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Airline planning consists of several problems that are currently solved separately. We
address a partial integration of schedule planning, aircraft routing, and crew schedul-

ing. In particular, we provide more flexibility for crew scheduling while maintaining the
feasibility of aircraft routing by adding plane-count constraints to the crew-scheduling prob-
lem. In addition, we assume that the departure times of flights have not yet been fixed and
we are allowed to move the departure time of a flight as long as it is within a given time
window. We demonstrate that such a model yields solutions to the crew-scheduling problem
with significantly lower costs than those obtained from the traditional model.

Major United States airlines operate up to 2,500
domestic flights per day. Due to the large number of
flights, planning is complex and therefore is divided
into several stages. Schedule development, i.e., where
and when to fly, comes first. Next is fleet assignment
(FAM), where an assignment of fleets (equipment
types) to flights is made to maximize potential rev-
enue. After FAM has been solved, the problems that
follow decompose by fleet. In aircraft routing, an air-
craft is assigned to each flight. Given a fleet and
the corresponding plane routes, the next step is crew
scheduling, which consists of finding crew itineraries
or pairings. The last step, called rostering, is the
assignment of crews to crew itineraries. Some recent
literature that presents the individual models is Hane
et al. (1995) for fleet assignment, Clarke et al. (1997)
for aircraft routing, Barnhart et al. (1999) for crew
scheduling, and Gamache and Soumis (1998) for crew

rostering. Yu (1998) contains a collection of articles on
airline planning and operations.

The five problems, schedule development, FAM,
aircraft routing, crew scheduling, and rostering, are
solved separately. Ideally, all five problems should
be solved as a single problem, but this is not feasi-
ble computationally. Here we take some steps toward
an integrated approach. Our goal is to solve the
crew-scheduling problem, but we assume that crew
scheduling is solved before aircraft routing and, in
addition, that the flight departure times are not fixed.
To solve crew scheduling before aircraft routing, we
add additional constraints to the crew-scheduling
model, which provide necessary conditions for the
aircraft-routing problem to be feasible. Each flight
has a time window and the final departure time
must be within that time window. By assuming
that crew scheduling is solved before aircraft rout-
ing, we are able to obtain solutions to the modified
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crew-scheduling problem that are significantly bet-
ter than solutions obtained by using the traditional
crew-scheduling model. The retimed flights should
not have a big impact on the quality of the sched-
ule and the FAM solution because the time windows
considered are small.

The rest of the paper is organized as follows.
In §1 we explain the constraints that have to be
added to the crew-scheduling problem to meet plane-
count constraints. The time window aspect of pairings
is described in §2. Section 3 describes the solu-
tion methodology. The resulting problem is a set-
partitioning problem with side constraints, and we
show the extra steps required to account for the side
constraints. Computational results are presented in
§4. We conclude the introduction with brief descrip-
tions of the fleet assignment, the aircraft-routing prob-
lems, and the crew-scheduling problems.

Major United States airlines domestic operations
are based on a hub-and-spoke network. High activ-
ity airports are called hubs and low activity airports
are called spokes. After the schedule has been built,
FAM is solved. FAM has two fundamental sets of
constraints: flow conservation and plane count. Flow
conservation is represented by a time-space network
in which there are arcs for each flight leg or segment,
i.e., a nonstop flight. Therefore, an arc specifies two
events: a departure and an arrival. The constraints that a
FAM solution cannot use more aircraft than there exist
in a fleet are modeled by introducing ground arcs
and the associated variables. A ground arc represents
a connection between two consecutive events with no
flight activity in between. Each fleet has its own set
of ground-arc variables. The nonnegative ground-arc
variable counts the number of planes in the fleet on
the ground in the time interval defined by the arc. We
call the value of such a variable the ground-arc value.
For each fleet, the flow-conservation constraints state
that the number of planes on the ground plus the
number of planes arriving must be equal to the num-
ber of planes on the ground in the next time interval
plus the number of planes departing. The total num-
ber of planes in a fleet is the sum of all the ground-arc
values of those arcs at a specified point in time, e.g.,
midnight, plus those aircraft that are in the air.

An aircraft route is a sequence of flights that are
flown by the same aircraft, and a rotation or a routing
is a set of aircraft routes that partition all the flights
in the schedule. Given a fleet, the aircraft-routing prob-
lem is to find a routing that satisfies the plane-count
constraints and other constraints mainly related to
maintenance, e.g., Gu et al. (1994) and Clarke et al.
(1997). We say that a routing is plane-count feasible if it
satisfies the plane-count constraints.

A plane-turn time is the time needed for a plane to
be ready for the next flight after arriving at a gate.
We denote by minTurn the minimum plane-turn time,
which can depend on various factors such as the sta-
tion and local time, but for simplicity we assume it is
a constant. We use a default value minTurn= 30 min-
utes. In the sequel, all times are given in minutes.

