D Sun

microsystems

J2EE™ Connector Architecture
Specification

Version 1.5

Sun Microsystems, Inc.
www.sun.com

Final Release
November 2003

Submit comments about this document to: j2ee-connector-comments@sun.com.

J2EE™ Connector Architecture Specification ("Specification™)
Version: 1.5

Status: FCS

Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under the Sun’s applicable intellectual property rights to view, download, use and reproduce the Specification only for the
purpose of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset
or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the
TCK (including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations
of the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant
or otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees
to make any claims concerning their implementation’s compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the Specification that neither derives from
any of Sun’s source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun’s source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

& At 9

Adobe PostScript

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(i) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and test suites thereof.

(LF1#136187/Form |D#011801)

Contents

Introduction 1-1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Overview 1-1

Scope 1-2

Target Audience 1-3

JDBC and Connector Architecture 1-4

Organization 1-4

Document Convention 1-5

Connector Architecture Expert Group for Version 1.5 (JSR-112) 1-5

Acknowledgements for Version 1.5 1-6

Connector Architecture Expert Group for Version 1.0 (JSR-16) 1-7

1.10 Acknowledgements for Version 1.0 1-8

Overview 2-1

2.1

Definitions 2-1

2.1.1
2.1.2
2.1.3
214
2.15
2.16

Enterprise Information System (EIS) 2-1
Connector Architecture 2-2

EIS Resource 2-2

Resource Manager (RM) 2-2

Managed Environment 2-3

Non-Managed Environment 2-3

2.1.7 Connection 2-3
2.1.8 Application Component 2-3
2.19 Container 2-3
2.2 Rationale 2-4
2.2.1 System Contracts 2-4
2.2.2 Common Client Interface 2-5

2.3 Goals 2-6

3. The Connector Architecture 3-1
3.1 System Contracts 3-2
3.2 Client APl 3-4
3.3 Requirements 3-5

3.4 Non-Managed Environment 3-5

4. Roles and Scenarios 4-1

41 Roles 4-1
4.1.1 Resource Adapter Provider 4-1
4.1.2 Application Server Vendor 4-2
4.1.3 Container Provider 4-2
4.1.4 Application Component Provider 4-3
415 Enterprise Tools Vendors 4-3
416 Application Assembler 4-4
4.1.7 Deployer 4-4
4.1.8 System Administrator 4-5

4.2 Scenario: Integrated Purchase Order System 4-5

4.3 Scenario: Business Integration 4-8

5. Lifecycle Management 5-1
5.1 Overview 5-1

5.2 Goals 5-2

vi J2EE Connector Architecture Specification + November 2003

5.3

Lifecycle Management Model 5-3

5.3.1

5.3.2

5.3.3
5.34

5.35
5.3.6
5.3.7

5.3.8
5.3.9

ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance 5-5

ManagedConnectionFactory JavaBean and Outbound
Communication 5-8

ActivationSpec JavaBean and Inbound Communication 5-9
Resource Adapter Shutdown Procedure 5-10

5341 Phase One 5-10

5.3.4.2 Phase Two 5-11

Requirements 5-11

Resource Adapter Implementation Guidelines 5-13
JavaBean Configuration and Deployment 5-13

53.7.1 ResourceAdapter JavaBean instance Configuration 5-
14

5.3.7.2 Resource Adapter Deployment 5-14

5.3.7.3 ManagedConnectionFactory JavaBean Instance
Configuration 5-14

5.3.7.4 ActivationSpec JavaBean instance Configuration 5-14
5.3.75 Resource Adapter Implementation Guidelines 5-15
Lifecycle Management In A Non-Managed Environment 5-15

A Sample Resource Adapter Implementation 5-16

Connection Management 6-1

6.1
6.2
6.3

6.4

Overview 6-1

Goals 6-1

Architecture: Connection Management 6-2

6.3.1

Overview: Managed Application Scenario 6-2

Application Programming Model 6-6

6.4.1
6.4.2

Managed Application Scenario 6-6

Non-managed Application Scenario 6-7

Contents vii

6.5 Interface/Class Specification 6-7
6.5.1 ConnectionFactory and Connection 6-10
6.5.1.1 Requirements 6-11
6.5.1.2 ConnectionRequestinfo 6-12
6.5.1.3 Additional Requirements 6-13
6.5.2 ConnectionManager 6-14
6.5.2.1 Interface 6-14
6.5.2.2 Requirements 6-15
6.5.3 ManagedConnectionFactory 6-16
6.5.3.1 Interface 6-17
6.5.3.2 Requirements 6-18
6.5.3.3 Connection Pool Implementation 6-19
6.5.3.4 Detecting Invalid Connections 6-20
6.5.3.5 Requirement for XA Recovery 6-20
6.5.4 ManagedConnection 6-20
6.5.4.1 Interface 6-22

6.5.4.2 Connection Sharing and Multiple Connection
Handles 6-23

6.5.4.3 Connection Matching Contract 6-23
6.5.4.4 Cleanup of ManagedConnection 6-24
6.5.4.5 Requirements 6-25

6.5.5 ManagedConnectionMetaData 6-25
6.5.5.1 Interface 6-25
6.5.5.2 Requirements 6-26

6.5.6 ConnectionEventListener 6-26
6.5.6.1 Interface 6-26

6.5.7 ConnectionEvent 6-27

6.6 Error Logging and Tracing 6-28
6.6.1 ManagedConnectionFactory 6-28

viii J2EE Connector Architecture Specification * November 2003

6.7
6.8

6.9

6.10

6.6.2 ManagedConnection 6-29

Object Diagram 6-29

Illustrative Scenarios 6-32

6.8.1 Scenario: Connection Pool Management 6-32
6.8.2 Scenario: Connection Matching 6-37

6.8.3 Scenario: Connection Event Notifications and Connection Close
6-40

6.8.3.1 Connection Cleanup 6-41
6.8.3.2 Connection Destroy 6-41
Architecture: Non-managed Environment 6-44
6.9.1 Scenario: Programmatic Access to ConnectionFactory 6-45

6.9.2 Scenario: Connection Creation in Non-managed Application
Scenario 6-47

Requirements 6-49
6.10.1 Resource Adapter 6-49
6.10.2 Application Server 6-50

Transaction Management 7-1

7.1
7.2

7.3

7.4

7.5

Overview 7-2

Transaction Management Scenarios 7-3

7.2.1 Transactions across multiple Resource Managers 7-4

7.2.2 Local Transaction Management 7-5

Transaction Management Contract 7-6

7.3.1 Interface: ManagedConnection 7-9

7.3.2 Interface: XAResource 7-11
7.3.2.1 Implementation 7-11

7.3.3 Interface: LocalTransaction 7-12

Relationship to JTA and JTS 7-12

741 JTA Interfaces 7-12

Object Diagram 7-13

Contents

7.6 XAResource-based Transaction Contract 7-16
7.6.1 Scenarios Supported 7-17
7.6.2 Resource Adapter Requirements 7-18
7.6.2.1 General 7-19
7.6.2.2 One-phase Commit 7-19
7.6.2.3 Two-phase Commit 7-19
7.6.2.4 Transaction Association and Calling Protocol 7-20
7.6.25 Unilateral Roll-back 7-20
7.6.2.6 Read-Only Optimization 7-21
7.6.2.7 XID Support 7-21
7.6.2.8 Support for Failure Recovery 7-21
7.6.3 Transaction Manager Requirements 7-21
7.6.3.1 Interfaces 7-22
7.6.3.2 XID requirements 7-22
7.6.3.3 One-phase Commit Optimization 7-22
7.6.3.4 Implementation Options 7-22
7.6.4 Scenario: Transactional Setup for a ManagedConnection 7-22
7.6.5 Scenario: Connection Close and JTA Transactional Cleanup 7-26
7.6.6 OID: Transaction Completion 7-29
7.7 Local Transaction Management Contract 7-31
7.7.1 Interface: Local Transaction 7-31
7.7.2 Interface: ConnectionEventListener 7-31
7.7.2.1 Requirements 7-32
7.8 Scenarios: Local Transaction Management 7-33
7.8.1 Local Transaction Cleanup 7-33
7.8.2 Component Termination 7-34
7.8.3 Transaction Interleaving 7-34

7.8.3.1 Scenario 7-34

X J2EE Connector Architecture Specification « November 2003

7.9

7.10

7.11

7.12

7.13

7.14

Connection Sharing 7-35
7.9.1 Sharing Violation Detection 7-36
7.9.1.1 Scenariol 7-37
7.9.1.2 Scenario 2 7-37
Transaction Scenarios 7-37
7.10.1 Requirements 7-37
7.10.2 Illustrative Scenarios 7-39
7.10.3 Scenario: Local Transaction 7-40
Connection Association 7-45
7.11.1 Scenario 7-45
7.11.2 Connection Association 7-46
7.11.3 Requirements 7-47
Local Transaction Optimization 7-47
7.12.1 Requirements 7-48
Requirements 7-48
7.13.1 Resource Adapter 7-48
7.13.1.1 Auto Commit 7-49
7.13.2 Application Server 7-49
Connection Optimizations 7-50
7.14.1 Lazy Connection Association Optimization 7-50
7.14.1.1 APl Additions 7-55
7.14.2 Lazy Transaction Enlistment Optimization 7-55

7.14.2.1 APl Additions 7-56

Security Architecture 8-1

8.1
8.2
8.3
8.4

Overview 8-1

Goals 8-1

Terminology 8-2

Application Security Model 8-3

Contents

Xi

8.4.1
8.4.2

Scenario: Container-Managed Sign-on 8-4

Scenario: Component-Managed Sign-on 8-5

85 EISSign-on 8-5

8.5.1
8.5.2
8.5.3
8.5.4

Authentication Mechanism 8-6
Resource Principal 8-6
Authorization Model 8-7

Secure Association 8-8

8.6 Roles and Responsibilities 8-9

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6

Application Component Provider 8-9
Deployer 8-9

Application Server 8-10

EIS Vendor 8-11

Resource Adapter Provider 8-11
System Administrator 8-11

9. Security Contract 9-1

9.1 Security Contract 9-1

9.11
9.12
9.13
9.14

9.15

9.1.6

9.1.7
9.1.8

Interfaces and Classes 9-1
Subject 9-2

Resource Principal 9-2
GenericCredential 9-3
9.14.1 Interface 9-4
9.14.2 Implementation 9-4
GSSCredential 9-5

9.151 Implementation 9-5
PasswordCredential 9-5
ConnectionManager 9-7
ManagedConnectionFactory 9-9

9.18.1 Contract for the Application Server

xii J2EE Connector Architecture Specification « November 2003

9-10

10.

11.

9.1.9

9.1.8.2 Contract for Resource Adapter 9-12

ManagedConnection 9-14

9.2 Requirements 9-15

9.21
9.2.2

Resource Adapter 9-15
Application Server 9-15

Work Management 10-1

10.1 Overview 10-1
10.2 Goals 10-2

10.3 Work Management Model 10-2

10.3.1
10.3.2
10.3.3

10.3.4

10.3.5
10.3.6
10.3.7
10.3.8

10.3.9

Requirements 10-4

Work Interface 10-9

WorkManager Interface 10-10

10.3.3.1 Work Submit 10-12

10.3.3.2 Work Accepted 10-13

10.3.3.3 Work Rejected 10-13

10.3.3.4 Work Started 10-14

10.3.3.5 Work Completed 10-14

10.3.3.6 Requirements 10-14

WorkListener Interface and WorkEvent Class 10-18
10.3.4.1 Requirements 10-20

ExecutionContext Class 10-20

Resource Adapter Thread Usage Recommendations 10-23
Periodic Execution of Work Instances 10-23

Ilustration: Using a Work Instance to Listen on Multiple Network
Endpoints 10-25

Work Management in a Non-Managed Environment 10-25

Inbound Communicaton 11-1

11.1 Overview 11-1

Contents xiii

11.2 An lllustrative Use Case 11-2

12. Message Inflow 12-1
12.1 Overview 12-1
12.2 Goals 12-3
12.3 Message Inflow Model 12-4
12.4 Endpoint Deployment 12-9
12.4.1 Message Endpoint 12-10
12.4.2 Resource Adapter 12-11
12.4.2.1 List of Supported Message Listener Types 12-11
12.4.2.2 ActivationSpec JavaBean 12-11
12.4.2.3 Administered Objects 12-12
12.4.2.4 Configuring Administered Objects 12-13
12.4.3 Endpoint Deployer 12-13
12.4.4 Application Server 12-14
12.45 Message Provider 12-16
12.4.6 Endpoint Deployment Steps 12-18
12.4.7 Requirements 12-18
12.4.8 Structure of a Message Listener Interface 12-19

12.4.9 Multiple Endpoint Activations With Similar Activation
Configuration 12-20

12.4.9.1 Requirements 12-20
12,5 Message Delivery 12-22

12.5.1 Sample Resource Adapter Code To Illustrate Message Delivery
12-24

12.5.1.1 Requirements 12-26
12.5.2 Message Redelivery Upon Crash Recovery 12-26
12.5.3 Durable Message Delivery Setup 12-27
12.5.4 Concurrent Delivery of Messages 12-28

12541 Requirements 12-28

xiv. J2EE Connector Architecture Specification « November 2003

12.6
12.7

12.8

12.5.5
12.5.6

12.5.7
12.5.8
1259

Delivery Semantics and Acknowledgement 12-28

Transacted Delivery (Using Container-Managed Transaction) 12—
29

Non-transacted Delivery 12-31
Transacted Delivery Using an Imported Transaction 12-32

Requirements 12-33

Endpoint Undeployment 12-33

Java Message Service (JMS) Use Case 12-38

12.7.1

12.7.2

12.8.1
12.8.2
12.8.3

12.7.0.1 A Sample JMS Resource Adapter Deployment
Descriptor 12-39

12.7.0.2 A Sample JMS ActivationSpec Implementation 12-44

12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment
Descriptor 12-44

12.7.0.4 A Sample EJB 2.1 Message-driven Bean Deployment
Descriptor 12-45

12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor 12-47
Message-driven Bean Asynchronously Receiving Messages 12-47
12.7.1.1 Message-Driven Bean Deployment 12-47

12.7.1.2 Message Delivery 12-48

12.7.1.3 Message-Driven Bean Undeployment 12-48

EJB Using JMS API to Send and Synchronously Receive Messages
Via a JMS Resource Adapter 12-49

12.7.2.1 Using JMS API to Send Messages 12-50

12.7.2.2 J2EE Component Using JMS API to Synchronously
Receive Messages 12-50

A Non-JMS Use Case 12-51

Resource Adapter Deployment Descriptor 12-51
Resource Adapter Deployment 12-53

Message-Driven Bean Asynchronously Receiving Notifications
From an EIS 12-54

Contents xv

XVi

13.

14.

15.

12.8.3.1 The Message-Driven Bean Deployment Descriptor 12—
54

12.8.4 Message-Driven Bean and Resource Adapter Activation 12-55
12.8.,5 Message Delivery 12-55

EJB Invocation 13-1
13.1 Overview 13-1
13.2 EJB Invocation Model 13-2
13.3 An lllustrative Use Case 13-3
13.3.0.1 Message-driven Bean Dispatcher Pattern 13-5

Transaction Inflow 14-1

14.1 Overview 14-1

142 Goals 14-2

14.3 Use Case Scenario 14-2

14.4 Transaction Inflow Model 14-4
14.4.1 Processing of Transactional Calls 14-4
14.4.2 Transaction Completion Processing 14-5
14.4.3 Crash Recovery Processing 14-8
14.4.4 Requirements 14-12
14.45 Non-Requirements 14-13
14.4.6 Recommendations 14-13

14.4.7 Transaction Inflow in a Non-managed Environment 14-13

Common Client Interface 15-1

15.1 Overview 15-2

152 Goals 15-2

15.3 Scenarios 15-3
15.3.1 Enterprise Application Integration Framework 15-3
15.3.2 Metadata Repository and APl 15-4

J2EE Connector Architecture Specification + November 2003

15.4

155

15.6

15.7

15.8
15.9

15.3.3 Enterprise Application Development Tool 15-4
Common Client Interface 15-5
15.4.1 Requirements 15-6
Connection Interfaces 15-9
15.5.1 ConnectionFactory 15-9
155.1.1 Requirements 15-10
15.5.2 ConnectionSpec 15-10
15.5.3 Connection 15-11
155.3.1 Auto Commit 15-13
Interaction Interfaces 15-13
15.6.1 Interaction 15-13
15.6.2 InteractionSpec 15-14
15.6.2.1 Standard Properties 15-15
15.6.2.2 ResultSet Properties 15-16
15.6.2.3 Additional Properties 15-16
15.6.2.4 Implementation 15-17
15.6.2.5 Administered Object 15-17
15.6.2.6 Illustrative Scenario 15-17
15.6.3 LocalTransaction 15-18
15.6.3.1 Requirements 15-18
Basic Metadata Interfaces 15-18
15.7.1 ConnectionMetaData 15-19
15.7.1.1 Implementation 15-19
15.7.2 ResourceAdapterMetaData 15-19
Service Endpoint Message Listener Interface 15-21
Exception Interfaces 15-21
15.9.1 ResourceException 15-21
15.9.2 ResourceWarning 15-22

Contents

XVii

15.10 Record 15-22
15.10.1 Component-view Contract 15-24
15.10.1.1 Type Mapping 15-25
15.10.1.2 Record Interface 15-26
15.10.1.3 MappedRecord and IndexedRecord Interfaces 15-28
15.10.1.4 RecordFactory 15-28
15.10.2 Interaction and Record 15-29
15.10.3 Resource Adapter-view Contract 15-29
15.10.3.1 Streamable Interface 15-30
15.11 ResultSet 15-31
15.11.1 ResultSet Interface 15-33
15.11.1.1 Type Mapping 15-33
15.11.1.2 ResultSet Types 15-33
15.11.1.3 Scrolling 15-34
15.11.1.4 Concurrency Types 15-34
15.11.1.5 Updatability 15-35
15.11.1.6 Persistence of Java Objects 15-35
15.11.1.7 Support for SQL Types 15-35
15.11.1.8 Support for Customized SQL Type Mapping 15-36
15.11.2 ResultSetMetaData 15-36
15.11.3 ResultSetinfo 15-36
15.12 Code Samples 15-38
15.12.1 Connection 15-38
15.12.2 InteractionSpec 15-39
15.12.3 Mapped Record 15-39
15.12.4 ResultSet 15-40
15.12.5 Custom Record 15-41

16. API Requirements 16-1

xviii J2EE Connector Architecture Specification « November 2003

16.1 Requirements of the Application Server 16-1
16.2 Requirements of the Resource adapter 16-1
16.3 JavaBean Requirements 16-2

16.4 Equality Constraints 16-3

Packaging Requirements 17-1
17.1 Overview 17-1
17.2 Packaging 17-4
17.2.0.1 Resource Adapter Archive 17-4
17.2.0.2 RAR Contents 17-5
17.2.0.3 Sample Directory Structure 17-5
17.2.0.4 Requirements 17-5
17.3 Deployment 17-6
17.3.1 Resource Adapter Provider 17-6
17.3.2 Deployer 17-9
17.3.2.1 Stand-Alone Resource Adapter Module 17-9
17.3.2.2 Resource Adapter Module with J2EE Application 17-9
17.3.2.3 Configuration 17-10
17.3.2.4 Security Configuration 17-10
17.4 Interfaces/Classes 17-11
17.4.1 ResourceAdapter 17-11
17411 Requirements 17-11
17.4.2 ManagedConnectionFactory 17-11
17.4.2.1 Requirements 17-12
17.4.3 Properties Conventions 17-12
17.4.4 Standard Properties 17-12
17.5 JNDI Configuration and Lookup 17-13
17.5.1 Responsibilities 17-14
175.1.1 Deployer 17-14

Contents Xix

17.5.1.2 Resource Adapter 17-14
17.5.1.3 Application Server 17-15
17.5.2 Scenario: Serializable 17-15
17.5.3 Scenario: Referenceable 17-17
17.5.3.1 ObjectFactory Implementation 17-17
17.5.3.2 Deployment 17-19
17.5.3.3 Scenario: Connection Factory Lookup 17-19
17.5.4 Requirements 17-23
17.6 Resource Adapter XML Schema Definition 17-23

18. Runtime Environment 18-1
18.1 Programming APIs 18-1
18.2 Security Permissions 18-2
18.3 Requirements 18-5

18.3.1 Example 18-6
18.4 Privileged Code 18-7
18.4.1 Example 18-7

19. Exceptions 19-1
19.1 ResourceException 19-1
19.2 System Exceptions 19-2
19.2.1 Exception Hierarchy 19-2
19.3 Work Exceptions 19-4
19.4 Additional Exceptions 19-5

20. Projected Items 20-1

A. Previous Version DTDs A-1
A.1 J2EE Connector Architecture 1.0 Resource Adapter XML DTD A-1

B. Activation Configuration for Message Inflow to JMS Endpoints B-1

xx J2EE Connector Architecture Specification « November 2003

B.1
B.2

B.3
B.4

Introduction B-1
JMS ActivationSpec JavaBean B-1
B.2.1 JMS ActivationSpec JavaBean Properties B-2
B.2.1.1 destination B-2
B.2.1.2 destinationType B-2
B.2.1.3 messageSelector B-3
B.2.1.4 acknowledgeMode B-3
B.2.1.5 subscriptionDurability B-3
B.2.1.6 clientld B-4
B.2.1.7 subscriptionName B-4
B.2.2 JMS ActivationSpec JavaBean Property Values B-4
JMS Endpoint with EJB 2.1 Activation Configuration Elements B-5
JMS Endpoint with EJB 2.0 Deployment Descriptor Elements B-6

. Caching Manager C-1

C1
C.2

Overview C-1
Synchronization contract C-2
C.21 Interface C-3

C.2.2 Implementation C-3

. Security Scenarios D-1

D.1

D.2

EStore Application D-1

D.1.1 Scenario D-2

D.1.2 Security Environment D-2
D.1.3 Deployment D-3

Employee Self Service Application D-4
D.2.1 Architecture D-5

D.2.2 Security Environment D-5
D.2.3 Deployment D-6

Contents

XXi

xxii

D.3

D.2.4 Scenario D-7

Integrated Purchasing Application D-7
D.3.1 Architecture D-7

D.3.2 Security Environment D-8

D.3.3

Deployment D-9

E. JAAS Based Security Architecture E-1

E.l
E.2
E.3

E.4

E.5

Java Authentication and Authorization Service (JAAS) E-1

Requirements E-2

Security Architecture E-3

E.3.1
E.3.2

JAAS Modules E-5

Iustrati
E.3.2.1
E.3.2.2
E.3.2.3

ve Examples: JAAS Module E-5
Principal Mapping Module E-5
Credential Mapping Module E-6
Kerberos Module E-6

Security Configuration E-7

JAAS Configuration E-7

E.4.1

Scenarios E-8

E.5.1
E.5.2
E.5.3
E.5.4
E.55

Scenario
Scenario
Scenario
Scenario

Scenario

: Resource Adapter Managed Authentication E-8

: Kerberos and Principal Delegation E-10

: GSS-API E-12

: Kerberos Authentication After Principal Mapping E-13
: EIS-Specific Authentication E-14

F. Related Documents F-1

G. Change History for Version 1.0 G-1

G.1
G.2
G.3

Version 0.9 G-1

Version 1.0 - Public Draft1 G-2

Version 1.0 - Public Draft2 G-2

J2EE Connector Architecture Specification « November 2003

G4
G.5

Version 1.0 - Proposed Final Draft 2

Version 1.0 - Final Release G—4

. Change History for Version 1.5 H-1

H.1
H.2
H.3
H.4

Public Review Draft H-1
Proposed Final Draft H-1
Proposed Final Draft2 H-2

Final Release H-3

Contents

xxiii

xxiv J2EE Connector Architecture Specification « November 2003

Tables

TABLE 1-1

TABLE 1-2

TABLE 7-1

TABLE 12-1

TABLE 15-1

TABLE 16-1

TABLE 17-1

TABLE 17-2

TABLE 18-1

TABLE 18-2

TABLE B-1

TABLE B-2

TABLE B-3

Connector 1.5 Expert Group Members 1-5
Connector 1.0 Expert Group Members 1-7

Transaction Management Scenarios 7-17

Application Server Behavior For Transacted and Non-transacted Message Delivery 12-33

Standard Properties for ConnectionSpec 15-11
Resource Adapter APl Requirements 16-2

Description of RAR File Contents 17-5

Standard Properties of the Connector Architecture 17-12
Default Security Permission Set 18-3

Methods and Security Permissions required 18-6

JMS ActivationSpec JavaBean Property Values B-4

Activation Configuration Elements (EJB 2.1) and ActivationSpec JavaBean Properties B-5

EJB 2.0 Deployment Descriptor Elements and JMS ActivationSpec JavaBean
Properties B-6

XXV

xxvi J2EE Connector Architecture Specification + November 2003

Figures

FIGURE 2-1 System Level Pluggability between Application Servers and EISs 2-5
FIGURE 3-1 Overview of the Connector Architecture 3-2

FIGURE 4-1 lllustration of a Scenario Based On the Connector Architecture 4—6
FIGURE 4-2 Connector Architecture Usage In Business Integration Scenario 4-9
FIGURE 5-1 Lifecycle Management Contract (interfaces) 5-3

FIGURE 5-2 Lifecycle Management (object diagram) 5-4

FIGURE 5-3 Resource Adapter Instance (composition) 5-7

FIGURE 5-4 Resource Adapter Lifecycle (state diagram) 5-12

FIGURE 5-5 Lifecycle Management Model (sequence diagram) 5-17

FIGURE 6-1 Architecture Diagram: Managed Application scenario 6-5

FIGURE 6-2 Class Diagram: Connection Management Architecture 6-9

FIGURE 6-3 ConnectionManager and Application Server specific services 6-16
FIGURE 6-4 Object Diagram: Connection Management architecture 6-31

FIGURE 6-5 OID: Connection Pool Management with new Connection Creation 6-36
FIGURE 6-6 OID: Connection Pool Management with Connection Matching 6-39
FIGURE 6-7 OID: Connection Event Notification 6-43

FIGURE 6-8 Architecture Diagram: Non-Managed application scenario 6-45

FIGURE 6-9 OID: Connection Creation in a Non-managed Application Scenario 6-48
FIGURE 7-1 Transaction Management Contract 7-2

FIGURE 7-2 Scenario: Transactions Across Multiple Resource Managers 7-4

XXVii

FIGURE 7-3 Scenario: Local Transaction on a Single Resource Manager 7-6

FIGURE 7-4 Architecture Diagram: Transaction Management 7-8

FIGURE 7-5 ManagedConnection Interface for Transaction Management 7-10
FIGURE 7-6 Object Diagram: Transaction Management 7-15

FIGURE 7-7 OID: Transactional Setup For Newly Created ManagedConnection Instances 7-25
FIGURE 7-8 OID: Connection Close and Transactional Cleanup 7-28

FIGURE 7-9 OID: Transaction Completion 7-30

FIGURE 7-10 Scenario to illustrate Local Transaction Management 7-40

FIGURE 7-11 OID: Connection Sharing across Component instances 7-43

FIGURE 7-12 Connection Sharing Scenario 7-45

FIGURE 7-13 State Diagram of Application-Level Connection Handle 7-46

FIGURE 7-14 Connection Acquisition Processing 7-52

FIGURE 7-15 Connection Re-association Processing 7-53

FIGURE 7-16 State Diagram of a Dissociatable Application-level Connection Handle 7-54
FIGURE 9-1 Security Contract 9-8

FIGURE 9-2 Security Contract: Subject Interface and its Containment Hierarchy 9-10
FIGURE 10-1 Work Management Contract (object diagram) 10-5

FIGURE 10-2 Work Management Contract (interfaces) 10-6

FIGURE 10-3 Work Processing Stages and their Outcomes 10-13

FIGURE 10-4 Blocking Durations of Various Work Submissions 10-16

FIGURE 10-5 Work Submission - Blocking Behavior (sequence diagram) 10-17
FIGURE 10-6 Work Submission - Callback Mechanism (sequence diagram) 10-22
FIGURE 11-1 Inbound Communication Model 11-1

FIGURE 11-2 Inbound Communication Model (an illustrative use case) 11-3

FIGURE 12-1 Message Inflow Contract 12-2

FIGURE 12-2 Message Inflow Contract (object diagram) 12-4

FIGURE 12-3 Message Inflow Contract (interfaces) 12-5

FIGURE 12-4 Endpoint (Message-Driven Bean) Deployment (Actors) 12-9

FIGURE 12-5 Endpoint (message-driven bean) Deployment Steps 12-17

FIGURE 12-6 Endpoint Deployment (sequence diagram) 12-21

xxviii J2EE Connector Architecture Specification * November 2003

FIGURE 12-7

FIGURE 12-8

FIGURE 12-9

FIGURE 12-10

FIGURE 13-1

FIGURE 14-1

FIGURE 14-2

FIGURE 14-3

FIGURE 14-4

FIGURE 14-5

FIGURE 15-1

FIGURE 15-2

FIGURE 15-3

FIGURE 15-4

FIGURE 15-5

FIGURE 15-6

FIGURE 15-7

FIGURE 15-8

FIGURE 17-1

FIGURE 17-2

FIGURE 17-3

FIGURE C-1

FIGURE D-1

FIGURE D-2

FIGURE D-3

FIGURE D-4

FIGURE D-5

FIGURE D-6

FIGURE E-1

FIGURE E-2

Transacted Message Delivery: Option A (sequence diagram) 12-35

Transacted Message Delivery: Option B (sequence diagram) 12-36
Non-transacted Message Delivery (sequence diagram) 12-37

Endpoint Undeployment (sequence diagram) 12-38

EJB Invocation Model 13-2

Transaction Inflow Contract 14-2

Transaction Inflow Contract (object diagram) 14-3

Transactional Calls and Transaction Completion Flow (sequence diagram) 14-7
Crash Recovery Flows When Application Server Crashes (sequence diagram) 14-10
Crash Recovery Flows When EIS Crashes (sequence diagram) 14-11
Common Client Interface 15-2

Scenario: EAlI Framework 15-4

Scenario: Enterprise Application Development Tool 15-5

Class Diagram: Common Client Interface 15-8

Record at Development-time and Runtime 15-23

Component-view Contract 15-26

Streamable Interface 15-30

ResultSet Interface 15-32

Packaging and Deployment Lifecycle of a Resource adapter 17-1

Deployment of a Resource Adapter Module 17-3

OID: Lookup of a ConnectionFactory Instance from JNDI 17-22
Synchronization Contract between Caching Manager and Application Server C-2
lllustrative Architecture of an Estore Application D-2

Resource Principal for Estore Application Scenario D-4

lllustrative Architecture of an Employee Self-service Application D-6

Principal Mapping D-6

lllustrative Architecture of an Integrated Purchasing Application D-8

Principal Mapping D-9

Security Architecture. E—4

Resource Adapter-Managed Authentication E-9

Figures

XXX

FIGURE E-3 Kerberos Authentication with Principal Delegation E-10

FIGURE E-4 GSS-API use by Resource Adapter E-12
FIGURE E-5 Kerberos Authentication After Principal Mapping E-13
FIGURE E-6 Authentication Through EIS-Specific JAAS Module E-14

xxXx J2EE Connector Architecture Specification « November 2003

Code Samples

CODE EXAMPLE 5-1 Sample Resource Adapter 5-16

CODE EXAMPLE 10-1 javax.resource.spi.work 10-7

CODE EXAMPLE 12-1 javax.resource.spi 12-6

CODE EXAMPLE 12-2 javax.resource.spi.endpoint 12-6

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor 12-10

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter 12-24

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor 12-39
CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor 12-45

CODE EXAMPLE 12-7 Sample EJB 2.1 Deployment Descriptor 12-47

CODE EXAMPLE 12-8 Sending Messages Using the JMS APl 12-50

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component 12-50
CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter 12-52

CODE EXAMPLE 12-11 Deployment Descriptor for a Message-Driven Bean 12-54

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation 13-3

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter 17-23

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD A-1

XXXi

xxxii J2EE Connector Architecture Specification ¢« November 2003

CHAPTER 1

Introduction

The Java™ 2 Platform, Enterprise Edition (J2EE™ platform) provides containers for
client applications, web components based on servlets and Java Server Pages™
(JSP™), and Enterprise JavaBeans™ (EJB™) components. These containers provide
deployment and runtime support for application components. They provide a
federated view of the services provided by the underlying application server for the
application components.

Containers can run on existing systems; for example, web servers for the web
containers; application servers, TP monitors, and database systems for EJB
containers. This enables enterprises to leverage both the advantages of their existing
systems and those of J2EE. Enterprises can write, or rewrite, new applications using
J2EE capabilities and can also encapsulate parts of existing applications in Enterprise
JavaBeans, Java Server Pages or servlets.

Enterprise applications access functions and data associated with applications
running on Enterprise Information Systems (EIS). Application servers extend their
containers and support connectivity to heterogeneous EISs. Enterprise tools and
Enterprise Application Integration (EAI) vendors add value by providing tools and
frameworks to simplify the EIS integration task.

For enterprise application integration, bi-directional connectivity between enterprise
applications and EIS is essential. The J2EE Connector architecture defines standard
contracts that allow bi-directional connectivity between enterprise applications and
EISs. It also formalizes the relationships, interactions, and the packaging of the
integration layer, thus enabling enterprise application integration.

1.1

Overview

The J2EE Connector architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous EISs. Examples of EISs include Enterprise Resource
Planning (ERP), mainframe transaction processing (TP), and database systems.

1-1

The connector architecture defines a set of scalable, secure, and transactional
mechanisms that enable the integration of EISs with application servers! and
enterprise applications.

The connector architecture also defines a Common Client Interface (CCI) for EIS
access. The CCI defines a client API for interacting with heterogeneous EISs.

The connector architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. A resource adapter is a system-level software driver that is used
by a Java application to connect to an EIS. The resource adapter plugs into an
application server and provides connectivity between the EIS, the application server,
and the enterprise application. The resource adapter serves as a protocol adapter
that allows any arbitrary EIS communication protocol to be used for connectivity.

An application server vendor extends its system once to support the connector
architecture and is then assured of seamless connectivity to multiple EISs. Likewise,
an EIS vendor provides one standard resource adapter which has the capability to
plug in to any application server that supports the connector architecture.

1.2

Scope

Version 1.0 of the connector architecture defines:

= A standard set of system-level contracts between an application server and EIS.
These contracts focus on the important system-level aspects of integration:
connection management, transaction management, and security.

= A Common Client Interface (CCI) that defines a client API for interacting with
multiple EISs.

= A standard deployment and packaging protocol for resource adapters.

Refer to section 2.2.2 for the rationale behind the Common Client Interface.

Version 1.5 of the connector architecture defines:

= Lifecycle management contract: A contract between an application server and a
resource adapter that allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to
bootstrap a resource adapter instance during its deployment or application server
startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

= Work management contract: A contract between an application server and a
resource adapter that allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an

1. Application server is a generic term used in this document to refer to a middle-tier component server that is
compliant with the Java 2 Platform, Enterprise Edition.

1-2 J2EE Connector Architecture Specification « November 2003

application server for execution. The application server dispatches threads to
execute submitted Work instances. This allows a resource adapter to avoid
creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with
which Work instances are executed.

= Transaction inflow contract: A contract between an application server and a
resource adapter that allows a resource adapter to propagate an imported
transaction to an application server. This contract also allows a resource adapter
to transmit transaction completion and crash recovery calls initiated by an EIS,
and ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

= Message inflow contract: A standard, generic contract between an application
server and a resource adapter that allows a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message
providers (Java Message Service (JMS), Java APl for XML Messaging (JAXM), etc.)
to be plugged into any J2EE compatible application server via a resource adapter.

= Describes the packaging model for different types of resource adapters (outbound
only, inbound only, or both).

1.3

Target Audience

The target audience for this specification includes:

= EIS vendors and resource adapter providers

= Messaging system vendors

= Application server vendors and container providers

= Enterprise application developers and system integrators
= Enterprise tool and EAI vendors

The system-level contracts between an application server and an EIS are targeted
towards EIS vendors (or resource adapter providers, if the two roles are different)
and application server vendors. The CCI is targeted primarily towards enterprise
tools and EAI vendors.

Chapter 1 Introduction 1-3

1.4

JDBC and Connector Architecture

The JDBC™ API defines a standard Java API for accessing relational databases.
JDBC provides an API for sending SQL statements to a database and processing the
tabular data returned by the database.

The connector architecture is a standard architecture for integrating J2EE
applications with EISs that are not relational databases. Each of these EISs currently
provides a native function call API for identifying a function to call, specifying its
input data, and processing its output data. The goal of the Common Client Interface
(CCl) is to provide an EIS independent API for coding these EIS function calls.

The CCl is targeted at EIS development tools and other sophisticated users of EISs.
The CCI provides a way to minimize the EIS specific code required by such tools.
Most J2EE developers will access EISs using these tools rather than using CCI
directly.

It is expected that many J2EE applications will combine relational database access
using JDBC with EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for
integrating the transaction, security, and connection management facilities of an
application server with those of a transactional resource manager. The JDBC 3.0
specification (Section 3., “JDBC API specification, version 3.0” on page F-1) specifies
the relationship of JDBC to the SPI specified in the connector architecture.

1.5

Organization

This document begins by describing the rationale and goals for creating a standard
architecture to integrate an application server with multiple heterogeneous EISs. It

then describes the key concepts relevant to the connector architecture. These sections
provide an overall picture of the architecture.

This document then describes typical scenarios for using the connector architecture.
This chapter introduces the various roles and responsibilities involved in the
development and deployment of enterprise applications that integrate with multiple
ElSs.

After these descriptive sections, this document focuses on the prescriptive aspects of
the connector architecture.

1-4 J2EE Connector Architecture Specification « November 2003

1.6

Document Convention

A regular Palatino font is used for describing the connector architecture.

An italic font is used for paragraphs that contain descriptive notes providing
clarifications.

A regular Couri er font is used for Java source code, class, interface and method
names.

Note that the scenarios described in this document are illustrative in scope. The
intent of the scenarios is not to specify a prescriptive way of implementing a
particular contract.

The requirements section occurring in various chapters of this document highlight
only the salient requirements, but does not contain all the requirements. So, this
entire document must be used as a requirements specification.

This document uses the EJB component model to describe some scenarios. The EJB
specification (Section 1., “Enterprise JavaBeans (EJBTM) specification, version 2.1:”
on page F-1) provides the latest details of the EJB component model.

1.7

Connector Architecture Expert Group
for Version 1.5 (JSR-112)

Refer to the URL http://www.jcp.org/Zen/jsr/detail?id=112 for details on JSR-112.
The following table lists the members of the Connector Expert Group.

TABLE 1-1 Connector 1.5 Expert Group Members

Company Expert Member

BEA Jim Gish, Mitch Upton, Tom Mitchell
Bull S.A. Michael Giroux

Ericsson Infotech AB Peter Kristiansson

Fujitsu Limited Ivar Alexander

Hewlett-Packard John Speidel

IBM Michael Beisiegel, Piotr Przybylski
Bahwan Cybertek Technologies Inc. Vijay Sundhar

Chapter 1 Introduction 1-5

TABLE 1-1 Connector 1.5 Expert Group Members

Company Expert Member

Individual Expert Charlton Barreto

IONA Technologies PLC Gary Tully

MicroFocus Stephen Gennard

NEON Systems, Inc. Yongtao You

Oracle Anthony Lai

SAP AG Walldorf Nikolai Tankov

Siemens AG UlIf Lange

Silverstream Software Roman Kishchenko

Sonic Software Jaime Meritt

Sun Microsystems, Inc. Ram Jeyaraman (Specification Lead)
Sybase Mark DeLaFranier

TIBCO Software Inc. Jon Dart, Anuradha M. Sastri
Unisys Albert DeNigris
WebMethods Corp Bruce Tran, Bruno Kurtic

1.8

Acknowledgements for Version 1.5

This specification is the work of many people. Bill Shannon, Mark Hapner, Kenneth
Saks, Rahul Sharma, and Kate Stout contributed to the overall design. Umit
Yalcinalp designed the Connector 1.5 XML Schema Definition.

Venkat Amirisetty, Qingging Ouyang, Binod P G, Balaji Raghunathan, Srikanth
Padakandla and Aditya Gore from the J2EE Implementation team, Gursharan Singh
from J2EE Compatibility Test Suite team, provided useful feedback on the various
drafts of the specification. lan Evans provided excellent editorial assistance.

Vijay Sarathy and Vivek Khandelwal did a great job evangelizing, strategizing, and
guiding the overall direction of this specification. Anita Jindal, Jennifer Douglas,
David Heisser, Bonnie Kellett, and Peter Walker provided management support.

Sanjeev Krishnan, Max Mortazavi, Tony Ng, Linda DeMichiel, George Tharakan,
Colleen Evans (Sonic Software), Hemanth Puttaswamy, Sheetal Vartak and Shivaram
Mysore provided useful comments on the specification.

1-6 J2EE Connector Architecture Specification « November 2003

And of course, this specification was formed and molded based on conversations

with and review feedback from the expert group members.

1.9

Connector Architecture Expert Group
for Version 1.0 (JSR-16)

Refer to the URL http://www.jcp.org/en/jsr/detail?id=16 for details on JSR-16. The
following are part of the expert group and have made invaluable contributions to
the Connector architecture specification:

TABLE 1-2 Connector 1.0 Expert Group Members

Company Expert Member

BEA Pete Homan

Fujitsu Yoshi Otagiri, lvar Alexander

IBM Tom Freund, Michael Beisiegel

Inline Jack Greenfield

Inprise Charlton Barreto

IPlanet Tony Pan, Pavan Bhatnagar

Motorola Guy Bieber

Oracle Dan Coyle

SAP Marek Barwicki

Sun Rahul Sharma (Specification Lead)
Fred H. Carter

Sybase Rajini Balay, K. Swaminathan

Tibco Jon Dart

Unisys Lester Lee

Chapter 1 Introduction

1-7

1.10 Acknowledgements for Version 1.0

Shel Finkelstein, Mark Hapner, Vlada Matena, Tony Ng, Bill Shannon, and Sekhar
Vajjhala (all from Sun Microsystems) have provided invaluable technical input and
guidance to the Connector architecture specification. Jean Zeng and Pong Ching also
provided useful input to the specification.

Rick Cattell, Shel Finkelstein, Bonnie Kellett, and Jeff Jackson have provided huge
support to the specification lead in the management of the Connectors expert group.

Tony Ng is leading the effort of providing a reference implementation for the
Connector architecture as part of J2EE 1.3 platform. Liz Blair has worked on
providing the Compatibility Test Suite (CTS) plan for the Connector architecture.

Beth Stearns was a great help in doing an editorial review of this document.

1-8 J2EE Connector Architecture Specification « November 2003

CHAPTER 2

Overview

This chapter introduces key concepts that are required to understand the connector
architecture. It lays down a reference framework to facilitate a formal specification of
the connector architecture in the subsequent chapters of this document.

2.1

2.1.1

Definitions

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set
of services to its clients. These services are exposed to clients as local and/or remote
interfaces. Examples of an EIS include:

= ERP system
= Mainframe transaction processing system
= Legacy database system

There are two aspects of an EIS:

= System level services—for example, SAP RFC, CICS ECI
= An application specific interface—for example, the table schema and specific
stored procedures of a database, the specific CICS TP program

2-1

2.1.2

2.1.3

2.1.4

Connector Architecture

An architecture for integrating J2EE servers with EISs. There are two parts to this
architecture: an EIS vendor-provided resource adapter and an application server that
allows this resource adapter to be plugged in. This architecture defines a set of
contracts (such as transactions, security, connection management) that a resource
adapter has to support to plug in to an application server.

These contracts support bi-directional communication (outbound and inbound)
between an application server and an EIS via a resource adapter. That is, the
application server may use the resource adapter for outbound communication to the
EIS, and it may also use the resource adapter for inbound communication from the
EIS.

EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:

= A record or set of records in a database system
= A business object in an ERP system
= A transaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared EIS resources. A client requests access
to a resource manager to use its managed resources. A transactional resource
manager can participate in transactions that are externally controlled and
coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either
be a middle-tier application server or a client-tier application. A resource manager is
typically in a different address space or on a different machine from the client that
accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the
context of transaction management. Examples of resource managers are a database
system, a mainframe TP system, and an ERP system.

2-2 J2EE Connector Architecture Specification « November 2003

2.1.5

2.1.6

2.1.7

2.1.8

2.1.9

Managed Environment

A managed environment defines an operational environment for a J2EE-based,
multi-tier, web-enabled application that accesses EISs. The application consists of
one or more application components—EJBs, JSPs, servlets—which are deployed on
containers. These containers can be one of the following:

= Web containers that host JSPs, servlets, and static HTML pages
= EJB containers that host EJB components
= Application client containers that host standalone application clients

Non-Managed Environment

A non-managed environment defines an operational environment for a two-tier
application. An application client directly uses a resource adapter to access the EIS,
which defines the second tier of a two-tier application.

Connection

A connection provides connectivity to a resource manager. It enables an application
client to connect to a resource manager, perform transactions, and access services
provided by that resource manager. A connection can be either transactional or non-
transactional. Examples include a database connection and an SAP R/3 connection.
A connection to a resource manager may be used by a client for bi-directional
communication, depending on the capabilities of the resource manager.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or
servlet, that is deployed, managed, and executed on an application server. It can also
be a component executed on the web-client tier but made available to the web-client
by an application server. Examples of the latter type of application component
include a Java applet, and a DHTML page.

Container

A container is a part of an application server that provides deployment and runtime
support for application components. It provides a federated view of the services
provided by the underlying application server for the application components. For

Chapter 2 Overview 2-3

more details on different types of standard containers, refer to the EJB (Section 1.,
“Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1), JSP, and
servlet specifications.

2.2

2.2.1

Rationale

The following section describes the rationale behind the connector architecture.

System Contracts

A standard architecture is needed to integrate various EISs with an application
server. Without a standard, EIS vendors and application server vendors may have to
use vendor-specific architectures to provide EIS integration.

The connector architecture provides a Java solution to the problem of bi-directional
connectivity between the multitude of application servers and EISs. By using the
connector architecture, it is no longer necessary for EIS vendors to customize their
product for each application server. An application server vendor who conforms to
the connector architecture also does not need to add custom code whenever it wants
to extend its application server to support connectivity to a new EIS.

The connector architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. The resource adapter plugs into an application server and
provides the underlying infrastructure for the integration between an EIS and the
application server.

An application server vendor extends its system only once to support the connector
architecture and is then assured of connectivity to multiple EISs. Likewise, an EIS
vendor provides one standard resource adapter and it has the capability to plug in to
any application server that supports the connector architecture.

FIGURE 2-1 on page 5 shows that a standard EIS resource adapter can plug into
multiple application servers. Similarly, multiple resource adapters for different EISs
can plug into an application server. This system-level pluggability is made possible
through the connector architecture.

2-4 J2EE Connector Architecture Specification « November 2003

2.2.2

If there are m application servers and n EISs, the connector architecture reduces the
scope of the integration problem from an m x n problem to an m + n problem.

FIGURE 2-1 System Level Pluggability between Application Servers and EISs

Ll

)) Resource Adapters
Application Server Enterprise Information
Systems
— Resource Adapter
Application Servers Enterprise Information
System

Application server extension for resource adapter
pluggability
Standard resource adapter

Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application
programming model for EIS access, thereby reducing the effort required in EIS
integration. An EAI vendor provides a framework that supports integration across
multiple EISs. Both types of vendors need to integrate across heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client
APIs are RFC for SAP R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common
client API. The adapted API is typically specific to a tools vendor and supports an
application programming model common across all EISs. Adapting the API requires
significant effort on the part of a tools vendor. In this case, the m x n integration
problem applies to tools vendors.

Chapter 2 Overview 2-5

The connector architecture provides a solution for the m x n integration problem for
tools and EAI vendors. The architecture specifies a standard Common Client
Interface (CCI) that supports a common client API across heterogeneous EISs.

All EIS resource adapters that support CCI are capable of being plugged into
enterprise tools and EAI frameworks in a standard way. A tools vendor need not do
any API adoption; the vendor can focus on providing its added value of simplifying
EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by
narrowing the scope of a m x n problem to a m + n problem if there are m tools and
n EISs.

2.3

Goals

The connector architecture has been designed with the following goals:

= Simplify the development of scalable, secure, and transactional resource adapters
for a wide range of EISs—ERP systems, database systems, mainframe-based
transaction processing systems.

= Be sufficiently general to cover a wide range of heterogeneous EISs. The sufficient
generality of the architecture ensures that there are various implementation
choices for different resource adapters; each choice is based on the characteristics
and mechanisms of an underlying EIS.

= Be not tied to a specific application server implementation, but applicable to all
J2EE platform compliant application servers from multiple vendors.

= Provide a standard client API for enterprise tools and EAI vendors. The standard
API will be common across heterogeneous EISs.

= Express itself in a manner that allows an organization to unambiguously
determine whether or not an implementation is compatible.

= Be simple to understand and easy to follow, regardless of whether one is
designing a resource adapter for a particular EIS or developing/deploying
application components that need to access multiple EISs. This simplicity means
the architecture introduces only a few new concepts, and places minimal
implementation requirements so that it can be leveraged across different
integration scenarios and environments.

= Define contracts and responsibilities for various roles that provide pieces for
standard bi-directional connectivity to an EIS. This enables a standard resource
adapter from a EIS vendor to be pluggable across multiple application servers.

2-6 J2EE Connector Architecture Specification « November 2003

= Enable an enterprise application programmer in a non-managed application
environment to directly use the resource adapter to access the underlying EIS.
This is in addition to managed access to an EIS, with the resource adapter
deployed in the middle-tier application server.

Chapter 2 Overview 2-7

2-8 J2EE Connector Architecture Specification « November 2003

CHAPTER 3

The Connector Architecture

The following chapter gives an overview of the connector architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are
pluggable into an application server. This capability enables application components
deployed on the application server to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level
mechanisms—transactions, security, and connection management—transparent from
the application components. As a result, an application component provider focuses
on the development of business and presentation logic for its application
components and need not get involved in the system-level issues related to EIS
integration. This leads to an easier and faster cycle for the development of scalable,
secure, and transactional enterprise applications that require connectivity with
multiple EISs.

3-1

FIGURE 3-1 Overview of the Connector Architecture

Container-Component
Contract

Application Component

Client API

System Contracts

Resource Adapter
Application Server

EIS specific interface

Enterprise Information
System

3.1 System Contracts

To achieve a standard system-level pluggability between application servers and
EISs, the connector architecture defines a standard set of system-level contracts
between an application server and an EIS. The EIS side of these system-level
contracts are implemented in a resource adapter.

A resource adapter is specific to an underlying EIS. It is a system-level software
driver that is used by an application server or an application client to connect to an
EIS.

A resource adapter plugs into an application server. The resource adapter and
application server collaborate to provide the underlying mechanisms—transactions,
security, connection pooling, and dispatch to application components.

3-2 J2EE Connector Architecture Specification + November 2003

A resource adapter is used within the address space of the application server.
Examples of resource adapters are:

= A JDBC driver to connect to a relational database (as specified in the JDBC (See
Related Documents, page 1, 3.) specification)

= A resource adapter to connect to an ERP system
= A resource adapter to connect to a TP system
= A resource adapter to plug-in a messaging system

A resource adapter may provide different types of connectivity between an
application and an EIS.

= Outbound communication: The resource adapter allows an application to connect
to an EIS system and perform work. All communication is initiated by the
application. In this case, the resource adapter serves as a passive library for
connecting to an EIS, and executes in the context of the application threads.

= Inbound communication: The resource adapter allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The
resource adapter may request threads from the application server or create its
own threads.

= Bi-directional communication: The resource adapter supports both outbound and
inbound communication.

The connector architecture defines the following set of standard contracts between
an application server and EIS:

= A connection management contract that enables an application server to pool
connections to an underlying EIS, and enables application components to connect
to an EIS. This leads to a scalable application environment that can support a
large number of clients requiring access to EISs.

= A transaction management contract between the transaction manager and an EIS
that supports transactional access to EIS resource managers. This contract enables
an application server to use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involving
an external transaction manager.

= A security contract that enables secure access to an EIS. This contract provides
support for a secure application environment that reduces security threats to the
EIS and protects valuable information resources managed by the EIS.

= A lifecycle management contract that allows an application server to manage the
lifecycle of a resource adapter. This contract provides a mechanism for the
application server to bootstrap a resource adapter instance during its deployment
or application server startup, and to notify the resource adapter instance during
its undeployment or during an orderly shutdown of the application server.

= A work management contract that allows a resource adapter to do work (monitor
network endpoints, call application components, etc.) by submitting Wor k
instances to an application server for execution. The application server dispatches
threads to execute submitted Wor k instances. This allows a resource adapter to

Chapter 3 The Connector Architecture 3-3

avoid creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with
which Wor k instances are executed.

= A transaction inflow contract that allows a resource adapter to propagate an
imported transaction to an application server. This contract also allows a resource
adapter to transmit transaction completion and crash recovery calls initiated by
an EIS, and ensures that the ACID properties of the imported transaction are
preserved.

= A message inflow contract that allows a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message
providers (Java Message Service (JMS), Java APl for XML Messaging (JAXM), etc.)
to be plugged into any J2EE compatible application server via a resource adapter.

FIGURE 3-1 on page 2 does not illustrate any contracts that are internal to an
application server implementation. The specific mechanisms and contracts within an
application server are outside the scope of the connector architecture specification.
This specification focuses on the system-level contracts between the application
server and the EIS.

In FIGURE 3-1, the application server and resource adapter are shown as separate
entities. This is done to illustrate that there is a logical separation of the respective
roles and responsibilities defined for the support of the system level contracts.
However, this separation does not imply a physical separation, as in an application
server and a resource adapter running in separate processes.

3.2

Client API

The client APl used by application components for EIS access may be defined as:

= The standard Common Client Interface (CCI) as specified in the chapter
“Common Client Interface” on page 15-1.

= A client API specific to the type of a resource adapter and its underlying EIS. An
example of such an EIS specific client API is JDBC for relational databases.

The Common Client Interface (CCI) defines a common client API for accessing EISs.
The CCl is targeted towards Enterprise Application Integration (EAI) and enterprise
tools vendors.

3-4 J2EE Connector Architecture Specification + November 2003

3.3

Requirements

The connector architecture requires that the connector architecture-compliant
resource adapter and the application server support the system contracts. Detailed
requirements for each system contract are specified in later chapters.

The connector architecture recommends, though it does not mandate, that a resource
adapter support CCI as the client API. The recommendation enables the connector
architecture to provide a solution for the m x n integration problem for application
development tools and EAI vendors.

The connector architecture allows a resource adapter with an EIS-specific client API
to support system contracts and to be capable of standard connector architecture-
based pluggability into an application server.

3.4

Non-Managed Environment

The connector architecture supports access to EISs from non-managed application
clients; for example, Java applications and applets.

In a non-managed two-tier application environment, an application client directly
uses a resource adapter library. A resource adapter, in this case, exposes its low-level
transactions and security APIs to its clients. An application client has to take
responsibility for managing security and transactions (and rely on connection
pooling if done by the resource adapter internally) by using the low-level APls
exposed by the resource adapter. This model is similar to the way a two-tier JDBC
application client accesses a database system in a non-managed environment.

Chapter 3 The Connector Architecture 3-5

3-6 J2EE Connector Architecture Specification + November 2003

CHAPTER 4

Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of
this chapter is to specify contracts that ensure that the output of each role is
compatible with the input of the other role. Later chapters specify a detailed set of
responsibilities for each role, relative to the system-level contracts.

4.1

411

Roles

The following section describes the roles and responsibilities specific to the
connector architecture.

Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is
responsible for providing a resource adapter for an EIS. Since this role is highly EIS
specific, an EIS vendor typically provides the resource adapter for its system.

A third party vendor (who is not an EIS vendor) may also provide an EIS resource
adapter and its associated set of application development tools. Such a provider
typically specializes in writing resource adapters and related tools for a large
number of EISs.

4-1

4.1.2

4.1.3

Application Server Vendor

The application server vendor provides an implementation of a J2EE-compliant
application server that provides support for component based enterprise
applications. A typical application server vendor is an OS vendor, middleware
vendor, or database vendor. The role of an application server vendor is typically the
same as that of a container provider.

The J2EE platform specification (See Related Documents, page 1, 8.) specifies
requirements for a J2EE platform provider.

Container Provider

The container provider is responsible for providing a container implementation for a
specific type of application component. For example, the container provider may
provide a container for EJB components. Each type of application component—EJB,
servlet, JSP, applet—has its own set of responsibilities for its container provider. The
respective specifications outline these responsibilities.

A container implementation typically provides the following functionality:

= It provides deployed application components with transaction and security
management, distribution of clients, scalable management of resources, and other
services that are generally required as part of a managed server platform.

= It provides application components with connectivity to an EIS by transparently
managing security, resources, and transactions using the system-level contracts
with the EIS-specific resource adapter.

= It insulates application components from the specifics of the underlying system-
level mechanisms by supporting a simple, standard contract with the application
component. Refer to the Enterprise JavaBeans specification (See Related
Documents, page 1, 1.) for more details on the EJB component contract.

The expertise of the container provider is system-level programming, with its focus
on the development of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary
for the deployment of application components and resource adapters. It is also
required to provide runtime support for the deployed application components.

The container provider typically provides tools that allow the system administrator
to monitor and manage a container and application components during runtime.

4-2 J2EE Connector Architecture Specification + November 2003

414

4.1.5

Application Component Provider

In the context of the connector architecture, the application component provider
produces an application component that accesses one or more EISs to provide its
application functionality.

The application component provider is an application domain expert. In the case of
application components targeted towards integration with multiple EISs, various
business tasks and entities are implemented based on access to EIS data and
functions.

The application component provider typically programs against easy-to-use Java
abstractions produced by application development tools. These Java abstractions are
based on the Common Client interface (CCl).

The application component provider is not required to be an expert at system level
programming. The application component provider does not program transactions,
security, concurrency, or distribution, but relies on a container to provide these
services transparently.

The application component provider is responsible for specifying structural
information for an application component and its external dependencies. This
information includes, for example, the name and type of the connection factories,
and security information.

The output of an application component provider is a Java archive (JAR) file that
contains the application components and any additional Java classes required to
connect to EISs.

Enterprise Tools Vendors

The application component provider relies on tools to simplify application
development and EIS integration. Since programming client access to EIS data and
functions is a complex application development task, an application development
tool reduces the effort and complexity involved in this task.

Enterprise tools serve different roles in the application development process, as
follows:

= Data and function mining tool—enables application component providers to look
at the scope and structure of data and functions existing in an EIS.

= Analysis and design tool—enables application component providers to design an
application in terms of EIS data and functions.

= Code generation tool—generates Java classes for accessing EIS data and functions.
A mapping tool that bridges across two different programming models (object to
relational or vice-versa) falls into this category of tools.

Chapter 4 Roles and Scenarios 4-3

4.1.6

4.1.7

= Application composition tool—enables application component providers to
compose application components from Java classes generated by a code
generation tool. This type of tool typically uses the JavaBeans component model
to enhance the ease of programming and composition.

= Deployment tool—used by application component providers and deployers to set
transaction, security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end
application development environment.

In addition, various tools and middleware vendors offer EAI frameworks that
simplify integration across heterogeneous EISs.

Application Assembler

The application assembler combines various application components into a larger set
of deployable units. The input of the application assembler is one or more JAR files
produced by an application component provider and the output is one or more JAR
files with a deployment descriptor.

The application assembler is typically a domain expert who assembles application
components to produce an enterprise application. To achieve this goal, the
application assembler takes application components, possibly from multiple
application component providers, and assembles these components.

Deployer

The deployer takes one or more deployable units of application components,
produced by the application assembler or component provider, and deploys the
application components in a target operational environment. An operational
environment is comprised of an application server and multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the
application component provider. For example, the deployer ensures that all
connection factories used by the application components are present in an
operational environment. To perform its role, the deployer typically uses the
application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an
operational environment may include multiple EISs, the role of the deployer is more
intensive and complex than that in a non-EIS scenario. The deployer has to
understand security, transaction, and connection management-related aspects of
multiple EISs that are configured in an operational environment.

4-4 J2EE Connector Architecture Specification + November 2003

4.1.8

System Administrator

The system administrator is responsible for the configuration and administration of
a complete enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage
the operational environment by working closely with the system administrators of
respective EISs. This enables the deployer to resolve deployment issues while
deploying application components and resource adapters in a target operational
environment.

This chapter introduced the roles involved in the connector architecture. The later
chapters specify responsibilities for each role in more detail.

4.2

Scenario: Integrated Purchase Order
System

This section describes a scenario that illustrates the use of the connector architecture.
The following description is kept at a high level. Specific scenarios related to
transaction management, security, connection management, and inbound
communications are described in subsequent chapters.

Chapter 4 Roles and Scenarios 4-5

The following diagram shows the different pieces that comprise this scenario:

FIGURE 4-1 lllustration of a Scenario Based On the Connector Architecture

Client Component

Container-Component
Contract

PurchaseOrder EJB

Common Client Interface

System Contracts| Resource Adapter

Application Server

System Contracts Resource Adapter

EIS specific interface

ERP System
TP System

ERP Software Inc. is an enterprise system vendor that provides an enterprise
resource planning (ERP) system. ERP Software wants to integrate its ERP system
with various application servers. It achieves this goal by providing a standard
resource adapter for its ERP system. The resource adapter for ERP systems supports
the standard inbound communication, transaction, connection management and
security contracts. The resource adapter also supports the Common Client Interface
(CCl) as its client API.

4-6 J2EE Connector Architecture Specification + November 2003

TPSoft Inc. is another enterprise system vendor that provides a transaction
processing (TP) system. TPSoft has also developed a standard resource adapter for
its TP system. The resource adapter library supports CCI as part of its
implementation.

AppServer Inc. is a system vendor that has an application server product which
supports the development and deployment of component-based enterprise
applications. This application server product has an EJB container that provides
deployment and runtime support for EJB components. The application server
supports the system-level contracts that enable a resource adapter, which also
supports these contracts, to plug into the application server and provide bi-
directional connectivity to the underlying EIS. The EJB container insulates EJB
components from the communication, transaction, security, and connection
management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order
processing system based on the ERP system for its business processes. Recently,
Manufacturer has acquired a firm that uses TPSoft’s TP system for its purchase order
processing. Manufacturer aims to integrate these two systems together into a single
integrated purchase order system. It wants a scalable, multi-user, secure, transaction-
enabled integrated purchase order system that is not tied to a specific computing
platform. Manufacturer plans to deploy the middle-tier of this system on the
application server from AppServer Inc.

The MIS department of Manufacturer develops a PurchaseOrder EJB that provides
an integrated view of the two underlying purchase order systems. While developing
PurchaseOrder EJB, the bean provider does not program the transactions, security,
connection management or inbound communication mechanisms required for
connectivity to the ERP and TP systems; it relies on the EJB container and
application server to provide these services.

The bean provider uses an application programming model based on the CCI to
access the business objects and function modules for purchase order processing in
the ERP system. The bean provider uses a similar application programming model
based on the CCI to access the purchase order processing programs in the TP
system.

The MIS department of Manufacturer assembles an integrated web-based purchase
order application using PurchaseOrder EJB with other types of application
components, such as JSPs and servlets.

The MIS department installs and configures the application server, ERP, and TP
system as part of its operational environment. It then deploys the integrated
purchase order application on this operational environment. As part of the
deployment, the MIS department configures the operational environment based on
the deployment requirements for the various application components that have been
assembled into the integrated enterprise application.

Chapter 4 Roles and Scenarios 4-7

After deploying and successfully testing the integrated purchase order system, the
MIS department makes the system available for other departments to use.

4.3

4-8

Scenario: Business Integration

This scenario illustrates the use of the connector architecture in a business
integration scenario.

Wombat Corp. is a manufacturing firm that aims to adopt an e-business strategy.
Wombat has huge existing investments in its EIS systems. The EISs include ERP
systems, mainframe transaction processing systems, and message providers.

Wombat needs to interact with its various partners. In order to do this, it needs
support for different interaction mechanisms. It also needs a mechanism to involve
all its EIS systems in the interaction. Further, it needs an application sever to host its
business applications which participate in the various interactions.

Wombat buys a J2EE based application server from EComm, Inc. to host its business
applications which interact with its EISs and its various partners. The application
server supports the connector architecture contracts which make it possible to use
appropriate resource adapters to drive interactions with its partners and its EISs.

The connector architecture enables Wombat to integrate its existing infrastructure
with the application server. Wombat buys off-the-shelf resource adapters for its
existing set of EISs and to support interactions with its partners and uses them to
integrate its business applications (deployed on the application server).

J2EE Connector Architecture Specification + November 2003

FIGURE 4-2 Connector Architecture Usage In Business Integration Scenario

Firm: Wombat Corp

[

Supplier C

[

Supplier B

Web clients
D App Server
Java-based based on
Application J2EE
clients Resource
Adapters
.V -

A

Messaging

EIS System

Internal client ap

Supplier A

/'

o« XML over HTTP/s

A

plications

External client applications

Chapter 4 Roles and Scenarios

4-9

4-10 J2EE Connector Architecture Specification « November 2003

CHAPTER 5

Lifecycle Management

This chapter specifies a contract between an application server and a resource
adapter that allows an application server to manage the lifecycle of a resource
adapter. This contract provides a mechanism for the application server to bootstrap
a resource adapter instance during its deployment or application server startup,
and to notify the resource adapter instance during its undeployment or during an
orderly shutdown of the application server.

5.1

Overview

A resource adapter is a system component which is deployed in an application
server. When a resource adapter is deployed, or during application server startup,
an application server needs to bootstrap an instance of the resource adapter in its
address space. When a resource adapter is undeployed, or during application server
shutdown, the application server needs a mechanism to notify the resource adapter
instance to stop functioning so that it can be safely unloaded.

The lifecycle management contract provides such a mechanism for an application
server to manage the lifecycle of a resource adapter instance. This allows an
application server to bootstrap a resource adapter instance during resource adapter
deployment or application server startup and also to expose some of its useful
facilities to the resource adapter instance. It also provides a mechanism to notify the
resource adapter instance while it is undeployed or during an orderly shutdown of
the application server.

5-1

5.2 Goals

= Provide a mechanism for an application server to manage the lifecycle of a
resource adapter instance.

5-2 J2EE Connector Architecture Specification « November 2003

5.3 Lifecycle Management Model

FIGURE 5-1 Lifecycle Management Contract (interfaces)

javax.resource.spi

BootstrapContext ResourceAdapter
(from app server) (from adapter)
getWorkManager() start()
stop()

Chapter 5 Lifecycle Management 5-3

FIGURE 5-2 Lifecycle Management (object diagram)

Application Server Resource Adapter
start(BootstrapContext)
ResourceAdapter
stop()
getWorkManager()
BootstrapContext
WorkManager

5-4

package javax.resource. spi;
i mport javax.resource. spi.wor k. Wor kManager ;

public interface ResourceAdapter {
voi d start(BootstrapContext) // startup notification
t hrows Resour ceAdapt er| nt er nal Excepti on;
void stop(); // shutdown notification
/'l other operations

}

public interface BootstrapContext {
Wor kManager get Wr kManager () ;
/1 other operations

An application server implements the Boot st r apCont ext and Wor kManager
interfaces. A resource adapter implements the Resour ceAdapt er interface.

J2EE Connector Architecture Specification + November 2003

5.3.1

ResourceAdapter JavaBean and Bootstrapping a
Resource Adapter Instance

The implementation class name of the Resour ceAdapt er interface is specified in
the resource adapter deployment descriptor. The Resour ceAdapt er class must be a
JavaBean. Refer to Section 16.3, “JavaBean Requirements” on page 16-2. During
resource adapter deployment, the resource adapter deployer creates a

Resour ceAdapt er JavaBean and configures it with the appropriate properties.

When a resource adapter is deployed, or during application server startup, an
application server bootstraps an instance of the resource adapter in its address
space. In order to bootstrap a resource adapter instance, the application server must
use the configured Resour ceAdapt er JavaBean and call its st art method. The

st art method call is a startup notification from the application server, and this
method is called by an application server thread.

During the st art method call the Resour ceAdapt er JavaBean is responsible for
initializing the resource adapter instance. This may involve creating resource
adapter instance specific objects, creating threads (refer to Chapter 10, “Work
Management”), and setting up network endpoints. A Resour ceAdapt er JavaBean
represents exactly one functional resource adapter unit or instance. The application
server must instantiate exactly one Resour ceAdapt er JavaBean per functional
resource adapter instance. The application server must create at least one functional
resource adapter instance per resource adapter deployment?.

The application server is allowed to have multiple instances of a Resour ceAdapt er
JavaBean active simultaneously, in the same JVM, provided the instances are not
equal. Their equality is determined using the equal s method, and therefore, the
Resour ceAdapt er JavaBean is required to implement the equal s method.

During the st art method call, an application server must provide a

Boot st r apCont ext instance containing references to some of the application server
facilities (for example, Wor kManager) for use by the resource adapter instance. The
application server facilities exposed via the Boot st r apCont ext instance may be
used by the resource adapter instance during its lifetime.

During the st art method call, the resource adapter instance initializes itself, and
may use the Wor kManager to submit Wor k instances for execution (see Chapter 10,
“Work Management”). The st art method call should return in a timely manner,
and should avoid blocking calls, such as use of doWsr k method call on the

Wor kManager instance. The application server may throw a

Wor kRej ect edExcepti on in response to any or all dowor k method calls on the

1. Anapplication server may create more than one functional resource adapter instance per resource adapter
deployment, in order to create replicas of a single functional resource adapter instance on multiple Virtual
Machines (VMs). In general, however, there should be just one functional resource adapter instance per
deployment.

Chapter 5 Lifecycle Management 5-5

5-6

Wor kManager instance, in order to enforce that a st art method call does not block.
Resource adapter implementations are strongly recommended to use st art Wr k
and schedul eWor k methods on the Wor kManager, instead of the doWor k method.

Any exception thrown during the st art method call indicates an error condition,
and the attempt by the application server to create a resource adapter instance fails.
A future version of the specification may add a two-phase startup procedure.

A resource adapter instance at runtime may contain several objects that may be
created and discarded during its lifetime. Such objects include

ManagedConnect i onFact ory JavaBean (refer to Chapter 6, “Connection
Management””), Act i vat i onSpec JavaBean (refer to Chapter 12, “Message
Inflow™””), various connection objects, resource adapter private objects, and other
resource adapter specific objects that are exposed to applications.

The Resour ceAdapt er JavaBean represents a resource adapter instance and
contains the configuration information pertaining to that resource adapter instance.
This configuration information may also be used as global defaults for
ManagedConnecti onFact ory and Act i vat i onSpec JavaBeans. That is, when
ManagedConnecti onFact ory or Acti vati onSpec JavaBeans are created they
may inherit the global defaults (Resour ceAdapt er JavaBean configuration
information), which make it easier to configure them.

A resource adapter instance may provide bi-directional connectivity to multiple EIS
instances. A ManagedConnect i onFact ory JavaBean can be used to provide
outbound connectivity to a single EIS instance. An Act i vat i onSpec JavaBean can
be used to provide inbound connectivity from an EIS instance. A resource adapter
instance may contain several such ManagedConnect i onFact ory and

Acti vati onSpec JavaBeans. FIGURE 5-3 on page 7 describes the association
between a resource adapter instance and its various ManagedConnect i onFact ory
and Act i vat i onSpec JavaBeans.

J2EE Connector Architecture Specification + November 2003

FIGURE 5-3 Resource Adapter Instance (composition)

Resource adapter instance
(within an application server)

Outbound communication

Application

Application

Application |« - -

Application |« - -

ResourceAdapter
JavaBean (exactly one)

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
JavaBean

ActivationSpec
JavaBean

ActivationSpec
JavaBean

- g EIS instance

- 9 EISinstance

g -{ EISinstance

g -{ EISinstance

Chapter 5 Lifecycle Management

5-7

5.3.2

ManagedConnectionFactory JavaBean and
Outbound Communication

A ManagedConnect i onFact ory JavaBean represents outbound connectivity
information to an EIS instance from an application via a specific resource adapter
instance. This contains the configuration information pertaining to outbound
connectivity to an EIS instance. Refer to Chapter 6, “Connection Management” for
more details on the ManagedConnect i onFact ory JavaBean.

When a ManagedConnect i onFact or y JavaBean is created, it may inherit the
Resour ceAdapt er JavaBean (which represents the resource adapter instance)
configuration information, and overrides specific global defaults, if any, and may
add other configuration information specific to outbound connectivity.

That is, in the case of outbound communication, the outbound connectivity
configuration is a union of Resour ceAdapt er JavaBean and
ManagedConnect i onFact or y JavaBean configuration, with the intersecting
configuration properties based on the ManagedConnect i onFact ory JavaBean
settings.

Outbound communication is initiated by an application and the communication
occurs in the context of an application thread, even though resource adapter threads
may be involved in the interaction. Note, a resource adapter may use the work
management contract (refer to Chapter 10, “Work Management””) to request threads
to do work.

i mport javax.resource. spi.ResourceAdapt er Associ ati on;
i nport javax.resource. spi.ManagedConnecti onFactory;

public class ManagedConnecti onFact oryl npl
i mpl ement s ManagedConnecti onFactory,
Resour ceAdapt er Associ ation {

Resour ceAdapt er get Resour ceAdapter();
voi d set Resour ceAdapt er (Resour ceAdapt er) throws
Resour ceExcepti on;
/1 other methods

}

The Resour ceAdapt er Associ ati on interface specifies the methods to associate a
ManagedConnect i onFact or y JavaBean with a Resour ceAdapt er JavaBean.

Prior to using a ManagedConnect i onFact or y JavaBean, the application server
must create an association between the ManagedConnect i onFact or y JavaBean and
a Resour ceAdapt er JavaBean, by calling the set Resour ceAdapt er method on

5-8 J2EE Connector Architecture Specification « November 2003

5.3.3

the ManagedConnect i onFact ory JavaBean. A successful association is established
only when the set Resour ceAdapt er method on the
ManagedConnect i onFact or y JavaBean returns without throwing an exception.

The set Resour ceAdapt er method on the ManagedConnect i onFact or y JavaBean
must be called exactly once; that is, the association must not change during the
lifetime of a ManagedConnect i onFact ory JavaBean.

ActivationSpec JavaBean and Inbound
Communication

An Acti vat i onSpec JavaBean represents inbound connectivity information from
an EIS instance to an application via a specific resource adapter instance. This
contains the configuration information pertaining to inbound connectivity from an
EIS instance. Refer to Chapter 12, “Message Inflow™” for more details on the

Acti vati onSpec JavaBean.

When an Act i vat i onSpec JavaBean is created, it may inherit the

Resour ceAdapt er JavaBean (which represents the resource adapter instance)
configuration information, and overrides specific global defaults, if any, and may
add other configuration information specific to inbound connectivity.

That is, in the case of inbound communication, the inbound connectivity
configuration is a union of Resour ceAdapt er JavaBean and Act i vati onSpec
JavaBean configuration, with the intersecting configuration properties based on the
Acti vat i onSpec JavaBean settings.

Inbound communication is initiated by an EIS instance and the communication
occurs in the context of a resource adapter thread. There are no application threads
involved. Note, a resource adapter may use the work management contract (refer to
Chapter 10, “Work Management””’) to request threads to do work.

i nport javax.resource.spi.Activati onSpec;

/'l ActivationSpec interface extends ResourceAdapterAssoci ation
i nterface.

public class ActivationSpeclnpl inplenments ActivationSpec {
Resour ceAdapt er get Resour ceAdapter();
voi d set Resour ceAdapt er (Resour ceAdapt er) throws
Resour ceExcepti on;
/1 other methods

}

Chapter 5 Lifecycle Management 5-9

5.3.4

5.34.1

The Resour ceAdapt er Associ at i on interface specifies the methods to associate
an Act i vat i onSpec JavaBean with a Resour ceAdapt er JavaBean.

