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AUCTION THEORY

by Paul R. Milgrom

1. Introduction

Auctions are one of the oldest surviving classes of economic
institutions. The first historical record of an zuction is usually
attributed to Herodotus, who reported a custom in Babylonia in which men
bid for women to wed.1 Other observers have reported auctions through-
out the ancient world — in Babylonia, Greece, the Roman Empire, China
and Japan.2

As impressive as the historical longevity of auctions is the
remarkable range of situations in which they are currently used. There
are auctions for livestock, a commodity for which many close substitutes
are available. There are also auctions for rare and unusual items like
large diamonds, works of art, and other collectibles. Durables (e.g..
used machinery), perishables {e.g., fresh fish), financial assets (e.g.,
U.S. Treasury bills), and supply and construction contracts are all
commonly bought or sold at auction. The auction sales of unique items
have suggested to some that suctions are a good vehicle for monopolists.
But it is not only those in a strong market position who use auctions.
There are also auction sales of the land, equipment and supplies of

bankrupt firms and farms. These show that auctions are used by sellers

1Herodotus may not have been the first to publish. Some scholars
interpret the biblical account of the sale of Joseph (the great-grandson
of Abraham) into slavery as being an auction sale.

2For a more detailed history of auctions and a description of some of
the auctions used in the modern world, see Cassady [1967].
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who are desparate for cash and willing to sell even at prices far below
replacement cost.

Indeed, the only clear common denominator for the kinds of objects
that are sold at auction is the need to establish individual prices for
each item sold. Used cars, whose condition varies over a wide range,
are sold to dealers at auction; new cars are not. Livestock are sold at
auction even though close substitutes are readily available, because
individual animals differ in weight and health. The price of fresh fish
needs to be determined daily, because the daily supply of fish varies so
tremendously. Construction contracts are normally too complex to allow
a simple pricing schedule to work; competitive bids sometimes provide a
workable alternative.

In this essay, I review only a small part of auction theory — the
part that claims to explain the long and widespread use of auction
institutions and to account for certain details of the way auctions are
usually conducted. These details include the popular use of sealed-bid
and ascending-bid auctions, the establishment of minimum prices, the
preparation of expert appraisals of items being sold. and so on.

Logically prior to explaining the use of auctions is defining just
vhat an auction is. The characteristic feature of bidding institutions
is that there is an explicit comparison made among bids. In the
ascending-bid ("English") auction, a bidder's offer remains open long
enough for other bidders to make counteroffers, so that the seller can
take the highest offer. In the sealed-bid auction, the bidders’' offers

are =zll made simultaneously, so that the seller can compare them



directly. In the descending-bid ("Dutch”) auction, the seller makes a
series of price offers, declining over time. Each bidder has the
opportunity to accept or reject the seller’s latest price offer; that
affords the seller an opportunity to compare the timing of buyers’
offers, and to take the offer that is made earliest. Each of these
bidding institutions can be contrasted with, say, a bargaining process
in which the seller negotiates one-by-one with a sequence of buyers who
make short-lived offers, so that the seller has no opportunity to
compare the offers of different buyers.

The simplest explanation of the continuing popularity of auctions
is that auctions lead to outcomes that are efficient and "stable.” More
formally, in a static deterministic model, the set of perfect equili-
brium trading outcomes obtained in an auction game (as the minimum bid
is varied) coincides with the set of core allocations. An outcome is in
the core when there is no coalition of traders that can, by trading just
among its members, make all coalition members better off.

To understand the significance of this conclusion, imagine a
situation in which a single item is sold but the resulting allocation
lies outside the core. There are two possibilities. First, the
allocation may be inefficient. In that case, the new owner will likely
find it profitable to resell the item to a buyer who values it more.
The second possibility is that, even though the allocation is efficient,
there are other buyers around who were willing to pay a higher price
(and after the auction are willing to tell the seller so). In either

case, the seller may well resolve not to be so quick to sell the next



time around and perhaps even to compare alternative offers -— that is,
to conduct some kind of auction.

A second explanation of the popularity of auctions highlights the
advantages of an auction to a seller in a relatively poor bargaining
position3 {such as the owner of a nearly bankrupt firm) when the goods
sold at auction can later be resold. Consider the problem of such a
seller. Suppose that there are two potential buyers, Mr. 1, who has a
high valuation for the item being sold, and Mr. 2, whose valuation is
lower. What happens if the seller conducts an auction with a low
minimum price? At the equilibrium of the auction game, the item will be
sold to Mr. 1 for approximately its "value" to Mr. 2. With the possibi-
lity of resale, that value cannot be less than the price that Mr. 2
could get by reselling to Mr. 1. By conducting an auction, the seller
expects to get about the same price as Mr. 2 would get, even though Mr.
2 may be much better positioned for face-to-face bargaining with Mr. 1.
Thus, a ‘seller in a relatively weak bargaining position can do as well
as a strong bargainer by conducting an auction.

These first two explanations of the prevalence of auctions are
developed in detail in section 2 of this paper, which focuses on
deterministic auction models. A third explanation, reviewed in section
3, is that a seller in a strong bargaining position will sometimes find
it optimal to conduct an auction. That is, the seller will prefer to

conduct some standard auction, such as the sealed-bid or ascending-bid

3That is, a poor bargaining position relative to the potential buyers.
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auction with a suitably chosen minimum price, rather than to play any
other exchange game4 with the bidders.

The three explanations just described are, of course, complemen-
tary. Together, they provide a cogent set of reasons for a seller to
use an auction when selling an indivisible object over a wide range of
circumstances.

In the auction models discussed so far, there is little that can be
said about the details of how auctions are conducted. In those models,
many kinds of auctions (including all the usual ones) lead to the same
mean price. However, this "independence" result depends on the assump-
tion that bidders have no private information about each other.
Formally, the observations they make are assumed to be statistically
independent. When there is correlated uncertainty on the part of the
bidders, different auctions lead to different mean prices

In section 4, we introduce correlated uncertainty into the bidding
model and focus on the strategies open even to a seller with no bar-
gaining power, that is, one who cannot commit himself to withhold an
item that attracts only low bids.5 What strategies can such a seller
adopt? For one thing, he can normally choose what kind of auction to

offer, provided the minimum bid is kept low, because buyers will always

4An exchange game is any game whose outcome determines an allocation and
time of trade and in which each player has a strategy of non-
participation, which leaves him with his initial alleocation.

5In section 4, we review some game~theoretic arguments which support the
presumption that a “rational” seller cannot hold out for a high price
when he is uncertain about the buyers’ reservation prices.
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want to participate in the auction.6 Normally, the seller can also
decide whether to reveal any information he has about the item being
sold or about the potential buyers, because it always pays a buyer to
listen if he can do so without being seen. Given these options, the
seller’s preferences are surprisingly systemmatic. In a wide range of
circ’:umstances,7 the seller prefers (i) to conduct an ascending-bid
auction rather than a sealed-bid auction, (ii) to reveal all the
information that he has available, and (iii) to link the price to any
available exogenous indicators of value,

The analysis leading to these conclusions is founded on the Linkage
Principle. Intuitively, a bidder’'s expected profits from an auction are
greatest when he has private information that the item being sold is
quite valuable. The intuition of the Linkage Principle is that the the
auctions that yield the highest average prices are those that are most
effective at undermining the "privacy"” of the winning bidder’'s informa-
tion, thereby transferring some profits from the bidders to the seller.
According to the Principle, the way privacy is undermined is by linking
the price to information other than the winning bidder’s private

information but which is correlated with his informaticn.

6No matter what strategies the other players adopt., each buyer does at

least as well by entering the minimum bid as by abstaining from the
auction. For some strategies (namely, when the others refrain from
bidding), he does better. (This argument is transparent for the case

where resale is impossible and can be extended also te the case with
resale possibilities.)

7 o . . . . . .
The principal assumptions required include risk neutrality, symmetric
uncertainty about the bidders’ valuations, and non-negative correlation
(actually, affiliation) among the bidders’ valuations.
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The three conclusions described above all follow from the Linkage
Principle. 1In an ascending~bid auction, the equilibrium price depends
on the information of losing bidders through the bids they place. That
dependence, or "linkage", is absent in the sealed-bid auction. Its
presence in the ascending-bid auction leads to a higher predicted price
(provided that the bidders’ information is correlated).