A duty is a working day of a crew that consists
of a sequence of flights and is subject to FAA and
company rules. Among other rules, there is a min-
imum and maximum connection time between two
consecutive flights in the duty. A connection within
a duty is called a sit connection. We denote by min-
Sit the minimum sit-connection time. The default
value is minSit = 45. The minimum sit-connection
time requirement can be violated only if the crew fol-
lows the plane turn, i.e., they do not change planes.
The cost of a duty (measured in minutes) is the maxi-
mum of three quantities: the flying time, a fraction of
the elapsed time, and the duty minimum guaranteed
pay.

Crew bases are designated stations where crews
must start their first duty and end their last duty. A
pairing is a sequence of duties, starting and ending at
a crew base and with the elapsed time no more than
a week. A connection between two duties is called an
overnight connection or layover. We refer to the time of
a layover as the rest. Similar to sit-connection times,
there is a lower and an upper bound on the rest. We
denote by minRest the minimum allowed rest time
(minRest= 620 for our data).

The cost of a pairing is also the maximum of three
quantities: the sum of the duty costs in the pairing, a
fraction of the time away from base, and a minimum
guaranteed pay times the number of duties. The excess
cost of a pairing is defined as the cost minus the flying
time of the pairing. Note that the excess cost is always
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nonnegative. The flight time credit (FTC) of a pairing is
the excess cost times 100 divided by the flying time,
i.e., the excess time measured as a percentage of flying
time. A pairing is also subject to many FAA rules.

The airline crew-scheduling problem is to find a set
of pairings that partition all of the segments and min-
imize excess cost. The daily airline crew-scheduling
problem is the crew-scheduling problem with the
assumption that each leg is flown every day of the
week. Because in practice, a small number of legs are
not operated during weekends, a daily solution needs
to be modified somewhat to obtain a weekly solution.
This paper deals exclusively with the daily problem.
Traditionally, a crew-scheduling problem is modeled
as the set-partitioning problem

min�cx � Ax = 1
x binary�
 (1)

where each variable corresponds to a pairing; aij =
1 if leg i is in pairing j and 0 otherwise, and cj is
the excess cost of pairing j. Note that for the daily
problem, a pairing cannot cover a leg more than once
because pairings are repeated in the time horizon.

The problem is difficult because the number of pair-
ings, i.e., columns, can be extremely large. The num-
ber of pairings varies from about 200,000 for small
fleets, to about a billion for medium-sized fleets, and
to billions for large fleets. Furthermore, because the
cost function of a pairing is nonlinear and the legal-
ity rules are complex, it is challenging to perform
delayed column generation, i.e., generating columns
only as they are needed in the optimization algorithm.

There have not been many attempts to integrate
planning stages. Barnhart et al. (1998) present a
model that integrates, to some extent, FAM and crew
scheduling. The model has a very large number of
constraints and therefore is hard to solve. Rexing
(1998) presents a FAM model with time windows. His
approach significantly differs from ours in the way
the columns are generated. He discretizes the time
window intervals, whereas we generate columns on
the fly without discretizing time windows. Another
integration of the FAM model and time windows is
presented in Desaulniers et al. (1997). They use a set-
partitioning model with side constraints and solve
problems with up to 400 flights. Barnhart et al. (1998)

discuss the integration of FAM and aircraft routing by
considering strings of flights.

Recently Cordeau et al. (2001) proposed a model
that fully integrates crew scheduling and aircraft rout-
ing because it produces a feasible crew schedule and
feasible aircraft routing. Their model is solved with
branch-and-price, where at each node of the tree the
master problem is optimized with Benders decompo-
sition. They report computational results with fleets
containing up to 500 flights and a spoke-to-spoke
flight network, but it is not clear if the approach
is computationally tractable on hub-and-spoke flight
networks with many crew bases.

There are also approaches that integrate crew and
vehicle scheduling in urban mass transit systems.
Haase et al. (1998) present a model that minimizes the
crew cost and the number of vehicles. Their model is
the set-partitioning model with side constraints and it
is solved with a branch-and-cut-and-price algorithm.
Our model is similar, except that in our application
the number of resources, i.e., aircraft, at any given
time in the time horizon is given by FAM. Freling
et al. (2000) propose a model that links the crew-
scheduling formulation with the vehicle-scheduling
formulation. The model preserves the flow of the
vehicles, but it does not try to minimize the num-
ber of vehicles. Their model resembles the model in
Cordeau et al. (2001). Other references on urban mass
transit systems can be found in these two papers.

1. Plane-Count Constraints
Even though the difference between minSit (45 min-
utes) and minTurn (30 minutes) is relatively small,
judiciously choosing the plane turns can significantly
affect the quality of crew scheduling. We performed
an experiment on a small fleet consisting of 123
legs. Table 1 shows the effect of the minimum sit-
connection time on the excess cost. The last column
refers to the problem with minSit = 45 and a given
aircraft routing, i.e., the approach used in current

Table 1 The Impact of the Minimum Sit-Time on FTC

minSit 30 35 40 45 Turns

FTC 8.4 8.5 10 12.5 11
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methodology. The remaining columns show the objec-
tive value if the minimum sit-connection time is set
to a given number and aircraft routing is neglected.
Clearly, it is advantageous to have a minimum sit-
connection time of 30 minutes. The experiment also
indicated that a different routing can significantly
reduce the FTC.