Prior to using an Act i vat i onSpec JavaBean, the application server must create an
association between the Act i vat i onSpec JavaBean and a Resour ceAdapt er
JavaBean, by calling the set Resour ceAdapt er method on the Acti vat i onSpec
JavaBean. A successful association is established only when the

set Resour ceAdapt er method on the Acti vat i onSpec JavaBean returns without
throwing an exception.

The set Resour ceAdapt er method on the Acti vat i onSpec JavaBean must be
called exactly once; that is, the association must not change during the lifetime of an
Act i vati onSpec JavaBean.

Resource Adapter Shutdown Procedure

The following are some likely situations during which an application server would
shutdown a resource adapter instance:

= The application server is being shutdown.
= The resource adapter is being undeployed.

Irrespective of what causes a resource adapter instance to be shutdown, the
application server must use the following two phases to shutdown a resource
adapter instance.

Phase One

Before calling the st op method on the Resour ceAdapt er JavaBean, the application
server must ensure that all dependant applications using the specific resource
adapter instance are stopped. This includes deactivating all message endpoints
receiving messages via the specific resource adapter. Note, however, since
dependant applications typically cannot be stopped until they are undeployed, the
application server may have to delay stopping the resource adapter instance, until
all such dependant applications are undeployed.

Completion of phase one guarantees that application threads will not use the
resource adapter instance, even though the resource adapter instance specific objects
may still be in the memory heap. This ensures that all application activities
including transactional activities are completed.

Thus, phase one ensures that even if a resource adapter instance does not properly
shutdown during phase two, the resource adapter instance is practically unusable.

5-10 J2EE Connector Architecture Specification « November 2003

5.34.2

5.3.5

Phase Two

= The application server calls the st op method on the Resour ceAdapt er JavaBean
to notify the resource adapter instance to stop functioning so that it can be safely
unloaded. This is a graceful shutdown notification from the application server,
and this method is called by an application server thread.

The Resour ceAdapt er JavaBean is responsible for performing an orderly
shutdown of the resource adapter instance during the st op method call. This may
involve closing network endpoints, relinquishing threads, releasing all active Wor k
instances, allowing resource adapter internal in-flight transactions to complete if
they are already in the process of doing a commit, and flushing any cached data to
the EIS.

The resource adapter instance is considered fully functional until the application
server calls the st op method on the Resour ceAdapt er JavaBean.

Any unchecked exception thrown by the st op method call does not alter the
processing of the application server shutdown or resource adapter undeployment
that caused the st op method call. The application server may log the exception
information for error reporting purposes.

Note, it is possible for a resource adapter instance to become non-functional during
its lifetime even before the st op method is called, due to EIS failure or other
reasons. In such cases, the resource adapter instance should throw exceptions to
indicate the failure condition, when it is accessed by an application (during
outbound communication) or the application server.

A future version of the specification may add a forced shutdown method in addition
to the current graceful st op method.

Requirements

= The application server must use a new Resour ceAdapt er JavaBean for
managing the lifecycle of each resource adapter instance and must discard the
Resour ceAdapt er JavaBean after its st op method has been called. That is, the
application server must not reuse the same Resour ceAdapt er JavaBean object to
manage multiple instances of a resource adapter, since the Resour ceAdapt er
JavaBean object may contain resource adapter instance specific state information.

= The application server must call the st art method on the Resour ceAdapt er
JavaBean (in order to create a functional resource adapter instance), before
accessing other methods on the Resour ceAdapt er JavaBean instance or before
using other objects that belong to the same resource adapter instance.

= The application server thread which calls the st art and the st op method on the
Resour ceAdapt er JavaBean executes in an unspecified context. However, the
application server thread must have at least the same level of security
permissions as that of the resource adapter instance.

Chapter 5 Lifecycle Management 5-11

FIGURE 5-4 Resource Adapter Lifecycle (state diagram)

. The resource adapter deployer .
Unconfigured _ _ - Configured
resource adapter | configures the various JavaBean classes resource adapter

resource adapter

A

....... » Deployment tool
undeploy

) Resource adapter
Resource adapter deployer ' is deployed in the

' application server

\

Application server

Application server calls st art method

- on the Resour ceAdapt er JavaBean '
functional resource Non-functional
adapter instance resource adapter

Application server calls st op method -

on the Resour ceAdapt er JavaBean

The st art method of the Resour ceAdapt er JavaBean is called each time
a resource adapter instance is created. This may be during resource
adapter deployment, application server startup, or other situations.

The st op method of the Resour ceAdapt er JavaBean is called each time
a resource adapter instance is removed. This may be during resource
adapter undeployment, application server shutdown, or other situations.

5-12 J2EE Connector Architecture Specification « November 2003

5.3.6

5.3.7

Resource Adapter Implementation Guidelines

The Resour ceAdapt er JavaBean should be treated as a central authority or registry
for resource adapter instance specific information, and it should have access to the
overall state of the resource adapter instance (network endpoints, etc.). This helps in
the manageability of the resource adapter instance, and in performing an orderly
shutdown.

Some conventions to follow:

= Any resource adapter specific object (for example, ManagedConnect i onFact ory
JavaBean, Act i vat i onSpec JavaBean, or others) which creates network
endpoints should register them with the Resour ceAdapt er JavaBean.

= The resource adapter threads should periodically scan the Resour ceAdapt er
JavaBean state and behave accordingly. It is desirable that such threads avoid
boundless blocking on 170 calls, and instead use a bounded blocking duration.
This helps in resource adapter shutdown, and also potentially avoids deadlock
situations during shutdown.

The above conventions enable a Resour ceAdapt er JavaBean to effectively manage
the resource adapter instance and to perform an orderly shutdown of the resource
adapter instance.

JavaBean Configuration and Deployment

There is at most one Resour ceAdapt er JavaBean instance per resource adapter
instance. But there can be many ManagedConnecti onFact ory, Acti vati onSpec
or administered object instances (Section 12.4.2.3, “Administered Objects” on

page 12-12) per resource adapter instance.

The Resour ceAdapt er JavaBean instance is created and configured during resource
adapter deployment. The ManagedConnect i onFact ory, Acti vati onSpec and
administered object instances are created and configured during the lifetime of a
resource adapter instance.

At runtime, the resource adapter internally uses a union of the configured
Resour ceAdapt er and ManagedConnect i onFact ory JavaBean properties, to
represent outbound communication configuration.

Similarly, at runtime, the resource adapter internally uses a union of the configured
Resour ceAdapt er and Acti vati onSpec JavaBean properties, to represent
inbound communication configuration.

Chapter 5 Lifecycle Management 5-13

5371

5.3.7.2

5.3.7.3

5.3.7.4

ResourceAdapter JavaBean instance Configuration

= Create a Resour ceAdapt er JavaBean instance. This will initialize the instance
with the defaults specified via the JavaBean mechanism.

= Apply the Resour ceAdapt er class configuration properties specified in the
resource adapter deployment descriptor, on the Resour ceAdapt er instance. This
may override some of the default values specified via the JavaBean mechanism.

= The Resour ceAdapt er deployer may further override the values of the
Resour ceAdapt er instance before deployment.

Resource Adapter Deployment

The Resour ceAdapt er instance property values may be stored separately and
reused later while configuring ManagedConnect i onFact ory, Acti vati onSpec, or
administered object instances.

ManagedConnectionFactory JavaBean Instance Configuration

= Create a ManagedConnect i onFact or y JavaBean instance. This will initialize the
instance with the defaults specified via the JavaBean mechanism.

= Apply the Resour ceAdapt er instance property values, that were stored earlier,
on the ManagedConnect i onFact ory instance. Note, that the
ManagedConnect i onFact or y JavaBean may have none, some or all of the
properties of the Resour ceAdapt er JavaBean.

= Apply the ManagedConnect i onFact or y class configuration properties specified
in the resource adapter deployment descriptor, on the
ManagedConnect i onFact ory instance.

= The ManagedConnect i onFact ory deployer may further override the values of
the ManagedConnect i onFact ory instance before deployment.

At runtime, the resource adapter internally uses a union of the configured

Resour ceAdapt er and ManagedConnecti onFact ory JavaBean properties, to
represent outbound communication configuration. Note, the

ManagedConnect i onFact ory instance and the Resour ceAdapt er instance may
have intersecting property names. In such a situation, the values specified in the
ManagedConnect i onFact ory instance takes precedence.

ActivationSpec JavaBean instance Configuration

= Create an Acti vat i onSpec JavaBean instance. This will initialize the instance
with the defaults specified via the JavaBean mechanism.

= Apply the Resour ceAdapt er instance property values, that were stored earlier,
on the Acti vati onSpec instance. Note, that the Act i vat i onSpec JavaBean
may have none, some, or all of the properties of the Resour ceAdapt er JavaBean.

5-14 J2EE Connector Architecture Specification « November 2003

5.3.75

5.3.8

= Apply the Acti vat i onSpec class configuration properties specified in the
application deployment descriptor, on the Acti vati onSpec instance.

= The Acti vati onSpec deployer may further override the values of the
Acti vat i onSpec instance before deployment.

At runtime, the resource adapter internally uses a union of the configured

Resour ceAdapt er and Acti vat i onSpec JavaBean properties, to represent
inbound communication configuration. Note, the Act i vat i onSpec instance and the
Resour ceAdapt er instance may have intersecting property names. In such a
situation, the values specified in the Acti vati onSpec instance takes precedence.

Resource Adapter Implementation Guidelines

A resource adapter implementation may choose to use common properties, that is, a
ManagedConnecti onFact ory or an Acti vat i onSpec JavaBean, may contain
some or all of the properties of the Resour ceAdapt er JavaBean. The choice is up to
the resource adapter implementation.

In general, there is no need for common properties, since these various objects are
associated at runtime with the Resour ceAdapt er JavaBean. However, there may be
situations, for example, a ManagedConnect i onFact or y JavaBean may need to
override the Resour ceAdapt er JavaBean values in order to successfully connect to
a different EIS. In such a scenario, providing common properties between the
Resour ceAdapt er and ManagedConnect i onFact ory JavaBeans, allows the
ManagedConnect i onFact ory deployer to override the Resour ceAdapt er
property values and configure the ManagedConnect i onFact ory appropriately.

Lifecycle Management In A Non-Managed
Environment

Although the lifecycle management contract is primarily intended for a managed
environment, it may still be used in a non-managed environment provided that the
application that bootstraps a resource adapter instance is capable of managing its
lifecycle.

Chapter 5 Lifecycle Management 5-15

5.3.9

A Sample Resource Adapter Implementation

CODE EXAMPLE 5-1 Sample Resource Adapter

package com xyz. adapter;

i mport javax.resource. spi . Resour ceAdapter;
i mport javax.resource. spi.BootstrapContext;
i mport javax.resource.spi.work.*;

public class MyResourceAdapter!npl inplements ResourceAdapter {

voi d start(BootstrapContext serverCtx) {
/1 1. setup network endpoints

/1 2. get WorkManager reference
Wr kManager wm = server Ct x. get Wor kManager () ;

/1 3. provide Work objects to WrkManager

for (i =0; i < 10; i++) {
Work work = new MyWork(...);
try {

wm st art Wor k(wor k) ;

} catch (WorkException we) { // handle the exception }

}

}

void stop() { // release Wrk instances, do cl eanup and return.}

}

public class MyWork inplenents Work {

voi d rel ease() {
/1 set a flag to hint the Wirk instance to conplete.
/1 Note, the calling thread is different from
/1 the active thread in which this instance is executing.

}

void run() {
/1 do work (call application conponents, nonitor
/1l network ports, etc.).

}

5-16 J2EE Connector Architecture Specification « November 2003

FIGURE 5-5 Lifecycle Management Model (sequence diagram)

J2EE app server

WorkManager
(from app server)

BootstrapContext|
(from app server)

ResourceAdapter
(from adapter)

(from adapter)

Work

N |
1. create an instance

-------- _
|

.

i i
| |
| |
Application server startup
| |
| |

|

|

|

|

| |
l 2. create an instanca (pass handle to WorkManager, etc.)

Resource adapter startup an.d bootstrap procedure
This may be when a resource adapter is deplqyed
or during server startup for those resource adapter
instances which had previously been deployed.

- |
3. create an instance

4. start(Boots#rapContext)

T
|
5. qetWorkManager() I
|
|
|

-

"A

7. submit Work insﬂlances for execution I

I 8. run() (that is, dl$patCh threads to exeoute Work instances)

During runﬂlme the Resource| adapter may submit
more Work instances and use'dispatch contracts to
dispatch cal:ls to application cbmponents etc. :

Resource adlapter undeployme}nt / app server sh:utdown

9. stop()

|
>
|

-

Chapter 5 Lifecycle Management

6. create Work ithistances

5-17

5-18 J2EE Connector Architecture Specification « November 2003

CHAPTER 6

Connection Management

This chapter specifies the connection management contract between an application
server and a resource adapter. It introduces the concepts and mechanisms relevant to
this contract, and delineates the responsibilities of the roles of the resource adapter
provider and application server vendor in terms of their system-level support for the
connection management contract. To complete the description of the connection
management contract, this chapter also refers to the responsibilities of the
application component provider and deployer. The chapter includes scenarios to
illustrate the connection management contract.

6.1 Overview

An application component uses a connection factory to access a connection instance,
which the component then uses to connect to the underlying EIS. A resource adapter
acts as a factory of connections. Examples of connections include database
connections, JMS (Java Message Service) connections, and SAP R/3 connections.

Connection pooling manages connections that are expensive to create and destroy.
Connection pooling of expensive connections leads to better scalability and
performance in an operational environment. The connection management contract
provides support for connection pooling.

6.2 Goals

The connection management contract has been designed with the following goals:

= To provide a consistent application programming model for connection
acquisition for both managed and non-managed (two-tier) applications.

6-1

= To enable a resource adapter to provide a connection factory and connection
interfaces based on the CCI specific to the type of resource adapter and EIS. This
enables JDBC drivers to be aligned with the connector architecture with minimum
impact on the existing JDBC APIs.

= To provide a generic mechanism by which an application server can provide
different services—transactions, security, advanced pooling, error
tracing/logging—for its configured set of resource adapters.

= To provide support for connection pooling.

The goal of the connector architecture is to enable efficient, scalable, and extensible
connection pooling mechanisms, not to specify a mechanism or implementation for
connection pooling. The goal is accomplished by defining a standard contract for
connection management with the providers of connections—that is, resource
adapters. An application server should use the connection management contract to
implement a connection pooling mechanism in its own implementation-specific way.

6.3

6.3.1

Architecture: Connection Management

The connection management contract specifies an architected contract between an
application server and a resource adapter. This connection management contract is
shown with bold flow lines in FIGURE 6-1 on page 5. It includes the set of interfaces
shown in the architecture diagram.

Overview: Managed Application Scenario

The application server uses the deployment descriptor mechanism (specified in
section Section 17.5.4, “Requirements” on page 17-23) to configure the resource
adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A
connection factory acts as a factory for EIS connections. For example,

j avax. sql . Dat aSour ce and j ava. sql . Connect i on interfaces are JDBC-based
interfaces for connecting to a relational database.

The CCI (specified in Chapter 15, “Common Client Interface”) defines

j avax. resource. cci . Connecti onFactory and

j avax. resource. cci . Connecti on as interfaces for a connection factory and a
connection, respectively.

6-2 J2EE Connector Architecture Specification « November 2003

The application component does a lookup of a connection factory in the Java
Naming and Directory Interface (JNDI) name space. It uses the connection factory to
get a connection to the underlying EIS. The connection factory instance delegates the
connection creation request to the Connect i onManager instance.

The Connect i onManager enables the application server to provide different
quality of services in the managed application scenario. These quality of services
include transaction management, security, error logging and tracing, and connection
pool management. The application server provides these services in its own
implementation-specific way. The connector architecture does not specify how the
application server implements these services.

The Connect i onManager instance, on receiving a connection creation request from
the connection factory, does a lookup in the connection pool provided by the
application server. If there is no connection in the pool that can satisfy the
connection request, the application server uses the ManagedConnecti onFact ory
interface (implemented by the resource adapter) to create a new physical connection
to the underlying EIS. If the application server finds a matching connection in the
pool, it uses the matching ManagedConnect i on instance to satisfy the connection
request.

If a new ManagedConnect i on instance is created, the application server adds the
new ManagedConnect i on instance to the connection pool.

The application server registers a Connect i onEvent Li st ener with the
ManagedConnect i on instance. This listener enables the application server to get
event notifications related to the state of the ManagedConnect i on instance. The
application server uses these notifications to manage connection pooling, manage
transactions, cleanup connections, and handle any error conditions.

The application server uses the ManagedConnect i on instance to get a connection
instance that acts as an application-level handle to the underlying physical
connection. An instance of type j avax. resour ce. cci . Connecti on is an example
of such a connection handle. An application component uses the connection handle
to access EIS resources.

The resource adapter implements the XAResour ce interface to provide support for
transaction management. The resource adapter also implements the

Local Transact i on interface so that the application server can manage transactions
internal to a resource manager. The chapter on transaction management describes

Chapter 6 Connection Management 6-3

this transaction management contract between the application server (and its
transaction manager) and the resource adapter (and its underlying resource
manager).

6-4 J2EE Connector Architecture Specification « November 2003

FIGURE 6-1 Architecture Diagram: Managed Application scenario

- Architected contract

—— Implementation specific Application Component

v v

Application Server Resource Adapter

ConnectionManager — ConnectionFactory Connection

SecurityService

Manager
Pool —» | | ManagedConnectionFactory]
Manager ManagedConnection
—>
— LocalTransaction
Transaction
Manager

p—y XAResource

ConnectionEventListener —

Enterprise Information System (EIS)

Chapter 6 Connection Management 6-5

6.4

6.4.1

Application Programming Model

The application programming model for getting an EIS connection is similar across
both managed (application server based) and non-managed scenarios. The following
sections explain a typical application programming model scenario.

Managed Application Scenario

The following steps are involved in a managed scenario:

= The application assembler or component provider specifies connection factory
requirements for an application component using a deployment descriptor
mechanism. For example, a bean provider specifies the following elements in the
deployment descriptor for a connection factory reference. Note that the
connection factory reference is part of the deployment descriptor for EJB
components and not the resource adapter. Refer EJB specification (“Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) for details on the
deployment mechanism for EJB components:

« res-ref-nanme: eis/ WES
« res-type: javax.resource.cci.ConnectionFactory
« res-auth: Application orContainer

= During resource adapter deployment, the deployer sets the configuration
information (example: server name, port number) for the resource adapter. The
application server uses a configured resource adapter to create physical
connections to the underlying EIS. Refer to Chapter 16, “API Requirements” for
details on packaging and deployment of a resource adapter.

= The application component looks up a connection factory instance in the
component’s environment using the JNDI interface.

/1l obtain the initial JNDI Nam ng context
Context initctx = new Initial Context();

/1 performJNDI | ookup to obtain the connection factory
j avax. resource. cci. Connecti onFactory cxf =
(j avax. resource. cci . Connecti onFactory)
i nitctx.lookup(“java:conp/env/eis/ WEIS");

The JNDI name passed in the method Nanmi ngCont ext . | ookup is the same as
that specified in the r es-r ef - nane element of the deployment descriptor. The
JNDI lookup results in a connection factory instance of type

java. resource. cci . Connecti onFact ory as specified in the res-t ype
element.

6-6 J2EE Connector Architecture Specification « November 2003

6.4.2

= The application component invokes the get Connect i on method on the
connection factory to get an EIS connection. The returned connection instance
represents an application-level handle to an underlying physical connection.

An application component obtains multiple connections by calling the method
get Connect i on on the connection factory multiple times.

j avax. resource. cci.Connection cx = cxf.getConnection();

= The application component uses the returned connection to access the underlying
EIS via the resource adapter. Chapter 15, “Common Client Interface” specifies in
detail the application programming model for EIS access.

Note — The JNDI context of an accessing application is available to a resource
adapter via the application thread that uses its connection object. The resource
adapter may use the JNDI context to access other resources.

= After the component finishes with the connection, it closes the connection using
the cl ose method on the Connect i on interface.

cx.close();

= If an application component fails to close an allocated connection after its use,
that connection is considered an unused connection. The application server
manages the cleanup of unused connections. When a container terminates a
component instance, the container cleans up all connections used by that
component instance. Refer section 6.5.4 and scenario 6.8.3 for details on the cleanup
of connections.

Non-managed Application Scenario

In a non-managed application scenario, the application developer follows a similar
programming model to the managed application scenario. The non-managed case
involves looking up of a connection factory instance, getting an EIS connection,
using the connection for EIS access, and finally closing the connection.

6.5

Interface/Class Specification

This section specifies the Java classes and interfaces defined as part of the connection
management contract. For a complete specification of these classes and interfaces,
refer to the APl documentation distributed with this document.

Chapter 6 Connection Management 6-7

FIGURE 6-2 shows the class hierarchy for the connection management contract. The
diagram also illustrates the responsibilities for the definition of an interface and its
implementation:

6-8 J2EE Connector Architecture Specification « November 2003

FIGURE 6-2 Class Diagram: Connection Management Architecture

package: javax.resource.spi

<interface>
ConnectionManager

7'y

<interface>
ManagedConnectionFactory

<interface>

ManagedConnection € - - -

<interface>

ManagedConnectionMetaData [€

<interface>
ConnectionEventListener

<interface>

LocalTransaction - -

package: javax.resource.cci

<interface> <interface>
ConnectionFactory Connection
x A

|

il ; :
packz%ge: Resource Adapter Spedific :
1 |

|

|

H DefaultConnectionManager
I
1

ManagedConnectionFactorylmpl|

Connectionimpl

L3 — =14

K O-ly
. ManagedConnectionimpl
|
| 0-1 A A 4

ManagedConnection-
MetaDatalmpl

packabe: (Application Server spe

ConnectionManagerimpl

cific)
[

ConnectionEventListenerimpl

ConnectionFactorylmpl

0-1 V

LocalTransactionimpl

package: javax.transaction.xa

<interface> €
XAResource

0-1

v

XAResourcelmpl

implements

association or use
relationship

inherits
<O>— contains

Chapter 6 Connection Management

6-9

6.5.1

ConnectionFactory and Connection!

A connection factory provides an interface to get a connection to an EIS instance. A
connection provides connectivity to an underlying EIS.

One goal of the connector architecture is to support a consistent application
programming model across both CCI and EIS specific client APIs. To achieve this
goal, the connector architecture recommends a design pattern (specified as an
interface template) for both the connection factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package

j avax. resource. cci) are based on the above design pattern. Refer to Section 15.5,
“Connection Interfaces” on page 15-9 for details on the CCI connection factory and
connection interfaces. The following code sample shows the CCI interfaces:

public interface javax.resource.cci.ConnectionFactory
extends java.io. Serializable, javax.resource. Referenceabl e {

public javax.resource. cci.Connection get Connection()
throws javax.resource. Resour ceExcepti on;

}

public interface javax.resource.cci.Connection {
public void close() throws javax.resource. ResourceExcepti on;

1. Inthis document, the term ‘physi cal connection’ refers toalvanagedOonnect i Oninstance,
while theterm* connecti on handl e’ refersto an application-level connection handle. When the
distinction between ‘physi cal connection’ and‘ connecti on handl e’ isnotimportant, the term
‘connection’ is used to refer to an EIS connection.

6-10 J2EE Connector Architecture Specification « November 2003

6.5.1.1

An example of a non-CCl interface is a resource adapter that uses the package
com nyei s for its EIS specific interfaces, as follows:

public interface com nyeis. Connecti onFactory
extends java.io. Serializable, javax.resource. Referenceabl e {

public com nyei s. Connecti on get Connecti on()
throws com nyei s. Resour ceExcepti on;

}

public interface comnyeis. Connection {
public void close() throws com nyei s. Resour ceExcepti on;

The JDBC interfaces—j avax. sql . Dat aSour ce, j ava. sql . Connect i on—are
examples of non-CCI connection factory and connection interfaces.

Note that the methods defined on a non-CCl interface are not required to throw a
Resour ceExcept i on. The exception can be specific to a resource adapter, for
example: j ava. sql . SQLExcept i on for JDBC (Section 3., “JDBC API specification,
version 3.0” on page F-1) interfaces.

The following are additional guidelines for the recommended interface template:

= A resource adapter is allowed to add additional get Connect i on methods to its
definition of a connection factory interface. These additional methods are specific
to a resource adapter and its EIS. For example, CCI defines a variant of the
get Connect i on method that takes j ava. r esour ce. cci . Connecti onSpec as
a parameter.

= A resource adapter should only introduce additional get Connect i on methods if
it requires additional flexibility (beyond that offered by the default
get Connect i on method) in the connection request invocations.

= A connection interface must provide a cl ose method to close the connection. The
behavior of such an application-level connection closure is described in the OID
FIGURE 6-7 on page 43.

The above design pattern leads to a consistent application programming model for
connection creation and connection closing.

Requirements

A resource adapter must provide implementations for both the connection factory
and connection interfaces.

Chapter 6 Connection Management 6-11

6.5.1.2

In the connector architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This
differs from the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
architecture.

In the JDBC architecture, an application server provides the implementation of

j avax. sql . Dat aSour ce interface. Using a similar design approach for the
connector architecture would have required an application server to provide
implementations of various connection factory interfaces defined by different
resource adapters. Since the connection factory interface may be defined as specific
to an EIS, the application server may find it difficult to provide implementations of
connection factory interfaces without any code generation.

The connection factory implementation class delegates the get Connect i on method
invocation from an application component to the associated Connect i onManager
instance. The Connect i onManager instance is associated with a connection factory
instance at its instantiation [refer to the OID shown in FIGURE 17-3 on page 22].

Note that the connection factory implementation class must call the
Connecti onManager . al | ocat eConnect i on method in the same thread context in
which the application component had called the get Connecti on method.

The connection factory implementation class is responsible for taking connection
request information and passing it in a form required by the
Connect i onManager.al | ocat eConnecti on method.

public interface javax.resource.spi.Connecti onManager
extends java.io.Serializable {

public Object allocateConnection(

ManagedConnecti onFactory ntf,

Connect i onRequest | nf o cxRequest | nf 0)
t hrows Resour ceExcepti on;

}

public interface javax.resource. spi.ConnectionRequestinfo {
publ i ¢ bool ean equal s(hj ect other);
public int hashCode();

ConnectionRequestinfo

The Connect i onRequest | nf o parameter to the
Connecti onManager . al | ocat eConnect i on method enables a resource adapter to
pass its own request-specific data structure across the connection request flow.

6-12 J2EE Connector Architecture Specification « November 2003

6.5.1.3

A resource adapter extends the Connect i onRequest | nf o interface to support its
own data structure for the connection request.

This is typically used to allow a resource adapter to handle application component-
specified per-connection request properties (for example, cl i ent | Dand

| anguage). The application server passes these properties to the

cr eat eManagedConnect i on and mat chManagedConnecti ons method calls on
the ManagedConnect i onFact ory. These properties remain opaque to the
application server during the connection request flow.

It is important to note that the properties passed through the

Connecti onRequest | nf o instance should be client-specific (for example, user
name, password, language) and not related to the configuration of a target EIS
instance (for example, port number, server name).

The ManagedConnect i onFact ory instance is configured with properties required
for the creation of a connection to a specific EIS instance. Note that a configured
ManagedConnect i onFact ory instance must have the complete set of properties
that are needed for the creation of the physical connections. This enables the
container to manage connection request without requiring an application component
to pass any explicit connection parameters. Configured properties on a
ManagedConnect i onFact ory can be overridden through

Connecti onRequest | nf o in cases when a component provides client-specific
properties in the get Connect i on method invocation. Refer to Section 17.4.1,
“ResourceAdapter” on page 17-11 for details on the configuration of a
ManagedConnect i onFact ory.

When the Connect i onRequest | nf o reaches the cr eat eManagedConnecti on or
mat chManagedConnect i ons methods on the ManagedConnect i onFact ory
instance, the resource adapter uses this additional per-request information to create
and match connections.

A resource adapter must implement the equal s and hashCode methods defined in
the Connect i onRequest | nf o interface. The equality must be defined in the
complete set of properties for the Connect i onRequest | nf o instance. An
application server can use these methods to structure its connection pool in an
implementation-specific way. Since Connect i onRequest | nf o represents a resource
adapter specific data structure, the conditions for equality are defined and
implemented by a resource adapter.

Additional Requirements

A resource adapter implementation is not required to support the mechanism for
passing resource adapter-specific connection request information. It can choose to
pass nul | for Connecti onRequest | nf o in the al | ocat eConnect i on invocation.

Chapter 6 Connection Management 6-13

6.5.2

6.5.2.1

An implementation class for a connection factory interface must implement
java.io. Serializabl e. This enables a connection factory instance to be stored in
the JNDI naming environment. A connection factory implementation class must
implement the interface j avax. r esour ce. Ref er enceabl e. Note that the

j avax. resour ce. Ref er enceabl e interface extends the

j avax. nam ng. Ref er enceabl e interface. Refer to section Section 17.5.3, “Scenario:
Referenceable” on page 17-17 for details on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter
implementation-specific way. It must use a

j avax. resour ce. spi . ManagedConnect i on instance as its underlying physical
connection.

ConnectionManager

The j avax. resour ce. spi . Connect i onManager interface provides a hook for a
resource adapter to pass a connection request to an application server. An
application server provides different quality of service as part of its handling of the
connection request.

Interface

The connection management contract defines a standard interface for the
Connecti onManager as follows:

public interface javax.resource. spi.Connecti onManager
extends java.io. Serializable {

public Object allocateConnection(

ManagedConnect i onFact ory ncf,

Connect i onRequest I nf o cxRequest | nf 0)
t hrows Resour ceExcepti on;

The method al | ocat eConnect i on is called by a resource adapter’s connection
factory instance so that the instance can delegate a connection request to the
Connect i onManager instance.

The Connect i onRequest | nf o parameter represents information specific to a
resource adapter to handle the connection request.

6-14 J2EE Connector Architecture Specification « November 2003

6.5.2.2

Requirements

An application server must provide an implementation of the Connect i onManager
interface. This implementation is not specific to any particular resource adapter or
connection factory interface.

The Connect i onManager implementation delegates to the internal mechanisms of
an application server to provide various services: security, connection pool
management, transaction management, and error logging and tracing.

An application server should implement these services in a generic manner,
independent of any resource adapter and EIS-specific mechanisms. The connector
architecture does not specify how an application server implements these services;
the implementation is specific to each application server.

After an application server hooks-in its services, the connection request is delegated
to a ManagedConnect i onFact ory instance either for the creation of a new physical
connection or for the matching of an already existing physical connection.

An implementation class for the Connect i onManager interface must implement the
java.io. Serializabl e interface.

A resource adapter must provide a default implementation of the

j avax. resource. spi . Connect i onManager interface. The implementation class
comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter must not use the default Connect i onManager implementation class. A
default implementation of Connect i onManager enables the resource adapter to
provide services specific to itself. These services can include connection pooling,
error logging and tracing, and security management. The default

Connect i onManager delegates to the ManagedConnect i onFact or y the creation of
physical connections to the underlying EIS.

Chapter 6 Connection Management 6-15

An implementation of the Connect i onManager interface may only be provided by
a resource adapter, for the purpose described in this section, or by an application
server that fully meets the requirements of this specification.

FIGURE 6-3 ConnectionManager and Application Server specific services

ConnectionFactory

ConnectionManager <«

SecurityService
Manager

Pool —>» | ManagedConnectionFactory
Manager

Transaction
Manager

6.5.3 ManagedConnectionFactory

A j avax. resource. spi . ManagedConnect i onFact ory instance is a factory of
both ManagedConnect i on and connection factory instances. This interface supports
connection pooling by defining methods for matching and creating connections.

6-16 J2EE Connector Architecture Specification « November 2003

6.5.3.1

Interface

The following code extract shows the interface specification for the
ManagedConnect i onFact ory.

public interface javax.resource. spi.ManagedConnecti onFactory
extends java.io.Serializable {

publ i c Object createConnectionFactory(
Connect i onManager connecti onManager)
t hrows Resour ceExcepti on;

public Object createConnectionFactory()
t hrows Resour ceExcepti on;

publ i c ManagedConnecti on creat eManagedConnecti on(
j avax. security. aut h. Subj ect subject,
Connect i onRequest | nf o cxRequest | nf 0)

t hrows Resour ceExcepti on;

publ i ¢ ManagedConnecti on mat chManagedConnect i ons(
java.util.Set connectionSet,
j avax. security. aut h. Subj ect subject,
Connect i onRequest | nf o cxRequest | nf 0)
t hrows Resour ceExcepti on;

publ i ¢ bool ean equal s(Ohj ect ot her);
public int hashCode();

The method cr eat eConnecti onFact ory creates a connection factory instance.
For CCI, the connection factory instance is of the type

j avax. resource. cci . Connecti onFact ory. The connection factory instance is
initialized with the Connect i onManager instance provided by the application
server.

When the cr eat eConnect i onFact or y method takes no arguments,
ManagedConnect i onFact ory provides a default Connect i onManager instance.
This occurs in a non-managed application scenario.

The method cr eat eManagedConnect i on creates a new physical connection to the
underlying EIS instance. The ManagedConnect i onFact ory instance uses the
security information (passed as a Subj ect instance) and an optional

Connect i onRequest | nf o instance to create this new physical connection (refer to
Chapter 9, “Security Contract” for more details).

Chapter 6 Connection Management 6-17

6.5.3.2

A created ManagedConnect i on instance typically maintains internal information
about the security context (under which the connection has been created) and any
connection-specific parameters (for example, the socket connection).

The nmat chManagedConnect i ons method enables the application server to use
resource adapter-specific criteria for matching a ManagedConnect i on instance to
service a connection request. The application server finds a candidate set of
ManagedConnect i on instances from its connection pool based on application
server-specific criteria, and passes this candidate set to the

mat chManagedConnect i ons method. If the application server implements
connection pooling, it must use the nmat chManagedConnect i ons method to choose
a suitable connection.

The mat chManagedConnect i ons method matches a candidate set of connections
using criteria known internally to the resource adapter. The criteria used for
matching connections is specific to a resource adapter and is not specified by the
connector architecture.

A ManagedConnect i on instance has specific internal state information based on its
security context and physical connection. The ManagedConnect i onFact ory
implementation compares this information for each ManagedConnect i on instance
in the candidate set against the information passed in through the

mat chManagedConnect i ons method and the configuration of this
ManagedConnect i onFact ory instance. The ManagedConnect i onFact ory uses the
results of this comparison to choose the ManagedConnect i on instance that can best
satisfy the current connection request.

If the resource adapter cannot find an acceptable ManagedConnect i on instance, it
returns a nul | value. In this case, the application server requests the resource
adapter to create a new connection instance.

If the resource adapter does not support connection matching, it must throw a

Not Support edExcepti on when mat chManagedConnect i ons method is invoked.
This allows an application server to avoid pooling connections obtained from that
resource adapter.

Requirements

A resource adapter must provide an implementation of the
ManagedConnect i onFact ory interface.

It is required that the ManagedConnect i onFact ory implementation class extend
the implementation of the hashCode and equal s methods defined in

j ava. | ang. Qbj ect . These two methods are used by an application server to
structure its connection pool in an implementation-specific way. The equal s and

6-18 J2EE Connector Architecture Specification « November 2003

6.5.3.3

hashCode method implementation should be based on a complete set of
configuration properties that make a ManagedConnect i onFact ory instance unique
and specific to an EIS instance.

An implementation class for ManagedConnect i onFact ory interface must be a
JavaBean. Refer to Section 16.3, “JavaBean Requirements” on page 16-2.

Connection Pool Implementation

The connector architecture does not specify how an application server implements
connection pooling. However, it recommends that an application server should
structure its connection pool such that it uses the connection creation and matching
facility in an efficient manner and does not cause resource starvation.

The following paragraphs provide non-prescriptive guidelines for the connection
pool implementation by an application server.

An application server may partition its pool on a per ManagedConnect i onFact ory
instance (and thereby on a per EIS instance) basis. An application server may choose
to guarantee, in an implementation specific way, that it will always partition
connection pools with at least per ManagedConnect i onFact ory instance
granularity.

The per-ManagedConnect i onFact ory instance pool may be further partitioned
based on the transaction or security context or any client-specific parameters (as
associated with the Connect i onRequest | nf 0). When an application server calls the
matching facility, it is recommended that the application server narrow down the
candidate set of ManagedConnect i on instances to a reasonable limit, and achieves
matching efficiently. For example, an application server may pass only those
ManagedConnect i on instances to the mat chManagedConnect i ons method that are
associated with the target ManagedConnect i onFact ory instance (and thereby a
specific target EIS instance).

An application server may use additional parameters for its search and matching
criteria used in its connection pool management. These parameters may be EIS- or
application server- specific. The equal s and hashCode methods defined in both
ManagedConnect i onFact ory and Connect i onRequest | nf o facilitate connection
pool management and structuring by an application server.

Chapter 6 Connection Management 6-19

6.5.3.4

6.5.3.5

6.5.4

Detecting Invalid Connections

i mport java.util.Set;

i nterface Validati ngManagedConnecti onFactory {
Set getlnvalidConnections(Set connectionSet) throws
Resour ceExcepti on;

}

This interface may be implemented by a ManagedConnect i onFact or y instance that
supports the ability to validate ManagedConnect i on objects. The

get I nval i dConnecti ons method returns a set of invalid ManagedConnecti on
objects chosen from a specified set of ManagedConnect i on objects.

This optional functionality may be used by the application server to prune invalid
ManagedConnect i on objects from its connection pool periodically.

Requirement for XA Recovery

The ManagedConnect i onFact ory implementation for a transaction authority (XA)
protocol capable resource adapter (refer to Chapter 7, “Transaction Management” for
more details on transactions) must support the cr eat eManagedConnecti on
method that takes a Subj ect and a nul | for the parameter

Connect i onRequest | nf 0. This enables the application server to get an

XAResour ce instance using ManagedConnect i on. get XAResour ce and then call
the XAResour ce. r ecover method. Note that the application server uses this special
case only to get to the XAResour ce instance for the underlying resource manager.

The reason for this requirement is that the application server may not have a valid

Connect i onRequest | nf o instance when it needs to get the ManagedConnecti on

instance to initiate recovery. Refer to Section 9.1.8, “ManagedConnectionFactory” on
page 9-9 for additional details on the

ManagedConnecti onFact ory. cr eat eManagedConnect i on method.

ManagedConnection

A javax. resource. spi . ManagedConnect i on instance represents a physical
connection to an underlying EIS.

6-20 J2EE Connector Architecture Specification « November 2003

Note — The connector architecture allows one or more ManagedConnect i on
instances to be multiplexed over a single physical pipe to an EIS. However, for
simplicity, this specification describes a ManagedConnect i on instance as being
mapped 1-1 to a physical connection.

The creation of a ManagedConnect i on instance typically results in the allocation of
EIS and resource adapter resources (for example, memory and network sockets) for
each physical connection. Since these resources can be costly and scarce, an

application server pools ManagedConnect i on instances in a managed environment.

Connection pooling improves the scalability of an application environment. An
application server uses the ManagedConnect i onFact ory and
ManagedConnect i on interfaces to implement connection pool management.

An application server also uses the transaction management-related methods
(get XAResour ce and get Local Transact i on) on the ManagedConnect i on
interface to manage transactions. These methods are discussed in more detail in
Chapter 7, “Transaction Management”.

The ManagedConnect i on interface also provides methods to support error logging
and tracing in a managed environment.

Chapter 6 Connection Management 6-21

6.5.4.1

Interface

The connection management contract defines the following interface for a
ManagedConnect i on. The following code extract shows only the methods that are
used for connection pool management. The remaining methods are introduced in
other parts of the specification.

public interface javax.resource. spi.MinagedConnection {
publ i c Object getConnection(
j avax. security. aut h. Subj ect subject,
Connect i onRequest | nfo cxRequest | nf 0)
t hrows Resour ceExcepti on;
public void destroy() throws ResourceException;
public void cleanup() throws ResourceException;

/1 Methods for Connection and transaction event notifications
public void addConnecti onEvent Li st ener (

Connect i onEvent Li stener |istener);
public void renpveConnecti onEvent Li st ener (

Connect i onEvent Li stener |istener);

publ i c ManagedConnecti onMet aDat a get Met aDat a()
t hr ows Resour ceExcepti on;

/1 Additional nmethods - specified in the other sections

The get Connect i on method creates a new application-level connection handle. A
connection handle is tied to an underlying physical connection represented by a
ManagedConnect i on instance. For CClI, the connection handle created by a
ManagedConnect i on instance is of the type j avax. resour ce. cci . Connecti on.
A connection handle is tied to its ManagedConnect i on instance in a resource
adapter implementation-specific way.

A ManagedConnect i on instance may use the get Connecti on method to change
the state of the physical connection based on the Subj ect and

Connect i onRequest | nf o arguments. For example, a resource adapter can re-
authenticate a physical connection to the underlying EIS when the application server
calls the get Connect i on method. Section 9.1.9, “ManagedConnection” on page 9-14
specifies re-authentication requirements in more detail.

The method addConnect i onEvent Li st ener allows a connection event listener to
register with a ManagedConnect i on instance. The ManagedConnect i on instance
notifies connection close/error and local transaction-related events to its registered
set of listeners.

6-22 J2EE Connector Architecture Specification « November 2003

6.5.4.2

6.5.4.3

The renpbveConnect i onEvent Li st ener method removes a registered
Connecti onEvent Li st ener instance from a ManagedConnect i on instance.

The method get Met aDat a returns the metadata information (represented by the
ManagedConnect i onMet aDat a interface) for a ManagedConnect i on and the
connected EIS instance.

Connection Sharing and Multiple Connection Handles

To support connection sharing, the application server can call get Connecti on
multiple times on a ManagedConnect i on instance. In this case, a call to the method
ManagedConnect i on. get Connect i on does not invalidate any previously created
connection handles. Multiple connection handles can exist concurrently for a single
ManagedConnect i on instance. This design supports the connection sharing
mechanism. Refer to Section 7.9, “Connection Sharing” on page 7-35 for more
details.

Because multiple connection handles to a single ManagedConnect i on can exist
concurrently, a resource adapter implementation may:

= Provide thread-safe semantics for a ManagedConnect i on implementation to
support concurrent access to a ManagedConnect i on instance from multiple
connection handles. It is strongly recommended that resource adapters provide
support for concurrent access to a ManagedConnect i on instance from multiple
connection handles. This may be required in a future release of the specification.

= Ensure that there is at most one connection handle associated actively with a
ManagedConnect i on instance. The active connection handle is the only
connection using the ManagedConnect i on instance until an application-level
cl ose is called on this connection handle. For example, a
ManagedConnect i on. get Connect i on method implementation associates a
newly created connection handle as the active connection handle. Any operations
on the ManagedConnect i on from any previously created connection handles
should result in an application level exception. An example application level
exception extends the j avax. r esour ce. Resour ceExcept i on interface and is
specific to a resource adapter. A scenario illustrating this implementation is
shown in the Section 7.10.3, “Scenario: Local Transaction” on page 7-40.

Connection Matching Contract

The application server invokes the

ManagedConnect i onFact ory. mat chManagedConnect i ons method (implemented
by a resource adapter) to find a matching ManagedConnect i on for servicing a
connection request. The application server passes a candidate set of
ManagedConnect i on instances to the mat chManagedConnect i ons method.

Chapter 6 Connection Management 6-23

6.5.4.4

The application server should use the connection matching contract for
ManagedConnect i on instances that have no existing connection handles. A
candidate set passed to the mat chManagedConnect i ons method should not have
any ManagedConnect i on instances with existing connection handles.

There is no requirement that the nat chManagedConnect i ons implementation be
capable of performing a match across a candidate set that includes
ManagedConnect i on instances with existing connection handles. Note that a
resource adapter can return a successful match with the requirement that the
ManagedConnecti on. get Connect i on method will later change the state of the
matched ManagedConnect i on. To avoid any unexpected matching behavior, the
application server should not pass a ManagedConnect i on instance with existing
connection handles to the mat chManagedConnect i ons method as part of a
candidate set.

A connection request can lead to the creation of additional connection handles for a
ManagedConnect i on instance that already has one or more existing connection
handles. In this case, the application server should take the responsibility of
checking whether or not the chosen ManagedConnect i on instance can service such
a request. Refer to Section 7.9, “Connection Sharing” on page 7-35 for details.

Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM) for a
ManagedConnect i on instance. Additionally, a ManagedConnect i on instance can
have state specific to a client, such as security context, data/function access
structures, and result set from a query.

The method ManagedConnect i on. cl eanup initiates a cleanup of any client-specific
state maintained by a ManagedConnect i on instance. The cl eanup must invalidate
all connection handles created using the ManagedConnect i on instance. Any
attempt by an application component to use the associated connection handle after
cleanup of the underlying ManagedConnect i on should result in an exception.

The container always drives the cleanup of a ManagedConnect i on instance. The
container keeps track of created connection handles in an implementation specific
mechanism. It invokes ManagedConnect i on. cl eanup when it has to invalidate all
connection handles associated with this ManagedConnect i on instance and put the
ManagedConnect i on instance back in to the pool. This may be called after the end
of a connection sharing scope or when the last associated connection handle is closed
for a ManagedConnect i on instance.

The invocation of the ManagedConnect i on. cl eanup method on an already
cleaned-up connection should not throw an exception.

6-24 J2EE Connector Architecture Specification « November 2003

6.5.4.5

6.5.5

6.5.5.1

The cleanup of a ManagedConnect i on instance resets its client-specific state and
prepares the connection to be put back into a connection pool. The cl eanup method
should not cause the resource adapter to close the physical pipe and reclaim system
resources associated with the physical connection.

An application server should explicitly call ManagedConnect i on. destr oy to
destroy a physical connection. An application server should destroy a physical
connection to manage the size of its connection pool and to reclaim system
resources.

A resource adapter should destroy all allocated system resources for this
ManagedConnect i on instance when the method dest r oy is called.

Requirements

A resource adapter must provide an implementation of the ManagedConnecti on
interface.

ManagedConnectionMetaData

The method ManagedConnect i on. get Met aDat a returns a

j avax. resour ce. spi . ManagedConnect i onMet aDat a instance. The
ManagedConnect i onMet aDat a provides information about a ManagedConnect i on
and the connected EIS instance. This information is only available to the caller of this
method if a valid physical connection exists for an EIS instance.

Interface

The ManagedConnect i onMet aDat a interface provides the following information
about an EIS instance:

= Product name of the EIS instance

= Product version of the EIS instance

= Maximum number of concurrent connections from different processes that an EIS
instance can support

= User name for this connection, as known to the EIS instance

The method get User Nane returns the user name known to the underlying EIS
instance for an active connection. The name corresponds to the resource principal
under whose security context the connection to the EIS instance has been
established.

Chapter 6 Connection Management 6-25

6.5.5.2

6.5.6

6.5.6.1

Requirements

A resource adapter must provide an implementation of the
ManagedConnect i onMet aDat a interface. An instance of this implementation class
should be returned from the ManagedConnect i on. get Met aDat a method.

ConnectionEventListener

The connector architecture provides an event callback mechanism that enables an
application server to receive notifications from a ManagedConnect i on instance. An
application server uses these event notifications to manage its connection pool, to
clean up invalid or terminated connections, and to manage local transactions.
Chapter 7, “Transaction Management” discusses local transaction-related event
notifications in more detail.

An application server implements the

j avax. resource. spi . Connecti onEvent Li st ener interface. It uses the
ManagedConnect i on. addConnect i onEvent Li st ener method to register a
connection listener with a ManagedConnect i on instance.

Interface

The following code extract specifies the Connect i onEvent Li st ener interface:

public interface javax.resource.spi.ConnectionEventListener {
public void connecti onCl osed(Connecti onEvent event);
public void connectionErrorCccurred(Connecti onEvent event);

/1 Local Transaction Managenent rel ated events

public void | ocal Transacti onStarted(Connecti onEvent event);

public void | ocal Transacti onComi tted(Connecti onEvent event);

public void | ocal Transacti onRol | edback(Connecti onEvent
event);

}

A ManagedConnect i on instance calls the

Connect i onEvent Li st ener . connect i onCl osed method to notify its
registered set of listeners when an application component closes a connection
handle. The application server uses this connection close event to make a decision on
whether or not to put the ManagedConnect i on instance back into the connection
pool.

6-26 J2EE Connector Architecture Specification « November 2003

6.5.7

The ManagedConnect i on instance calls the

Connecti onEvent Li st ener. connecti onError Cccur r ed method to notify its
registered listeners of the occurrence of a physical connection-related error. The
event notification happens just before a resource adapter throws an exception to the
application component using the connection handle.

The connecti onError Cccur r ed method indicates that the associated
ManagedConnect i on instance is now invalid and unusable. The application server
handles the connection error event notification by initiating application server-
specific cleanup (for example, removing ManagedConnect i on instance from the
connection pool) and then calling ManagedConnect i on. dest r oy method to
destroy the physical connection.

A ManagedConnect i on instance also notifies its registered listeners for transaction-
related events by calling the following methods—I ocal Tr ansacti onStart ed,

| ocal Transacti onConmi tted, and | ocal Transacti onRol | edback. An
application server uses these notifications to manage local transactions. See

Section 7.7, “Local Transaction Management Contract” on page 7-31 for details on
the local transaction management.

The processing of event notifications by the registered event listeners may be
synchronous or asynchronous. That is, a listener may process an event notification
immediately (as part of the notification method call) or it may defer event processing
to a later in time. The resource adapter must not assume the processing of event
notifications by its listeners to be synchronous or asynchronous.

ConnectionEvent

A j avax. resource. spi . Connect i onEvent class provides information about the
source of a connection-related event. A Connect i onEvent instance contains the
following information:

= Type of the connection event

= ManagedConnect i on instance that has generated the connection event. A
ManagedConnect i on instance is returned from the
Connecti onEvent. get Sour ce method.

= Connection handle associated with the ManagedConnect i on instance; required
for the CONNECTI ON_CLOSED event and optional for the other event types.

= Optionally, an exception indicating a connection related error. Refer to
Section 19.2, “System Exceptions” on page 19-2 for details on the system
exception. Note that the exception is used for the
CONNECTION_ERROR_OCCURRED notification.

This class defines the following types of event notifications:

= CONNECTION_CLOSED
= LOCAL_TRANSACTION_STARTED

Chapter 6 Connection Management 6-27

= LOCAL_TRANSACTION_COMMITTED
= LOCAL_TRANSACTION_ROLLEDBACK
= CONNECTION_ERROR_OCCURRED

6.6

6.6.1

Error Logging and Tracing

The connector architecture provides basic support for error logging and tracing in
both managed and non-managed environments. This support enables an application
server to detect errors related to a resource adapter and its EIS, and to use error
information for debugging.

ManagedConnectionFactory

The j avax. resour ce. spi . ManagedConnect i onFact ory interface defines the
following methods for error logging and tracing:

public interface javax.resource. spi.MinagedConnecti onFactory
extends java.io. Serializable {

public void setLogWiter(java.io.PrintWiter out)
t hrows Resour ceExcepti on;

public java.io.PrintWiter getLogWiter()
t hrows Resour ceExcepti on;

The log writer is a character output stream to which all logging and tracing
messages for a ManagedConnect i onFact ory instance are printed.

A character output stream can be registered with a ManagedConnect i onFact ory
instance using the set LogW i t er method. A ManagedConnecti onFactory
implementation uses this character output stream to output error log and trace
information.

An application server manages the association of a log writer with a
ManagedConnect i onFact ory. When a ManagedConnect i onFact ory instance is
created, the log writer is initially nul I and logging is disabled. Associating a log
writer with a ManagedConnect i onFact ory instance enables logging and tracing
for the ManagedConnect i onFact ory instance.

6-28 J2EE Connector Architecture Specification « November 2003

6.6.2

An application server administrator primarily uses the error and trace information
printed on a log writer by a ManagedConnect i onFact ory instance. This
information is typically system-level in nature (for example, information related to
connection pooling and transactions) rather than of direct interest to application
developers.

ManagedConnection

The j avax. resour ce. spi . ManagedConnect i on interface defines the following
methods to support error logging and tracing specific to a physical connection.

public interface javax.resource. spi.ManagedConnection {
public void setLogWiter(java.io.PrintWiter out)
t hrows Resour ceExcepti on;
public java.io.PrintWiter getLogWiter()
t hrows Resour ceExcepti on;

A newly created ManagedConnect i on instance gets the default log writer from the
ManagedConnect i onFact ory instance that creates the ManagedConnecti on
instance. The default log writer can be overridden by an application server using the
ManagedConnecti on. set LogW i t er method. The setting of the log writer on a
ManagedConnect i on enables an application server to manage error logging and
tracing specific to the physical connection represented by a ManagedConnect i on
instance.

An application server can optionally disassociate the log writer from a
ManagedConnect i on instance when this connection instance is put back into the
connection pool by using set LogW i t er and passing nul | .

6.7

Object Diagram

FIGURE 6-4 shows the object diagram for the connection management architecture. It
shows invocations across the various object instances that correspond to the
architected interfaces in the connection management contract, as opposed to those
instances specific to implementations of the application server and the resource
adapter.

Chapter 6 Connection Management 6-29

To keep the diagram simple, it does not show the transaction management contract-
related interfaces (XAResour ce and Local Tr ansact i on) and invocations.

6-30 J2EE Connector Architecture Specification « November 2003

FIGURE 6-4 Object Diagram: Connection Management architecture

Application
Component
Application Server Resource Adapter
ConnectionManager Connectioan:?éry Connection
allocateConnection
\ \
\ \
create new instance '
\ ResourceAdapter,
. specific \
\ ‘\
SecurityService ManagedComnectionFactory \
Manager _create new instance _)
> Create /
createManagedConnectio new IAstance
matchManagedConnections y
createConnectionFactory \ /
create new instance /

Manage Cp/nnection

add/ removeConnectionEventListeng
getConnection

Pool
Manager
Transaction
Manager

application server
specific EIS specific
Connection Event notifications

ConnectionEventLis

—p Architected interface
- > Instantiation
—» Implementation specific

Enterprise Information System (EIS)

Chapter 6 Connection Management 6-31

6.8

6.8.1

Illustrative Scenarios

The following section uses sequence diagrams to illustrate various interactions
between the object instances involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers
to various modules and classes internal to an application server. These modules and
classes communicate through contracts that are application server implementation
specific.

In this section, the CCI interfaces—j avax. r esour ce. cci . Connecti onFact ory
and j avax. resour ce. cci . Connect i on—represent connection factory and
connection interfaces respectively.

The description of these sequence diagrams does not include transaction-related
details. These are covered in Chapter 7, “Transaction Management.”

Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in FIGURE 6-5
on page 36:

= The application component calls the get Connect i on method on the
j avax. resource. cci . Connecti onFact ory instance (returned from the JNDI
lookup) to get a connection to the underlying EIS instance. Refer to Section 17.5,
“JNDI Configuration and Lookup” on page 17-13 for details on the JNDI
configuration and lookup.

= The Connecti onFact ory instance initially handles the connection request from
the application component in a resource adapter-specific way. It then delegates
the connection request to the associated Connect i onManager instance. The
Connect i onManager instance has been associated with the Connecti onFact ory
instance when the Connect i onFact ory was instantiated.

The Connecti onFact ory instance receives all connection request information
passed through the get Connect i on method and, in turn, passes it in a form
required by the method Connect i onManager .al | ocat eConnecti on. The
Connecti onRequest | nf o parameter to the al | ocat eConnect i on method
enables a Connecti onFact ory implementation class to pass on client-specific
connection request information. This information is opaque to an application
server and is used subsequently by a resource adapter to do connection matching
and creation.

6-32 J2EE Connector Architecture Specification « November 2003

The Connect i onManager instance (provided by the application server) handles
the al | ocat eConnect i on request by interacting with the application server-
specific connection pool manager. The interaction between a

Connect i onManager instance and pool manager is internal and specific to an
application server.

The application server finds a candidate set of ManagedConnect i on instances
from its connection pool. The candidate set includes all ManagedConnect i on
instances that the application server considers suitable for handling the current
connection allocation request. The application server finds the candidate set using
its own implementation-specific structuring and lookup criteria for the connection
pool. Refer to Section 6.5.3 “ManagedConnectionFactory” for guidelines of
connection pool implementation by an application.

If the application server finds no matching ManagedConnect i on instance that
can best handle this connection allocation request, or if the candidate set is empty,
the application server calls the

ManagedConnect i onFact ory. cr eat eManagedConnect i on method to create a
new physical connection to the underlying EIS instance. The application server
passes necessary security information (as JAAS Subj ect) as part of this method
invocation. For details on the security contract, refer to the Security
Managenent chapter. It can also pass the Connect i onRequest | nf o information
to the resource adapter. The connection request information has been associated
with the connection allocation request by the resource adapter and is used during
connection creation.

The ManagedConnect i onFact or y instance creates a new physical connection to
the underlying EIS to handle the cr eat eManagedConnect i on method. This new
physical connection is represented by a ManagedConnect i on instance. The
ManagedConnect i onFact ory uses the security information (passed as a

Subj ect instance), Connect i onRequest | nf o, and its default set of configured
properties (port number, server name) to create a new ManagedConnecti on
instance. Refer to Chapter 9, “Security Contract” for more details on the

cr eat eManagedConnect i on method.

The ManagedConnect i onFact ory instance initializes the created
ManagedConnect i on instance and returns it to the application server.

The application server registers a Connect i onEvent Li st ener instance with the
ManagedConnect i on instance, enabling it to receive notifications for events on
this connection. The application server uses these event notifications to manage
connection pooling and transactions.

The ManagedConnect i on instance obtains its log writer (for error logging and
tracing support) from the ManagedConnect i onFact ory instance that created
this connection. However, an application server can set a new log writer with a
ManagedConnect i on instance to do additional error logging and tracing at the
level of a ManagedConnect i on.

The application server does the necessary transactional setup for the
ManagedConnect i on instance. Chapter 7, “Transaction Management” explains
this step in more detail.

Chapter 6 Connection Management 6-33

= Next, the application server calls ManagedConnect i on. get Connect i on method
to get an application level connection handle of type
j avax. resource. cci . Connecti on. A ManagedConnect i on instance uses the
Subj ect and Connect i onRequest | nf o parameters to the get Connecti on
method to change the state of the ManagedConnect i on.

Calling the get Connect i on method does not necessarily create a new physical
connection to the EIS instance. Calling get Connect i on produces a temporary
connection handle that is used by an application component to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnect i on instance.

6-34 J2EE Connector Architecture Specification « November 2003

= The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that initiated the connection request.

Chapter 6 Connection Management 6-35

Application
Component

6-36

l

FIGURE 6-5 OID: Connection Pool Management with new Connection Creation
Resource Adapter

Resource Adapter

javax.resource.cci.
ConnectionFactory

Application
Server

getConnection

ConnectionManage

1

ManagedConnection

r.allocateConnection

Application server looks up a candidate
connection set from the connection pool

Note: Following steps happen if
no matching connection is found
or if candidate set is empty

Transaction XAResourcg
Manager Factory ~ Managed
Connection
createManagedConnection
create a new ingtance

addConnegtionEventL isten

Optional:|setLogWriter(

er(ConnectionEventL istengr)
Ll

PrintWriter)

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

getXAResource

»

Transactipn.enlistResour|

XARes

ce(XAResource

urce.start(X1D)

»

)

getConnection(Subject,

ConnectionRequpstinfo

return javax.resour¢g.cci.Connection

return javax.resgurce.cci.Connection

J2EE Connector Architecture Specification « November 2003

6.8.2

Scenario: Connection Matching

FIGURE 6-6 on page 39 shows the object interactions for a connection matching
scenario—that is, a scenario in which the application server finds a non-empty
candidate connection set and calls the resource adapter to do matching on the
candidate set. The following steps are involved in this scenario:

= The application server handles the connection allocation request by creating a
candidate set of ManagedConnect i on instances from the connection pool. The
candidate set includes the ManagedConnect i on instances that the application
server considers suitable for handling the current connection allocation request.
The application server finds this candidate set using its own implementation-
specific structuring and lookup criteria for the connection pool. Refer to Section
6.5.3 “ManagedConnectionFactory” for guidelines on connection pool
implementation by an application.

= The application server calls the ManagedConnect i onFact ory. mat chManaged-
Connect i ons method to enable the resource adapter to do the connection
matching. It passes the candidate connection set, security information (as a
Subj ect instance associated with the current connection request), and any
Connect i onRequest I nf o.

= The ManagedConnecti onFact ory instance matches the candidate set of
connections using the criteria known internally to the resource adapter. The
mat chManagedConnect i ons method returns a ManagedConnect i on instance
that the resource adapter considers to be an acceptable match for the current
connection allocation request.

= The application server can set a new log writer with the ManagedConnect i on
instance to do error logging and tracing at the level of the ManagedConnect i on.

= The application server does the necessary transactional setup for the
ManagedConnect i on instance. Chapter 7, “Transaction Management” explains
this step in more detail.

= The application server calls the ManagedConnect i on. get Connect i on method
to get a new application level connection handle.

= The ManagedConnecti on. get Connect i on method implementation uses the
Subj ect parameter and any Connecti onRequest | nf o to set the state of the
ManagedConnect i on instance based on the current connection allocation request.
Refer to Section 9.1.9, “ManagedConnection” on page 9-14 for details if a resource
adapter implements support for re-authentication of a ManagedConnecti on
instance.

Chapter 6 Connection Management 6-37

= The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that initiated the connection request.

6-38 J2EE Connector Architecture Specification « November 2003

Application | javax.resource.cci.
Component | ConnectionFactory

J

FIGURE 6-6 OID: Connection Pool Management with Connection Matching

Resource Adapter

getConnection

Connecti

Resource Adapter

Application Transaction
Server Manager
ionManage|

r.aIIocateConnecTon

Application server looks up a candidate
connection set from the connection pool

matchManaged

Connectionsk

ManagedConnection-
Factory = Managed-

Conneéection XAResource

Case: ManagedConnection
found that satisfies allocation

request

»

addConnectIionEventListemer(ConnectionF‘ entListener)
L

Optional: sq

tLogWriter(PrintWriter)

»
»

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

Transaction.en
I

W XAResource.start(XID)

istResource(XAResource)

|

| returnj
al

getConn

pction(Subject,|ConnectionRequestinfo)

avax.resourice.cci.Connection

return javax.rgspurce.cci.Connection

Chapter 6 Connection Management

6-39

6.8.3

6-40

Scenario: Connection Event Notifications and

Connection Close

For each ManagedConnect i on instance in the pool, the application server registers
a Connecti onEvent Li st ener instance to receive close and error events on the
connection. This scenario explains how the connection event callback mechanism
enables an application server to manage connection pooling.

The scenario involves the following steps (see FIGURE 6-7 on page 43) when an
application component initiates a connection close:

The application component releases an allocated connection handle using the

cl ose method on the j avax. resour ce. cci . Connect i on instance. The
Connect i on instance delegates the close method to the associated
ManagedConnect i on instance. The delegation happens through an association
between ManagedConnect i on instance and the corresponding connection handle
Connect i on instance. The mechanism by which this association is achieved is
specific to the implementation of a resource adapter.

The connection management contract places a requirement that a
ManagedConnect i on instance must not alter the state of a physical connection
while handling the connection close.

The ManagedConnect i on instance notifies all its registered listeners of the
application’s connection close request using the

Connecti onEvent Li st ener.connect i onC osed method. It passes a

Connecti onEvent instance with the event type set to CONNECTION_CLOSED.
On receiving the connection close event notification, the application server
performs the transaction management-related cleanup of the

ManagedConnect i on instance. Refer to FIGURE 6-7 on page 43 for details on the
cleanup of a ManagedConnect i on instance participating in a JTA transaction.
The application server also uses the connection close event notification to manage
its connection pool. On receiving the connection close notification, the application
server calls the ManagedConnecti on. cl eanup method (depending on whether
the ManagedConnect i on is shared and the presence of other active connection
handles) to perform cleanup on the ManagedConnect i on instance that raised the
connection close event. The application server-initiated cleanup of a
ManagedConnect i on instance prepares this ManagedConnect i on instance to be
reused for subsequent connection requests. See Section 7.9, “Connection Sharing”
on page 7-35 for a discussion of connection sharing and its implications on
ManagedConnect i on cleanup.

After initiating the necessary cleanup for the ManagedConnect i on instance, the
application server puts the ManagedConnect i on instance back into the
connection pool. The application server should be able to use this available
ManagedConnect i on instance to handle future connection allocation requests
from application components.

J2EE Connector Architecture Specification « November 2003

6.8.3.1

6.8.3.2

Connection Cleanup

The application server can also initiate cleanup of a ManagedConnect i on instance
when the container terminates the application component instance that has the
corresponding connection handle. The application server should call
ManagedConnecti on. cl eanup to initiate the connection cleanup. After the
cleanup, the application server puts the ManagedConnect i on instance into the pool
to serve future allocation requests.

Connection Destroy

To manage the size of the connection pool, the application server can call
ManagedConnect i on. dest r oy method to destroy a ManagedConnecti on. A
ManagedConnect i on instance handles this method call by closing the physical
connection to the EIS instance and releasing all system resources held by this
instance.

Chapter 6 Connection Management 6-41

The application server also calls ManagedConnect i on. dest r oy when it receives a
connection error event notification that signals a fatal error on the physical
connection.

6-42 J2EE Connector Architecture Specification « November 2003

FIGURE 6-7 OID: Connection Event Notification

Resource Adapter Resource Adapter
. icati i ManagedConnection
Application | javax.resource.cci. Appslg:r?}é?n Tﬁgﬁgaé?n Factory ManagedXAResource
Component| Connection 9 Connection
close()
L Internal: Resoyrce Adapter implementation spgcific

ManagedConnection
notifies all registered

ConnectionEventListeners

Case: JTA Transaction

Transaction.glelistResource(XAResource)

XAResourge.end(XID)

ManagedConnection|cleanup >

Application Server returns
ManagedConnection instance
to the connection pool

Chapter 6 Connection Management

connectionClosed(ConnectionEvent: CONNEQTION_CLOSED)

6-43

6.9

6-44

Architecture: Non-managed
Environment

The connection management contract enables a resource adapter to be used in a two-
tier application directly from an application client.

In a non-managed application scenario, the Connect i onManager implementation
class may be provided either by a resource adapter (as a default

Connect i onManager implementation) or by application developers. Note that a
default implementation of the Connect i onManager should be defined for a
resource adapter (in terms of the functionality provided and third-party components
added) only at development time.

The default Connect i onManager instance interposes on the connection request and
delegates the request to the ManagedConnect i onFact ory instance. The
ManagedConnect i onFact ory creates a physical connection (represented by a
ManagedConnect i on instance) to the underlying EIS. The Connect i onManager
gets a connection handle (of type j avax. resour ce. cci . Connecti on for CCI)
from the ManagedConnect i on and returns it to the connection factory. The
connection factory returns the connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in FIGURE 6-8)
between its internal objects in an implementation-specific way. For example, a
resource adapter can use the connection event listening mechanism as part of its

J2EE Connector Architecture Specification « November 2003

ManagedConnect i on implementation for connection management. However, the
resource adapter is not required to use the connection event mechanism to drive its
internal interactions.

FIGURE 6-8 Architecture Diagram: Non-Managed application scenario

— Architected contract
—— Implementation specific

Application Component

v v

Resource Adapter

| ConnectionFactory| | Connection |

v

ConnectionManager |

I v

ManagedConnectionFactory

ManagedConnection

v

Enterprise Information System (EIS)

6.9.1 Scenario: Programmatic Access to
ConnectionFactory

To maintain the consistency of the application programming model across both
managed and non-managed environments, application code should use the JNDI
namespace to look-up a connection factory instance.

Chapter 6 Connection Management 6-45

6-46

The following code extract shows how an application client accesses a connection
factory instance in a non-managed environment. The code extract does not show the
use of JNDI . It is used as an example to illustrate the use of
ManagedConnect i onFact ory and Connect i onFact ory interfaces in the
application code. Refer to section Section 17.5, “JNDI Configuration and Lookup” on
page 17-13 for details on JNDI configuration and lookup.

/1 Application dient Code
/1 Create an instance of the ManagedConnecti onFactory
/1 inplementation class passing in initialization paraneters
/1 (if any) for this instance
com nyei s. ManagedConnecti onFactoryl npl ncf =
new com nyei s. ManagedConnecti onFactoryl mpl (...);

/1 Set properties on the ManagedConnecti onFactory instance

/1l Note: Properties are defined on the inplenentation class
/1 and not on the javax.resource. spi.ManagedConnecti onFactory
/'l interface

ncf. set Server Nanme(...);

ncf. set Port Nunber (...);

/] set remaining properties

Il Get access to connection factory. The ConnectionFactory
i nstance
/1 gets initialized with the default ConnectionManager provided
/1 by the resource adapter
j avax. resource. cci.Connecti onFactory cxf =
(j avax. resource. cci . Connecti onFact ory)
ncf. creat eConnecti onFactory();

/1 Get a connection using the ConnectionFactory instance
j avax. resource. cci . Connection cx = cxf.getConnection(...);

/1 use connection to access the underlying ElI S instance

/1 C ose the connection
cx.cl ose();

J2EE Connector Architecture Specification « November 2003

6.9.2 Scenario: Connection Creation in Non-managed
Application Scenario

The following object interactions are involved in the scenario shown in FIGURE 6-9
on page 48:

= The application client calls a method on the
j avax. resource. cci . Connecti onFact ory instance, returned from the JNDI
lookup, to get a connection to the underlying EIS instance.

= The Connecti onFact ory instance delegates the connection request from the
application to the default Connect i onManager instance. The resource adapter
provides the default Connecti onManager implementation.

= The Connecti onManager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnect i onFact ory.cr eat eManagedConnect i on method.

= The ManagedConnect i onFact ory instance handles the
cr eat eManagedConnect i on method by creating a new physical connection to
the underlying EIS, represented by a ManagedConnect i on instance. The
ManagedConnect i onFact ory uses the security information, passed as a
Subj ect instance, any Connect i onRequest | nf o instance, and its configured
set of properties, such as port number, server name, to create a new
ManagedConnect i on instance.

= The ManagedConnect i onFact ory initializes the state of the created Managed-
Connect i on instance and returns it to the default Connect i onManager instance.

= The Connecti onManager instance calls the
ManagedConnect i on. get Connect i on method to get an application-level
connection handle. Calling the get Connecti on method does not necessarily
create a new physical connection to the EIS instance. Calling get Connect i on
produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnect i on instance.

Chapter 6 Connection Management 6-47

= The Connecti onManager instance returns the connection handle to the
Connect i onFact ory instance, which then returns the connection to the
application that initiated the connection request.

FIGURE 6-9 OID: Connection Creation in a Non-managed Application Scenario

Resource Adapter
Application |javax.resource.cci. Connection ManagedConnection-
Client onnectionFactory Manager Factory pManagedConnection

getConnection

allocateConnection
3

>

createManagedConnectig

P

create a new instance

getConnection(Subject, CpnnectionRequestinfo)

|

return javax.resourgeg.cci.Connection

<

return javax.gesource.cci.Connectiorn]

6-48 J2EE Connector Architecture Specification « November 2003

6.10

6.10.1

Requirements

The following section outlines requirements for the connection management
contract.

Resource Adapter

The requirements for a resource adapter are as follows:

A resource adapter must provide implementations of the following interfaces:

« javax.resource. spi . ManagedConnecti onFact ory

« javax.resource. spi . ManagedConnecti on

« javax.resource. spi . ManagedConnect i onMet aDat a

The ManagedConnect i on implementation provided by a resource adapter must
use the following interface and classes to provide support to an application server
for connection management and transaction management, as explained later:

« javax.resource. spi.Connecti onEvent
« javax.resource. spi.Connecti onEvent Li st ener

To support non-managed environments, a resource adapter is not required to use
the above two interfaces to drive its internal object interactions.

A resource adapter must provide support for basic error logging and tracing by
implementing the following methods:

« MnagedConnecti onFactory. set/ get LogWi ter

« ManagedConnecti on. set/get LogWiter

A resource adapter must provide a default implementation of the

j avax. resource. spi . Connect i onManager interface. The implementation
class comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter must not use the default Connect i onManager implementation class.

A default implementation of Connect i onManager enables the resource adapter
to provide services specific to itself. These services can include connection
pooling, error logging and tracing, and security management. The default
Connect i onManager delegates to the ManagedConnect i onFact or y the creation
of physical connections to the underlying EIS.

In a managed environment, with the exception of application client containers, a
resource adapter must not asynchronously (that is, using a separate thread other
than the application thread) call application objects other than message-driven
beans. However, this restriction does not apply to a non-managed scenario, as
well as application client containers. A resource adapter deployer may use the

Chapter 6 Connection Management 6-49

6.10.2

6-50

Resour ceAdapt er JavaBean to configure the resource adapter during its
deployment to set the desired behavior, based on the requirements of the
deployment environment.

A resource adapter is not allowed to support its own internal connection pooling
in a managed environment. In this case, the application server is responsible for
connection pooling. However, a resource adapter may multiplex connections (one
or more ManagedConnect i on instances per physical connection) over a single
physical pipe transparent to the application server and components.

In a non-managed two tier application scenario, a resource adapter is allowed to
support connection pooling internal to the resource adapter.

Application Server

The requirements for an application server are as follows:

An application server must use the interfaces defined in the connection
management contract to use services provided by a resource adapter. These
interfaces are as follows:

« javax.resource. spi. ManagedConnecti onFact ory

« javax.resource. spi . ManagedConnecti on

« javax.resource. spi . ManagedConnect i onMet aDat a

An application server must provide an implementation of the

j avax. resource. spi . Connect i onManager interface. This implementation
should not be specific to any particular type of resource adapter, EIS, or
connection factory interface.

An application server must implement the j avax. r esour ce. spi . -

Connecti onEvent Li st ener interface and to register

Connecti onEvent Li st ener with a resource adapter to get connection-related
event notifications. An application server uses these event notifications to do its
pool management, transaction management, and connection cleanup.

An application server must use the following interfaces (supported by the
resource adapter) to provide basic error logging and tracing for its configured set
of resource adapters:

« ManagedConnecti onFactory. set/get LogWi ter

« ManagedConnection. set/get LogWiter

An application server must use the j avax. r esour ce. spi . Connect i onManager
hook-in mechanism to provide its specific quality of services. The connector
architecture does not specify the set of services the application server provides,
nor does it specify how the application server implements these services.

J2EE Connector Architecture Specification « November 2003

CHAPTER 7

Transaction Management

This chapter specifies the transaction management contract between an application
server (and supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management.
The J2EE component model specifications describe the application level transaction
model. For example, the EJB specification (Section 1., “Enterprise JavaBeans (EJBTM)
specification, version 2.1:” on page F-1) specifies the transaction model for EJB
components.

7-1

7.1

7-2

Overview

FIGURE 7-1 shows an application component deployed in a container provided by an
application server. The application component performs transactional access to

multiple resource managers. The application server uses a transaction manager that
takes the responsibility of managing transactions across multiple resource managers.

FIGURE 7-1 Transaction Management Contract

Container-Component

Contract
Application Component
Application Server Transaction Resource Adapter
Management
System Contract
Transaction Manager

EIS specific interface

Enterprise Information
System

A resource manager can support two types of transactions:

= A transaction that is controlled and coordinated by a transaction manager
external to the resource manager. This document refers to such a transaction as
JTA or XA transaction.

= A transaction that is managed internal to a resource manager. The coordination of
such transactions involves no external transaction managers. This document
refers to such transactions as RM local transactions (or local transactions).

