An Almost Ideal Demand System

By ANGUS DEATON AND JOHN MUELLBAUER*

Ever since Richard Stone (1954) first
estimated a system of demand equations
derived explicitly from consumer theory,
there has been a continuing search for
alternative specifications and functional
forms. Many models have been proposed,
but perhaps the most important in current
use, apart from the original linear expendi-
ture system, are the Rotterdam model (see
Henri Theil, 1965, 1976; Anton Barten) and
the translog model (see Laurits Christensen,
Dale Jorgenson, and Lawrence Lau; Jorgen-
son and Lau). Both of these models have
been extensively estimated and have, in
addition, been used to test the homogeneity
and symmetry restrictions of demand the-
ory. In this paper, we propose and estimate
a new model which is of comparable gener-
ality to the Rotterdam and translog models
but which has considerable advantages over
both. Our model, which we call the Almost
Ideal Demand System (AIDS), gives an ar-
bitrary first-order approximation to any de-
mand system; it satisfies the axioms of
choice exactly; it aggregates perfectly over
consumers without invoking parallel linear
Engel curves; it has a functional form which
is consistent with known household-budget
data; it is simple to estimate, largely avoid-
ing the need for non-linear estimation; and
it can be used to test the restrictions of
homogeneity and symmetry through linear
restrictions on fixed parameters. Although
many of these desirable properties are
possessed by one or other of the Rotterdam
or translog models, neither possesses all of
them simultaneously.

In Section I of the paper, we discuss the
theoretical specification of the AIDS and
Justify the claims in the previous paragraph.
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In Section II, the model is estimated on
postwar British data and we use our results
to test the homogeneity and symmetry re-
strictions. Our results are consistent with
earlier findings in that both sets of restric-
tions are decisively rejected. We also find
that imposition of homogeneity generates
positive serial correlation in the errors of
those equations which reject the restrictions
most strongly; this suggests that the now
standard rejection of homogeneity in de-
mand analysis may be due to insufficient
attention to the dynamic aspects of con-
sumer behavior. Finally, in Section III, we
offer a summary and conclusions. We be-
lieve that the results of this paper suggest
that the AIDS is to be recommended as a
vehicle for testing, extending, and improving
conventional demand analysis. This does
not imply that the system, particularly in its
simple static form, is to be regarded as a
fully satisfactory explanation of consumers’
behavior. Indeed, by proposing a demand
system which is superior to its predecessors,
we hope to be able to reveal more clearly
the problems and potential solutions asso-
ciated with the usual approach.

L. Specification of the AIDS

In much of the recent literature on sys-
tems of demand equations, the starting
point has been the specification of a func-
tion which is general enough to act as a
second-order approximation to any arbi-
trary direct or indirect utility function or,
more rarely, a cost function. For examples,
see Christensen, Jorgenson, and Lau; W.
Erwin Diewert (1971); or Ernst Berndt,
Masako Darrough, and Diewert. Alterna-
tively, it is possible to use a first-order
approximation to the demand functions
themselves as in the Rotterdam model, see
Theil (1965, 1976); Barten. We shall follow
these approaches in terms of generality but
we start, not from some arbitrary preference
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ordering, but from a specific class of prefer-
ences, which by the theorems of Muellbauer
(1975, 1976) permit exact aggregation over
consumers: the representation of market de-
mands as if they were the outcome of deci-
sions by a rational representative consumer.
These preferences, known as the PIGLOG
class, are represented via the cost or expendi-
ture function which defines the minimum
expenditure necessary to attain a specific
utility level at given prices. We denote this
function c(u,p) for utility u and price vector
p, and define the PIGLOG class by

(1)
log c(u,p)=(1—u)log{a(p)} +ulog{b(p)}

With some exceptions (see the Appendix), u
lies between 0 (subsistence) and 1 (bliss) so
that the positive linearly homogeneous func-
tions a(p) and b(p) can be regarded as the
costs of subsistence and bliss, respectively.
The Appendix further discusses this general
model as well as the implications of the
underlying aggregation theory.

Next we take specific functional forms for
log a(p) and log b(p). For the resulting cost
function to be a flexible functional form, it
must possess enough parameters so that at
any smgle point its derivatives dc/ ap,,
dc/du, 3% /dp,dp;, 9%/dudp,, and 3 Zc/ou?
can be set equal to those of an arbitrary cost
function. We take

(2) loga(p)=a,+ % o logp,

1
+5 % 2 vy logp, logp,

3) logb(p)=loga(p)+ﬁolklpf*

so that the 4IDS cost function is written

(@) loge(u,p)=ay+ > oy logp,
X

1
+3 % 2 iy logp, logp; + uBo 1;[P:f"‘
7

where «;, B;, and y;f are parameters. It can
easily be checked that c(u,p) is linearly ho-
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mogeneous in p (as it must be to be a valid
representation of preferences) providcd that
To=12 =2, v5=2,8=0. It is also
stralghtforward to check that (4) has enough
parameters for it to be a flexible functional
form provided it is borne in mind that, since
utility is ordinal, we can always choose
a normalization such that, at a point,
d2Jogc/du*=0. The choice of the functions
a(p) and b(p) in (2) and (3) is governed
partly by the need for a flexible functional
form. However, the main justification is that
this particular choice leads to a system of
demand functions with the desirable proper-
ties which we demonstrate below.

