
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document to: j2ee-connector-comments@sun.com.

J2EE™ Connector Architecture
Specification

Version 1.5

Final Release
November 2003

J2EE™ Connector Architecture Specification ("Specification")

Version: 1.5

Status: FCS

Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under the Sun’s applicable intellectual property rights to view, download, use and reproduce the Specification only for the
purpose of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset
or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the
TCK (including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly
conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations
of the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant
or otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees
to make any claims concerning their implementation’s compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that neither derives from
any of Sun’s source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun’s source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Please
Recycle

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related
to the Specification and future versions, implementations, and test suites thereof.

(LFI#136187/Form ID#011801)

Contents

1. Introduction 1–1

1.1 Overview 1–1

1.2 Scope 1–2

1.3 Target Audience 1–3

1.4 JDBC and Connector Architecture 1–4

1.5 Organization 1–4

1.6 Document Convention 1–5

1.7 Connector Architecture Expert Group for Version 1.5 (JSR-112) 1–5

1.8 Acknowledgements for Version 1.5 1–6

1.9 Connector Architecture Expert Group for Version 1.0 (JSR-16) 1–7

1.10 Acknowledgements for Version 1.0 1–8

2. Overview 2–1

2.1 Definitions 2–1

2.1.1 Enterprise Information System (EIS) 2–1

2.1.2 Connector Architecture 2–2

2.1.3 EIS Resource 2–2

2.1.4 Resource Manager (RM) 2–2

2.1.5 Managed Environment 2–3

2.1.6 Non-Managed Environment 2–3
v

2.1.7 Connection 2–3

2.1.8 Application Component 2–3

2.1.9 Container 2–3

2.2 Rationale 2–4

2.2.1 System Contracts 2–4

2.2.2 Common Client Interface 2–5

2.3 Goals 2–6

3. The Connector Architecture 3–1

3.1 System Contracts 3–2

3.2 Client API 3–4

3.3 Requirements 3–5

3.4 Non-Managed Environment 3–5

4. Roles and Scenarios 4–1

4.1 Roles 4–1

4.1.1 Resource Adapter Provider 4–1

4.1.2 Application Server Vendor 4–2

4.1.3 Container Provider 4–2

4.1.4 Application Component Provider 4–3

4.1.5 Enterprise Tools Vendors 4–3

4.1.6 Application Assembler 4–4

4.1.7 Deployer 4–4

4.1.8 System Administrator 4–5

4.2 Scenario: Integrated Purchase Order System 4–5

4.3 Scenario: Business Integration 4–8

5. Lifecycle Management 5–1

5.1 Overview 5–1

5.2 Goals 5–2
vi J2EE Connector Architecture Specification • November 2003

5.3 Lifecycle Management Model 5–3

5.3.1 ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance 5–5

5.3.2 ManagedConnectionFactory JavaBean and Outbound
Communication 5–8

5.3.3 ActivationSpec JavaBean and Inbound Communication 5–9

5.3.4 Resource Adapter Shutdown Procedure 5–10

5.3.4.1 Phase One 5–10

5.3.4.2 Phase Two 5–11

5.3.5 Requirements 5–11

5.3.6 Resource Adapter Implementation Guidelines 5–13

5.3.7 JavaBean Configuration and Deployment 5–13

5.3.7.1 ResourceAdapter JavaBean instance Configuration 5–
14

5.3.7.2 Resource Adapter Deployment 5–14

5.3.7.3 ManagedConnectionFactory JavaBean Instance
Configuration 5–14

5.3.7.4 ActivationSpec JavaBean instance Configuration 5–14

5.3.7.5 Resource Adapter Implementation Guidelines 5–15

5.3.8 Lifecycle Management In A Non-Managed Environment 5–15

5.3.9 A Sample Resource Adapter Implementation 5–16

6. Connection Management 6–1

6.1 Overview 6–1

6.2 Goals 6–1

6.3 Architecture: Connection Management 6–2

6.3.1 Overview: Managed Application Scenario 6–2

6.4 Application Programming Model 6–6

6.4.1 Managed Application Scenario 6–6

6.4.2 Non-managed Application Scenario 6–7
Contents vii

6.5 Interface/Class Specification 6–7

6.5.1 ConnectionFactory and Connection 6–10

6.5.1.1 Requirements 6–11

6.5.1.2 ConnectionRequestInfo 6–12

6.5.1.3 Additional Requirements 6–13

6.5.2 ConnectionManager 6–14

6.5.2.1 Interface 6–14

6.5.2.2 Requirements 6–15

6.5.3 ManagedConnectionFactory 6–16

6.5.3.1 Interface 6–17

6.5.3.2 Requirements 6–18

6.5.3.3 Connection Pool Implementation 6–19

6.5.3.4 Detecting Invalid Connections 6–20

6.5.3.5 Requirement for XA Recovery 6–20

6.5.4 ManagedConnection 6–20

6.5.4.1 Interface 6–22

6.5.4.2 Connection Sharing and Multiple Connection
Handles 6–23

6.5.4.3 Connection Matching Contract 6–23

6.5.4.4 Cleanup of ManagedConnection 6–24

6.5.4.5 Requirements 6–25

6.5.5 ManagedConnectionMetaData 6–25

6.5.5.1 Interface 6–25

6.5.5.2 Requirements 6–26

6.5.6 ConnectionEventListener 6–26

6.5.6.1 Interface 6–26

6.5.7 ConnectionEvent 6–27

6.6 Error Logging and Tracing 6–28

6.6.1 ManagedConnectionFactory 6–28
viii J2EE Connector Architecture Specification • November 2003

6.6.2 ManagedConnection 6–29

6.7 Object Diagram 6–29

6.8 Illustrative Scenarios 6–32

6.8.1 Scenario: Connection Pool Management 6–32

6.8.2 Scenario: Connection Matching 6–37

6.8.3 Scenario: Connection Event Notifications and Connection Close
6–40

6.8.3.1 Connection Cleanup 6–41

6.8.3.2 Connection Destroy 6–41

6.9 Architecture: Non-managed Environment 6–44

6.9.1 Scenario: Programmatic Access to ConnectionFactory 6–45

6.9.2 Scenario: Connection Creation in Non-managed Application
Scenario 6–47

6.10 Requirements 6–49

6.10.1 Resource Adapter 6–49

6.10.2 Application Server 6–50

7. Transaction Management 7–1

7.1 Overview 7–2

7.2 Transaction Management Scenarios 7–3

7.2.1 Transactions across multiple Resource Managers 7–4

7.2.2 Local Transaction Management 7–5

7.3 Transaction Management Contract 7–6

7.3.1 Interface: ManagedConnection 7–9

7.3.2 Interface: XAResource 7–11

7.3.2.1 Implementation 7–11

7.3.3 Interface: LocalTransaction 7–12

7.4 Relationship to JTA and JTS 7–12

7.4.1 JTA Interfaces 7–12

7.5 Object Diagram 7–13
Contents ix

7.6 XAResource-based Transaction Contract 7–16

7.6.1 Scenarios Supported 7–17

7.6.2 Resource Adapter Requirements 7–18

7.6.2.1 General 7–19

7.6.2.2 One-phase Commit 7–19

7.6.2.3 Two-phase Commit 7–19

7.6.2.4 Transaction Association and Calling Protocol 7–20

7.6.2.5 Unilateral Roll-back 7–20

7.6.2.6 Read-Only Optimization 7–21

7.6.2.7 XID Support 7–21