J2EE Connector Architecture Specification + November 2003

A transaction manager coordinates transactions across multiple resource managers.
It also provides additional low-level services that enable transactional context to be
propagated across systems. The services provided by a transaction manager are not
visible directly to the application components.

The connector architecture defines a transaction management contract between an
application server and a resource adapter and its underlying resource manager. The
transaction management contract has two parts, depending on the type of
transaction:

= aJTAjavax.transaction. xa. XAResour ce based contract between a
transaction manager and a resource manager
= a local transaction management contract

These contracts enable an application server to provide the infrastructure and
runtime environment for transaction management. Application components rely on
this transaction infrastructure to support their component-level transaction model.

7.2

Transaction Management Scenarios

The following section uses a set of scenarios to present an overview of the
transaction management architecture.

Chapter 7 Transaction Management 7-3

7.2.1

Transactions across multiple Resource Managers

In FIGURE 7-2, an application client invokes EJB component X. EJB X accesses
transaction programs managed by a TP system and calls EJB Y to access an ERP
system.

FIGURE 7-2 Scenario: Transactions Across Multiple Resource Managers

Application Server

Transaction Manager

Y

XAResour ce bas
contract

client

N~ —

TP System ERP System

The application server uses a transaction manager to support a transaction
management infrastructure that enables an application component to perform
transactional access across multiple EIS resource managers. The transaction manager
manages transactions across multiple resource managers and supports propagation
of the transaction context across distributed systems.

The transaction manager supports a JTA XAResour ce-based transaction
management contract with a resource adapter and its underlying resource manager.
The ERP system supports JTA transactions by implementing a XAResour ce interface
through its resource adapter. The TP system also implements an XAResour ce
interface. This interface enables the two resource managers to participate in
transactions that are coordinated by an external transaction manager. The transaction
manager uses the XAResour ce interface to manage transactions across the two
underlying resource managers.

The EJBs X and Y access the ERP and TP system using the respective client access
API for the two systems. Behind the scenes, the application server enlists the
connections to both systems, obtained from their respective resource adapters, as
part of the transaction. When the transaction commits, the transaction manager
performs a two-phase commit protocol across the two resource managers, ensuring
that all read/write access to resources managed by both the TP system and ERP
system is either entirely committed or entirely rolled back.

7-4 J2EE Connector Architecture Specification « November 2003

1.2.2

Local Transaction Management

The transactions are demarcated either by the container (called container-managed
demarcation) or by a component (called component-managed demarcation). In
component-managed demarcation, an application component can use the JTA

User Tr ansact i on interface or a transaction demarcation API specific to an EIS (for
example, JDBC transaction demarcation using j ava. sql . Connecti on).

The EJB specification requires an EJB container to support both container-managed
and component-managed transaction demarcation models. The JSP and servlet
specifications require a web container to support component-managed transaction
demarcation.

If multiple resource managers participate in a transaction, the EJB container uses a
transaction manager to coordinate the transaction. The contract between the
transaction manager and resource manager is defined using the XAResour ce
interface.

If a single resource manager instance participates in a transaction (either component-
managed or container-managed), the container has two choices:

= It uses the transaction manager to manage this transaction. The transaction
manager uses one-phase commit-optimization, described in Section 7.6.1
“Scenarios Supported”, to coordinate the transaction for this single resource
manager instance.

= The container lets the resource manager coordinate this transaction internally
without involving an external transaction manager.

If an application accesses a single resource manager using a XA transaction, it has
more performance overhead compared to using a local transaction. The overhead is
due to the involvement of an external transaction manager in the coordination of the
XA transaction.

Chapter 7 Transaction Management 7-5

To avoid the overhead of using a XA transaction in a single resource manager
scenario, the application server may optimize this scenario by using a local
transaction instead of a XA transaction. This scenario is shown in FIGURE 7-3.

FIGURE 7-3 Scenario: Local Transaction on a Single Resource Manager
Application Server

» X)

client

o Local
Applicatio ransaction
Contract contract

TP System

7.3

7-6

Transaction Management Contract

This section specifies the transaction management contract. The transaction
management contract builds on the connection management contract specified in
Chapter 6, “Connection Management.”

J2EE Connector Architecture Specification + November 2003

FIGURE 7-4 shows the interfaces and flows in the transaction management contract. It
does not show the interfaces, classes, and flows that are the same in the connection
management contract.

Chapter 7 Transaction Management 7-7

FIGURE 7-4 Architecture Diagram: Transaction Management

— Architected contract
—— Implementation specific

Application Component

Application Server

ConnectionManager

Resource Adapter

ConnectionFactory | | Connection

ManagedConnection

Transaction
Manager

LocalTransaction

f

XAResource

ConnectionEventListener

7-8

Enterprise Information System (EIS)

J2EE Connector Architecture Specification + November 2003

7.3.1

Interface: ManagedConnection

The j avax. resour ce. spi . ManagedConnect i on instance represents a physical
connection to an EIS and acts as a factory for connection handles.

The following code extract shows the methods on t he ManagedConnecti on
interface that are defined specifically for the transaction management contract:

public interface javax.resource.spi.MinagedConnection {
publ i ¢ XAResour ce get XAResource() throws ResourceException;
publ i c Local Transacti on getLocal Transacti on()
t hrows Resour ceExcepti on;

A ManagedConnect i on instance provides access to a pair of interfaces:
j avax. transacti on. xa. XAResour ce and
j avax. resource. spi . Local Transacti on.

Depending on the transaction support level of a resource adapter, these methods
should raise appropriate exceptions. For example, if the transaction support level for
a resource adapter is NoTr ansact i on, an invocation of get XAResour ce method
should throw a Resour ceExcept i on. Refer to Chapter 19, “Exceptions” for details
on the exception hierarchy.

Chapter 7 Transaction Management ~ 7-9

7-10

FIGURE 7-5 illustrates this concept:

FIGURE 7-5 ManagedConnection Interface for Transaction Management

Application Server Resource Adapter

LocalTransaction

>

N
N
N

N
create mgw instance
N

N

getLocalTransaction > .
getXAResource ManagédConnection
4
7

e

7
creatg hew instance
7

7
7
7
7

XAResource .~
7

o5

EIS specific

Transaction
Manager

Enterprise Information System (EIS)

The transaction manager uses the XAResour ce interface to associate and dissociate a
transaction with the underlying EIS resource manager instance and to perform a
two-phase commit protocol. The transaction manager does not directly use the
ManagedConnect i on interface. The next section describes the XAResour ce interface
in more detail.

The application server uses the Local Tr ansact i on interface to manage local
transactions.

J2EE Connector Architecture Specification + November 2003

7.3.2

7.3.2.1

Interface; XAResource

The j avax. transacti on. xa. XAResour ce interface is a Java mapping of the
industry standard XA interface based on X/ Open CAE speci fi cati on (Section 4.,
“X/0pen CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document” on page F-1).

The following code extract shows the interface specification for the XAResour ce
interface. For more details and APl documentation, refer to the JTA (Section 2., “Java
Transaction APl (JTA) specification, version 1.0.1B” on page F-1) and XA (Section 4.,
“X/0pen CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document” on page F-1) specifications:

public interface javax.transaction.xa. XAResource ({

public void commt(Xid xid, bool ean onePhase) throws
XAExcepti on;

public void end(Xid xid, int flags) throws XAException;

public void forget(Xid xid) throws XAException;

public int prepare(Xid xid) throws XAException;

public Xid[] recover(int flag) throws XAException;

public void rollback(Xid xid) throws XAException;

public void start(Xid xid, int flags) throws XAExcepti on;

Implementation

A resource adapter for an EIS resource manager implements the XAResour ce
interface. This interface enables the resource manager to participate in transactions
that are controlled and coordinated by an external transaction manager. The
transaction manager uses the XAResour ce interface to communicate transaction
association, completion, and recovery to the resource manager.

A resource adapter typically implements the XAResour ce interface using a low-
level library available for the underlying EIS resource manager. This low-level
library either supports a native implementation of the XA interface or provides a
proprietary vendor-specific interface for transaction management.

A resource adapter is responsible for maintaining a 1-1 relationship between the
ManagedConnect i on and XAResour ce instances. Each time a
ManagedConnect i on. get XAResour ce method is called, the same XAResour ce
instance has to be returned.

A transaction manager can use any XAResour ce instance (if it refers to the proper
resource manager instance) to initiate transaction completion. The XAResour ce
instance used during the transaction completion process need not be the one initially
enlisted with the transaction manager for this transaction.

Chapter 7 Transaction Management ~ 7-11

7.3.3

Interface: LocalTransaction

The following code extract shows the j avax. r esour ce. spi . Local Transacti on
interface:

public interface javax.resource. spi.Local Transaction {
public void begin() throws ResourceException;
public void conmt() throws ResourceException;
public void rollback() throws ResourceException;

A resource adapter implements the Local Tr ansact i on interface to provide support
for local transactions that are performed on the underlying resource manager. An
application server uses the Local Tr ansact i on interface to manage local
transactions for a resource manager.

Section 7.7.1 “Interface: Local Transaction” has more details on the local transaction
management contract.

7.4

7.4.1

Relationship to JTA and JTS

The Java Transaction APl (JTA) (Section 2., “Java Transaction APl (JTA)
specification, version 1.0.1B” on page F-1) is a specification of interfaces between a
transaction manager and the other parties involved in a distributed transaction
processing system: application programs, resource managers, and an application
server.

The Java Transaction Service (JTS) APl is a Java binding of the Common
Object Request Broker Architecture (CORBA) Object Transaction Service (OTS) 1.1
specification. JTS provides transaction interoperability using the standard Internet
Inter-ORB Protocol (11OP) for transaction propagation between servers. The JTS API
is intended for vendors who implement transaction processing infrastructure for
enterprise middleware. For example, an application server vendor can use a JTS
implementation as the underlying transaction manager.

JTA Interfaces

The application server uses the j avax. t ransacti on. Transacti onManager and
javax. transacti on. Transact i on interfaces, specified in the JTA specification,
for its contract with the transaction manager.

7-12 J2EE Connector Architecture Specification « November 2003

The application server uses the j avax. t ransacti on. Transacti onManager
interface to control the transaction boundaries on behalf of the application
components that are being managed by the application server. For example, an EJB
container manages the transaction states for transactional EJB components. The EJB
container uses the Tr ansact i onManager interface to demarcate transaction
boundaries based on the calling thread’s transaction context.

The application server also uses the j avax.transacti on. Transacti on interface
to enlist and delist transactional connections with the transaction manager. This
enables the transaction manager to coordinate transactional work performed by all
enlisted resource managers within a transaction.

7.5 Object Diagram

FIGURE 7-6 shows the object instances and their interactions related to transaction
management.

Chapter 7 Transaction Management 7-13

Since the transaction management contract builds upon the connection management
contract, the following diagram does not show object interactions that have already
been discussed in Chapter 6, “Connection Management.”

7-14 J2EE Connector Architecture Specification « November 2003

FIGURE 7-6 Object Diagram: Transaction Management

Application
Component
Application Server Resource Adapter
ConnectionManager Connection
\
\
Resource \
Adapter|specific
\
create
new instanc

Pool
Manager

Transaction
Manager

LocalTransaction

©@!

getXAResourge

z
create H/EW instance

XAResource - [

z

Conne

EIS specific

tion Event|notifications

ConnectionEventLis

S
create new instance ,
N

N
~ / .
Mangggeqppnnectlon

getLocalTransaction >

I

EIS specific

—) Architected interface
- % Instantiation
—» Implementation specific

Enterprise Information System (EIS)

Chapter 7 Transaction Management

7-15

7.6

7-16

XAResource-based Transaction Contract

The following section specifies detailed requirements for a resource manager and a
transaction manager for the XAResour ce-based transaction management contract. In
this section, the following abbreviations are used: RM (Resource Manager), TM
(Transaction Manager), 1PC (one phase commit protocol), and 2PC (two phase
commit protocol).

J2EE Connector Architecture Specification « November 2003

7.6.1

Scenarios Supported

The following table specifies various transaction management scenarios and
mentions whether these scenarios are within the scope of the connector architecture.

TABLE 7-1 Transaction Management Scenarios

Description

Supported / NotSupported

TM does two-phase commit (2PC) on
RMs that support two phase commit
(as defined in RM’s requirements for
XAResour ce implementation in the
subsection below)

Examples of RM: Oracle and DB2
installations that support 2PC in their
XAResour ce implementations.

TM does one-phase commit (1PC)
optimization on the only RM involved
in a transaction. RM supports 2PC in
its XAResour ce implementation (as
defined in RM’s requirements for the
XAResour ce implementation in the
subsection below).

Example of RM: DB2 installation that
supports 2PC in its XAResour ce
implementation.

Supported based on TM’s requirement to be
JTAZJTS and X/Open compliant, and RM’s
support for 2PC in the XAResour ce interface.

Supported based on TM’s requirement to be
JTA/ZJTS and X/Open compliant, and RM’s
support for the XAResour ce interface.
Note: This scenario will also work if TM does
2PC on RM.

Chapter 7 Transaction Management ~ 7-17

7.6.2

7-18

TABLE 7-1

Transaction Management Scenarios

Description

Supported / NotSupported

TM does one-phase commit
optimization on the only RM involved
in a transaction. RM does not support
2PC but supports 1PC in its
XAResour ce implementation.

Example of RM: ERP system or
mainframe TP system that does not
support 2PC, but implements 1PC in
its XAResource implementation as
defined in the RM’s requirements for
1PC.

TM does last-resource commit
optimization across multiple RMs
involved in a transaction—RMs that
support 2PC (for example: Oracle and
DB2) and a single RM that supports
only 1PC (for example: an ERP
system).

More than one RM that support only
1PC involved in a transaction with
none or multiple 2PC enabled RMs

Supported by requiring that TM must support
1PC optimization. A successful transaction
coordination of 1PC only RM comes as a result of
required 1PC optimization for a TM.

The rationale behind this requirement is that this
scenario will be an important scenario to support
for the connector architecture.

Out of the scope of the connector architecture
specification

Out of the scope of the connector architecture
specification

The connector architecture does not require that all resource adapters must support

Resource Adapter Requirements

JTA XAResour ce based transaction contract.

If a resource adapter decides to support a XAResour ce based contract, then the
connector architecture places certain requirements on a resource adapter and its

underlying resource manager (RM).

The following requirements refer to a resource adapter and its resource manager
together as a resource manager (RM). The division of responsibility between a

resource adapter and its underlying resource manager for supporting the transaction

contract is implementation-specific and is out of the scope of the connector

architecture.

These requirements assume that a transaction manager (TM) supports JTA/XA and

JTS requirements.

J2EE Connector Architecture Specification « November 2003

7.6.2.1

7.6.2.2

7.6.2.3

The following set of requirements are based on the JTA and XA specifications and
should be read in conjunction with these specifications. These detailed requirements
are included in this document to clearly specify the requirements from the connector
architecture perspective.

General

If a RM supports an XAResour ce contract, then it must support the one-phase
commit protocol by implementing XAResour ce. commi t when the boolean flag
onePhase is set to Tr ue. The RM is not required to implement the two-phase
commit protocol support in its XAResour ce implementation.

However, if a RM supports the two-phase commit protocol, then the RM must use
the XAResour ce interface for supporting the two-phase commit protocol.

An RM is allowed to combine the implementation of 2PC protocol with 1PC
optimization by implementing XAResour ce. commi t (onePhase=Tr ue) in
addition to the implementation requirements for 2PC.

One-phase Commit

An RM should allow XAResour ce. commi t (onePhase=Tr ue) even if it has not
received XAResour ce. pr epar e for the transaction branch.

If the RM fails to commit a transaction during a 1PC commit, then the RM should
throw one of the XA RB* exceptions. In the exception case, an RM should roll
back the transaction branch’s work and release all held RM resources.

The RM is responsible for deciding the outcome of a transaction branch on a
XAResour ce. commi t method. The RM can discard knowledge of the transaction
branch once it returns from the conm t call.

The RM is not required to maintain knowledge of transaction branches to support
failure recovery for the TM.

If an XAResour ce. pr epar e method is called on an RM that supports only one-
phase commit, then the RM should throw an XAExcept i on with XAER_PROTO or
XA RB* flag.

The RM should return an empty list of XIDs for XAResour ce. r ecover, because
the RM is not required to maintain stable knowledge about transaction branches.

Two-phase Commit

If the RM supports 2PC, then its implementation of 2PC must be compliant with
the 2PC protocol definition with presumed rollback as specified in the OSI TP
(Transaction Protocol defined by ISO (1S092)) specification.

Chapter 7 Transaction Management ~ 7-19

7.6.2.4

7.6.2.5

The RM must implement the XAResour ce. pr epar e method and must be able to
report whether it can guarantee its ability to commit the transaction branch. If the
RM reports that it can, the RM must hold and record in a stable way all the
resources necessary to commit the branch. It must hold all these resources until
the TM directs it to commit or rollback the branch.

An RM that reports a heuristic completion to the TM must not discard its
knowledge of the transaction branch. The RM should discard its knowledge of the
branch only when the TM calls XAResour ce. f or get . The RM must notify the
TM of all heuristic decisions.

On the TM’s XAResour ce. commi t and XAResour ce. rol | back calls, the RM is
allowed to report through an XAExcept i on that it has heuristically completed the
transaction branch. This feature is optional.

A TM supporting the OSI TP specification uses the one-phase commit optimization
by default to manage an RM that is the only resource involved in the transaction.
The mechanism to identify to the TM a particular RM that only supports 1PC is
beyond the scope of this specification.

Transaction Association and Calling Protocol

The RM XAResour ce implementation must support XAResour ce. start and
XAResour ce. end for association and disassociation of a transaction, as
represented by, unique XID, with recoverable units of work being done on the
RM.

The RM must ensure that the TM invokes XAResour ce calls in the legal sequence,
and must return XAER_PROTO or another suitable error if the caller TM violates
the state tables, as defined in Chapter 6 of the XA specification (Section 2., “Java
Transaction APl (JTA) specification, version 1.0.1B” on page F-1).

Unilateral Roll-back

The RM need not wait for global transaction completion to report an error. The
RM can return a rollback-only flag as a result of any XAResour ce. start or
XAResour ce. end call. This can happen anytime except after a successful
prepare.

The RM is allowed to unilaterally rollback and forget a transaction branch any
time before it prepares it.

7-20 J2EE Connector Architecture Specification « November 2003

7.6.2.6

7.6.2.7

7.6.2.8

7.6.3

Read-Only Optimization

Support for read-only optimization is optional for RM implementation. An RM
can respond to the TM’s request to prepare a transaction by asserting that the RM
was not asked to update shared resources in this transaction branch. This
response concludes the RM’s involvement in the transaction, and the RM can
release all resources and discard its knowledge of the transaction.

XID Support

The RM must accept XIDs from TMs. The RM is responsible for using the XID to
maintain an association between a transaction branch and recoverable units of
work done by the application programs.

The RM must not alter in any way the bits associated in the data portion of an
XID. For example, if an RM remotely communicates an XID, it must ensure that
the data bits of the XID are not altered by the communication process.

Support for Failure Recovery

A full JTA compliant XAResour ce implementation that supports 2PC must
maintain the status of all transaction branches in which it is involved. After
responding affirmatively to the TM pr epar e call, an RM should not erase its
knowledge of the branch or of the work done in support of the branch until it
successfully receives a TM’s invocation to commit or rollback the branch.

If an RM that supports 2PC heuristically completes a branch, it should not forget
a branch until the TM explicitly tells it to by calling XAResour ce. f or get .

On the TM’s XAResour ce. recover call, an RM that supports 2PC must return a
list of all transaction branches that it has prepared or has heuristically completed.
When an RM recovers from its own failure, it must recover prepared and
heuristically completed branches. It should discard its knowledge of all other
branches.

Transaction Manager Requirements

The following section specifies requirements of a TM. This section assumes that the
TM is compliant with JTAZJTS and X/Open ([Section 4., “X/0Open CAE Specification
-- Distributed Transaction Processing: the XA specification, X/Open document” on
page F-1]) specifications.

Chapter 7 Transaction Management ~ 7-21

7.6.3.1

7.6.3.2

7.6.3.3

7.6.3.4

7.6.4

Interfaces

= The TM must use the XAResour ce interface supported by an RM for transaction
coordination and recovery. The TM must be written to handle consistently any
information or status that an RM can legally return. The TM must assume that it
can support RMs that have different capabilities as allowed by the RM
requirements specification section, for instance RMs that make heuristic decisions
and RMs that use the read-only optimization. [Requirement derived from Section
7.3, XA specification]

XID requirements

= The TM must generate XIDs conforming to the structure defined in section 4.2 on
page 19 of the XA specification ([Section 2., “Java Transaction APl (JTA)
specification, version 1.0.1B” on page F-1]). The generated XIDs must be globally
unique and must adequately describe a transaction branch.

One-phase Commit Optimization

= The TM must support one-phase commit protocol optimization. The TM uses the
1PC optimization when the TM knows there is only one RM registered in a
transaction that is making changes to shared resources. In this optimization, the
TM makes its phase 2 commit request to that RM without having made a phase 1
prepare request.

= The TM is not required to record in a stable manner such transactions, and in
some failure cases, the TM may not know the outcome of the transaction
completion.

Implementation Options

= The support of | ast -resource optim zation is an implementation-specific
option for a TM. A detailed specification of TM and RM requirements for this
optimization is outside the scope of the connector architecture.

Scenario: Transactional Setup for a
ManagedConnection

The following object interactions are involved in the scenario shown in FIGURE 7-7
on page 25.

7-22 J2EE Connector Architecture Specification « November 2003

The runtime scenario begins with a client method invocation on an EJB instance.
This invocation has a transaction context, represented by a unique transaction

Xi d, associated with it if the invocation came from a client that was already
participating in the transaction. Alternatively, the EJB container starts a
transaction before dispatching the client request to the EJB method.

The EJB instance calls the get Connecti on method on the Connecti onFactory
instance. The resource adapter delegates the connection request to the application
server using the connection management contract. FIGURE 6-6 on page 39
explains this step.

The application server gains control and handles the connection allocation
request.

To handle the connection allocation request, the application server gets a
Managed- Connect i on instance either from the connection pool or creates a new
Managed- Connecti on instance. FIGURE 6-6 on page 39 describes this step.
The application server registers itself as a Connect i onEvent Li st ener with the
ManagedConnect i on instance. This enables the application server to receive
notifications for various events on this connection instance. The application server
uses these event notifications to manage connection pooling and transactions.
Based on the current transaction context associated with the connection-
requesting thread and the EJB instance, the application server decides whether or
not the transaction manager will participate in the coordination of the currently
active transaction.

If the application server decides that the transaction manager will manage the
current transaction, it conducts the following transactional setup on the
ManagedConnect i on instance:

« The application server invokes the ManagedConnect i on. get XAResour ce
method to get the XAResour ce instance associated with the
ManagedConnecti on instance.

« The application server enlists the XAResour ce instance with the transaction
manager for the current transaction context. The application server uses the
Transacti on.enl i st Resour ce method (specified in the JTA specification) to
enlist the XAResour ce instance with the transaction manager. This enlistment
informs the transaction manager about the resource manager instance
participating in the transaction.

« The transaction manager invokes XAResour ce. st art to associate the current
transaction with the underlying resource manager instance. This enables the
transaction manager to inform the participating resource manager that all units
of work performed by the application on the underlying ManagedConnect i on
instance should now be associated with this transaction.

The application server calls the ManagedConnect i on. get Connect i on method

to get a new application-level connection handle. The underlying physical

connection is represented by a ManagedConnect i on instance.

Chapter 7 Transaction Management ~ 7-23

= The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that had initiated the connection request.

7-24 J2EE Connector Architecture Specification « November 2003

FIGURE 7-7 OID: Transactional Setup For Newly Created ManagedConnection Instances
Resource Adapter

Resource Adapter
Application | javax.resource.cci. Application | |Transaction Ma::gidrCOHneCtion- XAResourcg
Component| ConnectionFactory Server Manager Y (%?lnnae%%%_n

getConnection

ConnectionManaggdr.allocateConnedtion
o

Application server gets a ManagedConnection
instance from the connection pool or
creates a new instance.

Case: TM coordinated Transactiorf

getXAResource

Transaction.enlistResoufce(XAResource)

XARespurce.start(XID, flag)

»

getConnection(Subject, ConnectionRequestinfo)

_return javax.resourgelcci.Connection
N

return javax.resfurce.cci.Connection
4 —

Chapter 7 Transaction Management 7-25

7.6.5

Scenario: Connection Close and JTA Transactional
Cleanup

For each ManagedConnect i on instance in the pool, the application server registers
a Connect i onEvent Li st ener instance to receive specific events on the connection.
The connection event callback mechanism enables the application server to manage
connection pooling and transactions.

FIGURE 6-7 on page 43 describes the following steps when an application
component closes a connection:

= The application component releases a Connect i on instance by calling the cl ose

method. The Connect i on instance delegates the connection close request to its
associated Managed- Connect i on instance. A ManagedConnect i on must not
alter any state on the physical connection while handling a delegated connection
close request.

The ManagedConnect i on instance notifies all its registered listeners of the
application’s connection close request using the

Connecti onEvent Li st ener.connect i onC osed method. It passes a
Connecti onEvent instance with the event type set to CONNECTI ON_CLOSED.
On receiving the connection close notification, the application server performs
transactional cleanup for the ManagedConnect i on instance. If the
ManagedConnect i on instance was participating in a transaction manager-
enlisted JTA transaction, the application server takes the following steps:

« The application server dissociates the XAResour ce instance, corresponding to
the ManagedConnect i on instance, from the transaction manager using the
method Tr ansacti on. del i st Resour ce.

« The transaction manager calls XAResour ce. end(Xi d, fl ag) to inform the
resource manager that any further operations on the ManagedConnecti on
instance are no longer associated with the transaction, represented by the Xi d
passed in XAResour ce. end call. This method invocation dissociates the
transaction from the resource manager instance.

After the JTA transaction completes, the application server initiates a cleanup of

the physical connection instance by calling ManagedConnect i on. cl eanup

method. After calling the method cl eanup on the ManagedConnect i on instance,
the application server returns the ManagedConnect i on instance to the
connection pool.

7-26 J2EE Connector Architecture Specification « November 2003

= The application server can now use the ManagedConnect i on instance to handle
future connection allocation requests from either the same or another component
instance.

Chapter 7 Transaction Management 7-27

Application
Component

7-28

|

FIGURE 7-8 OID: Connection Close and Transactional Cleanup
Resource Adapter

Resource Adapter

close()

. . Application
javax.resource.cci. Server
Connection

Internal: ResoU

rce Adapter implementation spy

Transaction
Manager

ManagedConnection
Factory

Managed
Connection

XAResourcs

ecific

Listeners

ManagedConnection
notifies all registered
ConnectionEvent-

_connectionClosed(Connection
il

Case: TM coordinated TransactiorIu

Transaction.delistResource(|

XAResour

Event: CONNE(

XAResource, flag

e.end(XID, flag)

ION_CLOSED)

ManagedConnection.(

leanup

Application Server returns
ManagedConnection instance
to the connection pool

J2EE Connector Architecture Specification « November 2003

7.6.6

OID: Transaction Completion

The scenario in FIGURE 7-9 illustrates the steps taken by the transaction manager to
commit a transaction across multiple resource manager instances. These steps are
executed after the transaction manager calls the XAResour ce. end method for each
enlisted resource manager instance.

The following steps happen in this scenario:

= The transaction manager calls XAResour ce. pr epar e to begin the first phase of
the transaction completion protocol. The transaction manager can call any
XAResour ce instance is associated with the proper underlying resource manager
instance, and is not restricted to the XAResour ce instance initially involved with
the transaction. The application server can assume that all XAResour ce instances
produced by a ManagedConnect i onFact ory instance refer to the same
underlying resource manager instance.

Chapter 7 Transaction Management ~ 7-29

= Assuming that all resource manager instances involved in the transaction agree to
commit, the transaction manager calls XAResour ce. conmi t to commit the
transaction. Otherwise, the transaction manager calls XAResour ce. r ol | back.

FIGURE 7-9 OID: Transaction Completion
Resource Manager Resource Manager

Instance instance
XAResource XAResource

Transaction
Manager
I |
Pre-condition: XAResource.end method called by TM on each
participating resource manager instance

Transaction manager initiates transaction
completion process on XAResource instances -

one for each participating resource manager
instance

XAResour ce. pr epar e
XAResour|ce. pr epar e

\ 4

Case: All resource nanager instances
vote to conmmt

XAResour ce. commi t -

L

XAResournce. comm t

v

7-30 J2EE Connector Architecture Specification « November 2003

7.7

7.7.1

7.7.2

Local Transaction Management Contract

The main motivation for defining a local transaction contract between an application
server and a resource manager is to enable an application server to manage resource
manager local transactions, hereafter called local transactions.

The local transaction management contract has two parts:

The application server uses the j avax. r esour ce. spi . Local Transacti on
interface to manage local transactions transparently to an application component.
The scenarios in Section 7.10 “Transaction Scenarios”Note — illustrate this part of
the local transaction management contract.

The other part of the contract relates to notifications for local transaction-related
events. If the resource adapter supports a local transaction demarcation API, for
example, j avax. resource. cci . Local Transacti on for the Common Client
Interface, the resource adapter needs to notify the application server of the events
(transaction begin, commit, and rollback) related to the local transaction. An
application server uses this part of the contract, as explained in Section 7.8
“Scenarios: Local Transaction Management”.

Interface: Local Transaction

The j avax. resource. spi . Local Transact i on interface defines the contract
between an application server and resource adapter for local transaction
management. This interface is defined in Section 7.3.3 “Interface: LocalTransaction”.

Interface: ConnectionEventListener

An application server implements the

j avax. resource. spi . Connecti onEvent Li st ener interface. It registers this
listener instance with the ManagedConnect i on instance by using
ManagedConnect i on. addConnecti onEvent Li st ener method.

Chapter 7 Transaction Management 7-31

7.7.2.1

The following code extract specifies the Connect i onEvent Li st ener interface
related to the local transaction management contract:

public interface javax.resource. spi.ConnectionEventListener {
/1 Local Transaction Managenent rel ated events
public void | ocal Transacti onStarted(Connecti onEvent event);
public void | ocal Transacti onComi tted(Connecti onEvent event);
public void | ocal Transacti onRol | edback(Connecti onEvent
event);

The ManagedConnect i on instance notifies its registered listeners for transaction
related events by calling the methods | ocal Transacti onSt art ed,
| ocal Transacti onCommi tted, and | ocal Transacti onRol | edback.

The Connecti onEvent class defines the following types of event notifications
related to the local transaction management contract:

= LOCAL_TRANSACTI ON_STARTED—a local transaction was started using the
ManagedConnect i on instance.

= LOCAL_TRANSACTI ON_COWM TTED—a local transaction was committed using
the ManagedConnect i on instance.

= LOCAL_TRANSACTI ON_ROLLEDBACK—a local transaction was rolled back using
the ManagedConnect i on instance.

Requirements

The connector specification requires an application server to implement the
Connect i onEvent Li st ener interface and handle local transaction related events.
This enables the application server to achieve local transaction cleanup and
transaction serial interleaving, as illustrated in Section 7.8 “Scenarios: Local
Transaction Management”. The connector specification provides the necessary
mechanisms for transaction management. Whether these mechanisms are used in an
application server depends on the application server’s implementation of the
transaction requirements of the J2EE component specifications.

The resource adapter must send local transaction events through the

Connecti onEvent Li st ener interface when an application component starts a local
transaction using the application level transaction demarcation interface. An
exception to this requirement is when the transaction demarcation API supports the
concept of an implicit begin of a local transaction. The JDBC API is an example
where there is no explicit local transaction begin method.

7-32 J2EE Connector Architecture Specification « November 2003

However, resource adapters that allow implicit begin of a local transaction, for
instance, JDBC drivers, are strongly encouraged to provide support for local
transaction events. This may be required in a future release of the specification.

The resource adapter must not send local transaction events for local transactions
managed by the container.

7.8

7.8.1

Scenarios: Local Transaction
Management

This section illustrates how an application server uses the event notifications from
the resource adapter to manage local transactions and to restrict illegal transaction
demarcations by an application component.

In these scenarios, an application component starts a local transaction using an
application-level transaction demarcation interface, for example,

j avax. resource. cci. Local Transacti on as defined in the CCI, supported by
the resource adapter. The resource adapter, in its implementation of the transaction
demarcation interface, sends event notifications related to the local transaction,
namely, local transaction begin, commit, and rollback. The application server is
notified of these local transaction-related events through the

Connect i onEvent Li st ener mechanism.

Local Transaction Cleanup

A stateless session bean with bean-managed transaction demarcation starts a local
transaction in a method invocation. It returns from the business method without
completing the local transaction.

The application server implements the Connect i onEvent Li st ener interface. The
resource adapter notifies the application server with a

LOCAL_TRANSACTI ON_STARTED event when the local transaction is started by the
session bean instance.

When the session bean instance returns from the method invocation without
completing the local transaction, the application server detects this as an incomplete
local transaction because it has not received any matching

LOCAL_TRANSACTI ON_COVM TTED or LOCAL_TRANSACTI ON_RCOLLEDBACK events
from the resource adapter.

Chapter 7 Transaction Management 7-33

7.8.2

7.8.3

7.8.3.1

On detecting an incomplete local transaction, the application server aborts the
transaction, terminates the stateless session bean instance, and throws an exception
to the client.

Component Termination

The application server terminates a component instance, for example, because of
some system exception in a method invocation.

On termination of a component instance, the application server cleans up all
ManagedConnect i on instances being used by this component instance. The cleanup
of a connection involves resetting all local transaction and client-specific state. This
state is maintained internal to the ManagedConnect i on instance.

The application server initiates a cleanup of a ManagedConnect i on instance by
calling ManagedConnect i on. cl eanup. After cleanup, the application server returns
this connection to the pool to serve future allocation requests.

Transaction Interleaving

The application server uses the connection event listener mechanism, specified
through the interfaces Connecti onEvent Li st ener and Connecti onEvent, to flag
illegal cases of transaction demarcation. The application server implements the
Connecti onEvent Li st ener interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction
demarcation.

Scenario

An EJB component with bean managed transaction demarcation starts a local
transaction using the application-level transaction demarcation interface, for
example, j avax. resource. cci . Local Transacti on as defined in the CClI,
supported by the resource adapter. It then calls the User Transacti on. begi n
method to start a JTA transaction before it has completed the local transaction.

In this scenario, the EJB component has started but not completed the local
transaction. When the application component attempts to start a JTA transaction by
invoking the User Tr ansact i on. begi n method, the application server detects it as
a transaction demarcation error and throws an exception from the

User Tr ansact i on. begi n method.

7-34 J2EE Connector Architecture Specification « November 2003

When the application component starts the local transaction, the resource adapter
notifies the application server of the LOCAL_TRANSACTI ON_STARTED connection
event. When the component invokes the User Tr ansact i on. begi n method, the
application server detects an error condition, because it has not received the
matching LOCAL_TRANSACTI ON_COWM TTED or

LOCAL_TRANSACTI ON_ROLLEDBACK event from the resource adapter for the
currently active local transaction.

7.9

Connection Sharing

Sharing connections typically results in efficient use of resources and better
performance. An application can indicate the ability to share its various resource
references, or connections, in its deployment descriptor. A connection can be marked
either as shar eabl e or unshar eabl e. The default is shar eabl e.

When multiple shareable connections x and y acquired by an application are used
within a global transaction scope (for instance, container-managed or bean-
managed), the application server must provide a single shared connection behavior
under the following conditions:

= X and y are collocated in a single Java Virtual Machine process address space.

= X and y are using a single transactional resource manager.

= X and y have identical properties.

= X and y are marked as shar eabl e.

= X and y are used within a container-managed or bean-managed transaction scope.

The ability to share is unspecified for connections marked shar eabl e that are used
outside a global transaction scope. Sharing is not supported for connections obtained
from a non-transactional resource adapter, that is, transaction support level is
NoTr ansacti on.

The intent of the connection sharing requirement is to avoid resource manager lock
contentions and read isolation problems, and thus ensure portable behavior for
transactional applications. The application server may implement the connection
sharing semantics either using a single shared connection or through other
mechanisms?,

1. Anapplication server may not share connections that are marked S har eabl e, butstill ensure the
portability of the transaction application across application servers. For instance, the application server may
choose to end XA association of connections when control flows from one application component to another,
in order to avoid concurrent access problems on XA Resource Managers, and thus provide single shared
connection behavior.

Chapter 7 Transaction Management 7-35

7.9.1

If a connection is marked as shar eabl e, it must be transparent to the application
whether a single shared connection is used or not. The application must not make
assumptions about a single shared connection being used, and hence must use the
connection in a shareable manner.

However, a J2EE application component that intends to use a connection in an
unshareable way must leave a deployment hint to that effect, which will prevent the
connection from being shared by the container. Examples of unshareable usage of a
connection include changing the security attributes, isolation levels, character
settings, and localization configuration.

Containers must not attempt to share connections that are marked unshar eabl e.

J2EE application components may use the optional deployment descriptor element
res- shari ng- scope to indicate whether a connection to a resource manager is
shareable or unshareable. Containers must assume connections to be shareable if no
deployment hint is provided. Refer to EJB specification (Section 1., “Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) and the servlet
specification (Section 10., “Java Servlet specification, version 2.4.” on page F-1) for a
description of the deployment descriptor element.

J2EE application components may cache connection objects and reuse them across
multiple transactions. Containers that provide connection sharing should
transparently switch such cached connection objects, at dispatch time, to point to an
appropriate shared connection with the correct transaction scope. Refer to Section
7.11 “Connection Association” for more details on connection association.

Refer to Section 7.10 “Transaction Scenarios” for a special case of connection sharing
as applied to resource adapters that support local transactions.

Sharing Violation Detection

A resource adapter may detect sharing violations. Any operation on a shareable
connection which violates shareability is a sharing violation, for example, mutable
operations like changing connection attributes, security settings, isolation levels, etc.

When such a mutable operation is performed on a ManagedConnect i on, it may
throw a Shari ngVi ol ati onExcepti on when both the following conditions are
true:

= The number of connection handle objects associated with the
ManagedConnecti on is more than one.
= The ManagedConnect i on is associated with a transaction, either local or XA.

Further, a resource adapter may reject creation of a connection handle, by throwing a
Shari ngVi ol ati onExcepti on, if the connection is already in a unshareable
condition. Any mutable operation performed on a connection makes it unshareable.

7-36 J2EE Connector Architecture Specification « November 2003

7.9.11

7.9.1.2

Scenario 1

Application component A gets a shareable connection to a resource and invokes
component B which also gets a shareable connection to the same resource. Both A
and B are involved in a common transaction scope, either local or XA. The
application server shares the connections acquired by both A and B. From this point
onwards, any attempt to change a mutable property, such as isolation level, by either
component, results in a Shari ngVi ol ati onExcepti on being thrown by the
resource adapter to the offending component.

Scenario 2

Application component A gets a shareable connection to a resource. A is involved in
a transaction, either local or XA. A then modifies one of the mutable properties of
the resource, such as isolation level. This makes the connection unshareable. The
resource adapter does not throw an exception since only one connection handle is
present.

Later, A invokes B under the same transaction scope. B also attempts to acquire a
shareable connection to the same resource. The application server chooses to share
the connection that is already in use by A. At this point, the resource adapter throws
a Shari ngVi ol ati onExcepti on to B since sharing had been attempted on an
unshareable connection. The resource adapter does this by remembering that the
connection had been made unshareable earlier.

The resource adapter might throw a Shari ngVi ol ati onExcepti on to B, even if A
had closed its connection handle before it invoked B, since the connection acquired
by A had become unshareable.

7.10

7.10.1

Transaction Scenarios

This section specifies requirements for various transaction scenarios.

Requirements

The J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4. on page F-1) identifies the following
as transactional resources:

= JDBC connections
= JMS sessions

Chapter 7 Transaction Management 7-37

7-38

= Resource adapter connections at the XATr ansact i on level

The J2EE platform specification requires that J2EE product providers must
transparently support transactions that span multiple components and transactional
resources. These requirements must be met regardless of whether a J2EE product is
implemented as a single process, multiple processes on the same node, or multiple
processes on multiple nodes.

In addition, J2EE product providers must support transactional applications that are
comprised of servlets or JSP pages accessing multiple enterprise beans within a
single transaction. Each component may also acquire one or more connections to
access transactional resources. J2EE product providers must support scenarios where
multiple components in an application access transactional resources as part of a
single transaction.

The J2EE platform specification requires J2EE platform products to support resource
adapters at the XATr ansact i on level as a transactional resource. It must be possible
to access such resource adapters from multiple application components within a
single transaction.

The connector architecture has an additional requirement that is applicable to
resource adapters that support local transactions. Note that both

Local Transacti on and XATr ansact i on resource adapters support local
transactions.

Application server must use local transactions in a scenario where the following
conditions hold:

= Multiple components are involved in a global transaction scope.

= Components use a single resource adapter that is local transaction capable.

= Components get connections to the same EIS instance.

= Components have not specified the r es- shari ng- scope flag as unshar eabl e.
This condition accounts for potential sharing of connections in terms of security
context, client-specific connection parameters, and EIS specific configuration.

Note that this requirement does not apply to a local transaction that is started by a
component using an application level transaction demarcation API that is specific to
a resource adapter.

Application server may use connection sharing mechanisms to implement this local
transaction requirement.

Application servers must support transaction scenarios where access to a non-
transactional resource is combined with access to one or more transactional
resources within a single transaction. For example, in a container-managed
transaction, an EJB accesses JDBC and JMS resources and also accesses a non-
transactional EIS using its resource adapter. If there is a failure during the above
scenario, transactional resource managers operating under the transaction should
rollback, but the recovery of the non-transactional resource is unspecified in this
specification.

J2EE Connector Architecture Specification « November 2003

7.10.2

The application server is not required to support any additional transaction
scenarios beyond the above set of scenarios. A J2EE application should not depend
on an application server’s support for any optional transaction scenarios. The
application should also not depend on whether or not the container detects that a
specific optional transaction scenario is illegal. Any errors in optional transaction
scenarios are considered application programming errors.

Illustrative Scenarios

The following are examples of optional transaction scenarios. The following section
also describes, in a non-prescriptive manner, issues in support for these scenarios by
an application server:

= Within a transaction, an EJB component acquires connections to two different
resource managers X and Y using their respective non-XA local transaction
capable resource adapters.

The container cannot manage a local transaction across two different resource
managers. Since resource adapters and underlying resource managers are not XA
capable, the container cannot use XA in this case. However, a J2EE application
should not depend on the container to detect this illegal scenario.

= Within a transaction, EJB component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, EJB
component B under the same transaction context acquires a connection to a
different resource manager Y using a non-XA local transaction capable resource
adapter

The container cannot manage a local transaction across two different resource
managers. Since resource adapters are not XA capable, the container cannot use
XA in this case. However, a J2EE application should not depend on the container
to detect this illegal scenario.

= Within a transaction, EJB component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, the
same EJB (or EJB B) under the same transaction context acquires a connection to a
different resource manager Y using an XA capable resource adapter

This scenario may be supported if the transaction manager supports last resource
commit optimization. Since this optimization feature is optional and not specified
in the connector architecture, a J2EE application should not depend on support
for this scenario.

= Within a transaction, EJB A acquires a connection to a resource manager X using
an XA capable resource adapter. Next, the same EJB component (or another EJB
component B) under the same transaction context acquires a connection to a
different resource manager Y using a non-XA local transaction capable resource
adapter

Chapter 7 Transaction Management ~ 7-39

This scenario may be supported if the transaction manager supports last resource
commit optimization. Since this optimization feature is optional and not specified
in the connector architecture, a J2EE application should not depend on support
for this scenario.

7.10.3 Scenario: Local Transaction

The following scenario illustrates the use of the connection sharing mechanism to
implement requirement for a local transaction to span components.

In this scenario, two EJB components get connections to the same EIS resource
manager within a single transaction. Both EJB components use the same local
transaction capable resource adapter.

A local transaction is associated with a single physical connection. Both EJB
components in this scenario share the same physical connection under the local
transaction scope. The container has the responsibility of managing connection
sharing as illustrated in the following scenario.

To share a physical connection in the local transaction scope, the container assumes
the connection to be shareable unless it has been marked unshar eabl e in the r es-
shari ng- scope. The container uses connection sharing in a manner that is
transparent to application components.

In FIGURE 7-10, the stateful session beans A and B have container-managed
transaction demarcation with the transaction attribute set to Requi r ed. Both A and
B access a single EIS resource manager as part of their business logic.

FIGURE 7-10 Scenario to illustrate Local Transaction Management

_ client EJB A EIBB
Invocation

\Container

Local Transaction Contract

The following steps happen in this scenario:

7-40 J2EE Connector Architecture Specification « November 2003

The client invokes a method on session bean A with no transaction context. In its
method implementation, the EJB A acquires a connection to the EIS instance.
When acquiring the connection, the container starts a local transaction by
invoking the begi n method of the j avax. r esour ce. spi . Local Transacti on
instance. The local transaction is tied to the ManagedConnect i on instance that is
associated with the connection handle acquired by the component in the previous
step.

After the local transaction starts, any recoverable unit of work performed by A on
the EIS resource manager using the acquired connection is automatically included
under the local transaction context.

Session bean A now invokes a method on the session bean B instance. In this
scenario, A does not close the connection handle before invoking the method on
B.

Note — A container should ensure that the connection sharing mechanism is equally
applicable if A were to close the connection handle before calling the B instance.

In the invoked method, B makes a request to acquire a connection to the same EIS
resource manager.

The container returns a connection handle using the same ManagedConnecti on
instance that was used for handling the connection request from A.

The container retains the association of the ManagedConnect i on instance with
the local transaction context across the method invocation from A to B. This
means that any unit of work that B will perform on the EIS resource manager
using its acquired connection handle will be automatically included as part of the

Chapter 7 Transaction Management 7-41

current local transaction. The connection state, for example, any open cursors, can
also be retained across method invocations when the physical connection is
shared.

7-42 J2EE Connector Architecture Specification « November 2003

FIGURE 7-11 OID: Connection Sharing across Component instances

o Component Group that allows
Application Server | ocal Transaction Management

. ManagedConnection
ntainer .
Containe EJB A EJB B LocalTransaction

javax.resource.cci.
| I I I Connection

Pre-condition: Container decides to perform connection sharing and local
transaction management.

i | |

The container dispatches client-initiated
business method to EJB A

[Connection Request]

ManagedConnection.getConnection

LocalTransactipn.begin

| >

EJB A gets a connection handle and performs unit of work
on the EIS resource manager

Method Invogation

Connection Request

ManaggdConnection.getConnection

v

EJB B gets an EIS connection and performs its
unit of work on EIS resource manager under the
local transaction context

close

close

A 4

|

’ Business method ends without any application error

LocalTransaction.commit

v

’ Local Transaction Completed

ManagedConnectior).cleanup

Connection cleanup done and
default state is restored

Chapter 7 Transaction Management 7-43

7-44

= Before the method invocation on B completes, B calls the cl ose method on the
connection handle. The container should not initiate any cleanup of the physical
connection at this time since there is still an uncompleted local transaction
associated with the shared physical connection. In this scenario, the cleanup of a
physical connection refers to the dissociation of the local transaction context from
the ManagedConnect i on instance.

= When A regains control, A can use the same connection handle, provided A had
not called the cl ose method on the connection handle, to access EIS resources.
All recoverable units of work on the EIS resource manager will be included in the
existing local transaction context.

Note — If A closes the connection handle before calling B, and then reacquires the
connection handle when regaining control, the container should ensure that the local
transaction context stays associated with the shared connection.

= A eventually calls the cl ose method on its connection handle. The container gets
a connection close event notification based on the scenario described in
Section 6.8.3, “Scenario: Connection Event Notifications and Connection Close”
on page 6-40.

= Since there is an incomplete local transaction associated with the underlying
physical connection, the container does not initiate a cleanup of the
ManagedConnect i on on receiving the connection close event notification. The
container must still go through the completion process for the local transaction.

= When the business method invocation on A completes successfully without any
application error, the container starts the completion protocol for the local
transaction. The container calls the Local Tr ansacti on. conm t method to
commit the transaction.

= After the local transaction completes, the container initiates a cleanup of the
physical connection instance by calling the ManagedConnect i on. cl eanup
method.

Note — The container should initiate cleanup of the ManagedConnect i on instance
in the case where A does not call the cl ose method on the connection handle before
returning. The container identifies the need for cleaning up the

ManagedConnect i on instance based on the scope of connection sharing.

= On the cl eanup method invocation, the ManagedConnect i on instance does a
cleanup of its local transaction related state and resets itself to a default state.

= The container returns the physical connection to the pool for handling subsequent
connection requests.

J2EE Connector Architecture Specification « November 2003

7.11

7.11.1

<Session Bean>
_ client
invocation <Entity Bean>
. client
Invocation
<Session Bean>

Connection Association

According to the connection management contract, a connection handle is created
from a ManagedConnect i on instance using the

ManagedConnect i on.get Connecti on method. A connection handle maintains an
association with the underlying ManagedConnect i on instance.

Scenario

In the scenario shown in FIGURE 7-12, session bean A acts as a client of entity bean C
and makes invocations on methods of entity bean C. Another session bean B also
acts as a client of entity bean C. The C is an entity bean that may be shared across
multiple clients.

A, B and C get connections to the same EIS. These EJB components have marked
res-shari ng- scope for these connections to be shar eabl e.

A and C define a connection sharing scope. Both A and C share the same physical
connection across a transaction that spans methods on A and C. Similarly, B and C
define another connection sharing scope. B and C also share the same physical
connection across a transaction that spans two components.

FIGURE 7-12 Connection Sharing Scenario

Container

In this scenario, entity bean C obtains an application-level connection handle using
the method get Connect i on on the Connect i onFact ory during its creation. Entity
bean C holds the connection handle during its lifetime.

Chapter 7 Transaction Management 7-45

A gets a connection handle and invokes a method on C. At a different time, B gets a
connection handle and invokes a method on C.

In both cases, depending on the connection sharing scope, defined in terms of the
shared physical ManagedConnect i on instance, in which C is called, the container
supports a mechanism to associate the connection handle held by C as part of its
state with the current ManagedConnect i on instance.

FIGURE 7-13 State Diagram of Application-Level Connection Handle

_-—-~. ManagedConnecti on.
7 ~,associ at eConnect i on
L |
ManagedConnect i on. . L/
get Connecti on Active «--

»

> associated with a
ManagedConnect i on

Connecti on.cl ose

v
Closed

no longer associated with a
ManagedConnecti on

7.11.2 Connection Association

7-46

The interface ManagedConnect i on defines method associ at eConnecti on as
follows:

public interface javax.resource.spi.MinagedConnection {
public void associ at eConnecti on(Obj ect connecti on)
t hrows Resour ceExcepti on;

The container uses the associ at eConnect i on method to change the association of
an application-level connection handle with a ManagedConnect i on instance. The
container finds the right ManagedConnect i on instance, depending on the
connection sharing scope, and calls the associ at eConnect i on method. To achieve

J2EE Connector Architecture Specification « November 2003

7.11.3

this, the container needs to keep track of connection handles acquired by component
instances and ManagedConnect i on instances using an implementation-specific
mechanism.

The associ at eConnect i on method implementation for a ManagedConnect i on
should dissociate the connection handle passed as a parameter from its currently
associated ManagedConnect i on and associate the new connection handle with
itself.

Note that the switching of connection associations must happen only for connection
handles and ManagedConnect i on instances that correspond to the same
ManagedConnect i onFact ory instance. The container should enforce this restriction
in an implementation-specific manner. If a container cannot enforce the restriction,
the container should not use the connection association mechanism.

Requirements

The container must provide a mechanism to change the association of a connection
handle to different ManagedConnect i on instances depending on the connection
sharing and transaction scope. This mechanism is used in scenarios where
components hold on to connection handles across different local transaction and
connection sharing scopes.

The container may use the connection association mechanism in the XAResour ce-
based transaction management contract.

The resource adapter must implement the associ at eConnecti on method to
support connection sharing. The container makes a decision on whether or not to use
the associ at eConnect i on method implemented by a resource adapter. The
support for this method is required independent of the transaction support level of
the resource adapter. Note that the container makes the decision to invoke the
associ at eConnect i on method.

7.12

Local Transaction Optimization

If all the work done as a part of a transaction uses a single resource manager, the
application server can use a local transaction in place of an externally coordinated
JTA transaction. The use of a local transaction avoids the overhead of initiating a
global transaction, and involving the TM for transaction coordination, and leads to
more optimized performance.

Since a typical application accesses a single resource manager, the local transaction
optimization is a useful performance enhancement for transaction management.

Chapter 7 Transaction Management 7-47

7.12.1

The application server manages local transaction optimization transparent to the
J2EE application. Whenever a container-managed or bean-managed transaction is
started, the container may attempt local transaction optimization.

When the transaction begins, a container cannot determine beforehand whether or
not the unit of work done as part of this transaction will use a single resource
manager. The container uses an implementation-specific mechanism to achieve local
transaction optimization. For example, the container can choose to start a local
transaction when the first resource manager is accessed and lazily start a JTA
transaction only when more than one resource managers are accessed in an existing
transaction. The mechanism through which the application server and its transaction
manager coordinates the initial local transaction and lazily started JTA transactions is
outside the scope of the connector specification. Refer to the J2EE platform
specification (Section 8., “Java 2 Platform Enterprise Edition (J2EETM), Platform
specification, version 1. 4:” on page F-1) for more details on the local transaction
optimization.

Requirements

The container is not required to support the local transaction optimization.

7.13

7.13.1

Requirements

The following section outlines the requirements for the transaction management
contract.

Resource Adapter

A resource adapter can be classified based on the level of transaction support, as
follows:

= NoTransacti on—The resource adapter supports neither resource manager local
nor JTA transactions. It implements neither the XAResour ce nor
Local Transact i on interfaces.

= Local Transacti on—The resource adapter supports resource manager local
transactions by implementing the Local Tr ansact i on interface. The local
transaction management contract is specified in Section 7.7 “Local Transaction
Management Contract”.

7-48 J2EE Connector Architecture Specification « November 2003

7.13.1.1

7.13.2

= XATransact i on—The resource adapter supports both resource manager local
and JTA transactions by implementing the Local Transacti on and XAResour ce
interfaces. The requirements for supporting the XAResour ce-based contract are
specified in Section 7.6 “XAResource-based Transaction Contract”.

Note — Other levels of support (includes any transaction optimizations supported
by an underlying resource manager) are outside the scope of the connector
architecture.

The above levels reflect the major steps of transaction support that a resource
adapter needs to make to allow external transaction coordination. Depending on its
transactional capabilities and the requirements of its underlying EIS, a resource
adapter can choose to support any one of the above transaction support levels.

Auto Commit

When a connection is in an auto-commit mode, an operation on the connection
automatically commits after it has been executed. The auto-commit mode must be
off if multiple interactions have to be grouped in a single transaction, either local or
XA, and committed or rolled back as a unit.

A resource adapter must manage the auto-commit mode as follows:

= A transactional resource adapter, either at XATr ansacti on or
Local Transact i on level, must set the auto-commit mode to false within a
transaction, either local or XA, on a connection participating in the transaction.
This requirement holds for both container-managed and bean-managed
transaction demarcation.

= A transactional resource adapter must set the auto-commit mode to true, on
connections that are used outside a transaction.

Application Server

An application server must support resource adapters with all three levels of
transaction support—NoTr ansact i on, Local Tr ansact i on, and XATr ansacti on.

The following are the requirements for an application server for the transaction
management contract:

= The application server must support a transaction manager that manages
transactions using the JTA XAResour ce-based contract. The requirements for a
transaction manager to support an XAResour ce-based contract are specified in
Section 7.6.3 “Transaction Manager Requirements”.

Chapter 7 Transaction Management ~ 7-49

= The application server must use the Local Transact i on interface-based contract
to manage local transactions for a resource manager.

= The application server must use the deployment descriptor mechanism to
ascertain the transactional capabilities of a resource adapter. Refer to Section 17.3,
“Deployment” on page 17-6 for details on the deployment descriptor
specification.

= The application server must implement the Connecti onEvent Li st ener
interface to get transaction-related event notifications.

7.14

7.14.1

Connection Optimizations

The following describes two optional connection optimizations:

= Lazy connection association optimization
= Lazy transaction enlistment optimization

Lazy Connection Association Optimization

Application components may acquire connections through a Connect i onFact ory
object (resource-ref) obtained from the JNDI namespace. The connection(s) thus
obtained may be closed by the application before method completion, or may be
cached by the application for later use.

When a connection is cached by the application component, the cached connection
handle is considered active and remains associated with a ManagedConnect i on
instance from the application server’s connection pool. If the cached connection
handle is used infrequently, then the associated ManagedConnecti on instance
remains in hibernation during periods of non-use. This is because the application
server does not know when the hibernating ManagedConnect i on instance will be
used again by the application.

Such hibernating ManagedConnect i on instances result in suboptimal usage of
system resources. Avoiding hibernation of ManagedConnect i on instances leads to
more optimal resource utilization and better performance.

The following describes a mechanism that allows an application server to avoid
hibernating ManagedConnecti on instances (by dissociating the
ManagedConnect i on from its connection handles and using the freed
ManagedConnect i on instance for other applications). This mechanism also
provides a way to notify the application server when a dissociated connection
handle is used by the application, so that it can be associated with an appropriate
ManagedConnecti on instance.

7-50 J2EE Connector Architecture Specification « November 2003

FIGURE 7-14 on page 52 describes the processing of a get Connect i on method call
initiated by an application component (that is, when the application component first
acquires a connection). At a later point in time, the connection may be dissociated by
the application server by calling the di ssoci at eConnect i ons method on the
appropriate ManagedConnect i on instance. This dissociates the

ManagedConnect i on instance from all its connection handle objects.

When such a dissociated connection is used by the application (upon method re-
entry), it needs to be re-associated with an appropriate ManagedConnect i on
instance. FIGURE 7-15 on page 53 describes connection re-association processing.
The connection re-association processing depends on the connection notifying the
application server upon re-use (lazy re-association trigger). The connection object
invokes the associ at eConnect i on method on the Connect i onManager instance
in order to lazily re-associate itself with an appropriate ManagedConnect i on
instance.

Thus, a dissociate-able connection handle can exist in one of three states: Acti ve,
I nacti ve or Cl osed. FIGURE 7-16 on page 54 describes the state transitions of a
dissociatable connection handle. Note that the state | nact i ve applies only to
dissociatable connection handles.

Chapter 7 Transaction Management ~ 7-51

The application server may dissociate connections that are shareable. It must not
dissociate connections that are marked unshareable, however, since application-
specific state may be retained by a ManagedConnect i on instance.

FIGURE 7-14 Connection Acquisition Processing

ConnectionManager

4. getConnection(

Subject, ConnectionRequestinfo)
p| ManagedConnection

A

2. allocateConnection(

ConnectionFactory

1. getConnection(config)

App Component

3. createManagedConnection(Subject, ConnectionRequestinfo)
OR matchManagedConnections(ConnectionSet, Subject,
ConnectionRequestinfo)

ManagedConnectionFactory,
ConnectionRequestinfo)

ManagedConnectionFactory

7-52 J2EE Connector Architecture Specification « November 2003

FIGURE 7-15 Connection Re-association Processing

4. associateConnection(Connection)
ConnectionManager p| ManagedConnection

A

3. createManagedConnection(Subject, ConnectionRequestinfo)
OR matchManagedConnections(ConnectionSet, Subject,
ConnectionRequestinfo)

2. associateConnection(
Connection,
ManagedConnectionFactory,
ConnectionRequestinfo)

Connection

1. execute operation

App Component ManagedConnectionFactory

Chapter 7 Transaction Management ~ 7-53

FIGURE 7-16 State Diagram of a Dissociatable Application-level Connection Handle

ManagedConnect i on.
. associ at eConnecti on

' \

. ' ManagedConnect i on.

R » di ssoci at eConnecti ons
ManagedConnect i on. . > Inactive
get Connecti on (. Active . .
» valid and associated wi th valid but not associated with
v‘ ManagedConnection /. a ManagedConnecti on

ManagedConnect i on.
associ at eConnecti on

Connect i on.cl ose Connection. cl ose

ManagedConnect i on. cl eanup

Closed

invalid and not associated with
a ManagedConnecti on

7-54 J2EE Connector Architecture Specification « November 2003

71411

7.14.2

APl Additions

package javax.resource. spi;
i mport javax.resource. Resour ceExcepti on;

i nterface LazyAssoci at abl eConnecti onManager { // application
server
voi d associ at eConnecti on(
Chj ect connection, ManagedConnecti onFactory ntf,
Connect i onRequest I nfo i nfo)
t hrows Resour ceExcepti on;

}

i nterface Dissoci at abl eManagedConnection { // resource adapter
voi d di ssoci at eConnections() throws ResourceException;

}

Neither the application server nor the resource adapter must support this
optimization.

A resource adapter that does not support this optimization must provide a
ManagedConnect i on implementation that does not implement the

Di ssoci at abl eManagedConnecti on interface. This allows an application server
to detect that the resource adapter does not support this optimization.

An application server that does not support this optimization must provide a
Connect i onManager implementation that does not implement the

LazyAssoci at abl eConnect i onManager interface. This allows a resource adapter
to detect that the application server does not support this optimization. In reality, a
resource adapter will not call this method (in order to re-associate a connection)
since an application server that does not support this optimization would never
dissociate a connection.

There are no changes to the resource adapter deployment descriptor since the
application server can programmatically detect whether a resource adapter supports
this optimization or not.

Lazy Transaction Enlistment Optimization

Transactions may be started by an application server before a method call on an
application component or it may be started by an application component during a
method call. It is also possible that an application server may use a transaction
imported from a different server during a method call.

Chapter 7 Transaction Management 7-55

7.142.1

Irrespective of how a transaction is started, an application server enlists all
connections (cached or newly acquired by an application component) with the
transaction, so that the work done using those connections will be part of the
transaction. This enlistment happens before the method call in the case of cached
connections and during the method call when connections are newly acquired
within the transaction.

But not all the connections that are cached or newly acquired by an application
component may be used within a transaction. Since the application server does not
know whether these connections would be used within the transaction, it statically
(eagerly) enlists all such connections with the transaction. Thus, connections that are
not used in a transaction are unnecessarily enlisted, which leads to sub-optimal
performance.

The following describes a dynamic mechanism that allows the application server to
enlist only those connections that are used within a transaction. A
ManagedConnect i on that supports this optimization must invoke the | azyEnl i st
method on the Connecti onManager every time it is used outside of a local or XA
transaction. The application server uses this method call to lazily enlist the
connection in the transaction (if there is one). The application server may delist the
ManagedConnect i on instances from the transaction at a later point.

This optimization can be used only on connections that are lazily enlist-able.

APl Additions

package javax.resource. spi;

i mport javax.resource. ResourceExcepti on;
i mport javax.transaction. xa. Xi d;

i nterface LazyEnli stabl eConnecti onManager { // application server
voi d | azyEnl i st (ManagedConnecti on) throws ResourceExcepti on;

}

i nterface LazyEnli stabl eManagedConnection { // resource adapter

}

Neither the application server nor the resource adapter must support this
optimization.

A resource adapter that does not support this optimization must provide a
ManagedConnect i on implementation which does not implement the

LazyEnl i st abl eManagedConnecti on interface. This allows an application server
to detect that the resource adapter does not support this optimization.

7-56 J2EE Connector Architecture Specification « November 2003

An application server that does not support this optimization must provide a
Connect i onManager implementation that does not implement the

LazyEnl i st abl eConnecti onManager interface. This allows a resource adapter to
detect that the application server does not support this optimization.

There are no changes to the resource adapter deployment descriptor since the
application server can programmatically detect whether a resource adapter supports
this optimization or not.

Chapter 7 Transaction Management 7-57

7-58 J2EE Connector Architecture Specification « November 2003

CHAPTER 8

Security Architecture

The following chapter specifies the security architecture for the integration of EISs
with the J2EE platform. It adds EIS integration-specific security details to the
security requirements specified in other J2EE specifications.

8.1 Overview

It is critical that an enterprise be able to depend on the information in its EIS for its
business activities. Any loss or inaccuracy of information or any unauthorized access
to the EIS can be extremely costly to an enterprise. There are several mechanisms
that can be used to protect an EIS against such security threats, including:

= Identification and authentication of principals, human users to verify they are
who they claim to be.

= Authorization and access control to determine whether a principal is allowed to
access an application server and/or an EIS.

= Secure communication between an application server and an EIS. Communication
over insecure links can be protected using a protocol, for example, Kerberos, that
provides authentication, integrity, and confidentiality services. Communication
can also be protected by using a secure link protocol, for example, SSL.

8.2 Goals

The security architecture is designed to meet the following goals:

= Extend the end-to-end security model for J2EE applications to include integration
with EISs based on the connector architecture.
= Support authentication and authorization of users who are accessing EISs.

8-1

Keep the security architecture technology neutral and enable the specified
security contract to be supported by various security technologies.

Enable the security architecture to support a range of EISs with different levels of
security support and existing security environments.

Support security configuration of a resource adapter in an operational
environment.

Keep the security model for connector architecture-based EIS integration
transparent to an application component provider. This includes providing
support for single sign-on across multiple EISs.

The security model for EIS integration is not designed to:

8.3

8-2

Mandate a specific technology and describe how it can be used to implement the
security architecture for connector architecture-based EIS integration.

Specify and mandate a specific security policy. The security architecture enables

an application server and EIS to support the implementation and administration
of security policies based on their respective requirements.

Terminology

The following terms are used in this chapter:

Pri nci pal: A principal is an entity that can be authenticated by an authentication
mechanism deployed in an enterprise. A principal is identified using a

princi pal name and authenticated using aut henti cati on dat a. The content
and format of the principal name and the authentication data depend upon the
authentication mechanism.

Security Attributes: A principal has a set of security attributes associated with it.
These security attributes are related to the authentication and authorization
mechanisms. Some examples are security permissions, and credentials for a
principal.

Credential: A credential contains or references security information that can
authenticate a principal to additional services. A principal acquires a credential
upon authentication or from another principal that allows its credential to be
used. The latter is termed pri nci pal del egati on.

End user: An end user is an entity, human or service, that acts as a source of a
request to an application. An end user is represented as a security principal
within a Subj ect as specified in the JAAS framework (“Java Authentication and
Authorization Service, version 1.0:” on page F-1).

Initiating Principal: The security principal representing the end-user that interacts
directly with the application. An end-user can authenticate using either a web
client or an application client.

J2EE Connector Architecture Specification + November 2003

= Caller Principal:A principal that is associated with an application
component instance during a method invocation. For example, an EJB instance
can call the get Cal | er Pri nci pal method to get the principal associated with
the current security context.

= Resource Principal: A security principal under whose security context a
connection to an EIS instance is established.

= Security domai n: A scope within which certain common security mechanisms
and policies are established. This specification does not specify the scope of a
security domain. An enterprise can contain more than one security domain. Thus
an application server and an EIS may either be in the same or different security
domains. Appendix D, “Security Scenarios” provides illustrative examples of how
security domains can be setup and managed.

In a managed environment, application components are deployed in web or EJB
containers. When a method gets invoked on a component, the principal associated
with the component instance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on
the principal delegation option for inter-container and inter-component calls. This
form of principal delegation is out of the scope of the connector architecture.

The relationship of a resource principal and its security attributes, for example,
credentials and access privileges, to an initiating or caller principal depends on how
the resource principal has been setup by the system administrator or deployer.

Refer to Section 9.1.1, “Interfaces and Classes” on page 9-1 for details on interfaces
and classes that are used to represent a resource principal and its credentials.

8.4

Application Security Model

The following section is a brief summary of the security model from the perspective
of an application component provider. Refer to the relevant specifications for more
detail.

The application component requests a connection to be established under the
security context of a resource principal. The security context includes security
attributes—access privileges, authorization level—for a resource principal. Once a
connection is successfully established, all application-level invocations to the EIS
instance using the connection happen under the security context of the resource
principal.

The application component provider has the following two choices related to EIS
sign-on:

Chapter 8 Security Architecture 8-3

8.4.1

= Allow the deployer to set up the resource principal and EIS sign-on information.
For example, the deployer sets the user name and password for establishing a
connection to an EIS instance.

= Perform sign-on to an EIS from the component code by providing explicit security
information for a resource principal.

The application component provider uses a deployment descriptor element, for
example, res- aut h for EJB components, to indicate the requirements for one of the
above two approaches. If the r es- aut h element is set to Appl i cati on, the
component code performs a programmatic sign-on to the EIS. If the res-aut h
element is Cont ai ner, the application server takes on the responsibility of setting
up and managing EIS sign-on.

Scenario: Container-Managed Sign-on

The application component provider sets the r es- aut h deployment descriptor
element to be Cont ai ner letting the application server take the responsibility of
managing EIS sign-on.

The Deployer sets up the principal mapping such that the user account for
connecting to the EIS instance is always eSt or eUser. The Deployer also
configures the authentication data, for example, the password, needed to
authenticate the eSt or eUser to the EIS.

The component code invokes the get Connect i on method on the

Connect i onFact ory instance with no security-related parameters. The
component relies on the application server to manage sign-on to the EIS instance
based on the security information configured by the Deployer.

/1 Method in an application conponent
Context initctx = new Initial Context();

/1 perform JNDI | ookup to obtain connection factory
j avax. resource. cci . Connecti onFactory cxf =
(j avax. resource. cci . Connecti onFactory)initctx.| ookup(
“java: conp/ env/ ei s/ WEI S");

/'l Invoke factory to obtain a connection. The security
I/ information is not passed in the getConnection method
j avax. resource. cci. Connection cx = cxf.getConnection();

8-4 J2EE Connector Architecture Specification + November 2003

8.4.2

Scenario: Component-Managed Sign-on

The application component provider sets the r es- aut h element to be
Application.

The component code performs a programmatic sign-on to the EIS. The application
component passes explicit security information, for example, the username and
password, to the get Connect i on method of the Connect i onFact ory instance.

/1 Method in an application conmponent
Context initctx = new Initial Context();

/1 perform JNDI | ookup to obtain connection factory
j avax. resource. cci . Connecti onFactory cxf =
(javax. resource. cci . Connecti onFactory)initctx.| ookup(
“java: conp/ env/eis/ WEIS");

/1l Invoke factory to obtain a connection

com nyei s. Connecti onSpecl npl properties = .. // get a new
Connect i onSpec

properties.setUserNane(“...");
properties.setPassword(“...");

j avax. resource. cci . Connecti on cx = cxf. get Connecti on(properties);

8.5

EIS Sign-on

Creating a new physical connection requires a sign-on to an EIS instance. Changing
the security context on an existing physical connection can also require EIS sign-on.
The latter is termed re-authentication.

An EIS sign-on typically involves one or more of the following steps:

= Determine a resource principal under whose security context a physical
connection to an EIS will be established.

= Authenticate a resource principal if it is not already authenticated.

= Establish a secure association between the application server and the EIS. This
enables additional security mechanisms, for example, data confidentiality and
integrity, to be applied to communication between the two entities.

= Set the access control to EIS resources.

Chapter 8 Security Architecture 8-5

8.5.1

8.5.2

Authentication Mechanism

An application server and an EIS collaborate to ensure resource principals are
properly authenticated when the principal connects to the underlying EIS. The
connector architecture identifies the following as the commonly-supported
authentication mechanisms:

= Basi cPasswor d: Basic password based authentication mechanism specific to an
EIS
= Ker bv5: Kerberos version 5-based authentication mechanism

The aut henti cati on- mechani smt ype element is used in the deployment
descriptor to specify whether or not a resource adapter supports a specific
authentication mechanism. Refer to Section 17.5.4, “Requirements” on page 17-23 for
more details on the specification of the deployment descriptor for a resource adapter.

The connector architecture does not require that a specific authentication mechanism
be supported by an application server and an EIS. An application server may
support any other authentication mechanisms for EIS sign-on. The connector
security architecture is independent of security mechanisms.

Resource Principal

When an application component requests a connection from a resource adapter, the
connection request is made under the security context of a resource principal. The
Deployer can set a resource principal based on the following options:

= Configured ldentity: In this case, a resource principal has its own configured
identity and security attributes independent of the identity of the initiating or
caller principal. The identity of the resource principal can be configured either at
deployment time or specified dynamically by a component at the connection
creation. The scenario described in Section D.1, “EStore Application” on page D-1
illustrates an example where connections to an EIS are always established under
the security context of a valid EIS user account. This happens independent of the
initiating or caller principal. For example, if a caller principal is A, then the
configured resource principals can be B and C on two different EIS instances,
where A, B, and C are independent identities.

= Principal Mapping: A resource principal is determined by mapping from the
identity and/or security attributes of the initiating or caller principal. In this case,
a resource principal does not inherit identity or security attributes of a principal
that it has been mapped from. The resource principal gets its identity and security
attributes based on the mapping. For example, if the caller principal has identity
A, then the mapped resource principal is mappi ng(A, El S1) and mappi ng(A,
El S2) on two different EIS instances.

8-6 J2EE Connector Architecture Specification + November 2003

8.5.3

= Caller Impersonation: A resource principal acts on behalf of an initiating or caller
principal. Acting on behalf of a caller principal requires that the caller’s identity
and credentials be delegated to the EIS. The mechanism by which this is
accomplished is specific to a security mechanism and an application server
implementation. An example of the impersonation is described in Section D.2,
“Employee Self Service Application” on page D-4.

In some scenarios, a caller principal can be a delegate of an initiating principal. In
this case, a resource principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism.
For example, Kerberos supports a mechanism for the delegation of authentication.
Refer to the Kerberos v5 specification for more details. The security technology
specific details are out of the scope of the connector architecture.

= Credentials Mapping: This mechanism may be used when an application server
and EIS support different authentication domains. For example, the initiating
principal has been authenticated and has public key certificate-based credentials.
The security environment for the EIS is configured with the Kerberos
authentication service. The application server is configured to map the public key
certificate-based credentials associated with the initiating principal to the
Kerberos credentials. In this case, the resource principal is the same as the caller
principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same
identity as the initiating or caller principal. For example, a principal with identity
A has initial credentials cr ed(A, nechl) and has credentials cr ed(A, nech?2)
after mapping. mechl1 and mech2 represents different mechanism types.

Authorization Model

Authorization checking to ensure that a principal has access to an EIS resource can
be applied at one or more of the following:

= At the EIS.
= At the application server.

Authorization checking at the target EIS can be done in an EIS-specific way and is
not specified here. For example, an EIS can define its access control policy in terms
of its specific security roles and permissions.

Authorization checking can also be done at the application server level. For example,
an application server can allow a principal to create a connection to an EIS only if
the principal is authorized to do so. J2EE containers such as EJB and servlet
containers support both programmatic and declarative security that can be used to
define authorization policies. Programmatic and declarative security are defined in

Chapter 8 Security Architecture 8-7

8.5.4

the individual specifications. Refer to the EJB and servlet specifications for more
details. An application component developer developing components for EIS access
must follow the requirements defined in these specifications.

Secure Association

The communication between an application server and an EIS can be subject to
security threats such as data modification and loss of data. Establishing a secure
association counters such threats. A secure association is shared security information
that allows a component on the application server to communicate securely with an
EIS.

Establishing a secure association includes several steps:

= The resource principal is authenticated to the EIS. This may require that the target
principal in the EIS domain authenticate itself back to the application server. A
target principal can be set up by the system administrator as a security principal
associated with a running EIS instance or specific EIS resource.

= Negotiate quality of protection such as confidentiality and integrity.

= A pair of communicating entities—an application server and an EIS
instance—establish a shared security context using the credentials of the resource
principal. The security context encapsulates shared state information, required so
that communication between the application server and the EIS can be protected
through integrity and confidentiality mechanisms. Examples of shared state
information are cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established
by the resource adapter implementation. Note that a resource adapter library runs
within the address space of the application server.