In any kind of auction, the seller, by revealing information,
influences the bids and therefore the price. So, by revealing his
information, the seller links the price directly to his information.
Thus, according to the Linkage Principle, a policy of revealing informa—
tion raises the expected price that will result from the auction,
provided that the information to be revealed is affiliateds with the
bidders' information. Similarly, basing the price in part on ex post
indicators of value creates a linkage, which on average increases the
expected price (if these indicators are affiliated with the bidders'
information). Examples of contracts let at auction in which the price
is determined in part by ex post indicators are construction contracts
with a cost-sharing provision and petroleum drilling contracts that
provide for royalty payments based on actual production.

The main theme of explaining the prevalence and robustness of
auctions is continued in section 5, where the possibility of collusion

is briefly studied. Collusion is widespread in real auctions, and there

8Random variables are said to be affiliated when they are positively
correlated conditional on lying in any small rectangle. For example,
any pair of postively correlated joint normal random variables are
affiliated. A precise formal definition of the concept is given in
section 4.



is little a one~time seller can do to prevent it when the bidders have a
long-term relaticnship. However, it 1is shown that ascending-bid
auctions are more vulnerable to collusive agreements among bidders in a
long term relationship than are sealed-bid auctions. This is an
important reason for industrial firms to solicit sealed bids from
suppliers, despite the general superiority of ascending~bid auctions in

one-shot competitive situations.

2. Auctions, Bargaining and the Core

We begin by formulating and proving the claim that the "trading”
outcomes of the auction game coincide with the core of the corresponding
exchange game. This result provides a simple, partial answer to the
question of why auction institutions are so prevalent throughout the
world and throughout history.

Consider a deterministic setting with a single seller and n
(potential) buyers for some item. Let s be the monetary value of the
item to the seller. By this I mean that, if the seller had the option
of selling for some price p or not selling the item at all, he would
choose to sell for p if and only if p 2> s. Similarly, the buyers have
monetary valuations bl""'bn' Our model is discrete: All the valua-
tions and bids are multiples of some common unit. All of this is
assumed to be common knowledge among the buyers and the seller. Without
significant loss of generality, we may assume that b1 >...02 bn and limit
attention to the case where there are some potential gains from trade:

b1 > S.



Now, if the seller offers the item for sale using a sealed-bid
auction with minimum price zero.9 what will happen? Using any sensible
equilibrium concept, such as Nash equilibrium in undominated strate-
gies,lo perfect equilibrium, ‘“rationalizable" strategies, or even
correlated equilibrium, the item will be sold to bidder 1 for his bid of

b2.11 The same trade will occur if the seller sets any minimum price

9 . . . . .
¥We assume in this auction and all those considered below that ties are
broken by tossing a fair coin.

1OAlthcmgh the Nash equilibrium and its refinements are often Justi-
fiably criticized, they are particularly well suited to the analysis of
auction games. A Nash equilibrium can be defined as =a profile of
strategies, one for each playver, such that (i) each player is maximizing
given his beliefs about how the others will play and (ii) those beliefs
are correct. The first condition is neither stronger nor weaker than
the usual rationality assumption in economic models. The second
("rational expectations") condition is most plausible for institutions
like auctions, which have existed for millennia and so for which
expectations can be based on actual experience.

1lﬁmy perfect equilibrium (Selten, 1975) is a Nash equilibrium in
undominated strategies, and in fact for this game the two concepts
coincide. In the two-bidder game, the set of perfect equilibria are
characterized as follows: Bidder one bids b2. Bidder 2 uses any mixed
strategy F satisfying two conditions. First, F(bz) = 1. Second, let
G(x) = [F(x)+F(x~1}]}/2. Then,

G(x) (bl—b2)/(b1-x) for all x€(m.b2).
With more than two bidders, one can specify the strategies of the other
arbitrarily, provided bidder j always bids less than bj' and this

remains a perfect equilibrium. :

Rationalizable strategies are derived by the eliminating weakly
dominated strategies from the strategy set to form a reduced game.
Then, weakly dominated strategies are eliminated from the reduced game,
and so on. until the process ends. The strategies that survive are
called "rationalizable.” The only such strategies for bidders 1 and 2
are to bid b2 and b2—1, respectively.

Correlated equilibria [Aumann, 1973] of bidding games employ only
"rationalizable" strategies, so that concept is covered, too.
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not exceeding b2. Again, the same will occur if the seller hires an
auctioneer to conduct an ascending-bid auction, regardless of whether
the bids are called by the bidders themselves or at a slow pace by the
auctioneer.

If the seller sets a minimum price m € (b2'b1)' the equilibrium
outcome assigns the item to bidder 1 for a price of m. Of course, if
m > bl' no exchange takes place; in that case the seller’s payoff is s
and each buyer's payoff is zero. The case m = b1 is somewhat degene-
rate; its equilibria include both the no-trade outcome and a trade at
price bl' Our earlier choice of the phrase "equilibrium trading
outcomes™ was intended to denote all the equilibrium outcomes except the
no-trade outcome. Our claim is then justified by the following Proposi-
tion.

Proposition 1. The set of perfect equilibrium outcomes of the
auction game as the minimum price ranges from s to b1 consists of the
core outcomes of the corresponding exchange game together with the no
trade outcome. The latter can only occur when the minimum price is bl'

Proof. Let x = (xo.xl.....xn) be the vector of payoffs that are
received by the seller and the n buyers, respectively. A vector of
payoffs x is called an imputation if it is individually rational (that
is, non-negative) and correspon_ds to some feasible allocation of the
goods and money among the players. To be in the core, an imputation

must be efficient and must satisfy inequalities asserting that no
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coalition could, by agreeing to exchange among themselves, earn a higher

total payoff:

(2.1) Xg ¥ ¥ + ...+ X = bl' and
(2.2)  xq+ §x, 2mex {s,(b:1€S)}, for all § € {I.....n}.
i€s

In view of the preceding discussion., the Proposition asserts that the
core consists entirely of points eof the form (xo.bl—xo.o.....O) for
max(s.bz) £ X5 € by It is easy to check that all such points satisfy
efficiency (2.1) and the inequalities (2.2), and so do, in fact, lie in
the core.

Conversely, suppose x lies in the core. Then Xo + %4 P bl. This,
together with efficiency and non-negativity, implies that Xg * Xy = b1
and that Xg = o0 =X = 0. So, all points in the éore are of the form
{x ,bl-xO.O.....O). Also, Xyt X 2 max(s,bz). S0 X, 2 max(s.bz). Non~—

negativity of Xy implies Xg < bl‘ 8§

The strategic equivalence of the Dutch and sealed-bid auctions and
the notion of perfect equilibrium do not transfer neatly to bidding
games with continuous bid spaces. With discrete bid spaces with bid
increment e, the only subgame perfect equilibrium in the Dutch auction
is for the highest evaluator to stop the auction when the price reaches
b2, and for each other player i to stop it at the price bi—e. There are
no corresponding strategies in the standard formulation of the conti-
nuous Dutch auction, because there is no possibility of bidding bi
"minus an infinitesimal.” Indeed, in the standard formulation of the

continuous Dutch auction, no subgame perfect equilibrium exists.
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To avoid this problem, we {formulate the extensive form Dutch
auction game so that a bidder can claim the object whenever the price
falls to p, which we c¢all bidding p, or whenever the price falls
strictly below p, which we call bidding p . If a player bids p, ancther
bids p’. and all others bid less, then the item is awarded to the one
who bids p for price p. If a player bids p and nobody else bids more,
then the item is award to that bidder for a price of p. This specifies
a well defined continuous Dutch auction game which suitably generalizes
the game with discrete bid amounts. Moreover, like the discrete bids

game, it does have a unique subgame perfect equilibrium: Player 1 bids

12

b2 and each i#l bids bi‘

There still remains the problem that "trembling hand"” perfect
equilibrium is undefined for sealed-bid auction games with a continuum
of possible bids. To avoid unnecessary technical difficulties, we shall
normally limit our analysis to equilibria of Dutch auctions.

From the perspective of cooperative game theory, the seller’s

ability to set any particular minimum price and stick to it measures his

12One could, of course, define a modified sealed-bid auction game which
is strategically equivalent to our continuous Dutch auction game.
However, comparing the subgame perfect equilibria of the Dutch auction
game (identified in the text) with the trembling hand perfect equilibria
of the corresponding sealed-bid auction (identified in the previous
footnote) shows that the two games are not "equivalent” for the purposes
of perfect equilibrium analysis.
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bargaining power.13 Indeed, the case n = 1 is just a bargaining pro-
blem, and auction theory. like the theory of the core, predicts only
that the outcome will be efficient and nobody will be worse off at
equilibrium than if they did not trade. Evidently., a complete auction
theory must be informed to some degree by bargaining theory. This
leaves open the possibility that the predictions of auction theory could
be quite sensitive to the bargaining model used.

