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Abstract

We explain how a condensate forms in finite time by a selfsimilar blow-up of the solution of the relevant quantum Boltzmann
kinetic equation for a dilute quantum Bose gas. The condensate, once it is there, keeps exchanging mass with the rest of the
distribution until equilibrium is reached, as described by a version of the kinetic equation that includes the existence of this
condensate. © 2001 Published by Elsevier Science B.V.
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1. Introduction and quantum Boltzmann equation

Soon after the final conception of non-relativistic
quantum theory, Nordheim [1] proposed a Boltzmann
like quantum kinetic theory for bosons and fermions,
describing in particular relaxation to equilibrium.
This kinetic equation describes the dynamics of the
momentum distribution that is also the Wigner trans-
form of the one-particle density matrix. Below, we
address the question of the formation of a singu-
lar equilibrium distribution as a solution of the
Boltzmann–Nordheim (BN for short later on) equa-
tion after a finite time. We explain how, if the initial
number density exceeds a critical threshold, some so-
lutions of the kinetic equation may blow-up at a finite
time t∗ (depending on the initial conditions). This
time t∗ is the incipient time for the BE condensate
(BE stands for Bose–Einstein). In the case of the BN
equation for bosons, it seems obvious that the piling
up of particles near zero momentum is a manifesta-
tion of the BE condensation. However, the connection
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is not that obvious, since the collapse at zero momen-
tum is a dynamical process, without any direct link
with the physics behind the BE condensation.

Once the condensate is formed, its mass can still
evolve by exchange with the thermal background, until
the global equilibrium BE distribution is reached for
the given conditions of mass and energy. The growth
of a singular part in the momentum distribution is
an indication that a condensate is formed, in some
sense. However, this cannot mean that phase correla-
tions with an infinite range set in after a finite time.
This would imply the unphysical assumption that for
an infinite system the “information” (of phase) prop-
agates at infinite speed. We discuss in Section 4 this
question of phase coherence at large distances, and the
way it appears dynamically.

A collapse of the distribution density has been stud-
ied before in the context of a nonlinear Fokker–Planck
or Kompaneets equation [2]. Although, it shares some
features of the present problem, there are some impor-
tant differences. In particular, the Kompaneets equa-
tion does not preserve energy, because it describes
the evolution to equilibrium of a Bose gas with a
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constant temperature background. However, it shows
nicely transfer of mass through the energy spectrum
as we shall present here. Similar ideas were developed
in the context of BN equation by Levich and Yakhot
[3,11] and Kagan and collaborators [4] but with con-
clusions different from ours.

The question of the incipient phase singularity
has been investigated numerically by Semikoz and
Tkachev [5] and our results agree with this work.
Below, we address a new question, however, the way
the mass of the condensate grows after the collapse
time (here “condensate” just means the singular piece
of the momentum distribution, related in a rather sub-
tle way to the large scale coherence of the condensate
in the true sense, see Section 4). This law of growth
is probably the most relevant information, as it can
likely be related to physical observations. It rests upon
a detailed understanding of the analytical structure of
the finite time singularity that is based upon the obser-
vation that the exponent is a nonlinear eigenvalue of
the similarity equation for collapse. The application of
the BN equation to this problem meets the following
difficulty (a second one shall be discussed in Section
3): as the formation of the condensate is predicted to
occur through a solution with a finite time singular-
ity, the rate of evolution of this solution diverges like
the inverse of the time remaining until the singular-
ity, which makes the kinetic theory invalid when this
time scale becomes shorter than the period associ-
ated with free particle motion by the Planck–Einstein
correspondence. Because of the low density assump-
tion, this breaking of the validity of the kinetic the-
ory occurs at a late stage of the blow-up process if
f n1/3 � 1 as we show at the end of Section 2.

The BN kinetic equation for a homogeneous
distribution in space (we shall discuss briefly
non-homogeneous condensation at the end) reads for
bosons

∂twp1(t) = Coll[w]

≡
∫

d3p2 d3p3 d3p4Wp1,p2;p3,p4

×(wp3wp4(1 + wp1)(1 + wp2)

−wp1wp2(1 + wp3)(1 + wp4)), (1)

where wp(t) can be seen as the probability distribu-
tion for the momentum, 1 m is the atomic mass, 2π�
the Planck’s constant. Moreover,

Wp1,p2;p3,p4 = 1

m�3
(|fp1−p2 |2 + |fp2−p1 |2)

×δ(3)(p1 + p2 − p3 − p4)

×δ(1)(p2
1 + p2

2 − p2
3 − p2

4)

gives back the Boltzmann original writing once the
integrals over p3 and p4 are carried out, f being the
scattering length taken as constant for the low mo-
mentum s-wave scattering. The Wigner distribution
is normalized by (1/�3)

∫
d3pwp(t) = n ≡ N/V , N

is the total number of particles and V the volume of
the enclosure. We shall take � = m = 1 throughout
the analysis.