A resource adapter can use any security mechanism to establish the secure
association. GSS-API (refer to IETF draft on GSS-API v2[5]) is an example of such a
mechanism. Note that the connector architecture does not require use of the GSS-API
by a resource adapter or application server.

Configuring a mechanism for establishing secure associations is outside the scope of
the connector architecture. This includes setting up the desired quality of protection
during secure communication.

Once a secure association is successfully established, the connection is associated
with the security context of the resource principal. Subsequently, all application-level
invocations to the EIS instance using the connection happen under the security
context of the resource principal.

8-8 J2EE Connector Architecture Specification + November 2003

8.6

8.6.1

8.6.2

Roles and Responsibilities

This section describes various roles involved in the security architecture. It also
describes responsibilities of each role from the security perspective.

The roles and responsibilities of the Application Component Provider and Deployer
are specified in detail in the respective J2EE component model specifications.

Application Component Provider

The following features are common across different J2EE component models from
the perspective of an Application Component Provider:

= An Application Component Provider invariably avoids the burden of securing its
application and focuses on developing the business functionality of its
application.

= A security-aware Application Component Provider can use a simple
programmatic interface to manage security at an application level. The
programmatic interface enables the Application Component Provider to program
access control decisions based on the security context—the principal and
role—associated with the caller of a method and to manage programmatic sign-on
to an EIS.

= An Application Component Provider specifies security requirements for its
application declaratively in a deployment descriptor. The security requirements
include security roles, method permissions, and an authentication approach for
EIS sign-on.

= More qualified roles—Application Server Vendor, Deployer, System
Administrator—have the responsibility of satisfying overall security requirements
through the deployment mechanism for resource adapters and components, and
managing the security environment.

Deployer

The Deployer specifies security policies that ensure secure access to the underlying
EISs from application components. The deployer adapts the intended security view of
an application for EIS access, specified through a deployment descriptor, to the
actual security mechanisms and policies used by the application server and EISs in
the target operational environment. The Deployer uses tools to accomplish the above
task.

Chapter 8 Security Architecture 8-9

The output of the Deployer’s work is a security policy descriptor specific to the
operational environment. The format of the security policy descriptor is specific to
an application server.

The Deployer performs the following deployment tasks for each connection factory
reference declared in the deployment descriptor of an application component:

= Provides a connection factory specific security configuration that is needed for
opening and managing connections to an EIS instance.

= Binds the connection factory reference in the deployment descriptor of an
application component to the JNDI registered reference for the connection factory.
Refer to Section 17.5, “JNDI Configuration and Lookup” on page 17-13 for the
JNDI configuration of a connection factory during deployment of a resource
adapter. The deployer can use the JNDI Li nkRef mechanism to create a symbolic
link to the actual JNDI name of the connection factory.

= If the value of the r es- aut h deployment descriptor element is Cont ai ner, the
Deployer is responsible for configuring the security information for EIS sign-on.
For example, the Deployer sets up the principal mapping for EIS sign-on.

8.6.3 Application Server

The application server provides a security environment with specific security
policies and mechanisms that support the security requirements of the deployed
application components and resource adapters, thereby ensuring a secure access to
the connected EISs.

The typical responsibilities of an application server are as follows:

= Provide tools to set up security information for a resource principal and EIS sign-
on when r es- aut h element is set to Cont ai ner. This includes support for
principal delegation and mapping for configuring a resource principal.

= Provide tools to support management and administration of its security domain.
For example, security domain administration can include setting up and
maintaining both underlying authentication services and trusts between domains,
plus managing principals, including identities, keys, and attributes. Such
administration is typically security technology specific and is outside the scope of
the connector architecture.

= Support a single sign-on mechanism that spans the application server and
multiple EISs. The security mechanisms and policies through which single sign-
on is achieved are outside the scope of the connector architecture.

The Appendix E, “JAAS Based Security Architecture” specifies how JAAS can be
used by an application server to support the requirements of the connector security
architecture.

8-10 J2EE Connector Architecture Specification « November 2003

8.6.4

8.6.5

8.6.6

EIS Vendor

EIS provides a security infrastructure and environment that supports the security
requirements of the client applications. An EIS can have its own security domain
with a specific set of security policies and mechanisms, or it can be set up as part of
an enterprise-wide security domain.

Resource Adapter Provider

The resource adapter provider provides a resource adapter that supports the security
requirements of the underlying EIS.

The resource adapter implements the security contract specified as part of the
connector architecture. Chapter 9, “Security Contract” specifies the security contract
and related requirements for a resource adapter.

The resource adapter specifies its security capabilities and requirements through its
deployment descriptor. Section 17.5.4, “Requirements” on page 17-23 specifies a
standard deployment descriptor for a resource adapter.

System Administrator

The system administrator typically works in close association with administrators of
multiple EISs that have been deployed in an operational environment. The system
administration tasks can also be performed by the Deployer.

The following tasks are illustrative examples of the responsibilities of the system
administrator:

= Set up an operational environment based on the technology and requirements of
the authentication service, and if an enterprise directory is supported.

= Configure the user account information for both the application server and the
EIS in the enterprise directory. The user account information from the enterprise
directory can then be used for authentication of users requesting connectivity to
the EIS.

= Establish a password synchronization mechanism between the application server
and the EIS. This ensures that the user’s security information is identical on both
the application server and the EIS. When an EIS requires authentication, the
application server passes the user’s password to the EIS.

Chapter 8 Security Architecture 8-11

8-12 J2EE Connector Architecture Specification « November 2003

CHAPTER 9

Security Contract

This chapter specifies the security contract between the application server and the
EIS. It also specifies the responsibilities of the Resource Adapter Provider and the
Application Server Vendor for supporting the security contract.

This chapter references the following chapters and documents:

= The security model specified in the J2EE platform specification (Section 8., “Java 2
Platform Enterprise Edition (J2EETM), Platform specification, version 1. 4:” on
page F-1).

= Security architecture specified in Chapter 8, “Security Architecture.”

= Security scenarios based on the connector architecture (Refer to Appendix D,
“Security Scenarios”).

9.1

9.1.1

Security Contract

The security contract between the application server and the resource adapter
extends the connection management contract (described in Chapter 6, “Connection
Management”) by adding security-specific details.

This security contract supports EIS sign-on by:

= Passing the connection request from the resource adapter to the application
server, enabling the application server to hook-in security services.

= Propagation of the security context, that is, JAAS Subj ect with principal and
credentials, from the application server to the resource adapter.

Interfaces and Classes

The security contract includes the following classes and interfaces:

9-1

9.1.2

9.1.3

Subject

The following text has been taken from the JAAS specification. For detailed
information, refer to the JAAS specification (Section 7., “Java Authentication and
Authorization Service, version 1.0:” on page F-1).

A Subj ect represents a grouping of related information for a single entity, such as a
person. Such information includes the Subject’s identities and its security-related
attributes, for example, passwords and cryptographic keys. A Subj ect can have
multiple identities. Each identity is represented as a Pri nci pal within the Subj ect .
A Princi pal simply binds a name to a Subj ect .

A Subj ect can also own security-related attributes, which are referred to as
Credenti al s. Sensitive credentials that require special protection, such as private
cryptographic keys, are stored within a private credential set.

The Credenti al s intended to be shared, such as public key certificates or Kerberos
server tickets, are stored within a public credential set. Different permissions are
required to access and modify different credential sets.

The get Pri nci pal s method retrieves all the principals associated with a Subj ect .
The methods get Publ i cCredenti al s and get Pri vat eCr edent i al s respectively
retrieve all the public or private credentials belonging to a Subj ect . The methods
defined in the Set class modify the returned set of principals and credentials.

Resource Principal

The interface j ava. security. Princi pal represents a resource principal. The
following code extract shows the Pri nci pal interface:

public interface java.security.Principal {
publ i ¢ bool ean equal s(Obj ect anot her);
public String getName();
public String toString();
public int hashCode();

The method get Nane returns the name of a resource principal.

An application server should use the Pri nci pal interface, or any derived interface,
to pass a resource principal as part of a Subj ect to a resource adapter.

9-2 J2EE Connector Architecture Specification « November 2003

9.1.4

GenericCredential

Note — This interface, introduced in Version 1.0 of this specification, has been
deprecated. The preferred way to represent generic credential information is via the
org.ietf.jgss. GSSCredenti al interface in J2SE Version 1.4, which provides
similar functionality.

The interface j avax. resour ce. spi . security. Generi cCredenti al definesa
security mechanism-independent interface for accessing the security credential of a
resource principal.

The Generi cCredenti al interface provides a Java wrapper around an underlying
mechanism-specific representation of a security credential. For example, the
Generi cCredenti al interface can be used to wrap Kerberos credentials.

The connector architecture does not define any standard format and requirements
for security mechanism specific credentials. For example, a security credential
wrapped by a Generi ¢ Credenti al interface can have a native representation
specific to an operating system.

Note — A contract for the representation of mechanism-specific credentials must be
established between an application server and a resource adapter and is outside the
scope of the connector architecture. This includes requirements for the exchange of
mechanism-specific credentials between a JAAS module and GSS provider. Refer to
Appendix E, “JAAS Based Security Architecture” for details on JAAS-based security
architecture.

The Generi cCredenti al interface enables a resource adapter to extract information
about a security credential. The resource adapter can then manage an EIS sign-on for
a resource principal by either:

= Using the credentials in an EIS specific manner if the underlying EIS supports the
security mechanism type represented by the Generi cCredenti al instance, or,

= Using GSS-AP | (Section 5., “RFC: Generic Security Service APl (GSS-API)
specification, version 2:” on page F-1) if the resource adapter and underlying EIS
instance support GSS-API.

Chapter 9 Security Contract 9-3

9141

9.1.4.72

Interface

The following code extract shows the Generi cCredenti al interface:

public interface javax.resource.spi.security. CGenericCredential {
public String getName();
public String get MechType();
public byte[] getCredenti al Data()
throws javax.resource. spi.SecurityException;

publi ¢ bool ean equal s(Obj ect anot her);
public int hashCode();

The Generi cCredenti al interface supports a set of getter methods to obtain
information about a security credential.

The method get Nane returns the name of the resource principal associated with a
Generi cCredenti al instance.

The method get MechType returns the mechanism type for the

Generi cCredenti al instance. The mechanism type definition for

Generi cCredenti al must be consistent with the Object Identifier (OID) based
representation specified in the GSS specification (Section 5., “RFC: Generic Security
Service API (GSS-API) specification, version 2:” on page F-1). In the

Generi cCredenti al interface, the mechanism type is returned as a stringified
representation of the OID specification.

The Generi cCredenti al interface can be used to get security data for a specific
security mechanism. An example is authentication data required for establishing a
secure association with an EIS instance on behalf of the associated resource
principal. The get Cr edent i al Dat a method returns the credential representation as
an array of bytes. Note that the connector architecture does not define a standard
format for the returned credential data.

Implementation

If an application server supports the deployment of a resource adapter which
supports Generi cCredenti al as part of the security contract, the application
server must provide an implementation of the Generi cCredenti al interface. Refer
to the deployment descriptor specification in Section 17.5.4, “Requirements” on
page 17-23 for details on how a resource adapter specifies its support for
GenericCredenti al .

9-4 J2EE Connector Architecture Specification « November 2003

9.1.5

9.15.1

9.1.6

GSSCredential

This interface org. i etf.jgss. GSSCredenti al isin J2SE Version 1.4. This
provides a mechanism to represent generic credential information. The functionality
provided by this interface is similar to the deprecated Generi cCr edent i al
interface.

Implementation

If an application server supports the deployment of a resource adapter which
supports GSSCr edent i al as part of the security contract, the application server
must provide an implementation of the GSSCr edent i al interface. Refer to the
deployment descriptor specification in Section 17.5.4, “Requirements” on page 17-23
for details on how a resource adapter specifies its support for GSSCr edent i al .

PasswordCredential

Theclassj avax. resource. spi . security. PasswordCredenti al actsasa holder
of username and password information. This class enables an application server to
pass the username and password to the resource adapter through the security
contract.

The method get User Nane gets the name of the resource principal. The interface
java. security. Principal represents a resource principal.

The Passwor dCr edent i al class must implement the equal s and hashCode
methods.

public final class javax.resource. spi.security.PasswordCredenti al
i mpl ements java.io.Serializable {
publ i ¢ PasswordCredential (String userName, char[] password) {

-}

public String getUserNane() { ... }

public char[] getPassword() { ... }

publ i ¢ ManagedConnect i onFact ory get ManagedConnecti onFact ory()
{ ...}

public void set ManagedConnecti onFact ory(
ManagedConnecti onFactory ncf) { ... }

publ i c bool ean equal s(Ooject other) { ... }

public int hashCode() { ... }

Chapter 9 Security Contract 9-5

The get ManagedConnect i onFact or y method returns the

ManagedConnect i onFact ory instance for which the user name and password has
been set by the application server. Refer to Section 9.1.8

“ManagedConnectionFactory”to see how a resource adapter uses this method.

9-6 J2EE Connector Architecture Specification « November 2003

9.1.7 ConnectionManager

The method al | ocat eConnecti on is called by the resource adapter’s connection
factory instance. This method lets the resource adapter pass a connection request to
the application server, so the application server can hook-in security and other
services.

public interface javax.resource. spi.Connecti onManager
extends java.io. Serializable {

public Object allocateConnection(

ManagedConnect i onFact ory ncf,

Connect i onRequest I nf o cxRequest | nf 0)
t hrows Resour ceExcepti on;

Chapter 9 Security Contract 9-7

FIGURE 9-1 Security Contract

— Architected contract

—— Implementation specific Application Component

D

Application Server Resource Adapter

ConnectionManager < ConnectionFactory

I

ManagedConnectionFactory,

Security Service
Manager

A 4

Enterprise Information System (EIS)

Depending on whether the application server or application component is
configured to be responsible for managing EIS sign-on (refer to Section 8.6.1,
“Application Component Provider” on page 8-9), the resource adapter calls the
Connecti onManager.al | ocat eConnecti on method in one of the following ways:

= Container-managed Sign-on: The application component passes no security
information in the get Connect i on method and the application server is
configured to manage EIS sign-on.

The application server provides the required security information for the resource
principal through its configured security policies and mechanisms, for example,
principal mapping. The application server requests the authentication of the

9-8 J2EE Connector Architecture Specification « November 2003

9.1.8

resource principal to the EIS either itself or passes authentication responsibility to
the resource adapter. This aspect is explained later in the specification of the
ManagedConnect i onFact ory interface.

= Component-managed Sign-on: In this case, the application component provides
explicit security information in the get Connect i on method. The resource
adapter invokes the al | ocat eConnect i on method by passing security
information in the Connect i onRequest | nf o parameter. Since the security
information in the Connect i onRequest | nf o0 is opaque to the application server,
the application server should rely on the resource adapter to manage EIS sign-on,
as explained in the ManagedConnect i onFact ory interface specification under
option C.

ManagedConnectionFactory

The following code extract shows the methods of the ManagedConnect i onFact ory
interface that are relevant to the security contract:

public interface javax.resource. spi.MnagedConnecti onFactory
extends java.io. Serializable {

publ i ¢ ManagedConnecti on creat eManagedConnecti on(
javax. security. aut h. Subj ect subject,
Connect i onRequest I nf o cxRequest | nf 0)

t hrows Resour ceExcepti on;

During the JNDI lookup, the ManagedConnect i onFact ory instance is configured
by the application server with a set of configuration properties. These properties
include default security information and EIS instance-specific information, such as
hostname and port number, required for initiating a sign-on to the underlying EIS
during the creation of a new physical connection.

The default security configuration on a ManagedConnect i onFact ory can be
overridden by security information provided either by a component, in component
managed sign-on, or by the container, in container-managed sign-on.

The cr eat eManagedConnect i on method is used by the application server when it
requests the resource adapter to create a new physical connection to the underlying
EIS.

Chapter 9 Security Contract 9-9

9.1.8.1

Contract for the Application Server

The application server may provide specific security services, such as principal
mapping and delegation, and single sign-on, before using the security contract with
the resource adapter. For example, the application server can map the caller
principal to a resource principal before calling the cr eat eManagedConnecti on
method to create a new connection under the security context of the resource
principal.

In container-managed sign-on, the application server is responsible for creating a
Subj ect instance using its implementation-specific security mechanisms and
configuration. This should happen before the application server calls the

cr eat eManagedConnect i on method of the ManagedConnect i onFact ory. The
resource adapter is driven by the application server and acts as consumer of security
information in the created Subj ect .

If the application server maintains a cache of the security credentials, such as
Kerberos ticket granting ticket (TGT), the application server should reuse the
credentials as part of the newly created Subj ect instance. For example, the
application server uses the

Subj ect. get Privat eCredenti al s().add(credential) method to add a
credential to the private credential set.

FIGURE 9-2 Security Contract: Subject Interface and its Containment Hierarchy

<class>
javax.security.auth.Subject

contains <]> contains

0 contains
-n 0-n

<class> . <interface>
PasswordCredential java.security.Principal

0-n

<interface>

GSSCredential

FIGURE 9-2 on page 10 shows the relationship between the Subj ect, Pri nci pal ,
Passwor dCr edenti al and GSSCr edenti al interfaces. Note that in the following
options A and B defined for cr eat eManagedConnect i on method invocation, the
Subj ect instance contains a single resource principal, represented as

java. security. Principal,and multiple credentials.

9-10 J2EE Connector Architecture Specification « November 2003

The application server has the following options for invoking the
cr eat eManagedConnecti on method:

Option A: The application server invokes the cr eat eManagedConnecti on
method by passing in a non-null Subj ect instance that carries a single resource
principal and its corresponding password-based credentials, represented by the
class Passwor dCr edent i al that provides the user name and password. The
Passwor dCr edent i al should be set in the Subj ect instance as part of the
private credential set. Note that the passed Subj ect can contain multiple
Passwor dCr edent i al instances.

The resource adapter extracts the username and password from this Subj ect
instance by looking for the Passwor dCr edent i al instance in the Subj ect, and
uses this security information to sign-on to the EIS instance during connection
creation.

Option B: The application server invokes the cr eat eManagedConnect i on
method by passing in a non-null Subj ect instance that carries a single resource
principal and its security credentials. In this option, credentials are represented
through the GSSCr edent i al interface. A typical example is a Subj ect instance
with Kerberos credentials.

For example, an application server may use this option for

cr eat eManagedConnect i on method invocation when the resource principal is
impersonating the caller or initiating principal, and has valid credentials acquired
through impersonation. An application server may also use this option for
principal mapping scenarios with credentials of a resource principal represented
through the GSSCr edent i al interface.

Note that sensitive credentials requiring special protection, such as private
cryptographic keys, are stored within a private credential set, while credentials
intended to be shared, such as public key certificates or Kerberos server tickets,
are stored within a public credential set. The two methods

get Pri vat eCredenti al s and get Publ i cCredenti al s should be used
accordingly.

In the case of Kerberos mechanism type, the application server must pass the
principal’s ticket granting ticket (TGT) to a resource adapter in a private
credential set.

The resource adapter uses the resource principal and its credentials from the
Subj ect instance to go through the EIS sign-on process before creating a new
connection to the EIS.

Option C: The application server invokes the cr eat eManagedConnecti on
method by passing a nul | Subj ect instance. The application server must use
this option for the component-managed sign-on case. In this option, security
information is carried in the Connect i onRequest I nf o instance. The application
server does not provide any security information that can be used by the resource
adapter for managing EIS sign-on.

Chapter 9 Security Contract 9-11

9.1.8.2

During the deployment of a resource adapter, the application server must be
configured to use one of the above specified invocation options. Refer to Chapter 17,
“Packaging Requirements” for more details.

Contract for Resource Adapter

A resource adapter can do EIS sign-on and connection creation in an
implementation-specific way, or it can use the GSS- API . The latter option is specified
in Appendix E, “JAAS Based Security Architecture.” A resource adapter has the
following options, corresponding to the options for an application server, for
handling the invocation of the cr eat eManagedConnect i on method:

Option A: The resource adapter explicitly checks whether the passed Subj ect
instance carries a Passwor dCr edent i al instance using the
Subj ect . get Pri vat eCredenti al s method.

Note that the security contract assumes that a resource adapter has the necessary
security permissions to extract a private credential set from a Subj ect instance.
The specific mechanism through which such permission is set up is outside the
scope of the connector architecture.

If the Subj ect instance contains a Passwor dCr edent i al instance, the resource
adapter extracts the username and password from the Passwor dCr edenti al . It
uses the security information to authenticate the resource principal,
corresponding to the username, to the EIS during the creation of a connection. In
this case, the resource adapter uses an authentication mechanism that is EIS
specific.

Since a Subj ect instance can carry multiple Passwor dCr edent i al instances, a
ManagedConnect i onFact ory should only use a Passwor dCr edent i al instance
that has been specifically passed to it through the security contract. The

get ManagedConnect i onFact ory method enables a

ManagedConnect i onFact ory instance to determine whether or not a

Passwor dCr edent i al instance is to be used for sign-on to the target EIS
instance. The ManagedConnect i onFact ory implementation uses the equal s
method to compare itself with the passed instance.

Option B: The resource adapter explicitly checks whether the passed Subj ect
instance carries a GSSCr edent i al instance using the get Pri vat eCredenti al s
and get Publ i cCredenti al s methods defined in the Subj ect interface.

In the case of Kerberos mechanism type, the resource adapter must extract
Kerberos credentials using the get Pri vat eCr edent i al s method in the Subj ect
interface.

The resource adapter uses the resource principal and its credentials, represented
by the GSSCr edent i al interface, in the Subj ect instance to go through the EIS
sign-on process. For example, this option is used for Kerberos-based credentials
that have been acquired by the resource principal through impersonation.

9-12 J2EE Connector Architecture Specification « November 2003

A resource adapter uses the getter methods defined in the GSSCr edent i al
interface to extract information about the credential and its principal. If a resource
adapter is using the GSS mechanism, the resource adapter uses a reference to the
GSSCr edent i al instance in an opaque manner and is not required to understand
any mechanism-specific credential representation. However, a resource adapter
may need to interpret credential representation if the resource adapter initiates
authentication in an implementation-specific manner.

Option C: If the application server invokes the
ManagedConnect i onFact ory. cr eat eManagedConnect i on method with a
nul I Subj ect instance, a resource adapter has the following options:

« The resource adapter should extract security information passed through the
Connect i onRequest | nf o instance. The resource adapter should authenticate
the resource principal by combining the configured security information on the
ManagedConnect i onFact ory instance with the security information passed
through the Connect i onRequest I nf o instance. The default behavior for the
resource adapter is to allow the security information in the
Connect i onRequest | nf o parameter to override the configured security
information in the ManagedConnect i onFact ory instance.

« If the resource adapter does not find any security configuration in the
Connect i onRequest | nf o instance, the resource adapter uses the default
security configuration in the ManagedConnect i onFact ory instance.

« If the EIS does not require authentication, the resource adapter does not need
any security information from the Connect i onRequest | nf o instance, and
hence may ignore such security information. This may happen due to a
disconnect between the application and the resource adapter.

In the case of option A and option B, a resource adapter should throw a

j avax. resource. spi . SecurityExcepti on, if the credential information
contained in the Subj ect instance is insufficient to perform authentication. A
non-null Subj ect instance with no credentials is not equivalent to a null

Subj ect instance, since they indicate different sign-on modes, and hence the
resource adapter may handle them differently. A non-null Subj ect instance with
no credentials may be interpreted by the resource adapter as follows:

« If the EIS requires authentication, the resource adapter should throw a
j avax. resource. spi . SecurityException. That is, an empty or
insufficient credential information is an error.

« If the EIS does not require authentication, the resource adapter does not need
any security information from the non-null Subj ect instance, and hence may
ignore the Subj ect instance. This may happen due to a disconnect between
the application and the resource adapter.

Chapter 9 Security Contract 9-13

9.1.9

ManagedConnection

A resource adapter can re-authenticate a physical connection (that is, one that
already exists in the connection pool under a different security context) to the
underlying EIS. A resource adapter performs re-authentication when an application
server calls the get Connect i on method with a security context, passed as a

Subj ect instance, different from the context previously associated with the physical
connection.

If a resource adapter supports re-authentication, the mat chManagedConnect i ons
method in ManagedConnect i onFact ory may return a matched

ManagedConnect i on instance with the assumption that the

ManagedConnect i on.get Connect i on method will later switch the security context
through re-authentication. Note that the mat chManagedConnect i ons method
should consider a ManagedConnect i on instance as immutable. There is no
authentication involved in the mat chManagedConnect i ons method.

Support for re-authentication depends on whether an underlying EIS supports the
re-authentication mechanism for existing physical connections. If a resource adapter
does not support re-authentication, the get Connect i on method should throw a

j avax. resource. spi. SecurityExcepti on if the passed Subj ect in the

get Connect i on method is different from the security context associated with the
ManagedConnect i on instance.

public interface javax.resource. spi.ManagedConnection {
publ i c Object getConnection(
j avax. security. aut h. Subj ect subject,
Connect i onRequest | nf o cxRequest | nf 0)
t hrows Resour ceExcepti on;

The get Connect i on method returns a new connection handle. If re-authentication
is successful, the resource adapter has changed the security context of the
underlying ManagedConnect i on instance to that associated with the passed

Subj ect instance.

A resource adapter has the following options for handling
ManagedConnecti on. get Connecti on invocation if it supports re-authentication:

= Option A: The resource adapter extracts the Passwor dCr edent i al instance from
the Subj ect and performs an EIS-specific authentication. This option is similar to
option A defined in the specification of the method cr eat eManagedConnect i on
on the interface ManagedConnect i onFact ory (refer to Section 9.1.8
“ManagedConnectionFactory™).

9-14 J2EE Connector Architecture Specification « November 2003

9.2

9.2.1

9.2.2

Option B: The resource adapter extracts GSSCr edent i al instance from the

Subj ect and manages authentication either through the GSS mechanism or an
implementation-specific mechanism. This option is similar to option B defined in
the specification of the method cr eat eManagedConnecti on on the interface
ManagedConnecti onFact ory (refer to Section 9.1.8
“ManagedConnectionFactory™).

Option C: In this case, the Subj ect parameter is nul | . The resource adapter
extracts security information from the Connect i onRequest | nf o (if there is any)
and performs authentication in an implementation-specific manner. This option is
similar to option C defined in the specification of the method

cr eat eManagedConnecti on on the interface ManagedConnect i onFact ory
(refer to Section 9.1.8 “ManagedConnectionFactory”).

Requirements

The following are the requirements defined by the security contract:

Resource Adapter

The following are the requirements defined for a resource adapter:

The resource adapter must support the security contract by implementing the
method ManagedConnecti onFact ory. cr eat eManagedConnect i on.

The resource adapter is not required to support re-authentication as part of its
ManagedConnect i on. get Connect i on method implementation.

If the security information provided by the component or the container is not
adequate to authenticate the caller, or if the security information is erroneous, the
resource adapter must throw a Securi t yExcepti on to indicate the error
condition.

The resource adapter must specify its support for the security contract as part of
its deployment descriptor. The relevant deployment descriptor elements are:

aut henti cati on- nechani sm aut henti cati on- mechani smtype,

reaut henti cati on-support and credential -i nterface (referto

Section 17.5.4, “Requirements” on page 17-23 for details).

Application Server

The following are the requirements defined for an application server:

Chapter 9 Security Contract 9-15

= The application server must use the method ManagedConnect i onFact ory.-
cr eat eManagedConnect i on to pass the security context to the resource adapter
during EIS sign-on.

= The application server must be capable of using options A and C as specified in
Section 9.1.8 “ManagedConnectionFactory” for the security contract.

= The application server provides an implementation of the GSSCr edent i al
interface if the following conditions are both true:

« The application server supports authentication mechanisms, specified as
aut henti cati on- mechani smt ype in the deployment descriptor, other than
Basi cPasswor d mechanism. For example, the application server should
implement the GSSCr edent i al interface to support the ker bv5 authentication
mechanism type.

« The application server supports the deployment of resource adapters that are
capable of handling GSSCr edent i al , and thereby option B as specified in
Section 9.1.8 “ManagedConnectionFactory”, as part of the security contract.

= The application server must implement the method al | ocat eConnecti on in its
Connect i onManager implementation.

= The application server must configure its use of the security contract based on the
security requirements specified by the resource adapter in its deployment
descriptor. For example, if a resource adapter specifies that it supports only

Basi cPasswor d authentication, the application server should use the security

contract to pass a Passwor dCr edent i al instance to the resource adapter.

9-16 J2EE Connector Architecture Specification « November 2003

CHAPTER 10

Work Management

This chapter specifies a contract between an application server and a resource
adapter that allows a resource adapter to do work, such as monitor network
endpoints and call application components, by submitting Wor k instances to an
application server for execution. The application server dispatches threads to execute
submitted Wor k instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for a resource adapter to perform
work, allows an application server to efficiently pool threads, and have more control
over its runtime environment. The resource adapter can control the security context
and transaction context with which Wor k instances are executed.

10.1

Overview

Some resource adapters merely function as a passive library that executes in the
context of an application thread. They do not need to create threads explicitly to do
their work. But more sophisticated resource adapters may need threads to function
properly. Such resource adapters may use threads to listen to network endpoints,
process incoming data, communicate with a network peer, do its internal work, or
dispatch calls to application components.

Even though a resource adapter may create Java threads directly and use them to do
its work, an application server may prevent it from creating threads for efficiency,
security, and manageability reasons. In such situations, a resource adapter needs a
mechanism to obtain threads from an application server to do its work.

The work management contract provides such a mechanism which allows a resource
adapter to submit Wor k instances to an application server for execution. The
application server dispatches threads to execute submitted Wor k instances. This
allows a resource adapter to avoid creating or managing threads directly, provides a
mechanism for the resource adapter to do its work, and allows an application server
more control over its runtime environment.

10-1

There are several advantages in allowing an application server to manage threads
instead of a resource adapter:

= An application server is optimally designed to manage system resources such as
threads. It may pool threads and reuse them efficiently across different resource
adapters deployed in its runtime environment.

= A resource adapter may create non-daemon threads that interfere with the orderly
shutdown of an application server. It is desirable for an application server to own
all the threads to exercise more control over its runtime environment.

= Since an application server knows the overall state of its runtime environment, it
may make better decisions on granting threads to a resource adapter, and this
leads to better manageability of its runtime environment.

= An application server may need to enforce control over the runtime behavior of
its system components, including resource adapters. For example, an application
server may choose to intercept operations on a thread object, perform checks, and
enforce correct behavior.

= An application server may disallow resource adapters from creating their own
threads based on its security policy setting, enforced by a security manager.

10.2

Goals

= Provide a flexible work execution model to handle the thread needs of a resource
adapter.

= Provide a mechanism for an application server to pool and reuse threads.

= Exercise more control over thread behavior in a managed environment.

10.3

Work Management Model

A resource adapter obtains a Wor kManager instance from the Boot st r apCont ext
instance provided by the application server during its deployment. The resource
adapter may create Wor k instances to do its work and submit them to the

Wor kManager along with an optional execution context for execution.

The application server has a pool of free threads waiting for a Wor k instance to be
submitted. When a Wor k instance is submitted, one of the free threads picks up the
Wor k instance, sets up an appropriate execution context and calls the r un method on
the Wor k instance. The application server is free to choose an appropriate thread to
execute the Wor k instance. There is no restriction on the number of Wor k instances
submitted by a resource adapter or when Wor k instances may be submitted. When
the r un method on the Wor k instance completes, the application server reuses the
thread.

10-2 J2EE Connector Architecture Specification « November 2003

The application server may decide to reclaim active threads based on load
conditions. It calls the r el ease method on specific Wor k instances from a separate
thread. This serves only as a hint to the resource adapter to release the active thread
executing the Wor k instance. The resource adapter should periodically monitor such
hints and do the necessary internal cleanup to avoid any inconsistencies. It is
expected that a resource adapter uses thread resources carefully and releases them
when not in use.

The application server is free to implement its own thread pooling strategy.
However, the application server must use threads of the same thread priority level to
process Wor k instances submitted by a specific resource adapter. This ensures that
multiple threads processing Wor k instances from the same resource adapter have
equal claim over CPU resources. This assumption helps the resource adapter build
its own internal priority-based task queue without having to worry about thread
priority levels.

Chapter 10 Work Management 10-3

10.3.1 Requirements

= The application server must use threads of the same thread priority level to
process Wor k instances submitted by a specific resource adapter.

10-4 J2EE Connector Architecture Specification « November 2003

FIGURE 10-1 Work Management Contract (object diagram)

Application Server

BootstrapContext

WorkManager

WorkEvent

WorkException

WorkRejectedExceptio

WorkCompleted-
Exception

getWorkManager()

Resource Adapter

doWork(), startwork()

scheduleWork()

run(), release()

getXid(), setXid()

getTransactionTimeout()
setTransactionTimeout()

workAccepted(), workStarted()

@
®
@
@

workRejected(),
workCompleted()

getType(), getWork()

@
g
g

getStartTime(),
getException()

getErrorCode()

Work

ExecutionContext

WorkListener

Chapter 10 Work Management 10-5

FIGURE 10-2 Work Management Contract (interfaces)

javax.resource.spi.work

WorkManager
(from app server)

Work
extends java.lang.Runnable
(from adapter)

doWork()
startWork()
scheduleWork()

release()

WorkEvent
(from app server)

ExecutionContext
(from adapter)

getType()
getWork()
getStartTime()
getException()

getXid()

getTransactionTimeout()

WorkListener
(from adapter)

WorkException extends
java.lang.Exception
(from app server)

workAccepted()
workRejected()
workStarted()
workCompleted()

WorkCompletedException
extends WorkException
(from app server)

WorkRejectedException
extends WorkException

(from app server)

getErrorCode()
setErrorCode()

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE 10-1 javax.resource.spi.work

package javax.resource.spi.work;

i mport java.l ang. oj ect;

i mport java.l ang. Runnabl e;

i mport java.l ang. Excepti on;

i mport java.l ang. Thr owabl e;

i mport java.util.Event Object;

i nport java.util.EventListener;

i mport javax.transaction. xa. Xi d;
i mport javax.resource. ResourceExcepti on;
i mport javax.resource. Not SupportedExcepti on;

public interface Wrk extends Runnabl e {
voi d rel ease();

}
public interface WrkManager {

Il ong | MVEDI ATE = OL; // inmmedi ate action
Il ong I NDEFI NI TE = Long. MAX VALUE; // no tine constraint
long UNKNOMWN = -1; // indicates an unknown val ue.

voi d doWwsrk(Work work) // startTimeout = | NDEFI NI TE
t hrows Wor kExcepti on;
voi d dowor k(Werk work, |ong startTi meout, ExecutionContext ctx,
Wor kLi stener |snr) throws WrkException;
long startWork(Work work) // startTimeout = | NDEFI NI TE
t hrows Wor kExcepti on;
Il ong startWork(Wrk work, |ong startTi neout,
Executi onCont ext ctx, WorkLi stener |snr)
t hrows Wor kExcepti on;
voi d schedul eWork(Wdrk work) // startTineout = | NDEFI NI TE
t hrows Wor kExcepti on;
voi d schedul eWor k(Wrk work, |ong startTi meout,
Executi onCont ext ctx, WorkLi stener |snr)
t hrows Wor kExcepti on;

}

public interface WorkLi stener extends EventlListener {
voi d wor kAccept ed(Wor kEvent e);
voi d wor kRej ect ed(Wor kEvent e);
voi d wor kSt arted(WrkEvent e);
voi d wor kConpl et ed(Wor kEvent €);

}

public class WrkAdapter inplenents WrkLi stener {
public void workAccept ed(Wor kEvent e) {}

Chapter 10 Work Management 10-7

CODE EXAMPLE 10-1 javax.resource.spi.work

public void workRej ect ed(WorkEvent e) {}
public void workStarted(WrkEvent e) {}
public void workConpl et ed(VWor kEvent e) {}

}

public class WrkEvent extends Event Object {

public static final int WORK ACCEPTED = 1;
public static final int WORK REJECTED 2;
public static final int WORK _STARTED = 3;

public static final int WORK COWPLETED = 4;

public WorkEvent (Cbj ect source, int type, Wrk work,

Wor kException exc) { ... }
public WorkEvent (Obj ect source, int type, Wrk work,
Wor kException exc, long startDuration) { ... }
public int getType() { ... }
public Work getWork() { ... }
public long getStartDuration() { ... }
publ i c WorkExcepti on getException() { ... }

}

public class ExecutionContext {

public void setXid(xid) { ... }

public Xid getXid() { ... }

public | ong getTransactionTineout() { ... }

public void setTransacti onTi neout (| ong seconds)
t hr ows Not SupportedException { ... }

}
public class WrkException extends ResourceException {

/1l Indicates an internal error condition.
public static final String INTERNAL = "-1";

/1 Undefined error code.
public static final String UNDEFINED = "0";

/1 Indicates start timeout expiration.
public static final String START_TIMED QUT = "1";

/! Indicates that concurrent work within a transaction is
/1 disall owed.
public static final String TX_CONCURRENT_WORK DI SALLOAED = "2";

10-8 J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE 10-1 javax.resource.spi.work

/T ITndicates a failure in recreating the specified transaction.
public static final String TX RECREATE FAILED = "3";

public WorkException() { ... }

publ i c WorkException(String nmessage) { ... }

publ i c Wor kException(Throwabl e cause) { ... }

public WorkException(String nessage, Throwable cause) { ... }
public String getMessage() { ... }

}

public class WrkRejectedExcepti on extends Wor kException {

publ i c WrkRej ect edException() { ... }

publ i c WorkRej ect edException(String nmessage) { ... }

publ i c WorkRej ect edExcepti on(Throwabl e cause) { ... }

publ i c WorkRej ect edExcepti on(String nessage, Throwabl e cause)
-}

}

public class WrkConpl et edExcepti on extends WorkException {

publ i c WorkConpl et edException() { ... }

publ i ¢ Wor kConpl et edException(String nessage) { ... }

publ i ¢ Wor kConpl et edExcepti on(Throwabl e cause) { ... }

publ i ¢ Wor kConpl et edExcepti on(String nessage, Throwabl e cause)
...}

10.3.2 Work Interface

The Wor k interface models a Wor k instance which is executed by a Wr kManager
upon submission. This is implemented by a resource adapter.

public interface Wirk extends Runnabl e {
voi d rel ease();

}

Chapter 10 Work Management 10-9

10.3.3

= run method: The Wor kManager dispatches a thread that calls the run method to
begin execution of a Wor k instance. The execution completes when the run
method returns, with or without an exception. The Wor k instance can treat the
calling thread as any Java thread. However, the application server may interpose
j ava. | ang. Thr ead methods and perform checks. The Wor kManager must catch
any exception thrown during Wor k processing, which includes execution context
setup, and wrap it with a Wor kConpl et edExcept i on set to an appropriate error
code, which indicates the nature of the error condition.

= rel ease method: The Wor kManager may call the r el ease method to request
the active Wor k instance to complete execution as soon as possible. This would be
called on a separate thread than the one currently executing the Wor k instance.
Since this method call causes the Wor k instance to be simultaneously acted upon
by multiple threads, the Wor k instance implementation must be thread-safe, and
this method must be re-entrant.

The application server thread that calls the r un method in the Wor k implementation
must execute with an unspecified context if no execution context has been specified,
or must execute with the specified execution context. It must have at least the same
level of security permissions as that of the resource adapter instance. Further, it does
not have access to a JNDI context.

Note — The JNDI context of an accessing application is available to a resource
adapter via the thread that uses its connection object. Refer to the note in

Section 6.4.1, “Managed Application Scenario” on page 6-6. The thread that accesses
the connection object could be an application thread, or, could be a Wor k object
accessing an application component. In the latter case, the worker thread gains
access to the application’s JNDI context during the method call on the component.

Both the run and r el ease methods in the Wor k implementation may contain
synchronization blocks but they must not be declared as synchronized methods.

WorkManager Interface

The Wor kManager interface provides a mechanism to submit Wor k instances for
execution. This is implemented by an application server. A Wor kManager instance
can be obtained by calling the get Wor kManager method of the

Boot st rapCont ext instance. The Boot st r apCont ext instance is provided by the
application server when a resource adapter instance is bootstrapped. The

Wor kManager instance is not required to be unique.

10-10 J2EE Connector Architecture Specification + November 2003

This Wor kManager facility frees the resource adapter from having to create Java
threads directly to do its work. Further, this allows efficient pooling of thread
resources by the application server and more control over thread usage.

public interface WorkManager {

| ong | MVEDI ATE = OL; // inmediate action
I ong | NDEFI NI TE = Long. MAX_VALUE; // no tine constraint
I ong UNKNOMWN = -1; // unknown start delay duration

voi d doWwork(Work work) // startTineout = | NDEFI NI TE
t hrows Wor kExcepti on;

voi d doWwor k(Work work, |ong startTi meout, ExecutionContext,
Wor kLi stener) throws WorkExcepti on;

I ong startWork(Work work) // startTimeout = | NDEFI NI TE
t hrows Wor kExcepti on;

I ong startWork(Work work, |ong startTi neout, ExecutionContext,
Wor kLi stener) throws WorkExcepti on;

voi d schedul eWor k(Wrk work) // startTineout = | NDEFI NI TE
t hrows Wor kExcepti on;

voi d schedul eWork(Wrk work, |ong startTi neout,
Executi onCont ext, WorkLi stener) throws WrkException;

doWsr k method: This call blocks until the Wor k instance completes execution. The
application server may execute a Wor k instance submitted via the doWwor k method
using the same calling thread. This method is useful to do work synchronously.
For nested Wor k submissions, this provides a first in, first out (FIFO) execution
start ordering and last in, first out (LIFO) execution completion ordering
guarantee.

st art Wor k method: This call blocks until the Wor k instance starts execution but
not until its completion. This returns the time elapsed in milliseconds from Wor k
acceptance until the start of execution. Note, this does not offer real-time
guarantees. A value of -1 (Wor kManager .UNKNOWN) must be returned, if the actual
start delay duration is unknown. This method is equivalent to the

java.l ang. Thr ead. st art method. For nested Wor k submissions, this
provides a FIFO execution start ordering guarantee, but no execution completion
ordering guarantee.

schedul eWor k method: This call does not block and returns immediately once a
Wor k instance has been accepted for processing. This is useful for doing work
asynchronously. This does not provide any execution start or execution
completion ordering guarantee for nested Wor k submissions.

Chapter 10 Work Management 10-11

10.3.3.1

The optional st art Ti meout parameter specifies a time duration in milliseconds
within which the execution of the Wor k instance must start. Otherwise, the Wor k
instance is rejected with a Wr kRej ect edExcept i on set to an appropriate error
code (Wor kExcepti on.START_TI MED_QOUT). Note, this does not offer real-time
guarantees.

The optional Execut i onCont ext parameter provides an execution context with
which the Wor k instance must be executed. The execution context is represented by
an Execut i onCont ext instance containing context information. The resource
adapter is responsible for populating the Execut i onCont ext instance with an
appropriate execution context. The default implementation provides a null context,
that is, an Execut i onCont ext instance with null values. A Wor k instance with null
context executes with an unspecified context.

The optional Wor kLi st ener parameter provides a callback event listener object
which is notified when the various Wor k processing events (work accepted, work
rejected, work started, work completed) occur. Refer to Section 10.3.4 “WorkListener
Interface and WorkEvent Class”.

The various stages in Wor k processing are:

Work Submit

A Wor k instance is being submitted for execution. The Wor k instance may either be
accepted or rejected with a Wor kRej ect edExcept i on set to an error code. A
submitted Wor k instance, irrespective of the mode of submission: doWr k method,

10-12 J2EE Connector Architecture Specification + November 2003

10.3.3.2

10.3.3.3

st art Wor k method or schedul eWor k method, does not automatically inherit the
submitter’s execution context. It executes with an unspecified execution context if
none is specified, or it executes with the specified context.

FIGURE 10-3 Work Processing Stages and their Outcomes

work completes
work started |——— gm{ work completed

start

) accept
work submit | g, work accepted

reject

work rejected

reject

Work Accepted

The submitted Wor k instance has been accepted for further processing. The accepted
Wor k instance may either start execution or may be rejected again with a
Wor kRej ect edExcept i on set to an appropriate error code.

There is no guarantee on when the execution starts unless a start timeout duration is
specified. When a start timeout is specified, the Wor k execution must be started
within the specified duration, failing which a Wor kRej ect edExcept i on set to an
error code Wor kExcept i on. TI MED_QOUT is thrown. This is not a real-time guarantee.
The start delay duration is measured from the moment a Wor k instance is accepted
for processing.

Work Rejected

The Wor k instance has been rejected. The Wor k instance may be rejected during
Wor k submittal or after the Wor k instance has been accepted, but before Wor k
instance starts execution. The rejection may be due to internal factors or start
timeout expiration. A Wr kRej ect edExcept i on with an appropriate error code
which indicates the nature of the error condition, is thrown in both cases.

Chapter 10 Work Management 10-13

10.3.3.4

10.3.3.5

10.3.3.6

Since the schedul eWor k method returns after a Wor k instance has been accepted
and does not block until a Wor k instance starts, a callback event listener may be used
to receive the Wr kRej ect edExcept i on. See Section 10.3.4 “WorkListener Interface
and WorkEvent Class” for details.

Work Started

The execution of the Wor k instance has started. This means a thread has been
allocated for Wor k execution. But this does not guarantee that the allocated thread
has been scheduled to run on a CPU resource. Once execution is started, the
allocated thread sets up an appropriate execution context and calls the r un method
on the Wor k instance. Note, any exception thrown during execution context setup or
while executing the r un method on the Wor k instance leads to processing
completion.

Work Completed

The execution of the Wor k instance has been completed. The execution may
complete with or without an exception. The Wor kManager must catch any exception
thrown during Wor k processing, which includes execution context setup, and wrap
it with a Wor kConpl et edExcept i on set to an appropriate error code which
indicates the nature of the error condition.

Since the schedul eWor k method and st ar t Wor k method do not block until
execution completion, a callback event listener may be used to receive the
Wor kConpl et edExcept i on. See Section 10.3.4 “WorkListener Interface and
WorkEvent Class” for details).

Requirements

= The application server must implement the Wor kManager interface.

= The application server must allow nested Wor k submissions.

= Both the run and r el ease methods must be declared as non-synchronized
methods.

= When the application server is unable to recreate an execution context if it is
specified for the submitted Wor k instance, it must throw a
Wor kConpl et edExcept i on set to an appropriate error code.

= The Wor kManager must catch any exception thrown during Wor k processing,
which includes execution context setup and wrap it with a
Wor kConpl et edExcept i on set to an appropriate error code.

10-14 J2EE Connector Architecture Specification + November 2003

= The application server must execute a submitted Wor k instance with an
unspecified context if no execution context has been specified, or must execute it
with the specified execution context. That is, a submitted Wor k instance must
never inherit the submitter’s execution context when no execution context is
specified.

= If the application server is unable to start Wor k execution when a start timeout is
specified for the submitted Wor k instance, it must reject the Wor k instance with a
Wor kRej ect edExcept i on set to Wr kExcepti on. START_TI MED_QOUT.

Chapter 10 Work Management 10-15

= The application server must use a value of -1 (Wor kManager .UNKNOWN) to indicate
an unknown Wor k start delay duration.

FIGURE 10-4 Blocking Durations of Various Work Submissions
WorkCompleted-

WorkRejectedException Exception
Work submit Work accepted Work started Work completed
| | | |
1 | | 1
| | | |
| | | |
doWork() :4 : : »:
startWork() :< ' >: :		
scheduleWork() g >		

10-16 J2EE Connector Architecture Specification + November 2003

FIGURE 10-5 Work Submission - Blocking Behavior (sequence diagram)

ResourceAdapter,
(from adapter)

WorkManager
(from app server)

Java thread
(from app server)

Work
(from adapter)

1 2. doWork() [blocks until work completes]

>
|

I 3. dispatches a Java thread

1. create an instance

-

I 4. set up execution context

and call run()

| 2. startWork() [blocks until work starts (that is, a tHread is allocated)]
|

I 4. set up execution context

and call run()

,,,,,,,,,,,,,,, e

>

e
1

Chapter 10

Work Management

10-17

10.3.4 WorkListener Interface and WorkEvent Class

The WorkLi st ener interface is optionally implemented by the resource adapter.
The Wor kEvent and Wor kAdapt er classes are defined by the Connector 1.5
specification. The Wor kLi st ener instance is supplied to the Wor kManager during
Wor k submittal and provides an event listener callback mechanism in order to be
notified when the various Wor k processing events, such as work accepted, work
rejected, work started, and work completed, occur. When a Wor kLi st ener is
provided by the resource adapter, the application server must send event
notifications to the Wor kLi st ener. These notifications may occur from any thread
with an unspecified context.

public interface WorkLi stener extends EventlListener {
voi d wor kAccept ed(wor kEvent) ;
voi d wor kRej ect ed(Wr kEvent) ;
voi d wor kSt art ed(Wr kEvent);
voi d wor kConpl et ed(Wr kEvent) ;

10-18 J2EE Connector Architecture Specification + November 2003

The Wor kEvent class and Wor kAdapt er abstract class:

public class WrkEvent extends Event Object {

public static final int WORK ACCEPTED = 1;
public static final int WORK REJECTED = 2;
public static final int WORK STARTED = 3;
public static final int WORK COVPLETED = 4;

public WrkEvent (Obj ect source, int type, Wrk work,

Wor kException exc) { ... }

public WrkEvent ((Cbj ect source, int type, Wrk work,
Wor kException exc, long startDuration) { ... }
public int getType() { ... }

public Wrrk getWork() { ... }

public long getStartDuration() { ... }

public WorkException get Exception() { ... }

}

public abstract class WorkAdapter inplenents WirkListener {
public void workAccept ed(Wr kEvent e) {}
public void workRej ect ed(WrkEvent e) {}
public void workStarted(WrkEvent e) {}
public void workConpl et ed(Wr kEvent e) {}

The Wor kEvent instance provides the following information:

= The event type.

= The source object, that is, the Wor k instance, on which the event initially occurred.

= A handle to the associated Wor k instance.

= An optional start delay duration in millisecond.

= Any exceptions that were thrown during Wor k processing. Possible exceptions are
Wor kRej ect edExcepti on, and Wor kConpl et edExcepti on.

The type of the event determines the specific contents of a Wor kEvent .

The Wor kAdapt er class is provided as a convenience for easily creating
Wor kLi st ener instances by extending this class and overriding only those methods
of interest. This is a standard event listener pattern in Java.

Chapter 10 Work Management 10-19

10.3.4.1

10.3.5

Requirements

= The Wor kLi st ener instance must not make any thread assumptions and must be
thread-safe. That is, a notification can occur from any arbitrary thread with an
unspecified context.

= The application server must send Wor k events to the Wor kLi st ener instance, if
any, provided by the resource adapter.

= The Wor kLi st ener implementation must not make any assumptions on the
ordering of notifications.

= The application server must use a value of -1 (Wor kManager .UNKNOWN) to indicate
an unknown Wor k start delay duration.

ExecutionContext Class

public class ExecutionContext {

public void setXid(xid) { ... }

public Xid getXid() { ... }

public long getTransactionTineout() { ... }

public void setTransactionTi neout (|1 ong seconds)
t hrows Not SupportedException { ... }

The Execut i onCont ext class allows a resource adapter to specify an execution
context, such as a transaction context, with which the Wor k instance must be
executed. The resource adapter is responsible for populating the

Execut i onCont ext instance with an appropriate execution context. The default
implementation provides a null context.

It is better for Execut i onCont ext to be a class rather than an interface because:

= There is no need for a resource adapter to implement this class. It only needs to
implement the context information, like transaction context.

10-20 J2EE Connector Architecture Specification + November 2003

= The resource adapter code does not have to change when the
Execut i onCont ext class evolves. For example, more context types could be
added to the Execut i onCont ext class in the future without forcing resource
adapter implementations to change.

Chapter 10 Work Management 10-21

FIGURE 10-6 Work Submission - Callback Mechanism (sequence diagram)

ResourceAdapter
(from adapter)

WorkManager
(from app server)

WorkListener
(from adapter)

WorkEvent
(from app server)

Work
(from adapter)

L 3. scheduleWork() [s:tartWork() or doWork

1. create an instance

|
4, create anlinstance
T »!
I
|

|
|
p may be used as weill].
| |
| |
|
|

| |
6. when Work is acqepted, dispatches a thread which sets

- — — — e - = —

p

I 10. workCompleted()
|
|

|
|
|
|
|
|
|
|
1

l.
7. create an jinstance

|

|

oo -
|

| |
|

} }
an execution context and calls run()

10-22 J2EE Connector Architecture Specification + November 2003

Y

10.3.6

10.3.7

Resource Adapter Thread Usage
Recommendations

= Resource adapters are strongly recommended to use the work management
contract to do work and interact with the application server only from within a
Wor k instance, instead of using Java threads directly. This allows the resource
adapter to be maximally portable across multiple deployment environments with
different security settings.

= Resource adapters are allowed to create Java threads directly as permitted by the
server security settings.

= If a resource adapter chooses to use Java threads directly, it is recommended they
use the threads as daemon threads, as it does not interfere with an orderly
shutdown of the server.

Periodic Execution of Work Instances

A resource adapter may need to periodically execute Wor k instances. It may use the
java.util. Ti mer facility available in the Java platform or may use the

Boot st rapCont ext instance provided by the application server to obtain a Ti nmer
instance.

A resource adapter may not be able to directly create a Ti mer instance, if it does not
have adequate runtime permissions to create threads. This is because the Ti nmer
instance starts a background thread. In such a case, the resource adapter can instead
use the Boot st r apCont ext instance to obtain a Ti mer instance from the
application server.

package javax.resource. spi;

i nport java.util.Tinmner;
i mport javax.resource. spi.Unavail abl eExcepti on;

public interface BootstrapContext {
/1 other methods
Timer createTiner() // returns a new or an unshared instance
t hrows Unavai |l abl eExcepti on;

When the cr eat eTi mer method of the Boot st r apCont ext instance is invoked, the
application server provides a new Ti mer instance or an unshared instance (that is,

no one else has a reference) with an empty task queue. The application server must
throw an Unavai | abl eExcepti on if a Ti mer instance is unavailable; the resource

Chapter 10 Work Management 10-23

10-24

adapter may retry later. The application server must throw an
java. |l ang. Unsupport edOper at i onExcepti on, if it does not support the Ti ner
service.

Sample code to illustrate periodic Wor k executions using a Ti ner instance:

package com xyz. adapter;

i mport java.util.x*;
i mport javax.resource.spi.*;
i mport javax.resource. spi.work. WrkManager ;

/'l Resour ceAdapt er JavaBean
public class MyResourceAdapterlnpl inplenments ResourceAdapter {
Boot st rapCont ext bootstrapCtx = null;
public void start(BootstrapContext ctx) {
boot strapCtx = ctx;
/1 other operations

}
... [/ other methods
}
{ Il sample resource adapter code snippet to show Ti mer usage
MyResour ceAdapterl nmpl myRA = ... // get ResourceAdapter
JavaBean

Timer timer = nyRA bootstrapCix.createTimer(); // get a Tinmer
i nstance
Wor kManager wor kManager = nyRA. boot strapCt x. get Wr kManager () ;

timer.schedul e(
new Ti nmer Task () {
public void run() {
try {
wor kManager . schedul eWor k(new MyWork());
} catch (WorkException we) { we.printStackTrace(); }

}, 0, 1000); // one second interval

J2EE Connector Architecture Specification + November 2003

10.3.8 Illustration: Using a Work Instance to Listen on
Multiple Network Endpoints

J2SE Version 1.4 provides the j ava. ni o package that includes a multiplexed, non-
blocking 170 facility. Using the j ava. ni o package it is possible for a single thread,
such as a Wor k instance, to listen on multiple network endpoints or ports. Prior to

the j ava. ni o facility each network endpoint needed a separate thread to listen to

incoming data.

10.3.9 Work Management in a Non-Managed
Environment

Although the work management contract is primarily intended for a managed
environment, it may still be used in a non-managed environment provided the
application that bootstraps a resource adapter instance is capable of functioning as a
Wor kManager.

A resource adapter is free to create Java threads as permitted by the security policy
settings of the non-managed environment.

Chapter 10 Work Management 10-25

10-26 J2EE Connector Architecture Specification + November 2003

CHAPTER 11

Inbound Communicaton

This chapter provides a high level description of the inbound communication model;
that is, the communication from an EIS to an application residing in an application
server’s EJB container via a resource adapter. This also introduces concepts used in
subsequent chapters related to inbound communication: Message Inflow

(Chapter 12, “Message Inflow™), EJB Invocation (Chapter 13, “EJB Invocation™), and
Transaction Inflow (Chapter 14, “Transaction Inflow”).

11.1 Overview

In the inbound communication model, the EIS initiates all communication to an
application. In this case, the application may be composed of EJBs (session, entity
and message-driven beans) and resides in an EJB container.

FIGURE 11-1 Inbound Communication Model

same address space

Application

Application | nbound communi- | Resource
- -- Server g Adapter ¢

cation contracts

EIS

session, entity,
message-driven
beans

11-1

In order to enable inbound communication, a mechanism to invoke EJBs (session,
entity and message-driven beans) from a resource adapter is necessary. Further, a
mechanism is needed to propagate transaction information from an EIS to an
application residing in an EJB container.

Chapter 12, “Message Inflow” describes a mechanism to invoke message-driven
beans from a resource adapter. Chapter 14, “Transaction Inflow” provides a
mechanism to import transaction information from an EIS into an EJB container.

11.2 An lllustrative Use Case

Wombat Inc. is a finance company which has a variety of software systems as part of
its enterprise infrastructure. The software systems include databases, enterprise
resource planning (ERP) and customer relationship management (CRM) systems,
messaging middleware, mainframe systems, as well as several J2EE application

11-2 J2EE Connector Architecture Specification « November 2003

servers which host business logic written as EJBs (session, entity and message-

driven beans). Further, there are web service interactions that occur as part of the

overall corporate workflow.

FIGURE 11-2 Inbound Communication Model (an illustrative use case)

corporate firewall boundary

Message
Publishers

Web Service

Endpoints

Database ERP Message ' '

Systems Systems Publishers ' '

A A A : :
B B .. | _same_address, space

Outbound Resource Adapters
A A A
! : ! Outbound contracts
sessio ! entity
beans ! beans
AR | 4
' Application L
! Application Server
* ' * Inbound contracts
Inbound Resource Adapters

A A A A A

ERP CRM Message : :

Systems Systems Providers ' '
corporate firewall boundary ... ______ . o

. SOAP/HTTP / HTTPS
Message Web Service
Providers Clients

Chapter 11

Inbound Communicaton

SOAP / HT.#P / HTTPS

11-3

In order to integrate the various disparate software systems, and to allow them to
communicate with each other, Wombat Inc. did the following:

= Used the application servers to hold the integration as well as business logic,

developed as EJBs.

= Purchased resource adapters and deployed them on the application servers, in
order to provide bi-directional connectivity between the applications residing on
the application servers and the various software systems.

Thus, using the resource adapter as a connectivity enabler, Wombat Inc. was able to
integrate the disparate software systems in its enterprise infrastructure.

11-4 J2EE Connector Architecture Specification « November 2003

CHAPTER 12

Message Inflow

This chapter specifies a standard, generic contract between an application server and
a resource adapter that allows a resource adapter to asynchronously deliver
messages to message endpoints residing in the application server independent of the
specific messaging style, messaging semantics and messaging infrastructure used to
deliver messages. This contract also serves as the standard message provider
pluggability contract that allows a wide range of message providers to be plugged
into any J2EE compatible application server via a resource adapter.

12.1

Overview

Asynchronous message delivery or event notification is a widely used application
communication paradigm. Some of the characteristics of the asynchronous message-
based communication paradigm are:

= The message producer may not be directly aware of message consumers. There
may be one or more consumers interested in the message.

= Message delivery is solicited; that is, a message consumer has to express interest
in receiving messages.

= The messaging infrastructure is type-agnostic; that is, it treats messages as a
Binary Large Object (BLOB). It stores and routes messages reliably, to interested
messsage consumers, depending on Quality of Service (QoS) capabilities.

= The interaction is inherently loosely coupled. The message producer and the
consumer do not share any execution context.

= The message producer generally is not interested in the outcome of message
processing by consumers. However, it is possible that the provider may care to
know if the message has been consumed or not.

= The message delivery always involves a message routing infrastructure, which
offers varying QoS capabilities for storing (persistence) and routing messages
reliably.

12-1

The J2EE application programming model offers a rich set of components: EJBs
(session, entity and message-driven beans), JSPs, and servlets for applications to use.
The message-driven bean is an asynchronous message consumer, or message
endpoint.

J2EE applications may use two different patterns to interact with a message
provider:

= It may directly use specific messaging APls, such as Java Messaging Service
(JMS), to send and synchronously receive messages. This is achieved using the
standard connector contracts for connection management. See Chapter 6,
“Connection Management.” Any message provider may provide a connector
resource adapter that supplies connection objects for use by applications to send
and synchronously receive messages using the specific messaging API.

= It may use message-driven beans to asynchronously receive messages via a
message provider. The EJB specification (Section 1., “Enterprise JavaBeans
(EJBTM) specification, version 2.1:” on page F-1) describes the message-driven
bean component contract in detail.

While the above patterns allow a J2EE application to send and receive messages,
they do not provide a standard system-level contract to plug-in message providers
to an application server and to deliver messages to message endpoints, or message-
driven beans, residing in the application server. Without a standard pluggability
contract, an application server would have to use special contracts to interact with
various message providers, and a message provider has to do the same to interact
with different application servers, which is a mxn problem.

FIGURE 12-1 Message Inflow Contract

Application

o Message inflow
- | Application | Resource .| Message - EIS

< < ; <

server contract adapter provider

Thus, there is a need for a standard, generic contract between an application server
and a message provider which allows a message provider to deliver messages to
message endpoints (message-driven beans) residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. Such a contract also serves as the standard

12-2 J2EE Connector Architecture Specification « November 2003

message provider pluggability contract which allows a wide range of message
providers to be plugged into any J2EE compatible application server via a resource
adapter.

12.2 Goals

= Provide a standard, generic mechanism to plug in a wide range of message
providers, including JMS, into a J2EE compatible application server via a resource
adapter and dispatch messages to message endpoints. This will allow J2EE
components to act as consumers of messages with no required changes to the
client programming models. Further, the J2EE components will be able to access
messages with no awareness that a resource adapter is delivering the message.

= This generic contract must be capable of supporting various messaging delivery
guarantees provided by different messaging styles, as well as allow concurrent
delivery of messages.

Chapter 12 Message Inflow 12-3

12.3 Message Inflow Model

FIGURE 12-2 Message Inflow Contract (object diagram)

Application Server Resource Adapter

endpointActivation()
ResourceAdapter

endpointDeactivation()

] createEndpoint(XAResource)
MessageEndpoint- _ _
Factory isDeliveryTransacted()

message delivery calls]
Message object

MessageEndpoint

transactional notifications
XAResource

UnavailableException NotSupported-

Exception

ActivationSpec

o000 ©

12-4 J2EE Connector Architecture Specification « November 2003

FIGURE 12-3 Message Inflow Contract (interfaces)

javax.resource.spi

ResourceAdapter
(from adapter)

endpointActivation()
endpointDeactivation()
getXAResources()

ActivationSpec
(from adapter)

validate()

InvalidPropertyException
(from adapter)

javax.resource.spi.endpoint

MessageEndpointFactory
(from app server)

createEndpoint()
isDeliveryTransacted()

MessageEndpoint
(from app server)

beforeDelivery()
afterDelivery()
release()

getinvalidPropertyDescriptors()
setinvalidPropertyDescriptors()

UnavailableException
(from app server)

javax.resource

NotSupportedException
(from adapter)

Chapter 12 Message Inflow

12-5

12-6

CODE EXAMPLE 12-1 javax.resource.spi

package | avax.resource. spi,

i mport java. beans. PropertyDescriptor;
i mport javax.resource. Not SupportedExcepti on;
i mport javax.resource. spi.endpoi nt. MessageEndpoi nt Fact ory;

public interface ResourceAdapter {
/'l other methods

voi d endpoi nt Acti vati on(MessageEndpoi nt Factory,
ActivationSpec) throws ResourceException;

voi d endpoi nt Deacti vati on(MessageEndpoi nt Fact ory,
Acti vati onSpec);

XAResour ce[] get XAResour ces(Acti vationSpec[] specs)
t hrows Resour ceExcepti on;

}

public interface ActivationSpec { // JavaBean
void validate() throws InvalidPropertyException;

}
public class InvalidPropertyExcepti on extends ResourceException {
public InvalidPropertyException() { ... }
public InvalidPropertyException(String nessage) { ... }
public InvalidPropertyException(String nessage,
String errorCode) { ... }
public void setlnvalidPropertyDescriptors(
PropertyDescriptor[] invalidProperties) { ... }
public PropertyDescriptor[] getlnvalidPropertyDescriptors() {
-}
}
public class Unavail abl eExcepti on extends ResourceException {
public Unavai |l abl eException() { ... }
public Unavail abl eException(String nessage) { ... }
publ i ¢ Unavai | abl eExcepti on(Throwabl e cause) { ... }
publ i ¢ Unavai | abl eException(String nessage, Throwabl e cause) ({
}

CODE EXAMPLE 12-2 javax.resource.spi.endpoint

package javax.resource. spi.endpoint;

i mport java.l ang. Excepti on;
i mport java.l ang. Thr owabl e;
i mport java.l ang. NoSuchMet hodExcepti on;
i mport javax.transaction. xa. XAResour ce;

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE 12-2 javax.resource.spi.endpoint

i nport javax.resource. Resour ceException;
i nport javax.resource. spi.Unavail abl eExcepti on;

public interface MessageEndpoi nt Factory {
MessageEndpoi nt creat eEndpoi nt (XAResour ce)
t hrows Unavai | abl eExcepti on;
bool ean isDel i veryTransacted(j ava. | ang. refl ect. Met hod)
t hrows NoSuchMet hodExcepti on;

}

public interface MessageEndpoi nt {
voi d beforeDelivery(java.lang.reflect. Mt hod)
t hrows NoSuchMet hodExcepti on, ResourceExcepti on;
void afterDelivery() throws ResourceException;
voi d rel ease();

}

The Resour ceAdapt er interface supports methods used for endpoint activations
and deactivations. The endpoi nt Acti vati on method is called by the application
server when a message endpoint is activated and the endpoi nt Deacti vati on
method is called by the application server when a message endpoint is deactivated.
The resource adapter is supplied a MessageEndpoi nt Fact ory instance and a
configured Act i vat i onSpec instance during endpoint activations and
deactivations. The resource adapter may reject an activation by throwing a

Not Support edExcept i on, if the activation information is incorrect.

The resource adapter uses the MessageEndpoi nt Fact or y instance to obtain
message endpoint instances for delivering messages either serially or concurrently.
The MessageEndpoi nt Fact ory may be used for obtaining any number of message
endpoint instances. The cr eat eEndPoi nt method call may throw an

Unavai | abl eExcepti on for several reasons:

= The application server has not completed endpoint activation.

= The application server may decide to limit concurrent message deliveries.
= The application server is about to shutdown.

= The application server may have encountered an internal error condition.

In some cases where the offending condition is temporary, the application server
may decide to block the cr eat eEndPoi nt method call instead of throwing an
Unavai | abl eExcepti on.

The MessageEndpoi nt Fact ory may also be used to find out whether message
deliveries to a target method on a message listener interface that is implemented by
a message endpoint will be transacted or not via the i sDel i ver yTr ansact ed
method. The message delivery preferences must not change during the lifetime of a
message endpoint.

Chapter 12 Message Inflow 12-7

A resource adapter capable of message delivery to message endpoints must provide
an Act i vat i onSpec JavaBean class for each supported endpoint message listener
type. The Act i vat i onSpec JavaBean has a set of configurable properties specific to
the messaging style and the message provider. An instance of the Act i vati onSpec
JavaBean is configured by a message endpoint, or application, deployer to setup the
necessary configuration information for the endpoint activation, and passed on to
the resource adapter via the application server during endpoint deployment.

The resource adapter is expected to know the endpoint message listener type, either
by using the Act i vat i onSpec JavaBean contents or based on the Act i vat i onSpec
JavaBean class, and deliver messages to the endpoint. The resource adapter may
optionally pass an XAResour ce instance while creating a message endpoint in order
to receive transactional notifications when a message delivery is transacted.

The following steps in sequential order represent the various stages in the message
endpoint lifecycle, during which message inflow contracts are used:

« Endpoint! deployment.
= Message delivery (transacted and non-transacted).
= Endpoint undeployment.

12-8

1. Endpointin this chapter refers to a message endpoint (for example, a message-driven bean application).

J2EE Connector Architecture Specification « November 2003

12.4 Endpoint Deployment

FIGURE 12-4 Endpoint (Message-Driven Bean) Deployment (Actors)

Endpoint Application Resource Adapter
' Application

. Server .
Deployment Descriptor Deployment Descriptor

Deployment Tool

_________ Message
- A
Provider

Endpoint Deployer

There are several actors involved in the deployment of a message endpoint:

= A message endpoint that is to be deployed on an application server.

= A resource adapter capable of message delivery. The resource adapter is typically
provided by a message provider or a third party, and is used to plug an external
message provider into an application server. The resource adapter may be
standalone that may be shared by different applications or it may be packaged
along with an endpoint application.

= An application server that provides the runtime environment for the application.

= A deployer of the application, a human, who understands the application’s needs,
and is also aware of the details of the runtime environment in which the
application will be deployed.

Chapter 12 Message Inflow 12-9

= A message provider, or messaging infrastructure, that is the source for messages.
A message provider may provide special tools that can be used by the deployer to
setup the message provider for message delivery.

The roles and responsibilities of the various actors are as follows:

12.4.1 Message Endpoint

The message endpoint is a message-driven bean application which is to be deployed
on the application server. It asynchronously consumes messages from a message
provider. It is also possible for the application to send and synchronously receive
messages by directly using messaging-style specific APlIs.

The message-driven bean developer provides activation configuration information
in the message-driven bean deployment descriptor. This includes messaging style
specific configuration details, and possibly message provider-specific details as well,
which is used by the message-driven bean deployer to setup the activation.

The EJB specification (Section 1., “Enterprise JavaBeans (EJBTM) specification,
version 2.1:” on page F-1) has more details on the message-driven bean deployment
descriptor element acti vati on- conf i g used to hold the activation configuration
information. For example, the deployment descriptor of a message-driven bean
which consumes from a JMS resource adapter may contain:

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor

<I'-- nessage-driven bean depl oynent descriptor -->

<activation-config>
<activation-config-property>
<activation-confi g- property-name>
destinati onType
</ activation-config-property-nane>
<activation-config-property-val ue>
j avax.j nms. Topic
</ activation-config-property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-config-property-nane>
Subscri ptionDurability
</ activation-config-property-nane>
<activation-config-property-val ue>
Dur abl e
</activation-config-property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-config-property-nane>

12-10 J2EE Connector Architecture Specification + November 2003

12.4.2

12.4.2.1

12.4.2.2

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor

MessageSel ect or
</ activation-config-property-nane>
<activation-config-property-val ue>
JMSType = 'car' AND col or = 'blue'
</activation-config-property-val ue>
</ activation-config-property>

</ activation-config>

The EJB specification does not specify messaging style-specific descriptor elements
contained within the acti vati on- confi g element. It is the responsibility of each
individual messaging specification or product to specify the standard descriptor
elements specific to the messaging style for representing the activation configuration
information.

Resource Adapter

The resource adapter is a system component located in the application server’s
address space (that is, it has already been deployed) that provides connectivity to
message providers and is capable of delivering messages to message endpoints
residing in the application server. The resource adapter is typically provided by a
message provider or a third party, and is used to plug an external message provider
into an application server. The resource adapter may be standalone, shared by
different applications, or may be packaged along with an endpoint application.

The resource adapter provides the following information via the resource adapter
deployment descriptor that is used by the endpoint deployer to setup endpoint
activation:

List of Supported Message Listener Types

The resource adapter provides a list of endpoint message listener types it supports.
Each type is represented as a fully qualified name of the Java type of the message
listener interface.

ActivationSpec JavaBean

The resource adapter provides the Java class name of an Acti vati onSpec
JavaBean, one for each supported message listener type, containing a set of
configurable properties that is used to specify endpoint activation configuration
information during endpoint deployment. Refer to Section 16.3, “JavaBean

Chapter 12 Message Inflow 12-11

12.4.2.3

Requirements” on page 16-2. An Acti vat i onSpec JavaBean instance is created
during endpoint deployment, and the instance is configured by the endpoint
deployer.

During configuration, an Act i vat i onSpec JavaBean instance may check the
validity of the configuration settings provided by the endpoint deployer. The

Act i vati onSpec has a val i dat e method which may be used during endpoint
deployment to validate the overall activation configuration information provided by
the endpoint deployer. This helps to catch activation configuration errors earlier on
without having to wait until endpoint activation time for configuration validation.
The implementation of this self-validation check behavior is optional.

Note, the Act i vat i onSpec JavaBean instance must not make any assumptions
about the availability of a live resource adapter instance.

The resource adapter may also provide in its deployment descriptor, using the
requi red-confi g- property element, an optional list of configuration property
names required for each activation specification. This information may be used
during deployment to ensure that the required configuration properties are
specified. An endpoint activation should fail if the required property values are not
specified.

In the case of JIMS message providers, the dest i nat i on property value (refer to
Appendix B, “Activation Configuration for Message Inflow to JMS Endpoints) may
also be an object that implements the j avax. j ns. Desti nati on interface. In such a
case, the resource adapter should provide an administered object (refer to

Section 12.4.2.3, “Administered Objects” on page 12-12) that implements the
javax. j ms. Desti nati on interface. The specific type of the JMS destination is
specified by the desti nati onType property value. The JMS Acti vati onSpec
JavaBean properties should be standardized by the JMS community.

Administered Objects

The resource adapter may provide the Java class name and the interface type of an
optional set of JavaBean classes representing various administered objects. Refer to
Section 16.3, “JavaBean Requirements” on page 16-2. Administered objects are
specific to a messaging style or message provider.

For example, some messaging styles may need applications to use special
administered objects for sending and synchronously receiving messages via
connection objects using messaging-style specific APIs. It is also possible that
administered objects may be used to perform transformations on an asynchronously
received message in a message provider-specific way.

12-12 J2EE Connector Architecture Specification + November 2003

12.4.2.4

12.4.3

Note, administered objects are not used for setting up asynchronous message
deliveries to message endpoints. The Act i vat i onSpec JavaBean is used to hold all
the necessary activation information needed for asynchronous message delivery
setup.

Configuring Administered Objects

= Create an administered object JavaBean instance. This will initialize the instance
with the defaults specified via the JavaBean mechanism.

= Apply the administered object class configuration properties specified in the
resource adapter deployment descriptor, on the administered object instance. This
may override some of the default values specified via the JavaBean mechanism.

= The deployer may further override the values of the administered object before
deployment.

Endpoint Deployer

The endpoint deployer is a human who has the responsibility to deploy the message
endpoint, or application, on an application server. The deployer is expected to know
the needs of the application and be aware of the details of the runtime environment
in which the application will be deployed.

The deployer selects a suitable resource adapter that matches the needs of the
application depending on endpoint message listener type, QoS capabilities, and so
on. The deployer configures an Acti vat i onSpec JavaBean instance based on the
information provided by the application developer or assembler, which is contained
in the endpoint deployment descriptor. The deployer may also use additional
message provider-specific information to configure the Acti vati onSpec JavaBean
instance.

