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OPEN AND SEALED-BID AUCTIONS'

Auction Theory with Private Values

By ERIC S. MASKIN AND JOHN G. RILEY*

For many centuries, auctions have been a
common form of selling procedure. Although
auction methods vary across country and
product, the two most frequently observed
are the open, ascending bid (or English) auc-
tion and the sealed-bid auction. Recent theo-
retical research has led to a theory of equi-
librium bidding in these two auctions and a
wide range of alternatives as well. As a result
it has been possible to compare the revenue
extracted by the seller under different auc-
tion methods and even to characterize the
revenue-maximizing auction.

The Revenue Equivalence Theorem (see
for example, William Vickrey, 1961, Roger
Myerson, 1981, and Riley and William
Samuelson, 1981) asserts that when each
bidder’s reservation price for a unit of an
indivisible good is an independent draw from
the same distribution, and bidders are risk
neutral, the sealed-bid auction generates the
same expected revenue as the open auction.
Much recent research has involved weaken-
ing each of the main hypotheses—risk neu-
trality, identically distributed values, and in-
dependence of values—in turn. We shall
illustrate some of the principal conclusions
of this work by considering the properties of
open and sealed-bid auctions in a model of
two bidders whose reservation prices can as-
sume only two values, and by comparing
these auctions to the “optimal” or revenue-
maximizing auction.

¥ Discussant: William F. Samuelson, School of Man-
agement, Boston University.

*Departments of Economics; Harvard University,
Cambridge, MA 02138, and University of California,
Los Angeles, CA 90024, respectively. We are indebted
to William Samuelson for helpful suggestions. We thank
the Sloan Foundation and the NSF for financial sup-
port.
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1. Revenue Equivalence

Imagine that the reservation price of bid-
der i (i=1,2) can assume the values vy
(with probability p) and v, (with probability
1— p), where v, >v; >0. Bidders’ values
are private information and independently
distributed. Bidders are risk neutral, that is,
they maximize the expression

(1) (probability of winning)v
—expected payment.

We suppose that an open auction proceeds
by the auctioneer’s continuously raising the
asking price. The auction concludes when
one of the bidders drops out. The remaining
bidder is the winner and pays the dropout
price (if both bidders drop out simulta-
neously, a coin is flipped to determine the
winner). Given these rules, one can easily
confirm that a bidder’s unique (perfect) equi-
librium strategy is to drop out when the
asking price reaches his reservation price.
(There are other “nonperfect” equilibria, see
our 1983a paper). Thus the expected payoff
of a v, bidder (a bidder whose reservation
price is v,) is zero, and his probability of
winning is 5(1— p). The expected payoff of a
v, bidder, by contrast, is his surplus if the
other bidder is “low” (since then the asking
prices only reaches v, rather than v, ) times
the probability of that event, that is, (1—
p) vy —v,;). Since a v, bidder wins when
the other bidder has a low value and wins
half the time when the other bidder has a
high value, his probability of winning is 3p
+(1- p).

In the sealed-bid auction, bidders submit
bids simultaneously. The higher bidder is the
winner (ties again are resolved by coin flips)
and he pays his bid. Consider a symmetric
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equilibrium. Because the distribution of val-
ues is discrete, the equilibrium will involve
mixed strategies. Notice first that a v, bidder
(one whose reservation price is v, ) will never
bid more than v, because, if he did, the
maximum of such bids (if bidders use mixed
strategies that randomize over a variety of
alternative bids) would win the auction with
positive probability, inducing a negative ex-
pected payoff. Let b, be the infimum of all
bids submitted.

Suppose first that b, <v,. Then bidders
bid below v, with positive probability and so
a v; bidder’s expected payoff is positive.
Suppose, furthermore, that bidder 1 bids b,
with positive probability. Then bidder 2’s
chances of winning increase discontinuously
if he bids just more then b, while his pay-
ment if he wins scarcely rises, thereby raising
his expected payoff. But this is a violation of
symmetry. On the other hand, if b, is not
bid with positive probability, then bids near
b, have almost no chance of winning, con-
tradicting the positive expected payofT.!

Next let b, be the infimum of bids made
by a vy bidder. If b,, > v,, then a bid strictly
between b, and v, has the same chance of
winning as by, and so is preferable. Thus
by=v,, and a v, bidder’s expected payoff
must be (v;; — v, )(1— p). In equilibrium, any
bid b made as part of a mixed strategy must
generate the same expected payoff. Therefore
if F(b) is the cumulative distribution func-
tion of a v, bidder’s bid, it satisfies

(2) [pF(b)+1-pl(vy—b)
=(1-p)(oy—v,).