The current methodology finds a routing first and
then solves the crew-scheduling problem. A model
that considers crew scheduling as well as aircraft
routing would require variables for strings as well
as pairings, resulting in a larger formulation. How-
ever, because our primary objective is to solve the
crew-scheduling problem, we will develop a formu-
lation that incorporates the necessary aircraft con-
straints without using string variables.

Therefore, instead of completely combining the two
problems, we solve them sequentially but reverse the
order in which they are solved. The advantage of
this approach is that the crew cost is high and the
impact of a routing on the crew cost can be substan-
tial. Furthermore, the routing problem is primarily a
feasibility problem and generally has many feasible
solutions. In the remainder of the paper we assume
that a routing is not given. Because we do not know
the plane turns, any pairing having sit connections
shorter than minSit can be a feasible pairing assuming
that the plane turns are implied by the pairing.

Suppose that the minimum sit-connection time
equals minTurn and we solve the crew-scheduling
problem under this assumption. Then the pairings in
the solution imply some plane turns, namely, each
connection in a pairing that is shorter than minSit,
forces a plane turn. We call such potential plane turns
forced turns. Forced turns become part of the input
to the routing problem that must be included in fea-
sible routes. Because of the hub-and-spoke network
structure, as long as the number of forced turns is
low, it should not be difficult to meet the mainte-
nance requirements. The other remaining significant
constraints are the plane-count constraints. We show
in this section how they are captured in the crew-
scheduling model.
Example 1. Consider the following scenario shown

in Figure 1. Assume that this is the only activity at
the station and let minTurn = 30 and minSit = 45. If

Figure 1 Plane-Count Example

pairings containing the leg pairs 1–4, 2–5, and 3–6
are in a crew-scheduling solution, then they imply 3
forced turns and, hence, 3 planes on the ground at
8:31. Hence, there would have to be one aircraft on
the ground at 7:59, and therefore this routing would
use more planes than the minimum number.

1.1. Constraints
The following proposition gives a necessary and suf-
ficient condition for forced turns to be included in a
plane-count feasible routing.

Proposition 1. A set of forced turns can be included
in a plane-count feasible routing if and only if at any point
in time the number of planes on the ground imposed by
the forced turns is less than or equal to the corresponding
ground-arc value from the FAM solution.

Proof. Consider the set of forced turns satisfying
the condition in the proposition. Suppose we merge
each pair of flights that form a forced turn into a
single flight and then adjust the ground-arc values
accordingly. The new ground arcs and flights still sat-
isfy the flow-conservation constraints and the ground-
arc values are nonnegative. The remaining plane
turns can be chosen by a first-in, first-out heuristic.
It is easy to see that such a routing is plane-count
feasible.

Conversely, it can be shown as in Example 1, that
if the number of forced turns exceeds the ground-arc
values, the proposed routing will violate the plane-
count constraints. �

A FAM solution specifies the number of planes bg
on the ground, for each ground arc g ∈ G and for
each fleet. These ground arcs are defined based on
“ready” times, that is each arrival time is modified by
adding the minimum plane turn time to it. For our
purposes, it is desirable to define ground arcs based
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on the original schedule, instead of on the “ready”
times. Given the ground-arc values from a FAM solu-
tion, it is easy to compute ground-arc values based on
our definition.

In a daily FAM model, where each flight leg is
flown every day, the ground arcs G correspond to
time intervals within a given 24 hour period. For a
ground arc g ∈ G we use the notation g+d to repre-
sent that the ground arc g is shifted by d days in a
weekly horizon. We say that a pairing includes a ground
arc if there is a forced turn within the pairing that
contains the time interval represented by the ground
arc. Let P be the set of pairings that can be generated
from legs in the schedule based on the minimum sit-
connection time of minTurn minutes. For each g ∈ G,
let Pg ⊂ P be the set of all pairings having a forced
turn that includes one of g
g+1
 � � � 
 g+6. Because a
ground arc with length greater than or equal to min-
Sit has Pg = �, we only need to consider the subset
G′ ⊆ G whose elements have length less than minSit.
Note that a pairing including g and g+d contributes
two forced turns because it is repeated in the weekly
horizon. For each g ∈ G′ and for each p ∈ Pg , define
apg to be the number of times the pairing p includes
one of g
g+1
 � � � 
 g+6. The plane-count constraints
can be written as

∑
p∈Pg apgxp ≤ bg .

Example 2. The two-duty pairing p shown in
Figure 2 and consisting of legs 1, 2, 3, 4 includes
ground arc g on Monday and ground arc g+ 1 on
Tuesday, therefore apg = 2.

Figure 2 A Pairing Including a Ground Arc g and g+1

The new model, which we call the crew-scheduling
model with plane-count constraints (CSPC) can be
formulated as

min
∑
p∈P

cpxp


∑
p∈Pi

xp = 1 for each leg i
 (2)

∑
p∈Pg

apgxp ≤ bg for each g ∈G′
 (3)

x binary


where Pi is the set of all pairings covering the leg i
and xp = 1 if pairing p is selected.

