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3 Transport production and the analysis of industry structure

Sergio R. Jara-Díaz

3.1 Introduction
As transport activities mean displacements of individuals and goods in both time and space, the analysis
of transport production involves the assignment of resources to generate trips among many different
points in space during many different periods. As a consequence, the microeconomic analysis of
transport production is far from a simple extension of the theory of the firm. In this chapter we present
the underpinnings of a microeconomic theory of the transport firm, with particular emphasis on the nature
of the technical relations between inputs and outputs (production or transformation function) and the use
of the cost function as a tool to obtain valuable information for the design of transport policies (for
example pricing, regulation)

The chapter is sequentially organised, beginning with the notion of transport production, including the
definition of transport output, the role of space, the idea of operating rules, and the concept of scale, all
of which are illustrated using simple cyclical systems (section 3.2). Then the cost function and its
properties regarding the calculation of marginal costs, economies of scale and economies of scope, are
presented and explained within the context of transport systems analysis (section 3.3). A synthesis of
the empirical work using transport cost functions is offered, with special emphasis on the adequate
treatment of output in its specification, and on the difficulties with the prevailing approach to analyse
industry structure, including recently improved procedures to calculate scale economies correctly and
a discussion on network density versus economies of scope (section 3.4). The closing section contains
a synthesis and directions for research.
3.2 Transport production
In essence, the production of goods and services can be synthetically described using the concepts of
inputs, outputs and technology. Inputs have to be acquired by the firm in order to be combined - within
the boundaries of process-specific rules - in order to produce outputs. For a given level of outputs, the
firm has to choose type and amount of inputs, as well as a subset of combination rules. All feasible input
combinations define the technology.

In the case of transport, the firm has to use vehicles, terminals, rights-of-way, energy, labour, and so
on, to produce movements - freight or/and passenger - from many origins to many destinations during
many different periods. Thus, the output of a transport firm is a vector

 { } Ry=Y KxNxTkt
ij ∈  (3.1)

where each component kt
ijy  represents the flow of type k moved from origin i to destination j (O-D pair

ij), within period t, for example passengers from Paris to Frankfurt during a specific weekend (K, N and
T are the the number of flow types, the number of O-D pairs, and the number of time periods considered
in Y, respectively).
 For a given set of flows in Y, the firm has to make a number of choices: number and capacity of vehicles
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(fleet size), design of the rights-of-way (location, flow capacity), design of terminals (location, loading-
unloading capacity), route structure (i.e. how vehicles would flow on the network), vehicle frequencies,
and so on. Some of these decisions involve choosing the characteristics of inputs, and some are related
with their use, i.e. with the form in which inputs are combined to accommodate the flow vector. We will
call these latter types of choices ‘operating decisions’.

For a given type of transport firm (for example interurban bus) some of the decisions related with
the acquisition of inputs are constrained, because of the existence of common infrastructure (for example
the road system) or the rigidity of input markets (for example fleet size). On the other hand, operating
decisions are generally made within the boundaries of existing inputs. As a simple example, consider an
O-D system with three nodes, a single period and a single flow type.

Figure  3.1
Possible route structures for a simple O-D system

For a given set of flows { }y ij , the appropriate combination of inputs and operating rules would

depend on many factors. If, in Figure 3.1, nodes 1, 2 and 3 represent distant cities (airports), then three
possible air route structures are a), b) and c). These route structures should be analysed in parallel with
aircraft size and frequency in order to make the most convenient choice. If this was either a road or a
railway system, the physical structure of the road network would constrain the choice of routes and
schedules. Moreover, for a given fleet size (including vehicle capacity), scheduling would be the only
decision to make.

The technical relation between inputs and outputs is summarised through the concept of a
transformation or production function. Let us give an example using the simplest possible case, i.e. a
single O-D pair, single product, single period (Gálvez, 1978; Jara-Díaz, 1982b). Let Y  be the flow from
O to D. If k is load size, B is fleet size, t(k) is travel time as a function of load size and µ is loading-
unloading speed, then
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2+t(k)

BkY

µ

≡  (3.2)

For a given B and µ, one can find the value of k that maximises Y, k* . It can be easily proved that k*
would be given by vehicle capacity K, provided the effect of k on travel time is small.

Therefore

)K,h(B,=
t(0)+

K
2+t(K)

BKY µ

µ

≤  (3.3)

where h(B,K, µ) is the production function which gives the maximum flow for a given value and
characteristics of the inputs: B, K and µ. Which combination should be chosen for a given value of Y,
would depend on the relative prices of vehicles and loading-unloading capacity. In this simple cyclical
system, the input choice, their feasible combinations and the operating rule can be clearly distinguished.