The demand functions can be derived di-
rectly from equation (4). It is a fundamental
property of the cost function (see Ronald
Shephard, 1953, 1970, or Diewert's 1974
survey paper) that its price derivatives are
the quantities demanded: dc(u,p)/0p,=g;.
Multiplying both sides by p,/c(u,p) we find

(s) alogc(u,p)= P4 _
d/logp, c(u,p)

where w, is the budget share of good i.
Hence, logarithmic differentiation of (4)
gives the budget shares as a function of
prices and utility:

(6) wi=a+ 2 Yy IOng + B;uBy Hpk"
J
where

1
(M =5 (v + )

For a utility-maximizing consumer, total
expenditure x is equal to c(u,p) and this
equality can be inverted to give u as a
function of p and x, the indirect utility
function. If we do this for (4) and substitute
the result into (6) we have the budget shares
as a function of p and x; these are the AIDS
demand functions in budget share form:

8) w=a;+ 2 y, logp; + B;log{x/ P}
J
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where P is a price index defined by

(9) logP=ay+ 2 o logp,
p

1
+5 2 2 Vi logp, logp,
244

The restrictions on the parameters of (4)
plus equation (7) imply restrictions on the
parameters of the AIDS equation (8). We
take these in three sets

(10 Sa=1 Zy=0 3p=0

i=] i=1 i==1

(11) S ;=0
J

(12) Y=Y

Provided (10), (11), and (12) hold, equation
(8) represents a system of demand functions
which add up to total expenditure (Sw;=1),
are homogeneous of degree zero in prices
and total expenditure taken together,
and which satisfy Slutsky symmetry. Given
these, the AIDS is simply interpreted: in the
absence of changes in relative prices and
“real” expenditure (x/P) the budget shares
are constant and this is the natural starting
point for predictions using the model.
Changes in relative prices work through the
terms v;; each v, represents 10% times the
effect on the ith budget share of a 1 percent
increase in the jth price with (x/P) held
constant. Changes in real expenditure oper-
ate through the B, coefficients; these add to
zero and are positive for luxuries and nega-
tive for necessities. Further interpretation is
best done in terms of the claims made in the
introduction.

A. Aggregation Over Households

The aggregation theory developed in
Muellbauer (1975, 1976, of which the main
relevant points are summarized in the Ap-
pendix) implies that exact aggregation is
possible if, for an individual household A,
behavior is described by the generalization

JUNE 1980
of (8):

&) wy=a;+ Y;logp;+ Bilog{x,/k, P}
7

The parameters k, can be interpreted as a
sophisticated measure of household size
which, in principle, could take account of
age composition, other household character-
istics, and economies of household size; and
which is used to deflate the budget x, to
bring it to a “needs corrected” per capita
level. This allows a limited amount of taste
variation across households. The share of
aggregate expenditure on good i in the
aggregate budget of all households, denoted
w, is given by

%P:qih 2H=3 xhwi}/z Xp
h
which, when applied to (8") gives

@) w=a+ 2 Yy logp;— B;log P
J

+B.{ % Xn log(xh/kh)/z xh}

Define the aggregate index & by
(13) log(%/k)= 3 xylog(xu/ k) 5 %,
h

where X is the average level of total expendi-
ture x,. Hence (8”) becomes

(8") W,=a,+ X v;logp,+ B,log(X/ kP)
J

This is identical in form to (8') and this
confirms that under these assumptions ag-
gregate budget shares correspond to the de-
cisions of a rational representative house-
hold whose preferences are given by the
AIDS cost function (4) and whose budget is
given by X/k, the “representative budget
level.”

The index & has an interesting interpreta-
tion. If each household had the same tastes
(k,=1, all k), k would be an index of the
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equality of the distribution of household
budgets. In fact, this index is identical to
Theil’s (1972) entropy measure of equality Z
deflated by the number of households H,
where logZ=—2(x,/X)log(x,/X) and X
is the aggregate budget; Z reaches its maxi-
mum level of H when there is perfect equal-
ity so that x, = X, all . Therefore as inequal-
ity increases, k=Z/H decreases and the
representative budget level increases. When
k, differs across households, for example,
because of differences in household com-
position, the index k reflects not only the
distribution of budgets but the demographic
structure. Ideally, one might attempt to
model the variation of k, with household
characteristics in a cross-section study and,
given time-series data on the joint distribu-
tion of household budgets and characteris-
tics, construct a series for k for use in fitting
(8”). Data limitations have prevented us
from carrying out this proposal in the em-
pirical application below. To the extent that
k is constant or uncorrelated with X or p, no
omitted variable bias arises from our proce-
dure of omitting k and redefining o* = o, —
B:logk* where k* is the constant or sample
mean value of k.

When the distribution of household bud-
gets and household characteristics is invar-
iant except for equiproportional changes in
household budgets, k is constant. In this
case there is considerable extra scope for
taste variations in the individual demand
functions without altering the validity of
the representative consumer hypothesis em-
bodied in (8"). Indeed, it turns out that not
only ay, all i, but also vy, all i,/, can differ
over households. The «; and vy, parameters
in (8") are then weighted averages of the
micro parameters.

B. Generality of the Model

The flexible functional form property of
the AIDS cost function implies that the
demand functions derived from it are first-
order approximations to any set of demand
functions derived from utility-maximizing
behavior. The 4IDS is thus as general as
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other flexible forms such as the translog or
the Rotterdam models. However, if maxi-
mizing behavior is not assumed but it is
simply held that demands are continuous
functions of the budget and of prices, then
the AIDS demand functions (8) (without
the restrictions (11) and (12)) can still pro-
vide a first-order approximation. In general,
without maximizing assumptions, we can
think of the budget shares w, as being un-
known functions of logp and logx. From
(8) and (9), the AIDS has derivatives
ow;,/dlog x=B; and dw,/dlogp,=7v, — Bia, —
B.Zv, logp, so that, at any point, B and
v can be chosen so that the derivatives of
the AIDS will be identical to those of any
true model. Given that the a« parameters act
as intercepts, the AIDS can thus provide a
local first-order approximation to any true
demand system, whether derived from the
theory of choice or not. This property is
important since it means that tests of homo-
geneity of symmetry are set within a main-
tained hypothesis which makes sense and
would be widely accepted in its own right.

