
Handout for Lecture 9 (31/03/2004).
Home Assignment:

Due Wednesday 21/04/2004 in the course mailbox on the 5th floor
before 4:45 PM.

6.B.2, 6.B.4, 6.C.1, 6.C.9*, 6.C.16, 6.C.20, 6.E.1*, 7.C.1, 7.E.1
P. S. Problems with * are not mandatory and will not be graded.

1 Expected utility

Recall that a lottery is a set of outcomes with corresponding probabil-
ities, L = (x1, p1; ....;xn, pn). We want to derive a criterion that allows
the individuals to choose among lotteries. Assume the individual has
preferences over lotteries that satisfy following requirements:
1. (Completeness) For any two lotteries L1 and L2, either L1 º L2

(reads: L1 is at least as good as L2 or L1 is weakly preferred to L2) or
L2 º L1.
This axiom says that given any two lotteries the individual is always
able to choose one. Of course, she might be indifferent, in which case
she will be willing to take any. But asked, which is better, she never
answers: “I do not know.”
2. (Transitivity) For any three lotteries L1, L2, and L3, if L1 º L2

and L2 º L3 then L1 º L3.
This is a very natural consistency requirement. It states that if lottery
L1 is weakly preferred to L2 and L2 is weakly preferred to L3 then L1 is
weakly preferred to L3.
3. (Independence) Let L1 º L2 and α ∈ [0, 1]. Then for any lottery

L3 : α L1 + (1− α)L3 º α L2 + (1− α)L3.
To understand the independence axiom suppose you have to lotteries L1
and L2 and you weakly prefer L1 to L2. Now suppose you are given two
choices C1 and C2, which are described as follows:
Choice C1 : Flip an unfair coin with probability of H equal to α and

probability of T equal to 1 − α. If it comes H up, you will face lottery
L1, if it comes up T, you will face lottery L3.
Choice C2 : Flip the same coin as in C1. If it comes H up, you will

face lottery L2, if it comes up T, you will face lottery L3.
Would you choose C1 or C2? Note that if the outcome of the coin flip
is T it does not matter which choice had you done, since you face the
same lottery L3 anyway. It only matters if the outcome is H, in which
case C1 will result in you facing L1 and C2 in you facing L2. Since you
weakly prefer L1 to L2, you should also weakly prefer C1 over C2.
Completeness, transitivity, and independence are intuitively appeal-

ing requirements. We will call preferences satisfying them CTI prefer-
ences. Let L1 = (x1, p1; ....;xn, pn) and L2 = (x1, q1; ....;xn, qn). (The

1



assumption that both lotteries have the same set of outcomes is without
loss of generality. Indeed, let for example, L1 be (0, 1/2; 1, 1/2) and L2 =
(2, 1/3; 3, 2/3). Those lotteries have different sets of outcomes. Consider,
however, L01 = (0, 1/2; 1, 1/2; 2, 0; 3, 0) and L

0
2 = (0, 0; 1, 0; 2, 1/3; 3, 2/3).

Then L01 and L02 have the same set of outcomes, but L
0
1 is essentially

the same lottery as L1, since it differs from it only by probability zero
outcomes. Similar, L02 is the same lottery as L2. Therefore, one can
always assume that the set of outcomes is the same). It turns out that
if the individuals preferences over lotteries satisfy CTI then there exists
a function u(·) such that

(L1 º L2)⇔
nX
i=1

piu(xi) ≥
nX
i=1

qiu(xi). (1)

Note that in formula (1) we compare expected values of some function
of payoffs, that is why (1) is called the expected utility. Function u(·) is
called Bernoulli utility function. Function U(·) defined by

U(L) =
nX
i=1

piu(xi) (2)

is called von Neumann-Morgenstern utility function.
Note: Bernoulli utility is defined over the monetary payoffs, while

von Neumann-Morgenstern utility over the lotteries.

2 Shape of the Bernoulli utility and risk-aversion

The fact that we transform payoffs using u(·) before calculating the
expected value allows us to incorporate preferences for risk into our
theory. To see how, assume that the Bernoulli utility function is concave
and consider a binary lottery L1 = (α, x1; 1 − α, x2) with the expected
value x = αx1 + (1− α)x2. Let L2 = (x, 1) be the lottery that gives x
with certainty. Now

U(L2) = u(x) = u(αx1 + (1− α)x2). (3)

By concavity of the Bernoulli utility function

u(αx1 + (1− α)x2) ≥ αu(x1) + (1− α)u(x2) = U(L1). (4)

Therefore,
U(L2) ≥ U(L1). (5)

Therefore, an individual with concave Bernoulli utility prefers the ex-
pected value of the lottery for sure to the lottery itself (the proof can be
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generalized for more general lotteries). Recall that an individual that
prefers the expected value of the lottery for sure to the lottery itself is
called risk-averse. Therefore, concavity of the Bernoulli utility is equiva-
lent to the risk-averse behavior. Similar, convexity of the Bernoulli util-
ity is equivalent to the risk-loving behavior, and linearity of the Bernoulli
utility is equivalent to the risk-neutral behavior.