Thus, depending on the characteristics of the particular transport system, the transport firm could
adjust inputs and operating rules according to the different levels of Y. This concept remains when Y is
a vector. The simplest possible version of a multioutput transport firm is one serving a backhaul system
with two nodes (1 and 2) and two flows ( y12 and y21) of a single product during a single period (Gálvez,
1978; Jara-Díaz, 1982b). Let us assume for simplicity that the firm operates the same fleet to move both
flows. Then vehicle frequency in both directions is the same, and given by the maximum necessary, which
in turn depends upon the relative flows; let us assume y12 ≥ y21. Then the technical optimum requires the
vehicles in the 1→  2 direction, to be fully loaded, and frequency will be given by

K
y

=f 12  (3.4)

and the load size in the opposite direction, k21, will be

K
y
y

=
f

y
=k

12

2121
21  (3.5)

The fleet size needed, B, has to be equal to f times cycle time tc which, under our simplifying
assumption, is given by

)k(t+K
y
y2

+
2K

+(K)t=t 2121

12

21
12c µµ

 (3.6)

Just for the sake of simplicity, let us see the case characterised by vehicle speed v independent of
load size and potentially different route distances dij in each direction. Then using equations (3.4) and
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(3.6), the equality B=f tc can be turned into

y
K

2+
v

d+
K

2+
v

dy=BK 21
2112

12 µµ 







(3.7)

As this is valid for y12 ≥ y21, and there is a symmetric expression for y21 ≥ y12, the general result for
the technical relation among flows and inputs is

yy,y1+
2Kv

d+d
2
B=y ijjiji

2112
ij ≥∀





µ  (3.8)

Figure 3.2
Production possibility frontier of the backhaul system

It is fairly simple to show that the graphical representation of the backhaul system in the output
space looks like Figure 3.2. Equation (3.8) represents the production or transformation function of the
system, and the shaded area in the figure represents all the vectors (y12, y21) that can be produced with
a given fleet B, and capacities µ and K, but only the boundary represents optimal usage. This boundary
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is the production possibility frontier, whose symmetry is derived from the assumption of load
independence of speed.

Both the cyclical and backhaul systems are illustrative of the idea of technical feasibility and
optimality. One of the most important conceptual points is the distinction between inputs, as fleet or
loading-unloading capacities, and operating rules, as frequency, speed or vehicle load. The former is
related with things that have to be acquired and the latter are ways to combine the former to produce
flows. Roles and relations are clear.

In complex systems, the technical relations can not be obtained in such an explicit form as in
equations (3.3) and (3.8), but they can be envisaged as a sort of ‘specialised black box’ which
includes a number of analytical relations dealing with networks, itineraries, routes, frequencies, and so
on, trying to aim at the best possible use of resources: fleet, terminals and rights-of-way. This general
idea helps understanding the kernel of transport production; changes in the flow vector Y potentially
induce changes in input usage as well as in route structures and operating rules in general.  It may well
be that some of the inputs can not be adjusted, which means that some other inputs will have to be
changed in combination with different operating rules. A good example is the restructuring of routes
and itineraries for a given fleet of buses facing a change in the passenger volumes in different O-D
pairs.

To end this general idea of transport production, let us introduce an important technical concept that
can be examined directly from the transformation function: the concept of scale economies. The
relevant question is by how much can output be expanded if all inputs are expanded by the same
proportion. In the single output case represented by equation (3.3), a local expansion of vehicle
capacity (BK through K) and loading-unloading capacity (µ) would allow Y  to be increased by the
same proportion if speed was unrelated to K; note that in this example the right-of-way input is
assumed to be exogenous to the firm. In the two-outputs case represented by Figure 3.2, a similar
expansion of inputs moves the production possibility frontier away from the origin, but the ‘how much
can output be expanded’ question becomes ambiguous, as nothing has been said about output
combinations. If the concept of scale economies is forced to deal with proportional expansions of
output, it is clear that, again, (y12, y21) can be expanded by the same proportion as inputs (same
condition as in the earlier case).

In general, if F(X, Y) ≥ 0 represents the transformation function (i.e. all technically feasible
combinations of inputs and outputs) where X is the input vector and equality represents technical
optimality, the (multioutput) degree of scale economies, S, is defined as the maximum proportional
expansion of Y, λsY, after an expansion of X  by λX (Panzar and Willig, 1977). Analytically,

( ) 0=YX,F Sλλ  (3.9)

which means than in the previous examples S takes the value of one, usually called constant returns to
scale. A value of  S greater or smaller than one is called increasing or decreasing returns to scale
respectively.

3.3  Transport cost functions: the theory

Basic definitions and properties
Technical analysis is not enough to understand the choice of inputs combination by the firm. The
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question is which of the combinations in the technical frontier is the most convenient to produce a given
output Y. The answer is given by one of the most interesting tools in the microeconomics of production:
the cost function, which requires input prices to be introduced in the picture. Formally, the cost function
C(w,Y) gives the minimum expenditure necessary to produce output Y at given factor prices w. It
corresponds to the solution of

0),( subject to

min

≥

∑
YXF

xw
i

ii
X  (3.10)

The solution for each input x i  is a conditional demand function (w,Y)x*
i , which represents the optimum

amount of input. Then the cost function is

( )Yw,xwY)C(w, *
ii

i
∑≡ (3.11)

If some inputs x j are fixed at a level x j , then the short run cost function is defined as Y),X,wC( v ,

where X  is a vector containing fixed inputs and wv is a vector-containing variable input prices. The
optimisation process represented by equations (3.10) and (3.11) is exactly the same.

