3 Transport production and the analysis of industry structure
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3.1 Introduction

As transport activities mean displacements of individuas and goods in both time and space, the andys's
of trangport production involves the assgnment of resources to generate trips among many different
points in space during many different periods. As a consequence, the microeconomic analysis of
trangport production isfar from asmple extenson of the theory of the firm. In this chapter we present
the underpinnings of amicroeconomic theory of the trangport firm, with particular emphasis on the nature
of the technicd relations between inputs and outputs (production or transformation function) and the use
of the cost function as a tool to obtain vauable information for the design of trangport policies (for
example pricing, regulation)

The chepter is sequentidly organised, beginning with the notion of trangport production, including the
definition of trangport output, the role of space, the idea of operating rules, and the concept of scale, dll
of which are illusrated usng smple cyclica sysems (section 3.2). Then the cost function and its
properties regarding the calculation of margina costs, economies of scale and economies of scope, are
presented and explained within the context of transport systems andysis (section 3.3). A synthesis of
the empirica work using transport cost functions is offered, with special emphasis on the adequate
trestment of output in its pecification, and on the difficulties with the prevailing gpproach to andyse
industry structure, including recently improved procedures to ca cul ate scale economies correctly and
adiscussion on network density versus economies of scope (section 3.4). The closing section contains
asynthess and directions for research.

3.2 Trangport production

In essence, the production of goods and services can be syntheticaly described using the concepts of
inputs, outputs and technology. Inputs have to be acquired by the firm in order to be combined - within
the boundaries of process-specific rules - in order to produce outputs. For agiven levd of outputs, the
firm has to choose type and amount of inputs, aswell as a subset of combination rules. All feasible input
combinations define the technology.

In the case of trangport, the firm has to use vehicles, terminds, rights-of-way, energy, labour, and so
on, to produce movements - freight or/and passenger - from many origins to many destinations during
many different periods. Thus, the output of atrangport firm isavector

Y = {y:jt}'l‘ RIT (3.1)

where each component yi'f represents the flow of type k moved from origin i to destination j (O-D pair
ij), within period t, for example passengers from Paris to Frankfurt during a specific weekend (K, N and
T are the the number of flow types, the number of O-D pairs, and the number of time periods considered

in'Y, respectivey).
For agiven st of flowsin Y, the firm has to make anumber of choices number and capacity of vehicles
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(fleet 9z€), design of the rights-of-way (location, flow capacity), design of terminds (location, loading-
unloading capacity), route structure (i.e. how vehicles would flow on the network), vehicle frequencies,
and so0 on. Some of these decisons involve choosing the characteristics of inputs, and some are related
with their use, i.e. with the form in which inputs are combined to accommodate the flow vector. We will
call these latter types of choices * operating decisons .

For agiven type of transport firm (for example interurban bus) some of the decisons related with
the acquigition of inputs are congtrained, because of the existence of common infrastructure (for example
the road system) or the rigidity of input markets (for example fleet Sze). On the other hand, operating
decisons are generdly made within the boundaries of exiging inputs. Asasmple example, consder an
O-D system with three nodes, asingle period and asingle flow type.
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Figure 3.1

Possible route structures for a smple O-D system

For a given st of flows {yi j}, the gppropriate combination of inputs and operating rules would

depend on many factors. If, in Figure 3.1, nodes 1, 2 and 3 represent digtant cities (airports), then three
possible air route structures are @), b) and ¢). These route structures should be andlysed in pardle with
arcraft 9ze and frequency in order to make the most convenient choice. If thiswas either aroad or a
rallway system, the physical structure of the road network would congtrain the choice of routes and
schedules. Moreover, for a given fleet Sze (including vehicle capacity), scheduling would be the only
decison to make.

The technicd rdation between inputs and outputs is summarised through the concept of a
transformation or production function. Let us give an example using the Smplest possblecase, i.e. a
single O-D pair, single product, single period (Gavez, 1978; Jara-Diaz, 1982b). LetY betheflow from
OtoD. If kisload sze, Bisflest sz, t(k) is travel time as a function of load Sze and p is loading-
unloading speed, then
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For agiven B and |, one can find the value of k that maximises'Y, k* . It can be easily proved that k*
would be given by vehicle capacity K, provided the effect of k on travel timeissmdl.

Therefore

Y £ Bi = h(8,K,m) 33)
t(<)+ 2+ 1)

where h(B,K, p) is the production function which gives the maximum flow for a given vdue and
characterigtics of theinputs: B, K and 1. Which combination should be chosen for agiven vaueof Y,
would depend on the rdative prices of vehicles and loading-unloading capacity. In this smple cyclica
system, the input choice, their feasible combinations and the operating rule can be clearly distinguished.