The deployer also configures a set of administered objects, if necessary. The resource
adapter provides the JavaBean classes for such administered objects. The deployer
may also interact with a message provider to do the necessary setup for message
delivery.

Then the deployer deploys the application on the application server. As part of the
deployment procedure, the deployer provides all the configured JavaBean instances
to the application server, and also specifies the chosen resource adapter instance to
be used for message delivery.

Chapter 12 Message Inflow 12-13

12.4.4

Application Server

The application server provides the runtime environment for the message endpoint.
It activates message endpoints when they are deployed. All such deployed
endpoints are automatically reactivated when an application server restarts after a
normal shutdown or system crash. When an application is undeployed, the
application server deactivates the endpoint.

When an endpoint is activated, the application server calls the chosen resource
adapter via the endpoi nt Acti vati on method and passes on a

MessageEndpoi nt Fact ory instance and the Act i vat i onSpec JavaBean, which
was configured by the endpoint deployer. The application server does not interpret
the contents of the Act i vat i onSpec JavaBean and treats it as an opaque entity. The
resource adapter may reject an endpoint activation by throwing a

Not Support edExcept i on during the endpoi nt Acti vati on method call. This is
due to incorrect activation information.

The resource adapter uses the MessageEndpoi nt Fact ory to create message
endpoint instances to deliver messages either serially or concurrently. There is no
limit to the number of such endpoints that may be created to deliver messages.
However, in practice the application server may decide to limit concurrency by
rejecting attempts to create new endpoints by throwing an

Unavai | abl eExcepti on. The application server may also attempt to block a
message delivery method call in order to limit concurrency and perform flow
control.

Note, a resource adapter may attempt to deliver messages during the

endpoi nt Acti vat i on method call. It is up to the application server to decide
whether to allow message delivery before activation is completed. If the application
server chooses to prevent message delivery during endpoint activation, it may block
the cr eat eEndpoi nt method call until the activation is completed or throw an
Unavai | abl eExcepti on.

The resource adapter may pass an XAResour ce instance while creating a message
endpoint in order to receive transactional notifications when a message delivery is
transacted. The application server must notify the resource adapter via the
XAResour ce instance if a message delivery is transacted.

During endpoint deployment, the application server places the configured
administered objects, if any, supplied by the endpoint deployer in the component
namespace j ava: conp/ env. The endpoint deployer specifies a location in the
component namespace where each administered object should reside. The
configured administered objects residing in the component namespace are used by
the endpoint application in a messaging style-specific manner.

12-14 J2EE Connector Architecture Specification + November 2003

When an endpoint is deactivated, the application server notifies the resource adapter
via the endpoi nt Deact i vat i on method call. The application server must pass the
same MessageEndpoi nt Fact ory instance and the Acti vati onSpec JavaBean
instance that was used during endpoint activation.

Chapter 12 Message Inflow 12-15

12.4.5 Message Provider

A message provider, or messaging infrastructure, is typically an external system that
is the source for messages. Message providers may vary in their QoS capabilities. A
message provider may provide special tools that can be directly used by the
endpoint deployer to setup the message provider for message delivery.

12-16 J2EE Connector Architecture Specification + November 2003

FIGURE 12-5 Endpoint (message-driven bean) Deployment Steps

Application

10. Place administered objects (if any)

in the component namespace.

Server 11. Endpoint activation: Passes a handle
to a MessageEndpointFactory and
_ the ActivationSpec JavaBean.

Q

9. Supply the ActivationSpec JavaBean A

and administered objects (if any), and
specify the chosen resource adapter.

Endpoint Application

Deployment Descriptor

i. Activation configuration
information (messaging
style specific). May also have
message provider specific
details.

4. Get endpoint activation configuration

information.

\ 8 b4

Deployment Tool

Resource Adapter

Deployment Descriptor

i. Message listener types
supported.

ii. An ActivationSpec class
(JavaBean) for each
supported message listener.

iii. JavaBean classes for
Administered objects,
if any.

2. Query resource adapter about
message listener types, details on
ActivationSpec, admin
objects and QoS capabilities.

A 1. Choose a suitable resource adapter.

3. Get activation config details from endpoint.

6. Create a ActivationSpec JavaBean instance
from the chosen resource adapter and
configure the JavaBean properties.

7. Configure necessary administered objects.

8. Deploy application.

5. setup for message delivery. | Message

Endpoint Deployer

Provider

Chapter 12 Message Inflow

12-17

12.4.6

12.4.7

12-18

Endpoint Deployment Steps

The sequence of steps involved in endpoint deployment involving the various actors
is as follows:

The endpoint deployer obtains a list of resource adapters capable of delivering
messages to the message endpoint, and chooses a suitable one. The decision is
based on the message listener type supported by the resource adapter and its QoS
capabilities. However, it is possible that the message endpoint application may
already contain a suitable resource adapter. In such a case, the resource adapter is
deployed along with the endpoint application and is used to deliver messages to
the specific endpoint application.

The deployer obtains the activation configuration information provided by the
endpoint developer available in the endpoint deployment descriptor.

The deployer may need to setup the message provider for message delivery to the
endpoint. This may be done using a message provider specific tool.

The deployer obtains an Acti vati onSpec JavaBean from the selected resource
adapter and configures it. The configuration information is messaging style-
specific and may include message provider specific details.

The deployer configures the JavaBean instances of administered objects, if any are
necessary.

The deployer provides the configured JavaBean instances to the application
server, and also specifies the resource adapter chosen for message delivery. Note,
the contract between a deployment tool and an application server is out of scope
for this specification.

The application server places the administered objects, if any, in the

j ava: conp/ env component namespace for use by the message endpoint.

The application server activates the message endpoint by calling the chosen
resource adapter via the endpoi nt Acti vati on method and passes a
MessageEndpoi nt Fact ory instance and the configured Acti vati onSpec
JavaBean instance provided by the deployer. The resource adapter may reject the
endpoint activation by throwing a Not Support edExcepti on, which is due to
incorrect activation information.

Requirements

A resource adapter that is capable of delivering messages to message endpoints
must provide a list of endpoint message listener types it supports, and also must
provide an Act i vat i onSpec JavaBean class for each message listener type it
supports. This information must be part of the resource adapter deployment
descriptor.

Acti vati onSpec and all administered objects must be JavaBeans.

A resource adapter must allow an application server to make concurrent

endpoi nt Acti vat i on method or endpoi nt Deact i vat i on method calls.

J2EE Connector Architecture Specification + November 2003

12.4.8

= The endpoint application’s act i vati on- confi g properties, specified in the
endpoint deployment descriptor, should be a subset of the Acti vati onSpec
JavaBean’s properties. There must be a one-to-one correspondence between the
activation-confi g property names and the Acti vati onSpec JavaBean’s
property names. This allows automatic merging of the acti vati on-config
properties with an Act i vat i onSpec JavaBean instance during endpoint
deployment. Any specified acti vat i on- confi g property which does not have a
matching property in the Act i vat i onSpec JavaBean should be treated as an
error.

= When an application server notifies a resource adapter during endpoint
deactivation, it must pass the same MessageEndpoi nt Fact ory instance and the
Acti vat i onSpec JavaBean instance that was used during endpoint activation.

= Any exception thrown by the endpoi nt Deact i vat i on method call must be
ignored. After this method call the endpoint is deemed inactive.

= All deployed endpoints must be automatically reactivated by the application
server when it restarts after a normal shutdown or system crash.

= Before a resource adapter is undeployed, the application server must deactivate
all active endpoints consuming messages from that specific resource adapter.

Structure of a Message Listener Interface

A message listener interface implemented by a message endpoint, a message-driven
bean, is allowed to have multiple methods. Each method of a message listener
interface is allowed to have multiple arguments, a return value, and throw checked
application exceptions or unchecked system exceptions.

Checked exceptions are thrown only by a message listener implementation. The
message-driven bean container must propagate to the resource adapter any checked
exception that occurs during message dispatch.

Unchecked exceptions (j ava. | ang. Runti neException and java. | ang. Error)
may be thrown by either the message listener implementation or may be thrown by
the application server code during message dispatch. The application server must
wrap such an unchecked exception within aj avax. ej b. EJIBExcept i on, which is a
java.l ang. Runti neExcepti on, and throw the j avax. ej b. EJBExcepti on to
the resource adapter.

The EJB specification describes in detail the structural requirements of a message
listener interface implemented by a message-driven bean.

Chapter 12 Message Inflow 12-19

12.4.9

12.49.1

Multiple Endpoint Activations With Similar
Activation Configuration

Since multiple endpoints, that is, different applications, with similar activation
configuration may be deployed in a single application server, the application server
may call the endpoi nt Acti vati on method on a resource adapter instance multiple
times with similar activation configuration. The resource adapter must treat multiple
endpoint activations with similar activation configuration separately. When
messages start arriving, the resource adapter must, for each active endpoint, deliver
a separate copy of incoming messages, even if there are multiple endpoints with
similar activation configuration.

Requirements

= The application server must supply a unique MessageEndpoi nt Fact ory
instance for each activation.

= Refer to Section 16.4, “Equality Constraints” on page 16-3 for equality constraints
on MessageEndpoi nt Fact ory and Acti vat i onSpec implementations.

= The resource adapter must treat multiple endpoints with similar activation
configuration separately and guarantee message delivery semantics.

= The resource adapter must treat each Acti vat i onSpec JavaBean uniquely
irrespective of its contents. That is, the resource adapter must not treat two
separate Acti vati onSpec JavaBeans as equals.

12-20 J2EE Connector Architecture Specification + November 2003

FIGURE 12-6 Endpoint Deployment (sequence diagram)

Endpoint
deployer

J2EE app server|

ResourceAdapter
(from adapter)

MessageEndpointFactory

(from app server)

Message provider

ActivationSpec
(from adapter)

The endpoint deployer chooses a suitable resource adapter based on supported
message listener type and QoS capabilities , configures an Act i vat i onSpec JavaBean
instance obtained from the resource adapter. The configuration includes message
style-specific information and may include message provider specific information.

| |
| |
| |
1. create and configure an ActivationSpec JavaBean
| |
------------------------------------ »-!

| |
4. endpointActivation(MessageEndpointFactory, A
| |

Chapter 12

|
|
|
2. deploy erhdpoint application (pass the configured :ActivationSpe'p JavaBean)
|

ttivationSpec)

|
|
I 5. setup for messhge delivery (p:)rivate contract)

Message Inflow 12-21

12.5

Message Delivery

Once endpoints are activated, they are ready to receive messages. When messages
arrive, the resource adapter uses the MessageEndpoi nt Fact ory to create an
endpoint instance. The resource adapter narrows the endpoint instance to the actual
message listener type (it knows the endpoint type from the Acti vati onSpec), and
delivers the message to the endpoint instance. The EJB specification (Section 1.,
“Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1) prescribes
the rules for the message listener interface structure. The same endpoint instance
may be used again to deliver subsequent messages serially, but it must not use the
same endpoint instance concurrently.

Note that the endpoint instance supplied by the cr eat eEndPoi nt method call is a
proxy which implements the endpoint message listener type and the
MessageEndpoi nt interface and it is not the actual endpoint. This is necessary
because the application server may need to intercept the message delivery in order
to inject transactions, depending on the actual endpoint preferences, and to perform
other checks.

The proxy endpoint instance is implemented by the application server and is used to
intercept the message delivery, performs checks, inject transactions, and so on, and
to route the message to the actual message endpoint instance. The resource adapter
does not have to make this distinction, and should treat the proxy endpoint instance
as the actual endpoint instance.

The resource adapter may use a proxy endpoint instance to serially deliver
messages. The resource adapter must not use a proxy endpoint instance concurrently
from different threads. The proxy endpoint may throw a

java.l ang. |1 egal St at eExcepti on when invoked concurrently. However, a
proxy endpoint instance may be used by different threads in a serial fashion.

The resource adapter may call the r el ease method on the proxy endpoint instance
to indicate that it no longer needs the proxy instance. This hint may be used by the
application server for proxy endpoint pooling decisions. This method call frees the
state of the proxy instance. The released proxy instance may be reused for further
proxy endpoint requests from the same resource adapter. A proxy endpoint instance
must not be reused across multiple resource adapter instances.

Between the time a proxy endpoint instance is released and before it is granted back
to the same resource adapter (via a cr eat eEndpoi nt method call), the proxy
endpoint instance is considered to be in a free and available state. Any attempted
use of a free proxy must result in aj ava. | ang. I | | egal St at eExcepti on thrown
by the application server.

12-22 J2EE Connector Architecture Specification + November 2003

The application server may start a transaction before delivering the message to the
actual endpoint depending on the endpoint preferences. The resource adapter may
optionally pass an XAResour ce instance via the cr eat eEndPoi nt method in order
to receive transaction notifications for those transactions started by an application
server before message delivery.

Chapter 12 Message Inflow 12-23

12.5.1 Sample Resource Adapter Code To Illustrate
Message Delivery

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter

/'l Reader Thread(s)

{
/1 1. Strip off msg header and parse nessage description
/1 2. Choose a set of endpoi nts which natch nessage description
/1 3. Place message in appropriate buffer / queue
/1 4. Notify worker threads
}
/1 Worker Thread(s)
{

/1 1. \Wake up on notification (message arrival)

/1 2. Pick up the message and | ocate the MessageEndpoi nt Factory
/] associated with the subscription

Message nmsg = ...,

MessageEndpoi nt Fact ory endpoi nt Factory = .. .;

My XAResour ce xaResource = ...; // for transacted delivery

/1 4. Obtain a nessage endpoint and narrow it to the
/'l correct type.

/1 ActivationSpec has endpoint nessage |istener type
/1 infornation.
bj ect obj = endpoi nt Fact ory. cr eat eEndpoi nt (xaResource) ;
j avax.j nms. MessagelLi st ener endpoint =
(j avax.j ms. MessagelLi st ener) obj;

/1 5. Link the XAResource with the endpoint. This allows the
/1 XAResource object to know whi ch endpoi nt/ message delivery
/1 is transacted when it receives transaction notifications.
/1 This nmay be unnecessary depending on the inplenentation.
xaResour ce. set Endpoi nt (endpoi nt);

/1 Note: It may be possible to make the XAResource obj ect

/'l thread-safe/reentrant and reuse t he sanme object for receiving
/1 transaction notifications for different endpoints.

/1 The XAResource object nmay use thread-local storage to

/'l remenber state, and thus avoid creating nultiple

/| XAResource objects.

/1 6. Deliver the nessage.
endpoi nt. onMessage(nsg) ;

/1 7. Wait for notification of incom ng nessages

12-24 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter

/T and repeat the above steps on nessage arrival.

}

package com wonbat. ra;
i mport javax.transaction. xa.*;
cl ass MyXAResource i npl enents javax.transaction. xa. XAResource {

public void start(Xid xid) throws XAException {
/1 Associate the nessage delivery with the transaction id.
/!l That is, create the tuple (nmsg id, transaction id) in
/1l menory.

}

public int prepare(Xid xid) throws XAException {
/1 Forward the tuple (nessage id, transaction id) to the
/'l nmessage provider. The provider nust persist this
/1 information, which is used during crash recovery by the
/1 application server. During crash recovery,
/'l the application calls the nessage provider, via the
/'l recover nethod on an XAResource object, queries for
/1 a list of in-doubt transactions and conpl etes them
/1 Upon successful conpletion, return "ready_to_conmt"
/1l vote, else return "rollback _only" vote.

}

public void commit(Xid xid, bool ean onePhase)
t hrows XAException {
/'l forward the transaction id to the nessage provider. This
/'l serves as the acknow edgenent that a nmessage was
/'l delivered.

}

public void rollback(Xi d xid) throws XAException {
/'l forward the transaction id to the nessage provider. This
/1 indicates to the provider that the nessage was not
/1 delivered.

.; /1 other nethods

Chapter 12 Message Inflow 12-25

125.11

12.5.2

Requirements

The application server’s proxy endpoint instance must implement the endpoint
message listener type and the MessageEndpoi nt interface.

The application server must pass by reference all the method parameter objects
passed by the resource adapter during a message delivery method call on a proxy
endpoint. The application server must not copy or clone the passed method
parameter objects during message delivery to the actual endpoint instance.

If the application server starts a new transaction, depending on endpoint
preferences, before delivering a message to an endpoint instance, it must send all
transaction notifications to the XAResour ce instance optionally supplied by the
resource adapter as part of the cr eat eEndPoi nt method call.

A resource adapter must not attempt to deliver messages concurrently to a single
endpoint instance. The application server must reject concurrent usage of an
endpoint instance.

Message Redelivery Upon Crash Recovery

An application server may crash during message delivery. In the case of message
deliveries transacted by the application server, the application server must notify the
commit decision to the message provider during crash recovery.

During crash recovery:

The application server must first restart resource adapter instances by calling the
st art method on each persisted Resour ceAdapt er JavaBean, each
corresponding to a resource adapter instance that was active prior to the crash.
The application server must call the get XAResour ces method on each

Resour ceAdapt er JavaBean, and pass in an array of Acti vati onSpec
JavaBeans, each of which corresponds to a deployed endpoint application that
was active prior to the system crash. This method need not be called if there were
no endpoint applications that were active prior to the crash.

Upon being called by the application server during crash recovery via the

get XAResour ces method, the resource adapter must return an array of
XAResour ce objects, each of which represents a unique resource manager.

The resource adapter may return nul | if it does not implement the XAResour ce
interface. Otherwise, it must return an array of XAResour ce objects, each of
which represents a unique resource manager that was used by the endpoint
applications. The resource adapter may throw a Resour ceExcepti on if it
encounters an error condition.

Since each returned XAResour ce object represents a unique resource manager,
the number of returned XAResour ce objects must be less than or equal to the
number of Acti vati onSpec instances specified.

12-26 J2EE Connector Architecture Specification + November 2003

12.5.3

= Since it is possible that multiple resource adapters may use the same resource
manager, there may be more than one XAResour ce object in the collection
representing a resource manager. The application server may still need to narrow
the collection of XAResour ce objects to a unique set of resource managers by
using the i sSaneRMmethod on the XAResour ce object.

= The application server must use the XAResour ce objects to query each resource
manager for a list of in-doubt in an already prepared state awaiting a commit
decision transactions. Then, it must complete each pending transaction by
sending the commit decision to the participating resource managers. Note, it is
possible that a resource manager may not have pending in-doubt transactions.

The crash recovery procedure ensures that the message provider gets notified about
the outcome of all message deliveries that were in an in-doubt transaction state at
the time of the crash. Upon such notification, the message provider, depending on
the delivery outcome, may decide to redeliver the undelivered messages to the
various endpoints when they are reactivated.

Durable Message Delivery Setup

Once message endpoints are activated, they are ready to receive messages from a
message provider. Message delivery setup may either be durable or non-durable.

In the case of non-durable message deliveries, messages are lost during application
server downtime. When the application server becomes functional again, it
automatically reactivates all message endpoints that were previously deployed, and
message delivery starts again. But the messages that were produced during the
downtime are lost. This is because messages are not persisted by the message
provider and redelivered when the message endpoints are reactivated.

In the case of durable activations, messages are not lost during application server
downtime. When the application server becomes functional again, it automatically
reactivates all message endpoints that were previously deployed, and message
delivery starts again. The messages that were produced during the downtime are
persisted by the message provider and redelivered when the message endpoints are
reactivated. It is the responsibility of the message provider to persist undelivered
messages and redeliver them when the endpoint is available; that is, when the
endpoint is reactivated by the app server.

Durability of message delivery may be an attribute of the activation setup, and thus
it must be captured as part of the endpoint activation information. No additional
contracts are required to support durable activations. Activation durability can be
specified by a endpoint deployer via the Acti vat i onSpec JavaBean. Note, some
message providers may not support durable message deliveries and hence it is a
QoS capability offered by the message provider.

Chapter 12 Message Inflow 12-27

12.5.4

125.4.1

12.5.5

Concurrent Delivery of Messages

During message endpoint activation, the application server supplies a
MessageEndpoi nt Fact ory to the resource adapter. The

MessageEndpoi nt Fact ory is used to get an endpoint instance via the

cr eat eEndPoi nt method call. Each call results in a new or an unused endpoint
instance that may be used to deliver messages concurrently; that is, for each active
message endpoint, there may be multiple endpoint instances consuming messages
concurrently.

Thus, for each message endpoint, depending on traffic, the resource adapter may
choose to deliver messages serially using a single endpoint instance or concurrently
using multiple endpoint instances.

There is no limit to the number of such endpoint instances that may be created,
although the application server may limit the concurrency by either throwing an
Unavai | abl eExcepti on or by blocking the cr eat eEndPoi nt method call.

The application server may also attempt to block a message delivery method call in
order to limit concurrency and perform flow control.

Requirements

= The application server must return a new or an unused endpoint instance for
every cr eat eEndPoi nt method call on a MessageEndpoi nt Fact ory.

Delivery Semantics and Acknowledgement

When the resource adapter delivers a message to an endpoint instance, which is
really a proxy endpoint instance, the application server intercepts the message
delivery to perform checks, inject transactions, and so on, and routes the message to
the actual message endpoint instance.

The application server may start a transaction before delivering the message to the
actual endpoint depending on the endpoint preferences. In the case of a transacted
delivery, the resource adapter may use the transaction notifications received via the
XAResour ce object to send back an acknowledgement to its message provider.

In the case of non-transacted delivery, that is, the application server does not start a
transaction, the resource adapter has to rely on the successful completion of the
message delivery call in order to send back an acknowledgement to its provider.

12-28 J2EE Connector Architecture Specification « November 2003

12.5.6

Transacted Delivery (Using Container-Managed
Transaction)

Depending on the endpoint preferences, the application server brackets the message
delivery to an endpoint instance with a Java Transaction API (JTA) transaction.

= This ensures that all the work done by the endpoint instance is enlisted as part of
the transaction.

= This provides atomic message delivery/message consumption; that is, if the
transaction were to be aborted by the application server due to an exceptional
condition, all the work done by the endpoint instance is aborted, and the delivery
is undone. If this does not occur, the transaction is committed, all the work done
by the endpoint instance is committed and the delivery is completed.

The application server notifies the resource adapter while beginning and completing
transactions by using the XAResour ce instance optionally supplied via the
cr eat eEndPoi nt method call.

= This allows the adapter to know the outcome of a transacted delivery, and also
influence the outcome of the transaction via the pr epar e method call on the
XAResour ce instance.

= This allows the adapter to send back an acknowledgement to its message
provider contingent on successful delivery; that is, when notified via the conmi t
method call on the XAResour ce instance.

= This also allows the adapter to be notified of the correct delivery outcome upon
failure recovery processing; that is, if the system crashes when the transaction is
in-doubt, that is, when the transaction has already been prepared, the application
server upon recovery correctly completes the transaction and notifies the adapter
of the outcome of the transaction. Thus, the adapter can send back an
acknowledgement to its message provider after failure recovery, if the message
had been successfully delivered.

A resource adapter may optionally provide an XAResour ce instance via the

cr eat eEndPoi nt method call in order to receive transactional notifications for
those transactions started by an application server before message delivery. The
resource adapter may find out whether message deliveries to a target method on a
message endpoint will be transacted or not via the i sDel i ver yTr ansact ed
method in the MessageEndPoi nt Fact ory instance, and decide whether to provide
an XAResour ce instance via the cr eat eEndPoi nt method. Note, this does not
require the resource adapter to support the transaction inflow contract (see
Chapter 14, “Transaction Inflow™).

There are two delivery options available to the resource adapter for transacted
deliveries:

= Option A, traditional XA style: The resource adapter optionally provides a
XAResour ce instance via the cr eat eEndPoi nt method in order to receive XA
transaction notifications for transacted message deliveries. In this case, the

Chapter 12 Message Inflow 12-29

12-30

application server fully controls the transaction boundaries and the resource
adapter is merely a participant (the XAResour ce Resource Manager (RM)). See
FIGURE 12-7 on page 35.

Option B, bef or eDel i very/ZafterDel i very: The resource adapter still
optionally provides an XAResour ce instance via the cr eat eEndPoi nt method
in order to receive XA transaction notifications for transacted message deliveries.
But the resource adapter controls the transaction boundaries via the

bef oreDel i very/ZafterDelivery calls, in spite of being only a participant, an
XAResour ce RM.

During the bef oreDel i very call from the resource adapter, depending on the
transactional preferences of the intended target method (specified via the

java.l ang. refl ect. Met hod method parameter), the application server starts a
transaction and enlists the XAResour ce instance in the transaction. The
processing (by the application server) of the actual message delivery method call
on the endpoint must be independent of the class loader associated with the
descriptive method object (parameter).

During the af t er Del i very call from the resource adapter, the application server
completes the transaction and sends transaction completion notifications to the
XAResour ce instance. The actual message delivery happens in between the

bef oreDel i very and afterDelivery calls.

In this case, the resource adapter controls when the transaction is started and
completed by the application server, even though the application server decides
on the outcome of the transaction. This allows resource adapters more flexibility
in handling message deliveries. For example, the resource adapter may choose to
dequeue a message from within the container-managed transaction so that the
message dequeue is automatically undone if the container-managed transaction
aborts.

There must not be more than one message delivery in-between a single

bef oreDel i very and afterDelivery method call pair. The application server
must reject bef oreDel i very or afterDel i very calls that are out of sequence
by throwing an | | | egal St at eExcepti on.

The beforeDel i very and afterDel i very method calls are considered part of
a single message delivery call. For each message delivery, the bef or eDel i very,
af t er Del i ver y methods and the actual message delivery method, must be
called from a single thread of control.

Further, the application server must set the thread context class loader to the
endpoint application class loader during the bef or eDel i very call and must
reset it during a corresponding af t er Del i very call. This allows a resource
adapter to use the application class loader to load application specific classes
while deserializing, or reconstructing, a message object. Note, setting of the
thread context class loader during the bef or eDel i very call is independent of
whether an XAResour ce instance is provided by the resource adapter.

J2EE Connector Architecture Specification + November 2003

12.5.7

For each message delivery to an endpoint instance, the application server must
match an af t er Del i very call with a corresponding bef oreDel i very call;
that is, for each message delivery to an endpoint instance, bef or eDel i very and
af ter Del i very calls are treated as a pair. See FIGURE 12-8 on page 36.

Thus, in the case of transacted deliveries:

= If a resource adapter does not provide an XAResour ce instance, it does not get
XA transaction notifications.

= If a resource adapter provides an XAResour ce instance, it gets XA transaction
notifications.

= If a resource adapter calls bef oreDel i very and afterDel i very methods in
addition to providing an XAResour ce instance, it not only receives XA
transaction notifications but also gains control over when the transaction is
started and completed. The bef oreDel i very and afterDelivery calls have
no effect when the resource adapter does not provide an XAResour ce instance or
when the delivery is not transacted.

These various delivery options provide more choices to the resource adapter and
allow a wide range of resource adapter and messaging provider implementations to
be plugged-in. The application server must support both delivery options, option A
and option B.

The r el ease method call on a proxy endpoint instance releases the state of the
proxy instance and makes it available for reuse. If the r el ease method is called
while a message delivery is in-progress, the application server must throw a
java.lang. Il 1 egal St at eExcepti on, since concurrent calls on a proxy endpoint
instance is disallowed. In the case of option B, if the r el ease method is called in-
between bef or eDel i very and af t er Del i very method calls, any transaction
started during the corresponding bef or eDel i ver y method call must be aborted by
the application server.

Non-transacted Delivery

1. The application server does not bracket the message delivery to an endpoint
instance within a JTA transaction.

2. The resource adapter relies on the successful return of the message delivery call
on the endpoint instance for delivery confirmation and may send out an
acknowledgement to its message provider if appropriate.

3. Any exception thrown by an endpoint instance during message delivery is taken
as a failed delivery. The application server must propagate any exception thrown
during message delivery to the resource adapter.

Chapter 12 Message Inflow 12-31

12.5.8

4. The application server does not notify the resource adapter about the delivery
outcome upon crash recovery. Note, system failures may happen before the
application server calls the actual endpoint instance, or while the actual endpoint
instance is doing work, or after the endpoint has completed its work but before
the message delivery on the endpoint returns.

= The application server does not have delivery status information available during
failure recovery, nor does it know what state the actual endpoint instance was in
when the failure happened. Consequently, it is hard to model exactly once
delivery semantics for non-transacted dispatches.

Transacted Delivery Using an Imported
Transaction

It is possible that a resource adapter may attempt message delivery to an endpoint
instance with a transaction initiated by a message source, or message provider; that
is, the message source initiates a transaction, and pushes a message to the resource
adapter from within the transaction. The resource adapter in turn imports the
transaction and attempts message delivery on an endpoint instance from within the
source managed transaction.

The resource adapter must use the transaction inflow contract (see Chapter 14,
“Transaction Inflow”) to import transactions initiated by a message source.

It must be possible to serially deliver one or more messages to one or more endpoint
instances belonging to one or more endpoint applications within a single transaction,
and be able to commit or abort the transaction as a single unit.

That is, it must be possible for a resource adapter to serially submit one or more
Wor k objects (associated with a single transaction) that deliver messages to one or
more endpoint instances belonging to one or more endpoint applications. If the
enclosing transaction successfully commits, the messages are deemed to have been
successfully delivered. If the enclosing transaction aborts, the messages that were
delivered as part of the transaction are canceled.

12-32 J2EE Connector Architecture Specification + November 2003

12.5.9

Requirements

An application server must implement the following behavior for transacted and
non-transacted message delivery to an endpoint instance. Before invoking the actual
endpoint instance the application server must do the checks prescribed in Table 12-1
shown below, depending on the endpoint transaction preferences and the presence
of a source managed transaction:

TABLE 12-1 Application Server Behavior For Transacted and Non-transacted Message

Delivery
Source managed transaction No source managed transaction
endpoint instance Use the source managed Start a new transaction. Notify the
requires transacted transaction. Ignore the XAResour ce instance supplied
message delivery XAResour ce instance by the resource adapter, if any.
supplied by the resource
adapter, if any.
endpoint does not need Suspend the source No action. Ignore the
transacted message managed transaction. XAResour ce instance supplied
delivery Ignore the XAResour ce by the resource adapter, if any.

instance supplied by the
resource adapter, if any.

The application server must propagate any exception thrown during a message
delivery to the resource adapter irrespective of whether the delivery is transacted or
not.

For transacted deliveries, the application server must support both delivery options,
option A and option B.

12.6

Endpoint Undeployment

= When a message endpoint is undeployed, the application server notifies the
resource adapter via the endpoi nt Deact i vat i on method. The application
server must pass the same MessageEndpoi nt Fact ory instance and the
Acti vat i onSpec JavaBean instance that was used during the endpoint
activation.

Chapter 12 Message Inflow 12-33

= The resource adapter removes the endpoint information from its internal state
and in turn may notify the message provider.

12-34 J2EE Connector Architecture Specification + November 2003

FIGURE 12-7 Transacted Message Delivery: Option A (sequence diagram)

) proxy endpoint .)
ResourceAdapter| |Message provider | instance (from | | TransactionManager| | actual endpoint
(from adapter) app server) (from app server) instance

XAResource
(from adapter

|

: MessageEndpointFactory
| (from app server)
|

|

|

|
|
|
|
| T
| |
| |
: 1. pushes a messaie (private contract)
|
|

I

|

I

|

I

|
| |
I 2.create an: instance :
I

| >|
|
|
I 4. create proxy endpoint

| |

| |

| |

3. createEndpoint(XAResource) : !
|

|

|

|

|
|
|
|
|
|
|
|
5. delive:r message

YN

6. start a transaction

7. start(Xi

l—»

|
|
|
|
|
| |
1 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
: : L 8. deliver message :
I ! I
| |
1 |
| |
| |
| |
| |
| |
| |
| |
| |
1 |
|
|
|
|
1

)

>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d
I
i
|
|
|
|
I
|
9. complete transactilbn :

I 10. end(Xi(I:I)
|

I I
11. prepare(Xid)
|

|

|

|

|

|

I

|

|

I

|

|

| | |
12. commit(Xid) |

I
|
1

Chapter 12 Message Inflow 12-35

FIGURE 12-8 Transacted Message Delivery: Option B (sequence diagram)

. proxy endpoint . .
ResourceAdapter| |Message provider | instance (from| | TransactionManager| | actual endpoint
(from adapter) app server) (from app server) instance

XAResource
from adapter

|

: MessageEndpointFactory
| (from app server)
|

|

|

|
|
|
|
|
|
|
: 1. pushes a messatle (private contract)

|

: 2. create an: instance

l ------------ (R e
|
|

|
|
3. createEndpoint(XAResource) :

| |
| | |
| | |
| |
T |l I I
| | | |
| | | |
: | 4. create proxy eniljpoint : :
1 l """"" | 1 1
| | | |
| | | |
| 5. beforeDelivery() I I I
| | | |
1 L I I
| | | |
I 6. start a transactioni I
l > l
I 7. start(Xid)
| |
| |
| I |
I | | |
8. delivier message | I
1 | |
‘ : 9. deliver message : :
| t 1
| | |
10. aftgrDelivery() I I
| |
| |
|
|

10. complete transaation

-

|

|

|

:
11. end(Xid) :
l—“. l
I 12. preparé(Xid) :
I—>/ |
| |

|

|

|

|

| 13, commik(Xid)

!

N Y

12-36 J2EE Connector Architecture Specification + November 2003

FIGURE 12-9 Non-transacted Message Delivery (sequence diagram)

ResourceAdapter
(from adapter)

Message
provider

MessageEndpointFactory
(from app server)

proxy endpoint
instance (from
app server)

actual endpoint

instance

[it

|
|
|
|
|
|
|
1. pushes a messa:ge (private contract) :
|
|
|
|
|
|

2. ¢reateEndpoint(null)

|
4. deliver message

B
|
|
i 3. create proxy enqllpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
>:

l 5. deliver message

Chapter 12 Message Inflow

R |

12-37

FIGURE 12-10 Endpoint Undeployment (sequence diagram)

Deployer| |J2EE app serverl |ResourceAdapter| |MessageEndpointFactory Message provider
(from adapter) (from app server)

e 2. endpointDeactivation
By

|

|

| |

1. undeploy an endpoint [

l ------- >I I
|

|

|

Resource adapter removes endpoint information
from its internal state.

12.7 Java Message Service (JMS) Use Case

For illustration purposes, a JMS use case involving a JMS resource adapter is
discussed. The intent is to show how

= The JMS resource adapter uses the generic message inflow contract and
asynchronously delivers messages to message-driven beans via the onMessage
method on thej avax.j ns. MessagelLi st ener interface.

= The JMS resource adapter is used by an EJB application to send and
synchronously receive messages via a j avax. j ns. Connect i on object.

This illustrates how a JMS provider is plugged into a J2EE application server using
the standard connector contracts.

12-38 J2EE Connector Architecture Specification + November 2003

12.7.0.1 A Sample JMS Resource Adapter Deployment Descriptor

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>

<connector xm ns="http://java.sun.com xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" version="1.5">
<di spl ay- name>Wonbat - IMSAdapt er </ di spl ay- name>
<vendor - nane>Wnbat Software |nc. </ vendor - nane>
<ei s-type>JMS Provi der</eis-type>
<resour ceadapt er - ver si on>1. 0</ r esour ceadapt er - ver si on>

<r esour ceadapt er >
<r esour ceadapt er - cl ass>
com wonbat . connect or. j ns. JMSAdapt er | npl
</ resour ceadapt er - cl ass>

<I-- ResourceAdapter default configuration properties -->

<confi g- property>
<confi g- property- nanme>Ser ver Name</ conf i g- pr operty- name>
<confi g- property-type>java. | ang. Stri ng</confi g- property-type>
<confi g- property-val ue>Wnbat Ser ver </ confi g- property-val ue>

</ confi g- property>

<confi g- property>
<confi g- property- name>Por t Nunber </ confi g- pr operty- name>
<confi g- property-type>java. | ang. String</ confi g- property-type>
<confi g- property-val ue>1050</ confi g- property-val ue>

</ confi g-property>

<confi g- property>
<confi g- property- nane>Qper at i onal Mbde</ confi g- property- nane>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>Managed</ confi g- property-val ue>

</ confi g-property>

<confi g- property>
<confi g- property- nane>Cont ai ner Type</ confi g- property- name>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>EJB- WEB</ conf i g- pr operty-val ue>

</ confi g- property>

<out bound-r esour ceadapt er >

<connection-definition>
<managedconnecti onf act ory-cl ass>
com wornbat . connect or . j ms. QueueManagedConnect i onFact oryl np
</ managedconnect i onf actory-cl ass>

<!'-- ManagedConnecti onFactory default configuration properties -->
<confi g- property>

Chapter 12 Message Inflow 12-39

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

<confi g- property-nane>Ser ver Nane</ confi g- property- nane>
<confi g-property-type>java. |l ang. String</confi g-property-type>
<confi g- property-val ue>

Wonbat QueueSer ver
</ confi g- property-val ue>

<confi g- property>
<confi g- property-name>Port Nunber </ confi g- property-nane>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>1051</ confi g- property-val ue>

</ confi g- property>

<connectionfactory-interface>
j avax. j nms. QueueConnecti onFactory
</ connectionfactory-interface>
<connecti onfactory-inpl -cl ass>
com wornbat . connect or. j ms. QueueConnect i onFact or yl npl
</ connecti onfactory-inpl-cl ass>

<connection-interface>
j ava. j ns. QueueConnecti on
</ connection-interface>
<connection-inpl - cl ass>
com wonbat . connect or. j ms. QueueConnect i onl np
</ connecti on-i npl - cl ass>
</ connecti on-definition>

<connection-definition>
<managedconnecti onf act ory-cl ass>
com wornbat . connect or. j ms. Topi cManagedConnect i onFact oryl np
</ managedconnect i onf act ory-cl ass>

<!'-- ManagedConnecti onFactory default configuration properties -->
<confi g- property>
<confi g- property- nanme>Ser ver Name</ confi g- pr operty- name>
<confi g-property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>
Wonbat Topi cSer ver
</ confi g- property-val ue>
</ confi g- property>
<confi g- property>
<confi g- property- name>Por t Nunber </ confi g- pr operty- name>
<confi g- property-type>java. | ang. Stri ng</confi g- property-type>
<confi g- property-val ue>1052</ confi g- property-val ue>
</ confi g- property>

<connectionfactory-interface>

12-40 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

J avax.] ms. Topl cConnect 1 onFact ory
</ connectionfactory-interface>
<connectionfactory-inpl-cl ass>

com wonbat . connector. j ms. Topi cConnecti onFact oryl npl
</ connectionfactory-inpl-cl ass>

<connection-interface>
java. j ns. Topi cConnecti on
</ connection-interface>
<connection-inpl - cl ass>
com wonbat . connect or. j ms. Topi cConnecti onl npl
</ connecti on-i npl - cl ass>
</ connecti on-definition>

<connection-definition>
<managedconnect i onf act ory-cl ass>
com wonbat . connect or . j ms. ManagedConnect i onFact oryl npl
</ managedconnect i onf act ory- cl ass>

<I--

Thi s ManagedConnecti onFactory JavaBean i nherits the ResourceAdapter
JavaBean configuration properties, and does not override any

of the global defaults

-->

<connectionfactory-interface>

j avax.j ms. Connecti onFact ory
</ connectionfactory-interface>
<connectionfactory-inpl-cl ass>

com wonbat . connect or. j ns. Connecti onFact oryl np
</ connectionfactory-inpl-cl ass>

<connection-interface>
java.jns. Connection
</ connection-interface>
<connection-inpl - cl ass>
com wonbat . connect or. j ns. Connecti onl npl
</ connection-inpl -cl ass>
</ connecti on-definition>

<transacti on- support >XATr ansacti on</transacti on- support >
<reaut henti cati on- support >f al se</reaut henti cati on- support>

</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<messageadapt er >

Chapter 12 Message Inflow 12-41

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

<messagel i st ener >
<nmessagel i st ener-type>
j avax. j ms. MessagelLi st ener
</ messagel i st ener -t ype>

<activati onspec>
<activationspec-cl ass>
com wonbat . connector.jms. Acti vati onSpecl npl
</ activationspec-cl ass>

<l--

The endpoi nt depl oyer configures the Activati onSpec JavaBean
and may override sonme of the global defaults inherited from
t he ResourceAdapter JavaBean. For exanple, the ServerNane
and the PortNunmber properties.

-->

<I-- required config property names for ActivationSpec -->
<requi red-confi g-property>

<confi g- property-nane>Desti nati on</confi g-property-nane>
</required-config-property>

</ activationspec>

</ messagel i st ener >
</ messageadapt er >
</ i nbound-r esour ceadapt er >

<admi nobj ect >
<admi nobj ect-i nterface>j avax. j ns. Queue</ adm nobj ect -i nt erf ace>
<admi nobj ect - cl ass>
com wonbat . connector. j nms. Queuel npl
</ adm nobj ect - cl ass>
</ adni nobj ect >
<adm nobj ect >
<adni nobj ect -i nterface>j avax. j ms. Topi c</ adm nobj ect-i nterface>
<admi nobj ect - cl ass>
com wonbat . connector. j ns. Topi cl npl
</ adm nobj ect - cl ass>
</ admi nobj ect >
<adm nobj ect >
<admi nobj ect-interface>
javax. j ns. Destination
</ adm nobj ect-i nterface>
<adni nobj ect - cl ass>
com wonbat . connect or. j ms. Desti nati onl npl
</ adm nobj ect - cl ass>

12-42

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

</ 'adm nobj ect >

</ resour ceadapt er >
</ connect or >

Chapter 12 Message Inflow 12-43

12.7.0.2 A Sample JMS ActivationSpec Implementation

package com wonbat . connector. | rs;
i mport java.io.Serializable;
i mport javax.resource.spi.ActivationSpec;
i nport javax.resource.spi.lnvalidPropertyException;
public class ActivationSpeclnpl inplenments ActivationSpec,
Serializable {
public set Acknowl edgeMbde(String node) { ... }
public String get Acknow edgevbde() { ... }
public setSubscriptionDurability(String durability) { ... }
public String getSubscriptionbDurability() { ... }
public set MessageSel ector(String selector) { ... }
public String get MessageSelector() { ... }
public setDestinati onType(String destType) { ... }
public String getDestinationType() { ... }
public setDestination(String dest) { ... }
public String getDestination() { ... }
public setSubscriptionName(String nane) { ... }
public String getSubscriptionName() { ... }
public setdientld(String id) { ... }
public String getdientld() { ... }
public void validate() throws InvalidPropertyException{ ... }
}

12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment

12-44 J2EE Connector Architecture Specification + November 2003

12.7.0.4

Descriptor

<?xm version="1.0" encodi ng="US-ASCl | " ?>

<I DOCTYPE ej b-jar PUBLIC ' -//Sun M crosystens, Inc.//DTD
Enterprise
JavaBeans 2.0//EN ’'http://java.sun.conidtd/ejb-jar_2 0.dtd >

<ejb-jar>
<di spl ay- nane>NMDB1</ di spl ay- nanme>
<ent erpri se- beans>
<message-driven>
<di spl ay- nane>NDB_DURABLE_CMT</ di spl ay- nane>
<ej b- name>NMDB_DURABLE_CMT</ ej b- nane>
<ej b- cl ass>nsgbean. MsgBean</ ej b- cl ass>
<transacti on-type>Cont ai ner</transacti on-type>
<message-driven-destinati on>
<desti nati on-type>j avax.j ns. Topi c</ desti nati on-type>

</ nessage-driven-destinati on>
<message- sel ect or >JM5Type =
</ nessage- sel ect or >
</ nessage-driven>
</ enterprise-beans>
</ejb-jar>

car’ AND col or = 'blue’

<subscri ption-durability>Durabl e</ subscription-durability>

A Sample EJB 2.1 Message-driven Bean Deployment
Descriptor

CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ejb-jar xm ns="http://]java.sun.conl xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
version="2.1">
<di spl ay- nane>NMDB1</ di spl ay- nane>
<ent erpri se-beans>
<nessage-driven>
<di spl ay- name>NVDB_DURABLE_CMT</ di spl ay- name>
<ej b- name>NVDB_DURABLE_CMT</ ej b- name>
<ej b- cl ass>nsgbean. MsgBean</ ej b- cl ass>
<messagi ng- t ype>j avax. j ns. Messageli st ener

Chapter 12 Message Inflow

12-45

12-46

CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor

</ messagi ng- t ype>
<transacti on-type>Cont ai ner</transacti on-type>
<activation-config>
<activation-config-property>
<activation-config-property-nane>
destinati onType
</ activation-config-property-nanme>
<activation-config-property-val ue>
javax. jms. Topic
</ activation-config-property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-confi g- property-name>
Subscri ptionDurability
</ activation-config-property-name>
<activation-confi g-property-val ue>
Dur abl e
</ activation-config-property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-confi g- property-name>
MessageSel ect or
</ activation-config-property-nane>
<activation-config-property-val ue>
JMSType = "car’ AND col or = 'blue’
</activation-config-property-val ue>
</ activation-config-property>
</ activation-config>
</ nessage-driven>
</ enterprise-beans>
</ejb-jar>

J2EE Connector Architecture Specification + November 2003

12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor

CODE EXAMPLE 12-7 Sample EJB 2.1 Deployment Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>
<ejb-jar xm ns="http://java.sun.conl xm /ns/j2ee"
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
version="2.1">
<di spl ay- name>Ej b1</ di spl ay- nanme>
<enterpri se- beans>
<sessi on>
<di spl ay- nane>JMSBean</ di spl ay- name>
<ej b- name>JMSBean</ ej b- name>
<hone>j ms. JMSHone</ home>
<r enot e>j ns. JM5</ r enot e>
<ej b-cl ass>j ns. IMSEJB</ ej b- cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
<resource-ref>
<descri pti on>descri pti on</description>
<res-ref-nane>j ns/ MyQueueConnect i onFact ory</res-ref - name>
<res-type>j avax. j ns. QueueConnect i onFact ory</res-type>
<res-aut h>Appl i cati on</res-aut h>
<res-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>
<resour ce-env-ref >
<resour ce-env-ref - nane>j ns/ QueueNane</r esour ce- env-r ef - nanme>
<resource-env-ref-type>j avax. j ns. Queue</ resource-env-ref-type>
</resource-env-ref>
</ sessi on>
</ enterprise-beans>
</ejb-jar>

12.7.1 Message-driven Bean Asynchronously Receiving
Messages

12.7.1.1 Message-Driven Bean Deployment

= A message-driven bean application developer or assembler supplies a
deployment descriptor which specifies a destination type, message selector, and
subscription durability information needed to setup subscription to a certain
destination, Queue or Topi c. Note, this information is a hint which is used by the
message-driven bean deployer to setup the subscription.

Chapter 12 Message Inflow 12-47

= The message-driven bean deployer selects an appropriate JMS resource adapter
based on the quality of service and creates an Act i vat i onSpec JavaBean
instance and configures the required property "Destination” as well as other
properties related to the JMS messaging style and the specific resource adapter.

= The endpoint deployer may need to interact with the JMS provider to setup an
appropriate "Destination" and other steps necessary to complete message-driven
bean deployment.

= The deployer deploys the message-driven bean application. During deployment,
the deployer provides the configured Act i vat i onSpec JavaBean to the
application server, along with information about the chosen JMS resource adapter.

= The application server calls the endpoi nt Acti vati on method on the JMS
resource adapter and passes the configured Act i vat i onSpec JavaBean instance
and a MessageEndpoi nt Fact ory instance. During the endpoi nt Acti vati on
method call the JMS adapter interacts with its provider to setup message delivery
to the message-driven bean. This completes the endpoint activation, and the
message-driven bean is ready to receive messages.

12.7.1.2 Message Delivery

= When messages start arriving, the JMS adapter uses the
MessageEndpoi nt Fact ory instance to get an endpoint instance and delivers
messages to the endpoint via the j avax. j ms. Messageli st ener. onMessage
method.

= The application server interposes the message delivery and injects transactions
based on the message-driven bean preferences, container-managed transaction or
bean-managed transaction, before delivering the message to a message-driven
bean instance.

= When a delivery is transacted, the application server notifies the JMS resource
adapter using the XAResour ce object. The JMS resource adapter may use the
notifications to send acknowledgements to its message provider.

= The JMS resource adapter, depending on the traffic, may attempt concurrent
delivery of messages by using multiple endpoint instances obtained via
MessageEndpoi nt Fact ory. The application server appropriately handles
concurrent message deliveries and dispatches messages to separate message-
driven bean instances.

12.7.1.3 Message-Driven Bean Undeployment

= When the message-driven bean is undeployed, the application server calls the
endpoi nt Deact i vati on method on the JMS resource adapter to deactivate the
message endpoint.

= The JMS adapter in turn notifies its message provider.

12-48 J2EE Connector Architecture Specification + November 2003

12.7.2

EJB Using JMS API to Send and Synchronously
Receive Messages Via a JMS Resource Adapter

= The JMS resource adapter provides j avax. j ms. Connect i on objects which

expose the JMS API to the EJB application. The EJB directly uses the JMS API to
send and synchronously receive messages. The j avax. j ns. Connect i on objects
are obtained from a Connecti onFact ory supplied by the JMS resource adapter.
Based on the EJB deployment descriptor information (r esour ce-r ef ’s and
resour ce- env-ref’s), the EJB deployer configures the appropriate

Connect i onFact ory objects (r esour ce-r ef ’s) in the component name space
(j ava: conp/ env). The application deployer also configures the necessary Queue
or Topi ¢ administered objects (r esour ce- env-r ef ’s) in the component name
space. The JMS resource adapter provides the implementation of the various
Connect i onFact ory and administered objects.

At runtime, the component does a JNDI lookup of a Connect i onFact ory object
from its component name space (j ava: conp/ env), and uses it to create a
javax.j nms. Connect i on object which is used for sending and synchronously
receiving messages. Similarly, the component uses the JNDI lookup mechanism to
obtain the configured Queue or Topi ¢ administered objects.

Chapter 12 Message Inflow 12-49

12.7.2.1

12.7.2.2

12-50

Using JMS API to Send Messages

CODE EXAMPLE 12-8 Sending Messages Using the JMS API

[T get JNDI handle
Context jndi Context = new Initial Context();

/1 get connection factory
Connecti onFactory connecti onFactory = (Connecti onFactory)
j ndi Cont ext . | ookup(" QueueConnecti onFactory");

/'l get connection fromfactory
Connection connection = connecti onFactory. get Connection();

/1 get session from connection
Sessi on session = connection. creat eSessi on(true,
AUTO_ACKNOWLEDCGE) ;

/1 get destination from JNDI
Queue stockQueue = (Queue) jndi Context.| ookup("StockQueue");

/] create a nessage producer
MessagePr oducer sender = session. creat eProducer (stockQueue);

/1 create a nessage
Text Message nessage = session. creat eText Message() ;
nmessage. set Text (nsgDat a) ;

/'l send the nessage

sender . send(nessage) ;

J2EE Component Using JMS API to Synchronously Receive
Messages

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component

[T get JNDI handle
Context jndi Context = new Initial Context();

/1 get connection factory
Connecti onFactory connecti onFactory = (Connecti onFactory)
j ndi Cont ext . | ookup(" QueueConnecti onFactory");

/'l get connection fromfactory
Connection connection = connecti onFactory. get Connection();

/1 get session from connection

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component

Sessi on session = connection. createSession(true,
AUTO_ACKNOWLEDCGE) ;

/1 get destination from JNDI
Queue stockQueue = (Queue) jndi Context.| ookup("StockQueue");

/] create a nessage consuner
MessageConsuner receiver = session. createConsuner (stockQueue);

/1 enabl e connection to receive nmessages
connection.start();

/'l synchronously receive the nessage

Text Message nessage = (Text Message) receiver.receive(nessage);

12.8

12.8.1

A Non-JMS Use Case

This illustration is intended to show that it is possible to plug a wide range of
message providers into a J2EE application server via the standard connector
contracts, such that it is possible for an application to either asynchronously receive
messages via the message inflow contract or to use a connection object to send and
synchronously receive messages.

Resource Adapter Deployment Descriptor

This is an example deployment descriptor for a resource adapter that can provide
both inbound and outbound communication with a particular EIS.

On the inbound side, it can deliver messages to a message-driven bean that
implements a com kangar oo. MessagelLi st ener. Note, the deployment descriptor
has a messagel i st ener -t ype element with the value

com kangar oo. Messageli st ener. The acti vati onspec-cl ass is of type

com kangar oo. MyEl SActi vati onSpecl npl . This Acti vati onSpec JavaBean
has a single required property Por t Nunber, that is required to establish a
connection to the remote EIS. When the EIS data is received, the resource adapter
will convert it to a com kangar oo. Message and deliver it to a message-driven
bean instance.

Chapter 12 Message Inflow 12-51

The resource adapter also provides a ManagedConnect i onFact ory
implementation for outbound communication to the EIS. This also takes a single
configuration parameter called Por t Nurber .

CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter

<?xm version="1.0" encodi ng="UTF- 8" ?>

<connector xm ns="http://java.sun.com xm /ns/j2ee"

xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
version="1.5">

<di spl ay- name>Kangar ooAdapt er </ di spl ay- nanme>
<vendor - nane>Kangar oo Sof tware |nc. </ vendor - nane>

<ei s-type>JMS Provi der</eis-type>

<resour ceadapt er - ver si on>1. 0</ r esour ceadapt er - ver si on>

<r esour ceadapt er >
<r esour ceadapt er - cl ass>
com kangar oo. MyEl SAdapt er | npl
</ resour ceadapt er - cl ass>

<I-- ResourceAdapter default configuration properties -->
<confi g- property>
<description>URL for EIS instance</description>
<confi g-property-nanme>El S_URL</ confi g- property-nane>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>TBD</ confi g- property-val ue>
</ confi g- property>

<out bound- r esour ceadapt er >
<connection-definition>
<managedconnecti onf act ory-cl ass>
com Kangar oo. MyManagedConnect i onFact or yl npl
</ managedconnect i onf act ory- cl ass>

<!-- ManagedConnecti onFactory default configuration properties -->
<confi g-property>
<confi g- property-name>Port Nunber </ confi g- property-nane>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>1051</ confi g- property-val ue>
</ confi g- property>

<connectionfactory-interface>

j avax. resource. cci . Connecti onFactory
</ connectionfactory-interface>
<connectionfactory-inpl-cl ass>

com Kangar oo. MyConnect i onFact oryl np
</ connecti onfactory-inpl -cl ass>

12-52

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter

<connection-interface>
j avax. resource. cci . Connection
</ connection-interface>
<connection-inpl - cl ass>
com Kangar oo. MyConnect i onl npl
</ connection-inpl -cl ass>
</ connecti on-definition>

<transacti on-support>NoTransacti on</transacti on-support >
<reaut henti cati on- support >f al se</reaut henti cati on- support>
</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<messageadapt er >
<nmessagel i st ener >
<messagel i st ener-type>
com kangar oo. MessagelLi st ener
</ messagel i st ener-type>
<activati onspec>
<activationspec-cl ass>
com Kangar oo. MyEl SAct i vati onSpecl np
</ activationspec-cl ass>
<requi red-confi g- property>
<confi g- property- nane>Por t Nunber </ confi g- property- name>
</ required-config-property>
</ activationspec>
</ nessagel i st ener >
</ messageadapt er >
</ i nbound-r esour ceadapt er >

</ resour ceadapt er >
</ connect or >

12.8.2 Resource Adapter Deployment

Before use, the resource adapter needs to be deployed on the application server.
During resource adapter deployment, the deployer configures a Resour ceAdapt er
JavaBean instance and deploys the resource adapter.

Chapter 12 Message Inflow 12-53

12.8.3 Message-Driven Bean Asynchronously Receiving
Notifications From an EIS

12.8.3.1 The Message-Driven Bean Deployment Descriptor

CODE EXAMPLE 12-11 Deployment Descriptor for a Message-Driven Bean

<?xm version="1.0" encodi ng="US- ASClI | " ?>

<! DOCTYPE ej b-jar PUBLIC ?-//Sun M crosystens, Inc.//DTD
Enterprise JavaBeans 2.1//EN? ?http://java.sun.comdtd/ejb-jar_2 1.dtd?>

<ej b-jar>
<di spl ay- name>Ej b1</ di spl ay- name>
<ent er pri se- beans>
<message-driven>
<di spl ay- nane>El S Recei ver Bean</di spl ay- nane>
<ej b- name>El SRecei ver </ ej b- name>
<ej b- cl ass>myapp. El SRecei ver Bean</ ej b-cl ass>
<messagi ng-t ype>com kangar oo. Messageli st ener </ nessagi ng-t ype>
<transacti on-type>Cont ai ner</transacti on-type>
<activation-confi g>
<activation-config-property>
<activation-confi g- property-name>
functi onNane
</activation-config-property-nane>
<activation-config-property-val ue>
Cust oner ChangeNot i fication
</activation-config-property-val ue>
</ activation-config-property>
<activation-config-property>
<activation-config-property-nane>
Cust ormer Nanme
</ activation-config-property-nane>
<activation-config-property-val ue>
Wonbat | nc
</ activation-config-property-val ue>
</ activation-config-property>
</ activation-config>
</ message-dri ven>
</ enterprise-beans>
</ejb-jar>

When the message-driven bean is deployed, the bean deployer chooses an
appropriate resource adapter based on the type of the message listener it supports.
In this case, the deployer chooses the resource adapter with the Resour ceAdapt er

12-54 J2EE Connector Architecture Specification + November 2003

12.8.4

12.8.5

class com vendor . MEl SAdapt er | npl since it supports the
com kangar oo. MessagelLi st ener type.

Then the deployer creates an instance of

com vendor. MyElI SAct i vat i onSpecl npl and populates it with values. The
Acti vat i onSpec JavaBean instance will also contain values of properties that are
set in the acti vati on- confi g section of the bean’s deployment descriptor. In the
example above, the properties are Funct i onNane, with the value

Cust orrer ChangeNot i fi cati on, and Cust oner Nane, with the value Wonbat ,

I nc., which the deployer may choose to override.

Finally, the deployer provides the configured Act i vat i onSpec JavaBean instance
to the application server.

Message-Driven Bean and Resource Adapter
Activation

When the application server is started, it will activate the resource adapter by calling
its st art method. The application server will create an instance of the message-
driven bean with class name myapp. El SRecei ver Bean. Then the application
server will call the endpoi nt Acti vati on method on the resource adapter instance
and pass in the configured Act i vat i onSpec instance associated with the deployed
message-driven bean, and a MessageEndpoi nt Fact ory instance. The resource
adapter will use the information in the Act i vati onSpec to establish a subscription
to the requested data from the EIS.

Message Delivery

When a notification arrives from the EIS, the resource adapter has the responsibility
of converting its data to a com kangar oo. Message if it is not already in this
format. The resource adapter will then use the MessageEndpoi nt Fact ory to
deliver the notification to the message-driven bean. Note that, rather than calling the
MessageEndpoi nt Fact ory directly, the resource adapter is likely to instantiate a
Wor k object, and pass it to the application server via the Wor kManager interface.
When the doWwor k method of the Wor kManager is called the dispatch will occur.
This will allow the resource adapter to continue to process incoming messages
without blocking until message-driven bean dispatch has completed.

Chapter 12 Message Inflow 12-55

12-56 J2EE Connector Architecture Specification + November 2003

CHAPTER 13

EJB Invocation

This chapter describes how to invoke session and entity beans from a resource
adapter.

13.1 Overview

A resource adapter may need to call session or entity beans for several reasons:

= To dispatch calls from an EIS to a bean in order to execute business logic.
= To use EJB container-managed persistence (CMP) mechanism for persistence.

In order to dispatch calls to a session or entity bean, the resource adapter needs to
know the target bean type, the method name, and the method parameters. Upon
receiving a request from the EIS via a remote protocol, the resource adapter’s
dispatch logic needs to:

= Choose an appropriate bean and a target method name based on the request
received from the EIS.

= Unmarshall, that is, deserialize, the request parameters received from the EIS and
call the target bean method.

131

13.2

EJB Invocation Model

FIGURE 13-1 EJB Invocation Model

same address space

session and
entity beans

Application | Inbound communi- | Resource
Server |g¢ Adapter

cation contracts

message-driven
beans

EIS

For session or entity bean invocations, the resource adapter’s bean dispatch logic can
use the bean client view model via a message-driven bean. The EJB specification
(Section 1., “Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1)
defines the EJB client view, and describes how the client view is used to access
session or entity beans. The EJB client view is available to a message-driven bean.

The resource adapter could structure its code such that its bean dispatch logic is
written as a message-driven bean. The message-driven bean chooses an appropriate
session or entity bean and a target method, unmarshalls the request parameters and
invokes the chosen bean based on the request information received from the EIS.

The resource adapter can use the message inflow contract to call a message-driven
bean, and use the message-driven bean to dispatch calls to session and entity beans
using the EJB client view model. The EJB specification allows a request-response
style message-driven bean call which could be used for synchronous RPC-style calls.
The message-driven bean could be packaged either with the resource adapter or
separately.

13-2 J2EE Connector Architecture Specification « November 2003

Thus, the message-driven bean could be used as a replaceable unit of the resource
adapter which serves the job of a bean dispatcher. The message inflow contract
allows the creation of multiple endpoint instances (message-driven beans) at
runtime, and hence it is possible to do concurrent bean dispatches.

Further, the transaction inflow mechanism (described in Chapter 14, “Transaction
Inflow”) allows the resource adapter to use the transaction information obtained
from the EIS for bean invocations. Note, however, the application server may
suspend the imported transaction depending on the transaction preference of the
target bean method.

13.3

An lllustrative Use Case

Wombat Inc. is a resource adapter vendor. The resource adapter supports inbound
communication from an EIS to application components residing in an application
server container. The resource adapter uses the message inflow contract to call
message-driven beans which serve as a dispatcher for session and entity bean
invocations. In this case, Wombat Inc. supplies both the resource adapter and the
message-driven beans, even though these could be supplied by different vendors.

The EIS uses multiple concurrent conversations in its interactions with the resource
adapter. Each conversation may involve multiple serial requests. The resource
adapter has a set of Wor k objects (threads), each of which is used for carrying on a
specific conversation. The resource adapter manages the multiple concurrent
conversations, and calls a message-driven bean instance whenever a request
message arrives as part of a conversation.

The following code sample shows a possible message-driven bean implementation:

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation

package com wonbat . ra;

i nport javax.ejb. MessageDri venBean;
i mport javax.namng. | nitial Context;

public class Wnmbat VDB
i mpl ements MessageDri venBean, Wnbat Messageli st ener {

public static int CONV_START = O;
public static int CONV_CONTINUE = 1,
public static int CONV_END = 2;

private Context jndi Context = null;
private ConvBeanHorme chome = null;

Chapter 13 EJB Invocation 13-3

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation

public void ejbCreate() {
jndi Context = new Initial Context();
chome = (ConvBeanHone)
j ndi . | ookup("]j ava: conp/ env/ ConvBeanHone") ;

}

ConvResponse onMessage(ConvRequest request Msg) {
/1 get conversation id and request type fromthe request
/1 message
int convid = ...
int type = ...;

if (type == CONV_START) {
/'l create entity EIJB for holding the specific
/'l conversation state
ConvBean cbean = chone. create(convld);
} else if (type == CONV_CONTI NUE) ({
ConvBean cbhean = chone. fi ndByPri mar yKey(convl d);

/1 unmarshal | EJB nethod paraneters

/1 invoke EJB and return response
Ooj ect resp = chean. nyBusi nessMet hod(par ans) ;
ConvResponse cresp = Utility.convert(resp);
return cresponse;

} else if (type == CONV_END) {
cbean. renmove();

}

return null;

}

public void ej bRenove() {
j ndi Context = null;
chome = null;

}

The resource adapter uses the message-driven bean as a generic dispatcher for
session and entity bean invocations, and relies on the application server to efficiently
pool message-driven bean instances. Each message-driven bean call should be just as
efficient as a method call on a resource adapter local object.

13-4 J2EE Connector Architecture Specification « November 2003

13.3.0.1

Message-driven Bean Dispatcher Pattern

When a worker thread from a resource adapter accesses a message-driven bean
method, the JNDI context of the bean is available to the thread, although only
during the method call on the bean.

The resource adapter may take advantage of this, and use the bean as a dispatcher.

That is, the resource adapter may park the thread within the bean method inside a

while loop, and use it to process resource adapter specific data structures passed into
the bean method as method parameters, and also use the JNDI context of the bean to
access resources and other components.

In this case, the bean becomes a special Java object that has access to JNDI context,
which the resource adapter may use. This usage pattern illustrates a tight coupling
between the resource adapter and the message-driven bean, and it is likely that the
resource adapter would provide the bean implementation as well.

Chapter 13 EJB Invocation 13-5

13-6 J2EE Connector Architecture Specification « November 2003

CHAPTER 14

Transaction Inflow

This chapter specifies a contract between an application server and a resource
adapter that allows a resource adapter to propagate an imported transaction to an
application server, so that the application server and subsequent participants can do
work as part of the imported transaction. This contract also allows a resource
adapter to flow-in transaction completion and crash recovery calls initiated by an
EIS, and ensures that the atomicity, consistency, isolation and durability (ACID)
properties of the imported transaction are preserved.

14.1

Overview

A resource adapter may need to import an incoming external transaction context
obtained from a remote protocol message and do work as part of the imported
transaction. The work done by the resource adapter as part of the imported
transaction may involve interactions with the application server and the application
components.

The resource adapter is expected to know the wire protocol and the transaction

context format and be able to import an incoming transaction in an EIS-specific way.
The resource adapter needs to propagate the imported transaction to the application
server and also flow-in transaction completion and crash recovery calls initiated by
the EIS. In order for the resource adapter to accomplish this, it needs the following:

= A standard form to represent the transaction context imported by the resource
adapter.

= A mechanism to associate the work done by the resource adapter as part of the
imported transaction.

14-1

= A mechanism to treat the application server like a resource manager in order to
make it participate in the 2-phase commit and crash recovery flows initiated by
the external transaction originator, the EIS.

FIGURE 14-1 Transaction Inflow Contract

Transaction Transaction Transaction Transaction
participant participant participant originator

L L Transaction inflow
« - | Application ¢ _ . _|Application | Resource |g---- EIS
. server contract adapter

14.2 Goals

= Provide a standard mechanism for a resource adapter to propagate an imported
transaction to an application server.

= Provide a standard mechanism for a resource adapter to flow-in transaction
completion and crash recovery calls from an EIS.

= Ensure that the ACID properties of the transaction imported by a resource
adapter are preserved.

14.3 Use Case Scenario

An EIS initiates a transaction and calls application components residing in an
application server via a resource adapter. The EIS propagates the transaction context
as part of each call to the resource adapter, which is used by the application server to
recreate the transaction context before the application components are called. The
work done by the application components is automatically enlisted as part of the
imported transaction. When the EIS completes the transaction, the transaction
completion notifications flow to the application server via the resource adapter, and
the transaction is completed.

The transaction inflow contract may be used in various situations. For example:

= A message provider may use the contract to push messages to a resource adapter
for delivery to application components.

14-2 J2EE Connector Architecture Specification « November 2003

= The contract may be leveraged to make the application components do work as
part of a transaction initiated by a legacy EIS!.

FIGURE 14-2 Transaction Inflow Contract (object diagram)

Application Server Resource Adapter

getXATerminator()
BootstrapContext

Xid

] XA method calls
XATerminator

] errorCode
XAEXxception

1. Note that application components may not always do work as part of an ElS-initiated transaction, for
example, when the declarative transaction attribute of an enterprise bean’s method is RequiresNew, Never,
NotSupported, or if bean-managed transaction demarcation is used.

Chapter 14 Transaction Inflow 14-3

14.4

14.4.1

Transaction Inflow Model

package j avax.resource. spi;

i mport javax.transaction. xa. Xi d;
i mport java.transaction. xa. XAExcepti on;
i mport javax.resource. spi.wor k. Wor kManager ;

public interface BootstrapContext {
Wor kManager get Wr kManager () ;
XATer mi nat or get XATer m nator();
/1 other methods

}

public interface XATerm nator {
public void conmmit(Xid xid, bool ean onePhase) throws
XAExcept i on;
public void forget(Xid xid) throws XAExcepti on;
public int prepare(Xid xid) throws XAException;
public Xid[] recover(int flag) throws XAException;
public void rollback(Xid xid) throws XAExcepti on;

The Boot st r apCont ext interface allows the resource adapter to obtain a

Wor kManager instance and an XATer m nat or instance. These instances are not
required to be unique. The resource adapter uses the Wor kManager instance to
submit Wor k instances for execution, and uses the XATer m nat or instance for
transaction completion and crash recovery flows.

Processing of Transactional Calls

The steps involved in propagating an imported transaction from a resource adapter
to the application server in order to do transactional work is as follows:

= The EIS makes a transactional call to the resource adapter. The resource adapter is
expected to know the EIS-specific transaction context structure and the wire
protocol. The resource adapter imports the transaction context that arrived along
with the incoming message.

= The resource adapter represents the imported transaction context in a standard
form using the j avax. t ransacti on. xa. Xi d instance.

14-4 J2EE Connector Architecture Specification « November 2003

14.4.2

The resource adapter constructs a Wor k instance, which is expected to do work as
part of the transactional message, and also creates an Execut i onCont ext
instance containing the constructed Xi d. It then submits the Wor k instance along
with the Execut i onCont ext instance to the application server’s Wor kManager
for execution.

The application server’s Wor kManager accepts the submitted Wor k instance and
recreates the execution context for the Wor k instance. That is, the work to be done
is enlisted as part of the imported transaction. It then calls the r un method on the
Wor k object.

Note, however, all the work done by the Wor k object may not be part of the
transaction. For example, the application server may suspend the imported
transaction depending on the transaction preference of the bean method that may
be invoked.

The above steps may be repeated any number of times for a particular transaction
from any resource adapter. However, the application server must disallow
transactional Wor k submissions with a Wor kConpl et edExcepti on set to an
appropriate error code, irrespective of which resource adapter it comes from, under
the following circumstances:

If a Wor k instance associated with the transaction is already present. That is,
concurrent work within an imported transaction is disallowed. The error code to
indicate this is Wor kExcept i on. TX_CONCURRENT_WORK_DI SALLOWED.

The application server is unable to recreate the transaction. That is, it fails in its
attempt to enlist the Wor k instance with the transaction. The error code to indicate
this is Wor kExcept i on. TX_RECREATE_FAI LED.

Transaction Completion Processing

The steps involved in completing of the imported transaction initiated by the
external EIS are as follows:

The EIS sends a prepare message for a particular transaction.

The resource adapter obtains an XATer m nat or instance from the application
server via the get XATer mi nat or method of the Boot st r apCont ext instance.
Note, this step may be done at any time, and the obtained XATer ni nat or
instance may be used for transaction completion flows across multiple imported
transactions. The XATer mi nat or implementation should be thread-safe and re-
entrant.

The resource adapter calls the pr epar e method of the XATer m nat or instance
with an appropriate Xi d instance, and returns the outcome of the prepare
operation to the EIS.

Chapter 14 Transaction Inflow 14-5

= When the EIS sends a commit message for the transaction, the resource adapter
calls the conmi t method of the XATer mi nat or instance with an appropriate Xi d
instance. Note, it is possible for the commi t method to be called without a prior
pr epar e method call in the case of one-phase commit.

14-6 J2EE Connector Architecture Specification « November 2003

FIGURE 14-3 Transactional Calls and Transaction Completion Flow (sequence diagram)

| | | | |
6. dispatches a thread which sets up an execution coptext and calls run()
| | |

EIS Resource Xid ExecutionContext Work WorkManager

adapter | | (from adapter) (from adapter) (from adapter)| | (from app server)

| | | | | |

: : : : BootstrapContext : XATerminator :

| | | | (from app server) | | ((from app server),

| | | | T | T |

L= - P 1= === I 1= === R
/2 L. incomin transactional message with an EIS-specific transagtion context | e
N S Ll [[[[[(.
l | 2. construct an:Xid based on the ilhformation delﬁved from tlhe transactidlnal call : ;
: l """"" L I I I I I
: 3. create an execution context containing the corrlstructed Xidl : b
| R R > C o
! 4. create a Work instance I I I I o
B B------ Looomm e e e e e e o U [! 1 [
' | 1 [1 [[
: getWorkManager() [this step may be done once: at any time] : o
| : : - l T
] | | create an instance | I
| I e M | Lol |
! | | | [[
] | I | I I o
‘ 5. submit the Work instance for execution with the execution context 1 |
' I 1 1 1 1 1 o :
1 I I I | | |
‘ I L
‘ | :
| ‘

1 1 1
The above sequence of steps may be repeated any number of times for a given D
transaction across any resource adapter. -
|

= Transaction completion flow =

_— e . — —— —y———

|

|

|

getXATerminzlétor() [this step may be done just:once] :
1 : : L create a:n instance : ‘
! | | I- Y h | :
: 1. prepare message I I I I I
1 | | | | | | [
1 | | | | | | (.
' 2. prepare(Xid) I I I I I
' 1 | | | | [,
' I | | | | >, I
] I | | | | | |
- 3. commitll rollback messagele [this may happer\I without a priql)r prepare caltll] : :]
: | | | | | [
' | B . | | | | [
w 4. commit(Xid) or rollback(Xid) | | | | 1
I I I I [

7777777 ILIII4 o

Chapter 14 Transaction Inflow 14-7

14.4.3 Crash Recovery Processing

= If the EIS detects the failure of the application server while the transaction is
active (that is, transaction completion has not begun), it does not wait for the
application server to recover or do any recovery processing. The transactional
work done by the application server site is presumed aborted.

= If the EIS detects the failure of the application server while the transaction is in-
doubt (that is, the transaction has already been prepared), the EIS retries
completion by attempting to re-establish network communication until it
succeeds. When the application server recovers from the crash, it should recover
the state of all transactions that were successfully prepared before the crash, and
complete them upon receiving a commi t method or r ol | back method call from
the EIS via the resource adapter.

= If the resource adapter detects the failure of the EIS while the transaction is active
(that is, transaction completion has not begun), it aborts all active transactions
that originated from the EIS. The resource adapter should keep a list of active
transactions and abort them upon EIS failure.

14-8 J2EE Connector Architecture Specification « November 2003

= If the resource adapter detects the failure of the EIS while the transaction is in-
doubt (that is, the transaction has already been prepared), it waits for the EIS to
recover. When the EIS recovers, it re-establishes network communication with the
resource adapter, and queries it for a list of in-doubt transactions. It then
completes the in-doubt transactions.

Chapter 14 Transaction Inflow 14-9

FIGURE 14-4 Crash Recovery Flows When Application Server Crashes (sequence diagram)

EIS Resource Xid BootstrapContext XATerminator
adapter (from adapter) (from app server) (from app server)
| | | | |
| | | | |
N R [I R eI I ===~
. | |
| |

Application server crashes when a transaction is in an active state

|

|

I [

[—

(-

: = When the EIS detects the failure of the application server site while the transaction
, = isactive (thatis, transaction completion has not begun), it does not wait for the

, B application server to recover or do any recovery processing. The transactional

. = work done by the application server site is presumed aborted.