The constraints (2) are the usual set-partitioning
constraints. We call the constraints (3) the plane-count
constraints. Note that if bg = 0, we can remove all the
pairings in Pg from P and the inequality becomes
redundant. A solution to this problem provides a
crew schedule. The forced turns implied by the solu-
tion need to be included in a feasible routing if that
is possible. Experience indicates that the forced turns
implied by the crew-scheduling solution generally do
not eliminate all feasible routings.
Example 3. Consider the scenario from Example 1.

The resulting plane-count constraint derived from the
ground arc �8 � 30
8 � 35� is∑

p∈P1

p∈P4∪P5∪P6

xp+
∑
p∈P2

p∈P4∪P5∪P6

xp+
∑
p∈P3

p∈P4∪P5∪P6

xp ≤ 2


assuming that each of the pairings does not include
any other “copy” of the ground arc.

It can be shown that in FAM the only ground-arc
variables needed are those that correspond to an out-
going flight followed by an incoming flight; see Hane
et al. (1995). For example, ground-arc variables corre-
sponding to two incoming flights can be aggregated.
Next, we state the same result for the plane-count con-
straints (3). A ground arc g ∈G′ is essential if it corre-
sponds to an outgoing flight followed by an incoming
flight. Let �ati
 dti� be the (arrival, departure) time of
leg i.

Theorem 1. The plane-count constraints correspond-
ing to nonessential ground arcs are redundant in the linear
programming relaxation of CSPC.
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As a result of this theorem (the proof is given in
Klabjan 1999), the number of necessary plane-count
constraints can be significantly reduced to only those
that correspond to essential ground arcs. Their addi-
tion to the standard crew-scheduling model should
not cause significant computational difficulties.

2. Time Windows
Here we assume that the schedule is not yet fixed,
in the sense that we are allowed to make very small
changes in the departure time of each leg. For obvi-
ous reasons it would not make sense to consider “big”
changes in departure times. For the remainder of the
paper let 2w be the size of the time window in min-
utes. Namely, the revised departure time of a leg i

must be in the time interval �dti−w
dti+w�. The off-
set of leg i is the revised departure time minus the
original departure time dti. A typical value for w is
5 or 10 minutes. We assume a default value w = 5.
For simplicity, we assume that the window size does
not depend on the leg index but the approach can be
easily generalized to handle such a dependency.

The output of the crew-scheduling problem with time
windows is a set of departure offsets and a set of
pairings that partition the legs and are feasible based
on the retimed schedule. The flexibility in departure
times should allow pairings that are infeasible based
on the original schedule to become feasible. For exam-
ple, if two legs are separated by 20 minutes, they
can be part of a pairing if the departure time of each
one of them is adjusted by five minutes in the final
retimed schedule.

Therefore, we expect better objective values to be
mostly because of the increased number of feasible
pairings rather than because of the change in the cost
of a pairing if its legs are perturbed. In addition, to
capturing more short-sit connections, shorter layover
times can increase the number of possible pairings
as well. Many pairings that are disregarded because
they violate the 8-in-24 rule might become feasible if
we retime the legs. Additional pairings can also be
captured by extending the maximum sit-connection
time by 2w, but we do not address this possibility
here because such a duty would have a high cost and,
hence, it is unlikely that it would be part of a good

solution. However, the techniques presented can be
easily extended to allow this extension.

We define a duty as a sequence of flights that sat-
isfies all the FAA and company rules based on the
original schedule and the modified pairing feasibility
parameters minSit = minSit− 2w and the maximum
duty elapsed time is increased by 2w.

A feasible pairing with respect to a given feasibility rule
is a sequence of duties, starting and ending at a crew
base, together with offsets of the legs such that the
given feasibility rule is satisfied with respect to the
departure times defined by the offsets. In what fol-
lows a pairing is a feasible pairing with respect to all
of the feasibility rules, specifically the minimum and
the maximum sit-and rest-connection times, the max-
imum duty elapsed time, and the 8-in-24 rule, and
a single set of offsets for all of the feasibility rules.
Assume we modify the following pairing feasibility
parameters: minSit=minSit−2w, minRest=minRest−
2w, the maximum duty elapsed time is increased by
2w, and the minimum allowed compensatory rest is
reduced by 2w. A potential pairing is a sequence of
duties, starting and ending at a crew base, such that
all of the feasibility rules are satisfied based on the
original schedule and the modified pairing feasibility
parameters. Note that every pairing is also a potential
pairing, but the converse is not true. A duty consisting
of two consecutive connections of 20 and 25 minutes
cannot be part of a pairing because there is no way to
retime the three involved legs to meet the minimum
sit-connection requirement of 30 minutes; however, it
can be part of a potential pairing. On the other hand, a
duty with two consecutive 20 and 30 minute connec-
tions can be part of a pairing because we can retime
the three legs to have the sit-connection times longer
than 30 minutes.