Thus, depending on the characterigtics of the particular transport system, the transport firm could
adjust inputs and operating rules according to the different levels of Y. This concept remainswhen Y is
avector. The smplest possible verson of amultioutput trangport firm is one serving a backhaul system
with two nodes (1 and 2) and two flows ( y1, and y»;) of asingle product during asingle period (Gévez,
1978; Jara-Diaz, 1982b). Let us assume for smplicity that the firm operates the same flegt to move both
flows Then vehide frequency in both directionsis the same, and given by the maximum necessary, which
in turn depends upon the relaive flows, let usassumeys, 2 y21. Then the technical optimum requiresthe
vehidesinthe 1® 2 direction, to be fully loaded, and frequency will be given by

f=Ju (34)

and the load size in the opposite direction, ka1, will be

ko= h: h K (3.5)
LI

The fleet sze needed, B, has to be equa to f times cyde time t. which, under our smplifying
assumption, is given by

=t (K)+ ﬁ"’ my21 K+t21(ka) (3.6)

12

Just for the sake of smplicity, let us see the case characterised by vehicle speed v independent of
load sze and potentialy different route distances d;; in each direction. Then using equations (3.4) and
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(3.6), the equality B=f t. can be turned into

BK = ylzed12+2£+%u 2K

3.7
m v U Ya (3.7)
Asthisisvaid for y1,3 y,1, and thereis asymmetric expression for yu; 3 i, the generd result for
the technicd relation among flows and inputsis
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Figure3.2

Production possibility frontier of the backhaul system

It isfarly smple to show that the graphical representation of the backhaul system in the output
gpace looks like Figure 3.2. Equation (3.8) represents the production or transformation function of the
system, and the shaded areain the figure represents dl the vectors (yi», y»1) that can be produced with
agiven fleat B, and capacities 1 and K, but only the boundary represents optima usage. This boundary



is the production posshility frontier, whose symmetry is derived from the assumption of load
independence of speed.

Both the cyclicd and backhaul sysems are illudrative of the idea of technica feasibility and
optimality. One of the most important conceptud pointsis the digtinction between inputs, as fleet or
loading-unloading capacities, and operating rules, as frequency, speed or vehicle load. Theformer is
related with things that have to be acquired and the latter are ways to combine the former to produce
flows. Roles and rdlations are clear.

In complex systems, the technica relaions can not be obtained in such an explicit form as in
equations (3.3) and (3.8), but they can be envisaged as a sort of ‘specidised black box” which
includes a number of andyticd relaions deding with networks, itineraries, routes, frequencies, and so
on, trying to am at the best possible use of resources: fleet, terminas and rights-of-way. This generd
idea helps understanding the kerndl of transport production; changes in the flow vector Y potentidly
induce changes in input usage as well asin route Structures and operating rulesin generd. 1t may well
be that some of the inputs can not be adjusted, which means that some other inputs will have to be
changed in combination with different operating rules. A good example is the restructuring of routes
and itineraries for a given fleet of buses facing a change in the passenger volumes in different O-D
pairs.

To end thisgenerd idea of trangport production, let usintroduce an important technical concept that
can be examined directly from the transformation function: the concept of scale economies. The
relevant question is by how much can output be expanded if al inputs are expanded by the same
proportion. In the single output case represented by equation (3.3), a loca expansion of vehicle
capacity (BK through K) and loading-unloading capecity (i) would dlow Y to be increased by the
same proportion if speed was unrelated to K; note that in this example the right-of-way input is
assumed to be exogenous to the firm. In the two-outputs case represented by Figure 3.2, asimilar
expansion of inputs moves the production possibility frontier away from the origin, but the ‘how much
can output be expanded’ question becomes ambiguous, as nothing has been said about output
combinations. If the concept of scale economies is forced to dedl with proportional expansions of
output, it is clear that, again, (y12, Y¥»1) can be expanded by the same proportion as inputs (same
condition asin the earlier case).

Ingened, if F(X,Y) 3 0 represents the transformation function §.e. dl technicdly feesble
combinations of inputs and outputs) where X is the input vector and equality represents technical
optimaity, the (multioutput) degree of scale economies, S, is defined as the maximum proportiond
expansion of Y, | °Y, after an expanson of X by | X (Panzar and Willig, 1977). Andyticdly,

F(Ix13Y)=0 (3.9)

which means than in the previous examples Stakes the vaue of one, usualy caled congant returnsto
scae A vaue of S greater or smdler than oneis called increasing or decreasing returns to scae

respectively.
3.3 Trangport cost functions: thetheory

Basic definitions and properties
Technicd andysis is not enough to understand the choice of inputs combination by the firm. The
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question iswhich of the combinationsin the technicd frontier isthe most convenient to produce agiven
output Y. The answer is given by one of the mogt interesting tools in the microeconomics of production:
the cogt function, which requires input prices to be introduced in the picture. Formally, the cost function
C(w,Y) gives the minimum expenditure necessary to produce output Y & given factor prices w. It
corresponds to the solution of

min & WX
X i
subjectto F(X,Y)3 0

(3.10)

The solution for eechinput x; isaconditiond demand function x; (w,Y) , which represents the optimum
amount of input. Then the cost function is

CwY) ° d wix (w.Y) (3.11)

If someinputsx; arefixed at alevel x; , then the short run cost function is defined as C(w,, X,Y),
where X isavector containing fixed inputs and w, is a vector-containing variable input prices. The
optimisation process represented by equations (3.10) and (3.11) is exactly the same.