7.6.2.8 Support for Failure Recovery 7–21

7.6.3 Transaction Manager Requirements 7–21

7.6.3.1 Interfaces 7–22

7.6.3.2 XID requirements 7–22

7.6.3.3 One-phase Commit Optimization 7–22

7.6.3.4 Implementation Options 7–22

7.6.4 Scenario: Transactional Setup for a ManagedConnection 7–22

7.6.5 Scenario: Connection Close and JTA Transactional Cleanup 7–26

7.6.6 OID: Transaction Completion 7–29

7.7 Local Transaction Management Contract 7–31

7.7.1 Interface: Local Transaction 7–31

7.7.2 Interface: ConnectionEventListener 7–31

7.7.2.1 Requirements 7–32

7.8 Scenarios: Local Transaction Management 7–33

7.8.1 Local Transaction Cleanup 7–33

7.8.2 Component Termination 7–34

7.8.3 Transaction Interleaving 7–34

7.8.3.1 Scenario 7–34
x J2EE Connector Architecture Specification • November 2003

7.9 Connection Sharing 7–35

7.9.1 Sharing Violation Detection 7–36

7.9.1.1 Scenario 1 7–37

7.9.1.2 Scenario 2 7–37

7.10 Transaction Scenarios 7–37

7.10.1 Requirements 7–37

7.10.2 Illustrative Scenarios 7–39

7.10.3 Scenario: Local Transaction 7–40

7.11 Connection Association 7–45

7.11.1 Scenario 7–45

7.11.2 Connection Association 7–46

7.11.3 Requirements 7–47

7.12 Local Transaction Optimization 7–47

7.12.1 Requirements 7–48

7.13 Requirements 7–48

7.13.1 Resource Adapter 7–48

7.13.1.1 Auto Commit 7–49

7.13.2 Application Server 7–49

7.14 Connection Optimizations 7–50

7.14.1 Lazy Connection Association Optimization 7–50

7.14.1.1 API Additions 7–55

7.14.2 Lazy Transaction Enlistment Optimization 7–55

7.14.2.1 API Additions 7–56

8. Security Architecture 8–1

8.1 Overview 8–1

8.2 Goals 8–1

8.3 Terminology 8–2

8.4 Application Security Model 8–3
Contents xi

8.4.1 Scenario: Container-Managed Sign-on 8–4

8.4.2 Scenario: Component-Managed Sign-on 8–5

8.5 EIS Sign-on 8–5

8.5.1 Authentication Mechanism 8–6

8.5.2 Resource Principal 8–6

8.5.3 Authorization Model 8–7

8.5.4 Secure Association 8–8

8.6 Roles and Responsibilities 8–9

8.6.1 Application Component Provider 8–9

8.6.2 Deployer 8–9

8.6.3 Application Server 8–10

8.6.4 EIS Vendor 8–11

8.6.5 Resource Adapter Provider 8–11

8.6.6 System Administrator 8–11

9. Security Contract 9–1

9.1 Security Contract 9–1

9.1.1 Interfaces and Classes 9–1

9.1.2 Subject 9–2

9.1.3 Resource Principal 9–2

9.1.4 GenericCredential 9–3

9.1.4.1 Interface 9–4

9.1.4.2 Implementation 9–4

9.1.5 GSSCredential 9–5

9.1.5.1 Implementation 9–5

9.1.6 PasswordCredential 9–5

9.1.7 ConnectionManager 9–7

9.1.8 ManagedConnectionFactory 9–9

9.1.8.1 Contract for the Application Server 9–10
xii J2EE Connector Architecture Specification • November 2003

9.1.8.2 Contract for Resource Adapter 9–12

9.1.9 ManagedConnection 9–14

9.2 Requirements 9–15

9.2.1 Resource Adapter 9–15

9.2.2 Application Server 9–15

10. Work Management 10–1

10.1 Overview 10–1

10.2 Goals 10–2

10.3 Work Management Model 10–2

10.3.1 Requirements 10–4

10.3.2 Work Interface 10–9

10.3.3 WorkManager Interface 10–10

10.3.3.1 Work Submit 10–12

10.3.3.2 Work Accepted 10–13

10.3.3.3 Work Rejected 10–13

10.3.3.4 Work Started 10–14

10.3.3.5 Work Completed 10–14

10.3.3.6 Requirements 10–14

10.3.4 WorkListener Interface and WorkEvent Class 10–18

10.3.4.1 Requirements 10–20

10.3.5 ExecutionContext Class 10–20

10.3.6 Resource Adapter Thread Usage Recommendations 10–23

10.3.7 Periodic Execution of Work Instances 10–23

10.3.8 Illustration: Using a Work Instance to Listen on Multiple Network
Endpoints 10–25

10.3.9 Work Management in a Non-Managed Environment 10–25

11. Inbound Communicaton 11–1

11.1 Overview 11–1
Contents xiii

11.2 An Illustrative Use Case 11–2

12. Message Inflow 12–1

12.1 Overview 12–1

12.2 Goals 12–3

12.3 Message Inflow Model 12–4

12.4 Endpoint Deployment 12–9

12.4.1 Message Endpoint 12–10

12.4.2 Resource Adapter 12–11

12.4.2.1 List of Supported Message Listener Types 12–11

12.4.2.2 ActivationSpec JavaBean 12–11

12.4.2.3 Administered Objects 12–12

12.4.2.4 Configuring Administered Objects 12–13

12.4.3 Endpoint Deployer 12–13

12.4.4 Application Server 12–14

12.4.5 Message Provider 12–16

12.4.6 Endpoint Deployment Steps 12–18

12.4.7 Requirements 12–18

12.4.8 Structure of a Message Listener Interface 12–19

12.4.9 Multiple Endpoint Activations With Similar Activation
Configuration 12–20

12.4.9.1 Requirements 12–20

12.5 Message Delivery 12–22

12.5.1 Sample Resource Adapter Code To Illustrate Message Delivery
12–24

12.5.1.1 Requirements 12–26

12.5.2 Message Redelivery Upon Crash Recovery 12–26

12.5.3 Durable Message Delivery Setup 12–27

12.5.4 Concurrent Delivery of Messages 12–28

12.5.4.1 Requirements 12–28
xiv J2EE Connector Architecture Specification • November 2003

12.5.5 Delivery Semantics and Acknowledgement 12–28

12.5.6 Transacted Delivery (Using Container-Managed Transaction) 12–
29

12.5.7 Non-transacted Delivery 12–31

12.5.8 Transacted Delivery Using an Imported Transaction 12–32

12.5.9 Requirements 12–33

12.6 Endpoint Undeployment 12–33

12.7 Java Message Service (JMS) Use Case 12–38

12.7.0.1 A Sample JMS Resource Adapter Deployment
Descriptor 12–39

12.7.0.2 A Sample JMS ActivationSpec Implementation 12–44

12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment
Descriptor 12–44

12.7.0.4 A Sample EJB 2.1 Message-driven Bean Deployment
Descriptor 12–45

12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor 12–47

12.7.1 Message-driven Bean Asynchronously Receiving Messages 12–47

12.7.1.1 Message-Driven Bean Deployment 12–47

12.7.1.2 Message Delivery 12–48

12.7.1.3 Message-Driven Bean Undeployment 12–48

12.7.2 EJB Using JMS API to Send and Synchronously Receive Messages
Via a JMS Resource Adapter 12–49

12.7.2.1 Using JMS API to Send Messages 12–50

12.7.2.2 J2EE Component Using JMS API to Synchronously
Receive Messages 12–50

12.8 A Non-JMS Use Case 12–51

12.8.1 Resource Adapter Deployment Descriptor 12–51

12.8.2 Resource Adapter Deployment 12–53

12.8.3 Message-Driven Bean Asynchronously Receiving Notifications
From an EIS 12–54
Contents xv

12.8.3.1 The Message-Driven Bean Deployment Descriptor 12–
54

12.8.4 Message-Driven Bean and Resource Adapter Activation 12–55

12.8.5 Message Delivery 12–55

13. EJB Invocation 13–1

13.1 Overview 13–1

13.2 EJB Invocation Model 13–2

13.3 An Illustrative Use Case 13–3

13.3.0.1 Message-driven Bean Dispatcher Pattern 13–5

14. Transaction Inflow 14–1

14.1 Overview 14–1

14.2 Goals 14–2