Out of the many properties of the cost function, five are particularly relevant for a basic analysis and
discussion of production in general and of transport in particular. First, the derivative property or
Shephard's lemma, which states that the derivative of the cost function C(w, Y) with respect to each
factor input price wi equals the cost minimising amount of x i(w, Y), that is x i

*(w, Y). Analytically,

( )Yw,x
w

Y)C(w, *
i

i

≡
∂

∂
 (3.12)

and is very helpful in estimating and interpreting a cost function. Second, the marginal cost specific to
product i, mi , is simply

y
Y)C(w,

=m
i

i ∂
∂

 (3.13)

Next, the (multioutput) degree of scale economies which has been defined on the technology, can
be shown (Panzar and Willig, 1977) to be obtainable from the cost functions as

ηi
i

i
i

i

1
=

y
C

y

Y)C(w,
=S

∑∑ ∂
∂  (3.14)

where is the cost elasticity with respect to output i.
Fourthly, the degree of economies of scope relative to a subset R, SCR can be calculated (Baumol

et al., 1982) as
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[ ]C(Y))YC(+)YC(
C(Y)

1
=SC RMRR −−  (3.15)

where YR represents vector Y with MRi0,=y i ⊂∉∀ , with M being the set of all products (we have

suppressed w for simplicity). Thus, a positive SCR - the existence of economies of scope - means that
it is cheaper to produce Y with a single firm than to split production into two orthogonal subsets R and
M-R.

Finally, a cost function is said to be subadditive for a particular output vector Y when Y can be
produced more cheaply by a single firm than by any combination of smaller firms (Baumol et. al.,
1982, p. 170). Therefore, a cost function is subadditive if

{ } YYY        YCYC                                            
i

i

i

ii =∀≥ ∑∑ )()( (3.16)

 
which is the multioutput notion of natural monopoly. Under this set of definitions and properties, it is
very clear that both S >1 and SCR > 0 favour subadditivity, but neither guarantees its presence by
itself.

Scale and scope in transport production
With product defined as in equation (3.1) and the notion of scale synthesised in equation (3.9),

scale analysis in transport should be conceptually clear. It refers to the behaviour of costs as flows in
all markets served by a firm expand proportionally. In order to emphasise space, let us create an
example using the O-D structure depicted in Figure 3.1 relative to non-perishable cargo. Imagine that
distances i-j are relatively short, that flows yij and yji are unbalanced, and that the sum of flows
clockwise are approximately equal to the sum of flows counter-clockwise. It may well be that for
relatively low volumes, a route structure like a), with complete vehicle cycles involving a homogeneous
fleet, is the least cost answer. Imagine output expands proportionally; the firm could accommodate that
expansion by increasing frequency (enlarging fleet) and/or using larger vehicles. For further expansions,
the hub-and-spoke structure like a) could well become the best answer, making the hub a transfer
point and involving vehicles of different sizes. It might be the case that direct services like in c) happen
to be the least cost structure for individually large enough flows.  If there are scale advantages in
loading-unloading activities and in vehicle size, it is very likely that through appropriate scheduling and
rerouting, total cost will increase less than proportionally with increases in the flow vector, at least up
to a certain scale.

Regarding scope, again Figure 3.1 will prove very helpful. If the six flows are divided into subsets
{y12, y23, y31} and {y21, y13, y32}, very possibly the sum of the costs of assigning each subset to a
different firm will be greater than that cost of moving all six flows with one firm. The case is not that
clear when the partition is {y12, y21},{y13, y31, y23, y32}. In general, the partition of the flow vector could
be made in terms of flow type (for example passengers and freight), periods (for example weekends
and weekdays) or O-D pairs, as we have done in the example. In this latter case we would talk about
economies of spatial scope, when they exist.
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Figure 3.3
Transport cost function of the backhaul system

In order to provide a specific analytical example, let us use the simple backhaul system technically
described in Section 3.2 to obtain and analyse the corresponding cost function. The system
represented by equation (3.8) can be used to get the number of vehicles as a function of product,
B(y12, y21). On the other hand, the number of loading-unloading sites, L, is given by 2(y12 + y21)/µ.
Without affecting the conceptual analysis, we can hold d, v, k and µ constant such that inclusive prices
for vehicles (PB) and sites (PL) can be defined, i.e. prices that encompass rent, labour and energy (fuel)
necessary to operate one vehicle and one site respectively. Replacing all variables, the multioutput cost
function is given by

( ) y>yP+P
2

y+P2
+

2
+

vK
d+d

Py+C=)y,yC( jiijLBji
L2112

Bijo2112 µ

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
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


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
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 (3.17)

where C0 represents costs that are associated with the right-of-way.1 This is graphically represented

Co
y21

y12

C(y12,y21)
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in Figure 3.3.