Actually. auction theory is surprisingly insensitive to the

bargaining theory used at its.foundations. To show that, we embed the
auction model in a general noncooperative model of bargaining that
allows the possibility of resale. This requires dropping the distine-
tion between "seller” and "buyers”; we substitute the terms "owner" and
"non-owners."” The identity of the owner can vary over time. Similarly,
we denote player i’é valuation by Vi rather than by s or bi' It is
assumed that vy 2.0 v > 0.

Let ri be a game form that is to be played when i is the owner of
the durable good. Thus, ri =.[{2§:j=1....,n}.fi], vhere 2; is the set
of strategies available to j in the game form and fi' is a function
mapping strategy profiles into outcomes. An outcome involving trade
specifies a date of trade t 2 1, a (non-negative) price p, and the next

owner j. There is also an outcome called "No Trade" which we identify

as a trade at date t = ®, To interpret the results that follow, it is

13The role of commitment in bargaining has been analyzed by Crawford
[1982]. The associated roles of patience and risk aversion have been
given a particularly penetrating analysis by Binmore, Rubinstein and
Wolinsky [1985].

13



be useful to think of t as the period of i’s ownership, rather than to
associate t with any actual date.

Certain specified strategies are assumed teo be available to the
players in game form Ti. First, the owner is permitted to keep the item
for himself, that is, he has a strategy that always leads to "No Trade.™
Second, the owner is permitted to offer a Dutch auction with a =zero
minimum price. Such an offer, if made, is the first move in Fi and
initiates an auction subgame (actually. a "subgame form”). If any non-
owner bids in the auction, Fi ends at date 1 with the item bheing
assigned according to the usual Dutch auction rules. Nonowners must
decide simultaneously whether to bid. If no bids are made, play
continues according to the continuation rules of Fi. Each non-owner is
assumed to have a strategy of refusing to be party to any trade, in
vhich case no payment can be required of him. However, a non—owner
cannot commit himself not to trade before the owner makes the auction
offer.

Now, we create quite a general bargaining model with auction offers
and resale as follows. Let player io be the initial owner. Then the

i
game form I is played. If the outcome invelves trade after period of
ownership tye at price Pq and with next owner il' we continue with game
1
form I' 7, which determines a period of ownership t, price Py and next
owner 12. The outcome of this sequence of trades specifies that 10 OWns
the item from date O to date t.-1, 1, owns the item from t, to t +t,~1,

0 0 01

and generally ij ovns it from date 1:0+...+t‘].__1 to t0+...+tj—1. Payments

are made on the dates of transfer of ownership.
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The payoff associated with any outcome for any fixed player j is
the present value of the flow of benefits he Teceives plus the net
present value of payments received minus payments made. To make this
more precise, fix an outcome path. Let lj(t) be one if player j owns
the item on date t and zero otherwise. (In particular, lj(—l) =0.)
Let p(t} be the price paid in any trade at date t, or zero if there is

no trade at t. Then, j's payoff in the game is:

0

(2.3) Y ot [0y vy 150+ po) D1y - 1,(0]]

t=0
Let the initial owner io be player i. With this, we have a complete
specification of an extensive form game, which we shall call T:.

The games I’: that can be constructed in this way form a huge class.
It may be that the seller can also conduct auctions with a positive
minimum price, or can exclude some set of bidders, or can bargain
effectively with some buyers, or can commit himself with take-it-or-
leave it offers. Indeed., the most important restriction on the class of
admissible games is that an owner cannot prevent the next owner from
engaging in resale. An additional important restriction will be imposed
through the equilibria that we isolate for study.

In general, a strategy for a player specifies how to play at each
date as a function of the date and the entire past history. For our
analysis, we limit attention to equilibria in which the players adopt
stationary strategies. A stationary strategy for player j is an n-tuple

1

n i
. = caen O, ¢h that
D’J {aJ O’J) su crj

player j should play in each game form Ti (he should play 03) without

€ E;. Such a strategy specifies how
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regard to the earlier history of play. By a stationary perfect equili-
brium, we mean an n~tuple of stationary strategies (cl.....on) which is
a perfect equilibrium profile regardless of the identity of the initial
owner (that is, in each of the games T:).

Given a strategy profile (al.....on). one can define for each

player i a wvalue v: associated with owning the item, that is, with

) 4

playing the game e With stationary strategies, v: is also the
continuation payoff or value of acquiring ownership at any point in the
game, regardless of the previous history of play. With nonstationary
strategies, that value might depend on the history of play, since future
play could depend on the history.

Proposition 2. Assume there are at least 3 players, n > 3. Let V?
be the expected payoff to i at a stationary perfect equilibrium in the
game T?. Then v? =V, > v: for all i¥l. Let a: be the payoff te i in
F: if all players except i adhere to their equilibrium strategies while
i deviates to adopt a strategy that entails conducting an auction and

refusing to participate in any later sale. Then, for all i.j # 1, the

inequalities (2.4) and (2.5) hold.

(2.4) AT Bl
i J

(2.5) a2t > 52 v,
1 1

Proof. In the game TT. player 1 can guarantee a payoff of v, by

1
refusing to trade. Each other player can guarantee a payoff of zero.
Hence, the equilibrium payoffs must be at least that high. But the
maximum total utility from any outcome is vy and that can be achieved

only if 1 is the owner in every period. Hence, in FT, any equilibrium

must specify that no trade occurs.
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Suppose i¥l. In the game T:, the total paycffs to all players at

equilibrium cannot exceed the total payoff (1—5)vi+6v1 { v, that results

1
from an efficient exchange. Since all players’ payoffs are nonnegative,
this implies that v? < vi-

Now, in F:, i bhas the opportunity to conduct an auction with
minimum price 0. If he does and the non—owners refuse to participate,
let the expected continuation payoffs at equilibrium be v = (;1,....;n).
The auction offer will be accepted by someone with certainty {at
equilibrium) unless each nonowner prefers (weakly) his continuation
payoff to the payoff from placing the minimum bid of O: ;j 2 6v§.
Since the sale price cannot be negative, the seller’'s expected payoff
can never be less than the first period flow: ;i 2 (1-6)vi. Thus, some
bidder will participate in the auction at equilibrium unless the
expected sum of payoffs when no auction takes place. is at least
8 Ej#ivg + (1—5)vi > 8 vy + (1-6)vi. The last expression, however, is
the total payoff that results from efficient trade. Hence, there can be
no strategies leading to continuation payoffs v satisfying the requisite
inequality.

So the auction, if offerred, will be played with certainty. Let p
be the lowest price in the support of the equilibrium price distribution
when an auction is offerred in T:. Let k€{1,i} be such that v. =

k

max v?. During a Dutch auction, when the price has fallen to any
je{1.1}

level p’'>p, bidder 1 must expect a payoff of at least 5(v1—p’) from
allowing the auction to continue, and k must expect at least é(v;-p').

Since the total expected payoff to all bidders in the continuation after

17



p' is at most 6(v1—p) (since the price will be at least p)}, it follows

»*
that 6(v1—p') + 6(v§—p’) 2 6(v1—p) for all p* > p. Hence, p 2 vy - In
*
the Dutch auction, no bidder j can benefit by bidding more than vj, S0
bidder 1 never finds it optimal {(at equilibrium) to bid strictly more

than v:. Hence, the highest equilibrium price cannot exceed v So,

*
X
the equilibrium price is v;. with probability one.

Suppose that, with positive probability, 1 is not the winning
bidder; instead k is. When k wins, the total payoff to the nonowners in
the game is at most 6[(1—6)vk + ov, - v:] which is strictly less than
ﬁ(vl-v:). Hence, when k wins, 1's payoff is strictly less than that
sum. But, for any e > O, 1 can guarantee a payoff of 6(v1—v;—e) by

bidding v:-e. Hence, if k wins with positive probability, then 1's

bidding strategy is not optimal. Thus, following an auction offer bv i

in Fi. any equilibrium prescribes that 1 bid Vi and wins the auction.

Henceforth, we denote the price v; by p. If i offers an auction in

*
Ti and never repurchases the item, while the other players follow their

stationary equilibrium strategies, i's payoff will be:

* »

(2.6) a;, = (1—6)vi + 8p > 6 vj,

for all j€{1.i}. Since v| > a}, (2.4) follows.
Next, we make two applications of (2.6):

(2.7) ay > v? > 6 a? > 82 v

i
which establishes (2.5). §§

Thus, for & close to 1, it is optimal or nearly optimal for any
player other than the highest evaluator to offer the good at auction.