14.3 Use Case Scenario 14–2

14.4 Transaction Inflow Model 14–4

14.4.1 Processing of Transactional Calls 14–4

14.4.2 Transaction Completion Processing 14–5

14.4.3 Crash Recovery Processing 14–8

14.4.4 Requirements 14–12

14.4.5 Non-Requirements 14–13

14.4.6 Recommendations 14–13

14.4.7 Transaction Inflow in a Non-managed Environment 14–13

15. Common Client Interface 15–1

15.1 Overview 15–2

15.2 Goals 15–2

15.3 Scenarios 15–3

15.3.1 Enterprise Application Integration Framework 15–3

15.3.2 Metadata Repository and API 15–4
xvi J2EE Connector Architecture Specification • November 2003

15.3.3 Enterprise Application Development Tool 15–4

15.4 Common Client Interface 15–5

15.4.1 Requirements 15–6

15.5 Connection Interfaces 15–9

15.5.1 ConnectionFactory 15–9

15.5.1.1 Requirements 15–10

15.5.2 ConnectionSpec 15–10

15.5.3 Connection 15–11

15.5.3.1 Auto Commit 15–13

15.6 Interaction Interfaces 15–13

15.6.1 Interaction 15–13

15.6.2 InteractionSpec 15–14

15.6.2.1 Standard Properties 15–15

15.6.2.2 ResultSet Properties 15–16

15.6.2.3 Additional Properties 15–16

15.6.2.4 Implementation 15–17

15.6.2.5 Administered Object 15–17

15.6.2.6 Illustrative Scenario 15–17

15.6.3 LocalTransaction 15–18

15.6.3.1 Requirements 15–18

15.7 Basic Metadata Interfaces 15–18

15.7.1 ConnectionMetaData 15–19

15.7.1.1 Implementation 15–19

15.7.2 ResourceAdapterMetaData 15–19

15.8 Service Endpoint Message Listener Interface 15–21

15.9 Exception Interfaces 15–21

15.9.1 ResourceException 15–21

15.9.2 ResourceWarning 15–22
Contents xvii

15.10 Record 15–22

15.10.1 Component-view Contract 15–24

15.10.1.1 Type Mapping 15–25

15.10.1.2 Record Interface 15–26

15.10.1.3 MappedRecord and IndexedRecord Interfaces 15–28

15.10.1.4 RecordFactory 15–28

15.10.2 Interaction and Record 15–29

15.10.3 Resource Adapter-view Contract 15–29

15.10.3.1 Streamable Interface 15–30

15.11 ResultSet 15–31

15.11.1 ResultSet Interface 15–33

15.11.1.1 Type Mapping 15–33

15.11.1.2 ResultSet Types 15–33

15.11.1.3 Scrolling 15–34

15.11.1.4 Concurrency Types 15–34

15.11.1.5 Updatability 15–35

15.11.1.6 Persistence of Java Objects 15–35

15.11.1.7 Support for SQL Types 15–35

15.11.1.8 Support for Customized SQL Type Mapping 15–36

15.11.2 ResultSetMetaData 15–36

15.11.3 ResultSetInfo 15–36

15.12 Code Samples 15–38

15.12.1 Connection 15–38

15.12.2 InteractionSpec 15–39

15.12.3 Mapped Record 15–39

15.12.4 ResultSet 15–40

15.12.5 Custom Record 15–41

16. API Requirements 16–1
xviii J2EE Connector Architecture Specification • November 2003

16.1 Requirements of the Application Server 16–1

16.2 Requirements of the Resource adapter 16–1

16.3 JavaBean Requirements 16–2

16.4 Equality Constraints 16–3

17. Packaging Requirements 17–1

17.1 Overview 17–1

17.2 Packaging 17–4

17.2.0.1 Resource Adapter Archive 17–4

17.2.0.2 RAR Contents 17–5

17.2.0.3 Sample Directory Structure 17–5

17.2.0.4 Requirements 17–5

17.3 Deployment 17–6

17.3.1 Resource Adapter Provider 17–6

17.3.2 Deployer 17–9

17.3.2.1 Stand-Alone Resource Adapter Module 17–9

17.3.2.2 Resource Adapter Module with J2EE Application 17–9

17.3.2.3 Configuration 17–10

17.3.2.4 Security Configuration 17–10

17.4 Interfaces/Classes 17–11

17.4.1 ResourceAdapter 17–11

17.4.1.1 Requirements 17–11

17.4.2 ManagedConnectionFactory 17–11

17.4.2.1 Requirements 17–12

17.4.3 Properties Conventions 17–12

17.4.4 Standard Properties 17–12

17.5 JNDI Configuration and Lookup 17–13

17.5.1 Responsibilities 17–14

17.5.1.1 Deployer 17–14
Contents xix

17.5.1.2 Resource Adapter 17–14

17.5.1.3 Application Server 17–15

17.5.2 Scenario: Serializable 17–15

17.5.3 Scenario: Referenceable 17–17

17.5.3.1 ObjectFactory Implementation 17–17

17.5.3.2 Deployment 17–19

17.5.3.3 Scenario: Connection Factory Lookup 17–19

17.5.4 Requirements 17–23

17.6 Resource Adapter XML Schema Definition 17–23

18. Runtime Environment 18–1

18.1 Programming APIs 18–1

18.2 Security Permissions 18–2

18.3 Requirements 18–5

18.3.1 Example 18–6

18.4 Privileged Code 18–7

18.4.1 Example 18–7

19. Exceptions 19–1

19.1 ResourceException 19–1

19.2 System Exceptions 19–2

19.2.1 Exception Hierarchy 19–2

19.3 Work Exceptions 19–4

19.4 Additional Exceptions 19–5

20. Projected Items 20–1

A. Previous Version DTDs A–1

A.1 J2EE Connector Architecture 1.0 Resource Adapter XML DTD A–1

B. Activation Configuration for Message Inflow to JMS Endpoints B–1
xx J2EE Connector Architecture Specification • November 2003

B.1 Introduction B–1

B.2 JMS ActivationSpec JavaBean B–1

B.2.1 JMS ActivationSpec JavaBean Properties B–2

B.2.1.1 destination B–2

B.2.1.2 destinationType B–2

B.2.1.3 messageSelector B–3

B.2.1.4 acknowledgeMode B–3

B.2.1.5 subscriptionDurability B–3

B.2.1.6 clientId B–4

B.2.1.7 subscriptionName B–4

B.2.2 JMS ActivationSpec JavaBean Property Values B–4

B.3 JMS Endpoint with EJB 2.1 Activation Configuration Elements B–5

B.4 JMS Endpoint with EJB 2.0 Deployment Descriptor Elements B–6

C. Caching Manager C–1

C.1 Overview C–1

C.2 Synchronization contract C–2

C.2.1 Interface C–3

C.2.2 Implementation C–3

D. Security Scenarios D–1

D.1 EStore Application D–1

D.1.1 Scenario D–2

D.1.2 Security Environment D–2

D.1.3 Deployment D–3

D.2 Employee Self Service Application D–4

D.2.1 Architecture D–5

D.2.2 Security Environment D–5

D.2.3 Deployment D–6
Contents xxi

D.2.4 Scenario D–7

D.3 Integrated Purchasing Application D–7

D.3.1 Architecture D–7

D.3.2 Security Environment D–8

D.3.3 Deployment D–9

E. JAAS Based Security Architecture E–1

E.1 Java Authentication and Authorization Service (JAAS) E–1

E.2 Requirements E–2

E.3 Security Architecture E–3

E.3.1 JAAS Modules E–5

E.3.2 Illustrative Examples: JAAS Module E–5

E.3.2.1 Principal Mapping Module E–5

E.3.2.2 Credential Mapping Module E–6

E.3.2.3 Kerberos Module E–6

E.4 Security Configuration E–7

E.4.1 JAAS Configuration E–7

E.5 Scenarios E–8

E.5.1 Scenario: Resource Adapter Managed Authentication E–8

E.5.2 Scenario: Kerberos and Principal Delegation E–10

E.5.3 Scenario: GSS-API E–12

E.5.4 Scenario: Kerberos Authentication After Principal Mapping E–13

E.5.5 Scenario: EIS-Specific Authentication E–14

F. Related Documents F–1

G. Change History for Version 1.0 G–1

G.1 Version 0.9 G–1

G.2 Version 1.0 - Public Draft 1 G–2

G.3 Version 1.0 - Public Draft 2 G–2
xxii J2EE Connector Architecture Specification • November 2003