Out of the many properties of the cost function, five are particularly relevant for abasic andyssand
discussion of production in genera and of trangport in particular. Firdt, the derivative property or
Shephard's lemma, which states that the derivative of the cost function C(w, Y) with respect to each
factor input price w; equas the cost minimising amount of x;(w, ), thet is x; (w, Y). Andytically,

TCW.Y) o s (w,y) (312)
Tw

and isvery hdpful in estimating and interpreting a cost function. Second, the margind cost specific to
product i, my, isgmply

= Jew.y) (3.13)
Ty,

Next, the (multioutput) degree of scale economies which has been defined on the technology, can
be shown (Panzar and Willig, 1977) to be obtainable from the cost functions as

_ Cwy _ 1
S= 3 yE_ h (3.14)
Ty,

whereisthe cost dadticity with respect to output i.
Fourthly, the degree of economies of scoperdativeto asubset R, SC can be cdculated (Baumoal
eta., 1982) as
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= oy, [C(Yr)*+C(Yu.r)- CY] (3.15)

where Yz represents vector Ywith y,=0," il Rl M, with M being the set of al products (we have

suppressed w for smplicity). Thus, a pogtive SCr - the existence of economies of scope - means that
it is chegper to produce Y with asngle firm then to split production into two orthogond subsats Rand
M-R.

Findly, a cost function is said to be subadditive for a particular output vector Y when Y can be
produced more chegply by a sngle firm than by any combination of smdler firms (Baumol et. al.,
1982, p. 170). Therefore, a cogt function is subadditive if

ac'pcy) - {Yi}/évizv (3.16)

which is the multioutput notion of natural monopoly. Under this set of definitions and properties, it is
very clear that both S>1 and SCr > 0 favour subadditivity, but neither guarantees its presence by
itsdlf.

Scale and scope in transport production

With product defined as in equation (3.1) and the notion of scale synthesised in equation (3.9),
scae andysisin trangport should be conceptudly clear. It refersto the behaviour of cogts asflowsin
al markets served by a firm expand proportionaly. In order to emphasise space, let us creste an
example using the O-D dructure depicted in Figure 3.1 relative to non-perishable cargo. Imagine that
distances i-j are relatively short, that flows y;; and ;i are unbalanced, and that the sum of flows
clockwise are approximately equd to the sum of flows counter-clockwise. It may well be that for
reldively low volumes, aroute sructure like a), with complete vehide cydes involving ahomogeneous
fledt, isthe least cogt answer. Imagine output expands proportionaly; the firm could accommodate thet
expanson by increasing frequency (enlarging fleet) and/or using larger vehides. For further expansons,
the hub-and-spoke structure like @) could well become the best answer, making the hub a transfer
point and involving vehicles of different Szes. It might be the case that direct sarviceslikein ¢) happen
to be the least cogt structure for individudly large enough flows. If there are scale advantages in
loading-unloading activities and in vehidle Sze, it is very likely that through gppropriate scheduling and
rerouting, total cost will increase less than proportionaly with increasesin the flow vector, at least up
to acertain scae.

Regarding scope, again Figure 3.1 will prove very hdpful. If the six flows are divided into subsets
{V12, Vo3, Ya1} ad {Yz1, Vi3, Ys2}, Very possbly the sum of the costs of assigning each subset to a
different firm will be greater than that cost of moving al six flows with one firm. The caseis not thet
dear when the patltlon iS{ylz, y21} ,{y13, Va1, Y23, y32}. In ga'Hd, the patltlon of the flow vector could
be made in terms of flow type (for example passengers and freight), periods (for example weekends
and weekdays) or O-D pairs, aswe have donein the example. In this latter case we would talk about
economies of spatia scope, when they exig.
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Figure 3.3
Transport cost function of the backhaul system

In order to provide a specific andytica example, let us use the Smple backhaul sysem technicaly
described in Section 3.2 to obtain and analyse the corresponding cost function. The system
represented by equation (3.8) can be used to get the number of vehicles as a function of product,
B(Y12, Y»1). On the other hand, the number of loading-unloading Stes, L, is given by 2yi> + Y»;)/m
Without affecting the conceptud analyss, we can hold d, v, k and 1 congtant such thet inclusive prices
for vehides (Pg) and Stes(P,) can be defined, i.e. prices that encompass rent, |abour and energy (fud)
necessary to operate one vehicle and one Site repectively. Replacing dl variables, the multioutput cost
function isgiven by

€ @&p,tdxn, 20 2pP.U
C(Y1,,Y0)= Cot Y, & + I+ Y
(y12 y21) C yj_ee_PBg vK mé m H yJ

2
r_n(PB+ PL) yij > yji (3-17)

where C, represents costs that are associated with the right-of-way.* Thisis graphicaly represented



in Figure 3.3.