Generality is not without its problems,
however. There is a large number of param-
eters in (18) and on most data sets these are
unlikely to be all well determined. It is thus
important that there should exist some
straightforward procedure for eliminating
unnecessary parameters without untoward
consequences for the properties of the
model. In the AIDS, this can be done by
placing whatever restrictions on ¥y, parame-
ters are thought to be empirically or theor-
etically plausible. As we shall see below, in
many cases it will be possible to impose
these restrictions on a single equation basis.
One obvious restriction is that for some
pairs (i,/),v, should be zero; for such pairs
the budget share of each is independent of
the price of the other if (x/P) is held con-
stant. It can be shown that y, has approxi-
mately the same sign as the compensated
cross-price elasticity and this is also useful
in suggesting prior restrictions. We should
not however expect all the y;s to be zero;
the resulting model, w,= o, + B,log(x/ P) is
extremely restrictive and has been tested
and rejected by Deaton (1978).
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C. Restrictions

If we start from equations (8) and (9) as
our maintained hypothesis, we can examine
the effects of the restrictions (10)—(12)
which are required to make the model con-
sistent with the theory of demand. The con-
ditions (10) are the adding-up restrictions; as
can easily be checked from (8), these ensure
that Sw =1. Homogeneity of the demand
functions requires restriction (11) which can
be tested equation by equation. Slutsky sym-
metry is satisfied by (8) if and only if the
symmetry restriction (12) holds. As is true of
other flexible functional forms, negativity
cannot be ensured by any restrictions on
the parameters alone. It can however be
checked for any given estimates by calculat-
ing the eigenvalues of the Slutsky matrix Siis
say. In practice, it is easier to use not s, but
k;=p,p;s,/ x, the eigenvalues of which have
the same signs as those of s; and which are
given by

x
(14) ki=v;+ BB log—p -w, + w,W;

where §; is the Kronecker delta. Note that
apart from this negativity condition, all the
restrictions are expressible as linear con-
straints involving only the parameters and
so can be imposed globally by standard
techniques.

D. Estimation

In general, estimation can be carried out
by substituting (9) in (8) to give

(15) wi=(ai_ﬂia0)+ E Y;legP,‘*‘Bi{Ing
J

1
- >a logp, — 5 > > Vi log py logpj}
k k

and estimating this non-linear system of
equations by maximum likelihood or other
methods with and without the restrictions
(11) and (12). (Note that since the data add
up by construction, (10) is not testable.)
Equation (15) is not particularly difficult to
estimate since the first-order conditions for

JUNE 1980

likelithood maximization are linear in « and
Y given B and vice versa so that “concentra-
tion” allows iteration on a subset of the
parameters (see for example, Deaton, 1975,
pp. 46-49). Although all the parameters in
(15) are identified given sufficient variation
in the independent variables, in many exam-
ples the practical identification of a, is
likely to be problematical. This parameter is
only identified from the a;s in (15) by the
presence of these latter inside the term in
braces, originally in the formula for log P,
equation (9). However, in situations where
individual prices are closely collinear, log P
is unlikely to be very sensitive to its weights
so that changes in the intercept term in (15)
due to variations in a, can be offset in the
as with minimal effect on Jog P. This can be
overcome in practice by assigning a value to
@, a priori. Since the parameter can be inter-
preted as the outlay required for a minimal
standard of living when prices are unity
(usually in the base year; see the Appendix),
choosing a plausible value is not difficult.

However, in many situations, it is possible
to exploit the collinearity of the prices to
yield a much simpler estimation technique.
Note from (8) that if 2 were known, the
model would be linear in the parameters a,
B, and vy, and estimation (at least without
cross-equation restrictions such as symme-
try) can be done equation by equation by
OLS which, in this case and given normally
distributed errors, is equivalent to maximum
likelihood estimation for the system as a
whole. The adding-up constraints (10) will
be automatically satisfied by these esti-
mates. In situations where prices are closely
collinear, it may well be adequate to ap-
proximate P as proportional to some known
index P*, say. One obvious candidate in
view of (8) and (9) is Stone’s (1953) index
log P*=2Xw, logp,. If P~¢P* say, then (8)
can be estimated as

(16)
x
w;= (o, — B;log &) + 2 'Y.'jlogl’j"'ﬂi]og(’]‘,I)
J
Note that in this framework the &, parame-

ters are identified only up to a scalar multi-
ple of B; if we write a*=qa;,— B,loge, it is
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easily seen that Saf =0 is still required for
adding up, since £ 8, =0.

In the empirical results below we shall
estimate both (15) and (16), and show that
the latter is an excellent approximation to
the former. However, it must be emphasized
that (16) exists only as an approxima-
tion to (15) and will only be accurate in
specific circumstances, albeit widely occur-
ring ones in time-series estimation. Note
finally that if single equation estimation is
used to investigate likely restrictions
amongst the y parameters, as is suggested in
Part B above, the constrained OLS estimates
will no longer automatically be maximum
likelihood, efficient, or satisfy adding up.
Hence, once the restrictions have been
selected, (15) should be used to reestimate
the whole system.

E. Relationship with Budget Studies and
with the Rotterdam Model

The Engel curves corresponding to (8)
take the form p,q,=&x+ Bxlogx for ap-
propriate functions of prices £. These are
clearly not linear except in the proportional
case when 8, =0. The model thus allows a
possible reconciliation between time-series
models, which have to date required linear-
ity of Engel curves for aggregation with
cross-section results, which typically find
evidence of nonlinearity. Indeed, the PIG-
LOG Engel curve w,=§ + B;log x was used
as early as 1943 by Holbrook Working and
has recently been recommended by Claus
Leser (1963, 1976) as providing an excellent
fit to cross-section data in a wide range of
circumstances.