G.4 Version 1.0 - Proposed Final Draft 2 G–3

G.5 Version 1.0 - Final Release G–4

H. Change History for Version 1.5 H–1

H.1 Public Review Draft H–1

H.2 Proposed Final Draft H–1

H.3 Proposed Final Draft 2 H–2

H.4 Final Release H–3
Contents xxiii

xxiv J2EE Connector Architecture Specification • November 2003

Tables

TABLE 1-1 Connector 1.5 Expert Group Members 1–5

TABLE 1-2 Connector 1.0 Expert Group Members 1–7

TABLE 7-1 Transaction Management Scenarios 7–17

TABLE 12-1 Application Server Behavior For Transacted and Non-transacted Message Delivery 12–33

TABLE 15-1 Standard Properties for ConnectionSpec 15–11

TABLE 16-1 Resource Adapter API Requirements 16–2

TABLE 17-1 Description of RAR File Contents 17–5

TABLE 17-2 Standard Properties of the Connector Architecture 17–12

TABLE 18-1 Default Security Permission Set 18–3

TABLE 18-2 Methods and Security Permissions required 18–6

TABLE B-1 JMS ActivationSpec JavaBean Property Values B–4

TABLE B-2 Activation Configuration Elements (EJB 2.1) and ActivationSpec JavaBean Properties B–5

TABLE B-3 EJB 2.0 Deployment Descriptor Elements and JMS ActivationSpec JavaBean
Properties B–6
xxv

xxvi J2EE Connector Architecture Specification • November 2003

Figures

FIGURE 2-1 System Level Pluggability between Application Servers and EISs 2–5

FIGURE 3-1 Overview of the Connector Architecture 3–2

FIGURE 4-1 Illustration of a Scenario Based On the Connector Architecture 4–6

FIGURE 4-2 Connector Architecture Usage In Business Integration Scenario 4–9

FIGURE 5-1 Lifecycle Management Contract (interfaces) 5–3

FIGURE 5-2 Lifecycle Management (object diagram) 5–4

FIGURE 5-3 Resource Adapter Instance (composition) 5–7

FIGURE 5-4 Resource Adapter Lifecycle (state diagram) 5–12

FIGURE 5-5 Lifecycle Management Model (sequence diagram) 5–17

FIGURE 6-1 Architecture Diagram: Managed Application scenario 6–5

FIGURE 6-2 Class Diagram: Connection Management Architecture 6–9

FIGURE 6-3 ConnectionManager and Application Server specific services 6–16

FIGURE 6-4 Object Diagram: Connection Management architecture 6–31

FIGURE 6-5 OID: Connection Pool Management with new Connection Creation 6–36

FIGURE 6-6 OID: Connection Pool Management with Connection Matching 6–39

FIGURE 6-7 OID: Connection Event Notification 6–43

FIGURE 6-8 Architecture Diagram: Non-Managed application scenario 6–45

FIGURE 6-9 OID: Connection Creation in a Non-managed Application Scenario 6–48

FIGURE 7-1 Transaction Management Contract 7–2

FIGURE 7-2 Scenario: Transactions Across Multiple Resource Managers 7–4
xxvii

FIGURE 7-3 Scenario: Local Transaction on a Single Resource Manager 7–6

FIGURE 7-4 Architecture Diagram: Transaction Management 7–8

FIGURE 7-5 ManagedConnection Interface for Transaction Management 7–10

FIGURE 7-6 Object Diagram: Transaction Management 7–15

FIGURE 7-7 OID: Transactional Setup For Newly Created ManagedConnection Instances 7–25

FIGURE 7-8 OID: Connection Close and Transactional Cleanup 7–28

FIGURE 7-9 OID: Transaction Completion 7–30

FIGURE 7-10 Scenario to illustrate Local Transaction Management 7–40

FIGURE 7-11 OID: Connection Sharing across Component instances 7–43

FIGURE 7-12 Connection Sharing Scenario 7–45

FIGURE 7-13 State Diagram of Application-Level Connection Handle 7–46

FIGURE 7-14 Connection Acquisition Processing 7–52

FIGURE 7-15 Connection Re-association Processing 7–53

FIGURE 7-16 State Diagram of a Dissociatable Application-level Connection Handle 7–54

FIGURE 9-1 Security Contract 9–8

FIGURE 9-2 Security Contract: Subject Interface and its Containment Hierarchy 9–10

FIGURE 10-1 Work Management Contract (object diagram) 10–5

FIGURE 10-2 Work Management Contract (interfaces) 10–6

FIGURE 10-3 Work Processing Stages and their Outcomes 10–13

FIGURE 10-4 Blocking Durations of Various Work Submissions 10–16

FIGURE 10-5 Work Submission - Blocking Behavior (sequence diagram) 10–17

FIGURE 10-6 Work Submission - Callback Mechanism (sequence diagram) 10–22

FIGURE 11-1 Inbound Communication Model 11–1

FIGURE 11-2 Inbound Communication Model (an illustrative use case) 11–3

FIGURE 12-1 Message Inflow Contract 12–2

FIGURE 12-2 Message Inflow Contract (object diagram) 12–4

FIGURE 12-3 Message Inflow Contract (interfaces) 12–5

FIGURE 12-4 Endpoint (Message-Driven Bean) Deployment (Actors) 12–9

FIGURE 12-5 Endpoint (message-driven bean) Deployment Steps 12–17

FIGURE 12-6 Endpoint Deployment (sequence diagram) 12–21
xxviii J2EE Connector Architecture Specification • November 2003

FIGURE 12-7 Transacted Message Delivery: Option A (sequence diagram) 12–35

FIGURE 12-8 Transacted Message Delivery: Option B (sequence diagram) 12–36

FIGURE 12-9 Non-transacted Message Delivery (sequence diagram) 12–37

FIGURE 12-10 Endpoint Undeployment (sequence diagram) 12–38

FIGURE 13-1 EJB Invocation Model 13–2

FIGURE 14-1 Transaction Inflow Contract 14–2

FIGURE 14-2 Transaction Inflow Contract (object diagram) 14–3

FIGURE 14-3 Transactional Calls and Transaction Completion Flow (sequence diagram) 14–7

FIGURE 14-4 Crash Recovery Flows When Application Server Crashes (sequence diagram) 14–10

FIGURE 14-5 Crash Recovery Flows When EIS Crashes (sequence diagram) 14–11

FIGURE 15-1 Common Client Interface 15–2

FIGURE 15-2 Scenario: EAI Framework 15–4

FIGURE 15-3 Scenario: Enterprise Application Development Tool 15–5

FIGURE 15-4 Class Diagram: Common Client Interface 15–8

FIGURE 15-5 Record at Development-time and Runtime 15–23

FIGURE 15-6 Component-view Contract 15–26

FIGURE 15-7 Streamable Interface 15–30

FIGURE 15-8 ResultSet Interface 15–32

FIGURE 17-1 Packaging and Deployment Lifecycle of a Resource adapter 17–1

FIGURE 17-2 Deployment of a Resource Adapter Module 17–3

FIGURE 17-3 OID: Lookup of a ConnectionFactory Instance from JNDI 17–22

FIGURE C-1 Synchronization Contract between Caching Manager and Application Server C–2

FIGURE D-1 Illustrative Architecture of an Estore Application D–2

FIGURE D-2 Resource Principal for Estore Application Scenario D–4

FIGURE D-3 Illustrative Architecture of an Employee Self-service Application D–6

FIGURE D-4 Principal Mapping D–6

FIGURE D-5 Illustrative Architecture of an Integrated Purchasing Application D–8

FIGURE D-6 Principal Mapping D–9

FIGURE E-1 Security Architecture. E–4

FIGURE E-2 Resource Adapter-Managed Authentication E–9
Figures xxix

FIGURE E-3 Kerberos Authentication with Principal Delegation E–10

FIGURE E-4 GSS-API use by Resource Adapter E–12

FIGURE E-5 Kerberos Authentication After Principal Mapping E–13

FIGURE E-6 Authentication Through EIS-Specific JAAS Module E–14
xxx J2EE Connector Architecture Specification • November 2003