Although equation (3.17) has been obtained using highly smplifying assumptions, it represents afairly
trangparent cost function for the smplest possible multioutput transport system. Its importance
becomes apparent when it is used to analyse scale, scope and aggregate output. If the degree of
economies of scaleis caculated using (3.14), it is quite easy to show that S=1 for Cy =0, which we
can namethe‘lorry’ case, aslorries (or buses) do not pay afixed cost for road infrastructure. On the
other hand, scope analysis can be done for the only partition possible in this case (i.e assigning each
of the flows in the backhaul system to different firms). After eementary caculations we get

+
C(y,,.00+ C(0,y,,)- Cy;,0y,0) = Cot Pa%y“ TVt Y (3.18)

whichispostive evenif C, is nil. This shows that, under the assumptions made, it is fleet utilisation
what causes the existence of economies of scope. Thus, if C,=0, we have congtant returns (a case for
competition or deregulation) and economies of scope. These latter would cause incentives for merging
if two firms are operating, each in one direction. The conclusion isthat, asfar as costs of production
are concerned, competition would be desirable, with each firm operating both markets. It is relevant
to mention here that, in their pioneering work on hedonic cost functions, Spady and Friedlaender
(1978) verbdly explained merging among trucking firms serving different routes when a regulatory
regime that had exercised redtrictions on routesis dismantled. However, that phenomenon was said
to reflect ‘economies of dendty and utilisation’, which can not be derived from their cost function
specification. With awell-defined output, it is directly explainable as economies of (spatid) scope. This
leads to the third interesting aspect that can be explored usng this Smple example: output aggregation.

Even up to our days, aggregates like passenger- (or ton-) kilometres (TK) are used asabasic or
synthetic unit to describe trangport output both in genera and within the context of empiricaly
estimated cost functions. Since the late seventies, its ambiguity began to be addressed, raising the
issues of network shape and fleet utilisation, as described in the preceding paragraph. The smplified
cost function of the backhaul system can be used to explore the adequacy of the TK-index as a
representation of trangport output.

Firs we have to recognise that TK isindeed afunction of the true output as defined in (3.2). Inthe
backhaul system,

TK = y12 d12+ y21d21 (319)

On the other hand, (3.17) can be used to represent the combinations of y;, and y; thet yidd the
same expenditure C;. The resulting iso-cost locus can be shown in the output Space as we have done
in Figure 3.4, where cost increases with the distance from the origin. The popular *output’” TK can be
shown in the same pace using equation (3.19) as a graight line with a negative dope that depends on
therdaivevdueaof d;, and dh;. Asevideant, dl flow combinations within the Sraight line yidd the same
vaue for TK. We have represented as TK, the case of dy>>d»; ; asthe corresponding line intersects
many is0-cost curves, TK,, can not be associated with asingle minimum cogt figure. If should be noted
that this ambiguity remains even if both distances were equd (as represented by TK;). On the other
hand, every pair (Y12, Y»1) corresponds to asingle cost value, unambiguoudly.
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Figure3.4
Cost ambiguity of aggregate output

The ambiguity of aggregete output is a key aspect in the analyss of industry structure in trangport
activities by means of a cogt function. We have shown thet, even in asmple system like the backhaul
service developed in this section, an association between expenses C and output TK might yidd
completely erroneous conclusions. In terms of scale andlys's, an expanson of TK by | corresponds
to many possible flow combinations, as shown by eguation (3.19).

In terms of scope, the pairs (0, y21) and (ya2, 0) get reflected as y» diy and i, di, respectively
when converted into TK units. Thus, scope ‘turns into scale, provoking an extremely confusing
panorama when trying to obtain conclusions on industry structure.

For synthesis, trangport production is amultioutput process where the concepts of scae and scope
are very useful for the anadlysis of industry structure, provided they are properly applied. The degree
of economies of scae reflects the behaviour of cost as dl flows (eg. in every O-D pair) expand
proportionaly. The degree of economies of scope examines the convenience of partitioning transport
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sarvices into two mutudly exclusive subsets, depending on the type of partition, we will refer to
economies of spatia scope, commodity scope, or time scope, whenever the cost of producing the
whole st isless than the sum of costs for the partition. Diseconomies of scope reflect the opposite.
Within this context, the use of aggregates to describe transport output distorts the andysis of scde and
reduces (and sometimes destroys) the possibility of analysing scope. However, transport systems
produce passenger and/or commodity trips over many O-D pairs, which makes reduced output
description akey issuein empirical sudies,

Transport output and the estimation of cost functions

Obtaining an adequate representation of ether C(w,Y) or C(w X, Y) - thelong run and the short run
cost functions respectively - isnot asimple task in transport activities. As evident, the generd ideais
to corgruct ardiable Satidtical relaion between expenses as the dependent variable, and output, input
prices and fixed factors as explanatory variables. The datistical data is composed by a series of
observations, each one relating production to cost. This series can be feeded by the evolution of a
single trangport firm in time, by the activity of many firms within a period (cross section), or by
observations of many firms during many periods (pool).