In the time-series context, the AIDS has a
close relationship to the Rotterdam model
of Theil (1965, 1976) and Barten. The first
difference form of (8) is

x
(17) Aw,=BA log(-F) + > v, Alogp;
J

which no longer involves the o parameters
except through Alog P. This dependence can
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be seen by writing (17) in full, i.e.,

(18) Aw,=Bi{Alogx— > a,Alogp,
k

1
— 3 2 2 vAlogp, logpk)} + X vyAlogp;
Kk J J

Again, all the parameters (except oap) are
theoretically identified, but in practice the
substitutability between y,s and B;as in fit-
ting (18) if prices are nearly collinear means
that, in such cases, the only practical way of
estimating (17) is to replace Alog P by some
index, for example, A(Zw, logp,) as before
or by its approximation Zw,Alogp,. In the
latter case, the right-hand side of (17) be-
comes identical to the right-hand side of the
Rotterdam model which is

(19) wAlogg,=b,{Alogx—Zw,Alogp,}
+> c;Alogp;
J

The dependent variable is different in the
AIDS; instead of w,Alogq, we have Aw; or
w,Alogw,. Thus, by replacing the dependent
variable w,Alogg, in the Rotterdam model
by w,Alogw, an addition of w,Alog(p,/ x),
we generate the first-difference form of the
AIDS. The similarity between the two mod-
els is quite striking in this form; both are
effectively linear and both can be used to
test homogeneity and symmetry with only
linear restrictions on constant parameters.
Note however that the parameters have
quite different interpretations in the two
models so that, for example, the negativity
condition applies directly to the matrix of
price effects in the Rotterdam model which
is not the case for the AIDS. The crucial
difference between the two models is that
(17), unlike (19), is derived from explicit
demand functions, (8), and an explicit char-
acterization of preferences, (4). For the pre-
diction of demand this difference may not
be vitally important, but in many other con-
texts, for example in calculating cost-of-
living indices, household equivalence scales,
or optimal tax rates, the ability to link
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estimated parameter values to preferences
themselves becomes of great significance.

IL An Application to Postwar British Data

In this section we estimate the model
using annual British data from 1954 to 1974
inclusive on eight nondurable groups of
consumers’ expenditure, namely, food,
clothing, housing services, fuel, drink and
tobacco, transport and communication
services, other goods, and other services. As
discussed in Section I, Part A above, if we
assume that the index k& in (8") is either
constant or that its deviations are indepen-
dently distributed from those of the average
budget ¥ and of prices, no biases result from
its omission. In particular, we allow the in-
tercepts in (8'”) to absorb the — Blogk
terms. We then proceed by first following
the strategy outlined in Section I, Part D,
setting log P*=3Xw, logp, for each year and
estimating equation (16) for each good sep-
arately by OLS. The system is then reesti-
mated, equation by equation, and again
using P*, in order to test the homogeneity
condition. Equation (11) is imposed by sub-
stitution so that instead of (16), we estimate

n—1 -
. p; X
200 w=a*+ 3 yy.log(;i-)+,8,.log(-——P*)

ji=1

At this stage, F-ratios are calculated equa-
tion by equation to test the validity of the
restriction.

The next stage is to impose symmetry of
v, at this point replacing P* by the “correct”
price index (9) with a; set to some ap-
propriate value. Since symmetry, unlike
homogeneity or the unrestricted model,
involves cross-equation restrictions, the vari-
ance-covariance matrix of the residuals for
the first time plays a part in the estimation.
Since this is unknown a priori, normal prac-
tice would be to replace it by its maximum
likelihood estimate. However, with only
twenty-one observations, this is not practi-
cable for equation (15) since, with so many
parameters in each equation, the likelihood
can be made arbitrarily large by making any

JUNE 1980

one equation fit perfectly.! This difficulty
can only be resolved by assuming a particu-
lar structure for the variance-covariance
matrix of the residuals. Following Deaton
(1975, p. 39), we assume V=o%I—ii),
where V is the variance-covariance matrix
of the residuals, ¢? is a (positive) parameter
to be estimated, 7 is an n X n identity matrix
and i is a vector each of the elements of
which is (1)”"!/2, In this case, maximum-like-
lihood estimation reduces to least squares so
that instead of minimizing the determinant
of the matrix of residual cross products, we
minimize its trace. The likelihood values
quoted below are calculated on this assump-
tion. Once again, maximum use is made of
substitution in the estimation so that, under
symmetry, (15) is estimated using only the
fourteen independent a*s and B;s and the
twenty-eight parameters forming the upper
right-hand triangle of y with its final row
and column deleted. We now check that P*
and P are sufficiently close to allow com-
parison of likelihoods both by direct evalua-
tion of both indices and by reestimation of
the unrestricted and homogeneous models
using P as evaluated from the symmetric
estimates. It is also possible to check con-
cavity at this stage by using the symmetric
parameter estimates to calculate the eigen-
values of the matrix in (14). Finally, the
whole process is repeated with the model
written in first differences, that is, equation
(17) with the addition of intercepts. Collin-
earity prevented any successful attempt to
link P to the parameter estimates in these
regressions; instead, the value of P calcu-
lated from the symmetric estimation in
levels was used throughout.

Note that we choose to test symmetry
whether or not homogeneity is rejected. This
procedure has been criticized by Grayham
Mizon who suggests that optimal inference
requires that further testing be abandoned
as soon as a rejection is encountered.
Mizon’s criticism would be correct if we
were certain of our maintained hypothesis,
but to some extent this is a matter of choice.
Many economists would choose not to test

1We are grateful to Teun Kloek for pointing this out
to us.
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TABLE 1-—THE UNCONSTRAINED PARAMETER ESTIMATES AND TESTS OF HOMOGENEITY
(z-Values in Parentheses)