Moreover, initial ownership is about equally wvaluable for all the
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players other than player 1. even though owners may differ in the
strategies available to them. The theorem applies even when some owners
are able to make credible take-it-or-leave-it offers while others can
sell only at auction. The ability to conduct an auction allows a weak
bargainer to benefit from the abilities of any stronger bargainers who
may be present, forcing player 1 to bid Just as if he were bargaining -
with a strong player.

So far, we have allowed the game forms (Ti;i=1.....n) to be quite
general. As an aid to intuition, let us now specify some simple game
forms, as follows. At odd-numbered dates, the owner chooses a non-owner
to whom to make a price offer. The non-owner can accept the offer, in
which case a trade is consummated. Or, the non-owner can reject the
offer and, at the next (even) date, make a counteroffer. So far, this
is the same game as used for the "telephone bargaining” model of Binmore
[1983]. Now comes a difference: We specify that the owner can, at time
O, offer a Dutch auction with a zero minimum price. If no buyer
participates in the auction, then the seller can make a private offer at
time one, and the game continues in the Binmore fashion.

The games T: constructed from the specified game forms differ from
Binmore's telephone bargaining game in two ways: by allowing auctions
and by including the possibility of resale. One can show that each F?
has a unique perfect equilibrium outcome. To describe it, define
(2.8) B{x.y) Ex + (y — x)/(1 + &).

Then, in the telephone bargaining model, if i¥l, the perfect equilibrium

outcome is that the item is sold to player 1 for the price B & B(Vi’vl)'

19



Note that, for & close to one, the bargainers split the surplus almost
equally. Note too, that the price is not at all sensitive to the
presence of additional bargainers. For the games F?, however, the
equilibrium outcomes are quite different.

Proposition 3. If the initial owner is i=l, then no trade ever
occurs at equilibrium. If the initial owner is any other player, then,
at equilibrium, the item is sold at date 1 to player 1 and never resold.
The sale is by private offer if the private offer price of B(vi,vl) is

larger than the auction price of (1-6)v2 + 6B(v2,v1). Otherwise, the

sale is by auction.l4

The game has been structured so that the owner makes the first
offer. Since delays are costly, this gives the owner some advantage in
the bargaining. When the time between successive offers is long and
delay costs are high, the. advantage to making the first offer in
negotiations is large, and it is not optimal then for the owner to give
up that advantage by conducting a low minimum price auction.

Probably more common is the situation where the time between offers
is small enough that & is nearly one.15 In that case, the auction price
will exceed the private offer price if and only if there are at least

twe non-owners with higher valuations than the initial owner i. That

1‘lThe proof is omitted. It follows the now familiar lines. for
alternating offer bargaining models.

For example, if the annual real interest rate were as much as 5% and
it took a week to arrange an auction, then & would be .999.
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is, at equilibrium, the owner bargains if and only if there is only one
real potential buyer. Otherwise, he conducts an auction!
Together, Propositions 2 and 3 provide a strong case for the

desirability of conducting an auction.

3. Expected-Price Maximizing Auctions

So far, we have shown that auctions 1e;d to core outcomes and that
when resale is possible and trading costs are low, it is almost optimal
for almost every seller to conduct an auction with 2 low minimum price.
This near optimality holds regardless of the other alternatives avail-
able to the seller, provided only that the buyers cannot be compelled to
buy. The specific example with which we ended the section, however,
establishes that conducting an auction with a low minimum price is not
generally the best strategy for a seller in a strong bargaining posi-
tion.

We therefore turn to the question: What is the best strategy for a
seller with a hegemony of bargaining power? What we have in mind is a
situation in which the seller, for some unspecified reason, has the
power to select any institution he likes for conducting trade. The
seller assumes that the buyers will agree to participate if their
expected payoffs are non-negative — the buyers are too weak to demand
more. In the deterministic setting, the seller’s optimal strategy is
obvious, make a take-it~or-leave-it offer to the highest valuation buyer
that extracts all the surplus from him. If the buyers' valuations are
private information, however, then the seller cannot implement such a
strategy; he does not know what offer to make. What, then, should an

expected price maximizing seller do?
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Let us begin with the simplest case. We suppose that there is only
one buyer whose valuation V (V 2 0} for the item is unknown and has
distribution F. Suppose the seller’s valuation is s, corresponding to a
flow benefit from ownership of (1 - &)s. These valuations mean that if
the buyer acquires the item at date t for a price of p, his payoff (in
von Neumann-Morgenstern utility) is (V - p) 5° and the seller’s is
pﬁt + s(l—ﬁt).16 If no trade occurs, the buyer’s payoff is zero and the
seller’s is s. Following Vickrey's style of formulation, let us suppose
that the buyer observes private information X and has a valuation
V = u(X), where X is uniformly distributed on (0,1) and u is a nonde-
creasing function.l7 For simplicity, we take u to be strictly
increasing and continuously differentiable.

If the seller makes a take-it-or-leave-it offer at a price of
P = u{x), the buyer will accept if his valuation exceeds u(x). The
probability of that is 1-x. The seller’s expected payoff is then
(I-x)u(x) + xs. Of course, the seller has other strategies available.
He could require the buyer to play a game in which the buyer’s choices
determine a probability distribution over outcomes. An outcome speci-

fies whether a trade occurs, when it occurs, and what payments are made

16 . . . .
The assumption of identical discount rates can be weakened to an

assumption that the seller is no more patient than the buyers, without
upsetting any of our results.

17This involves no loss of generality. One can reproduce any distribu-

tion F essentially by taking u = Fl
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at which dates. The content of the next result is that a simple take-it
or~leave-it offer is as good or better than any such game.18

3
Proposition 5. Let x solve max (1-x)Ju(x) + xs. Then meking an

immediate take-it-or-leave-it offer to sell at the price u(x*). with a
commitment never to meke another offer, maximizes the seller's expected
payoff (over the class of all exchange games). Moreover, if {(1-x)u(x)
is strictly concave, then the seller's payoff is maximized only by games
that sell at time O to all buyers for whom X > x* and do not sell to
other buyers at any date.

The most surprising part of this conclusion is that it does not, in
general, pay the seller to use time and uncertainty for purposes of
price discrimination. As a Corollary, the seller cannot benefit from
private information about his own valuation: he would make the same take
it-or-leave-it offer as a function of s regardless of whether s is known
ex ante.

The method of analysis used to prove Proposition 5 is important and
worthy of detailed study. The heart of the method is the observation
that it is possible to place substantive restrictions on the allocation

that can result from any Nash equilibrium of anvy Bayesian game. The

1SThe following two Propositions synthesize results of Harris and Raviv
[1982]. Milgrom [1985], Myerson [1981], Riley and Samuelson [1981], and
Rubinstein, Wilson and Wolinsky [1585]. Rubinstein, Wilson and Wolinsky
were the first to extend the optimal auction results to models in which
the seller could use the threat of delays to extract a higher price from
the buyer. Their analysis makes clear that Proposition 5 depends on the
assumption that the seller is no more patient than the buyers.
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first restrictions are the so-called jincentive compatibility con-
straints: Each player must prefer his own equilibrium allocation to
anything he could get by pretending to be a player of another type. A

second type of restriction, the participation constraint, reflects the

assumption that the buyer cannot be forced to participate: The buyer
must actually prefer participation to non-participation. As applied to
the problem at hand, the incentive compatibility constraints means that
the seller cannot extract a higher price from a buver with a higher
valuation unless he gives that buyer something correspondingly wvaluable
in return, such as a higher probability of receiving the item or the
opportunity to receive it sooner. The participation constraints mean
that the buyer’s expected payoff must be non-negative, regardless of his
valuation for the item. These constraints imply a bound on what the
seller can expect to receive at any Bayesian-Nash equilibrium of any
game. The proof of Proposition 5 amounts to computing the bound and
showing that it is achieved by a take-it-or-leave-it offer.

The method described above is most fruitful when applied to a model
in which the incentive constraints take a particularly simple form.
In the problem at hand, the buyer cares only about the expected discoun-
ted date at which he acquires the item E[ﬁT] (where T = ® if he makes no
acquisition) and the expected discounted payments e to be made. The
payoff to a buyer of valuation v is VE[BT] - e, a linear function of the
relevant variables. The seller cares about the same things; his payoff
is e + s(1 - E[&T]). A proof of Proposition 5 using these ideas is

given in an Appendix.
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Next, we introduce multiple potential buyers into the environment.
Assume that there are n bidders, and that bidder i’s private information
is represented by the random variable Xi' Bidder i's wvaluation
Vi = u(X;) depends only on his private information. Assume that u is
nondecreasing and that the Xl.'s are independently uniformly distributed

on {0,1). This combination of assumptions defines the so-called

independent private values model. The independence assumption is

particularly important for the following results; it means that an
outside observer {or the seller) could not infer anything about Xl by
observing (X ,...,Xn). We relax this assumption in section 4.

