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Games with Incomplete Information’

By Joun C. HArsAaNYD *

I was born in Budapest, Hungary, on May
29, 1920. The high school my parents chose
for me was the Lutheran Gymnasium in
Budapest, one of the best schools in Hun-
gary, with such distinguished alumni as John
von Neumann and Eugene Wigner. I was
very happy in this school and received a
superb education. In 1937, the year I gradu-
ated from it, I won the First Prize in Mathe-
matics at the Hungary-wide annual compe-
tition for high-school students.

My parents owned a pharmacy in Bu-
dapest, which gave us a comfortable living.
As I was their only child, they wanted me to
become a pharmacist. But my own prefer-
ence would have been to study philosophy
and mathematics. Yet, in 1937 when I actu-
ally had to decide my field of study, I chose
pharmacy in accordance with my parents’
wishes. I did so-because Adolf Hitler was in
power in Germany, and his influence was
steadily increasing also in Hungary. I knew
that as a pharmacy student I would obtain
military deferment. As I was of Jewish ori-
gin, this meant that I would not have to
serve in a forced-labor unit of the Hungar-
ian army.

As a result, I did have military deferment
until the German army occupied Hungary
in March 1944. Then I had to serve in a
labor unit for a few months. In the last
period of German occupation, from mid-
November 1944 to mid-January 1945, the

"This article is the lecture John C. Harsanyi deliv-
ered in Stockholm, Sweden, December 9, 1994, when
he received the Alfred Nobel Memorial Prize in Eco-
nomic Sciences. The article is copyright © The Nobel
Foundation 1994 and is published with the permission
of the Nobel Foundation.

*Haas School of Business, University of California,
Berkeley, CA 94720.
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Jesuit fathers hid me in their monastery,
which probably saved my life.

After the war, I reenrolled at the Univer-
sity of Budapest, this time to study philoso-
phy and sociology. I obtained a Ph.D. in
these subjects in June 1947. Then, for a year
I was a junior faculty member at the Uni-
versity Institute of Sociology. It was there
that I met a psychology student named Anne
Klauber, who later became my wife. Ever
since, her practical good sense and her un-
failing emotional support have always been
a great help to me. She has been always
ready to discuss my ideas with me and to act
as editor and proofreader of my work.

In June 1948, I had to resign from the
Institute because of my commonly known
opposition to Marxist ideology. It was Anne
who convinced me at that point that we
must leave communist Hungary if I ever
wanted to resume an academic career.

In actual fact, we managed to leave Hun-
gary only in April 1950. Then, after waiting
for our Australian landing permits for a few
months, we actually reached Sydney, Aus-
tralia, only in December 1950.

As my English was not very good and as
my Hungarian university degrees were not
recognized in Australia, during most of our
first three years there I had to do factory
work. But in the evening I took economics
courses at the University of Sydney. (I
changed over from sociology to economics
because I found the conceptual and mathe-
matical elegance of economic theory very
attractive.) I was given some credit for my
Hungarian university courses so that I had
to do only two years of further course work
and had to write a thesis in economics in
order to get an M.A. I received the degree
late in 1953.

Early in 1954, I was appointed Lecturer
in Economics at the University of Queens-
land in Brisbane. Then, in 1956, I was
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awarded a Rockefeller Fellowship, enabling
me to spend two years at Stanford Univer-
sity, where I got a Ph.D. in economics, while
Anne got an M. A. in psychology.

I had the good fortune of having Ken
Arrow as an advisor and dissertation super-
visor. I benefited very much from discussing
many finer points of economic theory with
him. But I also benefited substantially by
following his advice to spend a sizable part
of my Stanford time studying mathematics
and statistics. These studies proved very
useful in my later work in game theory.

In 1958, Anne and I returned to Aus-
tralia, where I got a very attractive research
position at the Australian National Univer-
sity in Canberra. But soon I felt very iso-
lated, because at that time in Australia there
was not much interest in game theory.

Then, in 1961, with Ken Arrow’s and Jim
Tobin’s help, I was appointed Professor of
Economics at Wayne State University in
Detroit. In 1964 1 became Visiting Profes-
sor, and then Professor at the Business
School of the University of California in
Berkeley. Later my appointment was ex-
tended also to the Department of Eco-
nomics. Our only child, Tom, was born in
Berkeley. I retired from the university in
1990.

In the 1950’s I published papers on the
use of von Neumann-Morgenstern utilities
in welfare economics and in ethics, and on
the welfare economics of variable tastes. My
interest in game-theoretic problems in a
narrower sense was first aroused by John
Nash’s four brilliant papers, published in
the period 1950-1953 on cooperative and
on noncooperative games, on two-person
bargaining games, on mutually optimal
threat strategies in such games, and on what
we now call Nash equilibria.