We generate potential pairings, and during the gen-
eration we compute new departure times of legs in
a potential pairing such that at the end we produce
a pairing. If a partial potential pairing cannot be
extended, it is pruned. With the parameters given
above, every pairing can be generated. Because of the
hub-and-spoke flight network structure and several
crew bases for large fleets, all of the pairings cannot
be generated in a reasonable amount of time. Instead,
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we generate subsets of random pairings as proposed
in Klabjan et al. (2001).

There are two possible approaches to pairing gen-
eration: One generates pairings directly from legs and
the other generates duties first and then pairings are
constructed from duties. For a more comprehensive
discussion of pairing generation see Klabjan (1999).
Here we generate pairings from duties by depth-first
search.

2.1. Generating Feasible Pairings
We first show how to generate feasible pairings with
respect to connection times and duty elapsed times.
For the time being we ignore the 8-in-24 rule.

For a potential pairing having l legs, let ci be the
connection time between the ith and the �i+1�th leg
in the original schedule, i= 1
 � � � 
 l−1. Note that ci ≥
minTurn− 2w or ci ≥ minRest− 2w depending on the
type of connection. Define mi
 i = 1
 � � � 
 l− 1 to be
minTurn if the connection i is a sit connection and
minRest otherwise.
Example 4. Consider the potential pairing in

Figure 3 depicted in bold. The connection times are
listed next to the connections. Legs 3, 4, and 5 can be
retimed to make feasible connections and the same is
true for Legs 2, 3, and 4; however, we can not retime
Legs 2, 3, 4, and 5 to form feasible connections. To see
this, we can attempt to “stretch” the connections start-
ing with Leg 2. We can move it five minutes earlier
(dashed flight legs in the figure) and then try to make
the next connection as short as possible. We proceed
in this manner until we reach Leg 5, which would
have to be moved by six minutes, thus violating the
time window.

A formal reason for not being able to retime Legs
2, 3, 4, and 5 is that the connection time deficit∑4

i=2�ci−mi� = −11 cannot be compensated for by

Figure 3 An Example of a Potential Pairing that Cannot Be Retimed

moving the departure time of the second Leg five
minutes earlier and the departure time of the fifth leg
five minutes later. No matter how large the connec-
tion times are between the Legs 1, 2 and 5, 6, we can-
not retime the whole potential pairing. The potential
pairing in the figure is not a pairing.

We start with a proposition that addresses the con-
nection times issue. The proposition is presented in a
more general setting, namely, window sizes depend
on the leg index, which will be needed later.

Proposition 2. Let the sequence of legs in a pairing
be given by �1
2
 � � � 
 l�, and assume that each leg i has
a window size wi and that ci ≥ mi −wi −wi+1 for each
index i. The potential pairing is a feasible pairing with
respect to connection times if and only if

i∑
j=s
�cj −mj�+ws+wi+1 ≥ 0 (4)

for all 1 ≤ s ≤ i ≤ l−1.

Proof. We first prove the necessity of (4). Assume
that each leg has an offset xj such that the feasible
pairing satisfies connection time requirements based
on the offsets, i.e., the departure time of the leg j
is dtj + xj , −wj ≤ xj ≤ wj . Then mj ≤ cj + xj+1 − xj for
each 1 ≤ j ≤ l−1. Note that the right-hand side of the
inequality is the connection time of the pairing and,
hence, by definition is larger than mj . Summing the
inequalities from s to i and using the time window
bounds, we get the claim.

The sufficiency is proved algorithmically by con-
structing leg offsets such that the new departure times
are as early as possible and they yield a feasible pair-
ing with respect to connection times.

Algorithm 1 computes a set of offsets x. We claim
that the given offsets satisfy the time window restric-
tions and the minimum connection time require-
ments.

It is easy to see that the computed connection time
is always greater than or equal to mi−1. We still need
to show that xi is within the time window using
the assumption given in the proposition. Clearly, xi ≥
−wi. By induction it follows that either xi = −wi

or there is an index s
1 ≤ s ≤ i− 1 such that xi =∑i−1
j=s �mj− cj�−ws . In the first case, xi ≤wi. In the sec-

ond case, the claim follows directly from the assump-
tion in the proposition. �
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Note that the proof of the proposition also estab-
lishes a linear time algorithm for computing the off-
sets or detecting infeasibility. An infeasibility occurs
whenever a computed offset is not within the time
window.

We have already indicated that the duties are gen-
erated first. Consider a duty d having k legs and a
potential pairing containing the duty. No matter what
the offsets of the first and the last legs of the duty in
the pairing are, the inequalities

∑i
j=s�cj −minTurn�+

2w ≥ 0 must hold for all 2 ≤ s ≤ i ≤ k− 2. So all
the duties violating one of these inequalities must be
removed.