S.E.E.
Commodity ot B i Y2 R7) Y4 Yis Y6 Yi7 Y8 2y, (10°» R2 D.W.
s
Food 1.221 —0160 0.186 —0.077 -0013 ~0.020 -~-0058 0.032 0015 —-0.098 —-0.033 .113 0999 233
(14) (=61) (98) (-43) (~08) (=L (~62) (1.3) (07) (—42) (-44) .180 0998 174
Clothing -0.482 0.091 0.033 0016 —0.024 —-0.026 -—0.029 0.014 0033 -0.049 -0.032 .106 0984 2.29
(=31 [&N)) (1.8) (1.0) (~16) (—15 (-33) 0.6) (16) (—22) (—4.5 71 0955 1.55
Housing 0.793 ~0.104 --0.082 —-09 0.088 0.9 0.033 —0.055 —0.030 0.098 0.051 .086 0999 1.89
6.3) (=51 (—56) (~07) 72 0.7 47 (—29 (—~18 5.5 5.1) 241 0992 1.29
Fuel ~0.159 0.033 —-0.042 0010 --0011 0.037 —0.004 0.022 0.007 —0.031 —-0.010 .140 0883 225
(—0.8) 1.0 (-18) ©4) (—0.5) (1.6) (—0.3) 0.7 03) (—LI) (—LD) .141 0.870 2.03
Drink and —0.043 0.028 —0.043 0034 -0.027 -0.020 0.056 0.005 -—0.018 0.014 0.001 .099 0969 2.96
Tobacco (-03)  (12) (~-26 (22 (=19 (=12 (69) (02) (-09 (7 (00 .95 0969 2.93
Transport and -0.061 0.029 —-0.022 —-0.012 -0.002 0.011 0060 -0.023 —-0024 0.053 0040 .047 1.000 2.24
Commumcation (—=09)  (2.6) (=27) (—~16) (—=03) (14) (152) (=22) (-26 (53) (13.1) .184 0992 136
Other Goods -~ 0.038 0.022 0.001 -0.003 —-0.001 -0.006 -0.030 0.007 0.032 —0.006 -0.005 .108 0.885 1.92
(-02) (09 (OO (=02 (=00 (-03) (—34 (03 (15 (=02) (©7) .106 0880 191
Other Services -0.231 0060 -0.032 0.041 -—0.011 0014 —0.028 —0.003 -0015 0019 —~0.014 107 0843 227
(-15) Q4 (=18 @4 (=07 (08) (~3.1) (=01) (=07 (0.9) (~20) .19 0788 198

homogeneity, treating absence of money
illusion as a maintained hypothesis; the test
of symmetry would then be the interesting
one. Even if the maintained hypothesis
turns out to be false, tests based on it are
not necessarily without interest. Few if any
tests in econometrics are carried out within
the framework of maintained hypotheses
which are even widely accepted, let alone of
unchallengeable validity.

Table 1 reports the first-stage estimates of
(16) using P* and without any constraints
on the parameters save (10) which are auto-
matically and costlessly satisfied. The esti-
mates of B classify food and housing
as necessities while the other goods are
luxuries. A large number of y coefficients
are significantly different from zero; twenty-
two out of sixty-four have ¢-values ab-
solutely larger than 2. Even so, none of the
variables considered have any detectable
effect on the value share for fuel and very
few have influence in the other goods
or other services equations. Similarly, the
prices of fuel, of transport and communica-
tion, and of other services have little or no
effect anywhere (except, of course, through
P* and the value share itself), while the
prices of food, drink and tobacco, and of
other services appear with considerable reg-
ularity. The total expenditure and own-price
elasticities are shown in the first two col-

umns of Table 2 and, although food has an
(insignificant) positive price elasticity, these
numbers appear both credible and in line
with other studies. Note the general price
inelasticity of demand; only transport and
communication appear to be price elastic.
Table 1 also shows, in the column headed
2y, the row sums of the unconstrained v;
matrix; this number shows 102 times the
absolute effect on each value share of a 1
percent increase in all prices and total ex-
penditure. Under homogeneity, this should
be zero and the bracketed numbers given
are t-tests of the significance of the devia-
tion from zero. These numbers are, of
course, identical to the square roots of the
F-ratios obtained by comparing the residual
sums of squares of equations (16) and (20).
Hence, a proportional increase in prices and
expenditure will decrease expenditure on
food and on clothing, and increase expendi-
ture on housing and transport and com-
munication. These are also the commodities
for which the elasticities suffer the largest
changes between columns 1 and 2 and col-
umns 3 and 4 of Table 2. Other deviations
from homogeneity appear not to be signifi-
cant. The final columns of Table 1 give
equations standard errors, the R? and
Durbin-Watson (D.W.) statistics for free
and restricted estimation. Note that for the
four commodity groups where homogeneity
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TABLE 2—ToTAL EXPENDITURE AND OWN-PRICE ELASTICITES

Levels Model First-Differences Model
Unconstrained Homogeneous Unconstrained Homogeneous
@ € & € & i € €
Food 0.21 0.07 0.04 -0.01 0.04 0.22 0.17 —~0.00
Clothing 2.00 -0.92 1.51 —0.48 2.83 ~0.94 2.92 -0.94
Housing 0.30 —0.31 0.79 -0.16 0.04 —-0.31 —0.02 —-0.30
Fuel 1.67 —-0.28 1.37 0.10 1.00 0.00 0.86 ~0.08
Drink and Tobacco 1.22 —-0.60 1.22 -0.62 1.37 —-0.67 1.36 —0.68
Transport and
Communication 1.23 -1.21 1.73 -0.92 1.14 —-1.23 1.05 -1.17
Other goods 1.21 —-0.72 1.15 -0.77 2.03 —0.52 1.92 —-0.47
Other services 1.40 -0.93 1.28 -0.78 1.03 —0.78 1.06 —0.74

is rejected, the D.W. statistic shows a sharp
fall in each case.

