third models is not
so much in the actual téming of the postulated lottery as such. It is not so much in the fact
that in one case the lottery precedes, and in the other case it follows, the players’ strategy
choices. The fundamental difference rather lies in the fact that our second model (like our
first) conceives of the game as an n-person game, in which only the n active players are
formally “‘players of the game’’; whereas our third; model conceives of the game as a K-per-
son game, in which both the active and the inactive players are formally regarded as ‘“‘play-
ers”. Yet, to make it easier to avoid confusion between the two models, it is convenient to
assume also a difference in the actual timing of the assumed lottery.

6 Technically speaking, the players’ effective payoff functions under the posterior-
lottery model are not quite identical with their payoff functions under the other two models,
but this difference is immaterial for our purposes. Under the posterior-lottery model, let
r = r;(c:’) be the probability (marginal probability) that a given player ¢» with attribute
vector ¢; = ¢ will be selected as the active player from role class <. Then player ¢, will
have the probability r of obtaining a payoff corresponding to the payoff function V; and
will have the probability (1 — r) of obtaining a zero payoff whereas under the other two
models each player ¢ will always obtain a payoff corresponding to the payoff function V.
Consequently, under the posterior-lottery model player z.’s expected payoff will be only r
times (0 < r £ 1) the expected payoff he could anticipate under the other two models. How-
ever, under most game-theoretical solution concepts (and in particular under all solution
concepts we would ourselves choose for analyzing game situations), the solution of the game
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all three models can be considered to be essentially equivalent. But, of course,
formally they represent quite different game-theoretical models, as the random-
vector model corresponds to an n-person game G* with complete information,
whereas the posterior-lottery model corresponds to a K-person game G** with
complete information. In what follows, unless the contrary is indicated, by the
term ‘“Bayesian game” we shall always mean the n-person game G corresponding
to the random-vector model, whereas the K-person game G** corresponding to
the posterior-lottery model will be called the Selten game.

In contrast to the other two models, the prior-lottery model formally does
not qualify as a true ‘“game” at all because it assumes that the n players are
selected by a chance move representing the first move of the game, whereas
under the formal game-theoretical definition of a game the identity of the players
must always be known from the very beginning, before any chance move or
personal move has occurred in the game.

Thus, we may characterize the situation as follows. The real-life social process
underlying the 7-game G' we are considering is best represented by the prior-
lottery model. But the latter does not correspond to a true ‘“game” in a game-
theoretical sense. The other two models are two alternative ways of converting
the prior-lottery model into a true “game”. In both cases this conversion entails
a price in the form of introducing some unrealistic assumptions. In the case of
the posterior-lottery model corresponding to the Selten game G**, the price
consists in introducing (K — =) fictitious players in addition to the = real
players participating in the game."

In the case of the random-vector model corresponding to the Bayesian game
G*, there are no fictitious players, but we have to pay the price of making the
unrealistic assumption that the attribute vector ¢; of each player < is determined
by a chance move after the beginning of the game—which seems to imply that
player 7 will be in existence for some period of time, however short, during which
he will not know yet the specific value ¢; = ¢; his attribute vector ¢; will take.
So long as the Bayesian game G™ corresponding to the random-vector model is
being considered in its standard form, this unrealistic assumption makes very
little difference. But, as we shall see, when we convert G* into its normal form
this unrealistic assumption implied by our model does cause certain technical
difficulties, because it seems to commit us to the assumption that each player
can choose his normalized strategy (i.e., his strategy for the normal-form version
of G*) before he learns the value of his own attribute vector ¢;. An important
advantage of the Selten game G** lies in the fact that it does not require this
particular unrealistic assumption: we are free to assume that every player <,

will remain invariant if the players’ payoff functions are multiplied by positive constants r
(even if different constants r are used for different players).

In any case, the posterior-lottery model can be made completely equivalent to the other
two models if we assume that each active player 7., will obtain a payoff corresponding to the
payoff function V;/ri(c.?), instead of obtaining a payoff corresponding to the payoff funec-
tion V; as such [as prescribed by equation (6.2)].

17 This will be true even if we change the timing of the assumed lottery in Selten’s model
(see Footnote 15 above).
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will know his own attribute vector ¢; from the very beginning of the game,
and will always choose his own strategy in light of this information.”

Thus, as analytical tools used in the analysis of a given I-game @, both the
Bayesian game G* and the Selten game G™* have their own advantages and
disadvantages.”

7.

Let G be an I-game given in standard form, and let G* be a Bayesian game
Bayes-equivalent to G. Then we define the normal form 91(G) of this I-game
@ as being the normal form 91(G*) of the Bayesian game G*.

To obtain this normal form we first have to replace the strategies s; of each
player ¢ by normalized strategies s;*. A normalized strategy s;* can be regarded
as a conditional statement specifying the strategy s; = s;*(¢;) that player ¢
would use if his information vector (or attribute vector) ¢; took any given
specific value. Mathematically, a normalized strategy s;* is a function from the
range space C; = {c;} of vector ¢; to player ¢’s strategy space S; = {s;. The
set of all possible such functions s;* is called player #’s normalized-strategy
space S;* = {s;*}. In contrast to these normalized strategies s;*, the strategies
s; available to player < in the standard form of the game will be called his ordinary
strategres.