Although equation (3.17) has been obtained using highly simplifying assumptions, it represents a fairly
transparent cost function for the simplest possible multioutput transport system. Its importance
becomes apparent when it is used to analyse scale, scope and aggregate output. If the degree of
economies of scale is calculated using (3.14), it is quite easy to show that S=1 for C0 =0, which we
can name the ‘lorry’ case, as lorries (or buses) do not pay a fixed cost for road infrastructure. On the
other hand, scope analysis can be done for the only partition possible in this case (i.e assigning each
of the flows in the backhaul system to different firms). After elementary calculations we get

yyy
vK

d+d
P+C=)y,yC()yC(0,+,0)yC( jiijji

2112
Bo21122112 ≥∀−  (3.18)

which is positive even if Co is nil. This shows that, under the assumptions made, it is fleet utilisation
what causes the existence of economies of scope. Thus, if Co=0, we have constant returns (a case for
competition or deregulation) and economies of scope. These latter would cause incentives for merging
if two firms are operating, each in one direction. The conclusion is that, as far as costs of production
are concerned, competition would be desirable, with each firm operating both markets. It is relevant
to mention here that, in their pioneering work on hedonic cost functions, Spady and Friedlaender
(1978) verbally explained merging among trucking firms serving different routes when a regulatory
regime that had exercised restrictions on routes is dismantled. However, that phenomenon was said
to reflect ‘economies of density and utilisation’, which can not be derived from their cost function
specification. With a well-defined output, it is directly explainable as economies of (spatial) scope. This
leads to the third interesting aspect that can be explored using this simple example: output aggregation.

Even up to our days, aggregates like passenger- (or ton-) kilometres (TK) are used as a basic or
synthetic unit to describe transport output both in general and within the context of empirically
estimated cost functions. Since the late seventies, its ambiguity began to be addressed, raising the
issues of network shape and fleet utilisation, as described in the preceding paragraph. The simplified
cost function of the backhaul system can be used to explore the adequacy of the TK-index as a
representation of transport output.

First we have to recognise that TK is indeed a function of the true output as defined in (3.1). In the
backhaul system,

dy+dy=TK 21211212 (3.19)

On the other hand, (3.17) can be used to represent the combinations of y12 and y21 that yield the
same expenditure Ci. The resulting iso-cost locus can be shown in the output space as we have done
in Figure 3.4, where cost increases with the distance from the origin. The popular ‘output’ TK can be
shown in the same space using equation (3.19) as a straight line with a negative slope that depends on
the relative value of d12 and d21. As evident, all flow combinations within the straight line yield the same
value for TK. We have represented as TKo the case of d12>d21 ; as the corresponding line intersects
many iso-cost curves, TKo can not be associated with a single minimum cost figure. If should be noted
that this ambiguity remains even if both distances were equal (as represented by TK1). On the other
hand, every pair (y12, y21) corresponds to a single cost value, unambiguously.
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Figure 3.4
Cost ambiguity of aggregate output

The ambiguity of aggregate output is a key aspect in the analysis of industry structure in transport
activities by means of a cost function. We have shown that, even in a simple system like the backhaul
service developed in this section, an association between expenses C and output TK might yield
completely erroneous conclusions. In terms of scale analysis, an expansion of TK by λ corresponds
to many possible flow combinations, as shown by equation (3.19).

In terms of scope, the pairs (0, y21) and (y12, 0) get reflected as y21 d21 and y12 d12 respectively
when converted into TK units. Thus, scope ‘turns’ into scale, provoking an extremely confusing
panorama when trying to obtain conclusions on industry structure.

For synthesis, transport production is a multioutput process where the concepts of scale and scope
are very useful for the analysis of industry structure, provided they are properly applied. The degree
of economies of scale reflects the behaviour of cost as all flows (e.g. in every O-D pair) expand
proportionally. The degree of economies of scope examines the convenience of partitioning transport

y12
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C1

TK1

TKo

y21
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services into two mutually exclusive subsets; depending on the type of partition, we will refer to
economies of spatial scope, commodity scope, or time scope, whenever the cost of producing the
whole set is less than the sum of costs for the partition. Diseconomies of scope reflect the opposite.
Within this context, the use of aggregates to describe transport output distorts the analysis of scale and
reduces (and sometimes destroys) the possibility of analysing scope. However, transport systems
produce passenger and/or commodity trips over many O-D pairs, which makes reduced output
description a key issue in empirical studies.