3 An Example: buying insurance

Suppose a risk averse consumer has wealth w > 0. With probability
q > 0 she may suffer an accident, in which case her wealth will be reduced
to w −D, for some D ∈ (0, w). She has an option to by insurance. If
she pays insurance premium x the insurance company will repay her rx
in the case of accident for some r > 1. Let us find the optimal amount
of insurance to buy.
If the consumer purchases amount x of insurance she will have wealth

w − x if no accident happens (probability of this is 1 − q) and wealth
w−x+rx−D if the accident happens (probability of this is q). Therefore,
her expected utility is

U(x) = (1− q)u(w − x) + qu(w − x+ rx−D). (6)

Note that U(·) is concave, therefore the F. O. C. are necessary and
sufficient for maximum. Therefore, the optimal insurance is (the unique
if U(·) is strictly concave) solution to

(1− q)u0(w − x) = q(r − 1)u0(w + (r − 1)x−D). (7)

We will call insurance actuarially fair if r = 1/q (that is the firm breaks
even on average). Then q(r − 1) = 1− q and

u0(w − x) = u0(w + (r − 1)x−D). (8)

Let u(·) be strictly concave. Then, since u0(·) is strictly decreasing
w − x=w + (r − 1)x−D (9)

x=D/r = qD. (10)

Note that it leaves the customer with the same wealth w−qD no matter
whether the accident happened: a risk-averse individuals insures fully if
the price of insurance is actuarially fair.

4 Stochastic dominance

If we know an individual’s Bernoulli utility then we can compare any
two lotteries from her point of view. Now I am going to ask: Given two
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monetary lotteries under what conditions will I be able to say that any
(risk-averse) individual prefers one to second, provided she prefers more
to less.
Definition Lottery L1 = (x1, p1; ....;xn, pn) is said to first order stochastically dominate
(FOSD) lottery L2 = (x1, q1; ....;xn, qn) if for any increasing Bernoulli
utility function u(·)

nX
i=1

piu(xi) ≥
nX
i=1

qiu(xi). (11)

Our next objective is to derive a criterion, which will allow us to decide
whether one lottery FOSD the other.
Definition Function F (·) defined by

F (z) = Pr(x < z) (12)

is called a cumulative distribution function for random variable x.
Let L = x = (x1, p1; ....;xn, pn) and assume without loss of generality

that x1 < x2 < .... < xn. Then

F (z)= 0, for z < x1, (13)

FL(z)=
kX
i=1

pi, for xk < z ≤ xk+1, (14)

F (z)= 1, for z ≥ xn. (15)

L1 FOSD L2 iff FL1(z) ≤ FL2(z), that is the probability that the
outcome is lower then any fixed level is smaller for lottery L1.
Example L1 = (0, 1/6; 1, 1/3; 2, 1/2) and L2 = (0, 1/3; 1, 1/3; 2, 1/3)Then
L1 FOSD L2. Let first establish it using the definition. We have to check
that

1

6
u(0) +

1

3
u(1) +

1

2
u(2) ≥ 1

3
u(0) +

1

3
u(1) +

1

3
u(2). (16)

for any increasing u(·). But inequality FOSD is equivalent to
u(2) ≥ u(0). (17)

Definition Let lotteries L1 and L2 have the same expected value (mean).
Lottery L1 = (x1, p1; ....;xn, pn) is said to second order stochastically dominate
(SOSD) lottery L2 = (x1, q1; ....;xn, qn) if for any increasing concave
Bernoulli utility function u(·)

nX
i=1

piu(xi) ≥
nX
i=1

qiu(xi). (18)
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Our next objective is to derive a criterion, which will allow us to decide
whether one lottery SOSD the other.
Definition A lottery L2 is said to be obtained from lottery L1 by
a mean-preserving increase of risk if it is obtained by replacing an out-
come xi in lottery L1 by a lottery with mean xi.
Example Let L1 = (0, 1/3; 1, 1/3; 2, 1/3) and L2 = (0, 1/2; 2, 1/2). Lot-
tery L2 is obtained from L1 by replacing the outcome 1 with a lottery
(0, 1/2; 2, 1/2). For example, L1 may be realized as: through a dice, if
{1, 2} get nothing, if {3, 4} get one, if {5, 6} get 2̇. L2 provides the same
payoff if the outcomes are {1, 2, 5, 6} if the outcome is 3 or 4, through a
coin and get nothing if H and two if T.
Distribution L1 SOSD L2 iff L2 is obtained from lottery L1 by a

mean-preserving increase of risk. Intuitively L2 contains more risk, since
a certain outcome was replaced by the lottery. Therefore, any risk-averse
individual will prefer L1 to L2.
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