=
=
|

|

Application server crashes when a transaction is in an in-doubt state

When the EIS detects the failure of the application server site while the
transaction is in-doubt (that is, the transaction has already been prepared), the
EIS retries completion by attempting to re-establish the network communication
until it succeeds. When the application server recovers from the crash, it

should recover the state of all transactions that were successfully prepared
before the crash, and complete them upon receiving a commit(Xid) or
rollback(Xid) from the EIS via the resource adapter.

| |
1. commit orirollback message [EIS'retries completion]
| |

|
2. getXATerminator()
|

|
I -
I I 3. create an instance
|

|

|

|

I 4. construct an Xid

Y X

14-10 J2EE Connector Architecture Specification + November 2003

FIGURE 14-5 Crash Recovery Flows When EIS Crashes (sequence diagram)

EIS Resource Xid XATerminator

adapter (from adapter) (from app server)

EIS crashes when a transaction is in an active state

When the resource adapter detects the failure of the EIS site while the
transaction is active (that is, transaction completion has not begun), it aborts all
active transactions which originated from the EIS. The resource adapter
must keep a list of active transactions and abort them upon EIS failure.

| |

| |

I
|
L 1. create an Xid for each activéle transaction :
I """"""""" Ll I
|
|
|
|

|
I 2. rollback(Xid) for each active transaction

EIS crashes when a transaction is in an in-doubt state

When the resource adapter detects the failure of the EIS site while the
transaction is in-doubt (that is, the transaction has already been prepared), it
waits for the EIS to recover. When the EIS recovers, it re-establishes network
communication with the resource adapter, and queries it for a list of in-doubt
transactions. It then completes the in-doubt transactions.

|
ries for a list of in-doubt transactlions

S W

1. EIS recovers and qu

|
2. recover() [returns a list of !n—doubt transactions]

>

I |

|
|
|
4. send commit or rollback to the in-doubt transactions |
> !

| |

| |

| |
I 5. construct an Xid for each in-doubt transaction

| |
I 6. commit(Xid) or rollback(Xid) the in-doubt transaction

Y

Chapter 14 Transaction Inflow

14-11

14.4.4

14-12

Requirements

An application server must implement the transaction inflow contract. That is, it
must allow Wor k submissions with a transaction context, an Xi d, and provide a
valid XATer nmi nat or instance when called via the get XATer mi nat or method of
the Boot st r apCont ext instance.

A resource adapter may optionally choose to use the transaction inflow contract.
But, a resource adapter that uses the transaction inflow contract to import an EIS
transaction and do transactional work must implement the prescribed transaction
inflow contract.

The XATer ni nat or instance provided by the application server must be thread-
safe and re-entrant. The resource adapter may use an XATer ni nat or instance
across different transactions concurrently.

When the application server is unable to recreate the transaction context, if any,
specified for a Wor k instance, it must throw a Wor kConpl et edExcept i on set to
the error code Wor kExcept i on.TX_RECREATE_FAI LED.

For a particular imported transaction, at any given time, there must be at most
one Wor k instance associated with the transaction. The associated Wor k instance
may be in any state, that is, waiting for execution to begin or already executing.
However, it must be possible for several Wor k instances to do work on a
transaction as long as there is at most one Wor k instance associated with the
transaction at any time. It must also be possible for different resource adapters to
participate in the same transaction.

The application server must disallow Wor k submissions with a

Wor kConpl et edExcept i on set to the error code

Wor kExcept i on.TX_CONCURRENT_WORK_DI SALLOVED, if there is already a Wor k
instance associated with the transaction, irrespective of which resource adapter is
involved in the Wor k submission. This must be done using the

get d obal Transacti onl d method of the Xi d object present in the execution
context of the submitted Wor k instance. The Xi d’s branch identifier must be
ignored.

The application server must not try to serialize Wor k processing based on
transaction information.

The application server must reject Wor k submissions for a transaction whose
completion is in-progress, with a Wor kConpl et edExcept i on set to the error
code Wor kExcept i on. TX_CONCURRENT_WORK_DI SALLOVED.

The application server must reject transaction completion or crash recovery calls
for a specific transaction with a j avax. transacti on. xa. XAExcept i on, when
a Wor k instance associated with the transaction is present. The application server
must not block or serialize transaction completion or crash recovery calls waiting
for a Wor k instance associated with the transaction to complete.

The application server must reject multiple transaction completion or crash
recovery calls for the same transaction with a

javax. transaction. xa. XAExcepti on.

J2EE Connector Architecture Specification + November 2003

14.4.5

14.4.6

14.4.7

= The application server must reject transaction completion or crash recovery calls
with aj avax. transacti on. xa. XAExcepti on upon any errors.

= The application server should recover the state of all in-doubt transactions upon
failure recovery.

Non-Requirements

= The application server is not responsible for ensuring transaction ids of the
imported transactions from different EISs are unique. Each EIS is expected to use
unique transaction ids.

= Itis possible that a rogue resource adapter or EIS may provide non-unique Xi ds,
or attempt to complete transactions that it does not own. The application server is
not required to detect the above cases. It is also not required to detect
transactional, transaction completion, or crash recovery calls from a rogue EIS.

Recommendations

= The resource adapter should keep a list of active transactions and abort them
upon detecting EIS failure.

Transaction Inflow in a Non-managed
Environment

Though the transaction inflow contract is primarily intended for a managed
environment, it may be used in a non-managed environment provided the
application that bootstraps a resource adapter instance is capable of functioning as a
resource manager.

In a non-managed environment, support for the transaction inflow contract is not
required. That is, the get XATer mi nat or method of the Boot st r apCont ext
instance may return a null instance.

Chapter 14 Transaction Inflow 14-13

14-14 J2EE Connector Architecture Specification + November 2003

CHAPTER 15

Common Client Interface

The following chapter specifies the Common Client Interface (CCl).

15-1

15.1 Overview

The CCI defines a standard client API for application components. The CCI enables
application components and Enterprise Application Integration (EAI) frameworks to
drive interactions across heterogeneous EISs using a common client API. FIGURE 15-1
shows a high-level view of the CCI and its relationship to other application
components.

FIGURE 15-1 Common Client Interface

Application Component

Common Client
Interface

System Contracts

Resource Adapter

Application Server

EIS specific interface

Enterprise Information
System

15.2 Goals

The CCI is designed with the following goals:
= It defines a remote function-call interface that focuses on executing functions on
an EIS and retrieving the results. The CCI can form a base level API for EIS access

on which higher level functionality can be built.
= It is targeted primarily towards application development tools and EAI

frameworks.

15-2 J2EE Connector Architecture Specification « November 2003

= Although it is simple, it has sufficient functionality and an extensible application
programming model.

= It provides an API that both leverages and is consistent with various facilities
defined by the J2SE and J2EE platforms.

= Itis independent of a specific EIS. For example, it does not use data types specific
to an EIS. However, the CCI can be capable of being driven by EIS-specific
metadata from a repository.

An important goal for the CCl is to complement existing standard JDBC API and not
to replace this API. The CCI defines a common client API that is parallel to the JDBC
for EISs that are not relational databases.

Since the CClI is targeted primarily towards application development tools and EAI
vendors, it is not intended to discourage the use of JDBC APIs by these vendors. For
example, an EAI vendor will typically combine JDBC with CCI by using the JDBC
API to access relational databases and using CCI to access other EISs.

15.3

15.3.1

Scenarios

The following scenarios illustrate the use of CCIl by enterprise tools and Enterprise
Application Integration (EAI) vendors:

Enterprise Application Integration Framework

The EAI vendor uses the Common Client Interface as a standard way to plug-in
resource adapters for heterogeneous EISs. The vendor provides an application
integration framework on top of the functionality provided by the resource adapters.
The framework uses the standard CCI interfaces to drive interactions with the
connected EISs.

Chapter 15 Common Client Interface 15-3

15.3.2

15.3.3

FIGURE 15-2 also shows the use of JDBC by the EAI framework for connecting to and
accessing relational databases.

FIGURE 15-2 Scenario: EAl Framework

Enterprise Application Integration <t
Framework

Common Client

Interface JDBC API
_/
Metadata

JDBC Driver Repository

Resource Adapter

Metadata Repository and API

An EAI or application development tool uses a metadata repository to drive CClI-
based interactions with heterogeneous EISs. See FIGURE 15-2 and FIGURE 15-3 for
illustrative examples. A repository may maintain meta information about functions,
with type mapping information and data structures for the invocation parameters,
existing on an EIS system.

Note — The specification of a standard repository APl and metadata format is
outside the scope of the current version of the connector architecture.

Enterprise Application Development Tool

The CCI functions as a plug-in contract for an application development tool that
develops additional functionality around a resource adapter.

The application development tool generates Java classes based on the meta
information accessed from a metadata repository. These Java classes encapsulate
CCl-based interactions and expose a simple application programming model,
typically based on the JavaBeans framework, to the application developers. An
application component uses the generated Java classes for EIS access.

15-4 J2EE Connector Architecture Specification « November 2003

An application development tool can also compose or generate an application
component that uses the generated Java classes for EIS access. See FIGURE 15-3.

FIGURE 15-3 Scenario: Enterprise Application Development Tool

generates and/or composes

Application Components or

: Java Classes
Enterprise Application Development
Tool Common Client
Interface JDBC API
Resource Adapter JDBC Driver

S~ l

Metadata I
Repository

15.4 Common Client Interface

The CCl is divided in to the following parts:

= Connection-related interfaces that represent a connection factory and an
application level connection:

j avax.
j avax.
j avax.
j avax.

resource.
resource.
resource.
resource.

cci . Connecti onFact ory
cci . Connection

cci . Connect i onSpec
cci . Local Transacti on

= Interaction-related interfaces that enable a component to drive an interaction,
specified through an | nt er act i onSpec, with an EIS instance;

j avax. resource. cci.lnteraction
j avax. resource. cci.lnteracti onSpec
= Service endpoint message listener interface:

j avax. resource. cci . Messageli st ener

Chapter 15 Common Client Interface 15-5

15.4.1

= Data representation-related interfaces that are used to represent data structures
involved in an interaction with an EIS instance:

« javax.resource. cci.Record
« javax.resource. cci.MappedRecord
« javax.resource. cci. |l ndexedRecord
« javax.resource. cci.RecordFactory
« javax.resource. cci.Streambl e
« javax.resource. cci.Resul t Set
« java.sql.Result Set Met aDat a
= Metadata related-interfaces that provide basic meta information about a resource
adapter implementation and an EIS connection:

« javax.resource. cci.ConnectionMet aDat a
« javax.resource. cci. Resour ceAdapt er Met aDat a
« javax.resource.cci.ResultSetlnfo

= Additional classes:

« javax.resource. Resour ceExcepti on
« javax.resource. cci.ResourceWarni ng

See FIGURE 15-4 on page 8 for the class diagram for CCI.

Requirements

A resource adapter provider provides an implementation of the CCI interfaces as
part of its resource adapter implementation. The connector architecture does not
mandate that a resource adapter support the CCl interfaces as its client API.

Note — A resource adapter is allowed to support a client API specific to its
underlying EIS. An example of an EIS-specific client APIs is JDBC API for relational
databases.

The connector architecture also allows a third party vendor to provide an
implementation of CCI interfaces above a resource adapter. For example, a base
resource adapter supports the system contracts and provides an EIS specific client
API. A third party tools vendor may provide the CCI implementation above this
base resource adapter.

15-6 J2EE Connector Architecture Specification « November 2003

The connector architecture also allows a resource adapter implementation to support
all interfaces except the data representation-related interfaces. In this case, a third
party vendor provides both the development-time and runtime aspects of data
structures required to drive interactions with an EIS instance. The section on the
Recor d interface specification describes this case in more detail.

Chapter 15 Common Client Interface 15-7

FIGURE 15-4 Class Diagram: Common Client Interface

<interface>

ConnectionFactory

package: javax.resource.cci

<interface> uses | <interface> uses 0'1; <interface>
Connection on Interaction InteractionSpec
0-1
0-1
<interface> . <interface>
LocalTransaction Uses MessageL.istener
uses
0-n 0-n
v
<interface> _ _ Creates _ |<interface>
RecordFactory Record
0-n AN 0-n aN
<interface> inherits conains inherjts contains inhgrits
Streamable
0-n
<interface> <interface> <interface>
MappedRecord [~ |IndexedRecord [~ | ResultSet
inherits inherits inherits
AVA AV AV
<interface> <interface> <interface>

java.util.Map

java.util.List

java.sgl.ResultSet

<« - implements
association or use

relationship
<]— inherits
<>— contains

15-8

J2EE Connector Architecture Specification « November 2003

15.5

15.5.1

Connection Interfaces

The following section specifies interfaces for the connection factory and application
level connection.

ConnectionFactory

The j avax. resource. cci . Connect i onFact ory provides an interface for getting
a connection to an EIS instance. A component looks up a Connecti onFact ory
instance from the JNDI namespace and then uses it to get a connection to the EIS
instance.

The following code extract shows the Connect i onFact ory interface:

public interface javax.resource.cci.ConnectionFactory
extends java.io. Serializable,
j avax. resource. Ref erenceabl e {

publi ¢ RecordFactory getRecordFactory()
t hrows Resour ceExcepti on;

publi ¢ Connection get Connection()
t hrows ResourceExcepti on;
publi ¢ Connection get Connecti on(
j avax. resource. cci . Connecti onSpec properties)
t hrows Resour ceExcepti on;

publ i cResour ceAdapt er Met aDat a get Met aDat a()
t hrows Resour ceExcepti on;

The get Connect i on method gets a connection to an EIS instance. The

get Connect i on variant with no parameters is used when a component requires the
container to manage EIS sign-on. In this case of the container-managed sign-on, the
component does not pass any security information.

A component may also use the get Connect i on variant with a
javax. resource. cci . Connecti onSpec parameter, if it needs to pass any
resource adapter specific security information and connection parameters. In the

Chapter 15 Common Client Interface 15-9

component-managed sign-on case, an application component passes security
information, such as username and password, through the Connect i onSpec
instance.

It is important to note that the properties passed through the get Connecti on
method should be client-specific, such as username, password, and language, and
not be related to the configuration of a target EIS instance, such as port number or
server name. The ManagedConnect i onFact ory instance is configured with a
complete set of properties required for the creation of a connection to an EIS
instance. Configured properties on a ManagedConnect i onFact ory can be
overridden by client-specific properties passed by an application component
through the get Connect i on method. Refer to Section 17.4.2,
“ManagedConnectionFactory” on page 17-11 for configuration of a
ManagedConnect i onFact ory.

Note that in a managed environment, the get Connect i on method with no
parameters is the recommended model for getting a connection. The container
manages the EIS sign-on in this case.

The Connecti onFact ory interface also provides a method to get a

Recor dFact ory instance. The Connect i onFact ory implementation class may
throw a j avax. r esour ce. Not Support edExcepti on from the method

get Recor dFact ory.

155.1.1 Requirements

An implementation class for Connect i onFact ory must implement the
java.io. Serializabl e interface to support JNDI registration. A
Connect i onFact ory implementation class is also required to implement
j avax. resour ce. Ref er enceabl e. Note that the

j avax. r esour ce. Ref er enceabl e interface extends the

j avax. nam ng. Ref er enceabl e interface. Refer to Section 17.5, “JNDI
Configuration and Lookup” on page 17-13 for more details on JNDI based
requirements for the Connecti onFact ory implementation.

An implementation class for Connect i onFact ory must provide a default
constructor.

15.5.2 ConnectionSpec

The interface j avax. resour ce. cci . Connect i onSpec is used by an application
component to pass connection request-specific properties to the get Connecti on
method.

15-10 J2EE Connector Architecture Specification + November 2003

15.5.3

The Connect i onSpec interface has been introduced to increase the toolability of the
CCI. The Connect i onSpec interface must be implemented as a JavaBean. Refer to
Section 16.3, “JavaBean Requirements” on page 16-2.

The following code extract shows the Connect i onSpec interface.

public interface javax.resource.cci.ConnectionSpec {

}

The CCI specification defines a set of standard properties for a Connect i onSpec.
The properties are defined either on a derived interface or an implementation class
of an empty Connect i onSpec interface. In addition, a resource adapter may define
additional properties specific to its underlying EIS.

The following standard properties are defined by the CCI specification for
Connect i onSpec:

TABLE 15-1 Standard Properties for ConnectionSpec

Property Description
User Nane The name of the user establishing a connection to an EIS instance.
Passwor d The password for the user establishing a connection.

An important point to note is about the relationship between Connecti onSpec and
Connect i onRequest | nf 0. The Connect i onSpec is used at the application level
and is defined under the scope of CCl while Connect i onRequest | nf o is defined as
part of the system contracts. Separate interfaces have been defined to ensure the
separation between CCI interfaces and system contracts. Connect i onRequest | nfo
has no explicit dependency on CCI. Note that a resource adapter may not implement
CCI but it must implement system contracts. The specification of a standard
repository APl and metadata format is outside the scope of the current version of the
connector architecture. The mapping between CCI’s Connect i onSpec and
Connect i onRequest | nf o is achieved in an implementation-specific manner by a
resource adapter.

Connection

A javax. resource. cci . Connect i on represents an application level connection
handle that is used by a component to access an EIS instance. The actual physical
connection associated with a Connect i on instance is represented by a
ManagedConnect i on.

Chapter 15 Common Client Interface 15-11

15-12

A component gets a Connect i on instance by using the get Connecti on method of
a Connecti onFact ory instance. A Connect i on instance may be associated with
zero or more | nt er act i on instances.

The following code extract shows the Connect i on interface:

public interface javax.resource.cci.Connection {
public Interaction createlnteraction() throws
Resour ceExcepti on;

publ i ¢ Connecti onMet aDat a get MetaData() throws
Resour ceExcepti on;

public ResultSetlnfo getResultSetlnfo() throws
Resour ceExcepti on;

public Local Transacti on get Local Transacti on()
t hrows Resour ceExcepti on;

public void close() throws ResourceException;

The cr eat el nt er acti on method creates an | nt er act i on instance associated with
the Connecti on instance. An | nt er act i on enables a component to access EIS data
and functions.

The get Met aDat a method returns information about the EIS instance associated
with a Connect i on instance. The EIS instance-specific information is represented by
the Connecti onMet aDat a interface.

The get Resul t Set | nf o method returns information on the result set functionality
supported by the connected EIS instance. If the CCl implementation does not
support result set functionality, then the method get Resul t Set | nf o must throw a
Not Suppor t edExcepti on.

The cl ose method initiates a close of the connection. The OID in FIGURE 6-6 on
page 39 describes the resulting behavior of such an application level connection
close.

The get Local Transact i on method returns a Local Transact i on instance that
enables a component to demarcate resource manager local transactions. If a resource
adapter does not allow a component to demarcate local transactions using the
Local Transact i on interface, the get Local Transacti on method must throw a
Not Suppor t edExcepti on.

J2EE Connector Architecture Specification + November 2003

155.3.1

Auto Commit

When a Connect i on is in an auto-commit mode, an | nt er act i on, associated with
the Connect i on, automatically commits after it has been executed. The auto-commit
mode must be turned off if multiple interactions have to be grouped in a single
transaction and committed or rolled back as a unit.

CCI does not provide explicit set /get Aut oCommi t methods in the Connecti on
interface. This simplifies the application programming model for the transaction
management.

A resource adapter must manage the auto-commit mode as follows:

= A transactional resource adapter either at the XATr ansacti on or
Local Transact i on level must set the auto-commit mode of Connecti on
instances participating in a transaction to off within the transaction. This
requirement holds for true both container-managed and bean-managed
transaction demarcation.

= A transactional resource adapter must set the auto-commit mode of Connecti on
instances to on when used outside a transaction.

These requirements are independent of whether a transaction is managed as a local
or XA transaction. A transactional resource adapter should implement this
requirement in an implementation-specific manner.

A non-transactional resource adapter at the NoTr ansact i on level, is not required to
support the auto-commit mode for Connect i on.

15.6

15.6.1

Interaction Interfaces

The following section specifies interfaces that enable a component to drive an
interaction with an EIS instance and to demarcate resource manager local
transactions.

Interaction

The j avax. resource. cci .|l nteracti on enables a component to execute EIS
functions. An | nt er act i on instance supports the following interactions with an EIS
instance:

= An execut e method that takes an input Recor d, output Recor d, and an
I nt eracti onSpec. This method executes the EIS function represented by the
I nt eracti onSpec and updates the output Recor d.

Chapter 15 Common Client Interface 15-13

= An execut e method that takes an input Recor d and an | nt er acti onSpec. This
method implementation executes the EIS function represented by the
I nt er act i onSpec and produces the output Recor d as a return value.

If an I nt eracti on implementation does not support a variant of the execut e
method, the method must throw a j avax. r esour ce. Not Support edExcepti on.

Refer to Section 15.10.2 “Interaction and Record” for details on how input and
output records are created and used in the above variants of the execut e method.

An | nteraction instance is created from a Connect i on and must maintain its
association with the Connect i on instance. The cl ose method releases all resources
maintained by the resource adapter for the | nt eracti on. The cl ose of an

I nt er act i on instance should not close the associated Connect i on instance.

The following code extract shows the | nt eracti on interface:

public interface javax.resource.cci.lnteraction {
publ i c Connection get Connection();
public void close() throws ResourceException;
publ i c bool ean execute(lnteracti onSpec ispec,
Record i nput,

Record out put) throws ResourceException;

public Record execute(lnteractionSpec ispec,
Record input) throws ResourceException;

InteractionSpec

A javax.resource. cci.|nteractionSpec holds properties for driving an
I nteraction withan EIS instance. An | nt eracti onSpec uses an I nteracti on
to execute the specified function on an underlying EIS.

J2EE Connector Architecture Specification + November 2003

15.6.2.1

The CCI specification defines a set of standard properties for an | nt er act i onSpec.
The properties are defined either on a derived interface or an implementation class
of an empty | nt er acti onSpec interface. The following code extract shows the

I nt er act i onSpec interface.

public interface javax.resource.cci.lnteracti onSpec
extends java.io. Serializable {

// Standard Interaction Verbs

public static final int SYNC SEND = O;

public static final int SYNC SEND RECEI VE = 1;
public static final int SYNC RECElI VE = 2;

An | nt eracti onSpec implementation is not required to support a standard
property if that property does not apply to its underlying EIS. The

I nt er act i onSpec implementation class must provide getter and setter methods for
each of its supported properties. The getter and setter methods convention should be
based on the JavaBeans design pattern.

Standard Properties

The standard properties are as follows:

= Functi onNane: A string representing the name of an EIS function. Some
examples are the name of a transaction program in a CICS system or the name of
a business object or function module in an ERP system. The format of the name is
specific to an EIS and is outside the scope of the CCI specification.

= | nteractionVerb: An integer representing the mode of interaction with an EIS
instance as specified by the | nt er act i onSpec. The values of the interaction verb
may be one of the following:

« SYNC_SEND: The execution of an | nt er act i on does only a send to the target
EIS instance. The input record is sent to the EIS instance without any
synchronous response in terms of an output Recor d or Resul t Set .

« SYNC_SEND_RECEI VE: The execution of an | nt eracti on sends a request to
the EIS instance and receives a response synchronously. The input record is
sent to the EIS instance with the output received either as Recor d or a
Resul t Set .

« SYNC_RECEI VE: The execution of an | nt er act i on results in a synchronous
receive of an output Recor d. For instance, a session bean gets a method
invocation and it uses this SYNC_RECEI VE form of interaction to retrieve
messages that have been delivered to a message queue.

The default | nt er act i onVer b property is SYNC_SEND_RECEI VE.

Chapter 15 Common Client Interface 15-15

15.6.2.2

15.6.2.3

If the | nteracti onVerb property is not defined for an | nt eracti onSpec, the
default mode for an interaction is SYNC_SEND_RECEI VE.

Other forms of interaction verbs are outside the scope of the CClI specification.

The CCI does not support asynchronous delivery of messages to the component
instances. The message inflow contract should be used for asynchronous delivery
of messages.

= ExecutionTi neout : An integer representing the number of milliseconds an
I nt eracti on waits for an EIS to execute the specified function.

ResultSet Properties

The following standard properties give hints to an | nt er act i on instance about the
Resul t Set requirements:

= Fet chSi ze: An integer representing the number of rows that should be fetched
from an EIS when more rows are needed for a result set. If the value is zero, the
hint is ignored. The default value is zero.

= FetchDirection: An integer representing the direction in which the rows in a
result set are processed. The valid integer values are defined in the
j ava. sql . Resul t Set interface. The default value is
Resul t Set .FETCH_FORWARD.

= MaxFi el dSi ze: An integer representing the maximum number of bytes allowed
for any value in a column of a result set or a value in a Record.

= Resul t Set Type: An integer representing the type of the result set produced by
an execution of the | nt er acti onSpec. The j ava. sql . Resul t Set interface
defines the result set types.

= Resul t Set Concur rency: An integer representing the concurrency type of the
result set produced by the execution of the I nt eracti onSpec. The
java. sgl . Resul t Set interface defines the concurrency types for a result set.

Note that if a CCI implementation cannot support the specified requirements for a
result set, it should choose an appropriate alternative and raise a SQLWar ni ng from
the Resul t Set methods to indicate this condition. Refer to Section 15.11 “ResultSet”
for more details.

A component can determine the actual scrolling ability and concurrency type of a
result set by invoking the get Type and get ConcurrencyType methods of the
Resul t Set interface.

Additional Properties

An | nt eracti onSpec implementation may define additional properties besides the
standard properties. Note that the format and type of the additional properties is
specific to an EIS and is outside the scope of the CCI specification.

15-16 J2EE Connector Architecture Specification + November 2003

15.6.2.4

15.6.2.5

15.6.2.6

Implementation

The I nt er act i onSpec interface must be implemented as a JavaBean to support
tools. The properties on the | nt er act i onSpec implementation class must be
defined through the getter and setter methods design pattern.

The CCI implementation may, though is not required to, provide a Beanl nf o class
for the | nt er act i onSpec implementation. This class provides explicit information
about the properties supported by the | nt er act i onSpec.

An implementation class for the | nt er act i onSpec interface must implement the
java.io. Serializabl e interface.

The specified properties must be implemented as either bound or constrained
properties. Refer to the JavaBeans specification (refer to

http://java. sun. com product s/ j avabeans) for details on bound and
constrained properties.

Administered Object

An | nt eracti onSpec instance may be, though it is not required to be, registered as
an administered object in the INDI namespace. This enables a component provider
to access | nt er act i onSpec instances using logical names, called resource
environment references. Resource environment references are special entries in the
component’s environment. The deployer binds a resource environment reference to
an | nteracti onSpec administered object in the operational environment.

The EJB specification (Section 1., “Enterprise JavaBeans (EJBTM) specification,
version 2.1:” on page F-1) specifies resource environment references in more detail.

Illustrative Scenario

The development tool introspects the | nt er acti onSpec implementation class and
shows a property sheet with all the configurable properties. The developer then
configures the properties for an | nt er act i onSpec instance.

At runtime, the configured | nt er acti onSpec instance is used to specify properties
for the execution of an | nt er act i on. The runtime environment may lookup an
I nt er acti onSpec instance using a logical name from the JNDI namespace.

Chapter 15 Common Client Interface 15-17

15.6.3

15.6.3.1

LocalTransaction

The j avax. resource. cci . Local Transact i on defines a transaction demarcation
interface for resource manager local transactions. An application component uses the
Local Transact i on interface to demarcate local transactions. Refer to Chapter 7,
“Transaction Management” for more details on local transactions.

Note that this interface is used for local transaction demarcation at the application
level, while the j avax. resour ce. spi . Local Tr ansact i on interface is defined as
part of the system contracts and is used by a container for local transaction
management.

The following code extract shows the Local Tr ansact i on interface:

public interface javax.resource.cci.Local Transaction {
public void begin() throws ResourceException;
public void conmit() throws ResourceException;
public void rollback() throws ResourceException;

Requirements

A CCI implementation may, though is not required to, implement the
Local Transact i on interface.

If the Local Transact i on interface is supported by a CCl implementation, the
Connecti on. get Local Transact i on method must return a Local Tr ansacti on
instance. A component may then use the returned Local Tr ansact i on to demarcate
a resource manager local transaction on the underlying EIS instance.

A resource adapter is allowed to implement the

j avax. resource. spi . Local Transact i on interface without implementing the
application-level j avax. r esour ce. cci . Local Tr ansact i on interface. In this case,
a container uses the system contract-level Local Tr ansact i on interface for
managing local transactions. Refer to Section 7.7, “Local Transaction Management
Contract” on page 7-31 for more details on local transaction management.

15.7

Basic Metadata Interfaces

The following section specifies the interfaces that provide basic meta information
about a resource adapter implementation and an EIS connection.

15-18 J2EE Connector Architecture Specification + November 2003

15.7.1

15.7.11

15.7.2

ConnectionMetaData

The j avax. resour ce. cci . Connect i onMet aDat a interface provides information
about an EIS instance connected through a Connect i on instance. A component calls
the Connect i on. get Met aDat a method to get a Connect i onMet aDat a instance.

The following code extract shows the Connect i onMet aDat a interface:

public interface javax.resource.cci.ConnectionMetaData {
public String get El SProduct Name() t hrows ResourceExcepti on;
public String getEl SProduct Version() throws
Resour ceExcepti on;
publicString getUserName() throws ResourceException;

The get El SProduct Name and get El SPr oduct Ver si on methods return
information about the EIS instance.

The get User Nane method returns the user name for an active connection as known
to the underlying EIS instance. The name corresponds the resource principal under
whose security context a connection to the EIS instance has been established.

Implementation

A CCI implementation must provide an implementation class for the
Connect i onMet aDat a interface.

A resource adapter provider or third-party vendor may extend the

Connect i onMet aDat a interface to provide additional information. Note that the
format and type of the additional information is specific to an EIS and is outside the
scope of the CCI specification.

ResourceAdapterMetaData

The j avax. resour ce. cci . Resour ceAdapt er Met aDat a interface provides
information about the capabilities of a resource adapter implementation. Note that
this interface does not provide information about an EIS instance that is connected
through a resource adapter.

A component uses the Connect i onFact or y.get Met aDat a method to get metadata
information about a resource adapter. The get Met aDat a method does not require
that an active connection to an EIS instance be established.

Chapter 15 Common Client Interface 15-19

The following code extract shows the Resour ceAdapt er Met aDat a interface:

public interface javax.resource.cci.ResourceAdapter MetaData {
public String getAdapterVersion();

public String get Adapt er Vendor Nane() ;

public String get Adapt er Name();

public String get Adapter Short Description();

public String getSpecVersion();

public String[] getlnteracti onSpecsSupported();

publ i ¢ bool ean supportsExecut eWt hl nput AndQut put Record();
publi ¢ bool ean support sExecut eWt hl nput RecordOnl y();

publ i ¢ bool ean supportsLocal Transacti onDemarcati on();

The get SpecVer si on method returns a string representation of the version of the
connector architecture specification that is supported by the resource adapter.

The get | nt er acti onSpecsSupport ed method returns an array of fully-qualified
names of | nt er act i onSpec types supported by the CCl implementation for this
resource adapter. Note that the fully-qualified class name is for the implementation
class of an I nt eracti onSpec. This method may be used by tools vendors to find
information on the supported | nt er act i onSpec types. The method should return
an array of length 0 if the CCI implementation does not define specific

I nt eracti onSpec types.

The support sExecut eW t hl nput AndQut put Recor d and

suppor t sExecut eW t hl nput Recor dOnl y methods are used by tools vendors to
find information about the | nt er act i on implementation. It is important to note
that the I nt er act i on implementation must support at least one variant of the
execut e methods.

The support sExecut eW t hl nput AndQut put Recor d method returns t r ue if the
implementation class for the | nt er act i on interface implements the publ i c

bool ean execute(lnteracti onSpec ispec, Record input, Record

out put) method. If not, the method returns f al se.

The support sExecut eW t hl nput Recor dOnl y method returns t r ue if the
implementation class for the | nt er act i on interface implements the publ i c
Record execute(lnteractionSpec ispec, Record input) method. If not,
the method returns f al se.

The supportsLocal Transacti onDemar cat i on method returns t r ue if the
resource adapter implements the Local Tr ansact i on interface and supports local
transaction demarcation on the underlying EIS instance through the

Local Transact i on interface.

15-20 J2EE Connector Architecture Specification + November 2003

The Resour ceAdapt er Met aDat a interface may be extended to provide more
information specific to a resource adapter implementation.

15.8

Service Endpoint Message Listener
Interface

The Messageli st ener interface serves as a request-response message listener type
that message endpoints (refer to Chapter 12, “Message Inflow”) may implement.
This allows an EIS to communicate with an endpoint using a request-response style.

interface javax.resource.cci.MssageLi stener {
Record onMessage(Record i nput Data) throws ResourceException;

}

15.9

15.9.1

Exception Interfaces

The following section specifies Resour ceExcept i on class defined by the CCI.

ResourceException

The j avax. resour ce. Resour ceExcepti on class is used as the root of the
exception hierarchy for CCI. A Resour ceExcept i on provides the following
information:

= A resource adapter-specific string describing the error. This string is a standard
Java exception message and is available through the get Message method.

= A resource adapter-specific error code.

= A reference to another exception. A Resour ceExcept i on is often the result of a
lower level problem. If appropriate, this lower level exception, a
java. | ang. Excepti on or its derived exception type, can be linked to a
Resour ceExcept i on instance. Note, this has been deprecated in favor of the
J2SE release 1.4 exception chaining facility.

A CCIl implementation can extend the Resour ceExcept i on interface to throw more
specific exceptions. It may also chain instances of j ava. | ang. Excepti on or its
subtypes to a Resour ceExcepti on.

Chapter 15 Common Client Interface 15-21

15.9.2

ResourceWarning

The j avax. resour ce. cci . Resour ceWar ni ng class provides information on the
warnings related to interactions with EIS. A Resour ceWar ni ng is silently chained to
an | nt eracti on instance that has caused the warning to be reported.

The I nt eracti on. get War ni ngs method enables a component to access the first
Resour ceWar ni ng in a chain of warnings. Other Resour ceWar ni ng instances are
chained to the first returned Resour ceWar ni ng instance.

15.10

Record

A Recor d is the Java representation of a data structure used as input or output to an
EIS function.

A Recor d has both development-time and runtime aspects. See FIGURE 15-5 for an

illustration of this. An implementation of a Recor d is either:

= A custom Recor d implementation that gets generated at the development time by
a tool. The generation of a custom implementation is based on the meta
information accessed by the tool from a metadata repository. The type mapping
and data representation is generated as part of the custom Record
implementation. So the custom Recor d implementation typically does not need
to access the metadata repository at runtime.

= A generic Recor d implementation that uses a metadata repository at runtime for
meta information. For example, a generic type of Recor d may access the type
mapping information from the repository at runtime.

15-22 J2EE Connector Architecture Specification + November 2003

Note: The specification of a standard repository APl and metadata format is outside
the scope of the current version of the connector architecture.

FIGURE 15-5 Record at Development-time and Runtime

Component Builder Tool Component
Component-view
Contract
generic Record driven by metadata
i
|
enerates custom Record
Generator 9 T Record

|

N~~~ !

Metadata :

Repository : Resource Adapter-view
! Contract
|
|
|
|
| Resource Adapter
|
|
|
|

DEVELOPMENT TIME : RUN TIME

The meta information used in a Recor d representation and type mapping may be

available in a metadata repository as:

= Meta information expressed in an EIS-specific format. For example, an ERP
system has its own descriptive format for its meta information.

= Formatted in structures based on the programming language that has been used
for writing the target EIS function, such as, COBOL structures used by CICS

transaction programs.

= A standard representation of data structures as required for EIS functions. The
standard representation is typically aggregated in a metadata repository based on
the meta information extracted from multiple EISs.

A resource adapter may provide an implementation of all CClI interfaces except the
data representation-related interfaces, namely, Recor d and Recor dFact ory. In this
case, a third party vendor provides both development-time and runtime support for

Chapter 15 Common Client Interface 15-23

15.10.1

the Recor d and Recor dFact ory interfaces. This requires that a Recor d
implementation must support both component-view and resource adapter-view
contracts, as specified in the following subsections.

Component-view Contract

The component-view contract provides a standard contract for using a Recor d for
components and component building tools. A Recor d implementation must support
the component-view contract.

The application programming model for a Recor d is as follows:

= A component creates an instance of a generated implementation class for a
custom record. The implementation class represents an EIS-specific data structure.

= A component uses the Recor dFact ory interface to create an instance of the
generic Recor d implementation class. The implementation class of a generic
Recor d is independent of any EIS-specific data structure.

Note — A related CCI issue is the level of support in the CCI data representation
interfaces (namely, Recor d, MappedRecor d, and | ndexedRecor d) for the type
mapping facility. The issue has to be addressed based on the following parameters:

= There is no standardized mapping across various type systems. For example, the
existing type systems range from Java, CORBA, COM COBOL and many more. It is
difficult to standardize the type specification and mappings across such a diverse
set of type systems within the connector architecture scope.

= Building a limited type mapping facility into the CCI data representation
interfaces will constrain the use of CCIl data representation interfaces across
different types of EISs. For example, it may be difficult to support EISs that have
complex structured types with a limited type mapping support.

= Building an extensive type mapping facility into the current version of CCIl data
representation interfaces will limit the future extensibility of these interfaces. This
applies specifically to the support for standards that are emerging for XML-based
data representation. An important goal for CCI data representation interfaces is to
support XML-based facilities. This goal is difficult to achieve in the current scope
of the connector architecture.

This specification proposes that the type mapping support for the CCI be kept open
for future versions. A future version of this specification may standardize type
mappings.

15-24 J2EE Connector Architecture Specification + November 2003

15.10.1.1

Type Mapping

Type mapping for EIS-specific types to Java types is not directly exposed to an
application component. For example in the case of a custom Recor d
implementation, the getter and setter methods, defined in a Recor d and exposed to
an application component, return the correct Java types for the values extracted from
the Recor d. The custom Recor d implementation internally handles all the type

mapping.

In the case of a generic Recor d implementation, the type mapping is done in the
generic Recor d by means of the type mapping information obtained from the
metadata repository. Since the component uses generic methods on the Record
interface, the component code does the required type casting.

The compatibility of Java types and EIS types should be based on a type mapping
that is defined specific to a class of EISs. For example, an ERP system from vendor X
specifies a type mapping specific to its own EIS. Another example is type mapping
between Java and COBOL types. Note that the JDBC specification specifies a standard
mapping of SQL data types to Java types specific to relational databases.

In cases of both custom and generic Recor ds, the type mapping information is
provided by a metadata repository either at development-time or runtime.

Chapter 15 Common Client Interface 15-25

15.10.1.2 Record Interface

The j avax. resour ce. cci . Recor d interface is the base interface for the
representation of a record. A Recor d instance is used as an input or output to the
execut e methods defined in an | nt er act i on. See FIGURE 15-6.

FIGURE 15-6 Component-view Contract

package: javax.resource.cci
<interface>
Record
AN 0-n 0-n AN
inherits contains inherits contains inhgrits
<interface> <interface> <interface>
MappedRecord - IndexedRecord [ResultSet
AV AV4 \V4
<interface> <interface> <interface>
java.util.Map java.util.List java.sql.ResultSet

The Recor d interface may be extended to form one of the following representations:

= javax.resource. cci . MappedRecord: A key-value pair based collection
represents a record. This interface is based on j ava. uti | . Map.

= javax.resource. cci. |l ndexedRecord: An ordered and indexed collection
represents a record. This interface is based on j ava. util . List.

= javax.resource. cci.Result Set: This interface extends both
java. sql . Resul t Set and j avax. resource. cci . Record. A result set
represents tabular data. Section 15.11 “ResultSet” specifies the requirements for
the Resul t Set interface in detail.

= A JavaBean based representation of an EIS data structure: An example is a custom
record generated to represent a purchase order in an ERP system or an invoice in
a mainframe TP system.

Refer to Section 15.12 “Code Samples” for code samples that illustrate the use of
record.

15-26 J2EE Connector Architecture Specification + November 2003

MappedRecor d or | ndexedRecor d may contain another Recor d. This means that
MappedRecor d and | ndexedRecor d can be used to create a hierarchical structure of
any arbitrary depth.

MappedRecor d and | ndexedRecor d can be used to represent either a generic or
custom record.

A basic Java type is used as the leaf element of a hierarchical structure represented
by a MappedRecor d or | ndexedRecor d.

A generated custom Recor d may also contain other records to form a hierarchical
structure.

The following code extract shows the Recor d interface:

public interface javax.resource.cci.Record
extends java.l ang. Cl oneabl e, java.io.Serializable {

public String getRecordNane();
public void set RecordName(String nane);

public void set RecordShort Description(String description);
public String getRecordShortDescription();

publ i c bool ean equal s(Obj ect other);
public int hashCode();

public Object clone() throws C oneNot SupportedExcepti on;

The Recor d interface defines the following set of standard properties:

= Nane of a Recor d: Note that the CCI does not define a standard format for
naming a Recor d. The name format is specific to an EIS type.

= Description of aRecord: This property is used primarily by tools to show a
description of a Recor d instance.

Chapter 15 Common Client Interface ~ 15-27

15.10.1.3

15.10.1.4

MappedRecord and IndexedRecord Interfaces

The j avax. resour ce. cci . MappedRecor d interface is used for representing a key-
value map based collection of record elements. The MappedRecor d interface extends
both the Record and j ava. uti | . Map interface.

public interface javax.resource.cci.MappedRecord
extends Record, java.util.Mp,
java.io. Serializable {

The j avax. resource. cci . | ndexedRecor d interface represents an ordered
collection of record elements based on the j ava. uti | . Li st interface. This interface
allows a component to access record elements by their integer index, position in the
list, and search for elements in the list.

public interface javax.resource.cci.lndexedRecord
extends Record, java.util.List,
java.io. Serializable {

RecordFactory

The j avax. resource. cci . Recor dFact ory interface is used for creating
MappedRecor d and | ndexedRecor d instances. Note that the Recor dFact ory is
only used for creating generic record instances. A CCl implementation provides an
implementation class for the Recor dFact ory interface.

The following code extract shows the Recor dFact ory interface:

public interface javax.resource.cci.RecordFactory {
publ i ¢ MappedRecord creat eMappedRecord(String recordNane)
t hrows Resour ceExcepti on;

public I ndexedRecord createl ndexedRecord(String
recordNanme) throws ResourceException;

15-28 J2EE Connector Architecture Specification + November 2003

15.10.2

15.10.3

The methods cr eat eMappedRecor d and cr eat el ndexedRecor d take the name of
the record that is to be created by the Recor dFact or y. The name of the record acts
as a pointer to the meta information stored in the metadata repository for a specific
record type. The format of the name is outside the scope of the CCI specification and
specific to a CCl implementation and/or metadata repository.

A Recor dFact ory implementation should be capable of using the name of the
desired Recor d and accessing meta information for the creation of the Recor d.

Interaction and Record

Records should be used as follows for the two variants of the execut e method of
the | nt er act i on interface:

bool ean execute(lnteractionSpec, Record input, Record output)

= A custom record instance is used as an input or output to the execut e method. A
custom record implementation class is generated by an application development
tool or EAI framework based on the meta information.

= The Recor dFact ory interface is used to create a generic MappedRecord or
I ndexedRecor d instance. The generic record is used as input or output to the
execut e method.

Record execute(lnteracti onSpec, Record input)

= The input record can be either a custom or generic record.

= The returned record is a generic record instance created by the implementation of
the execut e method. The generic record instance may represent a Resul t Set or
a hierarchical structure as represented through the MappedRecor d and
I ndexedRecor d interfaces.

When the | nt er acti on.execut e method is called, a generic record instance may
use the connection associated with the | nt er act i on instance to access the metadata
from the underlying EIS. If there is a separate metadata repository, then the generic
record gets the metadata from the repository. The generic record implementation
may use the above illustrative mechanism to achieve the necessary type mapping.

The generic record implementation encapsulates the above behavior and interacts
with | nt eracti on implementation in the execut e method to get the active
connection, if so needed. The contract between the generic record and | nt er acti on
implementation classes is specific to a CCIl implementation.

Resource Adapter-view Contract

A resource adapter views the data represented by a Recor d either as:
= A stream of bytes through the St r eamabl e interface, or,

Chapter 15 Common Client Interface 15-29

15.10

15-30

= A format specific to a resource adapter. For example, a resource adapter may
extract or set the data for a Recor d using an interface defined specifically for the

resource adapter.
A resource adapter-specific interface for viewing the Recor d representation is
outside the scope of the CCI specification. A resource adapter must describe the
resource adapter-specific interface to the users, typically tools vendors, of the
resource adapter-view contract.

3.1 Streamable Interface

The j avax. resour ce. cci . St reanmabl e interface enables a resource adapter to
extract data from an input Recor d or set data into an output Recor d as a stream of

bytes. See FIGURE 15-7.

FIGURE 15-7 Streamable Interface

<interface> <interface> <interface>
MappedRecord Record IndexedRecord
¥ » ~
~ - \ 7/
T~ ~ \ //
~ - \ y
S o \ ’
~ N \ 7

) ~ - - \ //

Component View ~ N7
<Impl Class>

""""""""" Record TTETTEEsEEEEEEEEEES

Resource Adapter View .
1
’ ~
I
‘ ~

! ~
! ~

2 A
<interface> <interface>
Streamable Resource Adapter specific
< - implements I

The St r eamabl e interface provides a resource adapter’s view of the data set in a
Recor d instance by a component. A component uses Recor d or any derived

interfaces to manage records.

A component does not directly use the St r eamabl e interface. The interface is used
by a resource adapter implementation.

J2EE Connector Architecture Specification + November 2003

The following code extract shows the St r eamabl e interface:

public interface javax.resource.cci.Streamable {
public void read(lnputStreamistrean) throws | OException;
public void wite(QutputStreamostrean throws | OExcepti on;

The r ead extracts method data from an | nput St r eamand initializes fields of a

St r eanmabl e object. The wri t e method writes fields of a St r eamabl e object to an

Qut put St r eam The implementations of both the read and writ e methods for a

St r eanmabl e object must call the r ead and wr i t e methods respectively on the super
class if there is one.

An implementation class of Recor d may choose to implement the St r eanabl e
interface or support a resource adapter-specific interface to manage record data.

15.11

ResultSet

A result set represents tabular data that is retrieved from an EIS instance by the
execution of an interaction. The execut e method on the | nt er act i on interface can
return a Resul t Set instance.

The CCI Resul t Set interface is based on the JDBC Resul t Set interface. The
Resul t Set extends the j ava. sql . Resul t Set and j avax. r esour ce. cci . -
Recor d interfaces.

Chapter 15 Common Client Interface 15-31

15-32

The following code extract shows the Resul t Set interface:

public interface javax.resource.cci.Result Set
extends Record, java.sql.ResultSet {

}

FIGURE 15-8 ResultSet Interface

package: javax.resource.cci

<interface>
Record

inherits

<interface>

ResultSet

inherits

AV4
<interface>
java.sgl.ResultSet

The following section specifies the requirements for a CCl Resul t Set
implementation.

Refer to the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
specification and Java docs for more details on the j ava. sql . Resul t Set interface.
The following section specifies only a brief outline of the Resul t Set interface. It
focuses on the differences between the implementation requirements set by the CCI
and JDBC. Note that the JDBC semantics for a Resul t Set hold for the cases that are
not explicitly mentioned in the following section.

CCI uses the JDBC Resul t Set interface because:

» JDBC Resul t Set is a standard, established, and well-documented interface for
accessing and updating tabular data.

= JDBC Resul t Set interface is defined in the core j ava. sql package. An
introduction of an independent CCl-specific Resul t Set interface (that is,
different from the JDBC Resul t Set interface) may create confusion in terms of
differences in the programming model and functionality.

J2EE Connector Architecture Specification + November 2003

15.11.1

15.11.1.1

15.11.1.2

= The use of the JDBC Resul t Set interface enables a tool or EAI vendor to
leverage existing facilities that have been for the JDBC Resul t Set .

Note — A CCIl implementation is not required to support the

j avax. resource. cci . Resul t Set interface. If a CCIl implementation does not
support result set functionality, it should not support interfaces and methods that
are associated with the result set functionality. An example is the

j ava. sql . Resul t Set Met aDat a interface.

ResultSet Interface

The Resul t Set interface provides a set of getter methods for retrieving column
values from the current row. A column value can be retrieved using either the index
number of the column or the name of the column. The columns are numbered
starting at one. For maximum portability, result set columns within each row should
be read left-to-right, and each column should be read only once.

The Resul t Set interface also defines a set of updat eXXX methods for updating the
column values of the current row.

Type Mapping

A Resul t Set implementation should attempt to convert the underlying EIS-specific
data type to the Java type as specified in the XXX part of the get XXX method and
return a suitable Java value.

A Resul t Set implementation must establish a type mapping between the EIS
specific data types and Java types. The type mapping is specific to an EIS.

The CCI specification does not specify standard type mappings specific to each type
of EIS.

ResultSet Types

The CCI Resul t Set, similar to the JDBC Resul t Set, supports the following types
of result set: f orwar d-only, scrol | -i nsensitive,and scrol | -sensitive.

A forward-only result set is non-scrollable; its cursor moves only forward, from top
to bottom. The view of data in the result set depends on whether the EIS instance
materializes results incrementally.

Chapter 15 Common Client Interface 15-33

15.11.1.3

15.11.1.4

A scroll-insensitive result set is scrollable; its cursor can move forward or backward
and can be moved to a particular row or to a row whose position is relative to the
current row. This type of result set is not sensitive to any changes made by another
transaction or result sets in the same transaction that are made while the result set is
open. This type of result set provides a static view of the underlying data with
respect to changes made by other result sets. The order and values of rows are set at
the time of the creation of a scroll-insensitive result set.

A scroll-sensitive result set is scrollable. It is sensitive to changes that are made while
the result set is open. This type of result set provides a more dynamic view of the
underlying data.

A component can use the ownUpdat esAr eVi si bl e, ownDel et esAr eVi si bl e, and
ownl nsert sAreVi si bl e methods of the Resul t Set | nf o interface to determine
whether a result set can see its own changes while the result set is open. For
example, a result set’s own changes are visible if the updated column values can be
retrieved by calling the get XXX method after the corresponding updat e XXX method.
Refer to the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
specification for more details on this feature.

Scrolling
The CCI Resul t Set supports the same scrolling ability as the JDBC Resul t Set .

If a resource adapter implements the cursor movement methods, its result sets are
scrollable. A scrollable result set created by executing an | nt er acti on can move
through its contents in both a forward (first-to-last) or backward (last-to-first)
direction. A scrollable result set also supports relative and absolute positioning.

The CCI Resul t Set, similar to the JDBC Resul t Set , maintains a cursor that
indicates the row in the result set that is currently being accessed. The cursor
maintained on a f or war d- onl y result set can only move forward through the
contents of the result set. The rows are accessed in a first-to-last order. A scrollable
result set can also be moved in a backward direction (last-to-first) and to a particular
row.

Note that a CCl Resul t Set implementation should only provide support for
scrollable result sets if the underlying EIS supports such a facility.

Concurrency Types

A component can set the concurrency type of a CCl Resul t Set to be either read-
only or updatable. These types are consistent with the concurrency types defined by
the JDBC Resul t Set .

15-34 J2EE Connector Architecture Specification + November 2003

15.11.1.5

15.11.1.6

15.11.1.7

A result set that uses read-only concurrency does not allow updates of its content,
while an updatable result set allows updates to its contents. An updatable result set
may hold a write lock on the underlying data item and thus reduce concurrency.

Refer to the JDBC specification (Section 3., “JDBC API specification, version 3.0” on
page F-1) for detailed information and examples.

Updatability

A result set of concurrency type CONCUR_UPDATABLE supports the ability to update,
insert, and delete its rows. The CCI support for this type of result set is similar to the
JDBC Resul t Set .

The methods updat eXXX on the Resul t Set interface are used to modify the values
of an individual column in the current row. These methods do not update the
underlying EIS. The updat eRow method must be called to update data on the
underlying EIS. A resource adapter may discard changes made by a component if
the component moves the cursor from the current row before calling the method
updat eRow

Refer to the JDBC specification (Section 3., “JDBC API specification, version 3.0” on
page F-1) for more information.

Persistence of Java Objects

The Resul t Set interface provides the get Cbj ect method to enable a component to
retrieve column values as Java objects. The type of the Java object returned from the
get Cbj ect method is compatible with the type mapping supported by a resource
adapter-specific to its underlying EIS. The updat ebj ect method enables a
component to update a column value using a Java object.

Support for SQL Types

It is optional for a CCl Resul t Set to support the SQL type JAVA_ OBJECT as defined
injava. sql . Types.The JDBC specification specifies the JDBC support for
persistence of Java objects.

The support for the following SQL types as defined in j ava. sql . Types is optional
for a CCl Resul t Set implementation:

= Binary large object (BLOB)
Character large object (CLOB)
SQL ARRAY type

SQL REF type

SQL DI STI NCT type

Chapter 15 Common Client Interface 15-35

15.11.1.8

15.11.2

15.11.3

= SQL STRUCT type

If an implementation of the CCI Resul t Set interface does not support these types,
it must throw a j ava. sql . SQLExcept i on indicating that the method is not
supported, or j ava. | ang. Unsupport edOper at i onExcept i on from the following
methods:

= get Bl ob

= getC ob

= getArray

= get Ref

Support for Customized SQL Type Mapping

The CCI is not required to support customized mapping of SQL structured and
distinct types to Java classes. The JDBC API defines support for such customization
mechanisms.

The CCI Resul t Set should throw a j ava. sql . SQLExcept i on indicating that the
method is not supported or j ava. | ang. Unsupport edQper ati onExcepti on from
the get Obj ect method that takes a j ava. uti | . Map parameter.

ResultSetMetaData

The j ava. sqgl . Resul t Set Met aDat a interface provides information about the
columns in a Resul t Set instance. A component uses Resul t Set .get Met aDat a
method to get information about a Resul t Set .

Refer to the JDBC Javadocs for a detailed specification of the Resul t Set Met aDat a
interface.

ResultSetinfo

The j avax. resource. cci . Resul t Set | nf o interface provides information on the
support provided for Resul t Set functionality by a connected EIS instance. A
component calls the Connecti on. get Resul t | nf o method to get the

Resul t Set | nf o instance.

A CCI implementation is not required to support the
j avax. resource. cci . Resul t Set | nf o interface. The implementation of this
interface is provided only if the CCI supports the Resul t Set facility.

15-36 J2EE Connector Architecture Specification + November 2003

The following code extract shows the Resul t Set | nf o interface:

public interface javax.resource.cci.ResultSetlnfo {
publ i ¢ bool ean updat esAreDetected(int type)
t hrows Resour ceExcepti on;
publ i c bool ean insertsAreDetected(int type)
t hrows Resour ceExcepti on;
publ i c bool ean del et esAreDetected(int type)
t hrows Resour ceExcepti on;

publ i ¢ bool ean supportsResul t Set Type(int type)
t hrows Resour ceExcepti on;

i nt concurrency)
t hrows Resour ceExcepti on;

publi ¢ bool ean ownUpdat esAreVi si bl e(i nt type)
t hrows Resour ceExcepti on;

publi c bool ean ownl nsertsAreVisible(int type)
t hrows Resour ceExcepti on;

publi ¢ bool ean ownDel et esAreVisi bl e(i nt type)
t hrows Resour ceExcepti on;

t hrows Resour ceExcepti on;
t hrows Resour ceExcepti on;

t hrows Resour ceExcepti on;

publ i ¢ bool ean supportsResul t TypeConcurrency(int type,

publi ¢ bool ean ot her sUpdat esAreVi si bl e(int type)
publi ¢ bool ean ot herslnsertsAreVisible(int type)

publi ¢ bool ean ot hersDel et esAreVisible(int type)

The type parameter to the above methods represents the type of the Resul t Set,

defined as TYPE_XXX in the Resul t Set interface.

Note that these methods should throw a Resour ceExcept i on in the following

cases:

= A resource adapter and the connected EIS instance cannot provide any

meaningful values for these properties.

= The CCI implementation does not support the Resul t Set functionality. In this
case, a Not Suppor t edExcept i on should be thrown from invocations on the

above methods.

Chapter 15 Common Client Interface

15-37

A component uses the r owUpdat ed, r ow nsert ed, and r owDel et ed methods of
the Resul t Set interface to determine whether a row has been affected by a visible
update, insert, or delete is the result set is open. The updat esAr eDet ect ed,

i nsertsAreDet ect ed and del et esAr eDet ect ed methods enable a component to
find out whether or not changes to a Resul t Set are detected.

A component uses the ownUpdat esAr eVi si bl e, ownDel et esAreVi si bl e and
ownl nsert sAreVi si bl e methods to determine whether a Resul t Set can see its
own changes when the result set is open.

A component uses the support sResul t Set Type method to check the Resul t Set
types supported by a resource adapter and its underlying EIS instance.

The support sResul t Set TypeConcur ency method provides information on the
Resul t Set concurrency types supported by a resource adapter and its underlying
EIS instance.

15.12

15.12.1

Code Samples

The following code extracts illustrate the application programming model based on
the CCI.

An application development tool or EAI framework normally hides all the CClI-
based programming details from an application developer. For example, an
application development tool generates a set of Java classes that abstract the CCI-
based application programming model and offers a simple programming model to
an application developer.

Connection

= Get a Connect i on to an EIS instance after a lookup of a Connecti onFact ory
instance from the JNDI namespace. In this case, the component allows the
container to manage the EIS sign-on.

j avax. nam ng. Context nc = new I nitial Context();
j avax. resource. cci . Connecti onFactory cf =

(Connecti onFact ory) nc. | ookup(

"j ava: conp/ env/ ei s/ Connecti onFactory");
j avax. resource. cci. Connection cx = cf.getConnection();

= Create an | nt er act i on instance:

javax.resource.cci.lnteraction ix = cx.createlnteraction();

15-38 J2EE Connector Architecture Specification + November 2003

15.12.2 InteractionSpec

= Create a new instance of the respective | nt er act i onSpec class or look up a pre-
configured | nt er act i onSpec in the runtime environment using JNDI.

com wonbat . cci. I nteracti onSpecl npl ixSpec = //

i xSpec. set Funct i onNanme(" <El S_SPECI FI C_FUNCTI ON_NAVME>") ;
i xSpec. setInteractionVerb(lnteracti onSpec. SYNC_SEND RECEI VE) ;

15.12.3 Mapped Record

= Get a Recor dFact ory instance:
j avax. resource. cci.RecordFactory rf = // ... get a RecordFactory

= Create a generic MappedRecor d using the Recor dFact ory instance. This record
instance acts as an input to the execution of an interaction. The name of the
Recor d acts as a pointer to the meta information, stored in the metadata
repository, for a specific record type.

j avax. resource. cci . MappedRecord i nput =
rf.creat eMappedRecor d(“ <NAME_OF RECORD>");

= Populate the generic MappedRecor d instance with input values. The component
code adds the values based on the meta information it has accessed from the
metadata repository.

i nput . put (“<key: el enment1>", new String(“<VALUE>"));
i nput. put (“<key: elenent2>", ...);

= Create a generic | ndexedRecor d to hold the output values that are set by the
execution of the interaction.

j avax. resource. cci . | ndexedRecord out put =
rf.createl ndexedRecor d(“<NAME_OF_RECORD>") ;

= Execute the I nteracti on:
bool ean ret = i x.execute(ixSpec, input, output);

Chapter 15 Common Client Interface 15-39

15.12.4

= Extract data from the output | ndexedRecor d. Note that the type mapping is
done in the generic | ndexedRecor d by means of the type mapping information
in the metadata repository. Since the component uses generic methods on the
I ndexedRecor d, the component code does the required type casting.

java.util.lterator iterator = output.iterator();
while (iterator.hasNext()) {
/1l Get a record elenent and extract val ue

}

ResultSet

= Set the requirements for the Resul t Set returned by the execution of an
I nt er acti on. This step is optional. Default values are used if the requirements
are not explicitly set:

com wonbat . cci . I nteracti onSpeclnmpl ixSpec = .. // get an
/'l InteractionSpec;

i xSpec. set Fet chSi ze(20);
i xSpec. set Resul t Set Type(Resul t Set. TYPE_SCROLL_I NSENSI Tl VE) ;

= Execute an | nt eracti on that returns a Resul t Set :

javax.resource.cci.ResultSet rs = (javax.resource.cci.ResultSet)
i Xx. execut e(i xSpec, input);

= Iterate over the Resul t Set . The example here positions the cursor on the first
row and then iterates forward through the contents of the Resul t Set . The
get XXX methods are used to retrieve column values:

rs.beforeFirst();

while (rs.next()) {
/'l get the colum values for the current row using get XXX
/1 met hod

15-40 J2EE Connector Architecture Specification + November 2003

= The following example shows a backward iteration through the Resul t Set :

rs.afterlLast();

while (rs.previous()) {
/'l get the colum values for the current row using get XXX
/1 method

15.12.5 Custom Record

= Extend the Recor d interface to represent an EIS-specific custom Record. The
Cust oner Recor d interface supports a simple getter-setter design pattern for its
field values. A development tool generates the implementation class of the
Cust oner Recor d.

public interface CustomerRecord extends
j avax. resource. cci . Record,
j avax. resource. cci. Streamabl e {

public void setNane(String nane);
public void setld(String custld);
public void set Address(String address);

public String getNane();
public String getld();
public String getAddress();

= Create an empty Cust omer Recor d instance to hold output from the execution of
an I nteraction.

Cust omer Record custonmer = ... // create an instance

= Create a Pur chaseOr der Recor d instance as an input to the I nt eracti on and
set the properties on this instance. The Pur chaseOr der Recor d is another
example of a custom Recor d.

Pur chaseOrder Record purchaseOrder = ... // create an instance
pur chaseOrder. set Product Nane(“...");
purchaseOrder.setQuantity(“...");

Chapter 15 Common Client Interface 15-41

15-42

Execute an | nt er act i on that populates the output Cust orrer Recor d instance.

/'l Execute the Interaction
bool ean ret = ix.execute(ixSpec, purchaseOrder, custoner);

/1 Check the CustonerRecord

Systemout. println(customer.getNane() + ":" +
custoner.getld() + ":" +
cust oner. get Address());

J2EE Connector Architecture Specification + November 2003

CHAPTER 16

APl Requirements

This chapter specifies the API requirements for the resource adapter and application
server implementations.

16.1

Requirements of the Application Server

= The application server must support the deployment of a resource adapter in EJB
and Web containers.

= The application server must support all the connector architecture API
requirements in EJB and Web containers.

= A ssingle resource adapter instance may be shared by both a Web container and an
EJB container.

= The application server must support all versions of the resource adapter DTDs
(Document Type Definitions) and the resource adapter XML Schema Definition.
This ensures that resource adapters written to previous versions of this
specification can be deployed on products supporting the current version of this
specification.

16.2

Requirements of the Resource adapter

The following matrix specifies the required (+) and optional (?) API requirements on
a resource adapter.

LM - Lifecycle management contract
WM - Work management contract

MI - Message Inflow contract

16-1

TI - Transaction Inflow contract

CM - Connection management contract
TM- Transaction management contract
SM - Security management contract

CCI - Common Client Interface

TABLE 16-1 Resource Adapter APl Requirements

LM WM Ml TI CM ™ SM ccl
Outbound ? ? + + + ?
Inbound + ? + 2

Bi-directional + ? + ? + + + 2

Note, the message inflow contract must be supported by an inbound resource
adapter.

16.3

JavaBean Requirements

The various JavaBean implementations provided by a resource adapter must adhere
to the following rules:

= A JavaBean implementation must contain a null constructor.
= A JavaBean implementation must provide getter and setter methods, to access
and modify the public properties of the JavaBean instance.

Note, for JavaBean serialization, implementing the j ava. i 0. Seri al i zabl e
interface is not necessary. The XML long-term persistence mechanism introduced in
J2SE 1.4 can save the state of a JavaBean in an XML format that is resilient to version
changes in the implementation of that JavaBean. Refer to J2SE 1.4 (Section 12., “Java
2 Platform, Standard Edition (J2SETM), API specification, version 1.4:” on page F-1)
classes j ava. beans. XMLEncoder, j ava. beans. XM_Encoder, and

j ava. beans. Per si st enceDel egat e.

For details, refer to JavaBeans specification (Section 14., “JavaBeansTM Specification
1.01 Final Release” on page F-2).

16-2 J2EE Connector Architecture Specification « November 2003

16.4

Equality Constraints

This section specifies the equality constraints on object implementations of the
various types defined by this specification.

Equality based on Java object identity

The candidate objects are implementations of MessageEndpoi nt Fact ory,
Acti vati onSpec, ManagedConnect i on types.

These objects, in general, should not override the default equal s and hashCode
methods. However, if these methods are overridden, they must preserve the equality
constraints based on Java object identity; that is, no two objects are considered equal.

Equality based on config properties and class information

The candidate objects are implementations of Resour ceAdapt er,
ManagedConnect i onFact ory, Connect i onRequest | nf o,

java.security.Principal,org.ietf.jgss.GSSCredenti al,
Generi cCredenti al , Passwor dCr edent i al , and Recor d types.

These objects must override the default equal s and hashCode methods, and
provide an equality behavior based on the configuration properties and class
information. That is, any two objects can be equal only if their configuration

properties match and they have the same class implementation.

Chapter 16 API Requirements 16-3

16-4 J2EE Connector Architecture Specification « November 2003

CHAPTER 17

Packaging Requirements

This chapter specifies requirements for packaging and deploying a resource adapter.
These requirements support a modular, portable deployment of a resource adapter
into a J2EE compliant application server.

17.1

Overview

A resource adapter provider develops a set of Java interfaces and classes as part of
its implementation of a resource adapter. These Java classes implement connector
architecture-specified contracts and EIS-specific functionality provided by the
resource adapter. The development of a resource adapter may also require the use of
native libraries specific to the underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries,
help files, documentation, and other resources) with a deployment descriptor to
create a Resour ce Adapt er Mdul e. A deployment descriptor defines the
contract between a resource adapter provider and a deployer for the deployment of
a resource adapter.

FIGURE 17-1 Packaging and Deployment Lifecycle of a Resource adapter

Development Deployment .
esource

Resource Adapter Resoui\lﬁ%%ﬁxltéapter Processed by | deploy | Adapter

created by » Deployer ——p |Application

Resource Adapter Server N

Provider -

17-1

A resource adapter module corresponds to a J2EE module in terms of the J2EE
composition hierarchy. Refer to the J2EE Platform specification (Section 8., “Java 2
Platform Enterprise Edition (J2EETM), Platform specification, version 1. 4:” on
page F-1) for more details on the deployment of J2EE modules and applications. A
J2EE module represents the basic unit of composition of a J2EE application. Examples
of J2EE modules include EJB modules, application client modules, and web client
modules.

A resource adapter module must be deployed either:

= Directly into an application server as a stand-alone unit or,

= Deployed with a J2EE application that consists of one or more J2EE modules in
addition to a resource adapter module. The J2EE specification specifies
requirements for the assembly and packaging of J2EE applications.

17-2 J2EE Connector Architecture Specification « November 2003

FIGURE 17-2 shows the composition model of a resource adapter module with other
J2EE modules.

FIGURE 17-2 Deployment of a Resource Adapter Module

Components J2EE Modules J2EE Application
EJB
EJB
module 4 A
EJB APP
DD
EJB
Web client
WEB
[~/ module
WEB |- Deployment
—» Tool

Adapter
module

add/delete ingredients

deploy stand-alone modules

The stand-alone deployment of a resource adapter module into an application server
is typically done to support scenarios in which multiple J2EE applications share a
single resource adapter module. However, in certain scenarios, a resource adapter

Chapter 17 Packaging Requirements 17-3

module is required only by components within a single J2EE application. The
deployment option of a resource adapter module bundled with a J2EE application
supports the latter scenario.

At deployment time, a resource adapter deployer deploys a resource adapter module
to an application server.

17.2

17.2.0.1

Packaging

The file format for a packaged resource adapter module defines the contract between
a resource adapter provider and deployer.

A packaged resource adapter includes the following elements:

= Java classes and interfaces that are required for the implementation of both the
connector architecture contracts and the functionality of the resource adapter.

= Utility Java classes for the resource adapter.

= Platform-dependent native libraries required by the resource adapter.

= Help files and documentation.

= Descriptive meta information that ties the above elements together.

Resource Adapter Archive

A resource adapter must be packaged using the Java ARchive (JAR) format in to an
RAR (ResourceAdapter ARchive). For example, a resource adapter for EIS A can be
packaged as an archive with a filename ei sA. rar.

The RAR file must contain a deployment descriptor based on the format specified in
Section 17.5.4 “Requirements”. The deployment descriptor must be stored with the
name META- | NF/ ra. xm in the RAR file.

The Java interfaces, implementation, and utility classes required by the resource
adapter must be packaged as one or more JAR files as part of the resource adapter
module. A JAR file must use the . j ar file extension.

The platform-specific libraries required by the resource adapter must be packaged
with the resource adapter module.

17-4 J2EE Connector Architecture Specification « November 2003

17.2.0.2

17.2.0.3

17.2.0.4

RAR Contents

The following describes the contents of a RAR file, their respective location within
the RAR file and whether they are required.

TABLE 17-1 Description of RAR File Contents

Contents of RAR file Requirements Relative location within RAR file
Deployment descriptor Required META-INF/ra.xml

howto.html, image files, Optional Arbitrary (that is, could be at root
locale files, etc. level or at a sub-level).

JAR files Optional Arbitrary

Platform-specific native Optional Arbitrary

libraries

Sample Directory Structure

The following lists the files in a sample resource adapter module:
META- | NF/ ra. xni

howt o. ht m

i mages/icon.jpg

ra.jar
ccCi.jar
win.dll

sol ari s. so

In the above example, r a. xnl is the deployment descriptor. ra. j ar and cci . j ar
contain Java interfaces and implementation classes for the resource adapter.
win.dl | and sol ari s. so are examples of native libraries.

Note that a resource adapter module can be structured such that various elements
are partitioned using subdirectories.

Requirements

= When a standalone resource adapter RAR is deployed, the resource adapter must
be made available to all J2EE applications in the application server.

= When a resource adapter RAR packaged within a J2EE application EAR is
deployed, the resource adapter must be made available only to the J2EE
application with which it is packaged.

Chapter 17 Packaging Requirements 17-5

17.3

17.3.1

Deployment

A deployment descriptor defines the contract between a resource adapter provider
and a deployer. It captures the declarative information that is intended for the
deployer to enable deployment of a resource adapter in a target operational
environment.

A resource adapter module must be deployed based on the deployment
requirements specified by the resource adapter provider in the deployment
descriptor. Section 17.5.4 “Requirements” specifies the XML DTD for the deployment
descriptor for a resource adapter module.

The J2EE Deployment API Specification (Section 13., “J2EETM Deployment API
Specification” on page F-2) describes the general deployment procedure in detail.

Resource Adapter Provider

The resource adapter provider is responsible for specifying the deployment
descriptor for a resource adapter.

The resource adapter provider must specify the following information in the
deployment descriptor:

= General information: The resource adapter provider should specify the following
general information about a resource adapter:

« Name of the resource adapter.

« Description of the resource adapter.

« URI of a Ul icon for the resource adapter.

= Name of the vendor who provides the resource adapter.

« Licensing requirement and description. Note that the management of licensing
is outside the scope of the connector architecture.

« Type of the EIS system supported. For example, the name of a specific
database, ERP system, or mainframe TP system without any versioning
information.

« \ersion of the connector architecture specification, represented as a string,
supported by the resource adapter.

« \ersion of the resource adapter represented as a string.

= ResourceAdapter class: The resource adapter provider must specify the fully
gualified name of a Java class that implements the

j avax. resource. spi . Resour ceAdapt er interface. The implementation of this

class must be a JavaBean. A Resour ceAdapt er JavaBean is configured by the

resource adapter deployer during deployment. The application server must
instantiate exactly one Resour ceAdapt er JavaBean per functional resource

17-6 J2EE Connector Architecture Specification « November 2003

adapter instance. The application server must create at least one functional
resource adapter instance per resource adapter deployment. The configuration
properties are specific to a resource adapter.

= ResourceAdapter class configuration properties: The resource adapter provider
may optionally provide a set of configuration properties for the
Resour ceAdapt er instance, which may be used by the resource adapter
deployer to configure a Resour ceAdapt er JavaBean instance.

= Outbound resource adapter information

« ManagedConnectionFactory class: The resource adapter provider must specify
the fully qualified name of the Java class that implements the
j avax. resour ce. spi . ManagedConnect i onFact ory interface. The
implementation must be a JavaBean.

Typically, a ManagedConnect i onFact ory class is used to produce

Connecti onFactory and Connecti on objects of a particular type. In order

to produce objects of different types, a separate ManagedConnect i onFact ory

class can be used for each supported type. The deployment descriptor element
connecti on-definition can be used to specify different

ManagedConnecti onFact ory classes, each pertaining to a particular type.

« ConnectionFactory interface and implementation class: The resource adapter
provider must specify the fully-qualified name of the Java interface and
implementation class for each connection factory supported by the resource
adapter.

« Connection interface and implementation class: The resource adapter
provider must specify the fully-qualified name of the Java interface and
implementation class for each connection supported by the resource adapter.

» Transactional Support: The resource adapter provider must specify the level of
transaction support provided by the resource adapter implementation. The
level of transaction support must be any one of the following:

NoTr ansacti on, Local Tr ansacti on, or XATr ansact i on. Note that this
support is specified for a resource adapter and not for the underlying EIS
instance.

NoTr ansact i on: The resource adapter does not support either the resource
manager local or JTA transactions. It does not implement either XAResour ce
or Local Transact i on interfaces.

Local Transacti on: The resource adapter supports resource manager local
transactions by implementing the Local Tr ansact i on interface. The local
transaction management contract is specified in Section 7.7, “Local
Transaction Management Contract” on page 7-31.

XATr ansact i on: The resource adapter supports both resource manager local
and JTA transactions by implementing the Local Tr ansacti on and
XAResour ce interfaces respectively. The requirements for supporting the
XAResour ce based contract are specified in Section 7.6, “XAResource-based
Transaction Contract” on page 7-16.

Chapter 17 Packaging Requirements 17-7

17-8

Configurable properties per ManagedConnectionFactory instance: The
resource adapter provider specifies the name, type, description, and an
optional default value for the properties that have to be configured on a per
ManagedConnect i onFact ory instance.

Each ManagedConnect i onFact or y instance creates connections to a specific
EIS instance based on the properties configured on the

ManagedConnect i onFact ory instance. The configurable properties are
specified only once in the deployment descriptor, even though a resource
adapter can be used to configure multiple ManagedConnnect i onFact ory
instances that create connections to different instances of the same
underlying EIS type.

Authentication Mechanism: The resource adapter provider must specify all
authentication mechanisms supported by the resource adapter. This includes
the support provided by the resource adapter implementation but not by the
underlying EIS instance. The standard values are: Basi cPasswor d and

Ker bv5. A resource adapter may support one or more of these authentication
mechanisms.

= Basi cPasswor d: user-password based authentication mechanism that is
specific to an EIS.

e Ker bv5: Kerberos version 5 based authentication mechanism.

If no authentication mechanism is specified as part of the deployment
descriptor, the resource adapter supports no standard security authentication
mechanism as part of the security contract.

Reauthentication support: The resource adapter provider must specify
whether a resource adapter supports re-authentication of an existing physical
connection.

Extended Security Permissions: The security permissions listed in the
deployment descriptor are different from those required by the default
permission set. Refer to Chapter 18, “Runtime Environment” for more details
on security permissions.

= Inbound resource adapter information

Message listener type: The resource adapter provider must specify one or
more message listener types supported by a messaging resource adapter. The
message listener type is the fully qualified name of the Java type of a message
listener interface.

ActivationSpec class: The resource adapter provider must specify the fully
qualified Java class name of the activation specification class. The
implementation of this class must be a JavaBean. An Acti vati onSpec
specifies an activation specification per message listener type. The

Acti vati onSpec is configured by a message endpoint deployer during
application deployment.

J2EE Connector Architecture Specification « November 2003

17.3.2

17.3.2.1

17.3.2.2

« Required ActivationSpec properties: The resource adapter provider may
optionally specify a set of required properties for an Act i vat i onSpec. This is
useful in validating the Act i vati onSpec during endpoint application
deployment.

= Administered objects: The resource adapter provider must specify the fully
qgualified name of the Java type of the interface implemented by an administered
object, which must be a JavaBean, and its Java class name. Administered objects
are specific to a messaging style or message provider. There may be zero to more
administered objects specified.