The failure of homogeneity is not a new
result (see, for example, Barten; Ray Byron;
Deaton, 1974a), and can be ascribed to a
number of possible causes. However, as far
as we are aware, the introduction of serial
correlation through the imposition of homo-
geneity is a result which has not been previ-
ously remarked, although it may have been
implicit in earlier work. There are a num-
ber of plausible explanations for this phe-
nomenon. For example, expenditure on
several items may be relatively inflexible in
the short run; housing is the obvious case
here. The explanation of such items may
require other variables such as stocks,
lagged dependent variables, or time trends
which can perhaps be proxied by the ab-
solute price level. The omission of such vari-
ables will thus lead to a rejection of homo-
geneity associated with an introduction of
serial correlation in the residuals of the re-
stricted equations. In principle one could
easily include such conditioning variables in
the AIDS cost function, for example by
allowing the as to vary linearly with them,
and this is likely to be an important topic
for future research. A second explanation is
the omission of price expectations—the
argument advanced by Deaton (1977a)
would suggest that factors such as the
frequency of purchase for different goods
will be relevant in assessing the response of
expenditures to changes in price, especially
when there is rapid relative or absolute price
change. A third possibility, suggested by the

discussion of aggregation in Section I, Part
A above, is that it may be incorrect to
assume that k, the index reflecting the dis-
tribution of household budgets and demo-
graphic structure, is independent of the
average budget and the price vector.
Finally, the assumption of weak intertempo-
ral separability of nondurable goods in the
intertemporal utility function, which is
required to justify the conventional static
utility-maximizing model, may be inap-
propriate. It is not difficult to construct
other models which produce the result and
without extensive further empirical work it
is extremely difficult to discriminate be-
tween them.

In moving to the symmetric estimates (not
reported here), in which P* is replaced by P,
we must first check the closeness of the
approximation. Table 3 reproduces the two
series, P*=exp{Zw,logp,} and P scaled to
be unity in the base year, i.e., exp{Za, logp,
+ 333, logp, logp;} evaluated at the sym-
metric parameter estimates. Both series are
based on unity in 1970. Clearly the dif-
ferences are small; the absolute magnitude
of the difference is never greater than .008.

The reestimation of the unconstrained
and homogeneous models using P rather
than P* confirmed the empirical unimpor-
tance of the difference. Both sets of likeli-
hoods are given in Table 4. It must be
reemphasized that these findings are condi-
tional on the kind of relative price move-
ments that took place in our sample. How-
ever, even if relative price changes had been
greater, the results suggest that the proce-
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TABLE 3— COMPARISON OF PRICE INDICES
P* P Pt P pP* P
1954 0.566 0.571 1961 0.684 0.686 1968 0.894 0.888
1955 0.587 0.595 1962 0.712 0.715 1969 0.946 0.944
1956 0.611 0.617 1963 0.729 0.730 1970 1.000 1.000
1957 0.631 0.636 1964 0.754 0.758 1971 1.084 1.084
1958 0.648 0.653 1965 0.793 0.797 1972 1.161 1.161
1959 0.655 0.661 1966 0.827 0.830 1973 1.271 1.279
1960 0.663 0.666 1967 0.851 0.852 1974 1.465 1.461
TABLE 4 COMPARATIVE VALUES OF 2 LOG LIKELIHOOD
Levels First Differences
Using P* Using P Using P* Using P
Unrestricted 17225 1723.8 1560.0 1560.3
Homogeneous 1579.6 1585.1(7) 1546.6 1547.9(7)
Symmetric - 1491.0(21) - 1508.8(21)

Note: Number of restrictions in parentheses. Numbers can only be compared within
columns, not between levels and first differences.

dure of starting with P*, calculating OLS
regressions, computing a new P, and repeat-
ing will be a computationally efficient way
of obtaining good estimates of the full non-
linear system.

Symmetry, unlike homogeneity, cannot be
tested on an equation-by-equation basis and
we must rely on a large-sample likelihood-
ratio test for the system as a whole. For
comparison, twice the logarithm of the like-
lihood is 1722.5 for the unconstrained sys-
tem, 1579.6 for the homogeneous model (a
fall which reflects the individual restrictions)
and this falls further to 1491.0 under sym-
metry. Since symmetry embodies twenty-
one constraints over and above the seven of
homogeneity, the restriction is rejected on
an asymptotically valid x>-test whether or
not the maintained hypothesis is taken to
contain homogeneity. Once again, this is
consistent with earlier results although rejec-
tion of symmetry given homogeneity is not
always clear-cut in the studies cited above.
The interpretation of the rejection is not
clear without some convincing explanation
of the lack of homogeneity. Without this, it
is impossible to know whether or not we
should expect symmetry to hold. For exam-

ple, it is possible to introduce habits into
demand functions so that, if they are
allowed for, symmetry can be expected to
hold, while if ignored, symmetry will be
destroyed.

The full set of symmetric parameter
estimates are not included here for reasons
of space. The most interesting property of
these, apart from symmetry, is in their im-
plications for negativity. To assess this, the
K matrix of equation (14) was evaluated for
each year in the sample and its eigenvalues
calculated. One of these is identically zero
and, for concavity, the others should be
negative. Contrary to this, we found one
positive eigenvalue for the early part of the
period, increasing to two by the end. The
most obvious symptom of nonconcavity in
the symmetric estimates was an estimated
positive compensated own-price elasticity
for fuel throughout the sample period. This
may seem to be of limited importance given
that the symmetric homogeneous model has
already been rejected; if the cost function
doesn’t exist, why worry about its concav-
ity? However, for several reasons it would
be extremely useful to have parameter
estimates for a reasonably general concave
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homogeneous cost function. For example,
we frequently wish to calculate price and
quantity index numbers or to use optimal
taxation formulae to derive numerical val-
ues for tax rates. All such calculations re-
quire numerical estimates of cost functions
and, if they are to make any sense at all,
these cost functions must be both homoge-
neous and concave. Consequently, in cases
where empirical estimates of demand equa-
tions have been used in applied welfare
analysis, the linear expenditure system
has invariably been used; see, for exam-
ple, Anthony Atkinson and Joseph Stiglitz,
Muellbauer (1974), or Deaton (1977b). With
the linear expenditure system, the model is
so restrictive that concavity of the cost func-
tion is virtually guaranteed provided inferior
goods do not appear. But this restrictiveness
is also known to be empirically false (see,
for example, Deaton, 1974b or 1978) so that
it would be of considerable value to have
estimates of a concave cost function which
allowed considerably more substitution than
does the linear expenditure system. Conse-
quently, it will be of considerable interest in
future work to attempt to restrict the param-
eters further so that the estimated cost func-
tion is concave.