The analysis in the multiple buyer case follows the same lines as

in the single buyer -case, The conclusion, however, is even more
striking.

Iy 3 3 *

Proposition 6. Assume that (1 - x)u(x) is concave and let x

denote a maximizer of (1 - x)u{x) + xs. Then among all possible games
that the bidders might agree to play, the sealed-bid and ascending-bid
auctions with minimum price u(x*) maximize the seller’s expected
payoff.lg

Proposition 6 as stated applies only to a very limited set of
auction environments. However, it can be (and has been) extended in
many different directions. The case of risk averse buyers has been
treated by Matthews [1983] and Maskin and Riley [1984a]. Cremer and

McClean [1985b] have studied a variation involving some statistical

dependence. Milgrom [1985] allowed the seller to have many objects for

19Other auctions with the same minimum price that always allocate the

object to the highest evaluator lead to the same expected price.
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sale, subject to some convex cost of production. Other variants can
also be found. Most often, the optimal selling strategies for these
more complicated environments are not recognizable auctions nor, indeed,
recognizable institutions of any kind. Thus, the optimal auction theory
is inadequate, by itself, to explain why auctions are used.

What is perhaps most missed in the theory of optimal auctions is
some indication of which institutions for selling an object are robust
— that is, optimal or nearly so in a range of environments, or at least
not weakly dominated across a range of environments. Also missing is
some formalization of the idea that auctions are simple — for example
all the bids that can be made actually are made at equilibrium in
several simple environments. Properties like simplicity and robustness
are interesting to think about but hard to formulate; almost nothing has

yet been done on this part of the topic.

4. Strategies for a "Weak" Seller

The models of sections 2 and 3 go a2 long way toward explaining the
continuing widespread use of auctions for selling many goods. However,
these theories tell us almost nothing about the details of auctions.
The deterministic models predict that all the usual sorts of auction
mechanisms lead to the same outcome. Vickrey, who first introduced and
used the independent private values model of section 3, found that all
the common auctions lead to the same allocation of the item and the same
average price for the seller. One of the main puzzles of auction theory
since Vickrey's pioneering work has been to explain when different

auctions can be expected to lead to substantially different outcomes.
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Cur purpose in this section is to review a theory which offers such an
explanation.

Our analysis is based on the symmetric auction model introduced by
Milgrom and Weber [1982], which extends and unifies the earlier models
of Vickrey [1961,1962] and Wilson [1977]. In the Milgrom-Weber model,
each bidder i observes some private information variable Xi in (g.i)
before bidding. These observations are assumed to be drawn from some
symmetric joint distribution. The value of the item to bidder i is
denoted by Vi = u(Xi,XFi.S), where X__i is the list of valuations of the
other bidders, and § is some vector of unobserved random variables. It
is assumed that u is nondecreasing in all its arguments and is a
symmetric function of the components of X—i' It is also assumed that
the bidders are risk-neutral.

¥e have already seen in section 2 that the value of the item at
auction to any bidder can depend on the valuations of other bidders when
there is a possibility for resale. The vector wvariable S8, which
generally represents unknown attributes of the item, could be inter-
preted as the valuations of bidders not present at the auction. Another
interesting interpretation of the variable § is that it represents some
unknown physical attributes of the item. For example, if the item being
sold is the rights to timber on a tract of land in Oregon, then the
potential yield of the tract in board feet of each species of timber is
normally unknown. If the right to drill for oil on some underwater
tract off the north coast of Alaska is being auctioned, the value will

depend on the amount and grade of the oil, its depth, future world oil
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prices, availability of transport facilities like pipelines {which
depends in turn on the productivity of nearby tracts}), etc.
The presence of unknown attributes {physical or otherwise)} gives

rise to a curious phenomenon known as the Winner's Curse. The idea of

the curse is that inexperienced bidders will often lose money, Or earn
less than expected, because a bidder is much more likely to place the
highest bid when he has overestimated the value of the item than when he
has underestimated it. Of course, experienced bidders are aware of this
phenomenon and adjust their bids accordingly, which makes a study of the
bidding problem quite and interesting exercise. Before giving a more
formal account of the Winner's Curse, we must finish specifying our
modelling assumptions.

¥e shall assume that the variables (S,X) are pairwise positively
R,

correlated on all rectangles in That is, they are positively

correlated conditional on any information of the form Si€(§i,§i) and

XjE(gj.Ej), i=1,...,m, j=1....,n. Such random varizbles are called
affiliated. The main facts about affiliated random varisbles are
20

briefly summarized in the next paragraph.
Suppose the random variables Z = (8,X) have a joint density f(Z2).

Then affiliation can be expressed as a property of the density f as

follows:

2OThe theory of affiliated random variables is presented in the appendix

of Milgrom and Weber [1982], where the cited results are proved. The
property of the densities of affiliated random variables reported in the
text has been studied by a number of authors, who have given it various
names including the "FKG inequality” and the "MTP2 property.”
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(4.1) f(z) f(z') < f(zNz') f(zUz")

vhere 2zMz' is a vector whose ith component is min(zi.zi) and zUz' is a
vector whose ith component is ma.x(zi,z:'i). Note, in particular, that
independent random variables are affiliated. If f is smooth and
everywhere positive, affiliation is equivalent to the requirement that
the azenffaziazj 2 0 for all i¥j. A fact about an affiliated random
vector Z which is used repeatedly in auction theory is that for any
nondecreasing function g, the function G defined by:

(4.2) G[(gi,Ei;i=1....,n)] = E[g(2) | z, <Z, ¢ Ei; i=1,....n]

is nondecreasing.

Given our assumptions about the bidders’ information, there is an
especially nice way to formalize the Winner's Curse. Suppose all the
bidders j#l choose bids in a sealed-bid auction as functions ﬁj(XJ.) of
their information. Suppose each ﬁj is increasing. Finally, suppose
that bidder 1 submits a bid of b and wins. When the bidder learns that
he has won. how should he evaluate his winnings? The answer is that he
should always revise his estimate of value downwards from his initial
estimate:

(4.3)  E[V; | X;. mex By(Xg) < B1CELV, | X, e By (X;) < ]

= E[V, ] X, ]
{(where we have used the fact (4.2) that conditional expectations of
monotone functions of affiliated variables are monotone functions of the
conditioning variables). 1In simple English, learning that others have

bid less than b is "bad news” about the value of the item being
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a<:t:1uire=:d.21 Of course, at equilibrium, bidders will take this fact into
account in advance in choosing their strategies.

Consider a sealed~bid auction with a zero minimum price. We wish
to represent this formally as a game. The players are the n bidders.
Each bidder i observes Xi and decides what to bid. A strategy is
therefore a funtion ’Bi(xi) specifying how much to bid as a function of
what the bidder knows. Given any realization of the vector X, the item

will be sold for the price max Bi(xi) to the player who submits that
i _

bid.

Next, consider a Dutch auction game. In a Dutch auction, the
auctioneer starts the price at some very high level, and reduces it
until some bidder shouts "Mine!™ to claim the item. Although there are
complicated ways to describe any bidder’s strategic options, all amount
to saying that, as a function of Xi’ player i must decide how far to let
the price fall before shouting "Mine!". Suppose that bidder i's
strategy is to let the price fall to 'Bi(xi)’ and then shout "Mine!".
Then, the item will be sold for a price of max Bi(xi) to the bidder "who
chose that maximum level. Remarkably, in strategic form, the Dutch and
sealed-bid auctions are the same game!

It was Vickrey [1961] who first noted this equivalence, and he also
claimed that the standard ascending-bid auction is equivalent to a
particular sealed-bid auction. He reasoned as follows. Suppose in the

ascending-bid auction bidder i decides to bid up to the level Bi(Xi),

21388 Milgrom [1981] for a more complete analysis.
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which we shall call i's "bid." Then the item will be sold for the
second highest bid to the high bidder. This is the same as conducting a
sealed-bid auction in which the item is awarded to the high bidder for
the second highest bid. Actually, this analysis is not quite correct,
because the bidders in an ascending-bid auction have additional strate-
gies available: They can make their bids depend on the previous bids of
the other bidders. Nevertheless, in the interests of brevity and
simplicity, we shall adopt Vickrey's "second price auction” as a model
of the ascending-bid auction. The results we obtain are not affected in
an essential way by this modelling.22

One can show for the model we have described that there are unique
increasing strategies ﬁs and ﬁA such that (ﬁS""'ﬁS) is an equijilibrium
of the sealed-bid auction game, and (BA....,ﬁA) is an equilibrium of the
ascending-bid auction game, and that these strategies are characterized
by sclutions to first-order conditions.