Transport output and the estimation of cost functions
Obtaining an adequate representation of either C(w,Y) or Y),XwC( , - the long run and the short run

cost functions respectively - is not a simple task in transport activities. As evident, the general idea is
to construct a reliable statistical relation between expenses as the dependent variable, and output, input
prices and fixed factors as explanatory variables. The statistical data is composed by a series of
observations, each one relating production to cost. This series can be feeded by the evolution of a
single transport firm in time, by the activity of many firms within a period (cross section), or by
observations of many firms during many periods (pool).

The case of a time series is, conceptually speaking, the most transparent one; product (as defined
in equation 3.1) is quite precise, as well as factors of production. Let us consider the case of a firm
moving a single type of commodity (or passengers) among many points in space during homogeneous
periods, and imagine potential observations that include services from two to six O-D pairs as depicted
in Figure 3.5. If all observations were associated with an O-D system like (a), output would be a two-
dimensional vector. Output would be a six-dimensional vector if all observations were related with
movements like those represented in (c). How to represent output if observations included all three
cases? The answer is straightforward: the output vector should have six components and some of them
will be nil for observations including flows like in (a) or (b). Formally,

{ }y,y,y,y,y,y=y 322331132112

{ }0,0,0,0,, 2112
aaa yy=y

{ }y,y,0,0,y,y=y b
32

b
23

b
21

b
12

b

{ }y y y y y y yc c c c c c c=
12 21 13 31 23 32

, , , , ,

where n
ijy corresponds to actual flow in O-D pair ij for observation (period) n. The case is very similar

if observations correspond to transport firms operating on the same spatial setting.
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Figure 3.5
Transport output in a three nodes system

On the other hand, observations of firms serving different O-D systems correspond, in fact, to different
products. This does make a difference regarding other production processes observed through a
cross-section, as the optimal combination of resources to produce a given amount of an output bundle
(say shoes, bags and belts) at given input prices, is likely to be equal across firms if all of them have
access to the same technology. But the optimal combination of vehicles, terminals and rights-of-way
(by means of routes, frequencies and load sizes) will depend upon the characteristics of the underlying
physical network and the actual configuration of each O-D system. Nevertheless, it is true that an
external observer (transport analyst) should be able to obtain some information regarding cost structure
form observations of different transport firms performing similar services on different spatial settings
(for example interurban rail, urban transit, international flights, and so on). But this requires a careful
analysis in order to make the correct inferences on policy and industry structure.

Thus, transport output description within the context of the estimation of cost functions, implies a
challenge at least in two dimensions. First, when output is well defined, the number of components is
usually huge and certainly unmanageable in detail for statistical purposes. Second, cross-sectional
observations usually involve different products. How to aggregate flow components and how to
introduce product equivalency or homogeneity across different systems, are indeed problems to solve;
neither, however, changes the strict definitions of scale and scope which are unambiguous with a well
defined transport output.

3.4 Transport cost functions: the empirical work

Functional form

The estimation of cost functions for different transport industries has been the preferred tool for the
analysis of industry structure, regulation, technical change, productivity, and so on. Within the period
1970-1997, the empirical work on transport cost functions has experienced a series of improvements.
Perhaps the most evident is the use of flexible forms for the functional specification of the function, the
translog form being the most popular one (see Christensen et al., 1973). In order to understand
analytically this form, it is useful to view first another flexible specification called the quadratic.

1
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2
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2
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Conceptually, the quadratic corresponds to a second order Taylor expansion of C(w,Y) around a point
(w0,Y0), which is usually the mean of input prices (  iw ) and flows (  iy )  in the data set. Analytically,

the stochastic expression for the quadratic cost function is

,)()(

)()(

)()(

)()(),(

ε+−−+

−−+

−−+

−−

∑∑

∑∑

∑∑

∑∑

 yyyyC 
2
1

 yywwB  
2
1

 

wwwwA 
2
1

yyC + wwA + A  = Yw C

jjiiij

n

j=1

m

=1i

jjjiij

m

j=1

n

=1i

jjiiij

n

j=1

n

=1i

iij

m

=1i
iii

n

=1i
0

(3.20)

where the system considers n inputs and m outputs; ε is the error tem. The translog form is analogous
to equation (3.20) with C(w, Y), wi and yi in logs. Both forms are flexible in the sense that no a priori
functions are postulated either for technology or costs.

Each of these flexible forms has its own advantages. The translog facilitates the analysis of the
properties corresponding to the underlying technology, i.e. homogeneity, separability, scale economies
and non-joint production, by means of relatively simple tests on the adequate set of parameter
estimates.2 Its first order coefficients are the cost elasticities of output calculated at the mean, and their
summation yields an estimate of the inverse of S as shown in equation (3.14). Further, this form makes
it easy to impose homogeneity of degree one in factor prices.

On the other hand, the plain quadratic form is extremely adequate to directly obtain marginal costs
evaluated at the mean of observations, Ci ,  and the elements of the Hessian Cij, which are essential for
analysing sub-additivity. In addition, equation (3.20) is well defined for zero output levels (while the
translog is not); this not only represents an advantage for the estimation process, but also allows for
the calculation of economies of scope, which involve output vectors with some zero components.
Nevertheless, adequate transformations of output (for example Box-Cox) allow for nil values of output
using the translog form as well.