Code Samples

CODE EXAMPLE 5-1 Sample Resource Adapter 5-16

CODE EXAMPLE 10-1 javax.resource.spi.work 10-7

CODE EXAMPLE 12-1 javax.resource.spi 12-6

CODE EXAMPLE 12-2 javax.resource.spi.endpoint 12-6

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor 12-10

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter 12-24

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor 12-39

CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor 12-45

CODE EXAMPLE 12-7 Sample EJB 2.1 Deployment Descriptor 12-47

CODE EXAMPLE 12-8 Sending Messages Using the JMS API 12-50

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component 12-50

CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter 12-52

CODE EXAMPLE 12-11 Deployment Descriptor for a Message-Driven Bean 12-54

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation 13-3

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter 17-23

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD A-1
xxxi

xxxii J2EE Connector Architecture Specification • November 2003

CHAPTER 1

Introduction

The Java™ 2 Platform, Enterprise Edition (J2EE™ platform) provides containers for
client applications, web components based on servlets and Java Server Pages™
(JSP™), and Enterprise JavaBeans™ (EJB™) components. These containers provide
deployment and runtime support for application components. They provide a
federated view of the services provided by the underlying application server for the
application components.

Containers can run on existing systems; for example, web servers for the web
containers; application servers, TP monitors, and database systems for EJB
containers. This enables enterprises to leverage both the advantages of their existing
systems and those of J2EE. Enterprises can write, or rewrite, new applications using
J2EE capabilities and can also encapsulate parts of existing applications in Enterprise
JavaBeans, Java Server Pages or servlets.

Enterprise applications access functions and data associated with applications
running on Enterprise Information Systems (EIS). Application servers extend their
containers and support connectivity to heterogeneous EISs. Enterprise tools and
Enterprise Application Integration (EAI) vendors add value by providing tools and
frameworks to simplify the EIS integration task.

For enterprise application integration, bi-directional connectivity between enterprise
applications and EIS is essential. The J2EE Connector architecture defines standard
contracts that allow bi-directional connectivity between enterprise applications and
EISs. It also formalizes the relationships, interactions, and the packaging of the
integration layer, thus enabling enterprise application integration.

1.1 Overview
The J2EE Connector architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous EISs. Examples of EISs include Enterprise Resource
Planning (ERP), mainframe transaction processing (TP), and database systems.
1-1

The connector architecture defines a set of scalable, secure, and transactional
mechanisms that enable the integration of EISs with application servers1 and
enterprise applications.

The connector architecture also defines a Common Client Interface (CCI) for EIS
access. The CCI defines a client API for interacting with heterogeneous EISs.

The connector architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. A resource adapter is a system-level software driver that is used
by a Java application to connect to an EIS. The resource adapter plugs into an
application server and provides connectivity between the EIS, the application server,
and the enterprise application. The resource adapter serves as a protocol adapter
that allows any arbitrary EIS communication protocol to be used for connectivity.

An application server vendor extends its system once to support the connector
architecture and is then assured of seamless connectivity to multiple EISs. Likewise,
an EIS vendor provides one standard resource adapter which has the capability to
plug in to any application server that supports the connector architecture.

1.2 Scope
Version 1.0 of the connector architecture defines:

■ A standard set of system-level contracts between an application server and EIS.
These contracts focus on the important system-level aspects of integration:
connection management, transaction management, and security.

■ A Common Client Interface (CCI) that defines a client API for interacting with
multiple EISs.

■ A standard deployment and packaging protocol for resource adapters.

Refer to section 2.2.2 for the rationale behind the Common Client Interface.

Version 1.5 of the connector architecture defines:

■ Lifecycle management contract: A contract between an application server and a
resource adapter that allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to
bootstrap a resource adapter instance during its deployment or application server
startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

■ Work management contract: A contract between an application server and a
resource adapter that allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an

1. Application server is a generic term used in this document to refer to a middle-tier component server that is
compliant with the Java 2 Platform, Enterprise Edition.
1-2 J2EE Connector Architecture Specification • November 2003

application server for execution. The application server dispatches threads to
execute submitted Work instances. This allows a resource adapter to avoid
creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with
which Work instances are executed.

■ Transaction inflow contract: A contract between an application server and a
resource adapter that allows a resource adapter to propagate an imported
transaction to an application server. This contract also allows a resource adapter
to transmit transaction completion and crash recovery calls initiated by an EIS,
and ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

■ Message inflow contract: A standard, generic contract between an application
server and a resource adapter that allows a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message
providers (Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.)
to be plugged into any J2EE compatible application server via a resource adapter.

■ Describes the packaging model for different types of resource adapters (outbound
only, inbound only, or both).

1.3 Target Audience
The target audience for this specification includes:

■ EIS vendors and resource adapter providers
■ Messaging system vendors
■ Application server vendors and container providers
■ Enterprise application developers and system integrators
■ Enterprise tool and EAI vendors

The system-level contracts between an application server and an EIS are targeted
towards EIS vendors (or resource adapter providers, if the two roles are different)
and application server vendors. The CCI is targeted primarily towards enterprise
tools and EAI vendors.
Chapter 1 Introduction 1-3

1.4 JDBC and Connector Architecture
The JDBC™ API defines a standard Java API for accessing relational databases.
JDBC provides an API for sending SQL statements to a database and processing the
tabular data returned by the database.

The connector architecture is a standard architecture for integrating J2EE
applications with EISs that are not relational databases. Each of these EISs currently
provides a native function call API for identifying a function to call, specifying its
input data, and processing its output data. The goal of the Common Client Interface
(CCI) is to provide an EIS independent API for coding these EIS function calls.

The CCI is targeted at EIS development tools and other sophisticated users of EISs.
The CCI provides a way to minimize the EIS specific code required by such tools.
Most J2EE developers will access EISs using these tools rather than using CCI
directly.

It is expected that many J2EE applications will combine relational database access
using JDBC with EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for
integrating the transaction, security, and connection management facilities of an
application server with those of a transactional resource manager. The JDBC 3.0
specification (Section 3., “JDBC API specification, version 3.0” on page F-1) specifies
the relationship of JDBC to the SPI specified in the connector architecture.

1.5 Organization
This document begins by describing the rationale and goals for creating a standard
architecture to integrate an application server with multiple heterogeneous EISs. It
then describes the key concepts relevant to the connector architecture. These sections
provide an overall picture of the architecture.

This document then describes typical scenarios for using the connector architecture.
This chapter introduces the various roles and responsibilities involved in the
development and deployment of enterprise applications that integrate with multiple
EISs.

After these descriptive sections, this document focuses on the prescriptive aspects of
the connector architecture.
1-4 J2EE Connector Architecture Specification • November 2003

1.6 Document Convention
A regular Palatino font is used for describing the connector architecture.

An italic font is used for paragraphs that contain descriptive notes providing
clarifications.

A regular Courier font is used for Java source code, class, interface and method
names.

Note that the scenarios described in this document are illustrative in scope. The
intent of the scenarios is not to specify a prescriptive way of implementing a
particular contract.

The requirements section occurring in various chapters of this document highlight
only the salient requirements, but does not contain all the requirements. So, this
entire document must be used as a requirements specification.

This document uses the EJB component model to describe some scenarios. The EJB
specification (Section 1., “Enterprise JavaBeans (EJBTM) specification, version 2.1:”
on page F-1) provides the latest details of the EJB component model.

1.7 Connector Architecture Expert Group
for Version 1.5 (JSR-112)
Refer to the URL http://www.jcp.org/en/jsr/detail?id=112 for details on JSR-112.
The following table lists the members of the Connector Expert Group.