How is one to compare the expected revenues from these two kinds of
auctions? How can one evaluate the impact of revealing information on
the expected selling price in either kind of auction? The main tool for

this analysis is the Linkage Principle.

22Milgrom and Weber [19827] distinguish the Vickrey second price sealed
bid auction from the English ascending-bid auction. In the latter, they
assume, bidders can base their bidding decisions on the levels where
other bidders ceased to be active. Such strategies require making
complicated inferences in real time, and in any case their equilibria
have the same properties as those of the model studied here.

23Here. I ignore the possibility of multiple equilibria, and focus
attention exclusively on a monotone, symmetric equilibrium. The
uniqueness problem and related issues are taken up by Milgrom [1981],
Maskin and Riley [1983], and Harstad and Levin [1984].
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Consider any of the large family of auctions with the property
that, at equilibrium, the bidder with the highest evaluation wins and
acquires the object for some non-negative price, and where all losers
pay zero. In general, the price paid may depend on how all the bidders
behave. Given an auction "A", let WA(z,x) be the expected price paid by
a bidder, say bidder 1, when X1 = ¥, but bidder 1 bids as if X1 were Z,
and he wins. For the sealed-bid auction, WA{z,x) = ﬁs(z). Notice that
it doesn’'t depend on x at all, since the price a bidder pays depends
only on the bid he makes. However, when the seller reveals information
or when an ascending-bid auction is used, if the variables are not
independent, WA(z,x) will normally depend upon x. For example, for the
ascending~bid auction, WA(z.x) = E[BA(Y.Y) ! Xi=x,Y<z]. where Y = max

J#£i

Xj. When Xi and Y are correlated, this expectation depends on x as well

as z. The message of the Linkage Principle is that such linkages raise

the expected price.

Proposition 7 (The Linkage Princigle!.z4 Let "A" and "B” be a pair
of auctions with the properties that prices are always non-negative and
the bidder with the highest valuation wins (at equilibrium). Suppose
that for all x, Wg(x.x) > Wg(x,x). where the subscripts denote partial
derivatives with respect to the second variable. Then, the expected

price is higher in auction "A" than in auction "B".

24The Linkage Principle was originally introduced by Milgrom and Weber
[1982a], who described it as “the common thread running through' their
results (pp. 110-111). The mathematics of the Principle, which is
buried in their arguments, was first made explicit in a second,
unpublished paper, "A Theory of Auctions, Part II."
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Proof. Let R(z.x) = E[V1 1{Y<z}|X1=x3’ that is, the expected value
received when player 1 observes Xlax and bids as if he had observed
X1=z, assuming that the other bidders adhere to their equilibrium
strategies. Let F(z|x) = P{Y(z]X1=x}. that is, the probability that
such a bid will in fact win when X1=x. After observing X1 = X, bidder
1, by choosing a bid, chooses a set {Y { z} of situations in which to
win. Thus., at equilibrium of auction game "A", x must be a solution to:

(4.4) max R(z,x) - F(z|x)¥*(z.x) .
z

Using subscripts to denote partial derivatives, the first-order neces—
sary condition is:

{4.5) 0= Rl(x.x) - Fl(xlx)WA(x.x) - F{xlx)W?(x,x). or

(4.6)  Wi(x.x) = R, (x,%)/F(x.x) - [F} (%,%)/F(x.x) W (x.x).

and a similar expression holds for WB. Define:

(4.7) Ax) = W (x.x) - W(x,x).

Now, in both auctions A and B, a bidder with information x always
loses at equilibrium, and so has an expected payoff of zero. Were he to
bid as if his information were x+e, he would win with positive probabi-
lity. The expected price he pays in this deviation must, therefore, be
at least R(§+e.§)/F(§+e|§). It cannot be more (for & small) since then
the expected profits of a bidder with information x+e would be negative.
Since this argument applies both to auctions A and B, WA(g,g) = WE(E,E).
So, A(x) = 0.

Alsc, using (4.6) and (4.7).

(4.8)  4'(x) = -[F,(x)/F(x0] 860 + Wy(x.x) - Wylx.x).
Now, whenever A(x) < O, the right-hand side of this expression is non-
negative, by our hypothesis and the fact that FI/F 2 0.
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Now suppose A(z) < O for some z > x. Let z = sup{x | x < z and
A{x} 2 O}. Since A(x) = 0, we must have A(z) = 0 > A{z). Hence, by the
Mean Value Theorem, there exists z' € (z,z) such that A'(z’') < 0. But
by construction, A(z’) < 0, which using (4.8) implies that A'(z'}) >0, a
contradiction. So, for all x > x, A(x) > 0.

The expected price in auction "A" when all bidders adhere to their
equilibrium strategies is equal (by symmetry) to the expected price

conditional on bidder 1 winning, which is:

(4.9) E[WA(X,.X,) | X, = max X_].

1'71 1 j J
and similarly for B. Hence, the expected price difference is
E[A(Xl.xl) [ X, = max Xj] 2 0, as required. §§

Our first application of the Linkage Principle is to explain the
equivalence in expected prices that Vickrey observed among the standard

auctions in his model.

Proposition 8 (Revenue Equivalence). Consider any auction game

where Xl""’xn are independent and for which prices are restricted to
be non-negative. Suppose that, at equilibrium, the high bidder always
wins and losers neither make nor receive payments. Then, the expected
price in every such auction is the same as for the ascending-bid

... 25
auction.

For a more general revenue equivalence result and a helpful dis-
cussion of its implications, see Riley and Samuelson [1e817].
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Proof. When bidders j#i adhere to there equilibrium strategies and
bidder i, who has observed Xi = x, bids as if Xi = z, the price in
auction "A" will be p = p(z.X_i). Then, when i wins,

(4.10) Wz.x) = B[ P(z.X_() | X = x, max X, <z ]
J#i
vwhich, by the hypothesis of statistical independence,

= E[ p(z.X_;) | max X, < 2] ,
iz Y

and similarly for WB(z.x). Hence, W;(x,x) = Wg(x.x) E 0. Apply the
Linkage Principle. 8§

When we replace the hypothesis of statistical independence by one
of affiliation, the Linkage Principle provides a powerful tool for
making positive statements about the expected prices under various
alternative arrangements. For a first example, we can now compare the
expected price in the sealed- and ascending~bid auctions.

Proposition 9. The expected price (at equilibrium) in the ascen-
ding-bid auction is never less, and is sometimes more, than for the
sealed-bid auction.

Proof. Let "A" be the ascending-bid auction and "B" the sealed-bid
auction. It is clear that Wg(x.x) = 0, since the price depends only on
the winner’s bid, as illustrated in the text above. The ascending bid
auction "A" is also illustrated above. There, the equilibrium price
paid by winning bidder i is a nondecreasing function of Xj' Jj#i, and
these are affiliated to Xi. By the affiliation theorem cited earlier,
this means that the expected price given i’s actual bid and Xi is a
nondecreasing function of Xi' Hence, Wg(x,x) 2 0. Apply the Linkage

Principle. 8§



In the sealed-bid auction, the winning bidder’'s payment depends
only on his own observation; there is no linkage to other variables. In
the ascending-bid auction, the price is determined by the second highest
bidder's observation, which provides the price-increasing linkage.

When the seller has private information that he can provide, the
equilibrium price will be a function of that information, providing vet
another price-increasing "linkage.” Of course, this assumes that the
seller can provide information in a verifiable way and that the seller
can commit to a policy for revealing information.

Proposition 10. Verifiably revealing any information variable SO
raises the expected price both in the sealed-bid auction and in the
ascending-bid auction. Among all policies for full or partial revela-
tion of information, the policy of full revelation maximizes the
expected price.

The policy of full revelation can also be deduced when the seller

cannot commit to an information policy.

Proposition 11. If the seller must decide, after observing S

o0
whether to report it, and if his report is verifiable, then at a perfect
equilibrium he always reports SO' regardless of its value.