One of the shortcomings of flexible forms is the fairly high number of coefficients to be estimated,
which requires a substantially larger number of observations for statistical relevance of the estimated
function. However, the application of Sheppard’s Lemma to equation (3.20) generates as many
additional equations as factor prices included, involving part of the coefficients from the original
equation. Thus, inputting some usually available information (factor usage, factor expenditure or factor
cost share),3 the number of ‘observations’ can be multiplied, generating a system of equations, which
increases the efficiency in parameter estimation. This problem is particularly relevant in transport
analysis, because the usually high dimension of Y is further magnified by squared and interaction terms.
This makes output aggregation an extremely important aspect: it is required to make estimation feasible
in most real systems, but it should not distort the analysis thus obtaining irrelevant or misleading results.

Output aggregates
Aggregation of output over any dimension (commodity, time or space) involves loosing information
associated with the transport processes generated by the system in reference, as illustrated earlier in
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the backhaul system.  As is evident, spatial aggregation destroys information on the geographical
context of the origin-destination system in which a transport system operates. Aggregation of output
over time may cause distortions when estimating cost functions if periods of distinctive mean flows are
being averaged. Finally, commodity aggregation may affect cost estimation since the (minimum) cost
of moving the same aggregate weight or volume will generally depend on the composition of that
output.

In summary, the loss of information due to aggregation over any dimension may cause serious
problems of coefficient interpretation when estimating a cost function. The bulk of the empirical work,
however, has not been developed with full awareness of the problem. Most reported transport cost
functions use a basic output aggregate (for example ton-kilometres or total passenger trips) together
with other ‘output’ variables or, as called in the literature, ‘output characteristics’. In other words, we
do not find efforts to construct appropriate aggregates from disaggregated information on output4. The
usual procedure is to add other aggregates that should somehow control for the ambiguity of the single
output index.

Thus, seasonal and ‘traffic condition’ dummies are in fact trying to capture the effect of the implicit
time aggregation on costs. Similarly, variables like traffic mix or insurance value try to grasp commodity
aggregation. The first effort to somehow counterbalance spatial aggregation was the use of mean haul
length as part of output description within a ‘hedonic’ treatment (Spady and Friedlaender, 1978). In
the last twenty years, the literature on transport cost functions includes an enormous variety of output
descriptions. Unfortunately, this has not led yet to a universally accepted form of output treatment,
mainly due to an implicit reluctance to try to understand transport technology, which is a fairly complex
construct as suggested at the beginning of the chapter. In order to clarify this, let us use the synthesis
presented in Table 3.1, where we have included studies covering more than twenty years of
evaluation.5

MODES OUTPUT ATTRIBUTE

Berechman (1983) bus REV

Berechman (1987)
Berechman and Giuliano 

(1984)

bus VK, PAS

Ying (1990)
Ying et al. (1991)

lorries RTK ALH,%LTL,AL,AS, IN

Caves et al. (1984)
Gillen et al. (1990)
Windle (1991)

air RPK    Scheduled ser-
vices

RTK    Charter servi-
ces  

ALH,LF,NC

Daughety et al. (1985)
Friedlaender and Bruce 

(1985)
Kim (1987) (*)
Spady and Friedlaender 

(1978)
Wang and Friedlaender 

(1984)

lorries

TK

ALH,AS,AL,%LTL, IN
CU(*)

Gagné (1990) lorries TK and N ALH,AS,UT,IN
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Caves et al. (1980, 1981, 
1985)

rail TK
PK

ALH, ATL

Filippini and Maggi (1992)
Formby et. al. (1990)
Keeler and Formby (1994)
Tauchen et al. (1983)
Koshal and Koshal (1989)
Braeutigam et al. (1980)
Keaton (1990)

air

bus
lorries
railways

SK
VK
LCK

LF,ALH, TD, NC

Harmatuck (1981, 1985, 
1991)

lorries NTL
NLTL

ALH,AS (TL),
AS (LTL)

Table 3.1
Output description in transport cost functions

TK: ton-kilometres %LTL: percentage of less-than-truckload services
PK: passenger-kilometres AL: average load
PAS: passengers-trips AS: average shipment size
RTK: revenue ton-kilometres IN: average cargo loss-and-damage insurance per dollar of cost
RPK: revenue pax-kilometers LF: load factor
REV: revenue per pax-kilometer CU: capacity utilisation
VK: vehicle-kilometres TD: traffic density
SK: seat-kilometres NC: network characteristics (for example points served, hub, etc.)
LCK: loaded car-kilometres  
N: number of shipments
NTL: number of truckload shipments
NLTL: number of less-than-truckload shipments
ALH: average length of haul (freight)
ATL: average trip length (passengers)

From the Table we can verify that in addition to full aggregation of flows (for example passengers)
or distance-weighted flows (for example ton-kilometres), the list of accompanying variables is varied:
average load, average trip length, percentage of less-than-truckload services, number of shipments,
average shipment size, and so on. It is important to note that these variables are sometimes called
outputs, sometimes output characteristics, and sometimes quality dimensions. The most sophisticated
variables appeared during the eighties, and they are related with network shape and size. And here we
have a new source of confusion: network as infrastructure, (i.e. a fixed factor associated with the
rights-of-way) and network as route structure, which is an endogenous, operating decision for many
modes or transport systems (for example the cyclical system or the hub-and-spoke in Figure 3.1).