In 1956, I showed the mathematical
equivalence of Frederik Zeuthen’s and of
Nash’s bargaining models and stated alge-
braic criteria for optimal threat strategies.
In 1963, 1 extended the Shapely value to
games without transferable utility and
showed that my new solution concept was a
direct generalization both of the Shapely
value and of Nash’s bargaining solution with
variable threats. In a three-part paper
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(Harsanyi, 1967, 1968a,b), I showed how to
convert a game with incomplete information
into one with complete, yet imperfect, infor-
mation. In 1973, I showed that “almost all”
mixed-strategy Nash equilibria can be rein-
terpreted as pure-strategy equilibria of a
suitably chosen game with randomly fluc-
tuating payoff functions.

I have also published a number of papers
on utilitarian ethics and have published four
books. One of them, Rational Behavior and
Bargaining Equilibrium in Games and Social
Situations (1977), was an attempt to unify
game theory by extending the use of bar-
gaining models from cooperative games to
noncooperative games. Two books, Essays
on Ethics, Social Behavior, and Scientific Ex-
planation (1976) and Papers in Game Theory
(1982) were collections of some of my jour-
nal articles. Finally, A General Theory of
Equilibrium Selection in Games (1988) was a
joint work with Reinhard Selten.

In 1993 and in 1994, I wrote two papers,
proposing a new theory of equilibrium selec-
tion. My 1993 paper does so for games with
complete information whereas my 1994 pa-
per does so for games with incomplete infor-
mation. My new theory is based on the
theory in Harsanyi and Selten (1988) but is
a simpler theory and is in my view an intu-
itively more attractive one. Both papers are
soon to appear (and probably will have al-
ready appeared when these lines are being
read) in Games and Economic Behavior.

I. Game Theory and Classical Economics

Game theory is a theory of strategic inter-
action. That is to say, it is a theory of
rational behavior in social situations in which
each player has to choose his moves on the
basis of what he thinks the other players’
countermoves are likely to be.

After preliminary work by a number of
other distinguished mathematicians and
economists, game theory as a systematic
theory started with von Neumann and
Morgenstern’s book, Theory of Games and
Economic Behavior, published in 1944. One
source of their theory was reflection on
games of strategy such as chess and poker.
But it was meant to help in defining rational
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behavior also in real-life economic, political,
and other social situations.

In principle, every social situation in-
volves strategic interaction among the par-
ticipants. Thus, one might argue that proper
understanding of any social situation would
require game-theoretic analysis. But in ac-
tual fact, classical economic theory did man-
age to sidestep the game-theoretic aspects
of economic behavior by postulating perfect
competition (i.e., by assuming that every
buyer and every seller is very small as com-
pared with the size of the relevant markets),
so that nobody can significantly affect the
existing market prices by his actions. Ac-
cordingly, for each economic agent, the
prices at which he can buy his inputs (in-
cluding labor) and at which he can sell his
outputs are essentially given to him. This
will make his choice of inputs and of out-
puts into a one-person simple maximization
problem, which can be solved without
game-theoretic analysis.

Yet, von Neumann and Morgenstern real-
ized that, for most parts of the economic
system, perfect competition would now be
an unrealistic assumption. Most industries
are now dominated by a small number of
large firms, and labor is often organized in
large labor unions. Moreover, the central
government and many other government
agencies are major players in many markets
as buyers and sometimes also as sellers, as
regulators, and as taxing and subsidizing
agents. This means that game theory has
now definitely become an important analyti-
cal tool in understanding the operation of
our economic system.

II. The Problem of Incomplete Information

Following von Neumann and Morgen-
stern (1947 p. 30), one may distinguish be-
tween games with complete information,
here often to be called C-games, and games
with incomplete information, to be called
I-games. The latter differ from the former in
the fact that the players, or at least some of
them, lack full information about the basic
mathematical structure of the game as de-
fined by its normal form (or by its extensive
form).
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Yet, even though von Neumann and Mor-
genstern did distinguish between what I am
calling C-games and I-games, their own the-
ory (and virtually all work in game theory
until the late 1960’s) was restricted to C-
games.

Lack of information about the mathemat-
ical structure of a game may take many
different forms. The players may lack full
information about the other players’ (or
even their own) payoff functions, about the
physical or the social resources, about the
strategies available to other players (or even
to themselves), about the amount of infor-
mation the other players have about various
aspects of the game, and so on.

Yet, by suitable modeling, all forms of
incomplete information can be reduced to
the case in which the players have less than
full information about each other’s payoff
functions U/, defining the wtility payoff u; =
U(s) of each player i for any possible strat-
egy combination s=(s,,...,s,) the n play-
ers may use (see Harsanyi, 1967 pp. 167-68).

III. Two-Person I-Games

A. A Model Based on
Higher-and-Higher-Order Expectations

Consider a two-person I-game G in which
the two players do not know each other’s
payoff functions. (But for the sake of sim-
plicity I shall assume that they do know
their own payoff functions.)