Proof Sketch. Suppose that the seller observes S0 and then decides
whether to report it. At equilibrium, the buyers' bids when the seller
makes no report depend on their beliefs about the value of So. For any
beliefs the buyers may have, one can show that the seller's best

response is to make a report whenever S0 is in fact sufficiently

favorable, so any equilibrium must have the property that the seller
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reports whenever SO > s*. But then, at equilibrium, when the seller
reports nothing, the buyers must believe that SO < s* and bid accor-
dingly. They would bid strictly more if they had the more "favorable”
belief that SO = s*, so it would be in the seller’'s interest to report
SO even when it is slightly lower than s*. Hence there can be no

perfect equilibrium at which s exceeds the lower bound s of the support

of SO' §§

In a further application of the Linkage Principle, Riley [1985]
argues that when value can be observed ex post (even imperfectly), the
expected price is higher when part of the price is a royalty based on
the observed value. MacAfee and MacMillan [1984] make the same observa-
tion in comnection with incentive contracting, where bidding and moral
hazard issues arise together., Consider a situation in which a buyer
must select one of several contractors for, say. a construction project.
Including a cost-sharing provision in a contract gets a lower price at
the bidding stage (apply the Linkage Principle}, but that must be
balanced against the weakened incentive for cost control that such
contracts may create. This examination of the relation between bidding
and contract incentives is one of the most promising recent developments
in bidding theory.

Even when a seller has little ability to enforce a high minimum
price, he can still choose any auction with a zero minimum price
because, as noted in section 2, rational buyers cannot refuse to
participate. If the bidders behave noncooperatively, the seller does

better by using an ascending-bid auction than by soliciting sealed bids.
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This accords well with the Cassady's [1967] observation that ascending-
bid auctions are by far the most popular kind worldwide. The seller
also does well to provide any information he may have, since that, too,
creates a price increasing linkage.

In terms of incentive theory, the Linkage Principle is based on the
observation that a bidder’s profits depend upon his ability to conceal
information. Linking the price to variables that are affiliated with
the bidder’'s private information diminishes his ability to conceal
information effectively, and so lowers his profits. With risk neutral
bidders and a risk neutral seller, when comparing auctions that allocate
the good efficiently, any reduction in the bidders’ payvoffs is a gain to
the seller.

Plainly, that reasoning depends on the assumption that bidders are
risk neutral. With risk aversion, there can be efficiency gains from
making the bidders' payoffs less random. This idea has up to now been
studied only in connection with the independent private values model.
For that model, Matthews [1980] noted that if the bidders’' observations
are statistically independent and the wvaluation function is Vi = Xi’
then the sealed~bid auction is always preferred by the seller when
either he, or the buyers, or both are risk averse.26

In the independent private values model, linkages inefficiently
increase the randomness in the payoffs. However, in other models,

linkages reduce the randommess in the payoffs. For example, suppose the

2See also Holt [1980].
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observations are independent and valuation function is Vi =
min(Xi,max Xj)' Then, the ascending-bid auction is always preferred by
the seller when the bidders are risk averse. In this example, the
linkage of the price to other bidders’ information reduces the fluctua-
tions in the winning bidder's payoffs, and makes him willing to pay
more, to the seller’s benefit. In general, in the presence of risk
aversion, linkages may or may not enhance revenue and efficiency.

Finally, we turn to the question of whether uncertainty about the
bidders’ valuations makes it harder or easier for the seller to achieve
commitment in his efforst to maintain a high minimum price. Consider a
model in which the seller conducts a series of auctions, specifying any
minimum price he chooses, and the buyers are limited to bidding in the
auction; they cannot make extraneous offers. In the deterministic case,
the seller can extract all the surplus from the highest valuation buyer
by insistently setting the minimm price equal to that wvaluation.
Indeed, in the discrete time version of this game model, the equilibrium
just described is the only perfect equilibrium.

With uncertainty, however, the situation is quite different. The
situation with a single buyer and offers made by the seller has been
analyzed by Stokey [1982], and by Gul, Sonnenschein and Wilson [1985].
In the discrete time game where offers are made by the seller, there is
a unique perfect equilibrium. If the buyer’s reservation value is
uncertain to the seller and distributed over an interval that includes
the seller’s reservation value, then, at equilibrium, the seller must

sell for nearly his own reservation price: Uncertainty is the enemy of
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commitment. Gul and Sonnenschein [1985] have proved a variant of this
result for the case where both the seller and the buyer can make offers.
Here, we make a simple extension of this conclusion tc the case of
many buyers. Suppose that the seller can conduct an auction at each
moment of time, and can vary the minimum price m{t) over time. For
technical convenience, we require that the seller choose a path m{t)
that is right continuous. A buyer’'s strategy specifies for each moment
in time, whether to bid and an amount tec bid, as a function of the path
of minimum prices announced by the seller up to that point. We limit
the bidders to strategies that determine a first moment to bid (possibly
+»} for any feasible strategy of the seller. For example, the buyer
cannot specify that he will make a bid whenever the minimum is below $5
and has been below $5 before, since that does not specify a first moment
to bid when the seller sets a minimum of $4 at all times. Finally,
suppose that payoffs f{from trades conducted at any date t > O are
discounted to time zero at the same rate for buyers and the seller.
Proposition 12. An equilibrium of the continuous auction game is
described as follows: The seller sets a minimum price equal to his
reservation price s at every point in time. A buyer with observation Xi
= X bids 5S(x) at the first moment that m{t)} ¢ ﬁs(x), where BS is the
symmetric equilibrium strategy for the (static) sealed-bid auction.
During the play of the game, if the seller sets some minimum price
other than s, a player using the prescribed strategy will bid if and
only if his planned bid exceeds that minimum. Therefore, by watching

the game progress, the seller and the other bidders could learn about
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the bidders’ vzluations — specifically that they are too low to Justify
bidding at the prices named by the seller. This sort of learning is
perfectly analogous to what occurs in a Dutch auction. As with Dutch
auctions, no matter what upper bound on valuations a bidder may learn
during the course of the auction, it will always be optimal for him to
adhere to his equilibrium strategy, "because” he expects the seller to
reduce the price to s very soon.

It is easy to check is that the "optimal auction," which requires
that the seller make a once-and-for-all take-it—or-leave-it offer, is
not a perfect equilibrium of this continuous time game. For suppose
that the seller expects the bidders to adhere to the optimal auction
equilibrium strategies. The optimal auction offer always entails
setting a minimum price in excess of the seller’'s reservation price.
Hence, if the seller makes the optimal auction offer and no bidder bids,
it will always pay the seller to make another, better offer to the
buyers. Hence, the seller can conduct an optimal auction only if he can
commit himself to refrain from making a profitable offer later. Such
commitment is proscribed by the perfect equilibrium solution concept.

By imposing a plausible restriction on the buyers’ strategy spaces,
one can eliminate much more than just the optimal auction equilibrium in
this continuous time game. Indeed, if the bidders are limited to
strategies that satisfy the Gul and Sonnenschein [1985] stationarity
property, then the equilibrium of Proposition 12 is the unique symmetric
(among buyers) equilibrium. The stationarity property requires that a

buyer’s current decision depends only on his own type and the "common
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knowledge” distribution of buyer types (which, at equilibrium, can be
inferred from past bidding behavior); in particular, the behavior does
not depend on the time or on how those beliefs were reached. When the
buyers are limited to stationary strategies, if all trading does not
take place at time zero, it will always be in the seller’'s interest to
"speed up the clock,” replacing his strategy m{t) by ;(t) = m{2t). This
strategem makes all trades occur earlier without reducing the price the
seller gets. Therefore, at any equilibrium in stationary strategies,
all trading occur at time zero. Then, since the seller cammot adhere to
a minimum price above his reservation price of zero, the unigueness
result follows.

Thus, with uncertainty about the buyers’ valuations, the seller’s
ability to achieve commitment is severely reduced. Whatever powef the
seller retains comes from his ability to generate competition among

bidders by conducting an auction.

5. Collusion

Only recently has any theoretical attention been devoted to the
problem of ceollusion in auctions. The fact that the outcome of auctions
in deterministic settings lie in the core of the exchange game does not
mean that auctions are immune to collusion; it means only that no subset
of the players could improve their lot by going off and trading among
themselves. Auctions with low minimum prices are vulnerable to collu-
sion among the bidders. Graham and Marshall [1985], beginning with that
observation and a claim that collusion is rampant in real auctions, have

studied a variation of the independent private values model of section 3



in which the bidders may have formed a cartel or ring. They find that
the optimal minimum price to be set by a seller is an increasing
function of the likelihood that a ring has formed.