Scale and scope from aggregates
Whenever a cost function is specified in terms of one or more output aggregates, the analyst obtains
a series of coefficients that can be given a microeconomic interpretation by simple association with
properties (3.13) or (3.14). If the function is a translog-around-the-mean, first order coefficients are
‘output’ elasticities, and the inverse of their sum could be offered as an estimate of the degree of scale
economies. This is a procedure that has been frequently applied in the literature with some
qualifications. Just as an example, Caves et. al (1980) included passenger-kilometres, ton-kilometres,
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average length of haul (freight) and average trip length (passengers) in their translog specification, and
then calculated the degree of scale economies in various ways, always using the cost elasticities
(obtained directly from the coefficients). Cost elasticities for ton and passenger-kilometres were always
used, but the average-distance elasticities were left out in one of the measures of S~ and included in
other. The reason offered was that ton or passenger-kilometres might increase due to either more or
longer trips. In fact, a coefficient of 0.5 on the elasticity of the average trip distance variables was
suggested as a compromise. The thing is that an increase in the mean distance travelled necessarily
requires that flows in the more distant O-D pairs have to increase more than flows in the relatively
closer ones, and this violates the condition for scale analysis which relates to proportional expansions
of output. Failure to look at S properly is in fact the main cause of ambiguity in this example. As said,
S is related with proportional expansions within the vector of flows Y, and not directly to changes in
ton- or passenger-kilometres. And when all flows increase by a factor of λ , then average distance
remains constant, which means that their elasticities should be left out always.

The fact that aggregates make the calculation of S obscure was highlighted by Gagné (1990) and
by Ying (1992). Both observed that aggregates are usually interrelated, for example ton-kilometres
is equal to total flow times average length of haul, a fact that had not been taken into account when
making calculations of S. Our view is different: we should look at the behaviour of C(w,Y) as the basic
flow variables increase, but this operates through the aggregates. Let Y~  be the vector of aggregates
with components jy~  (for example ton-kilometres, total flow, less-than-truckload movements, etc).

The key fact is that most of these jy~ 's are implicit constructs from the components of Y. This is evident

in the case of ton-kilometres (equation 3.19) or total flow (for example total passengers in a period)
which is simply the summation over all yi . Thus, if jy~ is an implicit function of Y, then the estimated

)~,(~ YwC  is an implicit representation Ĉ  of C(w, Y) because (Jara-Díaz and Cortés, 1996)

[ ] Y).(w,C(Y)Yw,C)Y(w,C ˆ~~~~ ≡≡  (3.21)

Then the correct calculation of an estimate Ŝ  for S can be obtained through direct application of
equation (3.14) using the yi’s as arguments. It can be easily shown (Jara-Díaz and Cortés, 1996) that
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where jη~ is the cost elasticity associated with aggregate j in C~ , and
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In summary, the correct estimate is not necessarily equal to the inverse of the sum of the aggregate's
elasticities, jη~ , unless the jα 's are all equal to one.

The procedure to use C~ correctly, rests upon the relation between the jy~ 's and the iy 's. But,

according to equation (3.22), this applies to all arguments of C~  which are functions of Y, no matter
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how they are called (i.e. characteristics, attributes or outputs). Thus, equation (3.23) provides a test
for the inclusion of any aggregate elasticity in the calculation of Ŝ . Just as an example, we show here
the coefficients αj  which correspond to a ton-kilometres variable (TK) and an average length of haul

variable (ALH). This requires to make it explicit that

∑=
i

ii dyTK             (3.24)

and ∑∑ 



=

i
i

i
ii ydyALH (3.25)

From this, one can easily show that αTM is equal to one and αALH  is nil. Therefore, the elasticity of TK

should be used always in the calculation of Ŝ , and the elasticity of ALH should never be used. These
are simple cases to illustrate how to proceed with a )~,(~ YwC function. A fairly complete analysis of

nearly all forms of output description and their role in the calculation of Ŝ  is contained in Jara-Díaz
and Cortés (1996). It is relevant to note that the jα 's are not necessarily equal to either zero or one.

Just to illustrate the point, consider the case of an output index, which is in fact related with transport
supply, like vehicle-kilometres. The relation between this index and the flow vector is dependent on
the manner in which frequency and average load is adapted following an increase in the flows. It can
be shown that a pure frequency adjustment makes jα =1 and a pure load adjustment (which has a

limit) makes jα  = 0; most cases would be in between, making 0 1≤ ≤αj .