A very natural—yet as will be seen a
rather impractical—model for analysis of
this game would be as follows. Player 1 will
realize that player 2’s strategy s, in this
game will depend on player 2’s own payoff
function U,. Therefore, before choosing his
own strategy s;, player 1 will form some
expectation e U, about the nature of U,. By
the same token, player 2 will form some
expectation e,U, about the nature of player
1’s payoff function U,. These two expecta-
tions e,U, and e,U; I shall call the two
players’ first-order expectations.

Then, player 1 will form some second-
order expectation e;e,U; about player 2’s
first-order expectation e,U;, whereas player
2 will form some second-order expectation
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e,e U, about player 1’s first-order expecta-
tion e,U,, and so on.

Of course, if the two players want to
follow the Bayesian approach, then their
expectations will take the form of subjective
probability distributions over the relevant
mathematical objects. Thus, player 1’s
first-order expectation e U, will take the
form of a subjective probability distribution
PX(U,) over all possible payoff functions U,
that player 2 may possess. Likewise, player
2’s first-order expectation e,U; will take the
form of a subjective probability distribution
PJ(U)) over all possible payoff functions U;
that player 1 may possess.

On the other hand, player 1’s second-
order expectation e,e,U; will take the form
of a subjective probability distribution
P2(P}) over all possible first-order probabil-
ity distributions P, that player 2 may enter-
tain. More generally, the kth-order expecta-
tion (k >1) of either player i will be a
subjective probability distribution P*(P*~")
over all the (K —1)-order subjective proba-
bility distributions P/~' that the other
player j (j # i) may have chosen.!

Of course, any model based on higher-
and-higher-order expectations would be
even more complicated in the case of n-
person I-games (with n>2). Even if one
retains the simplifying assumption that each
player will know his own payoff function,
each player will still have to form (n—1)
different first-order expectations, as well as
(n — 1)? different second-order expecta-
tions, and so on.

Yet, as will be seen, there is a much
simpler and very much preferable approach
to analyzing I-games, one involving only one
basic probability distribution Pr (together
with n different conditional probability dis-

'The subjective probability distributions of various
orders discussed in this section all are probability dis-
tributions over function spaces, whose proper mathe-
matical definition poses some well-known technical
difficulties. Yet, as Robert J. Aumann (1963, 1964) has
shown, these difficulties can be overcome. But even so,
the above model of higher-and-higher-order subjective
probability distributions remains a hopelessly cumber-
some model for analysis of I-games.
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tributions, all of them generated by this
basic probability distribution Pr).

B. Arms-Control Negotiations between
the United States and the Soviet Union
in the 1960’s

In the period from 1964 to 1970, the U.S.
Arms Control and Disarmament Agency
employed a group of about ten young game
theorists as consultants. It was as a member
of this group that I developed the simpler
approach, already mentioned, to the analy-
sis of I-games.

I realized that a major problem in arms-
control negotiations is the fact that each
side is relatively well informed about its
own position with respect to various vari-
ables relevant to arms-control negotiations,
such as its own policy objectives, its peace-
ful or bellicose attitudes toward the other
side, its military strength, its own ability to
introduce new military technologies, and so
on—but may be rather poorly informed
about the other side’s position in terms of
such variables. I came to the conclusion that
finding a suitable mathematical representa-
tion for this particular problem may very
well be a crucial key to a better theory of
arms-control negotiations, and indeed to a
better theory of all I-games.

Similar problems arise also in economic
competition and in many other social activi-
ties. For example, business firms are almost
always better informed about the economic
variables associated with their own opera-
tions than they are about those associated
with their competitors’ operations.

Let me now go back to my discussion of
arms-control negotiations. I shall describe
the American side as player 1 and shall
describe the Soviet side, which I shall often
call the Russian side, as player 2.

To model the uncertainty of the Russian
player about the true nature of the Ameri-
can player (i.e., about that of player 1), I
shall assume that there are K different pos-
sible types of player 1, to be called types
th,e2,...,tf,...,tX. The Russian player (i.e.,
player 2) will not know which particular
type of player 1 will actually be representing
the American side in the game.
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This fact will pose a serious problem for
the Russian player because his own strategi-
cal possibilities in the game will obviously
depend, often very strongly, on which par-
ticular type of American player will con-
front him in the game, for each of the K
possible types of this player might corre-
spond to a very different combination of the
possible characteristics of the American
player, in terms of variables ranging from
the true intentions of this American player
to the availability or unavailability of power-
ful new military technologies to him—tech-
nologies sometimes very contrary to the
Russian side’s expectations. Moreover, dif-
ferent types of the American player might
differ from each other also in entertaining
different expectations about the true nature
of the Russian player.

On the other hand, to model the uncer-
tainty of the American player about the
true nature of the Russian player (i.e., about
that of player 2), I shall assume that there
are M different possible types of player 2,
to be called types t1,t3,t7,...,TM. The
American player (i.e., player 1) will not
know which particular type of player 2 will
actually represent the Russian side in the
game.