My purpose here is simply to examine the hypothesis that auction
forms differ in their degrees of susceptibility to cellusion. I will
focus on Mead’'s [1967} hypothesis that ascending-bid auctions are more
susceptible to collusion than are sealed-bid auctions. Such a conclu-
sion would explain why a seller might choose a sealed-bid auction in
preference to an ascending-bid auction, despite the latter’s theoretical
superiority when bidders behave competitively. The simplest model not
involving side payments that I have found to study collusion is the
following one, which exploits the existence of multiple Nash equilibria
in ascending-bid auctions to construct collusive perfect equilibria in
repeated ascending-bid auctions.27

The model 1is deterministic. We suppose that two bidders bid
periodically against one another in an auction for items which both
bidders value at x. Suppose they agree to take turns winning at a price
of b { x. The discount factor which reflects the frequency of these
periodic interactions is some number 5 < 1. How frequent must the
interactions be support his collusive arrangement? That is, how large

must & be to allow collusion of this sort to survive at an equilibrium?

27Bikhchandani [1984] has exploited the fact that the one—shot ascending
bid auction has multiple equilibria to construct a repeated bidding game
in which the equilibria have a collusive flavor. Robinson [1985] has
also exploited the multiple equilibrium idea. He analyzes a simple one-
shot game model, but the analysis assumes that colluders can share
information verifiably — an assumption which naturally favors the
formation of collusive rings.
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In the case of a sealed-bid auction, suppose it is an equilibrium
for the players to alternate bidding b, while the other bidder makes a
show of it by bidding b ~ eé. To be an equilibrium, it must be unpro-
fitable for the scheduled loser to bid just more than b today and forgo

future profits=28

x -b < E_:_EQ
1 -5

which reduces to & > (V5 -1)/2 or, approximately, & > .62. One corres-
ponding collusive agreement in the ascending-bid auction has the
scheduled winner bid x and the scheduled loser bid b. For the scheduled
loser to find a deviation unprofitable requires only that § > O.

Thus, collusion is easier to support in an ascending-bid auction
than in a sealed-bid auction. The Iintuition for this result is a
familiar one: Collusion is hardest to support when "secret price

concessions”™ are possible, and easiest to support when all price offers

must be made publicly.

6. Conclusion
I have organized this paper around two central questions: Why do
auction institutions continue to be so popular after thousands of years?
and What accounts for particular details, like the popularity of sealed
bid and ascending-bid auctions? The answers to these guestions were

summarized in the introduction. The answers are plainly incomplete;

There are some minor issues here about whether the inequalities given
below should be strict or weak. These depend on the solution concept
used, and are not a matter of great importance here.
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indeed, they rely on fundamentally different models of the auction
environment. What is urgently needed is a single consistent model that
explains both the use of auctions in preference to other mechanisms when
individual items are unique and such details as the widely observed
preference for ascending-bid auctions over sealed-bid auctions.

There are segments of auction theory that I have omitted from my
review, partly because they do not fit neatly into the schema of my two
questions, and partly because a surveyor must draw lines. One could
survey very different territory by asking other questions, like:
(1) How do experimental subjects behave in auctions? Such a survey
would feature the work of Vernon Smith and his colleagues, who have led
the way in studying bidding behavior with controlled laboratory experi-

29 . . . . .
ments. It would also cover studies of the implications of alternative

29An excellent example of this line of research is the work reported in
Cox, Smith, and Walker [1984].

The proper interpretation of their experimental results is
controversial. The experimenters generally regard it to be evidence
concerning how actual bidders behave in auctions. However, I tend to
regard it as another kind of model, in which the subjects instead of
rational maximizers are the model of actual bidders. This is analogous
to comparing mathematical models of air feils with corresponding scale
models tested in wind tumnnels: Often, the mathematical models predict
better.

In auctions for mineral rights., the bidders (o0il company execu-
tives) normally have access to professional consultants who can conduct
formal analyses with much more proficiency than the typical subject in
an experiment. It seems likely that these executives bid much more
rationally than typical experimental subjects, though this supposition
is of course subject to empirical refutation.
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models of choice under uncertainty for bidding behavior.30 (2) What
insights does auction theory offer into the problems of price discrimi-
nation? Many of the researchers who have contributed to the theory of
expected-price maximizing auctions have extended their results to the
problem of optimal price discrimination by a monopolist (Cremer and
MacLean [1985a], Harris and Raviv [1981], Maskin and'Riley [1984b]).
(3) ¥hat are the relationships between bargaining theory, auction
theory, and competitive equilibrium theory? Wilson's [1985] companion
survey gives an introduction to this new and lively area of research,
sometimes called the theory of market microstructure. Our Propositions
2, 3, and 12 give some idea of the issues studied in that connection.
(4) How are auctions used in contracting environments, where the
bidder’'s performance in the contract needs to be properly motivated?
This is a new subject of study that has so far limited itself unneces-—
sarily to private value auction models, but which is evidently generali-
zable to many important bidding situations.

The list of possible questions is endless, but this survey is not.

3OFor example, Karni and Safra [1985] have a model of bidding behavior
in which the bidders may behave differently even in strategically
equivalent games.
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APPENDIX

Proof of Proposition 5. Suppose the seller designs some game I' in
which, at equilibrium, trade takes place at some date T which may
depend, possibly probabilistically, on some choice made by the buyer.
If no trade takes place, let us say that T = @®. Suppose X is the set of
strategies available to the buyer. For each o€Z, let p{o) = EG[GT] be
the expected present value of 1 unit paid at the time of trade. This
expectation depends, of course, on the strategy o chosen by the buyer.
Similarly, let e{c)} be the expected present value of net payments made
by the buyer over the course of the game. If the buyer’'s information is
X, his expected payoff using o is u{X) p(o) - (o). Let o*(x) and H*(x)
denote the buyer’s optimal strategy and the maximum payoff, respec~-
tively, in the game when X = x. Define p*(x) E p(cr*(x)) and

e (x) = e(0 (x)). Then,

m

(A.1) (%) = u{x) P (x) - & (x).

As Vickrey originally argued, p*(x) must be nondecreasing; other-
wise the buyer must be using a dominated strategy c*(x). He could
increase his ex ante expected payoff by 'rectifying” his strategy to
make p*(x) nondecreasing while holding the distribution of cr*(X) fixed,
since that leaves his expected payment and probability of winning
unchanged but increases the expected value received. By the Envelope

Theorem, an’/ax = u{x) p*(x), using equation (A.1), de*(x) =
2% * * *
u(x) dp (x)}. Hence, e (x}) = e (0) + J« u{t) dp (t). Now the seller’s
0

3
expected cash receipts, conditional on x, are (l—p*(x)) s + e (x).
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Since X is uniformly distributed on {0.1), the corresponding uncondi-

tional expectation is:

1 1
(A.2) J; e (x) dx = e (0) + J; J: u(t) dp (t) dx

1 A
e (0) + dx u(t) dp (¢
[ w

1
@ + [ (-0 u(e) ap*(e)
0

In addition, the seller gets value from keeping the item:

(A.3) s Jl (1p (%)) dx = s Jz [1 - p(1) + Jd dp*(t)] dx

X

= s [1 - pl) + JZ JZ dx dp*(t)]

s [1-p%) + Jz ¢ (o) |

The seller’s total expected payoff is therefore:

1
(A.4) eﬁm+stl—?un+J;urnuu)+u1@ﬁn

Since the buyer must have a strategy o of nonparticipation., which
leads to a payoff of zero, we may conclude:
(A.5) e(0) < P(0) u(0) .
Inequality (A.5) constrains the seller in designing a game. Another
constraint that must hold at equilibrium is:
(A.6) p* : [0,1] » [0,1] is nondecreasing.
Since the objective (A.4) is linear in p* and e*(O) and the constraint
set (A.5)-(A.6) is convex., the maximum must gccur at an extreme point.

Thus, at a maximum, (A.5) must hold with equality. Also, the p . that
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maximizes the seller’'s expected payoff (A.4) subject to (A.6)}) must
either jump from zero to one at the point x* vhere the integrand is
maximized. or must be a constant, 0 or 1 (in case X" is 1 or 0}. The
maximized value of the seller's payoff (A.4) subject to (A.B5)~(A.B) is
sx + (l—x*) u{x*).

This maximum, which bounds what the seller can get at any equili-
brium of any game, can be achieved by making the take-it-or-leave-it
offer u(x*). Moreover, if (l1-x) u{x) is strictly concave, the unique
p*(-) function that attains the maximum is p*(x) =0 for x < x" and = 1
for x x*, so any institution as good as making a take-—it-or-leave-it

offer must lead to the same trading outcome. &§
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