Algorithm 1: Feasible Connection Time Pairing

1: Let x1 =−w1.
2: for i = 2 to k do
3: if ci−1 −xi−1 ≥mi−1 +wi then
4: xi =−wi

5: else
6: xi =mi−1 +xi−1 − ci−1

7: end if
8: end for

Algorithm 1 is a fast procedure for generating feasible
pairings with respect to the connection time require-
ments; however, such pairings do not necessarily sat-
isfy the maximum duty elapsed time bounds (or the
8-in-24 rule). If the duty elapsed time bound was vio-
lated, new offsets would have to be computed, adding
to the already computationally intensive pairing gen-
eration. Instead we compute the offsets of a duty that
we are attempting to append to a partial pairing in
such a way that the maximum duty elapsed time is
not violated (if possible). The key idea is to push the
departure times of the new duty as early as possible
but still be within the time window.

We first derive the explicit formula for the offset
of the last leg in a duty, given an offset of the first
leg of the duty and assuming Algorithm 1 is applied.
With each duty having k legs, we define the following

quantities:

�̄d = min
j=1
��� 
k−2

j∑
i=1

�ci−minTurn�+w


 ̄d = min
j=2
��� 
k−1

k−1∑
i=j
�ci−minTurn�+w


!d =
k−1∑
i=1

�ci−minTurn��

Observe that if the offset of the first leg of the duty is
x and the offset of the last leg is y, then

x ≤ �̄d
 y ≥− ̄d
 x−y ≤ !d� (5)

These conditions follow from Proposition 2 if we
assume that w0 = 0, wk = 0, the departure time of the
first leg l1 in the duty is dtl1 +x, and that the departure
time of the last leg lk in the duty is dtlk + y. Because
any feasible offset must satisfy x ≤w and y ≥−w, we
define �d =min��̄d
w� and  d =max�− ̄d
−w�.

Proposition 3. If the offset of the first leg of the duty
is x, then the offset of the last leg in the duty is

y =max� d
x−!d�
 (6)

if Algorithm 1 is used.

Proof. It is easy to see that

y =




−w or∑k−1
i=j �ci−minTurn�+w

for an index j
2 ≤ j ≤ k−1, or

x−!d�
From (5) we know that y ≥max� d
x−!d�. Combin-
ing the two observations yields the claim. �

Now we are ready to describe the generation of fea-
sible pairings with respect to connection times and
duty elapsed times. We assume that the maximum
duty elapsed time is a constant maxElapse; for a more
general maximum duty elapsed time function see
Klabjan (1999).

The pairing generation routine only keeps track of
the offsets of the first and the last leg in a duty.
Assume that we have a partial pairing consisting of
duties d1
 � � � 
 dj−1 and we want to append a duty d.
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Let �x1
y1�
 � � � 
 �xj−1
yj−1� be the computed offsets.
We want to derive the offsets �xj
 yj� such that the par-
tial pairing extended with the duty d satisfies the min-
imum and maximum sit- and rest-connection times,
and the maximum duty elapsed time based on the
computed offsets.

We would like to avoid backtracking when recom-
puting the new offsets of the already appended
duties. To achieve this, we generate the utmost left
pairing. A pairing is the utmost left pairing if it is
a pairing based on offsets x1
 � � � 
 xj , and for any
time t and index i
 i ≤ j, the pairing with offsets
x1
 � � � 
 xi−1
xi−t
 xi+1
 � � � 
 xj violates either the maxi-
mum duty elapsed time bound or a minimum connec-
tion time limit. Hence, as soon as we move a depar-
ture time one time unit earlier, the pairing violates
one of the two feasibility rules.

In addition to computing the new offsets �xj
 yj� in
such a way that the new partial pairing satisfies the
feasibility rules, we need to preserve the utmost left
property. We assume that the current partial pairing
is the utmost left one. Let mj−1 be the minimum rest
time. Define

#j =
{
−w if cj−1 −yj−1 ≥mj−1 +w

mj−1 +yj−1 − cj−1 otherwise.

Note that #j is determined by performing one step
of Algorithm 1. Combining the above definition and
the inequalities (5), the new offsets have to satisfy the
inequalities

#j ≤ xj ≤ �d
 (7)

 d ≤ yj ≤w
 (8)

xj −yj ≤ !d� (9)

The above inequalities guarantee that the new par-
tial pairing based on the offsets will have connection
times that are bigger than the required minimum. We
still need to take care of the maximum duty elapsed
time and the utmost left property. Assume that ed is
the elapsed time of the duty d based on the original
schedule, and let ẽd be the elapsed time of the retimed
duty.

Then it is clear that ẽd = ed − xj + yj . The elapsed
time ẽd has to be smaller than or equal to maxElapse.
Hence, we get an additional inequality

êd ≤ xj −yj
 (10)

where êd = ed−maxElapse. The new offsets have to sat-
isfy the system of inequalities (7)–(10), denoted by Q.

We claim that if system Q is infeasible, then we
cannot append the duty d. Suppose there were a
set of offsets �x̃1
 ỹ1�
 � � � 
 �x̃j
 ỹj� such that the partial
pairing �d1
 � � � 
 dj−1
d� satisfies the feasibility rules.
Then the offsets x̃j and ỹj have to satisfy (8), (9), and
(10). Because x̃j ≤ �d, it must be the case that x̃j < #j .
Because of the definition of #j , it follows that ỹj−1 <

yj−1. But this contradicts the utmost left property of
the partial pairing and the computed offsets.