An H-theorem shows that solutions of (1) relax to

w
eq
p = 1

e(p2/2−µ)/T − 1

(T is the absolute temperature in energy units) con-
strained by the conservation of the number of particles
and of the energy. Take the initial condition wp(t =
0) = A e−p2/γ . The relaxation to equilibrium pre-
serves

∫ ∞
0 pαwpp

2 dp with α = 0 and 2 which yields
a relation between A and the dimensionless chemical
potential µ/T :

A = (ζ3/2(e
µ/T ))5/2(ζ5/2(e

µ/T ))−3/2 (2)

with ζs(z) = ∑∞
n=1(z

n/ns), incomplete Riemann
ζ -function.

At low densities (small A) µ is negative as in an
ideal classical gas. As A increases µ increases too,
until a critical value: Ac = ζ3/2(1)5/2/ζ5/2(1)3/2 =
7.0992 . . . , where µ vanishes. However, if A > Ac,
it is not possible to satisfy (2) with µ negative, and
the transition predicted by Einstein in 1924 [6] occurs.
We have computed the relation between the chemical
potential obtained from the numerical solution of (1) at
very late times and the initial amplitude A in order to

1 Note that the Wigner functions are real but not necessarily
positive, however, if wp(t = 0) > 0, then the BN equation keeps
it positive at any further time (at least for bosons). For fermions,
this probability would have to stay between 0 and 1 to keep clear
of mathematical troubles.
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Fig. 1. The equilibrium chemical potential µ as a function of the
initial amplitude A. The crosses represent the numerical values
obtained from the evolution of the BN equation, while the con-
tinuous line traces the theoretical curve (2).

test our numerical code for solving (1), which worked
very well as we see in Fig. 1.

The question now is: let wp(t = 0) (e.g. the above
form) be a smooth initial (non-equilibrium) condition
for (1), what is the further evolution of wp(t)? In par-
ticular, whenever A is larger than the critical amplitude
Ac. We shall explain first how to describe the finite
time singularity by means of a selfsimilar solution of
the full kinetic equation. 2

2. Dynamics before collapse

If A > Ac, we expect condensation to zero
momentum, that is the spontaneous occurrence of
a singularity in the solutions of (1) for p = 0, a
singularity leading to a solution of the type wp =

2 We investigated numerically this question and found results in
complete agreement with the selfsimilar solution described below.
We plan to report the details of these numerical investigations
(methods and results) in a future extended publication.

n0δ
(3)(p) + ϕp, ϕp is a smooth function, an interest-

ing phenomena on its own. Therefore we expect that
just before the singularity the occupation number of
small momenta becomes very large, wp � 1, which
allows to neglect, for that purpose, the quadratic term
in Eq. (1) with respect to the cubic one, a remark
that has been already made in this context [3,4,11],
but with different conclusions from ours as we said.
This yields a simpler “degenerate” form of the kinetic
equation. (This kinetic equation has been thoroughly
studied in the context of nonlinear wave interaction
and “weak-turbulence”. For a review and references,
see [7]. However, the time dependent selfsimilar so-
lution exposed in the present note does not seem to
have been considered before.) 3 Let ε = 1

2p
2, and

W̃ε1,ε2;ε3,ε4 = (f 2/m�3)min{√ε1,
√
ε2,

√
ε3,

√
ε4}:

∂twε1(t) = Coll3[w]

≡ 1√
ε1

∫
D

dε3 dε4W̃ε1,ε2;ε3,ε4(wε3wε4wε1

+wε3wε4wε2 − wε1wε2wε3

−wε1wε2wε4). (3)

Since ε2 = ε3 + ε4 − ε1 must be positive, one
integrates in a domain D such as ε3 + ε4 > ε1. The
equilibrium solution of this equation follows from
the maximization of entropy and is wε = T/(ε − µ).
This is a formal solution only, because it does not
yield a converging expression for the energy nor even
for the total mass. 4 For finite total mass and energy
this solution should be a function spreading forever
in momentum space [8], a spreading stopped in the
full BN equation by the quadratic terms in Coll[w].
Zakharov has found two other stationary solutions

wε = Q1/3ε−3/2, wε = J 1/3ε−7/6. (4)

3 As shown by Zakharov [12], and by Carleman before [13] for
an isotropic momentum dependence of the distribution function
one may integrate both sides of (1) in solid angles, this allows
one to write the simpler form (3) for wε , which is better for the
numerics.