The case of atime seriesis, conceptudly speaking, the most trangparent one; product (as defined
in equation 3.1) is quite precise, as well as factors of production. Let us consider the case of afirm
moving asingle type of commodity (or passengers) among many points in pace during homogeneous
periods, and imagine potential observations that include services from two to Sx O-D pairs as depicted
in Figure 35. If dl obsarvations were associated with an O-D system like (@), output would be a two-
dimensiond vector. Output would be a sx-dimensiond vector if all observations were related with
movements like those represented in (c). How to represent output if observations included dl three
cases? The answer is Sraightforward: the output vector should have six components and some of them
will be nil for obsarvationsinduding flowslikein (a) or (b). Formdly,

Y= {Yi2 Yor Yio Yar: Yoo Yool
y*={¥2,¥2.0,000}
y*={y2, v5, 00,55
S U

WhereyiT corresponds to actud flow in O-D pair ij for observation (period) n. The caseisvery Smilar
if observations correspond to trangport firms operating on the same spatia setting.
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Figure3.5
Transport output in athree nodes system

On the other hand, observations of firms serving different O-D systems correspond, in fact, to different

products. This does make a difference regarding other production processes observed through a
cross-section, as the optimal combination of resources to produce a given amount of an output bundle
(say shoes, bags and belts) at given input prices, islikely to be equa acrossfirmsif al of them have
access to the same technology. But the optimal combination of vehicles, terminds and rights-of-way
(by means of routes, frequencies and load sizes) will depend upon the characterigtics of the underlying
physical network and the actua configuration of each O-D system. Nevertheless, it is true that an
externad observer (trangport andyst) should be able to obtain some information regarding cost structure
form observetions of different trangport firms performing Smilar services on different spatial settings
(for example interurban rail, urban trangt, internationd flights, and so on). But this requires a careful

andysisin order to make the correct inferences on policy and industry structure.

Thus, trangport output description within the context of the estimation of cost functions, impliesa
chdlenge a least in two dimensons. First, when output iswell defined, the number of componentsis
usudly huge and certainly unmanageable in detail for gatistica purposes. Second, cross-sectiond
observations usudly involve different products. How to aggregate flow components and how to
introduce product equivaency or homogeneity across different systems, are indeed problemsto solve;
neither, however, changes the gtrict definitions of scale and scope which are unambiguous with awell
defined trangport output.

3.4 Trangport cogt functions: the empirical work

Functional form

g EN

The estimation of cost functions for different transport industries has been the preferred tool for the
andysdis of industry structure, regulation, technica change, productivity, and so on. Within the period
1970-1997, the empirica work on trangport cost functions has experienced a series of improvements.
Perhaps the most evident is the use of flexible forms for the functiona pecification of the function, the
trandog form being the most popular one (see Christensen et al., 1973). In order to understand
andyticaly this form, it is useful to view firgt another flexible specification caled the quadratic.
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Conceptudly, the quadratic corresponds to a second order Taylor expanson of C(w,Y) around a point
(W°,Y%), which is usually the mean of input prices (w; ) and flows ('y, ) in the dataset. Analyticaly,
the stochastic expression for the quadratic cost function is

CWWO—%+aAWVVU+aC(MYJ

i=1

108
+§a a All (W Wl)(W W])
L (3.20)
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2 i=1 j=1
137
SaacCily- vy, - y)te

I
s
a
o

where the system considers n inputs and m outputs, eis the error tem. The trandog form is andlogous
to equation (3.20) with C(w, Y), w; andy; in logs. Both forms are flexible in the sense that no apriori
functions are postulated either for technology or costs.

Each of these flexible forms has its own advantages. The trandog facilitates the andysis of the
properties corresponding to the underlying technology, i.e. homogenety, separability, scae economies
and non-joint production, by means of rdatively smple tests on the adequate set of parameter
estimates? Itsfirst order coefficients are the cost dagticities of output calculated at the mean, and their
summation yidds an esimate of theinverse of S as shown in equation (3.14). Further, thisform makes
it easy to impose homogeneity of degree onein factor prices.

On the other hand, the plain quadratic form is extremely adequate to directly obtain margina costs
evaluated &t the mean of observations, G and the dements of the Hessan Cj;, which are essentid for
andysing sub-additivity. In addition, equation (3.20) iswell defined for zero output levels (while the
trandog is not); this not only represents an advantage for the estimation process, but also alows for
the cdculation of economies of scope, which involve output vectors with some zero components.
Neverthdess, adequate transformations of output (for example Box-Cox) dlow for nil vaues of output
using the trandog form as well.