By symmetry, a v, bidder’s expected prob-
ability of winning is $p +(1— p), whereas
that of a v, bidder is 1(1— p). Because a
given type of bidder’s probability of winning
and expected payoff are the same in the open
and sealed-bid auctions, formula (1) implies
that his expected payment is the same in the
two auctions. We have established the Reve-

' Our argument here presumes that the equilibrium in
the sealed-bid auction is symmetric. One can show (see
our 1983a paper) that there is no asymmetric equi-
librium.
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nue Equivalence Theorem for our model.
Indeed, we obtain the same expected revenue
from any other auction in which the high
bidder wins, the expected payoff of a v,
bidder is zero, and the expected payoff of a
vy bidder is (1— p)(vy — v;).

It is of some interest to compare the open
and sealed-bid auctions with a revenue-maxi-
mizing auction (see Myerson and Riley-
Samuelson). Suppose that bidders were
offered the choice between bidding v, or
by = (dvy + 30 = p)v,)/(ip +1- p), with,
as always, the high bidder winning. Because
b,; is greater than v,, a v, bidder will bid
v,. Since (3p+1— p)v, — by,) =11 -
p)X vy —v,), a vy bidder is indifferent be-
tween bidding b, and v,, and so might as
well choose the former. Since a v, bidder
bidding b, has the same probability of win-
ning as in an open or sealed-bid auction
(zp +(1—p)), but has a lower expected
payoff, (3(1— p)(vy, —v,) rather than (1—
P)(vgy —v;), his expected payment must be
higher. Thus, this alternative auction gener-
ates higher expected revenue. Indeed, it is
optimal if v, > pv,. (If v, < pv,, it is opti-
mal to set a reserve price at vy, thereby
rejecting all lower bids.) In either case, the
optimal auction differs from the open and
sealed-bid auctions by prohibiting bidders
from making certain bids. This conclusion
generalizes to more complicated models, in-
cluding those with a continuum of possible
reservation prices.

I1. Risk Aversion

Let us modify the model of Section I only
by supposing that bidders are risk averse.
Let u be a strictly concave von Neumann-
Morgenstern utility function, normalized so
that #(0)=0. A v bidder’s payoff if he wins
and pays ¢ is u(v — t); his payoff if he loses
and pays ¢ is u(—1t).

Risk aversion does not alter the bidders’
behavior in the open auction; it is still opti-
mal for a bidder to drop out exactly when
his reservation price is reached. Hence ex-
pected revenue is as before. In the sealed-bid
auction, v, bidders continue to bid v,, and
if Fy is the cumulative distribution function
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of a v, bidder’s bid, it satisfies the analogue
of condition (2):

(3) u(vy—=b)[(1=p)+ pFr(b)]
=u(vy—v,)(1-p).

The strict concavity of u implies that u(v,
—v)/u(vy = b)<(vy—v.)/(vy—b) for
v, <b<uvy,. Hence, (2) and (3) imply that
Fr(b) < F(b) with strict inequality for bids
greater than v, but less than the maximum.
That is, Fy stochastically dominates F, and
so the expected bid by a v, bidder is higher
with risk aversion than without. We conclude
that, with risk aversion, a sealed-bid auction
generates greater expected revenue than an
open auction (see Gerard Butters, 1975, and
Charles Holt, 1980). Intuitively, increasing a
bidder’s risk aversion heightens his fear of
losing and so, in a sealed-bid auction, in-
duces him to bid higher. Viewed alterna-
tively, a sealed-bid auction, unlike an open
auction, insures a winning bidder against
fluctuations in the amount he has to pay, and
a risk-averse bidder is willing to pay a pre-
mium—in the form of a higher bid—for this
insurance.

By requiring payments even of losing bid-
ders, an optimal auction (see our 1984 article,
and Steven Matthews, 1983) can exploit the
fact that a risk-averse bidder’s marginal util-
ity of income depends on whether he wins or
loses. Let =; be the probability of winning
and b, and a; the payments by a winning
and losing bidder, respectively, of type i
(i=L, H). An optimal auction chooses w,,
b;, and a; to maximize

(4) p(muby+(1=my)ay)
+(1=p)(mb, +(1-m)a,),
subject to
(5)  myu(vy = by)+(A=my)u(=ay)
> mu(vy —b )+ (1 —m)u(-a,)
(6) mu(v,—b)+(1-m)u(-a,)=0

(7) sp+(Q-p)<my,

MAY 1985
(8) izpmy+(1-p)m,
(9) #y>0 and =, >0.

Constraint (5), a self-selection constraint,
ensures that a v, bidder is at least as well off
making a high as a low bid. We have omitted
the analogous self-selection constraint for a
v, bidder since, as we shall see, it is satisfied
automatically. Constraint (6) guarantees a v,
bidder a nonnegative expected payoff from
participating. (Given (5), a v, bidder’s payoff
will also be nonegative.) Condition (7) says
that a v, bidder can win with at most prob-
ability 1 if the other bidder has a low
reservation price and, given the symmetry of
the model, with at most probability 3 if the
other bidder’s reservation price is high. Con-
straint (8) requires simply that each bidder’s
probability of winning, unconditional on his
reservation price, not exceed 1.