4 Generally speaking, this kind of divergence at “large
momentum/energy” is irrelevant for the present analysis, because
for this momentum, the cubic approximation to the collision op-
erator is not valid anymore, so that the power solution for wε

merge with solutions “at large” (actually non-small) energies that
take care of the convergence of the integrals for mass and energy.
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Fig. 2. (a) The distribution function w(ε, t) (at times chosen for successive increase of w(0, t) by a factor 5). The different time plots
show a clear selfsimilar evolution. One sees the build-up of the power law distribution ε−1.234 from the large energies to the small ones.
(b) The ratio between the right- and left-hand side of Eq. (6). One sees that the best agreement is for ν = 1.234. The existence of a plateau
proves that one has the right “nonlinear eigenmode” and the right “nonlinear eigenvalue” ν.

Here Q(/J ) is the energy(/mass) flux in momentum
space per unit time. Those solutions are derived by
a Kolmogorov-like analysis, for Q and J constant.
It does not seem possible, however, to use this kind
of Kolmogorov-like solution for the present problem,
because we expect the collapse to be a dynamical
process, so that stationary solutions can help at best
to understand qualitatively the transfer of mass and
energy through the spectrum. In particular, as shown
later on, the actual exponents for the selfsimilar solu-
tion do not follow from simple scaling estimate.

We remark that because of its structure (in particu-
lar because the right-hand side of (3) is cubic homo-
geneous in wε), Eq. (3) admits a selfsimilar dynamical
solution which accumulates particles at zero momen-
tum. The selfsimilar solution has the form (τ = t∗−t):

wε(t) = β−1/2τ−αφ(ετ−β) (5)

as t → t∗, α, β > 0. Putting (5) into (3) and im-
posing that the left- and right-hand sides are of the

same order as τ → 0, one gets that β = α − 1
2 , the

integro-differential equation for φ becomes

−(ν + ω∂ω)φ(ω) = Coll3[φ(ω)], (6)

where ω = ετ−β and ν = α/β is the only remain-
ing free parameter. As shown below, this parameter is
a nonlinear eigenvalue of (6) allowing to satisfy the
boundary conditions φ(0) finite yet to be determined
and φ(ω) ≈ ω−ν as ω → ∞ with a convenient choice
of normalization for φ.

We observed in our numerics that such a power
law spectrum φ(ω) ∼ 1/ων was established (for large
numerical values of ω) without mean flux of mass
or energy on the energy scale. The “observed” (see
Fig. 2) value is roughly ν ≈ 1.234(1) which differs
significantly from 7

6 and 3
2 that would follow from the

scaling properties of the solutions at constant mass or
energy flux.
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Besides a direct numerical attack (see Fig. 2a), it
seems difficult to get much analytical information
concerning solution(s) of (6). We shall nevertheless
present some remarks relevant to this problem. One
may construct order by order a Laurent expansion
of φ(ω) for large ω, beginning as 1/ων and then
putting this first term into Coll3. The beginning of
this expansion reads

φ(ω) = 1

ων
− C(ν)

2(ν − 1)ω3ν−2
+ O

(
1

ω5ν−4

)
(7)

with C(ν) defined by the action of the collision oper-
ator Coll3 on a power law distribution Coll3[ω−ν] ≡
C(ν)ω−3ν+2. The function C(ν) is positive for
ν ∈ [1, 7

6 ], negative for ν ∈ [ 7
6 ,

3
2 ] and positive again

for ν > 3
2 . One sees now why it is not possible to get

ν = 7
6 nor 3

2 as it should follow from (4), because the
next order and any higher order correction vanishes
since C(ν) is zero for both cases, and the Laurent
expansion at large ω stops there.