Finally, we turn to the estimation of the
model in first-difference form. Here we use
equation (17) plus intercepts, i.e.,

(21) Aw,=n,+ ,B,.Alog(%) + 2 yalAlogp,
k

where the constants 7, are introduced pri-
marily for econometric reasons but, if sig-
nificant, would imply time trends in the
original model which expresses the variables
in levels. The P is taken as in Table 3. In
these regressions homogeneity is only re-
jected for food and for transport and com-
munication; clothing and housing, which
rejected homogeneity in the earlier re-
gressions, now yield insignificant F-ratios.
Closer inspection reveals that for both these
cases, the constant term ,, which is insigni-
ficant without constraints, becomes signifi-
cant when homogeneity is imposed. Simi-
larly, for transport and communication ¥,
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becomes significant when homogeneity is
imposed, but in this case the F-ratio remains
significant. This would support our earlier
conjectures as to the possible role of time
trends, stocks, or other omitted variables in
explaining nonhomogeneity. Likewise, in
Table 2 the expenditure elasticities from the
first-difference model tend to be higher than
the levels estimates when stock effects are
likely to be important (clothing, other
goods) and lower when one would expect
short-run total expenditure effects to be
limited (food, housing, transport). Other-
wise, the first-difference parameter esti-
mates, homogeneous or unconstrained, are
rather close to the values originally ob-
tained. As with levels, tests of concavity
with the first-difference model revealed
several violations. The likelihoods for the
two models are summarized in Table 4; the
fact that homogeneity cannot be rejected
overall at the 5 percent level reflects the
importance of the time trends in the hous-
ing, clothing, and transport and communi-
cation equations. Note too that in this case,
from the last column of the table, symmetry
is only just rejected given homogeneity.
Hence, if we make some allowance for the
asymptotic nature of the test, these final
results would suggest that the introduction
of (arbitrary) time trends removes much of
the conflict between the data and the hy-
pothesis of a representative consumer maxi-
mizing a conventional static utility function.

III. Summary and Conclusions

In this paper we have introduced a new
system of demand equations, the 4IDS, in
which the budget shares of the various com-
modities are linearly related to the loga-
rithm of real total expenditure and the loga-
rithms of relative prices. The model is
shown to possess most of the properties
usually thought desirable in conventional
demand analysis, and to do so in a way not
matched by any single competing system.
Fitted to postwar British data, the AIDS is
capable of explaining a high proportion of
the variance of the commodity budget
shares but, unless allowance is made for
omitted variables by the arbitrary use of
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time trends, does so in a way which is
inconsistent with the hypothesis of con-
sumers making decisions according to the
model’s demand functions governed by the
conventional static budget constraint. These
results suggest that influences other than
current prices and current total expenditure
must be systematically modelled if even the
broad pattern of demand is to be explained
in a theoretically coherent and empirically
robust way. Whether these developments
generalize the static framework by including
stock effects, errors in price perceptions, or
by going beyond the assumption of weak
intertemporal separability on which the
static model rests, we believe that the AIDS,
with its simplicity of structure, generality,
and conformity with the theory, offers a
platform on which such developments can
proceed.

APPENDIX: AIDS N THE CONTEXT
OF AGGREGATION THEORY

In Muellbauer (1975, 1976), a definition
of the existence conditions for a representa-
tive consumer is given which allows more
general behavior than the parallel linear En-
gel curves which are required if average
demands are to be a function of the average
budget. We know that in general, the
average budget share

w,= %P:‘L’h/% Xp = % xhwth/% X

is a function of prices and the complete
distribution vector (x,x,,...,Xxg). A repre-
sentative consumer exists in Muellbauer’s
sense if each w; can be written as a function
of prices and the same single scalar x,, itself
a function of prices and the distribution
vector. This scalar, which can be thought of
as marking a position in the distribution
of xs, is the representative budget level.
Muellbauer shows that for an x, to exist
such that

(A1)
% X Win(%450)/ Z x5 = w,{ xo(x},... PN

the individual budget share equations must

DEATON AND MUELLBAUER: IDEAL DEMAND SYSTEM 323

have the “generalized linear” (GL) form:
(A2)
Wi (X4:P) = 03(%,,2) 4;(P) + Bi(p) + C(p)

where v,, 4,.B;, and C,, are functions satis-
fying 3,4,=%,C,,=2,C,,=0 and 2B;=1.
Clearly, (Al) goes beyond the usual for-
mulation of x,=Xx, and, as we shall see
below, allows us to incorporate into the
demand functions features of the expendi-
ture distribution other than the mean.

Of particular interest is the case where x,
is independent of prices, depending only on
the individual xs. This occurs if, and only if,
the v, function in (A2) restricts to

(89 )= (1-C/ b))

where a is a constant and &, although not a
function of x,, and p is free to vary from
household to household. In this case, the
budget shares are said to have the “price-in-
dependent generalized linear” form (PIGL).
Note the special case of (A3) as a—0, i.e.,

(A4) 0(X5.p) = log(x,/ k)

For obvious reasons, this is referred to as
the PIGLOG case. By substituting (A3) in
(A2), (Al) can be used to give an explicit
form for x,, viz.,

a9 n={2(2)/5n)

If we assume that individual behavior is
preference consistent, the cost function cor-
responding to PIGL takes the form

(A6) {c(u,p)/ky}"
= (1-u,){a(p)}*+u,{b(p)"}

which as a tends to zero takes the PIGLOG
form

(A7) log{c(u,p)/ Ky}
=(1—u,)log{a(p)}+u,log{b(p)}

where a(p) and b(p) are linear homoge-
neous concave functions, a is the constant
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parameter of (A3), and (with some excep-
tions discussed below) 0<u < 1. The quan-
tity k, can be used to allow for family
composition effects within PIGL; for the
standard or “reference” household. k, is
unity.