Assume now that system Q is feasible. We can
explicitly compute a solution to the system that min-
imizes xj using Fourier-Motzkin elimination (e.g.,
Schrijver 1986) given by

xj = max�#j
 d+ êd� (11)

yj = max� d
x−!d�� (12)

This solution has the smallest xj and the corre-
sponding yj is the one listed in Proposition 3. If we
start with the offset xj and apply Algorithm 1, then
the resulting yj is given by (12). Clearly the algorithm
produces the utmost left sequence of offsets. Hence,
the values given by (11) and (12) maintain the prop-
erty of being the utmost left.

To summarize, we compute the values xj and yj
from the formulas (11) and (12) and then check
inequalities (7)–(10). If at least one is violated, then
the duty d is discarded. Otherwise, we append the
duty d and impose the corresponding offsets �xj
 yj�.

In the United States, the FAA requires that pairings
satisfy the 8-in-24 rule, which says that if in a 24 hour
time window there is more than eight hours of flying,
then the next rest, called a compensatory rest, must be
longer than a given limit. Different flight departure
times can cause a violation of the rule and, therefore,
care has to be taken when time windows are present.
The treatment of the 8-in-24 rule and time windows
can be done efficiently as described in Klabjan (1999).

3. Solution Methodology
We outline the overall methodology of integrating the
plane-count constraints and time windows into the
crew-scheduling model.
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(1) We generate potential pairings based on the
original schedule, but with some pairing feasibility
parameters modified. Namely, the minimum sit and
layover time is decreased by 2w, the maximum duty
elapsed time is increased by 2w, and the minimum
compensatory rest is reduced by 2w. Because we
include the plane-count constraints, the minimum sit-
connection time is the minimum plane-turn time. We
use the algorithms from §2 within the generation rou-
tine for obtaining pairings.

With each generated pairing, we get a sequence
of leg offsets such that the pairing is feasible on the
retimed legs. Even though a pairing may have more
than one retiming, we consider only one, namely, the
one given by the generation routine. We do not try to
find a retiming of legs that produces the lowest cost
pairing because this is a time consuming operation
and it would not bring substantial additional savings.

(2) Next, we solve the crew-scheduling model with
plane-count constraints by considering only the gen-
erated pairings. Each pairing in the solution implies
a set of departure time offsets.

Because the leg offsets can change the set of ground
arcs, capturing all the plane-count constraints exactly
is hard. The approach described below approximates
the plane-count constraints because it may not find all
of the pairings contained in a ground arc of length less
than 2w. We use the set of ground arcs from the FAM
solution and there is a plane-count constraint for each
essential ground arc of length less than minSit+ 2w.
We need to redefine when a pairing includes a ground
arc. Consider a pairing implying the offsets x of the
legs in the pairing. The pairing includes a ground arc
g defined by legs l̂1 and l̂2 if there is a sit connection in
the pairing, defined by legs l̃1 and l̃2, such that dtl̃2 +
xl̃2 − atl̃1 − xl̃1 < minSit and atl̃1 + xl̃1 ≤ dtl̂1 +w
dtl̃2 +
xl̃2 ≥ atl̂2 −w (see Figure 4). The first condition states
that the sit connection implies a forced turn and the
last two say that the pairing includes the ground arc
even if the legs l̂1
 l̂2 defining g are moved as close
together as possible. With this definition, we capture
exactly the plane-count constraints for ground arcs of
length greater than 2w. However, if the length is less
than 2w, then some pairings might be left out of Pg .

(3) The plane count given by the pairing solution
can be increased due to the approximate handling

Figure 4 The New Definition of Inclusion

of some of the plane-count constraints. The increased
plane count can only occur if in the solution a leg
defining an essential ground arc is swapped in time
with an incoming flight. If the solution implies a
bigger plane count, then we attempt to retime the
schedule again, this time only using pairings from the
solution.

Suppose that the arrival time of leg i is before the
departure time of leg j in the original schedule, and
that in the retimed schedule the order of the two times
is reversed and it yields a higher plane count. We
have to push the arrival time of leg i earlier or the
departure time of leg j later. The former is not possi-
ble due to the utmost left property of pairings. Hence,
the departure time of leg j, or some other leg k, has to
be pushed forward, past the new arrival time of leg i.
Note that leg j does not need to be the first leg follow-
ing leg i. For example, if ati < dtj < dtk and retiming
of leg j fails, we can try to retime leg k.

Experiments have shown that there are not many
stations with an increased plane count. Even when
there was an increased plane count, the above proce-
dure was able to retime the legs. The smaller window
size w = 5 never yielded an increased plane count.

(4) If the plane count cannot be adjusted with local
changes in the departure times, then we would add a
constraint forbidding the two involved pairings to be
selected simultaneously. The problem is then reopti-
mized. In our experiments this was never observed.