Again, this fact will pose a serious prob-
lem for the American player, because each
of the M possible types of the Russian
player might correspond to a very different
combination of the possible characteristics
of the Russian player. Moreover, different
types of the Russian player might differ
from each other also in entertaining differ-
ent expectations about the true nature of
the American player.?

Let wX(m) for m=1,..., M be the probability that
some type t¥ of player 1 assigns to the assumption that
the Russian side will be represented by type ¢5" in the
game. According to Bayesian theory, the M probabili-
ties (1), 74Q),...,7X(m),..., 7 (M) will fully char-
acterize the expectations that this type tl" entertains
about the characteristics of player 2 in the game.

On the other hand, as will be seen, the probabilistic
model 1 shall propose for the game will imply that
these probabilities 7¥(m) must be equal to certain
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C. A Type-Centered Interpretation
of I-Games

A C-game is of course always analyzed on
the assumption that the centers of activity in
the game are its players. But in the case of
an I-game we have a choice between two
alternative assumptions. One is that its cen-
ters of activity are its players, as would be
the case in a C-game. The other is that its
centers of activity are the various types of
its players. The former approach I shall call
a player-centered interpretation of this I-
game, whereas the latter approach I shall
call its type-centered interpretation.

When these two interpretations of any
I-game are properly used, then they are
always equivalent from a game-theoretic
point of view. In my 1967-1968 papers 1
used the player-centered interpretation of
I-games. But in this paper I shall use their
type-centered interpretation, because now I
think that it provides a more convenient
language for the analysis of I-games.

Under this latter interpretation, when
player 1 is of type ¢f, then the strategy and
the payoff of player 1 will be described as
the strategy and the payoff of this type tf of
player 1, rather than as those of player 1 as
such. This language has the advantage that
it enables one to make certain statements
about type t¥ without any need for further
qualifications, instead of making similar
statements about player 1 and then explain-
ing that these statements apply to him only
when he is of type t{‘. This language is also
a useful reminder of the fact that in any
I-game the strategy that a given player will
use and the payoff he will receive will often
strongly depend on whether this player is of
one type or is of another type.

On the other hand, one must keep in
mind that any statement about a given type

conditional probabilities so that

7f(m)=Pr(tyltf)  form=1,... .M.

A similar relationship will obtain between the K prob-
abilities 75'(k) entertained by any given type t5' of
player 2 and the conditional probabilities Pr(¢¥|¢5") for
k=1,...,K.
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tf‘ can always be retranslated into player-
centered language so as to make it into
a statement about player 1 when he is of
type tX.

A type-centered language about player 2
when he is of some type ¢J' can be defined
in a similar way.

D. The Two Active Types and Their
Payoff Functions

Suppose that player 1 is of type tf,
whereas player 2 is of type t5". Then I shall
say that the two players are represented by
their types t1 and 7', and that these two
types are the two actwe types in the game.
In contrast, all types t1 with k" # k and all
types t3" with m’ # m will be called inactive
types.

In a two-person C-game, the payoff of
either player will depend only on the strate-
gies used by the two players. In contrast in
a two-person I-game the payoffs Ul and vy’
of the two active types t1 and 3" will de-
pend not only on these two types’ strategies
s and s (pure or mixed) but also on their
types as indicated by the superscripts £ and
m in the symbols ¢f and 5" denoting them.
Thus, one may define their payoffs vf and
vy as

(1) v{‘=V1k(sf,s§”;k,m)
and
(2) vy =V (st, sy k,m)

where Vlk and V;" denote the payoff func-
tions of ¢{ and of 4

Yet, I shall call V1 and V" conditional
payoff functions because the payoff of type
¥ will be the quantity Ul defined by (1)
only if t1 is an active type in the game and
if the other active type in the game is ¢
Likewise, the payoff of type ¢5* will be the
quantity v5* defined by (2) only if ¢J' is an
active type and if the other actlve type is t1

More particularly, if either t1 or 7' is an
inactive type then he will not be an actual
participant of the game and, therefore, will
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not receive any payoff (or will receive only a
zero payoff).

E. Who Will Know What in the Game

For convenience I shall assume that the
mathematical forms of the two payoff func-
tions V¥ and V" will be known to all
participants of the game. That is to say, they
will be known to both players and to all
types of these two players.

I shall also assume that player 1 will know
which particular type t{‘ of his is represent-
ing him in the game. Likewise, player 2 will
know which particular type ¢} of his is
representing him. In contrast, to model the
uncertainty of each player about the true
nature of the other player, I shall assume
that neither player will know which particu-
lar type of the other player is representing
the latter in the game.

In terms of type-centered language, these
assumptions amount to saying that all types
of both players will know that they are
active types if they in fact are. Moreover,
they will know their own identities. (Thus,
e.g., type ¢; will know that he is ¢3, etc.) In
contrast, none of the types of player 1 will
know the identity of player 2’s active type
t7'; and none of the types of player 2
will know the identity of player 1’s active
type tX.