Letting « and B8 be the Lagrange multi-
pliers for (5) and (6), respectively, we obtain
the first-order conditions

(10) pmy — amyu'(vy —by) =0
p(l—my)—a(l—my)u'(—ay)=0
(11) (- p)m, +amu'(vy—b,)
—Bm (v, —b,)=0
(1-p)A-m)+a(l-m)u'(=a,)
—B(l-m)u'(-a,)=0.
From (10) we find that v, — b, = — a, that
is, a high bidder is perfectly insured; he
receives a monetary transfer —a,( > 0), as
compensation if he loses. From (11) and the
fact that u'(vy, — b;)<u'(v,—b,),
(12) (B-a)u'(-a,)
=1-p>(B-a)u'(v,—b,).
Thus a v, bidder is better off winning than
losing (v, — b, > —a,). Moreover, since

(from (12)) (6) is binding, he must actually
pay a penalty if he loses (a, > 0), which we
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can interpret a as an entry fee. Because (5) is
binding and v, — b, > — a,, we have v, —
by <vy—b,, thatis, a vy, winner pays more
than a v, winner. If (8) is binding, as it will
be if p is small enough, we can solve for
and rewrite (4) as pwy(by—ay—b, +a,)
+ pay +(3— p)a,. From the above argu-
ment, by —ay — b, +a, >vy; —v, >0.
Hence, constraint (7) is binding: =, = 3p +
1-p).

We conclude that an optimal auction with
risk-averse bidders resembles that for risk-
neutral bidders. Bidders are offered the choice
between two prices by and b, (if, as before,
p is not too high), and the high bid wins.
However, if a bidder loses with a bid of b,,,
he is compensated for losing, whereas if he
loses with a bid of b,, he is penalized. Intui-
tively, introducing a penalty heightens a
risk-averse bidder’s fear of losing and there-
fore increases the revenue that can be ex-
tracted from a v, bidder. Of course, this
penalty, by increasing risk, reduces the pay-
ment that a v; bidder makes. But the penalty
has no effect to the first-order, since, with no
penalty, a v, bidder is perfectly insured.

It remains only to show that the solution
to the program of maximizing (4) subject to
(5)—(9) satisfies

(13) 7TL“(UL —b)+(1—m )u(~ a)
= '”Hu(UL —by)+(1- Ty ) u( — ay),

the self-selection constraint for v, bidders.
But (13) follows immediately from the fact
that (5) holds with equality and =, u’(v—
by)>mu'(v—>b,) (since my >, and by >
b,) for all v.

III. Asymmetry

Let us revert to risk neutrality but now
drop the assumption that valuations are
identically distributed. Specifically, assume
that bidder 1’s reservation price is distrib-
uted as in Section I, but that bidder 2’s
reservation ;- ..e is either wy or w, with
probabilitics ¢ and 1-— g, respectively. Con-
tinue to suppose that the two bidders’ distri-
butions are independent. For convenience,
let us suppose that v, =w, =0. Then the
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expected revenue generated by the open auc-
tion is

(14) pqmin{ vy, wy}.

We wish to compare the difference in reve-
nues, A, between the sealed-bid and open
auctions.? To do this we shall consider two
polar cases of asymmetry: (i) both bidders
have the same probability of being high but
have different high values, that is, p = g and
Uy #+ wy, and (ii) both bidders have the same
high values but different probabilities, that
is, vy =wy and p #q.

It is not difficult to see that in case (i), A
is positive. We know from Section I that
when vy, = wy,, A is zero. Now imagine rais-
ing wy above vy. This does not affect reve-
nue from the open auction since there is no
change in the distribution of the second
highest reservation value. However, with a
higher wy, the optimal response in the
sealed-bid auction by bidder 2 (when v = wy,)
to bidder 1’s equilibrium strategy is a higher
bid. Bidder 2’s higher bid, in turn, induces
bidder 1 to bid higher than before (for de-
tails, see our 1983b paper). Hence, revenue
from the sealed-bid auction rises, and A be-
comes positive.

In case (ii), expected revenue in the open
auction is pquy. In the sealed-bid auction,
the equilibrium cumulative distribution func-
tions, F, and F,, of the bids of bidders 1
and 2, when their reservation prices are v,
satisfy the analogue of (2):

(15) (1—g+gF(b))(v,—b)
=(1- ¢+ qF,(0))vy;
(1= p+ pF(b))(vy —b)

=(1-p+ pF,(0)vy.