One of the shortcomings of flexible formsisthe fairly high number of coefficients to be estimated,
which reguires asubstantialy larger number of observations for Satistical relevance of the estimated
function. However, the gpplication of Sheppard’'s Lemma to equation (3.20) generates as many
additiona equations as factor prices included, involving part of the coefficients from the origind
equation. Thus, inputting some usualy available information (factor usage, factor expenditure or factor
cost share),® the number of ‘ obsarvations' can be multiplied, generating a system of equations, which
increases the efficiency in parameter estimation. This problem is particularly rlevant in trangport
andyss, because the usudly high dimension of Yis further magnified by squared and interaction terms.
This makes output aggregetion an extremely important agpect: it is required to make estimation feasble
inmost red systems, but it should not digtort the analysis thus obtaining irrdlevant or mideeding results

Output aggregates
Aggregation of output over any dimenson (commodity, time or gpace) involves loosing information
associated with the trangport processes generated by the system in reference, asillustrated earlier in
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the backhaul sysem. Asis evident, spatial aggregation destroys information on the geographical
context of the origin-destination system in which a transport system operates. Aggregeation of output
over time may cause digtortions when estimating cost functionsif periods of distinctive mean flows are
being averaged. Findly, commodity aggregation may affect cost estimation since the (minimum) cost
of moving the same aggregate weight or volume will generdly depend on the compostion of that
output.

In summary, the loss of information due to aggregeation over any dimenson may cause serious
problems of coefficient interpretation when estimating a cost function. The bulk of the empiricd work,
however, has not been devel oped with full awareness of the problem. Most reported transport cost
functions use a basic output aggregate (for example ton-kilometres or total passenger trips) together
with other *output’ variables or, as caled in the literature, * output characteristics . In other words, we
do not find efforts to corstruct appropriate aggregates from disaggregated information on output®. The
usud procedure isto add other aggregates that should somehow contral for the ambiguity of the single
output index.

Thus, seasond and ‘traffic condition” dummies arein fact trying to capture the effect of the implicit
time aggregation on cogts. Similarly, variableslike traffic mix or insurance vaue try to gragp commodity
aggregation. Thefirg effort to somehow counterbalance spatid aggregation was the use of mean haul
length as part of output description within a‘hedonic’ trestment (Spady and Friedlaender, 1978). In
the last twenty years, the literature on transport cost functions includes an enormous variety of output
descriptions. Unfortunately, this has not led yet to a universaly accepted form of output treatment,
mainly due to an implicit reluctance to try to understand trangport technology, which isafairly complex
congtruct as suggested at the beginning of the chapter. In order to clarify this, let us use the synthesis
presented in Table 3.1, where we have included studies covering more than twenty years of
evaluation.’

MODES OUTPUT ATTRIBUTE

Berechman (1983) bus REV
Berechman (1987) bus VK, PAS
Berechman and Giuliano

(1984)
Ying (1990) lorries RTK ALH%LTLAL,AS, |
Ying et al. (1991)
Caveset al. (1984) air RPK  Scheduled ser- ALH,LFNC
Gillenet al. (1990) vices
Windle (1991) RTK Charter servi-

ces

Daughety et al. (1985) lorries ALHASAL,%LTL, |
Friedlaender and Bruce CU(*)

(1985) TK
Kim (1987) (*)
Spady and Friedlaender

(1978)
Wang and Friedlaender

(1984)
Gagné (1990) lorries TK and N ALH,ASUT,IN
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Caveset al. (1980, 1981, ral TK ALH, ATL
1985) PK

Filippini and Maggi (1992) ar K LFALH, TD,NC

Formby et. d. (1990) VK

Keeler and Formby (1994) LCK

Tauchen et al. (1983) bus

Koshal and Koshal (1989) lorries

Braeutigam et al. (1980) railways

Keaton (1990)

Harmatuck (1981, 1985, lorries NTL ALH,AS(TL),
1991) NLTL AS(LTL)

Table3.1

Output description in transport cost functions

TK: ton-kilometres %LTL: percentage of less-than-truckload services

PK: passenger-kilometres AL: average load

PAS.  passengers-trips AS: average shipment size

RTK:  revenueton-kilometres IN: average cargo loss-and-damage insurance per dollar of cost
RPK:  revenue pax-kilometers LF: load factor

REV: revenue per pax-kilometer CU: capacity utilisation

VK: vehicle-kilometres TD: traffic density

X: seat-kilometres NC: network characteristics (for example points served, hub, etc.)

LCK:  loaded car-kilometres

N: number of shipments

NTL:  number of truckload shipments

NLTL: number of less-than-truckload shipments
ALH: average length of haul (freight)

ATL: averagetrip length (passengers)

From the Table we can verify that in addition to full aggregation of flows (for example passengers)
or distance-weighted flows (for example ton-kilometres), the list of accompanying varigblesis varied:
average load, average trip length, percentage of less-than-truckload services, number of shipments,
average shipment size, and so on. It is important to note that these variables are sometimes caled
outputs, sometimes output characterigtics, and sometimes quality dimensions. The most sophisticated
variables gppeared during the eighties, and they are rdated with network shagpe and sze. And herewe
have a new source of confuson: network as infrastructure, (i.e. a fixed factor associated with the
rights-of-way) and network as route structure, which is an endogenous, operating decison for many
modes or trangport systems (for example the cyclica system or the hub-and-spoke in Figure 3.1).