F. Two Important Distinctions

As I have already shown, one important
distinction in game theory is that between
games with complete and with incomplete
information (i.e., between C-games and I-
games). It is based on the amount of infor-
mation the players will have in various games
about the basic mathematical structure of
the game as defined by its normal form (or
by its extensive form). That is to say, it is
based on the amount of information the
players will have about those characteristics
of the game that must have been decided
upon before the game can be played at all.

Thus, in C-games all players will have full
information about the basic mathematical
structure of the game as just defined. In
contrast, in I-games the players, or at least
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some of them, will have only partial infor-
mation about it.

Another, seemingly similar but actually
quite different, distinction is between games
with perfect and with imperfect informa-
tion. Unlike the first distinction, this one is
based on the amount of information the
players will have in various games about the
moves that occurred at earlier stages of the
game (i.e., about some events that occurred
during the time when the game was actually
played, rather than about some things de-
cided upon before that particular time).

Thus, in games with perfect information,
all players will have full information at ev-
ery stage of the game about all moves made
at earlier stages, including both personal
moves and chance moves.> In contrast, in
games with imperfect information, at some
stage(s) of the game the players, or at least
some of them, will have only partial infor-
mation or none at all about some move(s)
made at earlier stages.

In terms of this distinction, chess and
checkers are games with perfect informa-
tion because they do permit both players to
observe not only their own moves, but also
those of the other player. In contrast, most
card games are games with imperfect infor-
mation because they do not permit the
players to observe the cards the other play-
ers have received from the dealer, or to
observe the cards discarded by other players
with their faces down, and so on.

Game theory as first established by von
Neumann and Morgenstern, and even as it
had been further developed up to the late
1960’s, was restricted to games with com-
plete information. But from its very begin-
ning, it has covered all games in that class,
regardless of whether they were games with
perfect or with imperfect information.

3Personal moves are moves the various players have
chosen to make. Chance moves are moves made by
some chance mechanism, such as a roulette wheel.
Moves made by some players yet decided by chance,
such as throwing a coin, or a shuffling of cards, can also
count as chance moves.
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G. A Probabilistic Model for the
Two-Person I-Game G

Up till now I have always considered the
actual types of the two players, represented
by the active pair (¢X,¢5") simply as given.
But now I shall propose to enrich our model
for this game by adding some suitable for-
mal representation of the causal factors re-
sponsible for the fact that the American
and the Russian player have characteristics
corresponding to those of (say) types ¢ and
t7* in the model.

Obviously, these causal factors can only
be social forces of various kinds, some of
them located in the United States, others in
the Soviet Union, and others again presum-
ably in the rest of the world. Yet, it is our
common experience as human beings that
the results of social forces seem to admit
only of probabilistic predictions. This ap-
pears to be the case even in situations in
which we are exceptionally well informed
about the relevant social forces. Even in
such situations the best we can do is to
make probabilistic predictions about the re-
sults that these social forces may produce.

Accordingly, I shall use a random mecha-
nism and, more particularly, a lottery as a
formal representation of the relevant social
forces, that is, of the social forces that have
produced an American society of one par-
ticular type (corresponding to some type ¢f
of the model) and that have also produced a
Russian society of another particular type
(corresponding to some type t5' of the
model).

More specifically, I shall assume that, be-
fore any other moves are made in game G,
some lottery, to be called lottery L, will
choose some type tf as the type of the
American player, as well as some type ¢5’ as
the type of the Russian player. I shall as-
sume also that the probability that any par-
ticular pair (¢§,t5") is chosen by this lottery
L will be

(3) Pr(t1,t3") = Pim
fork=1,...,Kandform=1,...,M.

As player 1 has K different possible types
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whereas player 2 has M different possible
types, lottery L will have a choice among
H = KM different pairs of the form (¢§,¢5").
Thus, to characterize its choice behavior
one needs H different probabilities p,,,,.

Of course, all these H probabilities will
be nonnegative and will add up to unity.
Moreover, they will form a K X M probabil-
ity matrix [ p,,,], such that, for all possible
values of k and of m, its kth row will
correspond to type t¥ of player 1 whereas
its mth column will correspond to type ¢}’
of player 2.

I shall assume also that the two players
will try to estimate these H probabilities on
the basis of their information about the
nature of the relevant social forces, using
only information available to both of them.
In fact, they will try to estimate these prob-
abilities as an outside observer would do,
one restricted to information common to
both players (cf. Harsanyi, 1967 pp. 176-77).
Moreover, I shall assume that, unless he has
information to the contrary, each player will
act on the assumption that the other player
will estimate these probabilities p,,, much
in the same way as he does. This is often
called the common priors assumption (see
Drew Fudenberg and Jean Tirole, 1991 p.
210). Alternatively, one may simply assume
that both players will act on the assumption
that both of them know the true numerical
values of these probabilities p,,,—so that
the common-priors assumption will follow
as a corollary.