Therefore, this kind of solution (7) is already sin-
gular at ω = 0, although we want to study evolution
of a solution remaining finite at ε = 0 at any time
less than t∗, which implies φ(ω = 0) finite. One may
expect to push the Laurent expansion in order to cap-
ture better and better the behavior near ω = 0. As we
said, the resulting series will diverge almost always
when approaching ω = 0 which is a singular point,
because near ω = 0 it is possible to expand the solu-
tion of (6) in the form φ = a(ν)ω−7/6 +· · · , the entire
function a(ν) being completely determined by the
outer matching (this defines the asymptotic behavior
of the solution). The condition a(ν) = 0 fixes ν.

Supposing that the integral equation (6) has a
smooth solution that satisfies all the right bound-
ary conditions, it describes a collapsing solution of
the original kinetic equation. The distribution func-
tion at the peak scales like w(ε = 0) ∼ τ−α; the
energy-stretching of the peak: ε0 ∼ τβ ; the flux of
particles: j0 ∼ τ−γ ; the flux of energy: Q ∼ τ δ; and
the density of particle at the peak (that is with an en-
ergy less than ε0): n0 ∼ τ ξ . All these exponents can
be deduced from ν by simple algebraic manipulations.

In the following table, we compare the theoretical
values from the formula (second row) together with

ν = 1.234, and the direct numerical values:

Exponent Relation with ν For
ν = 1.234

Numerics

α ν/2(ν − 1) 2.637 2.639
β 1/2(ν − 1) 2.137 2.139
γ 3(ν − 7

6 )/2(ν − 1) 0.4316 0.4317
δ 3( 3

2 − ν)/2(ν − 1) 1.705 1.707
ξ ( 3

2 − ν)/2(ν − 1) 0.568 0.571

The numerical solution of (3) is in excellent agreement
with this scenario, in particular with the exponents
for the scaling laws for the collapse concerning their
relation to ν. On the other hand, one can check that
the numerical selfsimilar distribution, once written as
in (5) yields a function φ that satisfies numerically
Eq. (6) (see Fig. 2b).

The collapse time t∗ depends on the initial condi-
tions. Therefore one expects a dependence of t∗ on
the threshold to Ac when two and three body col-
lisions are included (in the case of only three body
collisions term as in (3) one has always a singularity
in a time t∗ ∼ A−2). Numerically, we have found
t∗ ∼ |A − Ac|−η with η = 0.4. This time t∗ is about
the time when quadratic and cubic terms become of
the same order in the full BN equation.

Notice that the flux of particles towards the origin
diverges as t goes to t∗, whereas the number of parti-
cles in the condensate remains zero. 5 This means that
the true formation of a condensate starts just after t∗.
We shall explain next what is predicted by the kinetic
equation after the condensate is formed. Finally, we
note that the exponent ν must be larger than 7

6 because
one needs to have an infinite flux of particles through
the peak in order to ensure the finite time singularity.
In the usual (non-quantum) Boltzmann equation this
is not possible: the power law solution with a constant
flux of matter is wε = (J/f 2)1/2ε−7/4 and possess an
infinite mass at the peak at ε = 0. Therefore the usual
Boltzmann equation for hard spheres does not present

5 This flux of particles is practically across an energy surface
that shrinks like τβ , therefore there is no contradiction: the flux
diverges, but it accumulates mostly outside of the origin, since it
is across a non-constant barrier on the energy scale.
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a finite time singularity. However, when the two parti-
cle interaction decreases at large distances like ∼ 1/rl

one has an explicit dependence of the scattering am-
plitude on the relative velocity of collisions. There are
reasons to believe that for l < 4, the usual Boltzmann
equation could present a finite time collapse as the
one described here, because the collision frequency
diverges at small speed.

Ending this section let us discuss the breaking of
the validity of the kinetic theory near the blow-up. Let
τ be the time left until blow-up (τblow-up = 0), n be
the total number density, and f the scattering length.
The mean free flight time for the core of the energy
spectrum is tmfp = (1/nf 2)(m/εTh)

1/2, where εTh ∼
p2/2m is the average kinetic energy per particle (a
constant). Assuming this energy to be of the order of
magnitude of the one at the BE transition, one has
tmfp = m/�n4/3f 2. The BN kinetic theory applies
if the typical evolution time until blow-up, τ , is still
much larger than �/ε0(τ ), where ε0(τ ) is the aver-
age energy of particles taking part in this blow-up
(ε0(τ ) → 0 as τ → 0). We have shown in this section
that ε0(τ ) ∼ εTh(τ/tmfp)

β (β > 0). Therefore, the BN
kinetic theory applies for τ > τcr with τcr = �/ε0(τcr).
From the estimates given above, the inequality τcr �
tmfp is equivalent to f n1/3 � 1, precisely the condi-
tion for a dilute gas. Therefore, in this dilute gas limit,
the BN kinetic theory remains physically sound in the
time interval [tmfp, τcr] before blow-up.