Scale and scope from aggregates

Whenever a cogt function is specified in terms of one or more output aggregates, the anayst obtains
a series of coefficients that can be given a microeconomic interpretation by smple association with
properties (3.13) or (3.14). If the function is a trand og-around-the-mean, first order coefficients are
‘output’ dadticities, and the inverse of their sum could be offered as an estimate of the degree of scae
economies. This is a procedure that has been frequently applied in the literature with some
qudifications. Just as an example, Caves et. d (1980) included passenger-kilometres, ton-kilometres,
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average length of haul (freight) and average trip length (passengers) in thair trandog specification, and
then calculated the degree of scale economies in various ways, dways usng the cost dadticities
(obtained directly from the coefficients). Cost dadticities for ton and passenger-kilometres were dways
used, but the average-distance elasticities were |&ft out in one of the measures of S and induded in
other. The reason offered was that ton or passenger-kilometres might increase due to either more or
longer trips. In fact, a coefficient of 0.5 on the dadticity of the average trip distance varigbles was
suggested as a compromise. The thing is that an increase in the mean distance travelled necessarily
requires that flows in the more distant O-D pairs have to increase more than flows in the relaively
closer ones, and this violates the condition for scale andysi's which rdates to proportional expansions
of output. Failureto look at S properly isin fact the main cause of ambiguity in thisexample. As sad,
Sisrdated with proportiona expansions within the vector of flows 'Y, and not directly to changesin
ton- or passenger-kilometres. And when dl flowsincrease by afactor of | , then average distance
remains constant, which meansthat their eadticities should be left out dways.

The fact that aggregates make the caculation of S obscure was highlighted by Gagné (1990) and
by Ying (1992). Both observed that aggregates are usudly interrelated, for example ton-kilometres
isequd to tota flow times average length of haul, afact that had not been taken into account when
meking cdculaionsof S. Our view isdifferent: we should look a the behaviour of C(w,Y) asthe basc
flow variables increase, but this operates through the aggregates. Let Y be the vector of aggregates
with components Y, (for example ton-kilometres, total flow, less-than-truckload movements, €tc).

Thekey fact isthat mogt of these Y, 'sareimplicit congtructs from the components of Y. Thisis evident

in the case of ton-kilometres (equation 3.19) or total flow (for example tota passengersin a period)
whichissmply the summdtion over dl y; . Thus if ¥, isanimplicit function of Y, then the estimated

C(w,Y) isanimplicit representation € of C(w, Y) because (Jara-Diaz and Cortés, 1996)
Ew,9)° Elwym]o Ew,Y). (3.21)

Then the correct caculation of an esimate S for S can be obtained through direct application of
equation (3.14) using they;’ s as arguments. It can be easily shown (Jara-Diaz and Cortés, 1996) that

R ccu é, u'
S= eaﬂ——u = eaa I”T (3.22
gi 1YY, € u

where 1, isthe cost eladticity associated with aggregate | in C, ad

o Y, Y,

) 3.23
?ﬂxv (329

a=

In summary, the correct estimate is not necessarily equd to the inverse of the sum of the aggregate's
eladiidities, I, unlessthe &, 'sare dl equal to one.

The procedure to use C correctly, rests upon the rlaion between the ;,'sand the y,'s. But,
according to equation (3.22), this appliesto al arguments of C which are functions of 'Y, no matter
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how they are called (i.e. characteristics, attributes or outputs). Thus, equation (3.23) provides atest
for theindusion of any aggregate dadticity in the clculation of S. Just as an example, we show here
the coefficients a; which correspond to aton-kilometres variable (TK) and an average length of haul

variable (ALH). This requires to make it explicit that

o

TK=3a vy d

(3.24)

and ALH= ga y.d ‘é/a y, (3.25)

From this, one can easlly show that a,, isequd tooneand a,,, isnil. Therefore, the dadticity of TK

should be used dwaysin the caculation of S, and the dagticity of ALH should never be used. These
are Smple casesto illustrate how to proceed with a C(w, Y) function. A fairly complete andlysis of

nearly al forms of output description and their role in the calculation of S is contained in Jara-Diaz
and Cortés (1996). It is relevant to note that the & 's are not necessarily equd to either zero or one.

Jugt to illudtrate the point, condder the case of an output index, which isin fact related with transport
supply, like vehicle-kilometres. The relation between thisindex and the flow vector is dependent on
the manner in which frequency and average load is adapted following an increase in the flows. It can
be shown that a pure frequency adjustment makes a,; =1 and a pure load adjustment (which has a

limit) makes a; = 0; most cases would be in between, making O£ &, £ 1.