The deployment descriptor specified by the resource adapter provider for its
resource adapter must be consistent with the XML DTD specified in Section 17.5.4
“Requirements”.

Note — The connector architecture does not specify standard deployment properties
for the configuration of non-Java parts, such as native libraries, of a resource
adapter. This applies only to the properties of the non-Java part not exposed through
the Java part of the resource adapter. The non-Java part of a resource adapter should
be configured using mechanisms specific to a resource adapter.

Deployer

During resource adapter deployment, the deployer is responsible for configuring a
resource adapter. The configuration of a resource adapter is based on the properties
defined in the deployment descriptor as part of the resource adapter module.

Stand-Alone Resource Adapter Module

During deployment, the deployer configures and deploys a resource adapter based
on the deployment descriptor information. The deployer may choose to override the
information in the deployment descriptor.

Resource Adapter Module with J2EE Application

Refer to the J2EE platform specification (Section 8., “Java 2 Platform Enterprise
Edition (J2EETM), Platform specification, version 1. 4:” on page F-1) for the
requirements specified for the deployment of a J2EE application.

Chapter 17 Packaging Requirements 17-9

17.3.2.3

17.3.2.4

Configuration

The deployer must perform the following tasks to configure a resource adapter:

= Configure a Resour ceAdapt er JavaBean instance. The configuration properties
are specific to a resource adapter.

In the case of outbound resource adapters,

= Configure one or more property sets (one property set per
ManagedConnect i onFact ory instance) for creating connections to various
underlying EIS instances. The deployer creates a property set to set valid values
for various configurable fields. The configuration of each field is based on the
name, type and description of the field specified in the deployment descriptor.

Each property set represents a specific configuration to be set on a Managed-
Connect i onFact ory instance for creating connections to a specific EIS instance.
Since a resource adapter may be used to create connections to multiple instances
of the same EIS, there can be multiple property sets for a single resource adapter,
one for each configured ManagedConnect i onFact ory instance.

= Configure application server mechanisms for transaction management based on
the level of transaction support specified by the resource adapter.

= Configure security in the target operational environment based on the security
requirements specified by the resource adapter in its deployment descriptor.

Security Configuration

The security configuration is based on;

= Whether or not the resource adapter supports a specific authentication
mechanism and credentials interface. The deployment descriptor includes an
element aut hent i cat i on- mechani smthat specifies a supported authentication
mechanism and the corresponding credentials interface.

= Whether or not the application server is configured to support a specific
mechanism type. For example, if the application server is not configured for the
Kerberos mechanism, it is not capable of passing Kerberos credentials to the
resource adapter as part of the security contract.

During the deployment, the deployer may, though is not required to, check whether
or not an underlying EIS supports the same capabilities, such as transaction support
and authentication mechanisms, as the corresponding resource adapter.

For example, if a resource adapter provides implementation support for Kerberos
based authentication but the underlying EIS instance does not support Kerberos, the
deployer may decide not to configure Kerberos for authentication to this EIS
instance. However if the deployer does not perform such checks during deployment,
any invalid configurations should lead to runtime exceptions.

17-10 J2EE Connector Architecture Specification + November 2003

17.4

17.4.1

17.4.11

17.4.2

Interfaces/Classes

This section specifies the Java classes and interfaces related to the configuration of a
resource adapter in an operational environment.

ResourceAdapter

The Java class which implements the interface

j avax. resource. spi . Resour ceAdapt er must be a JavaBean. A

Resour ceAdapt er JavaBean represents exactly one functional resource adapter unit
or instance. The application server must instantiate exactly one Resour ceAdapt er
JavaBean per functional resource adapter instance. The application server must
create at least one functional resource adapter instance per resource adapter
deployment. A Resour ceAdapt er JavaBean instance is configured by the resource
adapter deployer during deployment. The configuration properties are specific to a
resource adapter.

The resource adapter provider may optionally provide a set of configuration
properties, specified in the resource adapter deployment descriptor, for the

Resour ceAdapt er instance, which is used by the resource adapter deployer to
configure the Resour ceAdapt er JavaBean instance during deployment. The
deployer may override the configuration information in the deployment descriptor
while configuring the Resour ceAdapt er JavaBean instance.

Requirements

The Resour ceAdapt er implementation must be a JavaBean.

ManagedConnectionFactory

The class that implements the ManagedConnect i onFact or y interface supports a set
of properties. These properties provide information required by the
ManagedConnect i onFact ory for the creation of physical connections to the
underlying EIS.

A resource adapter must implement the ManagedConnect i onFact ory interface as a
JavaBean. As a JavaBean implementor, the resource adapter can also provide a
Beanl nf o class that implements the j ava. beans. Beanl nf o interface and provides
explicit information about the methods and properties supported by the
ManagedConnect i onFact ory implementation class.

Chapter 17 Packaging Requirements 17-11

The implementation of ManagedConnect i onFact ory as a JavaBean improves the
ability of tools that are based on the JavaBeans framework to manage the
configuration of ManagedConnect i onFact ory instances.

17.4.2.1 Requirements

The ManagedConnect i onFact ory implementation must be a JavaBean. Any
specified ManagedConnect i onFact ory property in the deployment descriptor
which does not have a matching property in the ManagedConnect i onFact ory
JavaBean should be treated as an error.

17.4.3 Properties Conventions

The ManagedConnect i onFact ory implementation class must provide getter and
setter methods for each of its supported properties. The supported properties must
be consistent with the specification of configurable properties specified in the
deployment descriptor.

The getter and setter methods convention must be based on the JavaBeans design
pattern. These methods are defined in the implementation class and not in the
ManagedConnect i onFact ory interface. This requirement keeps the
ManagedConnect i onFact ory interface independent of any resource adapter or EIS-
specific properties.

17.4.4 Standard Properties

The connector architecture identifies a standard set of properties common across
various types of resource adapters and EISs. A resource adapter is not required to
support a standard property if that property does not apply to its configuration.

These standard properties are defined as follows:

TABLE 17-2 Standard Properties of the Connector Architecture

Property Description

Ser ver Name Name of the server for the EIS instance.

Por t Nunber Port number for establishing a connection to an EIS instance.
User Name Name of the user establishing a connection to an EIS instance.
Passwor d Password for the user establishing a connection.

Connect i onURL URL for the EIS instance to which it connects.

17-12 J2EE Connector Architecture Specification + November 2003

In addition to these standard properties, a ManagedConnect i onFact ory
implementation class may support properties specific to a resource adapter and its
underlying EIS.

All properties are administered by the deployer and are not visible to an application
component provider.

The specified properties are required to be implemented as either bound or
constrained properties. Refer to the JavaBeans specification (refer to
http://java. sun. com product s/ j avabeans) for details on bound and
constrained properties.

In the XML deployment descriptor, any bounds or well-defined values of properties
should be described in the descri pti on element.

17.5

JNDI Configuration and Lookup

This section specifies requirements for the configuration of the JINDI environment for
a resource adapter.

In both managed and non-managed application scenarios, an application component
or application client must look up a connection factory instance in the component’s
environment using the JNDI interface. The application component then uses the
connection factory instance to get a connection to the underlying EIS. Section 6.4,
“Application Programming Model” on page 6-6 specifies the application
programming model in more detail.

The following code extract shows the JNDI lookup of a
j avax. resource. cci . Connecti onFact ory instance.

/1 Application Conponent/dient Code
obtain the initial JND context
Context initctx = new Initial Context();

/1 perform JNDI | ookup to obtain connection factory
j avax. resource. cci . Connecti onFactory cxf =

(j avax. resource. cci . Connecti onFactory)initctx.| ookup(“java: conp/
env/ei s/ WEI S");

j avax. resource. cci. Connection cx = cxf.getConnection();

Chapter 17 Packaging Requirements 17-13

17.5.1

17.5.1.1

17.5.1.2

Responsibilities

In both managed and non-managed environments, registration of a connection
factory instance in the JNDI namespace must use either the JNDI Ref er ence or
Seri al i zabl e mechanism.

The choice between the two JNDI mechanisms depends on:

= Whether or not the JNDI provider being used supports a specific mechanism.

= Whether or not the application server and resource adapter provide the necessary
support, specified in the respective requirements.

= Constraints on the size of serialized objects that can be stored in the JNDI
namespace. The reference mechanism allows only a reference to the actual object
to be stored in the JNDI namespace. This is preferable to the serializable
mechanism, which stores the whole serialized object in the namespace.

The following section specifies the responsibilities of the roles involved in the JNDI
configuration of a resource adapter.

Deployer

The deployer is responsible for configuring connection factory instances in the JNDI
environment. The deployer should manage the JINDI namespace such that the same
programming model, as shown in Section 17.5 “JNDI Configuration and Lookup”,
for the JNDI-based connection factory lookup is supported in both managed and
non-managed environments.

Resource Adapter

The implementation class for a connection factory interface must implement both the
java.io. Serializabl eandjavax. resource. Ref erenceabl e interfaces to
support JNDI registration.

The following code extract shows the j avax. r esour ce. Ref er enceabl e interface:

public interface javax.resource. Ref erenceabl e
ext ends j avax. nanmi ng. Ref erenceabl e {
public void set Reference(Reference ref);

The ManagedConnect i onFact ory implementation class must implement the
java.i o. Seri al i zabl e interface.

17-14 J2EE Connector Architecture Specification + November 2003

17.5.1.3

17.5.2

To support the Ref er ence mechanism in a non-managed environment, a resource
adapter or a helper class must provide an implementation of the
javax. nam ng. spi . Obj ect Fact ory interface.

Application Server

The implementation class for j avax. r esour ce. spi . Connect i onManager must
implement the j ava. i 0. Seri al i zabl e interface.

An application server must provide an implementation class for the

j avax. nam ng. spi . Obj ect Fact ory interface to support JNDI Ref er ence
mechanism-based connection factory lookup. The implementation of this interface is
application server-specific.

Section 17.5.3 “Scenario: Referenceable” specifies more details on Ref er ence
mechanism-based JNDI configuration in a managed environment.

Scenario: Serializable

The implementation classes for both the

j avax. resource. cci . Connecti onFact ory and

j avax. resource. spi . ManagedConnect i onFact ory interfaces implement the
java.io. Serializabl e interface.

The deployment code retrieves the configuration properties from the XML
deployment descriptor for the resource adapter. The deployment code then creates
an instance of the ManagedConnect i onFact ory implementation class and
configures the properties of the instance.

/| Depl oynment Code
/1l Create an instance of the ManagedConnectionFactory cl ass
com nyei s. ManagedConnect i onFactoryl npl ncf =

new com nyei s. ManagedConnect i onFact oryl npl () ;

/1l Set the properties of the ManagedConnectionFactory instance
/1 Note: Properties are defined in the inplenentation class and
/'l not in the

/'l javax.resource. spi. ManagedConnecti onFactory interface

ncf. set Server Name(“...");

ncf. set Port Nunber (“...");

Chapter 17 Packaging Requirements 17-15

Note that in a non-managed environment, an application developer writes the
deployment code. In a managed environment, the deployment tool typically hides
the deployment code.

The deployment code uses the ManagedConnect i onFact ory instance to create a
connection factory instance. The code then registers the connection factory instance
in the JNDI namespace.

/1 Depl oynent Code
/1 I'n a managed environnent, create a Connecti onManager specific to
/1 the application server. Note that in a non-managed envi ronnent,
/1 ConnectionManager will be specific to the resource adapter.
com wonbat server. Connect i onManager cm =

new com wonbat server. Connecti onManager(...);

/'l Create an instance of a connection factory
bj ect cxf = ncf.createConnecti onFactory(cn;

/] Get the JNDI context
j avax. nam ng. Context ctx = new javax. nam ng. | nitial Context(env);

/1 Bind to the JNDI nanespace specifying a factory nane
ctx.bind("...", cxf);

When an application component does a JNDI lookup of a connection factory
instance, the returned connection factory instance should get associated with a
configured ManagedConnect i onFact ory instance and a Connect i onManager
instance. The implementation class for connection factory should achieve the
association between these instances in an implementation-specific manner.

The following section illustrates JNDI configuration in a managed environment
based on the Ref er ence mechanism. This section uses the CCI interfaces

j avax. resource. cci . Connecti onFact ory and

j avax. resource. cci . Connecti on as the connection factory and connection
interfaces respectively.

17-16 J2EE Connector Architecture Specification + November 2003

17.5.3

17531

Scenario; Referenceable

The implementation class for the Connect i onFact ory interface implements
j avax. resour ce. Ref er enceabl e shown in the following code extract. Refer to
the JNDI specification for more details on the Ref er enceabl e interface.

public class com nyeis. Connecti onFactoryl npl inplenents
j avax. resour ce. Ref erenceabl e,
java.io. Serializable,
j avax. resource. cci . Connecti onFactory {

/| Reference to this ConnectionFactory
j avax. nam ng. Ref erence reference;

/Il setReference is called by the deploynent code
public void setReference(Reference ref) {
reference = ref;

}

/1l getReference is called by the JND provider during

/1 Context. bind

publi ¢ Reference getReference() throws Nam ngException {
return reference;

}

The get Ref er ence method on the Connecti onFact ory implementation class
must return a non-null value or throw j avax. nani ng. Nani ngExcepti on.

ObjectFactory Implementation

An application server provides a class (in an application server-specific
implementation) that implements the j avax. nami ng. spi . Cbj ect Factory
interface. Refer to the JNDI specification for more details on the Obj ect Factory
interface.

In the Obj ect Fact ory. get Obj ect | nst ance method, the information carried by
the Ref er ence parameter (set in the Connecti onFact oryl npl . set Ref erence
method) is used to lookup the property set to be configured on the target
ManagedConnect i onFact ory instance.

Chapter 17 Packaging Requirements ~ 17-17

17-18

The mapping from a Ref er ence instance to multiple configured property sets
enables an application server to configure multiple ManagedConnect i onFact ory
instances with respective property sets. An application server maintains the property
set configuration in an implementation-specific way based on the deployment
descriptor specification.

The implementation and structure of Ref er ence is specific to an application server.
The following code extract is an illustrative example. It illustrates an implementation
of the Obj ect Fact ory. get Obj ect | nst ance method:

public class com wonbat server. Appli cati onServer JNDI Handl er
i mpl enent s j avax. nani ng. spi . Obj ect Factory {
I
public Object getObjectlnstance(Object obj, Nane nane,
Context ctx, Hashtable env)
t hrows Exception {

j avax. nam ng. Reference ref =
(j avax. nami ng. Ref er ence) obj ;

/1 Using the information carried by the Reference

/'l instance,

/'l (<referenceNane, | ogical Name>in this exanple) | ookup
/1 a configured property set and then configure a

/1 ManagedConnecti onFactory instance with specified

/'l properties.

... Il [inplenmentation specific]

/1
/'l For exanple, instantiation of the

/I ManagedConnecti onFact ory

/1 class and invocation of its setter method

/1 can be done using the Java Refl ection nmechani sm

j avax. resour ce. spi . ManagedConnecti onFactory ncf = ...

/'l Create a Connection Manager instance specific to the
/1 application server
com wonbat server. Connect i onManager cxManager = ...

/1l Create a connection factory instance.

/1 The Connecti onManager instance provi ded by the
/1 application

/'l server gets associated with the created

/1 connection factory instance

return ncf. createConnecti onFact ory(cxManager) ;

J2EE Connector Architecture Specification + November 2003

17.5.3.2

17.5.3.3

Deployment

The following deployment code shows the registration of a reference to a connection
factory instance in the JINDI namespace:

/| Depl oynment Code
j avax. nami ng. Context ctx = new javax.nam ng.Initial Context(env);

/'l Create an instance of the connection factory
com nyei s. Connecti onFactoryl npl cf =
new com nyei s. Connecti onFactoryl npl ();

/] Create a reference for the ConnectionFactory instance
j avax. nam ng. Ref erence ref = new javax. nam ng. Ref er ence(
Connect i onFact oryl npl . cl ass. get Nane(),
new j avax. nami ng. St ri ngRef Addr (
“<referenceNane>", “<l| ogi cal Nane>"),
Appl i cati onServer JNDI Handl er. cl ass. get Nane(),
nul I');

cf.setReference(ref);
/1 Bind to the JNDI nanespace specifying a name for the connection

Il factory
ctx.bind("...", cf);

Note that the deployment code should be designed as generic, though the above
example does not show it that way. The code should dynamically create an instance
of a connection factory, create a Ref er ence instance, and then set the reference.

The Cont ext . bi nd method registers a Ref er ence to the connection factory
instance in the JNDI namespace.

Scenario: Connection Factory Lookup

The following steps occur when an application component calls the method JNDI
Cont ext . | ookup to lookup a connection factory instance:

= JNDI passes control to the application server. The Obj ect Fact or y-
. get bj ect | nst ance method implemented by the application server is called.
= The application server creates a new instance of the
ManagedConnect i onFact ory implementation class provided by the resource
adapter.
= The application server calls setter methods on the ManagedConnect i onFact ory
instance to set various configuration properties of this instance. These properties
provide information required by the ManagedConnect i onFact ory instance to

Chapter 17 Packaging Requirements 17-19

create physical connections to the underlying EIS. The application server uses an
existing property set configured during the deployment of a resource adapter to
set the required properties of the ManagedConnect i onFact ory instance.

= After the newly created ManagedConnect i onFact ory instance has been
configured with its properties set, the application server creates a new
Connect i onManager instance.

= The application server calls the cr eat eConnect i onFact or y method of the
ManagedConnect i onFact ory instance, passing in the Connect i onManager
instance from the previous step, to get a Connecti onFact ory instance.

17-20 J2EE Connector Architecture Specification + November 2003

= The application server returns the connection factory instance to the JNDI
provider, so that this instance can be returned as a result of the JNDI lookup. The
application component gets the Connect i onFact ory instance as a result of the
IJNDI lookup.

Chapter 17 Packaging Requirements 17-21

FIGURE 17-3 OID: Lookup of a ConnectionFactory Instance from JNDI
Resource Adapter

Application INDI Naming Application

Component Context 9 pg%rver ManagedConnectionFactory
Connection Implementation
Manager Class

Initial configuration of the resource adapter, followed by the
application deployment

I I I
The application server maintains the configuration properties of
the ManagedConnectionFactory instance in an implementation-
specific way based on the XML deployment descriptor
specification

lookup

»
»

JNDI passes control to the
application server
L

create a new instance

v

set properties by calling setter methods

create a ngw instance
»

»

createConnectionFactory(ConnectionManager

ManagedConnectionFactory-
creates a ConnectionFactory

instance and returns it to the
application server

The application server returns the
connection factory instance.

This instance is the one returned
from JNDI lookup.

return ConnectionFactory

17-22 J2EE Connector Architecture Specification + November 2003

17.5.4

Requirements

The default configuration values for the various JavaBean classes specified in the
resource adapter deployment descriptor via the conf i g- pr operty element override
and take precedence over the defaults specified for the same classes by the resource
adapter developer through the JavaBean mechanism. Note, a deployer may finally
override such default configuration information while configuring the various
JavaBean instances.

17.6

Resource Adapter XML Schema
Definition

This section specifies the XML Schema Definition (XSD) for the deployment
descriptor for a resource adapter. Some of the types used in this XSD are defined in
the J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4:” on page F-1). The comments in the
XSD specify additional requirements for syntax and semantics that cannot be
specified by using the XML Schema language. Note, the descri pti on-group
element defined in j2ee_1_4.xsd allows multiple descriptions, in order to allow
specifying the same description for different locales.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"

<xsd: annot ati on>
<xsd: docunent ati on>
@ #) connector_1 5.xsdsl1.27 06/17/03
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

This is the XML Schema for the Connector 1.5 depl oynent
descriptor. The deploynent descriptor nust be nanmed

t ar get Nanespace="htt p://java. sun. com xml / ns/ j 2ee"
xm ns:j2ee="http://java. sun.com xm /ns/j 2ee"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

el ement For mDef aul t =" qual i fi ed”

attri but eFor nDef aul t =" unqual i fi ed"

version="1.5">

Chapter 17 Packaging Requirements 17-23

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

"META-ITNF/ra.xm™ in the connector’s rar file. Al Connector
depl oyment descriptors nust indicate the connector resource
adapter schenma by using the J2EE nanespace:

http://java. sun. conm xm / ns/j 2ee

and by indicating the version of the schema by
usi ng the version el enent as shown bel ow

<connector xm ns="http://java.sun.com xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java. sun. com xm / ns/j 2ee
http://java. sun.com xm /ns/j 2ee/ connector _1_5. xsd"
version="1.5">

</ connect or >

The instance docunents may indicate the published version of
the schema using the xsi:schemalLocation attribute for J2EE
nanespace with the followi ng | ocation:

http://java. sun. com xm / ns/j 2ee/ connector_1 5. xsd

11>
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: annot at i on>
<xsd: docunent ati on>

The follow ng conventions apply to all J2EE
depl oynent descriptor elenents unless indicated otherw se.

- In elements that specify a pathnane to a file within the
sanme JAR file, relative filenanes (i.e., those not
starting with "/") are considered relative to the root of
the JAR file's nanmespace. Absolute filenanes (i.e., those
starting with "/") also specify nanes in the root of the
JAR file's nanespace. |In general, relative nanes are
preferred. The exception is .war files where absol ute
nanes are preferred for consistency with the Servlet API.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: i ncl ude schemaLocation="j2ee_1 4.xsd"/>

17-24 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<|__ R S S R R Sk S b S R S S S R R S S o ->

<xsd: el ement name="connector" type="j2ee: connect or Type" >
<xsd: annot ati on>

<xsd: docunent ati on>

The connector elenent is the root el ement of the depl oynent
descriptor for the resource adapter. This el enent includes
general information - vendor nane, resource adapter version
icon - about the resource adapter nmodule. It also includes
information specific to the inplenmentation of the resource

adapter library as specified through the el enent
r esour ceadapt er

</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el enent >

<|__ R I S S >

<xsd: conmpl exType nane="acti vati onspecType">
<xsd: annot ati on>

<xsd: docunent ati on>

The activationspecType specifies an activation
specification. The information includes fully qualified
Java cl ass nanme of an activation specification and a set of
requi red configuration property nanes

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="activati onspec-cl ass"
type="j2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The el enent activationspec-class specifies the fully
qualified Java class nane of the activation
specification class. This class nust inplenment the

j avax.resource. spi . Activati onSpec interface. The

i mpl ementation of this class is required to be a

Chapter 17 Packaging Requirements

17-25

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

JavaBean.

Exanpl e:
<acti vati onspec-cl ass>com wonbat . Acti vati onSpecl npl
</ activationspec-cl ass>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="required-confi g- property"
type="j 2ee: required-confi g- propertyType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ Rk Sk S R R I bk I O S kR R R R o I -->

<xsd: conpl exType nane="admni nobj ect Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The admi nobj ect Type specifies informati on about an
admi ni stered object. Administered objects are specific to a
messagi ng style or nmessage provider. This contains
information on the Java type of the interface inplenented by
an adm ni stered object, its Java class nane and its
configuration properties.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="adm nobj ect-i nterface”
type="j2ee:fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>
<!'[CDATA[

The el enent admi nobject-interface specifies the
fully qualified nane of the Java type of the
interface i nplenented by an adm ni stered object.

Exanpl e:
<adm nobj ect-i nterface>javax.j ns. Destination

17-26 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

</ 'adm nobj ect-interface>

11>
</ xsd: docunent at i on>
</ xsd: annot ati on>

</ xsd: el ement >
<xsd: el ement nane="adm nobj ect - cl ass"
type="j2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA]

The el enent admi nobj ect-class specifies the fully
qualified Java class nanme of an admi ni stered object.

Exanpl e
<adni nobj ect - cl ass>com wonbat . Desti nati onl npl
</ adm nobj ect - cl ass>

11>
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nanme="confi g-property"
type="j 2ee: confi g- propertyType"
m nCccur s="0"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D"'/>
</ xsd: conpl exType>

<| - R I S S S O O

<xsd: compl exType name="aut henti cati on- nechani snilype" >
<xsd: annot ati on>

<xsd: docunent ati on>

The aut henti cati on-nmechani snifype specifies an authentication
nmechani sm supported by the resource adapter. Note that this
support is for the resource adapter and not for the
underlying EI'S instance. The optional description specifies
any resource adapter specific requirenent for the support of
security contract and authentication nechani sm

Not e that Basi cPassword mechani smtype shoul d support the

Chapter 17 Packaging Requirements

17-27

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

j avax.resource. spi.security. PasswordCredential interface
The Kerbv5 nechani smtype should support the
org.ietf.jgss. GSSCredential interface or the deprecated
javax.resource. spi.security. GenericCredential interface.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement name="description"
type="j 2ee: descri pti onType"
m nCccur s="0"
maxQccur s=" unbounded"/ >
<xsd: el ement nanme="aut henti cati on- nechani smtype"
type="j 2ee: xsdStri ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

The el enent aut henticati on-nmechani smtype specifies
type of an authentication nechani sm

The exanpl e val ues are:

<aut henti cati on- nechani smt ype>Basi cPasswor d
</ aut henti cati on- mechani smtype>

<aut henti cati on- mechani smt ype>Ker bv5
</ aut henti cati on- mechani smtype>

Any additional security nechanisnms are outside the
scope of the Connector architecture specification

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el ement >
<xsd: el ement name="credential -interface"
type="j 2ee: credential -interfaceType"/>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D'/>
</ xsd: conpl exType>

<|__ kkkhkkhkkhkhkkhhkhhkhkdhkhhhkhhkhkhhdhkhdhkdrhkdhkhdrdrhkdrxdrrhrhrxdxx ->

<xsd: conmpl exType nane="confi g- property-naneType">

17-28 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The confi g-property-naneType contains the nane of a
configuration property.

The connector architecture defines a set of well-defined
properties all of type java.lang.String. These are as
fol |l ows.

Ser ver Nanme
Por t Nunber
User Name
Password
Connect i onURL

A resource adapter provider can extend this property set to
i nclude properties specific to the resource adapter and its
underlying ElIS.

Possi bl e val ues i ncl ude
Ser ver Namre

Por t Nurmber

User Name

Passwor d

Connect i onURL

Exanpl e: <confi g- property-nanme>Server Nane</ confi g- property-nane>

11>
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: si npl eCont ent >
<xsd:restriction base="j 2ee: xsdStri ngType"/ >
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ kkkhkkhkhkhkhkkhkhkhhkhkdhkhhhkhhhkdhhdhkhdhkdrhkdhkhdrdrhkdrxdrrdrhkrxdxx >

<xsd: conmpl exType nanme="confi g-property-typeType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The config-property-typeType contains the fully
qualified Java type of a configuration property.

Chapter 17 Packaging Requirements

17-29

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

The following are the | egal val ues:
java. | ang. Bool ean, java.lang.String, java.lang.|nteger,
java. |l ang. Doubl e, java.lang.Byte, java.lang. Short,
java.l ang. Long, java.lang.Float, java.lang.Character

Used in: config-property

Exanpl e:
<confi g-property-type>java.l ang. String</config-property-type>

11>

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: si npl eCont ent >

<xsd:restriction base="j2ee:string">
<xsd: enuner ati on val ue="j ava. | ang. Bool ean"/ >
<xsd: enuner ation val ue="java.l ang. String"/>
<xsd: enuner ati on val ue="java. |l ang. I nteger"/ >
<xsd: enuner ati on val ue="j ava. | ang. Doubl e"/ >
<xsd: enuner ati on val ue="j ava. |l ang. Byte"/ >
<xsd: enuner ati on val ue="j ava. |l ang. Short"/>
<xsd: enuner ati on val ue="j ava. |l ang. Long"/ >
<xsd: enuner ati on val ue="java. |l ang. Fl oat"/>
<xsd: enuner ati on val ue="j ava. |l ang. Character"/ >

</ xsd:restriction>
</ xsd: si npl eCont ent >

</ xsd: conpl exType>

<|__ Rk Sk S b R R I b O R Ik I o ->

<xsd: conpl exType nanme="confi g-propertyType">
<xsd: annot ati on>
<xsd: docunent ati on>

The config-propertyType contains a declaration of a single
configuration property that may be used for providing
configuration information

The decl aration consists of an optional description, name,
type and an optional value of the configuration property. If
the resource adapter provider does not specify a value than
the deployer is responsible for providing a valid value for
a configuration property.

Any bounds or well-defined val ues of properties should be
described in the description el ement.

17-30 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="descri ption”
type="j 2ee: descri pti onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nanme="confi g- property-nane"
type="j 2ee: confi g- property-nameType"/ >
<xsd: el ement name="confi g-property-type"
type="j 2ee: confi g-property-typeType"/>
<xsd: el ement nanme="confi g- property-val ue"
type="j 2ee: xsdStri ngType"
m nQccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

<! [CDATA[

The el enent confi g-property-val ue contains the val ue
of a configuration entry. Note, it is possible for a
resource adapter deployer to override this
configuration information during depl oynment.

Exanpl e
<confi g- property-val ue>Wnbat Ser ver </ confi g- property-val ue>

11>
</ xsd: documnent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ Rk Ik S b S R R I bk b O R Rk -->

<xsd: conpl exType nanme="connection-definitionType">
<xsd: annot ati on>
<xsd: docunent ati on>

The connection-definitionType defines a set of connection
interfaces and cl asses pertaining to a particular connection
type. This also includes configurable properties for
ManagedConnecti onFactory instances that nmay be produced out
of this set.

Chapter 17 Packaging Requirements

17-31

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement name="nanagedconnecti onfactory-cl ass"
type="j2ee:fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The el enent managedconnecti onfactory-cl ass specifies
the fully qualified nane of the Java class that

i mpl enents the

j avax. resour ce. spi . ManagedConnecti onFactory interface.
This Java class is provided as part of resource
adapter’s inplenmentati on of connector architecture
specified contracts. The inplenentation of this

class is required to be a JavaBean.

Exanpl e:

<managedconnecti onf act ory- cl ass>
com wonbat . ManagedConnect i onFact oryl npl

</ managedconnecti onf actory-cl ass>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="confi g-property"
type="j 2ee: confi g- propertyType"
m nQccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="connectionfactory-interface"
type="j2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

The el enent connectionfactory-interface specifies
the fully qualified name of the ConnectionFactory
interface supported by the resource adapter.

Exanpl e:
<connectionfactory-interface>com wonbat. Connecti onFactory
</ connectionfactory-interface>

OoR

17-32 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<connectionfactory-interface>j avax. resource. cci.ConnectionFactory
</ connectionfactory-interface>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement name="connecti onfactory-inpl-cl ass"
type="j2ee:fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent at i on>
<! [CDATA[

The el enent connectionfactory-inpl-class specifies
the fully qualified nane of the ConnectionFactory
class that inplenents resource adapter

speci fic ConnectionFactory interface.

Exanpl e:

<connectionfactory-inpl -cl ass>com wonbat . Connect i onFact or yl npl
</ connecti onfactory-inpl-cl ass>

11>
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nanme="connection-interface"
type="j2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA]

The connection-interface el ement specifies the fully
qualified nane of the Connection interface supported
by the resource adapter.

Exanpl e:

<connection-interface>j avax. resource. cci . Connecti on
</ connection-interface>

11>
</ xsd: docunent at i on>
</ xsd: annot ati on>

Chapter 17 Packaging Requirements 17-33

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

</ xsd: el ement >
<xsd: el enent nanme="connection-inpl -cl ass”
type="j2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA]

The connection-inpl-classType specifies the fully
qualified nane of the Connection class that
i mpl ements resource adapter specific Connection

interface. It is used by the connection-inpl-class
el enents.

Exanpl e:

<connecti on-i npl - cl ass>com wonbat . Connect i onl npl
</ connection-inpl - cl ass>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D'/>
</ xsd: conpl exType>

<|__ kkkhkkhkhkhkhkkhkhkkhhkhkdhkhhhkhhhkrrdhkhdhrdrhkdhkhdrdrhkdrxdrrdrhkrxdxx ->

<xsd: conmpl exType name="connect or Type" >
<xsd: annot ati on>

<xsd: docunent ati on>

The connector Type defines a resource adapter.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="j 2ee: descripti onG oup"/>
<xsd: el ement name="vendor - nane"
type="j 2ee: xsdStri ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The el enent vendor-nane specifies the nane of
resource adapter provider vendor.

17-34 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<[xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="ei s-type"
type="j 2ee: xsdStri ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The el ement eis-type contains information about the
type of the EIS. For exanple, the type of an EI'S can
be product nane of EIS i ndependent of any version

i nfo.

This helps in identifying EIS instances that can be
used with this resource adapter

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nane="r esour ceadapt er - ver si on"
type="j 2ee: xsdStri ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The el enent resourceadapter-version specifies a string-based version
of the resource adapter fromthe resource adapter
provi der.

</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el ement >

<xsd: el enent nanme="li cense"
type="j 2ee: | i censeType"

m nCccurs="0"/>

<xsd: el ement name="resour ceadapt er"
type="j 2ee: resour ceadapt er Type"/ >

</ xsd: sequence>

<xsd:attribute name="version"
type="j 2ee: dewey-ver si onType"
fixed="1.5"
use="required">
<xsd: annot ati on>

<xsd: docunent ati on>

The version specifies the version of the

Chapter 17 Packaging Requirements 17-35

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

connector architecture specification that is
supported by this resource adapter. This information
enabl es depl oyer to configure the resource adapter to
support depl oynment and runtinme requirenents of the
correspondi ng connector architecture specification.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ Rk Sk S R R R I b o b e b Sk R R R O Ik I b o O -->

<xsd: conpl exType nane="credential -interfaceType">
<xsd: annot ati on>
<xsd: docunent ati on>

The credential -interfaceType specifies the
interface that the resource adapter inplenentation
supports for the representation of the
credentials. This element(s) that use this type,
i.e. credential-interface, should be used by
application server to find out the Credenti al
interface it should use as part of the security
contract.

The possi bl e val ues are:

j avax.resource. spi.security. PasswordCredentia
org.ietf.jgss. GSSCredenti al
j avax. resource. spi.security. GenericCredenti al

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: si nmpl eCont ent >
<xsd:restriction base="j2ee:fully-qualified-classType">
<xsd: enuneration
val ue="j avax. resource. spi . security. PasswordCredential "/ >
<xsd: enuner ati on
val ue="org.ietf.jgss. GSSCredential "/ >
<xsd: enuneration
val ue="j avax. resource. spi . security. Generi cCredential "/ >
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

17-36 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<|__ EE R R I I -->

<xsd: conpl exType nane="i nbound-r esour ceadapt er Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The i nbound-r esour ceadapt er Type specifies information

about an inbound resource adapter. This contains information
specific to the inplenentation of the resource adapter
library as specified through the nessageadapter el enment.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement name="nessageadapter"
type="j 2ee: nessageadapt er Type"
m nCccur s="0">
<xsd: uni que nane="nessagel i st ener-type-uni queness" >
<xsd: annot ati on>
<xsd: docunent ati on>

The nessagel i stener-type el ement content nust be
uni que in the nmessageadapter. Several nessagelisteners
can not use the sane nessagel i stener-type

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sel ector xpat h="j 2ee: nessagel i stener"/ >
<xsd:field xpat h="j 2ee: nessagel i st ener-type"/>
</ xsd: uni que>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk Sk S Rk I R S R Rk kS S o S R R R S R R I o -->

<xsd: conpl exType nanme="|icenseType">
<xsd: annot ati on>
<xsd: docunent ati on>

The |icenseType specifies licensing requirenents for the
resource adapter nodule. This type specifies whether a
license is required to deploy and use this resource adapter
and an optional description of the |icensing terns
(exampl es: duration of |icense, number of connection

Chapter 17 Packaging Requirements

17-37

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

restrictions). It is used by the Ticense elenent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="descri ption"
type="j 2ee: descri pti onType"
m nQccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement name="|icense-required"
type="j 2ee: true-fal seType">
<xsd: annot ati on>
<xsd: docunent ati on>

The el enent |icense-required specifies whether a
license is required to depl oy and use the
resource adapter. This el ement nust be one of
the following, "true" or "false".

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D"'/>
</ xsd: conpl exType>

<|__ khkkhkkhkkkhkhkkhhkhhhkhhkhhhkkhhhhhkdhkhdhhkdrhkdhkhdhrdrhkddxdrhkdrhkrxhx*x*x ->

<xsd: conmpl exType nane="nessageadapt er Type" >
<xsd: annot ati on>

<xsd: docunent ati on>

The nessageadapt er Type specifies information about the
nmessagi ng capabilities of the resource adapter. This
contains information specific to the inplenmentation of the
resource adapter library as specified through the
messagel i stener el enent.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el enent nanme="nessagel i st ener"
type="j 2ee: nessagel i st ener Type"
maxQccur s="unbounded"/ >

</ xsd: sequence>

17-38 J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EE R I S S S >

<xsd: compl exType nanme="nessagel i st ener Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The messagel i st ener Type specifies informati on about a
speci fic nessage |istener supported by the nmessagi ng
resource adapter. It contains information on the Java type
of the nessage listener interface and an activation

speci fication

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="nessagel i stener-type"
type="j2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA]

The el enent nessagel i stener-type specifies the fully
qualified nane of the Java type of a nessage
listener interface.

Exanpl e

<nmessagel i st ener-type>j avax. j ns. Messageli st ener
</ nessagel i st ener-type>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el ement >
<xsd: el ement name="acti vati onspec"
type="j 2ee: acti vati onspecType"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D"/>
</ xsd: conpl exType>

<|__ khkkhkkhkkkhkhkkhhkkhhhkkhkhhhkkhhkhhhkdhkhkhhkdrhkdhkhhhdrhkdxdrhrdxhrxhx*x*x >

Chapter 17 Packaging Requirements

17-39

CODE EXAMPLE 17-1

<xsd: conpl exType nane="out bound-r esour ceadapt er Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

The out bound- r esour ceadapt er Type specifies information about
an out bound resource adapter. The information includes fully
qual i fied nanes of classes/interfaces required as part of
the connector architecture specified contracts for
connection nanagenent, |evel of transaction support

provi ded, one or nore authentication mechani snms supported
and additional required security perm ssions.

If there is no authentication-nechani smspecified as part of
resource adapter el enent then the resource adapter does not
support any standard security authentication nechani sns as
part of security contract. The application server ignores
the security part of the systemcontracts in this case

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane="connection-definition"
type="j 2ee: connecti on-definiti onType"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="transacti on-support"
type="j 2ee: transacti on-support Type"/ >
<xsd: el ement name="aut henti cati on- nechani sni
type="j 2ee: aut henti cati on- nechani snirype"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="reaut henti cati on-support"”
type="j 2ee: true-fal seType">
<xsd: annot at i on>
<xsd: docunent ati on>

The el enent reauthentication-support specifies

whet her the resource adapter inplenmentation supports
re-aut hentication of existing Managed- Connecti on
instance. Note that this information is for the
resource adapter inplenmentation and not for the
underlying EIS instance. This el ement nust have
either a "true" or "fal se" val ue.

</ xsd: docunent at i on>
</ xsd: annot ati on>

17-40

J2EE Connector Architecture Specification + November 2003

Schema Definition for the Deployment Descriptor for a Resource Adapter

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ Rk I S b R b S O R R O kI ->

<xsd: conpl exType nanme="required-config-propertyType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The required-config-propertyType contains a declaration
of a single configuration property used for specifying a
required configuration property nane. It is used

by required-config-property el enents.

Exanpl e:
<required-confi g-property>Destination</required-config-property>

11>
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement name="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement nane="confi g- property-nanme"
type="j 2ee: confi g- property-naneType"/>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ Rk Sk S R R R S ok I b O b R IR R S -->

<xsd: conpl exType nanme="resour ceadapt er Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The resour ceadapt er Type specifies informati on about the
resource adapter. The information includes fully qualified
resource adapter Java class name, configuration properties,
infornation specific to the inplenmentation of the resource
adapter library as specified through the

Chapter 17 Packaging Requirements

17-41

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

out bound-resour ceadapt er and i1 nbound-r esour ceadapt er
el ements, and an optional set of adm nistered objects.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el enent nanme="resour ceadapt er-cl ass"
type="j2ee: fully-qualified-classType"
m nCccur s="0">
<xsd: annot ati on>
<xsd: docunent ati on>

The el enent resourceadapter-class specifies the
fully qualified name of a Java class that inplenments
the javax.resource. spi . Resour ceAdapt er

interface. This Java class is provided as part of
resource adapter’s inplenentation of connector
architecture specified contracts. The inplenentation
of this class is required to be a JavaBean.

</ xsd: docunent at i on>
</ xsd: annot ati on>

</ xsd: el emrent >
<xsd: el enent nanme="confi g-property"
type="j 2ee: confi g- propertyType"
m nQccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nane="out bound-resour ceadapt er"”
type="j 2ee: out bound- r esour ceadapt er Type"
m nQccur s="0">
<xsd: uni que nanme="connecti onfactory-interface-uni queness">
<xsd: annot at i on>
<xsd: docunent ati on>

The connectionfactory-interface el ement content
nmust be unique in the outbound-resourceadapter.
Miul tipl e connection-definitions can not use the
same connectionfactory-type

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sel ector xpath="j 2ee: connecti on-definition"/>

<xsd:field xpat h="j 2ee: connectionfactory-interface"/>
</ xsd: uni que>
</ xsd: el enent >

17-42

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<xsd: el ement nane="i nbound-resour ceadapter™
type="j 2ee: i nbound- r esour ceadapt er Type"
m nQccur s="0"/>
<xsd: el ement name="adm nobj ect"
type="j 2ee: admi nobj ect Type"
m nCccur s="0"
maxQccur s=" unbounded"/ >
<xsd: el ement nanme="security-pern ssion"
type="j 2ee: security-perni ssionType"
m nQccur s="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ kkkhkkhkkkhkhkkhhkhhkhkhhkhhhkkhhhhhkdhkhdhkdrhkdhkhhhrdrhkdxdrhkdrhrxdx*x*x >

<xsd: conpl exType nane="security-perm ssi onType">
<xsd: annot ati on>
<xsd: docunent ati on>

The security-perm ssionType specifies a security
pernission that is required by the resource adapter code

The security permssion listed in the depl oynent descriptor
are ones that are different fromthose required by the
default perm ssion set as specified in the connector

speci fication. The optional description can mention specific
reason that resource adapter requires a given security

per m ssi on.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="descri ption”
type="j 2ee: descri pti onType"
m nQccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement name="security-perm ssion-spec"
type="j 2ee: xsdStri ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>

The el enent security-perm ssion-spec specifies a security
perm ssion based on the Security policy file
syntax. Refer to the following URL for Sun's

Chapter 17 Packaging Requirements

17-43

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

i mpl enentation of the security permission
speci fication

http://java. sun. coni product s/j dk/ 1. 4/ docs/ gui de/ security/ PolicyFiles. htm #File
Synt ax

</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:1D"'/>
</ xsd: conpl exType>

<|__ R S S S R S Sk S S S R S S S S S R I o S O S - >

<xsd: conpl exType nane="transacti on-support Type">
<xsd: annot ati on>
<xsd: docunent ati on>

The transacti on-support Type specifies the |evel of
transaction support provided by the resource adapter. It is

used by transaction-support elements.
The val ue nmust be one of the follow ng:

NoTr ansacti on
Local Transacti on
XATr ansacti on

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >

<xsd:restriction base="j2ee:string">
<xsd: enuneration val ue="NoTransacti on"/>
<xsd: enuneration val ue="Local Transaction"/>
<xsd: enunerati on val ue="XATransaction"/ >

</ xsd:restriction>
</ xsd: si npl eCont ent >

</ xsd: conpl exType>

</ xsd: schema>

17-44 J2EE Connector Architecture Specification + November 2003

CHAPTER 18

Runtime Environment

This chapter focuses on the Java portion of a resource adapter that executes within a
Java compatible runtime environment. A Java runtime environment is provided by
an application server and its containers.

The chapter specifies the Java APIs that a J2EE-compliant application server and its
containers must make available to a resource adapter at runtime. A portable resource
adapter can rely on these APIs to be available on all J2EE-compliant application
servers.

The chapter also specifies programming restrictions imposed on a resource adapter.
These restrictions enable an application server to enforce security and manage a
runtime environment with multiple configured resource adapters.

18.1

Programming APIs

A resource adapter provider relies on a J2EE compliant application server to provide
the following APIs:

= Java 2 SDK, Standard Edition, version 1.4 that includes the following as part of
either the core platform or standard extensions: JavalDL, JNDI Standard
Extension, and RMI-I1OP.

= Required APIs for Java 2 SDK, Enterprise Edition, version 1.4 as specified in the
J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4:” on page F-1), version 1.4.

= Java Authentication and Authorization Service (JAAS) 1.0 that requires at least
Java 2 SDK, Standard Edition, version 1.3 or the Java 2 Runtime Environment
version 1.3.

18-1

18.2 Security Permissions

An application server must provide a set of security permissions for executing a
resource adapter in a managed runtime environment. A resource adapter must be
granted explicit permissions to access system resources.

Since the exact set of required security permissions for a resource adapter depends
on the overall security policy for an operational environment and the
implementation requirements of a resource adapter, the connector architecture does
not define a fixed set of permissions.

18-2 J2EE Connector Architecture Specification « November 2003

The following permission set represents the default set of security permissions that a
resource adapter should expect from an application server. These security
permissions are described in detail in the Java 2 platform documentation. Refer to
http://java. sun. conl product s/ j dk/ 1. 4/ docs/ gui de/ security/ perm ssion

s.htnm.

TABLE 18-1 Default Security Permission Set

Security Permission

Default Policy

Notes

java.security.
Al | Per m ssi on

j ava. amt . AWrPer mi ssi on

java.io. Fil ePerm ssion

j ava. net . Net Per m ssi on

deny

deny *

grantr ead and
write <pathnane>

deny rest

deny *

Extreme care should be taken
before granting this permission
to a resource adapter. This
permission should only be
granted if the resource adapter
code is completely trusted and
when it is prohibitively
cumbersome to add necessary
permissions to the security
policy.

A resource adapter must not use
AWT code to interact with
display or input devices.

A

java.io. Fil ePerm ssion
represents access to a file or
directory. A Fi | ePer m ssi on
consists of a pathname and a set
of actions valid for that
pathname.

A resource adapter is granted
permission to read/write files as
specified by the pat hnane,
which is specific to a configured
operational environment.

It is important to consider the
implications of granting Wite
permission for <<ALL

FI LES>> because this grants the
resource adapter permissions to
write to the entire file system.
This can allow a malicious
resource adapter to mangle
system binaries for the JVM
environment.

Chapter 18 Runtime Environment 18-3

18-4

TABLE 18-1 Default Security Permission Set

Security Permission

Default Policy

Notes

java.util.
PropertyPerm ssi on

java.lang. refl ect. Refl
ect Per m ssi on

j ava. | ang.
Runt i nePer m ssi on

grant r ead

(allows
Syst em get Pr oper
ty to be called)

deny rest

deny *

deny *

Granting code permission to
access certain system properties
(j ava. hore) can potentially
give malevolent code sensitive
information about the system
environment, such as the Java
installation directory.

By default,

Runt i mePer m ssi on is
denied to the resource adapter
code.

A resource adapter should
explicitly request

LoadLi brary. {IibraryNam
e} to link a dynamic library. The
I i brar yNanme represents a
specific library.

A resource adapter that manages
threads must explicitly request
permission to nodi f yThr ead
through its deployment
descriptor.

A resource adapter should never
be granted exi t VMpermission
in a managed application server
environment.

J2EE Connector Architecture Specification « November 2003

TABLE 18-1 Default Security Permission Set

Security Permission Default Policy Notes

java.security. deny *
SecurityPerm ssion

j ava. net . grant connect * This represents permission to
Socket Per i ssi on access a network via sockets. A
Socket Per ni ssi on consists
of a host specification and a set of
actions specifying ways to
connect to that host.

A resource adapter is granted
permission to connect to any host
as indicated by the wildcard *.

A resource adapter may be
granted permission to accept
connections from other hosts via
a “grantaccept *”. This may
be necessary for resource
adapters that support inbound
communication.

deny rest

java.security. deny * This ensures that a resource
Seri al i zabl ePer m ssi on adapter cannot subclass
oj ect Qut put St r eamor
bj ect | nput St r eamto
override the default serialization
or deserialization of objects or to
substitute one object for another
during serialization or
deserialization.

18.3

Requirements

A resource adapter provider must ensure that resource adapter code does not
conflict with the default security permission set. By ensuring this, a resource adapter
can be deployed and run in any application server without execution or
manageability problems.

If a resource adapter needs security permissions other than those specified in the
default set, it must describe such requirements in the XML deployment descriptor
using the security- perm ssi on element.

Chapter 18 Runtime Environment 18-5

18.3.1

A deployment descriptor-based specification of an extended permission set for a
resource adapter allows the deployer to analyze the security implications of the
extended permission set and make a deployment decision accordingly. An
application server must be capable of deploying a resource adapter with the default
permission set.

Example

The resource adapter implementation creates a j ava. net . Socket and retrieves the
hostname using the get Host Name method in j ava. net . | net Addr ess.

TABLE 18-2 Methods and Security Permissions required

Method Security Manager Method Called Permission

j ava. net . Socket checkConnect({host}, {port}) java.net.SocketPermission
Socket (...) "{host}:{port}", "connect"
java. net. | net Addres checkConnect({host}, -1) java.net.SocketPermission
S "{host}", "resolve"

public String
get Host Nare()

The default Socket Per mi ssi on, as specified in Table 18-1, is grant connect and
deny rest. This means that if resource adapter uses the default permission set, the
first method Socket (...) will be allowed while the second method

| net Addr ess.get Host Nane is disallowed.

The resource adapter needs to explicitly request security permission for the

| net Addr ess.get Host Nane method in the securi ty- per m ssi on- spec element
of its XML deployment descriptor. The following is an example of allowing
additional security permissions:

<security-pernission-spec>
grant {
perni ssion java. net. Socket Perm ssion *, "resol ve";

b

</ security-permn ssi on-spec>

18-6 J2EE Connector Architecture Specification « November 2003

18.4

18.4.1

Privileged Code

A resource adapter runs in its own protection domain as identified by its code
source and security permission set. For the resource adapter to be allowed to
perform a secured action, such as writing a file, it must have been granted
permission for that particular action.

Resource adapter code is considered system code which may require more security
permissions than the calling application component code. For example, when an
application component calls a resource adapter method to execute a function call on
the underlying EIS instance, the resource adapter code may need more security
permissions than allowed to the calling component, such as the ability to create a
thread.

The Java 2 security architecture requires that whenever a system resource access or
any secured action is attempted, all code traversed by the current execution thread
up to that point must have the necessary permissions for the system resource access,
unless some code on the thread has been marked as privileged. Refer to
http://java. sun. conl product s/ j dk/ 1. 4/ docs/ gui de/ security/ doprivil eg
ed. htm .

To support such scenarios, the resource adapter code should use the pri vi | eged
code feature in the Java security architecture. This enables the resource adapter code
to temporarily perform more secured actions than are available directly to the
application code calling the resource adapter.

Example

A resource adapter from Wombat Inc. packaged in the wonbat . r ar file contains the
following permission specification:

<security-perm ssi on>
<security-pernmn ssion-spec>
grant {
perm ssion java.io. Fil ePerm ssion
"${user. hone}${file.separator}trace{file.separator}-",
"read, wite, del ete";
b
</ security-perm ssi on-spec>
</ security-perm ssi on>

Chapter 18 Runtime Environment 18-7

18-8

During resource adapter deployment, the application server processes this
security-permn ssion-spec and grants the necessary permissions to the
wonbat . r ar code base. This is an implementation-specific mechanism and not
prescribed by the specification. As an example, the application server may append
these permissions to the j ava. pol i cy file or some implementation-specific policy
file, and this may involve manual intervention.

/1 application code

Wonmbat Connect i onFactory wef =
(Wonbat Connect i onFact ory)
j ndi . | ookup("Wdnbat Connecti onFactory");
Wonbat Connecti on wc = wef. get Connection(..);
dowbrk(we); // calls into resource adapter code
/'l resource adapter inplenentation of Whnbat Connecti on

AccessControl |l er.doPrivil eged(new Privil egedAction() {
public Qoject run() {
/1 privileged code goes here, for exanple:
File file = File.createNewrile();
writeTracel nfoToFile(file);
return null; // nothing to return

}
1),

In addition to specifying these required permissions, the resource adapter must also
use doPri vi | eged blocks at strategic locations in its code to prevent the permission
checking from reaching the application code or the application server code. The
doPri vi | eged block allows the AccessControl | er to temporarily grant the
necessary permissions to the resource adapter code and to stop checking the rest of
the call stack. This allows the resource adapter code to be unaffected by the calling
application code’s security permission restrictions.

J2EE Connector Architecture Specification « November 2003

CHAPTER 19

Exceptions

This chapter specifies standard exceptions that identify error conditions which may
occur as part of the connector architecture.

The connector architecture defines two classes of exceptions:

= System Excepti ons—Indicate an unexpected error condition that occurs as
part of an invocation of a method defined in the system contracts. For example,
system exceptions are used to indicate transaction management-related errors. A
system exception is targeted for handling by an application server or resource
adapter, depending on who threw the exception, and may not be reported in its
original form directly to an application component.

= Application Exceptions—Thrown when an application component accesses
an EIS resource. For example, an application exception may indicate an error in
the execution of a function on a target EIS. These exceptions are meant to be
handled directly by an application component.

The connector architecture defines the j avax. r esour ce. Resour ceExcepti on
class as the root of the system exception hierarchy. The Resour ceExcept i on class
extends the j ava. | ang. Excepti on class and is a checked exception.

The j avax. resour ce. Resour ceExcepti on is also the root of the application
exception hierarchy for CCI. Application level exceptions are specified in more detail
in the APl documentation for CCI.

Note, an extended implementation of an exception type provided by a resource
adapter may override the get Local i zedMessage method to provide a localized
message.

19.1 ResourceException

A Resour ceExcept i on provides the following information:

19-1

= A resource adapter-specific string describing the error. This string is a standard
Java exception message and is available through the get Message method.

= A resource adapter-specific error code that identifies the error condition
represented by the Resour ceExcept i on.

= A reference to another exception. Often a Resour ceExcept i on results from a
lower-level problem. If appropriate, a lower-level exception, such as
java. | ang. Excepti on or any derived exception type, may be linked to a
Resour ceExcept i on instance.

19.2

19.2.1

System Exceptions

The connector architecture requires that methods, as part of a system contract
implementation, use the checked Resour ceExcept i on and other standard
exceptions derived from it to indicate system-level error conditions. Using checked
exceptions leads to a strict enforcement of the contract for throwing and catching
system exceptions and dealing with error conditions.

In addition, a method implementation may use j ava. | ang. Runti meExcepti on or
any derived exception to indicate runtime error conditions of varying severity levels.
Using unchecked exceptions to indicate important system-level error conditions is
not recommended for an implementation of system contracts.

If a method needs to indicate a serious error condition that it does not want the
caller to catch, the method should use j ava. | ang. Er r or to indicate such
conditions. A method is not required to declare in its throws clause any subclasses of
Er r or that may be thrown but not caught during the execution of the method, since
these errors are abnormal conditions that should never occur.

Exception Hierarchy

The Resour ceExcept i on represents a generic form of exception. A derived
exception represents a specific class of error conditions. This design enables the
method invocation code to catch a class of error conditions based on the exception
type and to handle error conditions appropriately.

The following exceptions are derived from Resour ceExcept i on to indicate more
specific classes of system error conditions:

= javax.resource.spi.SecurityException: A SecurityException indicates
error conditions related to the security contract between an application server and
resource adapter. The common error conditions represented by this exception are:

19-2 J2EE Connector Architecture Specification « November 2003

« Invalid security information, represented by a Subj ect instance, passed across
the security contract. For example, credentials may have expired or be in an
invalid format.

« Lack of support for a specific security mechanism in an EIS or resource
adapter.

« Failure to create a connection to an EIS because of failed authentication or
authorization.

« Failure to authenticate a resource principal to an EIS or failure to establish a
secure association with an underlying EIS instance.

« Access control exception indicating that a requested access to an EIS resource
or a request to create a new connection has been denied.

= javax.resource. spi.Local Transacti onExcepti on: A Local Transacti on-

Except i on represents various error conditions related to the local transaction

management contract. The JTA specification specifies the j avax. t ransacti on-

. xa. XAExcept i on class for exceptions related to an XAResour ce-based

transaction management contract. The Local Tr ansact i onExcepti on is used for

the local transaction management contract to indicate the following types of error
conditions:

« Invalid transaction context when a transaction operation is executed. For
example, calling the Local Transacti on. conm t method without an active
local transaction is an error condition.

« Transaction is rolled back instead of being committed in the
Local Transacti on. - conmi t method.

« Attempt to start a local transaction from the same thread on a
ManagedConnect i on instance that is already associated with an active local
transaction.

« All resource adapter or resource manager-specific error conditions related to
local transaction management. Examples are violation of integrity constraints,
deadlock detection, communication failure during transaction completion, or
any retry requirement.

= javax.resource. spi. Resour ceAdapt er | nt er nal Excepti on: This exception
indicates all system-level error conditions related to a resource adapter. The
common error conditions indicated by this exception type are:

« Invalid configuration of the ManagedConnect i onFact ory for creating a new
physical connection. An example is an invalid server name for a target EIS
instance.

« Failure to create a physical connection to a EIS instance due to a
communication protocol error or a resource adapter implementation-specific
error.

« Error conditions internal to a resource adapter implementation.

= javax.resource. spi. El SSyst enExcepti on: An El SSyst enExcepti on is
used to indicate any EIS-specific system-level error conditions. Examples of
common error conditions are failure or inactivity of an EIS instance,
communication failure, and an EIS-specific error during the creation of a physical
connection.

Chapter 19 Exceptions 19-3

19.3

j avax. resource. spi . Appli cati onServerl nt er nal Excepti on: This
exception is thrown by an application server to indicate error conditions specific
to an application server. Example error conditions are: errors related to an
application server configuration or implementation of mechanisms internal to an
application server, such as connection pooling and thread management.

j avax. resource. spi . Resour ceAl | ocati onExcepti on: This exception is
thrown by an application server or resource adapter to indicate a failure to
allocate system resources, such as threads and physical connections. An example
is an error condition that results when an upper bound is reached for the
maximum number of physical connections that can be managed by an application
server-specific connection pool.

j avax. resource. spi. ||l egal StateExcepti on: This exception is thrown
from a method if the invoked code, either the resource adapter or the application
server for system contracts, is in an illegal or inappropriate state for the method
invocation.

j avax. resour ce. Not Support edExcepti on: This exception is thrown to
indicate that invoked code, either the resource adapter or the application server
for system contracts, cannot execute an operation because the operation is not a
supported feature. For example, if the transaction support level for a resource
adapter is NoTr ansact i on, an invocation of the

ManagedConnect i on. get XAResour ce method throws a

Not Support edExcept i on exception.

j avax. resource. spi . CommExcept i on: This exception indicates errors related
to failed or interrupted communication with an EIS instance. Examples of
common error conditions represented by this exception type include
communication protocol errors and invalidated connections due to server failure.
j avax.resource. spi. | nval i dPropertyExcepti on: Thisexception is thrown
to indicate invalid configuration property settings.

j avax. resource. spi . Unavai | abl eExcepti on: This exception is thrown to
indicate that a service is unavailable.

Work Exceptions

These exceptions are thrown by an application server to report error conditions
related to the work management contract.

j avax. resour ce. spi . wor k. Wor kExcepti on: A common base class for all
Wor k processing related exceptions.

j avax. resource. spi . wor k. Wr kRej ect edExcepti on: This exception is
thrown to indicate that a submitted Wor k instance has been rejected. The rejection
may be due to internal factors or start timeout expiration.

j avax. resource. spi . wor k. Wor kConpl et edExcepti on: This exception is
thrown to indicate that a submitted Wor k instance has completed with an
exception.

19-4 J2EE Connector Architecture Specification « November 2003

19.4 Additional Exceptions

The JTA specification (Section 2., “Java Transaction APl (JTA) specification, version
1.0.1B” on page F-1) specifies the j avax. t ransact i on. xa. XAExcept i on class for
exceptions related to the XAResour ce-based transaction management contract.

Chapter 19 Exceptions 19-5

19-6 J2EE Connector Architecture Specification « November 2003

CHAPTER 20

Projected Items

The following are some of the features planned for future versions of this

specification:

= Security Inflow: This would allow an EIS to propagate a security context to the
application server to be used while accessing application components.

= Common Client Interface: The CCI may become required as part of a future
version of the connector architecture. The CCI may also be extended to include
support for XML, type mapping, and metadata facility.

20-1

20-2 J2EE Connector Architecture Specification « November 2003

APPENDIX A

Previous Version DTDs

This appendix contains Document Type Definitions (DTDs) for Deployment
Descriptors from previous versions of the J2EE Connector Architecture specification.
All J2EE products are required to support these DTDs as well as the XML Schema
Definition specified in this version of the specification. This ensures that resource
adapters written to previous versions of this specification can be deployed on
products supporting the current version of this specification.

Al

J2EE Connector Architecture 1.0
Resource Adapter XML DTD

This section specifies the XML DTD for the 1.0 resource adapter deployment
descriptor. The comments in the DTD specify additional requirements for syntax and
semantics that cannot be specified by the DTD mechanism.

A resource adapter, or an application server on behalf of a resource adapter, may
specify additional deployment information beyond the standard deployment
descriptor. The additional information should be stored in a separate file and should
refer to the standard deployment descriptor.

A resource adapter is not allowed to add any non-standard information into a
standard deployment descriptor.

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

<r--

This is the XM DID for the Connector 1.0 depl oynent descriptor.
Al'l Connector 1.0 depl oynent descriptors nust include a DOCTYPE of
the following form

A-1

A-2

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

<I'DOCTYPE connector PUBLIC'-//Sun M crosystens, Inc.//DID
Connector 1.0//EN' "http://java.sun.conidtd/ connector_1 0.dtd">

-->

<l--

The following conventions apply to all J2EE depl oynment descri ptor
el ements unl ess indicated otherw se.

- In elements that contai n PCDATA, |eading and trailing whitespace
in the data may be ignored.

- In el ements whose value is an "enunerated type", the value is
case sensitive.

- In elenments that specify a pathname to a file within the sane
JAR file, relative filenanes (i.e., those not starting with "/")
are considered relative to the root of the JARfile’ s nanespace.
Absol ute filenanes (i.e., those starting with "/") also specify
nanes in the root of the JAR file' s nanespace. In general,

relative
names are preferred. The exception is .war files where absol ute
names are preferred for consistency with the Servlet API.

-->

<l--

The connector elenent is the root element of the depl oynent
descri pt or

for the resource adapter. This el ement incl udes general information
- vendor

nane, version, specification version supported, icon - about the
resource adapter nodule. It also includes information specific to
t he

i mpl ement ati on of the resource adapter |ibrary as specified through
the el ement resourceadapter.

-->

<! ELEMENT connector (display-nane?, description?, icon?, vendor-
nane,

spec-version, eis-type, version, license?, resourceadapter>

<l--

The el emrent aut henti cati on-nmechani sm specifies an authentication

mechani sm

supported by the resource adapter. Note that this support is for

the resource adapter and not for the underlying EI'S instance. The

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

optional description specifies any resource adapter specific
requi rement
for the support of security contract and authentication mechani sm

Not e that Basi cPassword nechani smtype shoul d support the

j avax. resource. spi.security. PasswordCredential interface. The
Ker bv5

mechani sm type shoul d support the

j avax. resource. spi.security. Generi c-

Credential interface.

Used in: resourceadapter

-->

<! ELEMENT aut henti cati on-nmechani sm (

description?, authentication-mechani smtype, credential -
interface)>

<l--

The el ement aut henticati on-nmechani smtype specifies type of an
aut hentication

mechani sm

The exanpl e val ues are
<aut henti cati on- mechani smt ype>Basi cPassword
</ aut henti cati on- nechani smtype>
<aut henti cati on- nechani smt ype>Ker bv5
</ aut henti cati on- nechani smtype>

Any additional security mechani sns are outside the scope of the
Connector architecture specification

Used in: authentication-mechani sm
-->

<! ELEMENT aut henti cati on- nechani smtype (#PCDATA) >

<l--
The el ement config-property contains a declaration of a single
configuration property for a ManagedConnecti onFactory instance

Each ManagedConnecti onFactory instance creates connections to a
specific EI'S instance based on the properties configured on the
ManagedConnecti onFactory i nstance. The confi gurabl e properties are
specified only once in the deploynent descriptor, even though a
resource adapter can be used to configure nultiple
ManagedConnnect i on-

Factory instances (that create connections to different instances
of

Appendix A Previous Version DTDs A-3

A-4

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

the same EI'S)

The decl aration consists of an optional description, name, type
and an optional value of the configuration property. If the
resource

adapt er provi der does not specify a value than the depl oyer is
responsi ble for providing a valid value for a configuration
property.

Any bounds or wel | -defined val ues of properties shoul d be descri bed
in the description el enment.

Used in: resourceadapter

-->

<! ELEMENT confi g-property (description?, config-property-nane,
confi g-property-type, config-property-val ue?)>

<l--

The el ement confi g- property-nane contains the name of a
configuration

property.

The connector architecture defines a set of well-defined properties
all of type java.lang.String. These are as foll ows:
<confi g- property- nane>Ser ver Name</ confi g- pr oper t y- name>
<confi g- property-nanme>Port Nunber </ confi g- property-nane>
<confi g- property- name>User Nane</ confi g- pr operty- name>
<confi g- property- nane>Passwor d</ confi g- pr operty- name>
<confi g- property-name>Connect i onURL</ confi g- property- name>

A resource adapter provider can extend this property set to i nclude
properties specific to the resource adapter and its underlying EI S

Used in: config-property

Exanpl e: <confi g- property-nane>Ser ver Nane</ confi g- pr operty- nanme>
-->

<! ELEMENT confi g- property-name (#PCDATA) >

<l--

The el ement confi g-property-type contains the fully qualified Java
type of a configuration property as required by ManagedConnecti on-
Factory instance.

The following are the | egal values of config-property-type
java.l ang. Bool ean, java.lang.String, java.lang.!|nteger,
java.l ang. Doubl e, java.lang.Byte, java.lang. Short,

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

java.lang. Long, java.lang.Float, java.lang. Character
Used in: config-property

Exanpl e: <confi g-property-type>java. | ang. Stri ng</confi g-property-
type>

-->

<! ELEMENT confi g- property-type (#PCDATA) >

<l--

The el ement confi g-property-value contains the value of a
configuration

entry.

Used in: config-property

Exanpl e: <confi g- property-val ue>Wonbat Ser ver </ confi g- property-
val ue>

-->

<! ELEMENT confi g- property-val ue (#PCDATA) >

<l--

The el ement connection-inpl-class specifies the fully-qualified
nanme of the Connection class that inplenments resource adapter
speci fic Connection interface.

Used in: resourceadapter

Exanpl e: <connecti on-i npl - cl ass>com wonbat . Connect i onl np
</ connection-inpl - cl ass>

-->

<! ELEMENT connecti on-i npl - cl ass (#PCDATA) >

<l--

The el ement connection-interface specifies the fully-qualified
nane of the Connection interface supported by the resource
adapt er.

Used in: resourceadapter

Exanpl e: <connection-interface>j avax. resource. cci . Connecti on
</ connection-interface>

-->

<! ELEMENT connection-interface (#PCDATA)>

<l--

Appendix A Previous Version DTDs A-5

A-6

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

The el ement connectionfactory-inpl-class specifies the fully-
qualified

nane of the ConnectionFactory class that inplenents resource
adapt er

speci fic ConnectionFactory interface

Used in: resourceadapter

Exanpl e: <connecti onfactory-inpl -
cl ass>com wonbat . Connecti onFact oryl npl
</ connecti onfactory-inpl-cl ass>
-->
<! ELEMENT connecti onfactory-inpl -cl ass (#PCDATA) >

<l--

The el ement connectionfactory-interface specifies the fully-
qualified

name of the ConnectionFactory interface supported by the resource
adapt er.

Used in: resourceadapter

Exanpl e: <connecti onfactory-

i nterface>com wonbat . Connecti onFactory
</ connectionfactory-interface>

R

<connectionfactory-interface>j avax. resource. cci.Connecti onFactory
</ connectionfactory-interface>

-->

<! ELEMENT connecti onfactory-interface (#PCDATA)>

<I--

The el ement credential -interface specifies the interface that the
resource adapter inplenentation supports for the representation
of the credentials. This el ement should be used by application
server

to find out the Credential interface it should use as part of the
security contract.

The possi bl e val ues are:
<credenti al -
i nterface>j avax. resource. spi . security. PasswordCredenti al
</credential -interface>
<credenti al -
i nterface>j avax. resource. spi.security. GenericCredenti al
</credential -interface>

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

Used in: authentication-nechanism
-->

<! ELEMENT credenti al -i nterface (#PCDATA)>

<l--

The description elenent is used to provide text describing the
par ent

el ement. The description el enment should include any information
t hat

the conmponent file producer wants to provi de to the consuner of the
conponent file (i.e., to the Deployer). Typically, the tools used
by

the conponent file consuner will display the description when
processing the parent elenent that contains the description.

Used in: authentication-mechanism config-property, connector,
| i cense,

security-perm ssion

-->

<! ELEMENT descri ption (#PCDATA) >

<l--

The di spl ay- nanme el enent contains a short nane that is intended to
be

di spl ayed by tools. The display nane need not be unique.

Used i n: connector
Exanpl e:

<di spl ay- nane>Enpl oyee Sel f Servi ce</di spl ay- nane>
-->
<! ELEMENT di spl ay- nane (#PCDATA) >

<l--

The el ement eis-type contains information about the type of the
El S. For exanple, the type of an EI'S can be product nanme of EIS
i ndependent of any version info.

This helps in identifying EIS instances that can be used with
this resource adapter.

Used i n: connector
-->

<! ELEMENT ei s-type (#PCDATA) >

<l--

Appendix A Previous Version DTDs A-7

A-8

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

The icon elenent contains a small icon and Targe icon el enent
whi ch specify the URIs for a snall and a large G F or JPEG icon
imge to represent the application in GU.

Used in: connector
-->
<! ELEMENT icon (small-icon?, |large-icon?)>

<l--

The | arge-icon el enent contains the name of a file containing a

| arge

(32 x 32) icon image. The file name is a relative path within the
conmponent’s jar file.

The image may be either in the JPEG or A F fornat.
The icon can be used by tools.

Used in: icon
Exanpl e:

<l ar ge-i con>enpl oyee-servi ce-i con32x32. j pg</| arge-i con>
-->
<! ELEMENT | ar ge-i con (#PCDATA) >

<l--

The el ement |icense specifies licensing requirenents for the
resource

adapter nmodul e. This el enment specifies whether a license is
required

to deploy and use this resource adapter, and an optional
description

of the licensing terns (exanples: duration of |icense, nunber of
connection restrictions).

Used in: connector
-
<! ELEMENT |icense (description?, |icense-required)>

<l--

The el erment |icense-required specifies whether a license is
required

to depl oy and use the resource adapter. This el ement nust be one of
the foll ow ng:

<l icense-requi red>true</license-required>

<l i cense-requi red>fal se</|icense-required>

J2EE Connector Architecture Specification « November 2003

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

Used in: license
-->
<! ELEMENT | i cense-required (#PCDATA)>

<l--
The el ement managedconnecti onfactory-class specifies the fully
qualified

nane of the Java class that inplenents the

j avax. resource. spi . Managed-

Connecti onFactory interface. This Java class is provided as part of
resource adapter’s inplenentation of connector architecture
speci fi ed

contracts.

Used in: resourceadapter

Exanpl e:
<managedconnecti onf actory-
cl ass>com wonbat . ManagedConnect i onFact or yl npl
</ managedconnect i onf act ory-cl ass>
-->
<! ELEMENT managedconnecti onf act ory-cl ass (#PCDATA) >

<l--

The el ement reaut hentication-support specifies whether the
resource

adapter inplenentation supports re-authentication of existing
Managed-

Connection instance. Note that this informationis for the resource
adapter inplenentation and not for the underlying EI'S instance.

Thi s el enent nmust be one of the follow ng:
<r eaut henti cati on- support >t rue</reaut henti cati on-support>
<reaut henti cati on- support >f al se</reaut henti cati on- support>
Used in: resourceadapter
-->
<! ELEMENT reaut henti cati on- support (#PCDATA) >

<l--

The el ement resourceadapter specifies information about the
resource

adapter. The information includes fully-qualified nanes of
class/interfaces required as part of the connector architecture
specified contracts, |evel of transaction support provided
configurabl e properties for ManagedConnectionFactory instances
one or nore authentication nechani sms supported and additi onal

Appendix A Previous Version DTDs A-9

A-10

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

required security perm ssions.

If there is no authentication-nmechani smspecified as part of
resource adapter elenent then the resource adapter does not
support any standard security authentication nechani snms as part
of security contract. The application server ignores the security
part of the systemcontracts in this case.

Used in: connector
-->

<! ELEMENT resour ceadapter (

managedconnecti onf act ory-cl ass, connectionfactory-interface,
connecti onfactory-inpl-class, connection-interface,
connection-inpl-class, transaction-support, config-property*,
aut henti cati on- mechani snt, reauthentication-support, security-
per m ssi on*

)>

<l--

The el ement security pernission specifies a security pernission
t hat

is required by the resource adapter code.

The security permission listed in the depl oynent descriptor are
ones

that are different fromthose required by the default perm ssion
set

as specified in the connector specification. The optional
description

can nention specific reason that resource adapter requires a given
security pernmnission.

Used in: resourceadapter

-->

<! ELEMENT security-perm ssion (description?, security-pernission-
spec) >

<l--

The el ement perm ssion-spec specifies a security perni ssion based
on the Security policy file syntax. Refer the followi ng URL for
Sun’s inmplenmentation of security perm ssion specification:

http://java. sun. coni products/jdk/ 1. 3/ docs/ gui de/ security/ PolicyFi
| es. ht m #Fi | eSynt ax

Used in: security-perm ssion

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

-->
<! ELEMENT security-perm ssion-spec (#PCDATA) >

<l--

The smal | -icon el ement contains the name of a file containing a
smal

(16 x 16) icon image. The file name is a relative path within t
conponent’s jar file.

The inmage may be either in the JPEG or G F format.
The icon can be used by tools.

Used in: icon
Exanpl e:

<smal | -i con>enpl oyee-servi ce-i conl6x16.j pg</snall-icon>
-->
<! ELEMENT snal | -i con (#PCDATA) >

<l--

The el ement spec-version specifies the version of the connector
architecture specification that is supported by this resource
adapter. This information enabl es depl oyer to configure the
resource

adapter to support deploynent and runtinme requi renents of the
correspondi ng connector architecture specification

Used in: connector

Exanpl e:
<spec-versi on>1. 0</ spec-versi on>

-->

<! ELEMENT spec-version (#PCDATA) >

he

<l--
The transaction-support el enent specifies the | evel of transaction
support provi ded by the resource adapter
The val ue of transaction-support nust be one of the follow ng:
<transacti on-support>NoTransacti on</transacti on- support >
<transacti on-support>Local Transacti on</transacti on-support>
<transacti on- support >XATr ansacti on</transacti on- support >
Used in: resourceadapter
-->
<! ELEMENT transaction-support (#PCDATA) >
Appendix A Previous Version DTDs A-11

A-12

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

<l--

The el ement vendor-nane specifies the nane of resource adapter
provi der

vendor .

Used in: connector

Exanpl e:

<vendor - name>Wnbat Cor p. </ vendor - nanme>
-->
<! ELEMENT vendor - nane (#PCDATA) >

<l--
The el ement version specifies a string-based version of the
resource adapter fromthe resource adapter provider.