3. Dynamics after collapse

At the singularity time, if our scenario of selfsim-
ilar collapse holds, as seems to be confirmed by our
numerical studies, the system is not yet at equilibrium,
and some exchange of mass between the condensate
and the rest is necessary to reach full equilibrium, be-
cause the mass inside the singularity is still zero at
t = t∗. It happens that this exchange of mass can be
described by extending the full kinetic equation to sin-
gular distributions, something that does not seem to
have been noticed before to the best of our knowledge.
As w(ε = 0) and the flux of matter diverge at t = t∗,
let us consider the following ansatz for times larger

than t∗: the distribution function behaves as

wp(t) = n0(t)δ
(3)(p) + ϕp,

ϕp smooth function, and n0(t∗) = 0. Now, the colli-
sion integral in (3) splits as Coll[wp] = j0(t)δ

(3)(p)+
˜Coll[ϕp], where j0[ϕ] = ∫

S(0+)

√
ε1 dε1 Coll[wε1 ] =

−∫ ∞
0

√
ε1 dε1 ˜Coll[ϕε1 ], and ˜Coll[ϕ] is for the ex-

act BN collision term of (1). This special form says
that there is a macroscopic flux of particles towards
the zero momentum, which is directly related to a
j

1/3
0 ε−7/6 term as the dominant behavior of ϕε near
ε = 0. This exchange term (between particles in the
condensate and excited states) has not been consid-
ered previously. Putting this ansatz into (1) one gets,
after splitting the terms with non-zero integral in a
small sphere around p1 = 0:

∂tn0(t)= j0 + n0(t)Coll2[ϕ], where

Coll2[ϕ] =
∫

2,3,4
δ2;3,4(ϕp3ϕp4 − ϕp2(ϕp3+ϕp4 + 1)),

(8)

∂tϕp1(t) = ˜Coll[ϕ] + n0(t) ˜Coll2[ϕ], where

˜Coll2[ϕ] =
∫

3,4
δ1;3,4(ϕp3ϕp4 − ϕp1(ϕp3 + ϕp4 + 1))

+2
∫

2,4
δ1,2;4(ϕp4(ϕp1 + ϕp2 + 1)

−ϕp1ϕp2). (9)

We used the notations
∫

2,3 = ∫
d3p2 d3p3, and

δ2;3,4 = W0,p2;p3,p4δ
(3)(p2 −p3 −p4)δ

(1)(p2
2 −p2

3 −
p2

4), and so forth. These coupled equations conserve
mass and energy and a H-theorem applies. 6 For very
short times, that is |t − t∗| � tB (see below for the
definition of tB), it is possible to calculate a selfsimi-
lar solution of the form: n0 = K(−τ)σ , together with
the same kind of expression for ϕ as before. The ex-
ponent σ = ( 3

2 − ν)/2(ν − 1), while α and β remain

6 The coupled set (8) and (9) relax as t → ∞, to the equilibrium
solution found by Einstein [6]:

ϕ
eq
p = 1

ep2/2T − 1
,

and n0 fixed by mass conservation. Notice, however, that interac-
tions modify this picture (see below).
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the same as before. For times just after t∗, one expects
that the function ϕε will be very close to the function
before the collapse “far” from zero energy, since it
changes infinitely fast near the origin only. Therefore,
by continuity this imposes that ϕ and φ behave in the
same way for large ω, and this implies that the coef-
ficient ν is the same as before. The constant K and
a(ν) (which is no longer zero) are fixed by a compli-
cated set of integro-differential equations following
directly from the most singular terms in (8) and (9).

The short time selfsimilar behavior merges at later
time with a relaxation behavior tending to equilibrium.
The full system (8) and (9) describes the relaxation
towards a constant value of the density of condensate
n0, while the flux j0 and different collisional terms
vanish leading to an equilibrium distribution for ϕε ,
which is the Bose factor with zero chemical potential.