Since the AIDS is a member of the PIG-
LOG family, and hence of PIGL, we can
achieve maximum generality by discussing
some of the important properties of this
class. If, omitting the household subscript,
we write ¢; for the quantity demanded of
good i, then, by the derivative property of
the cost function, ¢,=dc/dp; so that w, =
piq;/x=03logc/dlogp,. Hence from (A6),
taking k, =1, and differentiating

« Qloge

(A8) Slogp, aa’a(l—u)+uab®b,

i

where a;=0dloga/dlogp, and b,=3logh/
dlogp,. Hence, substituting x for ¢,

(A9) w=(1— u)(—g)aa,+u(—z-)abi

where, from (A6), u=(x*—a%)/(b*—a%)
or from (A7), u=(logx—loga)/(logh—
log a). Similarly, when a =0,

(A10) w,=(1—u)a,+ ub,

Equations (A9) and (A10) have attractive
interpretations. Cost c(u,p) is increasing in
utility as long as b(p) is greater than
a(p)—note that this does not depend on the
sign of a—so that as u increases from 0 to
1, ¢(u,p) increases from a(p) to b(p) with w,
moving from g, to b,. Hence a total expendi-
ture of a(p) can be thought of as “poverty”
expenditure with associated expenditure
pattern a, while b(p) is “affluence” ex-
penditure with budget shares b,. On this
interpretation x =a(p) and x = b(p) are the
equations of the tangents to the poverty
and affluence indifference curves, respec-
tively, #=0 and u=1. From (A6) therefore,
we see that the tangent to the indifference
curve actually attained is the mean of order
a of poverty and affluence tangents, the
weights depending on the welfare level or
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outlay of the household. This averaging is
even more obvious in the value share equa-
tions (A9) and (A10). Since (1—u)(a/x)"
and u(b/x)* sum to unity, as do (1 —u) and
u, these equations give the actual budget
shares as weighted averages of g; and b,

Since the value shares of luxuries increase
with total outlay and hence with u, we can
characterize luxuries and necessities simply
by whether b, is greater than or less than q,.
Inferior goods are not excluded under PIGL
and it is straightforward to construct exam-
ples from both (A9) and (A10).

Note finally that there are restrictions on
the possible set of x and p over which the
cost function and the associated demands
are valid. One set of restrictions is implied
by the necessity that, for all /,0<w, < 1. The
upper bound is relevant when b,>a, and
implies that u=(x*—a*)/(b® —a*) <
min[(1~- aa/x)*)/{(b/x)%, — (a/x\a}].
The lower bound, relevant when b, <a; re-
quires similarly that u=(x*-a®)/(b%—a*®)
> max,{(a/ x)'a,/ ((a/x)a; — (b x),}].
The second set of restrictions are those re-
quired to ensure that the cost function is
concave. From (A6), we can see that a
sufficient condition for concavity of c(u,p) is
that a(p) and b(p) be concave and that
0<u < 1. However, this is by no means nec-
essary. If b(p) is “more concave” than a(p),
then c(u,p) is concave for >0 and for a
range of u>1. It can be shown that the
PIGL cost function is concave for all x>0,
p>0if and only if g;= b, for all i, and a(p)
and b(p) are concave. In this not very inter-
esting case, preferences are homothetic.

The practical application of the PIGL
class requires selection of specific functional
forms for the functions a(p) and b(p); those
leading to the AIDS have been discussed in
the text. However, the PIGL class is related
to two other well-known models. Note first
that if a=1, and k,=1, (A6) becomes the
Gorman polar form. The PIGL class thus
includes all models with linear Engel curves,
for example, linear expenditure system, the
quadratic utility function, as special cases.
Perhaps less obviously, a weakly restricted
form of the indirect translog is also PIG-
LOG. From Jorgenson and Lau the translog
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indirect utility function is

(A1) u=ay+ > ailog(%)

+ 3 S5 pytog( %) iog( 2 )

where we can choose Za;=—1 and 8, =8,
as arbitrary normalizations. Write X, 8, =
Bygi» then if we impose the additional restric-
tion that .8,,=0, (All) solves explicity
for log c(u,p) to

(A12) logc(u,p)

u— 333 B, logp;logp,—Za,logp, — a,
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L. R. Christensen, D. W. Jorgenson, and L. J.
Lau, “Transcendental Logarithmic Utility
Functions,” Amer. Econ. Rev., June 1975,
65, 367-83.

A. S. Deaton, (1974a) “The Analysis of Con-
sumer Demand in the United Kingdom,
1900-1970,” Econometrica, Mar. 1974, 42,
351-67.

, (1974b) “A Reconsideration of the

Empirical Implications of Additive Pref-

erences,” Econ. J., June 1974, 84, 338-48.

, Models and Projections of Demand in

Post-War Britain, London 1975.

, (1977a) “Involuntary Saving through

Unanticipated Inflation,” Amer. Econ.

Rev., Dec. 1977, 67, 899-910.

, (1977b) “Equity, Efficiency and the

1+ E Bagilogp;

This is of the general form /logc(u,p)=
loga(p)+ u/log h(p) for appropriate choice
of a(p) and A(p). Using log h(p)=
1/log{b(p)/a(p)} to define b(p) and sub-
stituting, we see that (A12) is identical to
(A7). Hence, in this case (Z,8,,,=0) and in
this case only, the indirect translog allows
consistent aggregation. No such result holds
for any interesting subcase of the direct
translog.
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