Before moving into scope andyss, it is useful to introduce a concept that has been in the transport
economics literature since the late seventies: economies of dengty. This concept coincides with the
notion of scale economies, except for the fact that the physica network is held congtant (origindly, it
was either totd track or road length what was held congtant). In the literature, the degree of economies
of density ED has been dways cdculated from a C(w, Y, X) type cost function, induding some index

or variable representing either the network as afixed factor (for example track length) or a network
‘characterigtic’ related to operations (for example number of points served). The usua procedure
(whichis actudly nearly adefinition) isto calculate ED as the inverse of the sum of dl cogt dadticities
except those related with the network. An estimate of S, on the other hand, would include al

dadidties Agan, falureto think in terms of Y prevents the true andys's from surfacing. The key issue
iswhether the O-D system varies or not with the variable representing network shape or operations,
because if it does, the associated eadticity is not related with flow expansions but with the addition of
new flows. And thisis not related with scae but with scope andyss.

The best example of what we have exposed in the previous paragraph is the number of points
sarved, PS, avaiddethat isusudly part of the output description in the andyss of the airline indudtry.
Isavariation of PSrelated with scae? If PS increases by one, the number of O-D pairs can increase
up to two times PS, because the new point is a potentia new destination for PS origins, and a potentia
new origin for PS destinations. In other words, a change in PS means a change in the number of O-D
pairs which, by definition, isamatter of scope. Thisis an issuein the trangport economics literature,
that has been just recently addressed (Jara-Diaz, Cortés and Ponce, 1997).
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Findly, trangport cost functions using output aggregates do alow for some type of scope andysis
whenever the vaue of the aggregetes can be recovered when some of the components of 'Y go to zero.
Trividly, this can be done when, for instance, we have passenger and freight movements distinctly
represented; in this case, the presence of economies of scope between both type of services smply
requires making zero each aggregate at atime and caculating SC asin (3.15).

3.5 Synthesis

In this chapter we have presented the main concepts of a microeconomic framework for the andysis
of trangport production and industry structure. The theory of transport production involves two key
agpects trangport output, which is a vector of flows with many dimensions, and operating rules, which
are the forms of input combinations to produce aflow vector. The main eements here are frequency,
load size, route structure, and S0 on, which are operating decisions. On the other hand fleet size,
vehicle capacity, loading-unloading capacity, rights-of-way design, and so on, are decisons related
with input acquisition. Both types of decisonsare rdated, but the former is taken within the boundaries
of the latter.

Thus, the theory of multioutput production provides the appropriate framework for the study of
trangport industries, where the analysis of both scale and scope economies are necessary for an
asesament of the optima industry structure. This is done through the estimation of trangport cost
functions. However, we have shown that attempts to smplify matters by using output aggregetes
introduces a non-negligible degree of ambiguity. Economies of scde are dearly defined on the origina
output description, as the concept examines the behaviour of cogsasdl flowsin dl O-D pairs expand
by the same proportion, but this dean interpretation is darkened by aggregation. Since output is usudly
avector of huge dimensions, the empiricd literature shows avariety of aggregate output indices thet,
placed in groups of three or four, are used for the estimation of cost functionsin an effort to capture
the complexity of trangport services. We have summarised here a method to caculate correctly the
degree of scae economies from such trangport cost functions, which is based upon the recognition of
aggregates as congtructs from the origind flow components.

Economies of scope are difficult to analyse from the trangport cost functions reported in the literature,
unless distinct aggregate output variables are used for different movement types (for example
passenger-km and ton-km). The main cause of the problem, as has been explained in Section 3.4, is
that making zero some of the flows has an unknown impact on the vaue of each aggregate. This further
complicates when the transport cost function includes ‘ network’ variables (which are important in an
aggregate andyss), because thair variation implies avariaion in the number of O-D pairs, thus, scope
becomes somehow related with scalar variables. Thisisindeed atopic for further research.
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Notes

1. 1.A complete andytica derivation of cost functions for both the smple cydica sysem (equetion 3.7)
and the backhaul system (equation 3.8) can be found in Jara-Diaz (1982b).

2. For acondensed overview of the technica analysis based upon the coefficients obtained from the
trandog specification of C(w, Y), see Spady and Friedlaender (1978).

3. Sheppard's Lemma states that ﬂcﬂ(ﬂz X, ; this can be manipulated to obtain ether W,%T—C
W W
(factor expenditure) or %1¥—C (factor share). Thisthird form is particularly appropriate when usng
W

the trandog form.

4. Possible exceptions are two pieces on output aggregation published by the author (Jara-Diaz,
Donoso and Araneda, 1991, 1992).

5. Note that thisis not intended as areview of techniques and results. The reader might want to look
at two fairly complete sudies. the period 1970-1980 is reviewed in detail in Jara-Diaz, 1982a; the
remainder is analyzed by Oum and Waters (1996).