Ending this section, we notice that the BN equa-
tion is not uniformly valid in its original form after
the formation of a condensate, since the appearance of
such a structure changes the energy spectrum at low
momenta, as shown by Bogoliubov [9], although the
kinetic equation assumes that, besides collisions, the
particles have a purely ballistic spectrum. For a di-
lute gas (where the quantum kinetic equation is valid)
the BN equation applies for most particles, since the
Bogoliubov renormalization of the energy concerns a
narrow energy domain. This would change the late
stages of the condensation only and would apply any-
way to the range of energies ε � ε(τcr), where τcr has
been defined before. It turns out that the typical Bo-
goliubov time scale: tB = m/�f n0 appears at a later
stage because it is much longer than the mean free
path tmfp if n4/3f � n0, which is possible for a dilute
gas f n1/3 � 1 as long as n0 � n.

4. Collapse and build-up of long range
correlations

As explained before, the collapse, as it results from
the singular solution of the BN kinetic equation, can-
not give the full physical picture. This is because the
quantum kinetic theory, as representing the true many
body dynamics, relies upon the assumption that the

time scale for the evolution of wp is much longer than
the time scale set by the Planck period of the motion
of a free particle. In the collapse phenomenon, this
assumption becomes clearly untrue at some stage,
since the typical time scale for the evolution of wp is
of order τ , the time until the collapse, and so becomes
as short as wanted, although the Planck period associ-
ated to particles of low momentum becomes infinitely
large when this momentum tends to zero. This puts a
constraint on the time when the kinetic theory looses
meaning close to the collapse time. Therefore, the
standard kinetic approach fails at time scales of order
or shorter than τcr with τcr ∼ �/ε0(τcr) that is to be
combined with the estimate ε0(τ ) ∼ εTh(τ/tmfp)

β , β
is positive, to yield

τcr ∼ tmfp(f
2n2/3)1/(β+1).

For times far closer to the collapse time than τcr,
it becomes inconsistent to use the kinetic theory in
its standard form to describe what happens in the
selfsimilar core of the distribution. In this range of
times, as well as later on, the growth of the coherence
length can be described by using arguments borrowed
from Pomeau [10]. The starting point is to assume
that there is a certain mass density in the condensate,
approximately uniform in space, but with a random
phase without long range order. Moreover, this can be
represented by the dynamics of a classical field, since
the occupation number at small momenta is very
large. This phase relaxes, at least after some transient
according to the equations of fluid mechanics derived
for long wave perturbations, namely the Bernoulli
equations for a compressible fluid. The energy is
transferred to small scales now by a steepening of the
gradient of the phase at random places, which yields
finally a typical time scale. Accordingly, the phase of
the “condensate” becomes uniform on space scales
L(t) growing with time like L(t) ∼ (�t/m)1/2.

Consider now what happens at times much later than
the blow-up time. Because the law of growth of the
coherence length L(t) is independent upon the den-
sity, one expects that this length represents at time t

the coherence length scale for the phase, t = 0 being
the time of the singularity, after which the long range
correlations begin to build up. Near the blow up time
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the situation is probably more complicated, although
one can devise a simple estimate for the phase coher-
ence length that should be of order of the de Broglie
wavelength associated to the Planck period τcr.

5. Comments and conclusions

We propose a scenario for the formation of a
condensate of BE particles obeying the BN kinetic
equation. This scenario consists in a blow-up of the
distribution function at zero momentum. However,
the total mass density of this singularity is zero at
the time of the singularity, so that one needs to feed
this “condensate” in order to reach equilibrium at
later times. This is a very important point, because
we show that the kinetic equation predicts an ex-
change of mass between the condensate and the rest
of the system when the gas is out of equilibrium.
Finally, if there is spatial dependence one needs to
add a ((p1/m) · ∇rwp1 − (∇U/m) · ∇p1wp1) term
to the left-hand side of (1). This leads to a spatial
localization of the finite time singularity of the type
r ∼ τ 1+β/2, p1/m · ∇rwp1 being the most singular
term if the potential energy grows faster than U(r) ∼
r4/(2+β) ≈ r0.97. Another remark is of interest: the
connection between the finite singularity at zero

momentum of the solution of the BN equation is not
so directly related to the existence of a condensate in
the equilibrium theory. Actually, it is more like a prop-
erty of the dynamical equation itself. In particular, the
power law for the distribution close to zero momenta
is not the inverse ω typical of the Bose factor. There-
fore one expects that at some later time, after the col-
lapse this power law will switch from the ω−7/6 typ-
ical of the kinetic regime to the ω−1 typical of the
equilibrium regime.
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