The LP based branch-and-bound methodology for
solving the crew-scheduling problem with time win-
dows and plane-count constraints, (namely, Steps 1
and 2 above) closely follows the algorithm presented
in Klabjan et al. (2001). It is not discussed here.
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Table 2 Solution Qualities

FTC # Forced Turns

Cases CS w = 0 w = 5 w = 10 CS w = 0 w = 5 w = 10

1 3.94 2.21 1.71 1.35 2 9 10 10
2 3.12 1.85 1.54 1.06 11 11 12 17
3 2.86 1.40 0.88 0.88 17 59 70 70
4 0.31 0.08 — — 66 142 — —

4. Proof of Concept
All computational experiments were performed on
four fleets, two small ones with 100–200 legs and two
larger ones with 300–450 legs. Cases 1, 2, 3, and 4 refer
to the four fleets with Case 1 corresponding to the
smallest fleet and Case 4 to the largest. The number
of crew bases varies from three to five. The number
of pairings, i.e., variables, for the first two problems
is approximately half a million. However, because of
the hub-and-spoke flight network and several crew
bases, this number is several billion for the last two
problems. We used the same feasibility rules and cost
function as the airline. The only approximation to the
real data is the minimum plane-turn times, where we
used a constant value of 30 minutes because the real
values (depending on the time and station) were not
available.

Table 2 summarizes the solution qualities repre-
sented by FTC (percentage of excess cost above fly-
ing) and the number of forced turns. FTC generally
decreases with larger fleet size in a hub-and-spoke
network because larger fleets yield many more con-
nection opportunities. The “CS” column refers to the
traditional crew-scheduling model. All the time win-
dow variants have plane-count constraints. The col-
umn “w = 0” stands for the crew-scheduling problem
with plane-count constraints but without time win-
dows. We did not perform the time window variants
for the biggest fleet because the solution with w = 0

Table 3
100�IP obj−LP obj�

LP obj

Cases CS w = 0 w = 5 w = 10

1 11 4 13 3
2 16 14 10 61
3 91 203 234 513
4 422 686 — —

has FTC of almost zero. The flexibility with respect
to forced turns improves the FTC substantially, typi-
cally by a factor of two. Time windows improve the
solution by an additional 25%.

The solutions with plane-count constraints gener-
ally have more forced turns. A larger number of
forced turns and the freedom to select them explain
the improved FTC. Increased window size also gives
more potential forced turns and, therefore, solutions
with larger time windows use more forced turns.
Note also that for robustness reasons a larger number
of forced turns is desirable. If a crew does not fol-
low the plane-turn, then a disruption of a flight can
occur either because of a “late” plane or crew. Some
airlines even give an artificial bonus to pairings with
plane-turns by reducing their cost.

The relative values of the IP/LP gaps defined by
100�IP obj−LP obj�

LP obj are listed in Table 3. The gaps are larger
than for traditional airline crew-scheduling problems
because the additional plane-count constraints typi-
cally yield a larger number of fractional variables in
the LP relaxations, which makes it harder to find good
integer solutions.

The number of plane-count constraints is shown in
Table 4. We considered only constraints correspond-
ing to essential ground arcs with a positive right-hand
side. There is no need to use row generation because
there are not many constraints. Further, in the integer

Table 4 Number of Plane-Count Constraints

# Plane-Count Constraints # Plane-Count Constraints for IP

Cases w = 0 w = 5 w = 10 w = 0 w = 5 w = 10

1 16 17 18 0 1 1
2 18 19 20 0 2 3
3 75 84 88 0 1 9
4 59 — — 0 — —
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Table 5 CPU Times in Hours

LP IP

Cases CS w = 0 w = 5 w = 10 CS w = 0 w = 5 w = 10

1 0�1 0.1 0.1 0�1 0.2 0.2 0.2 0�2
2 0�3 0.3 0.4 0�4 0.5 0.5 0.6 0�6
3 7 7.7 8.4 9 4.1 4.1 4.2 6
4.1 9 9.5 — — 5.2 5.2 — —

programming phase of the algorithm, in which only a
subset of the pairings is considered, almost all of the
plane-count constraints are redundant.

All computational experiments were performed on
a cluster of PCs by using the parallel algorithm
from Klabjan et al. (2001). The cluster consists of 48
300 MHz Dual Pentium IIs linked via 100 MB point-
to-point Fast Ethernet. Table 5 gives the computa-
tional times. The first two fleets are computationally
easy; the execution times are less than an hour. How-
ever, the remaining two fleets require 10 to 15 hours.
We estimate that an hour is due to extra computation
to account for time windows in the pairing genera-
tion routine. If a problem is being solved for different
values of w, computational time could be reduced by
using a warm start because a feasible solution with a
time window w is also feasible with a time window
ŵ ≥w.

The results clearly demonstrate that by solving
crew scheduling with the addition of plane-count
constraints before solving aircraft routing, and by
considering small time windows for modifying fleet
scheduling, it is possible to reduce crew cost substan-
tially. For hub-and-spoke network systems, this may
be a good compromise between current practice and
a fully integrated model.
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