TABLE 1-1 Connector 1.5 Expert Group Members

Company Expert Member

BEA Jim Gish, Mitch Upton, Tom Mitchell

Bull S.A. Michael Giroux

Ericsson Infotech AB Peter Kristiansson

Fujitsu Limited Ivar Alexander

Hewlett-Packard John Speidel

IBM Michael Beisiegel, Piotr Przybylski

Bahwan Cybertek Technologies Inc. Vijay Sundhar
Chapter 1 Introduction 1-5

1.8 Acknowledgements for Version 1.5
This specification is the work of many people. Bill Shannon, Mark Hapner, Kenneth
Saks, Rahul Sharma, and Kate Stout contributed to the overall design. Umit
Yalcinalp designed the Connector 1.5 XML Schema Definition.

Venkat Amirisetty, Qingqing Ouyang, Binod P G, Balaji Raghunathan, Srikanth
Padakandla and Aditya Gore from the J2EE Implementation team, Gursharan Singh
from J2EE Compatibility Test Suite team, provided useful feedback on the various
drafts of the specification. Ian Evans provided excellent editorial assistance.

Vijay Sarathy and Vivek Khandelwal did a great job evangelizing, strategizing, and
guiding the overall direction of this specification. Anita Jindal, Jennifer Douglas,
David Heisser, Bonnie Kellett, and Peter Walker provided management support.

Sanjeev Krishnan, Max Mortazavi, Tony Ng, Linda DeMichiel, George Tharakan,
Colleen Evans (Sonic Software), Hemanth Puttaswamy, Sheetal Vartak and Shivaram
Mysore provided useful comments on the specification.

Individual Expert Charlton Barreto

IONA Technologies PLC Gary Tully

MicroFocus Stephen Gennard

NEON Systems, Inc. Yongtao You

Oracle Anthony Lai

SAP AG Walldorf Nikolai Tankov

Siemens AG Ulf Lange

Silverstream Software Roman Kishchenko

Sonic Software Jaime Meritt

Sun Microsystems, Inc. Ram Jeyaraman (Specification Lead)

Sybase Mark DeLaFranier

TIBCO Software Inc. Jon Dart, Anuradha M. Sastri

Unisys Albert DeNigris

WebMethods Corp Bruce Tran, Bruno Kurtic

TABLE 1-1 Connector 1.5 Expert Group Members

Company Expert Member
1-6 J2EE Connector Architecture Specification • November 2003

And of course, this specification was formed and molded based on conversations
with and review feedback from the expert group members.

1.9 Connector Architecture Expert Group
for Version 1.0 (JSR-16)
Refer to the URL http://www.jcp.org/en/jsr/detail?id=16 for details on JSR-16. The
following are part of the expert group and have made invaluable contributions to
the Connector architecture specification:

TABLE 1-2 Connector 1.0 Expert Group Members

Company Expert Member

BEA Pete Homan

Fujitsu Yoshi Otagiri, Ivar Alexander

IBM Tom Freund, Michael Beisiegel

Inline Jack Greenfield

Inprise Charlton Barreto

IPlanet Tony Pan, Pavan Bhatnagar

Motorola Guy Bieber

Oracle Dan Coyle

SAP Marek Barwicki

Sun Rahul Sharma (Specification Lead)
Fred H. Carter

Sybase Rajini Balay, K. Swaminathan

Tibco Jon Dart

Unisys Lester Lee
Chapter 1 Introduction 1-7

1.10 Acknowledgements for Version 1.0
Shel Finkelstein, Mark Hapner, Vlada Matena, Tony Ng, Bill Shannon, and Sekhar
Vajjhala (all from Sun Microsystems) have provided invaluable technical input and
guidance to the Connector architecture specification. Jean Zeng and Pong Ching also
provided useful input to the specification.

Rick Cattell, Shel Finkelstein, Bonnie Kellett, and Jeff Jackson have provided huge
support to the specification lead in the management of the Connectors expert group.

Tony Ng is leading the effort of providing a reference implementation for the
Connector architecture as part of J2EE 1.3 platform. Liz Blair has worked on
providing the Compatibility Test Suite (CTS) plan for the Connector architecture.

Beth Stearns was a great help in doing an editorial review of this document.
1-8 J2EE Connector Architecture Specification • November 2003

CHAPTER 2

Overview

This chapter introduces key concepts that are required to understand the connector
architecture. It lays down a reference framework to facilitate a formal specification of
the connector architecture in the subsequent chapters of this document.

2.1 Definitions

2.1.1 Enterprise Information System (EIS)
An EIS provides the information infrastructure for an enterprise. An EIS offers a set
of services to its clients. These services are exposed to clients as local and/or remote
interfaces. Examples of an EIS include:

■ ERP system
■ Mainframe transaction processing system
■ Legacy database system

There are two aspects of an EIS:

■ System level services—for example, SAP RFC, CICS ECI
■ An application specific interface—for example, the table schema and specific

stored procedures of a database, the specific CICS TP program
2-1

2.1.2 Connector Architecture
An architecture for integrating J2EE servers with EISs. There are two parts to this
architecture: an EIS vendor-provided resource adapter and an application server that
allows this resource adapter to be plugged in. This architecture defines a set of
contracts (such as transactions, security, connection management) that a resource
adapter has to support to plug in to an application server.

These contracts support bi-directional communication (outbound and inbound)
between an application server and an EIS via a resource adapter. That is, the
application server may use the resource adapter for outbound communication to the
EIS, and it may also use the resource adapter for inbound communication from the
EIS.

2.1.3 EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

■ A record or set of records in a database system
■ A business object in an ERP system
■ A transaction program in a transaction processing system

2.1.4 Resource Manager (RM)
A resource manager manages a set of shared EIS resources. A client requests access
to a resource manager to use its managed resources. A transactional resource
manager can participate in transactions that are externally controlled and
coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either
be a middle-tier application server or a client-tier application. A resource manager is
typically in a different address space or on a different machine from the client that
accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the
context of transaction management. Examples of resource managers are a database
system, a mainframe TP system, and an ERP system.
2-2 J2EE Connector Architecture Specification • November 2003

2.1.5 Managed Environment
A managed environment defines an operational environment for a J2EE-based,
multi-tier, web-enabled application that accesses EISs. The application consists of
one or more application components—EJBs, JSPs, servlets—which are deployed on
containers. These containers can be one of the following:

■ Web containers that host JSPs, servlets, and static HTML pages
■ EJB containers that host EJB components
■ Application client containers that host standalone application clients

2.1.6 Non-Managed Environment
A non-managed environment defines an operational environment for a two-tier
application. An application client directly uses a resource adapter to access the EIS,
which defines the second tier of a two-tier application.

2.1.7 Connection
A connection provides connectivity to a resource manager. It enables an application
client to connect to a resource manager, perform transactions, and access services
provided by that resource manager. A connection can be either transactional or non-
transactional. Examples include a database connection and an SAP R/3 connection.
A connection to a resource manager may be used by a client for bi-directional
communication, depending on the capabilities of the resource manager.

2.1.8 Application Component
An application component can be a server-side component, such as an EJB, JSP, or
servlet, that is deployed, managed, and executed on an application server. It can also
be a component executed on the web-client tier but made available to the web-client
by an application server. Examples of the latter type of application component
include a Java applet, and a DHTML page.

2.1.9 Container
A container is a part of an application server that provides deployment and runtime
support for application components. It provides a federated view of the services
provided by the underlying application server for the application components. For
Chapter 2 Overview 2-3

more details on different types of standard containers, refer to the EJB (Section 1.,
“Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1), JSP, and
servlet specifications.

2.2 Rationale
The following section describes the rationale behind the connector architecture.

2.2.1 System Contracts
A standard architecture is needed to integrate various EISs with an application
server. Without a standard, EIS vendors and application server vendors may have to
use vendor-specific architectures to provide EIS integration.

The connector architecture provides a Java solution to the problem of bi-directional
connectivity between the multitude of application servers and EISs. By using the
connector architecture, it is no longer necessary for EIS vendors to customize their
product for each application server. An application server vendor who conforms to
the connector architecture also does not need to add custom code whenever it wants
to extend its application server to support connectivity to a new EIS.