The mathematical model one obtains by
adding a lottery L (as just described) to the
two-person I-game described in Subsections
B-E will be called a probabilistic model for
this I-game G. As will be seen presently,
this probabilistic model will actually convert
this I-game G into a C-game, which I shall
call game G*.

H. Converting the I-Game G
with Incomplete Information into a
Game G* with Complete Yet
Imperfect Information

In this section, I shall be using player-
centered language because this is the lan-
guage in which traditional definitions have
been stated for games with complete infor-
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mation and with incomplete information, as
well as for games with perfect information
and with imperfect information.

Let us go back to the two-person game G
used to model arms-control negotiations be-
tween the United States and the Soviet
Union. We are now in a better position to
understand why it is that, under the original
assumptions about G, it will be a game with
incomplete information.

(i) First of all, under the original assump-
tions, player 1 is of type ¢f, which I shall
describe as Fact I, whereas player 2 is
of type t3', which I shall describe as
Fact II. Moreover, both Facts I and II
are established facts from the very begin-
ning of the game, and they are not facts
brought about by some move(s) made
during the game. Consequently, these two
facts must be considered to be parts of
the basic mathematical structure of this
game G.

(ii) On the other hand, according to the
assumptions made in Subsection E,
player 1 will know Fact 1 but will lack
any knowledge of Fact II. In contrast,
player 2 will know Fact II but will lack
any knowledge of Fact I.

Yet, as we have just concluded, both Facts
I and II are parts of the basic mathematical
structure of the game. Hence, neither player
1 nor player 2 will have full information
about this structure. Therefore, under the
original assumptions, G is in fact a game
with incomplete information.

I will now show that as soon as one rein-
terprets game G in accordance with the
probabilistic model (i.e., as soon as one
adds lottery L to the game), the original
game G will be converted into a new game
G* with complete information. Of course,
even after this reinterpretation, the state-
ments under (ii) will retain their validity.
But the status of Facts I and II as stated
under (i) will undergo a radical change. For
these facts will now become the results of a
chance move made by lottery L during the
game and, therefore, will no longer be parts
of the basic mathematical structure of the
game. Consequently, the fact that neither
player will know both of these facts will no
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longer make the new game G* into one
with incomplete information.

To the contrary, the new game G* will be
one with complete information because its
basic mathematical structure will be defined
by the probabilistic model for the game,
which will be fully known to both players.

On the other hand, as the statements
under (ii) do retain their validity even in
game G¥*, the latter will be a game with
imperfect information because both players
will have only partial information about the
pair (¢5,¢7") chosen by the chance move of
lottery L at the beginning of the game.

1. Some Conditional Probabilities
in Game G*

Suppose that lottery L has chosen type ¢
to represent player 1 in the game. Then,
according to the assumptions in Subsection
E, type t¥ will know that he now has the
status of an active type and will know that
he is type t¥. But he will not know the
identity of the other active type in the game.

How should t{‘ now assess the probability
that the other active type is actually a par-
ticular type ¢5' of player 2? He must assess
this probability by using the information he
does have, namely, that he, type tf, is one
of the two active types. This means that he
must assess this probability as being the
conditional probability 4

K
(4) mi(m) =Pr(t7|tf) =Pim | X Prm-
k=1

On the other hand, now suppose that
lottery L has chosen type ¢}’ to represent
player 2 in the game. Then, how should ¢
assess the probability that the other active
type is a particular type ¢ of player 1? By
similar reasoning, he should assess this
probability as being the conditional proba-
bility

M
(5) w5 (k)="Pr(tf|e5) =pkm/ Z_‘,lpkm‘

4See footnote 2.
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J. The Semiconditional Payoff Functions
of the Two Active Types

Suppose the two active types in the game
are t§ and 5. As was seen in Subsection D,
under this assumption, the payoffs u{‘ and
v of these two active types will be defined
by equations (1) and (2).

Note, however, that this payoff vf de-
fined by (1) will not be the quantity that
type ¢§ will try to maximize when he chooses
his strategy s, for he will not know that his
actual opponent in the game will be type
¢ti". Rather, all he will know is that his
opponent in the game will be one of player
2’s M types. Therefore, he will chose his
strategy s& so as to protect his interests not
only against his unknown actual opponent
¢, but rather against all M types of player
2 because, for all he knows, any of them
could now be his opponent in the game.

Yet, type tf will know that the probabil-
ity that he will face any particular type t3"
as opponent in the game will be equal to
the conditional probability ¥(m) defined
by (4). Therefore, the quantity that X will
try to maximize is the expected value uf of
the payoff v, which can be defined as

(6) uf=Ui(st,s7)

M
= Y wi(m)VE(st,s5s k,m).

m=1

Here the symbol s¥ stands for the strategy
M-tuple’®

(7)  s3=(s3,83,...,85,...,57").