(16)

*As our model is formulated, an equilibrium in the
sealed-bid auction may not exist. The nonexistence
problem, however, is an artifact of our allowing literally
a continuum of possible bids. In fact, we can restore
existence even with a continuum by allowing the possi-
bility of positive but infinitesimal bids, which we im-
plicitly assume in our analysis.
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Notice that right-hand sides of (15) and (16)
allow for the possibility that a v, bidder will
bid zero (actually, infinitesimally more than
zero) with positive probability. This will be
the case if p # g since both bidders must
make the same maximum bid,*> b,, when
their reservation price equals vy, and (15)
and (16) can be satisfied for b = b;, only if
one of F;(0) and F,(0) is nonzero. For exam-
ple, if p > ¢, then (15) and (16) imply that

I_)H =qvy = PUH(I— FI(O))’

and so F;(0)=1- ¢q/p. Integrating (15), we
obtain gzv, as the expected payment by
bidder 1 if his reservation price is vy, where
z = [F,(b)dF,(b). Similarly, from (16), the
expected payment by bidder 2 is (p(1—z)+
q — p)vy. Hence total expected revenue is
q*v,;, which is less than the open auction
revenue, pqu,. Therefore, for case (ii), A is
negative.

Roughly speaking, the sealed-bid auction
generates more revenue than the open auc-
tion when bidders have distributions with the
same shape (but different supports), whereas
the open auction dominates when, across
bidders, distributions have different shapes
but approximately the same support.

IV. Correlation

Let us return to the model of Section I,
except now assume that reservation prices
are correlated across bidders. Specifically, let
r,; (i, j€{L,H}) be the joint probability
that bidder 1’s value is v; and that bidder 2’s
value is v;. Correlation implies that

(17)

As usual, behavior in the open auction re-
mains the same, and so expected revenue is

(18)

Making the obvious modifications in the

Pt~ Tucfon # 0.

Tyt (1 - ’HH)UL-

31f, say, bidder 1's maximum bid were greater than
that of bidder 2, bidder 1 could lower his bid without
reducing his probability of winning.
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analysis of Section I, we conclude that
expected revenue for the sealed-bid auction
is also (18). This equivalence between the
two auctions does not generalize to distribu-
tions with more than two point supports
because, in general, with correlation, a higher
reservation price does not imply a higher bid
for the sealed-bid auction (although it does
for the open auction).* Any condition suffi-
cient to guarantee that bids are monotonic in
reservation prices, however, ensures equiv-
alence. One such condition is that the reser-
vation prices be affiliated (see Paul Milgrom
and Robert Weber, 1982).

When (17) holds, an optimal auction ex-
tracts all surplus from bidders (see Jacques
Crémer and Richard McLean, 1985). To see
this, let ¢,; (i, j € {L, H}) be the payment
that bidder 1 makes when his v=v, and
bidder 2’s v =v;. To extract all surplus, the
¢, ;8 must satisfy

(19)

1 _ _ _

2700~ FeCon — TunCun =0

(20) (3rpp+ris)or—ripCuy—roCu, <0
2 T o)L — FouCun — TLiCHL

(21) (3rym + ru)vy = ruuCun — Y€ =0
2t ')V — "ueCun — THICHL

(22)

1
3L~ TuuCrm — ruifrr < 0.

Equations (19) and (21) require the sur-
plus of v, and v, bidders, respectively, to be
zero. Inequality (20) ensures that a v, bidder
is not better off bidding as a v, bidder, and
(22) imposes the corresponding constraint on
a v, bidder. But from (17), we can solve for
¢, ;s that satisfy (19)-(22).

4Suppose, for example, that v can take on three
possible values: vy > vy, > v,. Assume that if v =0y
for one bidder, then it is very likely that v = v; for the
other bidder. Assume further that if v=v,, for one
bidder, then the other bidder in all likelihood has the
same reservation price. In this case, a v,, bidder will bid
higher on average than a v, bidder in the scaled-bid
auction. Furthermore, the sealed-bid auction, at least for
some parameter values, generates strictly more revenue
than does the open auction.



VOL.75 NO. 2

V. Concluding Remarks

We have discussed three major hypotheses
of the Revenue Equivalence Theorem, but
there remain two more implicit in our formu-
lation. One is the assumption that only a
single item is sold. If buyers have down-
ward-sloping demand curves and there are
multiple units for sale, the Revenue Equiv-
alence Theorem again fails. Extrapolating
from some simple examples, we conjecture
that open bidding will tend to dominate
sealed bidding in this environment.

The second assumption is that a bidder’s
reservation price does not affect the reserva-
tion price of any other bidder. This is the
“private values” hypothesis: the assumption
that reservation prices are a matter of taste
rather than a reflection of information about
the intrinsic value of the good. In the latter
case, the “common values” model, the open
auction tends to produce higher revenue than
the sealed-bid auction when our other hy-
potheses are maintained (see Milgrom and
Weber).
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