The connector architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. The resource adapter plugs into an application server and
provides the underlying infrastructure for the integration between an EIS and the
application server.

An application server vendor extends its system only once to support the connector
architecture and is then assured of connectivity to multiple EISs. Likewise, an EIS
vendor provides one standard resource adapter and it has the capability to plug in to
any application server that supports the connector architecture.

FIGURE 2-1 on page 5 shows that a standard EIS resource adapter can plug into
multiple application servers. Similarly, multiple resource adapters for different EISs
can plug into an application server. This system-level pluggability is made possible
through the connector architecture.
2-4 J2EE Connector Architecture Specification • November 2003

If there are m application servers and n EISs, the connector architecture reduces the
scope of the integration problem from an m x n problem to an m + n problem.

FIGURE 2-1 System Level Pluggability between Application Servers and EISs

2.2.2 Common Client Interface
An enterprise tools vendor provides tools that lead to a simple application
programming model for EIS access, thereby reducing the effort required in EIS
integration. An EAI vendor provides a framework that supports integration across
multiple EISs. Both types of vendors need to integrate across heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client
APIs are RFC for SAP R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common
client API. The adapted API is typically specific to a tools vendor and supports an
application programming model common across all EISs. Adapting the API requires
significant effort on the part of a tools vendor. In this case, the m x n integration
problem applies to tools vendors.

Enterprise Information
Systems

Enterprise InformationApplication Servers
System

Application Server
Resource Adapters

Resource Adapter

Application server extension for resource adapter

Standard resource adapter
pluggability
Chapter 2 Overview 2-5

The connector architecture provides a solution for the m x n integration problem for
tools and EAI vendors. The architecture specifies a standard Common Client
Interface (CCI) that supports a common client API across heterogeneous EISs.

All EIS resource adapters that support CCI are capable of being plugged into
enterprise tools and EAI frameworks in a standard way. A tools vendor need not do
any API adoption; the vendor can focus on providing its added value of simplifying
EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by
narrowing the scope of a m x n problem to a m + n problem if there are m tools and
n EISs.

2.3 Goals
The connector architecture has been designed with the following goals:

■ Simplify the development of scalable, secure, and transactional resource adapters
for a wide range of EISs—ERP systems, database systems, mainframe-based
transaction processing systems.

■ Be sufficiently general to cover a wide range of heterogeneous EISs. The sufficient
generality of the architecture ensures that there are various implementation
choices for different resource adapters; each choice is based on the characteristics
and mechanisms of an underlying EIS.

■ Be not tied to a specific application server implementation, but applicable to all
J2EE platform compliant application servers from multiple vendors.

■ Provide a standard client API for enterprise tools and EAI vendors. The standard
API will be common across heterogeneous EISs.

■ Express itself in a manner that allows an organization to unambiguously
determine whether or not an implementation is compatible.

■ Be simple to understand and easy to follow, regardless of whether one is
designing a resource adapter for a particular EIS or developing/deploying
application components that need to access multiple EISs. This simplicity means
the architecture introduces only a few new concepts, and places minimal
implementation requirements so that it can be leveraged across different
integration scenarios and environments.

■ Define contracts and responsibilities for various roles that provide pieces for
standard bi-directional connectivity to an EIS. This enables a standard resource
adapter from a EIS vendor to be pluggable across multiple application servers.
2-6 J2EE Connector Architecture Specification • November 2003

■ Enable an enterprise application programmer in a non-managed application
environment to directly use the resource adapter to access the underlying EIS.
This is in addition to managed access to an EIS, with the resource adapter
deployed in the middle-tier application server.
Chapter 2 Overview 2-7

2-8 J2EE Connector Architecture Specification • November 2003

CHAPTER 3

The Connector Architecture

The following chapter gives an overview of the connector architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are
pluggable into an application server. This capability enables application components
deployed on the application server to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level
mechanisms—transactions, security, and connection management—transparent from
the application components. As a result, an application component provider focuses
on the development of business and presentation logic for its application
components and need not get involved in the system-level issues related to EIS
integration. This leads to an easier and faster cycle for the development of scalable,
secure, and transactional enterprise applications that require connectivity with
multiple EISs.
3-1

FIGURE 3-1 Overview of the Connector Architecture

3.1 System Contracts
To achieve a standard system-level pluggability between application servers and
EISs, the connector architecture defines a standard set of system-level contracts
between an application server and an EIS. The EIS side of these system-level
contracts are implemented in a resource adapter.

A resource adapter is specific to an underlying EIS. It is a system-level software
driver that is used by an application server or an application client to connect to an
EIS.

A resource adapter plugs into an application server. The resource adapter and
application server collaborate to provide the underlying mechanisms—transactions,
security, connection pooling, and dispatch to application components.

Enterprise Information
System

Resource Adapter

Application Component

Application Server

Container-Component
Contract

System Contracts

Client API

EIS specific interface
3-2 J2EE Connector Architecture Specification • November 2003

A resource adapter is used within the address space of the application server.
Examples of resource adapters are:

■ A JDBC driver to connect to a relational database (as specified in the JDBC (See
Related Documents‚ page 1, 3.) specification)

■ A resource adapter to connect to an ERP system

■ A resource adapter to connect to a TP system

■ A resource adapter to plug-in a messaging system

A resource adapter may provide different types of connectivity between an
application and an EIS.

■ Outbound communication: The resource adapter allows an application to connect
to an EIS system and perform work. All communication is initiated by the
application. In this case, the resource adapter serves as a passive library for
connecting to an EIS, and executes in the context of the application threads.

■ Inbound communication: The resource adapter allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The
resource adapter may request threads from the application server or create its
own threads.

■ Bi-directional communication: The resource adapter supports both outbound and
inbound communication.

The connector architecture defines the following set of standard contracts between
an application server and EIS:

■ A connection management contract that enables an application server to pool
connections to an underlying EIS, and enables application components to connect
to an EIS. This leads to a scalable application environment that can support a
large number of clients requiring access to EISs.

■ A transaction management contract between the transaction manager and an EIS
that supports transactional access to EIS resource managers. This contract enables
an application server to use a transaction manager to manage transactions across
multiple resource managers. This contract also supports transactions that are
managed internal to an EIS resource manager without the necessity of involving
an external transaction manager.

■ A security contract that enables secure access to an EIS. This contract provides
support for a secure application environment that reduces security threats to the
EIS and protects valuable information resources managed by the EIS.

■ A lifecycle management contract that allows an application server to manage the
lifecycle of a resource adapter. This contract provides a mechanism for the
application server to bootstrap a resource adapter instance during its deployment
or application server startup, and to notify the resource adapter instance during
its undeployment or during an orderly shutdown of the application server.

■ A work management contract that allows a resource adapter to do work (monitor
network endpoints, call application components, etc.) by submitting Work
instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to
Chapter 3 The Connector Architecture 3-3

avoid creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with
which Work instances are executed.

■ A transaction inflow contract that allows a resource adapter to propagate an
imported transaction to an application server. This contract also allows a resource
adapter to transmit transaction completion and crash recovery calls initiated by
an EIS, and ensures that the ACID properties of the imported transaction are
preserved.

■ A message inflow contract that allows a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message
providers (Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.)
to be plugged into any J2EE compatible application server via a resource adapter.

FIGURE 3-1 on page 2 does not illustrate any contracts that are internal to an
application server implementation. The specific mechanisms and contracts within an
application server are outside the scope of the connector architecture specification.
This specification focuses on the system-level contracts between the application
server and the EIS.

In FIGURE 3-1, the application server and resource adapter are shown as separate
entities. This is done to illustrate that there is a logical separation of the respective
roles and responsibilities defined for the support of the system level contracts.
However, this separation does not imply a physical separation, as in an application
server and a resource adapter running in separate processes.

3.2 Client API
The client API used by application components for EIS access may be defined as:

■ The standard Common Client Interface (CCI) as specified in the chapter
“Common Client Interface” on page 15-1.