I have inserted the symbol s¥ as the second
argument of the function Uf in order to
indicate that the expected payoff u¥ of type
t{‘ will depend not only on the strategy s5’
that his actual unknown opponent ¢ will
use, but rather on the strategies s3,...,s5

that any one of his M potential opponents

5Using player-centered language, in Harsanyi (1967,
p. 180), I called the M-tuple s¥ and the K-tuple s§ the
normalized strategies of player 2 and player 1, respec-
tively.
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t;, ey té" would use in case he were chosen
by lottery L as t{‘ ’s opponent in the game.

By similar reasoning, the quantity that
type ty' will try to maximize when he
chooses his strategy s5' will not be his pay-
off v4* defined by (2). Rather, it will be the
expected value u3 of this payoff vJ', de-
fined as

(8) uy=U"(s3,53")
K
=Y T (k)V (st 85 k,m).
k=1

Here the symbol s stands for the strategy
K-tuple

9) st =(s1,87,..,5%,...,88).

Again, I have inserted the symbol s} as the
first argument of the function U;" in order
to indicate that the expected payoff of type
¢ will depend on all K strategies si,...,s5
that any one of the K types of player 1
would use against him in case he were cho-
sen by lottery L as tJ"’s opponent in the
game.

As distinguished from the conditional
payoff functions ¥} and V3" used in (1) and
(2), I shall describe the payoff functions Uf
and U;" used in (6) and in (8) as semicondi-
tional. For V} and V" define the payoff vf
or vy of the relevant type as being depen-
dent on the two conditions that:

(a) he himself must have the status of an
active type; and

(b) the other active type in the game must
be a specific type of the other player.

In contrast, UF and UJ" define the ex-
pected payoff uf or uj' of the relevant type
as being independent of condition (b), yet
as being dependent on condition (a). (For it
will still be true that neither type will re-
ceive any payoff at all if he is not given by
lottery L the status of an active type in the
game.)

As seen in Subsection H, once one rein-
terprets the original I-game G in accor-
dance with the probabilistic model for it, G
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will be converted into a C-game G*. Yet,
under its type-centered interpretation, this
C-game G* can be regarded as a (K + M)-
person game whose real “players” are the K
types of player 1 and the M types of player
2, with their basic payoff functions being the
semiconditional payoff functions U} (k =
L,....,K)and U (m=1,...,M).

If one regards these K + M types as the
real “players” of G* and regards these
payoff functions U and U;" as their real
payoff functions, then one can easily define
the Nash equilibria® of this C-game G¥*.
Then, using a suitable theory of equilibrium
selection, one can define one of these equi-
libria as the solution of this game.

IV. n-Person I-Games

A. The Types of the Various Players,
the Active Set, and the Appropriate
Sets in n-Person I-Games

The analysis of two-person I-games can
be easily extended to n-person I-games. But
for lack of space I shall have to restrict
myself to the basic essentials of the n-per-
son theory.

Let A be the set of all n players. I shall
assume that any player i (i=1,...,n) will
have K; different possible types, to be called
tis...,tk,...,tXi. Hence, the total number of
different types in the game will be

Z=)Y K,
ienN

(10)

Suppose that players 1,...,i,...,n are now
represented by their types ¢fi,...,tK, ... tkn
in the game. Then the set of these n types
will be called the active set a.

Any set of n types containing exactly one
type of each of the »n players could in prin-
ciple play the role of an active set. Any such
set will be called an appropriate set. As any
player i has K, different types, the number
of different appropriate sets in the game

As defined by Josh Nash (1951); but he actually
called them equilibrium points.
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will be

(11) H=T]K,.

ienN

I shall assume that these H appropriate sets
a will have been numbered as

(12)

Let 4% be the family of all appropriate
sets containing a particular type ti" of some
player i as their member. The number of
different appropriate sets in 4% will be

(13)  a(i)= J1 K;= H/K,.

a;,35,...,8,,...,45.

Let B¥ be the set of all subscripts h such
that a, is in 4% As there is a one-to-one
correspondence between the members of
4% and the members of B, this set BF will
likewise have a(i) different members.

B. Some Probabilities

I shall assume that, before any other moves
are made in game G*, some lottery L will
choose one particular appropriate set to be
the active set a of the game. The n types in
this set a will be called active types, whereas
all types not in a will be called inactive
types.

I shall assume that the probability that a
particular appropriate set a, will be chosen
by lottery L to be the active set a of the
game is
(14) Pr(a=a,)=r, forh=1,...,H.
Of course, all these H probabilities r, will
be nonnegative and will add up to unity.
Obviously, they will correspond to the H
probabilities p,,, [defined by (3)] used in
the two-person case.

Suppose that a particular type ¢* of some
player i has been chosen by lottery L to be
an active type in the game. Then, under the
assumptions, he will know that he is type ¢}
and will know also that he now has the
status of an active type. In other words, ¢*
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will know that
(15) tkea.

Yet, the statement ¢ €2 implies the state-
ment

(16)

and conversely, because 4 ," contains exactly
those appropriate sets that have type tf as
their member. Thus, one can write

aeak

(17) i

(thea) o (aeaf).