Used in: connector

Exanpl e:
<ver si on>1. 0</ ver si on>
-->
<! ELEMENT ver si on (#PCDATA) >

<l--

The ID mechanismis to allow tools that produce additional
depl oynent

information (i.e., information beyond the standard depl oynent

descriptor information) to store the non-standard information in a
separate file, and easily refer fromthese tool -specific files to
t he

information in the standard depl oynent descriptor.

Tools are not allowed to add the non-standard infornmation into the
st andard depl oyment descriptor.
-2

<! ATTLI ST aut henti cati on-mechanismid |ID #l MPLI ED>

<! ATTLI ST aut henti cati on-nechanismtype id | D #l MPLI ED>
<! ATTLI ST confi g-property id | D # MPLI ED>

<! ATTLI ST confi g-property-nanme id | D #l MPLI ED>

<I ATTLI ST confi g-property-type id | D #l MPLI ED>

<I ATTLI ST confi g-property-value id |ID # MPLI ED>

<! ATTLI ST connection-inpl-class id |ID #l MPLI ED>

<! ATTLI ST connection-interface id | D #l MPLI ED>

<! ATTLI ST connectionfactory-inpl-class id | D #l MPLI ED>
<! ATTLI ST connectionfactory-interface id |ID #l MPLI ED>
<I ATTLI ST connector id |ID #l MPLI ED>

J2EE Connector Architecture Specification + November 2003

CODE EXAMPLE A-1

Connector Architecture 1.0 Resource Adapter DTD

< ATTLI ST
<! ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<! ATTLI ST
<! ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<! ATTLI ST
<! ATTLI ST
<I ATTLI ST
<I ATTLI ST
<! ATTLI ST
< ATTLI ST

credential-interface id I D # MPLI ED>
description id I D #l MPLI ED>

di spl ay-name id | D # MPLI ED>

eis-type id | D #l MPLI ED>

icon id I D # MPLI ED>

| arge-icon id | D # MPLI ED>

license id I D # MPLI ED>

license-required id | D #l WPLI ED>
managedconnecti onfactory-class id | D # MPLI ED>
reaut henti cation-support id | D #l MPLI ED>
resourceadapter id | D #l MPLI ED>
security-permssion id | D #l MPLI ED>
security-permnssion-spec id | D # MPLI ED>
smal |l -icon id | D #l MPLI ED>

spec-version id | D # MPLI ED>

transacti on-support id I D #l MPLI ED>
vendor-name id | D #l MPLI ED>

version id I D #l MPLI ED>

Appendix A Previous Version DTDs

A-13

A-14 J2EE Connector Architecture Specification * November 2003

APPENDIX B

Activation Configuration for
Message Inflow to JMS Endpoints

B.1

Introduction

The following conventions are recommended to support message inflow to a JMS
endpoint, a message-driven bean application, using a Connector API- based JMS
resource adapter. The following describes the Act i vat i onSpec JavaBean used by a
JMS resource adapter, the mapping of an endpoint’s activation configuration
elements, specified in the endpoint deployment descriptor, to the Acti vati onSpec
JavaBean properties, and how to map earlier versions of the endpoint’s deployment
descriptor information to the Acti vat i onSpec JavaBean properties. The JMS

Acti vat i onSpec JavaBean properties should be standardized by the IMS
community.

B.2

JMS ActivationSpec JavaBean

The Acti vati onSpec JavaBean is used by the endpoint deployer to provide
configuration information when an endpoint is deployed and activated. JMS
providers are strongly encouraged to include the following elements in their
Act i vat i onSpec JavaBean implementation.

The recommended properties for JMS Acti vat i onSpec JavaBean are: destination
(required), destinationType (required), messageSelector, acknowledgeMode,
subscriptionDurability, clientld, subscriptionName.

B-1

B.2.1

B.2.1.1

B.2.1.2

The Acti vati onSpec JavaBean may contain more properties than the
recommended set, so that an endpoint deployer may configure additional properties
during endpoint deployment.

JMS ActivationSpec JavaBean Properties

The following is a description of the recommended set of JMS Acti vati onSpec
JavaBean properties:

destination

In general, a destination is a logical link between a message producer and a
consumer. A message producer produces messages addressed to a destination, and a
message consumer consumes messages from a chosen destination.

A destination could be represented by a JMS provider in different ways. For
example, it could be encapsulated as textual data (this may be specified by endpoint
developer or assembler in the endpoint deployment descriptor) or as a private object
available only at deployment time. Hence, it may not always be specified in an
endpoint deployment descriptor (since deployment descriptor entries contain textual
data only).

However, during endpoint deployment JMS Act i vat i onSpec JavaBean requires a
value for the destination property. While configuring the JMS Acti vati onSpec
JavaBean, the endpoint deployer must provide a value for this property (if it is not
already present in the endpoint deployment descriptor).

It is recommended that destination be specified by a JMS resource adapter provider
as a property on the Act i vat i onSpec JavaBean that requires a value. This can be
specified in the JMS resource adapter deployment descriptor.

The dest i nati on property value may also be an object that implements the
javax. j ms. Desti nati on interface. In such a case, the resource adapter should
provide an administered object that implements the j avax. j ms. Desti nati on
interface.

destinationType

The destinationType identifies whether the specified destination is a JMS Queue or JIMS
Topic. The valid values are j avax. j ms. Queue or j avax. j ns. Topi cC.

B-2 J2EE Connector Architecture Specification « November 2003

B.2.1.3

B.2.1.4

B.2.1.5

This property requires a value to be specified. The endpoint deployer must provide
a value for this property (if it is not already present in the endpoint deployment
descriptor). It is recommended that destinationType be specified by a JMS resource
adapter provider as a property on the Act i vat i onSpec JavaBean that requires a
value. This can be specified in the JMS resource adapter deployment descriptor.

messageSelector

The value for a messageSelector property is a string which is used to select a subset of
the available messages. Its syntax is based on a subset of the SQL 92 conditional
expression syntax and is described in detail in JMS specification (Section 11., “Java
Message Service, version 1.1:” on page F-1). Specifying a value for the messageSelector
property on the Acti vati onSpec JavaBean is optional.

acknowledgeMode

The acknowledgeMode indicates how a message received by an endpoint (message-
driven bean) should be acknowledged. The EJB specification (Section 1., “Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) describes the restrictions
for message acknowledgements under different transactional modes. The valid
values are Aut o- acknow edge or Dups- ok- acknow edge.

Specifying a value for the acknowledgeMode property on the Acti vati onSpec
JavaBean is optional. If no value is specified, Aut o- acknowl edge is assumed.

subscriptionDurability

This property applies only to endpoints (message-driven beans) that receive
messages published to a JIMS Topi c. It indicates whether messages should be
retained by the message provider while the endpoint (message-driven bean) is not
available, and subsequently delivered when the endpoint becomes available.

The valid values are Dur abl e or NonDur abl e. If the value is set to Dur abl e,
messages will be retained and redelivered by the provider. If the value is set to
NonDur abl e, messages will be not retained or redelivered by the provider.

Specifying a value for the subscriptionDurability property on the Acti vati onSpec
JavaBean is optional. If no value is specified, NonDur abl e is assumed.

Appendix B Activation Configuration for Message Inflow to JMS Endpoints B-3

B.2.1.6

B.2.1.7

B.2.2

clientld

The value specified for a clientld property is a unique identifier that identifies a client
(message consumer) within the context of a specific message provider. This is used
by the message provider for durable subscriptions, in order to uniquely identify a
client consumer and redeliver persisted messages upon client availability.

It is the responsibility of the endpoint deployer to specify a unique client identifier
in the JIMS Acti vat i onSpec JavaBean for durable JMS Topic subscriptions, that
uniquely identifies a client consumer within the context of a message provider.

Specifying a value for the clientld property on the Acti vati onSpec JavaBean is
required for durable JMS Topic subscriptions.

subscriptionName

This applies only to endpoints (message-driven beans) that durably subscribe to a
JMS Topic. The value for the subscriptionName property is a string that is combined
with the client identifier to uniquely identify the message consumer within the
context of a message provider.

It is the responsibility of the endpoint deployer to specify a subscription name in the
JMS Act i vat i onSpec JavaBean for durable JMS Topic subscriptions.

Specifying a value for the subscriptionName property on the Acti vati onSpec
JavaBean is required for durable JMS Topic subscriptions.

JMS ActivationSpec JavaBean Property Values

The following is a recommended set of acceptable values for the various IMS
Act i vat i onSpec properties.

TABLEB-1 JMS Acti vati onSpec JavaBean Property Values

JMS ActivationSpec property name JMS ActivationSpec property values
destinationType javax.jms.Queue or javax.jms.Topic
acknowledgeMode Auto-acknowledge (default) or Dups-ok-

acknowledge

subscriptionDurability NonDurable (default) or Durable

B-4 J2EE Connector Architecture Specification « November 2003

B.3

JMS Endpoint with EJB 2.1 Activation
Configuration Elements

EJB 2.1 specification (Section 1., “Enterprise JavaBeans (EJBTM) specification, version
2.1:” on page F-1) allows a JMS endpoint developer or assembler to specify
activation configuration elements in the endpoint deployment descriptor.

The following is a recommended set of endpoint activation configuration elements
in the endpoint deployment descriptor (EJB 2.1 style) for endpoints which
implement the j avax. j ns. Messageli st ener. Further, the mapping between each
recommended JMS endpoint activation configuration element to a corresponding
JMS Act i vat i onSpec JavaBean property is described.

TABLEB-2 Activation Configuration Elements (EJB 2.1) and ActivationSpec JavaBean
Properties

Activation configuration elements in
endpoint deployment descriptor (EJB 2.1

style) JMS ActivationSpec properties
destination destination (required)
destinationType destinationType (required)
messageSelector messageSelector
acknowledgeMode acknowledgeMode
subscriptionDurability subscriptionDurability
clientld clientld

subscriptionName subscriptionName

Note the one-to-one correspondence between the endpoint activation configuration
elements and the JMS Act i vat i onSpec JavaBean property names. This allows
automatic merging of the activation configuration element values with the
corresponding entries in the JMS Act i vat i onSpec JavaBean, while configuring the
JMS Act i vat i onSpec JavaBean during endpoint deployment.

The JMS Act i vat i onSpec JavaBean may contain more properties than the above
recommended set, that an endpoint deployer may configure during endpoint
deployment.

Appendix B Activation Configuration for Message Inflow to JMS Endpoints B-5

B.4

JMS Endpoint with EJB 2.0 Deployment
Descriptor Elements

The EJB 2.0 specification provides endpoint deployment descriptor elements which
allows a JMS endpoint developer or assembler to specify JMS specific configuration
information in the endpoint deployment descriptor. These elements are contained in
the message- dri ven element as specified in the EJB 2.0 specification.

The following is a recommended mapping between relevant EJB 2.0 endpoint
deployment descriptor elements and JMS Act i vat i onSpec JavaBean properties.

TABLEB-3 EJB 2.0 Deployment Descriptor Elements and JMS Act i vati onSpec
JavaBean Properties

EJB 2.0 deployment descriptor elements JMS ActivationSpec properties
destination-type destinationType
message-selector messageSelector
acknowledge-mode acknowledgeMode
subscription-durability subscriptionDurability

B-6 J2EE Connector Architecture Specification « November 2003

APPENDIX C

Caching Manager

The following section describes how the connector architecture supports caching.

This section serves as a brief introduction to the caching support in the connector
architecture. A future version of the connector architecture will address this issue in
detail.

Cl

Overview

The connector architecture provides a standard way of extending an application
manager for plugging in caching managers. A caching manager may be provided by
a third party vendor or a resource adapter provider.

A caching manager manages cached state for application components while they
access EISs across transactions.

A caching manager is provided above a resource adapter. An application component
may access a resource manager either through a caching manager (thereby
maintaining a cached state across application requests) or directly through the
resource adapter with no caching involved.

The XAResour ce based transaction management contract enables an external
transaction manager to control and coordinate transactions across multiple resource
managers. A caching manager (provided above the resource adapter) needs to be
synchronized relative to the transaction coordination flow (defined by the JTA
XAResour ce interface) on the underlying resource manager. This leads to a
requirement for a synchronization contract between the application server and
caching manager.

The connector architecture defines a standard synchronization contract between the
application server and caching manager. The caching manager uses the
synchronization notifications to manage its cached state and to flush it to the

C-1

resource adapter. The resource adapter then takes the responsibility of managing its

recoverable units of work and participates in the transaction coordination protocol

from the transaction manager.

FIGURE C-1 Synchronization Contract between Caching Manager and Application Server
Synchronization Contract

. Caching
Application Server Manage

—>
Application
Contract

Resource Adapter

Transaction Management
System Contract

Transaction Manager

Enterprise Information
System

The above diagram shows a caching manager layered above a resource adapter. The
contract between caching manager and resource adapter is specific to a resource
adapter.

C.2 Synchronization contract

Note — To support a caching manager as a standard extension to the application
server, additional contracts between the application server and the caching manager
are required. This version of the specification introduces only the synchronization
contract.

This section specifies the synchronization contract between the application server
and the caching manager.

C-2 J2EE Connector Architecture Specification « November 2003

C.z21

C.22

Interface

Each caching manager implements the j avax. t ransacti on. Synchroni zati on
interface. A caching manager registers its Synchr oni zat i on instance with the
application server when it is configured with the application server.

The caching manager receives synchronization notifications only for transactions
managed by an external transaction manager. In the case of transactions managed
internally by a resource manager, the resource adapter and caching manager define
their own implementation-specific mechanisms for synchronizing caches.

The Synchroni zat i on. bef or eConpl eti on method is called prior to the start of
the two-phase commit transaction completion process. This call executes in the same
transaction context of the caller who initiated the transaction completion. The
caching manager uses this notification to flush its cached state to the resource
adapter.

The Synchroni zati on. af t er Conpl et i on method is called after the transaction
has completed. The status of transaction completion is passed in as a parameter. The
caching manager uses this notification to do any cache cleanups if a rollback has
occurred.

Implementation

The caching manager must support the j avax. t ransacti on. Synchroni zati on
interface. If the caching manager implements the Synchr oni zat i on interface and
registers it with the application server, then the application server must invoke the
bef or eConpl eti on and af t er Conpl et i on notifications.

The application server is responsible for ensuring that synchronization notifications
are delivered first to the application components (that have expressed interest in
receiving synchronization notification through their respective application
component and container-specific mechanisms) and then to the caching managers
that implement the Synchr oni zat i on interface.

Appendix C Caching Manager C-3

C-4 J2EE Connector Architecture Specification « November 2003

APPENDIX D

Security Scenarios

The following section describes various scenarios for EIS integration. These
scenarios focus on security aspects of the connector architecture.

Note that these scenarios establish the requirements to be addressed by the
connector architecture. Chapter 8, “Security Architecture” and Chapter 9, “Security
Contract” specify the requirements that are supported in this version of the
specification.

A J2EE application is a multi-tier, web-enabled application that accesses EISs. It
consists of one or more application components—EJBs, JSPs, servlets—which are
deployed on containers. These containers can be one of the following:

= Web containers that host JSP, servlets, and static HTML pages
= EJB containers that host EJB components
= Application client containers that host standalone application clients

In the following scenarios, the description of the architecture and security
environments are illustrative in scope.

D.1

EStore Application

Company A has an eStore application based on the J2EE platform. The eStore
application is composed of EJBs and JSP/servlets; together they collaborate to
provide the overall functionality of the application. The application also utilizes an
eStore database to store data related to product catalog;, shopping carts; customer
registration and profiles; transaction status and records; and order status.

D-1

The architecture of this application is illustrated in the following diagram:

FIGURE D-1 lllustrative Architecture of an Estore Application

/ Company A \

eStore Database

JSP/Servlet EJB

O © >
Estore Application j L_/

Application Server

Web Browser

Internet

Application Security Domain EIS Security Domain

- J

D.1.1 Scenario

A customer, using a web browser, initiates an e-commerce transaction with the
eStore application. The e-commerce transaction consists of a series of customer
actions. The customer:

= Browses the catalog

= Makes a selection of products

= Puts the selected products into a shopping cart

= Enters her user name and password to initiate a secure transaction
= Fills in order-related information

= And, finally, places an order

In this scenario, the eStore application stores all persistent information about
customers and their transactions in a database.

D.1.2 Security Environment

D-2

To support the above interaction scenario, the system administrator configures a
unique security domain (with specific security technology and security policies) for
the eStore application. A firewall protects this security domain from unauthorized
Internet access.

J2EE Connector Architecture Specification « November 2003

D.1.3

The security domain configuration for the eStore application includes secure web
access to the eStore application. Secure web access is set up based on the
requirements specified in the J2EE specification. Note that the focus of this section is
security related to EIS integration, not on web access security. As a result, this
description ignores web access security.

The system administrator sets up a database to manage persistent data for the eStore
application. In terms of security, the database system is configured with an
independent security domain. This domain has its own set of user accounts, plus its
own security policies and mechanisms for authentication and authorization.

The system administrator (or database administrator DBA) creates a unique database
account (called ESt or eUser) to handle database transactions; the database
transactions correspond to different customer-driven interactions with the eStore
application. He also sets up an additional database account (called

ESt or eAdmi ni st r at or) to manage the database on behalf of the eStore
administrator. This administrative account has a higher level of access privileges.

To facilitate better scaling of the eStore application, the system administrator may
choose to set the load balancing of database operations across multiple databases.
He may also partition persistent data and transactions across multiple database
accounts, based on various performance optimization criteria. These areas are out of
the scope for this document.

This scenario deals only with the simple case of a single database and a single user
account to handle all database transactions.

Deployment

Note — This document does not address how principal delegation happens between
the web and EJB containers. When an EJB instance acquires an EIS connection, a
caller principal is associated with the EJB instance. This document does not address
determining which caller principal is associated with the EJB instance.

During the deployment of the eStore application, the deployer sets up access control
for all authenticated customer accounts—the customer accounts that are driving e-
commerce transactions over the web—based on a single role eSt or eUser Rol e.

The deployer configures the resource adapter with the security information that is
required for the creation of database connections. This security information is the
database account ESt or eUser and its password.

Appendix D Security Scenarios D-3

The deployer sets up the resource principal for accessing the database system as
illustrated in the FIGURE D-2:

FIGURE D-2 Resource Principal for Estore Application Scenario

ESt or eUser

|jnitiating Principal: Cust omer]M [?esource Principal: Dat abase Accoun:t|

Application Security domain EIS Security domain

The deployment configuration ensures that all database access is always performed
under the security context of the database account ESt or eUser.

All authenticated customers (referred toas I nitiating Principal)maptoa
single ESt or eUser database account. The eStore application uses an
implementation-specific mechanism to tie database transactions (performed under a
single database account) to the unique identity (social security number or eStore
account ID) of the initiating principal. To ensure that database access has been
properly authorized, the eStore application also performs access control based on the
role of the initiating principal. Because all initiating principals map to a single role,
this is in effect a simple case.

This scenario describes an n-to-1 mapping. However, depending on the requirements
of an application, the deployer can set the principal mapping to be different from an
n-to-1 mapping. For example, the deployer can map each role to a single resource
principal, where a role corresponds to an initiating principal. This results in a [m
principals and n roles] to [p resource principals] mapping. When doing such
principal mapping, the deployer has to ensure not to compromise the access rights of
the mapped principals. An illustrative example is:

= User is in administrator role: Principal El Sadmi n
= User is in manager role: Principal El Smanager
= User is in employee role: Principal El Senpl oyee

D.2

Employee Self Service Application

Company B has developed and deployed an employee self-service (ESS) application
based on the J2EE platform. This application supports a web interface to the existing
Human Resources (HR) applications, which are supported by the ERP system from
Vendor X. The ESS application also provides additional business processes
customized to the needs of Company B.

D-4 J2EE Connector Architecture Specification « November 2003

D.2.1

D.2.2

The application tier is composed of EJBs and JSPs that provide the customization of
the business processes and support a company-standardized web interface. The ESS
application enables an employee (under the roles of Manager, HR manager, and
Employee) to perform various HR functions, including personal information
management, payroll management, compensation management, benefits
administration, travel management, and HR cost planning.

Architecture

The IS department of Company B has deployed its HR ESS application and ERP
system in a secure environment on a single physical location. Any access to the HR
application is permitted Only legal employees of the organization are permitted
access to the HR application. Access is based on the employee’s roles and access
privileges. In addition, access to the application can only be from within the
organization-wide intranet. See FIGURE D-3.

Security Environment

To support the various interaction scenarios related to the ESS application, the
system administrator sets up an end-to-end Kerberos-based security domain for this
application environment.

Note — The Security policies and mechanisms that are required to achieve this single
security domain are technology dependent. Refer to Kerberos V5 specification for
more details.

The system administrator configures the security environment to support single
sign-on; the user logs on only once and can then access all the services provided by
the ESS application and its underlying ERP system. Single sign-on is achieved
through the security mechanism and policies specific to the underlying security
technology, which in this case is Kerberos.

Appendix D Security Scenarios D-5

D.2.3

The ERP system administrator configures all legal employees as valid user accounts
in the ERP system. He also must set up various roles (Manager, HRManager, and
Employee), default passwords, and access privileges. This security information is
kept synchronized with the enterprise-wide directory service, which is used by
Kerberos to perform the initial authentication of end-users.

FIGURE D-3 lllustrative Architecture of an Employee Self-service Application
Company B

Web-enabled Application HR Applications

JSP/Servlet EJB

HTTP/S > (() (()> ;L_/

Web Browser Application Server ERP System X

Kerberos based Integrated Security Domain

Deployment

During deployment of the ESS application, the deployer sets a default delegation
policy of client impersonation for EIS sign-on. In this case, the application server and
ERP system know that it is the initiating principal accessing their respective services
and they perform access control based on this knowledge. See FIGURE D-4.

FIGURE D-4 Principal Mapping

|jnitiating Principal = Resource Principal:|

Application Security domain ERP System Security domain

In this scenario, both the initiating principal and the resource principal refer to the
same principal. This common principal is authenticated using Kerberos and its
Kerberos credentials are valid in the security domains of both the application and
the ERP system.

The deployer sets up access control for all authenticated employees (initiating
principal) based on the configured roles—Manager, HR Manager, and Employee.

D-6 J2EE Connector Architecture Specification « November 2003

D.2.4

If the ERP system does not support Kerberos, then an alternate scenario is utilized.
The deployer or application server administrator sets up an automatic mapping of
Kerberos credentials (for the initiating principal) to valid credentials (for the same
principal) in the security domain of the ERP system. Note that when the ERP system
does support Kerberos, the application server performs no credentials mapping.

Scenario

An employee initiates an initial login to his client desktop. He enters his username
and password. As part of this initial login, the employee (called initiating principal
C) gets authenticated with Kerberos KDC. [Refer to the details for Kerberos KDC
authentication in the Kerberos v5 specification.]

After a successful login, the employee starts using his desktop environment. He
directs his web browser to the URL for the ESS application deployed on the
application server. At this point, the initiating principal C authenticates itself to the
application server and establishes a session key with the application server.

The ESS application is set up to impersonate initiating principal C when accessing
the ERP system, which is running on another server. Though the application server
directly connects to the ERP system, access to the ERP system is requested on behalf
of the initiating principal. For this to work, principal C needs to delegate its identity
and Kerberos credential to the application server and allow the application server to
make requests to the ERP system on C’s behalf.

D.3

D.3.1

Integrated Purchasing Application

Company C has an integrated purchasing application that enables an employee to
use a web-based interface to perform multiple purchasing transactions. An employee
can manage the entire procurement process, from creating a purchase requisition
through invoice approval. The purchasing application also integrates with the
enterprise’s existing financial applications so that the accounting and financial
aspects of the procurement business processes can be tracked.

Architecture

FIGURE D-5 illustrates an architecture for this purchasing application. The application
has been developed and deployed based on the J2EE platform and is composed of
EJBs and JSPs. The EJB components provide the integration across the different
applications—the logistics application from a separate vendor (this application

Appendix D Security Scenarios D-7

provides integrated purchasing and inventory management functions) and the
financial accounting applications (the applications supported by the legacy system
from vendor Y).

Company B is a huge decentralized enterprise; its business units and departments
are geographically distributed. In this scenario, different IS departments manage
ERP system X and legacy system Y. In addition, ERP system X and legacy system Y
have been deployed at secured data centers in different geographic locations. Lastly,
the integrated purchasing application has been deployed at a geographic location
different from both ERP system X and legacy system Y.

FIGURE D-5 lllustrative Architecture of an Integrated Purchasing Application

/ Company C \

Logistics Application

.

@P/Servlet EJB \

HTTP/S @D @)
Purchase Requisition
Integrated Applicatioy

ERP System X

Web Browser

Financial Application
Application Server

Application Security Domain

Legacy System Y
NS /

0

D.3.2 Security Environment

ERP system X and legacy system Y are also in different security domains; they use
different security technologies and have their own specific security policies and
mechanisms. The integrated purchasing application is deployed in a security domain
that is different from both that of ERP system X and legacy system Y.

To support the various interaction scenarios for this integrated purchasing
application, the ERP system administrator creates a unique account

Logi sti csAppUser in the ERP system. He sets up the password and specific access
rights for this account. This user account is allowed access only to the logistics
business processes that are used by the integrated purchasing application.

D-8 J2EE Connector Architecture Specification « November 2003

D.3.3

Likewise, the system administrator for the legacy system creates a unique account
Fi nanci al AppUser. He also sets up the password and specific access rights for this
account.

The application server administrator, as part of the operational environment of the
application server, configures the access to an organization-wide directory. This
directory contains security information (name, password, role, and access rights) for
all the employees in the organization. It is used for authentication and authorization
of employees accessing the purchasing application.

Due to their physical separation in this scenario, EISs X and Y are accessed over
either a secure private network or over the Internet. This requires that a secure
association be established between the application server and the EISs. A secure
association allows a component on the application server to communicate securely
with an EIS.

Deployment

During the deployment of this application, the deployer configures the security
information (that is, the user account Logi sti csAppUser and its password)
required to create connections to the ERP system. This configuration is done using
the resource adapter for ERP system X. The deployer also configures the security
information (that is, user account Fi nanci al AppUser and its password) required to
create connections to the legacy system Y.

The deployer configures security information in the application server to achieve the
principal mapping shown in FIGURE D-6.

FIGURE D-6 Principal Mapping

Resource Principal: ERP Syst em Account
Logi sti csAppUser

ERP system Security domain

|:Initiating Principal: Enpl oyee

Application Security domain

Resource Principal: Legacy System Account
Fi nanci al AppUser

Legacy System Security domain

This principal mapping ensures that all connections to the ERP system are
established under the security context of Logi sti csAppUser, the resource principal
for the ERP system security domain. Similarly, all connections to legacy system Y are
established under the security context of the Fi nanci al AppUser.

Appendix D Security Scenarios D-9

The application server does this principal mapping for all authenticated initiating
principals (that is, employees accessing the integrated purchasing application) when
the application connects to either the ERP system or the legacy system.

D-10 J2EE Connector Architecture Specification « November 2003

APPENDIX E

JAAS Based Security Architecture

This chapter extends the security architecture specified in Chapter 8, “Security
Architecture” and Chapter 9, “Security Contract” to include support for JAAS-based
pluggable authentication. The chapter refers to the following documents:

= White Paper on User Authentication and Authorization in Java platform:
http://java. sun. conf security/jaas/doc/jaas. htm
= JAAS 1.0 documentation

E.1l

Java Authentication and Authorization
Service (JAAS)

JAAS provides a standard Java framework and programming interface that enables
applications to authenticate and enforce access controls upon users. JAAS is divided
into two parts based on the security services that it provides:

= Pluggable Authentication: This part of the JAAS framework allows a system
administrator to plug in the appropriate authentication services to meet the
security requirements of an application environment. There is no need to modify
or recompile an existing application to support new or different authentication
services.

= Authorization: Once authentication has successfully completed, JAAS provides
the ability to enforce access controls based upon the principals associated with an
authenticated subject. The JAAS principal-based access controls (access controls
based on who runs code) supplement the existing Java 2 code source-based access
controls (access controls based on where code came from and who signed it).

E-1

E.2 Requirements

E-2

The connector security architecture uses JAAS in two ways:

= Security Contract: The connector security architecture uses the JAAS Subj ect
class as part of the security contract between an application server and a resource
adapter. Use of JAAS interfaces enables the security contract to remain
independent of specific security technologies or mechanisms. The security
contract has been specified in Section 9.2, “Requirements” on page 9-15.

= JAAS Pluggable Authentication framework: This framework lets an application
server and its underlying authentication services remain independent from each
other. When additional EISs and new authentication services are required (or are
upgraded), they can be plugged in an application server without requiring
modifications to the application server.

The connector architecture requires that the application server and the resource
adapter must support the JAAS Subj ect class as part of the security contract.
However, it recommends (but does not mandate) that an application server use the
JAAS pluggable authentication framework.

The connector architecture does not require support for the authorization portion of
the JAAS framework.

J2EE Connector Architecture Specification « November 2003

E.3

Security Architecture

The following section specifies the JAAS based security architecture. The security
architecture addresses how JAAS may be used by an application server to support
authentication requirements of heterogeneous EISs.

Appendix E JAAS Based Security Architecture

E-3

FIGURE E-1 Security Architecture.

— Architected contract

—— Implementation specific Application Component

Application Server

ConnectionManager - I ConnectionFactory

Resource Adapter

ManagedConnectionFactory

Security Service
Manager

Y

Java Authentication And Authorization Service (JAAS)

EIS provided
JAAS Module

A 4 A 4

Enterprise Information System (EIS)

E-4 J2EE Connector Architecture Specification *+ November 2003

E3.1

E.3.2

E.3.2.1

JAAS Modules

The connector architecture recommends (but does not mandate) that an application
server support platform-wide JAAS modules (also called authentication modules) for
authentication mechanisms that are common across multiple EISs. The

implementation of these JAAS modules is typically specific to an application server.
However, these modules may be developed to be reusable across application servers.

A resource adapter provider can provide a resource adapter-specific custom
implementation of a JAAS module. The connector architecture recommends that a
resource adapter provider provide a custom JAAS module when the underlying EIS
supports an authentication mechanism that is EIS specific and is not supported by
an application server.

A custom JAAS module can be packaged together with a resource adapter and can be
pluggable into an application server using the JAAS architecture.

The JAAS specification (Section 7., “Java Authentication and Authorization Service,
version 1.0:” on page F-1) specifies requirements for developing and configuring
JAAS modules.

Illustrative Examples: JAAS Module

It is not a goal of the connector architecture to specify a standard architecture for
JAAS modules. The following are illustrative examples of JAAS modules used
typically in the JAAS-based security architecture:

Principal Mapping Module

The application server invokes the principal mapping module passing in the
Subj ect instance corresponding to the caller/initiating principal. The JAAS
specification specifies the interfaces/classes and mechanisms involved in the
invocation of a JAAS module.

The principal mapping module maps a caller/initiating principal to a valid resource
principal and returns the mapped resource principal as part of a Subj ect instance.
The authentication data (example, password) for the mapped resource principal is
added to the Subj ect ’s credentials. The authentication data is used later to
authenticate the resource principal to the underlying EIS.

A special case of the principal mapping module takes a nul | Subj ect as an input
parameter and forms a Subj ect instance with a valid resource principal and
authentication data. This is the case of default principal mapping.

Appendix E JAAS Based Security Architecture E-5

E.3.2.2

E.3.2.3

01

The principal mapping module achieves its mapping functionality by using security
information configured in the application server or an enterprise directory.

The principal mapping module does not authenticate a resource principal and is
configured to perform only principal mapping. The authentication of a mapped
resource principal is performed separately by an authentication mechanism-specific
JAAS module.

Credential Mapping Module

The credential mapping module automatically maps credentials from one

authentication domain to those in a different target authentication domain. For
example, an application server can provide a module that maps the public key
certificate-based credential associated with a principal to a Kerberos credential.

The credentials mapping module can use the JAAS callback mechanism (note that
this involves no user-interface based interaction) to get authentication data from the
application server. The authentication data is used to authenticate the principal to
the target authentication domain during the credentials mapping. This module can
also use an enterprise directory to get security information or pre-configured
mapped credentials.

Kerberos Module

This type of JAAS module supports Kerberos-based authentication for a principal. A
sample Kerberos module supports:

= Getting a TGT (ticket granting ticket) to the Kerberos server in the local domain.
The TGT is created by the KDC. The TGT is placed on the credentials structure for
a principal.

= Delegation of authentication based on either a forwardable or proxy mechanism
as specified in the Kerberos specification.

Generic Security Service API: GSS-API

The GSS-API is a standard API that provides security services to caller applications
in a generic fashion. These security services include authentication, authorization,
principal delegation, secure association establishment, per-message confidentiality,
and integrity. These services can be supported by a wide range of security
mechanisms and technologies. However, an application using GSS-API accesses these
services in a generic mechanism-independent fashion and achieves source-level
portability.

In the context of the connector architecture, a resource adapter uses GSS-API to
establish a secure association with the underlying EIS. The use of the GSS
mechanism by a resource adapter is typical in the following scenarios:

E-6 J2EE Connector Architecture Specification « November 2003

= The EIS supports Kerberos as a third-party authentication service and uses GSS-
API as a generic API for accessing security services.

= The resource adapter and EIS need data integrity and confidentiality services
during their communication over insecure links.

The GSS-API has been implemented over a range of security mechanisms, including
Kerberos V5. See Section 6., “Java Specification Request: Generic Security Service
API (GSS-API), Java bindings:” on page F-1 for a Java binding of GSS-API.

Note — The connector architecture does not require a resource adapter to use GSS-
API.

E.4

E.4.1

Security Configuration

During deployment of a resource adapter, the deployer is responsible for configuring
JAAS modules in the operational environment. The configuration of JAAS modules is
based on the security requirements specified by a resource adapter in its deployment
descriptor. Refer to Section 17.5.4, “Requirements” on page 17-23.

The element aut hent i cati on- mechani smin the deployment descriptor specifies
an authentication mechanism supported by a resource adapter. The standard types
of authentication mechanisms are: Basi cPasswor d and Ker bv5. For example, if a
resource adapter specifies support for ker bv5 authentication mechanism, the
deployer configures a Kerberos JAAS module in the operational environment.

JAAS Configuration

The deployer sets up the configuration of JAAS modules based on the JAAS-specified
mechanism. Refer to j avax. securi ty. aut h. I ogi n. Confi gur at i on specification
for more details. The JAAS configuration includes the following information on a per
resource adapter basis:

= One or more authentication modules used to authenticate a resource principal.

= The order in which authentication modules need to invoked during a stacked
authentication.

= The flag value controlling authentication semantics if stacked modules are
invoked.

The format for the above configuration is specific to an application server
implementation.

Appendix E JAAS Based Security Architecture E-7

E.5 Scenarios

The following section illustrates security scenarios for JAAS based security
architecture.

E.5.1 Scenario: Resource Adapter Managed
Authentication

This scenario enables the connector architecture to support EIS specific username
and pasword-based authentication. It involves the following steps:

= The application component invokes connection request method on the resource
adapter without passing in any security arguments. The resource adapter passes
the connection request to the application server.

= During the deployment of the resource adapter, the application server is
configured to use a principal mapping module. This principal mapping module
takes a Subj ect instance with the caller principal and returns a Subj ect instance
with a valid resource principal and Passwor dCr edent i al instance. The
Passwor dCr edent i al has the password for authentication of the resource
principal.

E-8 J2EE Connector Architecture Specification « November 2003

The application server calls Logi nCont ext . | ogi n method. On a successful
return from the principal mapping module, the application server gets a Subj ect
instance that has the mapped resource principal with a valid

Passwor dCr edenti al .

FIGURE E-2 Resource Adapter-Managed Authentication

Resource Adapter
Application Server EIS
[resource
q princi pal]
Security . Security
[caller Configuration

princi pal] é Contract

JAAS Framework

JAAS Module

Principal Mapping

The application server invokes the method ManagedConnecti onFact ory.

cr eat e- ManagedConnecti on passing in a non- nul | Subj ect instance. The
Subj ect instance carries the resource principal and its corresponding

Passwor dCr edent i al , which holds the user name and password.

The resource adapter extracts the user name and password from the Passwor d-
Credenti al instance. The resource adapter uses the getter methods

(get Pri vat eCredent i al s method) defined on the Subj ect interface to extract
the Passwor dCr edenti al instance.

The resource adapter uses username and password information (extracted from
the Passwor dCr edent i al instance) to authenticate the resource principal to the
EIS. The authentication happens during the creation of the connection through an
authentication mechanism specific to the underlying EIS.

Appendix E JAAS Based Security Architecture E-9

E.5.2

Scenario: Kerberos and Principal Delegation

The scenario in FIGURE E-3 involves the following steps:

FIGURE E-3 Kerberos Authentication with Principal Delegation

Resource Adapter

Application Server EISB
. Security
Security Contract |
Coréurgltlon GSS GSS
GSS-API

GSS-Provider
<Kerberos>

The initiating principal has already authenticated itself to the application server
using Kerberos. The initiating principal has a service ticket for the application
server and a TGT (ticket granting ticket issued by the KDC) as part of its Kerberos
based credentials.

In this scenario, the application server is configured to impersonate the initiating
principal when connecting to the EIS instance. So even though application server
is directly connecting to the EIS, access to the EIS is being requested on behalf of
the initiating principal. The initiating principal needs to pass its identity to the
application server and allow the application server to make requests to the EIS on
behalf of the initiating principal. The above is achieved through delegation of
authentication.

The application server calls the method

ManagedConnect i onFact or y.cr eat eManaged- Connect i on by passing in a
Subj ect instance with the initiating principal and its Kerberos credentials. The
credentials contain a Kerberos TGT and are represented through the

GSSCr edent i al interface.

The resource adapter extracts the resource principal and its Kerberos credentials
from the Subj ect instance.

The resource adapter creates a new physical connection to the EIS.

If the resource adapter and EIS support GSS-API for establishing a secure
association, the resource adapter uses the Kerberos credentials based on the GSS
mechanism as follows. For details, see GSS-API specification:

E-10 J2EE Connector Architecture Specification « November 2003

resource adapter calls GSS_Acqui r e_cr ed method to acquire cr ed_handl e in
order to reference the credentials for establishing the shared security context.
resource adapter calls the GSS_I ni t _sec_cont ext method. The method
GSS_I nit_sec_cont ext yields a service ticket to the requested EIS service
with the corresponding session key.

Note — The mechanism and representation through which Kerberos credentials are
shared across the underlying JAAS module and GSS provider is beyond the scope of
the connector architecture.

After success, GSS_| nit_sec_cont ext builds a specific Kerberos-formatted
message and returns it as an output token. The resource adapter sends the
output token to the EIS instance.

EIS service passes the received token to the GSS_Accept _sec_cont ext
method.

Resource adapter and EIS now hold the shared security context (so have
established a secure association) in the form of a session key associated with
the service ticket. They can now use the session key in the subsequent per-
message methods: GSS- Get M C, GSS_Veri f yM C, GSS_W ap, GSS_Unwr ap.

If the resource adapter and EIS fail to establish a secure association, the resource
adapter cannot use the physical connection as a valid connection to the EIS
instance. The resource adapter returns a security exception on the

cr eat eManagedConnect i on method.

Appendix E JAAS Based Security Architecture E-11

E.5.3 Scenario: GSS-API

If an EIS supports the GSS mechanism, a resource adapter may (but is not required
to) use GSS-API to set up a secure association with the EIS instance. (See FIGURE E-4.)
The section Generic Security Service APl: GSS-API on page 6 gives a brief overview
of GSS-API.

FIGURE E-4 GSS-API use by Resource Adapter

Resource Adapter

[resource EISB
princi pal]
Security |
Contract
GSS GSS
GSS-API

GSS-Provider
<Kerberos>

A formal specification of the use of GSS-API by a resource adapter is beyond the
scope of the connector architecture. However, GSS-API has been mentioned as a
possible implementation option for a resource adapter that has the GSS mechanism
supported by its underlying EIS.

E-12 J2EE Connector Architecture Specification « November 2003

E.5.4

Scenario: Kerberos Authentication After Principal

Mapping

The scenario depicted in FIGURE E-5 involves the following steps:

FIGURE E-5 Kerberos Authentication After Principal Mapping

Application Server

Securit
Cor@ura/tion

!

Security
Contract

JAAS Framework

Resource Adapter

GSS-API

EISB

JAAS Module
<Principal Mapping>

—>

JAAS Module
<Kerberos>

GSS-Provider
<Kerberos>

= The application server is configured to use the principal mapping module and
Kerberos module. The two authentication modules are stacked together with the
principal mapping module first.

= The application server creates a Logi nCont ext instance by passing in the
Subj ect instance for the caller principal and a Cal | backHandl er instance. Next,
the application server calls the | ogi n method on the Logi nCont ext instance.

= The principal mapping module takes a Subj ect instance with caller principal
and returns a Subj ect instance with a valid resource principal and Kerberos-
based authentication data. The principal mapping module does not authenticate
the resource principal; it does only principal mapping to find the mapped
resource principal and its authentication data.

= Next, the Kerberos module (called after the principal mapping module) uses the
resource principal and its authentication data to authenticate the resource
principal. The Kerberos module leads to a valid TGT for the Kerberos domain
supported by the EIS. The TGT is contained in the Kerberos credentials
represented through the GSSCr edent i al interface.

= The application server calls the method ManagedConnect i onFact ory.cr eat e-
ManagedConnect i on passing in a Subj ect instance with the resource principal
and its Kerberos credentials.

= The remaining steps are the same as in the previous scenario, Section E.5.2,
“Scenario: Kerberos and Principal Delegation” on page E-10

Appendix E JAAS Based Security Architecture E-13

E.5.5 Scenario: EIS-Specific Authentication

FIGURE E-6 Authentication Through EIS-Specific JAAS Module

Resource Adapter
R EISA
Application Server
—>
Cosnef(l;utrjirt tion Security
Contract
B i

!

JAAS Framework . .
EIS specific Authentication
protocol

JAAS Module
<EIS A>

The scenario in FIGURE E-6 involves the following steps:

= During the configuration of a resource adapter, the application server is
configured to use an EIS-specific JAAS module for authentication to the
underlying EIS.

The configured JAAS module supports an authentication mechanism specific to
the EIS. The application server is responsibility for managing the authentication
data and JAAS configuration.

= The application server gets a request from the application component to create a
new physical connection to the EIS. Creating a new physical connection requires
the resource principal to authenticate itself to the underlying EIS instance.

= The application server initiates the authentication of the resource principal. It
creates a Logi nCont ext instance by passing in the Subj ect instance and a
Cal | backHandl er instance. Next, the application server calls the | ogi n method
on the Logi nCont ext instance.

= The JAAS module authenticates the resource principal to the underlying EIS. It
uses the callback handler provided by the application server to get the
authentication data.

= The application server invokes the method ManagedConnect i onFact ory.
cr eat e- ManagedConnect i on passing in the Subj ect instance with the
authenticated resource principal and its credential.

E-14 J2EE Connector Architecture Specification « November 2003

= The resource adapter extracts the credential (associated with the Subj ect
instance) for the resource principal using the getter methods defined on the
Subj ect interface. The resource adapter uses this credential to create a
connection to the underlying EIS.

In this scenario, authenticating a resource principal (initiated by the application
server and performed by the JAAS module) is separate from creating a connection to
the EIS. The resource adapter uses the credential of the resource principal to create a
connection to the EIS. This connection creation can involve further authentication.

After successfully creating a connection to the EIS, the resource adapter returns the
newly created connection from the method
ManagedConnect i onFact or y.cr eat eManagedConnect i on.

Appendix E JAAS Based Security Architecture E-15

E-16 J2EE Connector Architecture Specification « November 2003

APPENDIX F

Related Documents

1. Enterprise JavaBeans (EJB™) specification, version 2.1:
http://java. sun. conl product s/ ej b/

2. Java Transaction APl (JTA) specification, version 1.0.1B
http://java. sun. conif products/jtal

3. JDBC API specification, version 3.0
http://java. sun. coni product s/ j dbc/

4. X/Open CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document

5. RFC: Generic Security Service APl (GSS-API) specification, version 2:
http://ww.ietf.org/rfc/rfc2078.txt

6. Java Specification Request: Generic Security Service API (GSS-API), Java bindings:

http://java. sun. conf about Java/ conmuni t yprocess/jsr/jsr_072_gss. htm

7. Java Authentication and Authorization Service, version 1.0:
http://java. sun. conl product s/ j aas/

8. Java 2 Platform Enterprise Edition (J2EE™), Platform specification, version 1. 4:
http://java. sun. conlj 2ee/

9. Java Server Pages (JSP) specification, version 1.3:
http://java. sun. conl products/jsp/

10. Java Servlet specification, version 2.4:

http://java. sun. conl product s/ servl et/

11. Java Message Service, version 1.1:
http://java. sun. conl products/j ns/

12. Java 2 Platform, Standard Edition (J2SE™), API specification, version 1.4:

F-1

http://java. sun.conlj2se/ 1. 4/ docs/ api /

13. J2EE™ Deployment API Specification
http://java. sun. conij 2ee/t ool s/ depl oynment /i ndex. ht m

14. JavaBeans™ Specification 1.01 Final Release
http://java. sun. coni product s/ j avabeans

F-2 J2EE Connector Architecture Specification * November 2003

APPENDIX G

Change History for Version 1.0

G.1 Version 0.9

= Editorial run through the document

= Added section 1.4 on relationship between JDBC and Connector architecture

= Added scenario on B2B in the chapter 4

= Added java.io.Serializable to the code specification of interfaces that are required
to support Serializable interface

= Added clarifications in the chapter 5 based on the expert comments. The changes
are marked by change bars.

= Added equals and hashCode methods to interface ConnectionRequestinfo

= Added section 6.8 on Connection Association

= Added clarifications to the chapter 7. Did minor restructuring of the chapter
based on review comments. The changes are marked by change bars.

= Added clarifications to the chapter 8 based on expert comments

= Changed few details and added clarifications in the chapter 9 based on the review
comments. The changes are marked by change bars.

= Added more description for packaging and deployment in the chapter 10

= Clarified version dependencies in the chapter 11

= Introduced interface javax.resource.Referenceable for the standard setReference
method

= Removed scenarios on Credentials Mapping and Single sign-on from Appendix C.
Updated scenario C.6.2 to refer GSS-API.

G-1

G.2

G.3

Version 1.0 - Public Draft 1

Removed definition of "Connector" from 2.1. The term Connector is now used
broadly refer to the Connector architecture, while resource adapter refers to the
system library.

Added requirement for ConnectionEventListener to 6.9.2: Application Server
Added connection handle property to the ConnectionEvent, section 5.5.7
Introduced getResultSetInfo method in the Connection interface

Added "Administered Object" in the section 9.6.2

Added more details to section "Auto Commit" in 9.5.2

Introduced separate interface for ResultSetIinfo in the section 9.10.3

Changed specification of element config-property-type in section 10.6

Added an example to illustrate security permission specification in the section
11.3

Added CCI related information to Projected Items, chapter 12

Version 1.0 - Public Draft 2

Section 5.5.1: Change based on introduction of ConnectionSpec interface
Section 5.5.1: Added clarification to ConnectionRequestinfo section

Section 5.5.4: Added clarification to section on "Cleanup of ManagedConnection
Section 5.5.6: Added clarification to paragraph after the interface for
ConnectionEventListener

Section 5.9.1: Added clarification to description of the scenario

Section 6.8: Moved earlier section "Details on Local transaction” ahead of
connection sharing section and renamed it "Scenarios: Local Transaction
Management". No change in any content.

Section 6.9: Added more details on connection sharing based on the changes in
EJB 2.0 and J2EE 1.3 platform specification.

Section 6.10: Added this section to clarify local transaction optimization. This is
based on changes in EJB 2.0 and J2EE 1.3 platform specification.

Section 6.11: Made a new section on "Scenarios: Connection sharing”. No change
in content.

Section 6.12: Added clarifications and requirements in the section on "Connection
Association”

Section 6.13.2; Moved requirements on connection sharing to section 6.9

Section 7.4.2: Code sample changed to reflect ConnectionSpec usage

Section 9.5.1: Changed getConnection(Map) to getConnection(ConnectionSpec)
and added clarifications.

Section 9.5.2: Introduced a section on ConnectionSpec

G-2 J2EE Connector Architecture Specification « November 2003

Section 9.7.2: Added methods to ResourceAdapterMetaData interface. Added
description of these methods.

Section 9.9.1: Record, MappedRecord and IndexedRecord now extend Serializable
interface.

Section 9.10: Added note on JDBC semantics in relation to CCI ResultSet
Section 9.10.3: Added note on ResultSetinfo implementation requirements
Section 10.6: Change to auth-mechanism specification in DTD. Removed + from
credential-interface.

Figure 29: Added clarifications for the diagram

Section 8.3: Clarified security contract requirements for the application server
Section 9.5.1: Moved method getRecordFactory from Interaction to
ConnectionFactory. Note that it is not necessary to have an active connection to
create generic record instances.

G4 Version 1.0 - Proposed Final Draft 2

Reviewed requirements in terms of compliance testing. marked with change bars
in the document

Fixed documentation errors

System Contracts:

« Section 5.5.4; Clarified requirements for the method
mat chManagedConnecti ons on ManagedConnect i onFact ory interface

« Section 6.9: Made requirements for connection sharing consistent with J2EE 1.3
platform specification

« Section 6.10: Added specification of requirements for different transaction
scenarios. Added illustrative scenarios

= Section 6.11: Removed a transaction scenario that illustrated connection sharing

« Section 6.11: Clarified requirements for connection association

Common Client Interface:

« Removed set LogWiter,get LogWiter,setTi meout, get Ti meout methods
from Connect i onFact ory interface

« Added description for exceptions in Java docs for the CCI interfaces. Note that
no new exception has been introduced

« ConnectionFact ory implementation class required to provide a default
constructor
Added clarifications; marked by change bars

Deployment and Packaging:

« Section 10.2: Clarified requirements for packaging and deployment of a
resource adapter
DTD changes based on a review of DTDs for various J2EE specifications:

« Ordered elements alphabetically except the root element
« <di spl ay- name> changed to optional in <connect or > element

Appendix G Change History for Version 1.0 G-3

« Used common elements from other DTDs: <descri pti on>, <smal | -i con>,
<l| ar ge-i con>

« Used common header comments across all J2EE DTDs

« <aut h- mechani sn® changed to <aut henti cat i on- mechani sn

« <aut h-mech-type> changed to <aut henti cati on- mechani smt ype>

« Added java. | ang. Charact er to <confi g-property-type>:

« Changed defined values in <aut henti cati on- mechani smtype>: basi c-
passwor d to Basi cPasswor d, ker bv5 to Ker bv5

« Changed defined values in <t ransact i on- support > element:
no_transaction to NoTransaction, | ocal _transaction to
Local Transacti on, xa_t ransacti on to XATr ansacti on

G.5 Version 1.0 - Final Release

= Clarification on reauthentication in the section 8.2.7
= Change in auto-commit in section 9.5.3. Removed set/getAutoCommit methods
from the Connection interface

G-4 J2EE Connector Architecture Specification « November 2003

APPENDIX H

Change History for Version 1.5

H.1 Public Review Draft

some minor clarifications to sections 5.3.1, 5.3.4, 5.3.5

some minor clarifications to section 10.3

added chapter 11: Inbound communication

added chapter 13: EJB invocation

section 12.3

added method release on Endpoint interface

added method getXAResources on ResourceAdapter interface

updated section 12.5.1 to illustrate XAResource implementation

added section 12.5.2: Message redelivery upon crash recovery

section 12.5.6: added an application server requirement to set thread context class
loader

section 12.7: updated the JMS use case to comply with the Connector 1.5 XSD
updated section 16.2: application server requirements

some minor clarifications to sections 17.4.1, 17.4.2

section 17.6 Converted Connector 1.5 DTD to Connector 1.5 XSD

added Appendix B: Activation Configuration for Message Inflow to JMS
endpoints

H.2 Proposed Final Draft

Section 7.9: connection sharing requirements have been updated.

Section 9.2.3: Generi cCredenti al interface has been deprecated.

Section 9.3: added a resource adapter requirement to throw a

Securi t yExcepti on if the authentication information provided is erroneous.

H-1

H.3

Section 10.3.1: clarified use of synchronized blocks within a Wor k implementation.
Section 12.3: a new method parameter j ava. | ang. ref | ect. Met hod has been
added to bef oreDel i very and i sDel i ver yTr ansact ed methods.

Section 12.4.2: added separate sections to describe Acti vat i onSpec JavaBean
and Administered objects.

Section 12.4.9: clarified multiple endpoint activations

Section 12.4.7: this new section describes the structure of a message listener
interface.

Section 12.5.2: clarified crash recovery processing

Section 12.7.2: updated the sample code to use JMS 1.1 style generic APIs.
Section 16.2: removed application client container requirements for supporting
connector contracts.

Section 17.2: added description of RAR file contents.

Section 17.6: updated Connector 1.5 XSD - r esour ceadapt er - cl ass element has
been made optional, and confi g- property element has been added to
adminobject element.

Section 18.4; added an example to illustrate usage of doPri vi | eged blocks in
resource adapter code.

Section 19.2: added | nval i dPr opert yExcepti on and

Unavai | abl eExcepti on to the exception list.

Appendix B: added descriptions to the various Acti vati onSpec JavaBean
properties.

Appendix F: updated links to related documents.

Proposed Final Draft 2

Section 6.5.2: clarifications on Connect i onManager requirements.

Section 7.9.1: this new section describes how a resource adapter may detect and
report sharing violations.

Section 7.13.1: added description to clarify the auto-commit behavior of
transactional resource adapters.

Section 7.14: this new section describes two optional connection optimizations.
Section 12.5.6: clarified that the message delivery must not rely on the class loader
that is associated with the j ava. | ang. refl ect. Met hod object parameter.
Section 12.5.8: clarified the usage of source managed transactions.

Section 14.4.4; clarified the requirements on transaction inflow contracts.
Section 17.6: XSD modification: The contents of the connecti onf act ory-

i nt erface element must be unique in the out bound- r esour ceadapt er.

H-2 J2EE Connector Architecture Specification « November 2003

H.4

Final Release

Section 5.3.1: clarification on the behavior of st art method call.

Section 5.3.2: Resour ceAdapt er Associ ati on interface.

Section 5.3.4.1, 5.3.4.2: clarifications on resource adapter shutdown.

Section 6.4.1: fifth bullet item, clarification on access to application JNDI context.
Section 6.5.3: Val i dat i ngManagedConnect i onFact ory interface.

Section 6.5.4: clarifications on connection sharing and multiple connection
handles.

Section 6.5.6: clarifications on event listener mechanism.

Section 7.7.2: clarifications on local transaction events and implicit transaction
begin.

Section 7.9: Shari ngVi ol ati onExcepti on, and clarification on non-
transactional resource adapters.

Section 7.9.1: clarifications on sharing violation detection.

Section 9.1.8.2: clarifications on security options A, B and C.

Section 10.3: numeric string values for Wor kExcept i on error code values.
Section 10.3.1: clarification on access to JNDI context from Wér k objects.
Section 10.3.7: cr eat eTi mer method throws Unavai | abl eExcepti on.
Section 12.4.2.2: clarifications on required configuration properties on

Acti vati onSpec JavaBean, and JMS Act i vati onSpec JavaBean.

Section 12.4.2.4: clarifications on configuring administered objects.

Section 12.3: changes to endpoi nt Acti vati on, beforeDelivery,
afterDelivery andisDeliveryTransact ed method signatures.

Section 12.4.4: clarifications on message delivery during endpoint activation.
Section 12.4.4: clarifications on endpoi nt Deact i vat i on method.

Section 12.4.6: clarifications on contract between deployment tool and application
server.

Section 12.5.6: description of 11 | egal St at eExcept i on thrown by

bef oreDel i very and af t er Del i very method calls.

Section 12.5.8: clarifications on use of transaction inflow.

Section 15.8: service endpoint j avax. r esour ce. cci . Messageli st ener
interface.

Section 16.2: Table 16-1, updates to column corresponding to lifecycle
management.

Section 16.3: JavaBean requirements.

Section 16.4: Equality constrains.

Section 17.5.3: clarifications on get Ref er ence method.

All exception classes have been provided constructors that have a cause param.
Section 17.6: XSD modifications: vendor - nanme has been assigned a string type,
security-perm ssion has been moved one level up such that the permissions
apply to the whole resource adapter code, deployment-extension element has
been removed, indentations have been reformatted to follow standard XML
conventions.

Appendix H Change History for Version 1.5 H-3

H-4 J2EE Connector Architecture Specification « November 2003

	Contents
	Tables
	Figures
	Code Samples
	1. Introduction
	1.1 Overview
	1.2 Scope
	1.3 Target Audience
	1.4 JDBC and Connector Architecture
	1.5 Organization
	1.6 Document Convention
	1.7 Connector Architecture Expert Group for Version 1.5 (JSR-112)
	1.8 Acknowledgements for Version 1.5
	1.9 Connector Architecture Expert Group for Version 1.0 (JSR-16)
	1.10 Acknowledgements for Version 1.0

	2. Overview
	2.1 Definitions
	2.1.1 Enterprise Information System (EIS)
	2.1.2 Connector Architecture
	2.1.3 EIS Resource
	2.1.4 Resource Manager (RM)
	2.1.5 Managed Environment
	2.1.6 Non-Managed Environment
	2.1.7 Connection
	2.1.8 Application Component
	2.1.9 Container

	2.2 Rationale
	2.2.1 System Contracts
	2.2.2 Common Client Interface

	2.3 Goals

	3. The Connector Architecture
	3.1 System Contracts
	3.2 Client API
	3.3 Requirements
	3.4 Non-Managed Environment

	4. Roles and Scenarios
	4.1 Roles
	4.1.1 Resource Adapter Provider
	4.1.2 Application Server Vendor
	4.1.3 Container Provider
	4.1.4 Application Component Provider
	4.1.5 Enterprise Tools Vendors
	4.1.6 Application Assembler
	4.1.7 Deployer
	4.1.8 System Administrator

	4.2 Scenario: Integrated Purchase Order System
	4.3 Scenario: Business Integration

	5. Lifecycle Management
	5.1 Overview
	5.2 Goals
	5.3 Lifecycle Management Model
	5.3.1 ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance
	5.3.2 ManagedConnectionFactory JavaBean and Outbound Communication
	5.3.3 ActivationSpec JavaBean and Inbound Communication
	5.3.4 Resource Adapter Shutdown Procedure
	5.3.4.1 Phase One
	5.3.4.2 Phase Two

	5.3.5 Requirements
	5.3.6 Resource Adapter Implementation Guidelines
	5.3.7 JavaBean Configuration and Deployment
	5.3.7.1 ResourceAdapter JavaBean instance Configuration
	5.3.7.2 Resource Adapter Deployment
	5.3.7.3 ManagedConnectionFactory JavaBean Instance Configuration
	5.3.7.4 ActivationSpec JavaBean instance Configuration
	5.3.7.5 Resource Adapter Implementation Guidelines

	5.3.8 Lifecycle Management In A Non-Managed Environment
	5.3.9 A Sample Resource Adapter Implementation

	6. Connection Management
	6.1 Overview
	6.2 Goals
	6.3 Architecture: Connection Management
	6.3.1 Overview: Managed Application Scenario

	6.4 Application Programming Model
	6.4.1 Managed Application Scenario
	6.4.2 Non-managed Application Scenario

	6.5 Interface/Class Specification
	6.5.1 ConnectionFactory and Connection
	6.5.1.1 Requirements
	6.5.1.2 ConnectionRequestInfo
	6.5.1.3 Additional Requirements

	6.5.2 ConnectionManager
	6.5.2.1 Interface
	6.5.2.2 Requirements

	6.5.3 ManagedConnectionFactory
	6.5.3.1 Interface
	6.5.3.2 Requirements
	6.5.3.3 Connection Pool Implementation
	6.5.3.4 Detecting Invalid Connections
	6.5.3.5 Requirement for XA Recovery

	6.5.4 ManagedConnection
	6.5.4.1 Interface
	6.5.4.2 Connection Sharing and Multiple Connection Handles
	6.5.4.3 Connection Matching Contract
	6.5.4.4 Cleanup of ManagedConnection
	6.5.4.5 Requirements

	6.5.5 ManagedConnectionMetaData
	6.5.5.1 Interface
	6.5.5.2 Requirements

	6.5.6 ConnectionEventListener
	6.5.6.1 Interface

	6.5.7 ConnectionEvent

	6.6 Error Logging and Tracing
	6.6.1 ManagedConnectionFactory
	6.6.2 ManagedConnection

	6.7 Object Diagram
	6.8 Illustrative Scenarios
	6.8.1 Scenario: Connection Pool Management
	6.8.2 Scenario: Connection Matching
	6.8.3 Scenario: Connection Event Notifications and Connection Close
	6.8.3.1 Connection Cleanup
	6.8.3.2 Connection Destroy

	6.9 Architecture: Non-managed Environment
	6.9.1 Scenario: Programmatic Access to ConnectionFactory
	6.9.2 Scenario: Connection Creation in Non-managed Application Scenario

	6.10 Requirements
	6.10.1 Resource Adapter
	6.10.2 Application Server

	7. Transaction Management
	7.1 Overview
	7.2 Transaction Management Scenarios
	7.2.1 Transactions across multiple Resource Managers
	7.2.2 Local Transaction Management

	7.3 Transaction Management Contract
	7.3.1 Interface: ManagedConnection
	7.3.2 Interface: XAResource
	7.3.2.1 Implementation

	7.3.3 Interface: LocalTransaction

	7.4 Relationship to JTA and JTS
	7.4.1 JTA Interfaces

	7.5 Object Diagram
	7.6 XAResource-based Transaction Contract
	7.6.1 Scenarios Supported
	7.6.2 Resource Adapter Requirements
	7.6.2.1 General
	7.6.2.2 One-phase Commit
	7.6.2.3 Two-phase Commit
	7.6.2.4 Transaction Association and Calling Protocol
	7.6.2.5 Unilateral Roll-back
	7.6.2.6 Read-Only Optimization
	7.6.2.7 XID Support
	7.6.2.8 Support for Failure Recovery

	7.6.3 Transaction Manager Requirements
	7.6.3.1 Interfaces
	7.6.3.2 XID requirements
	7.6.3.3 One-phase Commit Optimization
	7.6.3.4 Implementation Options

	7.6.4 Scenario: Transactional Setup for a ManagedConnection
	7.6.5 Scenario: Connection Close and JTA Transactional Cleanup
	7.6.6 OID: Transaction Completion

	7.7 Local Transaction Management Contract
	7.7.1 Interface: Local Transaction
	7.7.2 Interface: ConnectionEventListener
	7.7.2.1 Requirements

	7.8 Scenarios: Local Transaction Management
	7.8.1 Local Transaction Cleanup
	7.8.2 Component Termination
	7.8.3 Transaction Interleaving
	7.8.3.1 Scenario

	7.9 Connection Sharing
	7.9.1 Sharing Violation Detection
	7.9.1.1 Scenario 1
	7.9.1.2 Scenario 2

	7.10 Transaction Scenarios
	7.10.1 Requirements
	7.10.2 Illustrative Scenarios
	7.10.3 Scenario: Local Transaction

	7.11 Connection Association
	7.11.1 Scenario
	7.11.2 Connection Association
	7.11.3 Requirements

	7.12 Local Transaction Optimization
	7.12.1 Requirements

	7.13 Requirements
	7.13.1 Resource Adapter
	7.13.1.1 Auto Commit

	7.13.2 Application Server

	7.14 Connection Optimizations
	7.14.1 Lazy Connection Association Optimization
	7.14.1.1 API Additions

	7.14.2 Lazy Transaction Enlistment Optimization
	7.14.2.1 API Additions

	8. Security Architecture
	8.1 Overview
	8.2 Goals
	8.3 Terminology
	8.4 Application Security Model
	8.4.1 Scenario: Container-Managed Sign-on
	8.4.2 Scenario: Component-Managed Sign-on

	8.5 EIS Sign-on
	8.5.1 Authentication Mechanism
	8.5.2 Resource Principal
	8.5.3 Authorization Model
	8.5.4 Secure Association

	8.6 Roles and Responsibilities
	8.6.1 Application Component Provider
	8.6.2 Deployer
	8.6.3 Application Server
	8.6.4 EIS Vendor
	8.6.5 Resource Adapter Provider
	8.6.6 System Administrator

	9. Security Contract
	9.1 Security Contract
	9.1.1 Interfaces and Classes
	9.1.2 Subject
	9.1.3 Resource Principal
	9.1.4 GenericCredential
	9.1.4.1 Interface
	9.1.4.2 Implementation

	9.1.5 GSSCredential
	9.1.5.1 Implementation

	9.1.6 PasswordCredential
	9.1.7 ConnectionManager
	9.1.8 ManagedConnectionFactory
	9.1.8.1 Contract for the Application Server
	9.1.8.2 Contract for Resource Adapter

	9.1.9 ManagedConnection

	9.2 Requirements
	9.2.1 Resource Adapter
	9.2.2 Application Server

	10. Work Management
	10.1 Overview
	10.2 Goals
	10.3 Work Management Model
	10.3.1 Requirements
	10.3.2 Work Interface
	10.3.3 WorkManager Interface
	10.3.3.1 Work Submit
	10.3.3.2 Work Accepted
	10.3.3.3 Work Rejected
	10.3.3.4 Work Started
	10.3.3.5 Work Completed
	10.3.3.6 Requirements

	10.3.4 WorkListener Interface and WorkEvent Class
	10.3.4.1 Requirements

	10.3.5 ExecutionContext Class
	10.3.6 Resource Adapter Thread Usage Recommendations
	10.3.7 Periodic Execution of Work Instances
	10.3.8 Illustration: Using a Work Instance to Listen on Multiple Network Endpoints
	10.3.9 Work Management in a Non-Managed Environment

	11. Inbound Communicaton
	11.1 Overview
	11.2 An Illustrative Use Case

	12. Message Inflow
	12.1 Overview
	12.2 Goals
	12.3 Message Inflow Model
	12.4 Endpoint Deployment
	12.4.1 Message Endpoint
	12.4.2 Resource Adapter
	12.4.2.1 List of Supported Message Listener Types
	12.4.2.2 ActivationSpec JavaBean
	12.4.2.3 Administered Objects
	12.4.2.4 Configuring Administered Objects

	12.4.3 Endpoint Deployer
	12.4.4 Application Server
	12.4.5 Message Provider
	12.4.6 Endpoint Deployment Steps
	12.4.7 Requirements
	12.4.8 Structure of a Message Listener Interface
	12.4.9 Multiple Endpoint Activations With Similar Activation Configuration
	12.4.9.1 Requirements

	12.5 Message Delivery
	12.5.1 Sample Resource Adapter Code To Illustrate Message Delivery
	12.5.1.1 Requirements

	12.5.2 Message Redelivery Upon Crash Recovery
	12.5.3 Durable Message Delivery Setup
	12.5.4 Concurrent Delivery of Messages
	12.5.4.1 Requirements

	12.5.5 Delivery Semantics and Acknowledgement
	12.5.6 Transacted Delivery (Using Container-Managed Transaction)
	12.5.7 Non-transacted Delivery
	12.5.8 Transacted Delivery Using an Imported Transaction
	12.5.9 Requirements

	12.6 Endpoint Undeployment
	12.7 Java Message Service (JMS) Use Case
	12.7.0.1 A Sample JMS Resource Adapter Deployment Descriptor
	12.7.0.2 A Sample JMS ActivationSpec Implementation
	12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment Descriptor
	12.7.0.4 A Sample EJB 2.1 Message-driven Bean Deployment Descriptor
	12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor
	12.7.1 Message-driven Bean Asynchronously Receiving Messages
	12.7.1.1 Message-Driven Bean Deployment
	12.7.1.2 Message Delivery
	12.7.1.3 Message-Driven Bean Undeployment

	12.7.2 EJB Using JMS API to Send and Synchronously Receive Messages Via a JMS Resource Adapter
	12.7.2.1 Using JMS API to Send Messages
	12.7.2.2 J2EE Component Using JMS API to Synchronously Receive Messages

	12.8 A Non-JMS Use Case
	12.8.1 Resource Adapter Deployment Descriptor
	12.8.2 Resource Adapter Deployment
	12.8.3 Message-Driven Bean Asynchronously Receiving Notifications From an EIS
	12.8.3.1 The Message-Driven Bean Deployment Descriptor

	12.8.4 Message-Driven Bean and Resource Adapter Activation
	12.8.5 Message Delivery

	13. EJB Invocation
	13.1 Overview
	13.2 EJB Invocation Model
	13.3 An Illustrative Use Case
	13.3.0.1 Message-driven Bean Dispatcher Pattern

	14. Transaction Inflow
	14.1 Overview
	14.2 Goals
	14.3 Use Case Scenario
	14.4 Transaction Inflow Model
	14.4.1 Processing of Transactional Calls
	14.4.2 Transaction Completion Processing
	14.4.3 Crash Recovery Processing
	14.4.4 Requirements
	14.4.5 Non-Requirements
	14.4.6 Recommendations
	14.4.7 Transaction Inflow in a Non-managed Environment

	15. Common Client Interface
	15.1 Overview
	15.2 Goals
	15.3 Scenarios
	15.3.1 Enterprise Application Integration Framework
	15.3.2 Metadata Repository and API
	15.3.3 Enterprise Application Development Tool

	15.4 Common Client Interface
	15.4.1 Requirements

	15.5 Connection Interfaces
	15.5.1 ConnectionFactory
	15.5.1.1 Requirements

	15.5.2 ConnectionSpec
	15.5.3 Connection
	15.5.3.1 Auto Commit

	15.6 Interaction Interfaces
	15.6.1 Interaction
	15.6.2 InteractionSpec
	15.6.2.1 Standard Properties
	15.6.2.2 ResultSet Properties
	15.6.2.3 Additional Properties
	15.6.2.4 Implementation
	15.6.2.5 Administered Object
	15.6.2.6 Illustrative Scenario

	15.6.3 LocalTransaction
	15.6.3.1 Requirements

	15.7 Basic Metadata Interfaces
	15.7.1 ConnectionMetaData
	15.7.1.1 Implementation

	15.7.2 ResourceAdapterMetaData

	15.8 Service Endpoint Message Listener Interface
	15.9 Exception Interfaces
	15.9.1 ResourceException
	15.9.2 ResourceWarning

	15.10 Record
	15.10.1 Component-view Contract
	15.10.1.1 Type Mapping
	15.10.1.2 Record Interface
	15.10.1.3 MappedRecord and IndexedRecord Interfaces
	15.10.1.4 RecordFactory

	15.10.2 Interaction and Record
	15.10.3 Resource Adapter-view Contract
	15.10.3.1 Streamable Interface

	15.11 ResultSet
	15.11.1 ResultSet Interface
	15.11.1.1 Type Mapping
	15.11.1.2 ResultSet Types
	15.11.1.3 Scrolling
	15.11.1.4 Concurrency Types
	15.11.1.5 Updatability
	15.11.1.6 Persistence of Java Objects
	15.11.1.7 Support for SQL Types
	15.11.1.8 Support for Customized SQL Type Mapping

	15.11.2 ResultSetMetaData
	15.11.3 ResultSetInfo

	15.12 Code Samples
	15.12.1 Connection
	15.12.2 InteractionSpec
	15.12.3 Mapped Record
	15.12.4 ResultSet
	15.12.5 Custom Record

	16. API Requirements
	16.1 Requirements of the Application Server
	16.2 Requirements of the Resource adapter
	16.3 JavaBean Requirements
	16.4 Equality Constraints
	Equality based on Java object identity
	Equality based on config properties and class information

	17. Packaging Requirements
	17.1 Overview
	17.2 Packaging
	17.2.0.1 Resource Adapter Archive
	17.2.0.2 RAR Contents
	17.2.0.3 Sample Directory Structure
	17.2.0.4 Requirements

	17.3 Deployment
	17.3.1 Resource Adapter Provider
	17.3.2 Deployer
	17.3.2.1 Stand-Alone Resource Adapter Module
	17.3.2.2 Resource Adapter Module with J2EE Application
	17.3.2.3 Configuration
	17.3.2.4 Security Configuration

	17.4 Interfaces/Classes
	17.4.1 ResourceAdapter
	17.4.1.1 Requirements

	17.4.2 ManagedConnectionFactory
	17.4.2.1 Requirements

	17.4.3 Properties Conventions
	17.4.4 Standard Properties

	17.5 JNDI Configuration and Lookup
	17.5.1 Responsibilities
	17.5.1.1 Deployer
	17.5.1.2 Resource Adapter
	17.5.1.3 Application Server

	17.5.2 Scenario: Serializable
	17.5.3 Scenario: Referenceable
	17.5.3.1 ObjectFactory Implementation
	17.5.3.2 Deployment
	17.5.3.3 Scenario: Connection Factory Lookup

	17.5.4 Requirements

	17.6 Resource Adapter XML Schema Definition

	18. Runtime Environment
	18.1 Programming APIs
	18.2 Security Permissions
	18.3 Requirements
	18.3.1 Example

	18.4 Privileged Code
	18.4.1 Example

	19. Exceptions
	19.1 ResourceException
	19.2 System Exceptions
	19.2.1 Exception Hierarchy

	19.3 Work Exceptions
	19.4 Additional Exceptions

	20. Projected Items
	A. Previous Version DTDs
	A.1 J2EE Connector Architecture 1.0 Resource Adapter XML DTD

	B. Activation Configuration for Message Inflow to JMS Endpoints
	B.1 Introduction
	B.2 JMS ActivationSpec JavaBean
	B.2.1 JMS ActivationSpec JavaBean Properties
	B.2.1.1 destination
	B.2.1.2 destinationType
	B.2.1.3 messageSelector
	B.2.1.4 acknowledgeMode
	B.2.1.5 subscriptionDurability
	B.2.1.6 clientId
	B.2.1.7 subscriptionName

	B.2.2 JMS ActivationSpec JavaBean Property Values

	B.3 JMS Endpoint with EJB 2.1 Activation Configuration Elements
	B.4 JMS Endpoint with EJB 2.0 Deployment Descriptor Elements

	C. Caching Manager
	C.1 Overview
	C.2 Synchronization contract
	C.2.1 Interface
	C.2.2 Implementation

	D. Security Scenarios
	D.1 EStore Application
	D.1.1 Scenario
	D.1.2 Security Environment
	D.1.3 Deployment

	D.2 Employee Self Service Application
	D.2.1 Architecture
	D.2.2 Security Environment
	D.2.3 Deployment
	D.2.4 Scenario

	D.3 Integrated Purchasing Application
	D.3.1 Architecture
	D.3.2 Security Environment
	D.3.3 Deployment

	E. JAAS Based Security Architecture
	E.1 Java Authentication and Authorization Service (JAAS)
	E.2 Requirements
	E.3 Security Architecture
	E.3.1 JAAS Modules
	E.3.2 Illustrative Examples: JAAS Module
	E.3.2.1 Principal Mapping Module
	E.3.2.2 Credential Mapping Module
	E.3.2.3 Kerberos Module

	E.4 Security Configuration
	E.4.1 JAAS Configuration

	E.5 Scenarios
	E.5.1 Scenario: Resource Adapter Managed Authentication
	E.5.2 Scenario: Kerberos and Principal Delegation
	E.5.3 Scenario: GSS-API
	E.5.4 Scenario: Kerberos Authentication After Principal Mapping
	E.5.5 Scenario: EIS-Specific Authentication

	F. Related Documents
	G. Change History for Version 1.0
	G.1 Version 0.9
	G.2 Version 1.0 - Public Draft 1
	G.3 Version 1.0 - Public Draft 2
	G.4 Version 1.0 - Proposed Final Draft 2
	G.5 Version 1.0 - Final Release

	H. Change History for Version 1.5
	H.1 Public Review Draft
	H.2 Proposed Final Draft
	H.3 Proposed Final Draft 2
	H.4 Final Release