If in a given game the information vector c¢; of a certain player ¢ can take only
k different values (with k finite) so that we can write

(71) C; = Cil, cey, Cik,

then any normalized strategy s;* of this player can be defined simply as a k-
tuple of ordinary strategies

(7.2) st = (s, -+ ,8),

where 5" = s (¢,™), with m = 1, .-+, k, denotes the strategy that player 5
would use in the standard form of the game if his information vector ¢; took
the specific value ¢; = ¢;”. In this case player 7’s normalized strategy space
S:* = {5} will be the set of all such k-tuples s;*, that is, it will be the k-times
repeated Cartesian product of player 7’s ordinary strategy space S; by itself.
Thus we can write 8;* = 8;'X -+ X8/ with 8! = --- = 85 = §,.

Under either of these definitions, the normalized strategies s;* will not have
the nature of mized strategies but rather that of behavioral strategies. Never-

18 Moreover, as Selten has pointed out, his model also has the advantage that it can be
extended to the case where the subjective probability distributions By, --- , K, of a given
I-game @ fail to satisfy the required consistency conditions, so that no probability distribu-
tion R* satisfying equation (5.3) will exist, and therefore no Bayesian game G* Bayes-
equivalent to G can be constructed at all. In other words, for any I-game G we can always
define an equivalent Selten game G**, even in cases where we cannot define an equivalent
Bayesian game G*. (See Section 15, Part III.)

1 We have given intuitive reasons why a Bayesian game G* and the corresponding Selten
game G** are essentially equivalent. For a more detailed and more rigorous game-theoreti-
cal proof the reader is referred to a forthcoming paper by Reinhard Selten.
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theless, these definitions are admissible because any game G* in standard form
is a game of perfect recall, and so it will make no difference whether the players
are assumed to use behavioral strategies or mixed strategies [4].

Equation (3.15) can now be written as

(7.3) @ = Vi(s:™(c1), -, s (Cn); Ciy o, 6n) = Vilsi, -+, 855 ¢).

In order to obtain the normal form 9(G) = 9 (G*), all we have to do now is
to take expected values in equation (7.3) with respect to the whole random
vector ¢, in terms of the basic probability distribution R*(¢) of the game. We
define

(74) &(m) = Wils™, -+ ,8,.7) = fCVi(sl*, s, 8.5 ¢) doR¥(c).

Since each player will treat his expected payoff as his effective payoff from the
game, we can replace &(z;) simply by z; and write

(7.5) mi= Wi(st™, -+, 8.
We can now define the normal form of games G and G™ as the ordered set
(7.6) N(G) = N(G*) = {8, -, 83 Wa, -+, Wi

Compared with equations (3.18) and (4.2) defining the standard forms of
these two games, in equation (7.6) the ordinary strategy spaces S; have been
replaced by the normalized strategy spaces S.*, and the ordinary payoff func-
tions V; have been replaced by the normalized payoff functions W; . On the other
hand, the range spaces C; as well as the probability distributions R; or R* have
been omitted because the normal form M (G) = (G*) of games G and G does

not any more involve the random vectors ¢;, -+, ¢, .
This normal form, however, has the disadvantage that it is defined in terms
of the players’ wunconditional payoff expectations &(z;) = Wos™, ) 8.5,

though in actual fact each player’s strategy choice will be governed by his
conditional payoff expectation &(z,| ¢;), because he will always know his own
information vector ¢; at the time of making his strategy choice. This conditional
expectation can be defined as

(7.7) &(xile) = Zi(s™, -+, 80" |€i) = .[C‘-Vi(sl*’ s 8 e, ¢DdenR* (| 6)

To be sure, it can be shown (see Theorem I of Section 8, Part II) that if
any given player ¢ maximizes his unconditional payoff expectation W, then
he will also be maximizing his conditional payoff expectation Z;(-| ¢;) for each
specific value of ¢;, with the possible exception of a small set of ¢; values which
can occur only with probability zero. In this respect our analysis bears out von
Neumann and Morgenstern’s Normalization Principle [7, pp. 79-84], according
to which the players can safely restrict their attention to the normal form of
the game when they are making their strategy choices.

However, owing to the special nature of Bayesian games, the Normalization
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Principle has only restricted validity for them, and their normal form 91(G™)
must be used with special care, because solution concepts based on uncritical
use of the normal form may give counterintuitive results (see Section 11 of
Part II of this paper). In view of this fact, we shall introduce the concept of a
semi-normal form. The semi-normal form $(G@) = $(G*) of games G and G*
will be defined as a game where the players’ strategies are the normalized strate-
gies s;* described above, but where their payoff functions are the conditional
payoff-expectation functions Z;(-| ¢;) defined by equation (7.7). Formally we
define the semi-normal form of the games G and G* as the ordered set

(78) 8(G) = S(G*) = {SI*) ’Sn*;CI) )C‘";Zli 7Zn)R*}

As the semi-normal form, unlike the normal form, does involve the random
vectors ¢, * -+, ¢, now the range spaces Cy, ---, C,, and the probability
distribution R*, which have been omitted from equation (7.6), reappear in
equation (7.8).

Instead of von Neumann and Morgenstern’s Normalization Principle, we
shall use only the weaker Semi-normalization Principle (Postulate 2 below),
which is implied by the Normalization Principle but which does not itself imply
the latter: .

Postulate 2. Sufficiency of the Semi-normal Form. The solution of any Bayesian
game G, and of the Bayes-equivalent I-game @, can be defined in terms of the
semi-normal form 8$(G*) =8(G), without going back to the standard form of
G* or of G.
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