I have already concluded that if type t,-k
has the status of an active type then he will
know (15). I can now add that in this case
he will know also (16) and (17). On the
other hand, he can also easily compute that

the probability for lottery L to choose an
active set a belonging to the family ﬂl,’-‘ is

Praeaf)= ) r,.

he Bk

(18)

In view of statements (15)-(18), how
should this type ti" assess the probability
that the active set a chosen by lottery L is
actually a particular appropriate set a,?
Clearly, he should assess this probability as
being the conditional probability

(19) =k (h) =Pr(2_1=ah|ti"€§).
Yet, in view of (17) and (18), one can write
(20) Pr(a=a,lt} €3)

=Pr(a=a,laeay)

=Pr(a=a,)/Pr(aeay)

=rh Z rh.

he Bk

Consequently, by (19) and (20) the required



302 THE AMERICAN ECONOMIC REVIEW

conditional probability is

(21) wf(h)=rh/ Y

he Bk

C. Strategy Profiles

Suppose that the K; types t/,...,
tik,...,t,-Ki of player i would use the strate-
gies s/,...,s¥,...,sX (pure or mixed) in case
they were chosen by lottery L to be active
types in the game. (Under the assumptions,
inactive types do not actively participate in
the game and, therefore, do not choose any
strategies.) Then I shall write

(22) §* = (s)y00y 5Ky 5K
for i=1,..-,n

to denote the strategy profile’ of player-i

types.
Let

(23) s =(s1,...,85")
be the ordered set obtained if one first lists
all K, strategies in s¥, then all K, strate-
gies in s3,..., then all K, strategies in
s¥,..., and finally all K, strategies in s?.
Obviously, s* will be a strategy profile of all
types in the game. In view of (10), s* will
contain Z different strategies.

Finally, let s*(k) denote the strategy pro-
file of the n types belonging to a particular
appropriate set a, for h=1,..., H.

D. The Conditional Payoff Functions

Let a, be an appropriate set defined as

(24) a,= (e, k).

The characteristic vector ¢(h) for a, will be
defined as the n-vector

(25)  e(h)=(ky,....kpro.n k).

"In Harsanyi (1967, 1968a,b), I called a strategy
combination such as s} the normalized strategy of
player i (see footnote 5).
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Suppose that this set a, has been chosen
by lottery L to be the active set a of the
game, and that some particular type ¢} of
player i has been chosen by lottery L to be
an active type. This of course means that ¢
must be a member of this set a,, which can
be the case only if type ¢ is identical to ¢}
listed in (24), which implies that k =k,
Yet, if all these requirements are met, then
this set a, and this type t* together will
satisfy all the statements (14)—-(21).

As seen in Section III-D, the payoff U,.k of
any active type tf will depend on both of
the following:

(i) the strategies used by the n-active types
in the game;
(i) the identities of these active types.

This means, however, that t*’s payoff vf
will depend on the strategy profile s*(k)
defined in the previous subsection and on
the characteristic vector ¢(h) defined by (25).
Thus, one can write

(26) vf =V (x*(h),c(h))

The payoff functions V¥ (i=1,...,n; k=
1,..., K;) I shall call conditional payoff func-
tions. First, any given type will obtain the
payoff Ul-k defined by (26) only if he will be
chosen by lottery L to be an active type in
the game. (This is what the condition ¢} €a
in (26) refers to.)

Second, even if t} is chosen to be an
active type, (26) makes his payoff v* depen-
dent on the set a, chosen by lottery L to be
an active set a of the game.

E. Semiconditional Payoff Functions

By reasoning similar to that used in Sec-
tion III-J, one can show that the quantity
any active type ¢ will try to maximize will
not be his payoff v} defined by (26). Rather,
it will be his expected payoff (i.e., the ex-
pected value u* of his payoff v)).
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One can define u¥ as

(27) uf=Uk(x*)
H
= T m (Ve (h) (1)

if tkea.

These payoff functions U* (i=1,...,n; k =
1,...,K;) I shall call semiconditional. 1 shall
do so because they are subject to the first
condition to which the payoff functions V;*
are subject but not to the second condition.
That is to say, any given type tik will obtain
the expected payoff u’ defined by (27) only
if he is an active type of the game. But, if he
is, then his expected payoff uf‘ will not
depend on which particular appropriate set
a, has been chosen by lottery L to be the
active set a of the game.

It is true also in the n-person case that if
an I-game is reinterpreted in accordance
with the probabilistic model then it will be
converted into a C-game G*. Moreover, this
C-game G*, under its type-centered inter-
pretation, can be regarded as a Z-person
game whose “players” are in the Z different
types in the game. As the payoff function of
each type tf one can use his semicondi-
tional payoff function UX.

Using these payoff functions U}, it will be
easy to define the Nash equilibria (Nash,
1951) of this Z-person game, and to choose
one of them as its solution on the basis of a
suitable theory of equilibrium selection.
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