Before moving into scope analysis, it is useful to introduce a concept that has been in the transport
economics literature since the late seventies: economies of density. This concept coincides with the
notion of scale economies, except for the fact that the physical network is held constant (originally, it
was either total track or road length what was held constant). In the literature, the degree of economies
of density ED has been always calculated from a ),~,(~ XYwC type cost function, including some index
or variable representing either the network as a fixed factor (for example track length) or a network
‘characteristic’ related to operations (for example number of points served). The usual procedure
(which is actually nearly a definition) is to calculate ED as the inverse of the sum of all cost elasticities
except those related with the network. An estimate of S, on the other hand, would include all
elasticities. Again, failure to think in terms of Y prevents the true analysis from surfacing. The key issue
is whether the O-D system varies or not with the variable representing network shape or operations,
because if it does, the associated elasticity is not related with flow expansions but with the addition of
new flows. And this is not related with scale but with scope analysis.

The best example of what we have exposed in the previous paragraph is the number of points
served, PS, a variable that is usually part of the output description in the analysis of the airline industry.
Is a variation of PS related with scale? If PS increases by one, the number of O-D pairs can increase
up to two times PS, because the new point is a potential new destination for PS origins, and a potential
new origin for PS destinations. In other words, a change in PS means a change in the number of O-D
pairs which, by definition, is a matter of scope. This is an issue in the transport economics literature,
that has been just recently addressed (Jara-Díaz, Cortés and Ponce, 1997).
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Finally, transport cost functions using output aggregates do allow for some type of scope analysis
whenever the value of the aggregates can be recovered when some of the components of Y go to zero.
Trivially, this can be done when, for instance, we have passenger and freight movements distinctly
represented; in this case, the presence of economies of scope between both type of services simply
requires making zero each aggregate at a time and calculating SC as in (3.15).

3.5 Synthesis
In this chapter we have presented the main concepts of a microeconomic framework for the analysis
of transport production and industry structure. The theory of transport production involves two key
aspects: transport output, which is a vector of flows with many dimensions, and operating rules, which
are the forms of input combinations to produce a flow vector. The main elements here are frequency,
load size, route structure, and so on, which are operating decisions. On the other hand fleet size,
vehicle capacity, loading-unloading capacity, rights-of-way design, and so on, are decisions related
with input acquisition. Both types of decisions are related, but the former is taken within the boundaries
of the latter.
Thus, the theory of multioutput production provides the appropriate framework for the study of
transport industries, where the analysis of both scale and scope economies are necessary for an
assessment of the optimal industry structure. This is done through the estimation of transport cost
functions. However, we have shown that attempts to simplify matters by using output aggregates
introduces a non-negligible degree of ambiguity. Economies of scale are clearly defined on the original
output description, as the concept examines the behaviour of costs as all flows in all O-D pairs expand
by the same proportion, but this clean interpretation is darkened by aggregation. Since output is usually
a vector of huge dimensions, the empirical literature shows a variety of aggregate output indices that,
placed in groups of three or four, are used for the estimation of cost functions in an effort to capture
the complexity of transport services. We have summarised here a method to calculate correctly the
degree of scale economies from such transport cost functions, which is based upon the recognition of
aggregates as constructs from the original flow components.
Economies of scope are difficult to analyse from the transport cost functions reported in the literature,
unless distinct aggregate output variables are used for different movement types (for example
passenger-km and ton-km). The main cause of the problem, as has been explained in Section 3.4, is
that making zero some of the flows has an unknown impact on the value of each aggregate. This further
complicates when the transport cost function includes ‘network’ variables (which are important in an
aggregate analysis), because their variation implies a variation in the number of O-D pairs; thus, scope
becomes somehow related with scalar variables. This is indeed a topic for further research.
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Notes

1. 1.A complete analytical derivation of cost functions for both the simple cyclical system (equation 3.7)
and the backhaul system (equation 3.8) can be found in Jara-Díaz (1982b).

2. For a condensed overview of the technical analysis based upon the coefficients obtained from the
translog specification of  C(w, Y), see Spady and Friedlaender (1978).

3. Sheppard’s Lemma states that X=
w

Y)C(w,
i

i∂
∂

 ; this can be manipulated to obtain either 
w
C

w
i

i ∂
∂

(factor expenditure) or 
w

C
C
w

i

i

∂
∂  (factor share). This third form is particularly appropriate when using

the translog form.

4. Possible exceptions are two pieces on output aggregation published by the author (Jara-Díaz,
Donoso and Araneda, 1991, 1992).

5. Note that this is not intended as a review of techniques and results. The reader might want to look
at two fairly complete studies: the period 1970-1980 is reviewed in detail in Jara-Díaz, 1982a; the
remainder is analyzed by Oum and Waters (1996).