■ A client API specific to the type of a resource adapter and its underlying EIS. An
example of such an EIS specific client API is JDBC for relational databases.

The Common Client Interface (CCI) defines a common client API for accessing EISs.
The CCI is targeted towards Enterprise Application Integration (EAI) and enterprise
tools vendors.
3-4 J2EE Connector Architecture Specification • November 2003

3.3 Requirements
The connector architecture requires that the connector architecture-compliant
resource adapter and the application server support the system contracts. Detailed
requirements for each system contract are specified in later chapters.

The connector architecture recommends, though it does not mandate, that a resource
adapter support CCI as the client API. The recommendation enables the connector
architecture to provide a solution for the m x n integration problem for application
development tools and EAI vendors.

The connector architecture allows a resource adapter with an EIS-specific client API
to support system contracts and to be capable of standard connector architecture-
based pluggability into an application server.

3.4 Non-Managed Environment
The connector architecture supports access to EISs from non-managed application
clients; for example, Java applications and applets.

In a non-managed two-tier application environment, an application client directly
uses a resource adapter library. A resource adapter, in this case, exposes its low-level
transactions and security APIs to its clients. An application client has to take
responsibility for managing security and transactions (and rely on connection
pooling if done by the resource adapter internally) by using the low-level APIs
exposed by the resource adapter. This model is similar to the way a two-tier JDBC
application client accesses a database system in a non-managed environment.
Chapter 3 The Connector Architecture 3-5

3-6 J2EE Connector Architecture Specification • November 2003

CHAPTER 4

Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of
this chapter is to specify contracts that ensure that the output of each role is
compatible with the input of the other role. Later chapters specify a detailed set of
responsibilities for each role, relative to the system-level contracts.

4.1 Roles
The following section describes the roles and responsibilities specific to the
connector architecture.

4.1.1 Resource Adapter Provider
The resource adapter provider is an expert in the technology related to an EIS and is
responsible for providing a resource adapter for an EIS. Since this role is highly EIS
specific, an EIS vendor typically provides the resource adapter for its system.

A third party vendor (who is not an EIS vendor) may also provide an EIS resource
adapter and its associated set of application development tools. Such a provider
typically specializes in writing resource adapters and related tools for a large
number of EISs.
4-1

4.1.2 Application Server Vendor
The application server vendor provides an implementation of a J2EE-compliant
application server that provides support for component based enterprise
applications. A typical application server vendor is an OS vendor, middleware
vendor, or database vendor. The role of an application server vendor is typically the
same as that of a container provider.

The J2EE platform specification (See Related Documents‚ page 1, 8.) specifies
requirements for a J2EE platform provider.

4.1.3 Container Provider
The container provider is responsible for providing a container implementation for a
specific type of application component. For example, the container provider may
provide a container for EJB components. Each type of application component—EJB,
servlet, JSP, applet—has its own set of responsibilities for its container provider. The
respective specifications outline these responsibilities.

A container implementation typically provides the following functionality:

■ It provides deployed application components with transaction and security
management, distribution of clients, scalable management of resources, and other
services that are generally required as part of a managed server platform.

■ It provides application components with connectivity to an EIS by transparently
managing security, resources, and transactions using the system-level contracts
with the EIS-specific resource adapter.

■ It insulates application components from the specifics of the underlying system-
level mechanisms by supporting a simple, standard contract with the application
component. Refer to the Enterprise JavaBeans specification (See Related
Documents‚ page 1, 1.) for more details on the EJB component contract.

The expertise of the container provider is system-level programming, with its focus
on the development of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary
for the deployment of application components and resource adapters. It is also
required to provide runtime support for the deployed application components.

The container provider typically provides tools that allow the system administrator
to monitor and manage a container and application components during runtime.
4-2 J2EE Connector Architecture Specification • November 2003

4.1.4 Application Component Provider
In the context of the connector architecture, the application component provider
produces an application component that accesses one or more EISs to provide its
application functionality.

The application component provider is an application domain expert. In the case of
application components targeted towards integration with multiple EISs, various
business tasks and entities are implemented based on access to EIS data and
functions.

The application component provider typically programs against easy-to-use Java
abstractions produced by application development tools. These Java abstractions are
based on the Common Client interface (CCI).

The application component provider is not required to be an expert at system level
programming. The application component provider does not program transactions,
security, concurrency, or distribution, but relies on a container to provide these
services transparently.

The application component provider is responsible for specifying structural
information for an application component and its external dependencies. This
information includes, for example, the name and type of the connection factories,
and security information.

The output of an application component provider is a Java archive (JAR) file that
contains the application components and any additional Java classes required to
connect to EISs.

4.1.5 Enterprise Tools Vendors
The application component provider relies on tools to simplify application
development and EIS integration. Since programming client access to EIS data and
functions is a complex application development task, an application development
tool reduces the effort and complexity involved in this task.

Enterprise tools serve different roles in the application development process, as
follows:

■ Data and function mining tool—enables application component providers to look
at the scope and structure of data and functions existing in an EIS.

■ Analysis and design tool—enables application component providers to design an
application in terms of EIS data and functions.

■ Code generation tool—generates Java classes for accessing EIS data and functions.
A mapping tool that bridges across two different programming models (object to
relational or vice-versa) falls into this category of tools.
Chapter 4 Roles and Scenarios 4-3

■ Application composition tool—enables application component providers to
compose application components from Java classes generated by a code
generation tool. This type of tool typically uses the JavaBeans component model
to enhance the ease of programming and composition.

■ Deployment tool—used by application component providers and deployers to set
transaction, security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end
application development environment.

In addition, various tools and middleware vendors offer EAI frameworks that
simplify integration across heterogeneous EISs.

4.1.6 Application Assembler
The application assembler combines various application components into a larger set
of deployable units. The input of the application assembler is one or more JAR files
produced by an application component provider and the output is one or more JAR
files with a deployment descriptor.

The application assembler is typically a domain expert who assembles application
components to produce an enterprise application. To achieve this goal, the
application assembler takes application components, possibly from multiple
application component providers, and assembles these components.

4.1.7 Deployer
The deployer takes one or more deployable units of application components,
produced by the application assembler or component provider, and deploys the
application components in a target operational environment. An operational
environment is comprised of an application server and multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the
application component provider. For example, the deployer ensures that all
connection factories used by the application components are present in an
operational environment. To perform its role, the deployer typically uses the
application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an
operational environment may include multiple EISs, the role of the deployer is more
intensive and complex than that in a non-EIS scenario. The deployer has to
understand security, transaction, and connection management-related aspects of
multiple EISs that are configured in an operational environment.
4-4 J2EE Connector Architecture Specification • November 2003

4.1.8 System Administrator
The system administrator is responsible for the configuration and administration of
a complete enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage
the operational environment by working closely with the system administrators of
respective EISs. This enables the deployer to resolve deployment issues while
deploying application components and resource adapters in a target operational
environment.

This chapter introduced the roles involved in the connector architecture. The later
chapters specify responsibilities for each role in more detail.

4.2 Scenario: Integrated Purchase Order
System
This section describes a scenario that illustrates the use of the connector architecture.
The following description is kept at a high level. Specific scenarios related to
transaction management, security, connection management, and inbound
communications are described in subsequent chapters.
Chapter 4 Roles and Scenarios 4-5

The following diagram shows the different pieces that comprise this scenario:

FIGURE 4-1 Illustration of a Scenario Based On the Connector Architecture

ERP Software Inc. is an enterprise system vendor that provides an enterprise
resource planning (ERP) system. ERP Software wants to integrate its ERP system
with various application servers. It achieves this goal by providing a standard
resource adapter for its ERP system. The resource adapter for ERP systems supports
the standard inbound communication, transaction, connection management and
security contracts. The resource adapter also supports the Common Client Interface
(CCI) as its client API.

Resource Adapter

PurchaseOrder EJB

Client Component

Application Server

Container-Component
Contract

System Contracts

Common Client Interface

EIS specific interface

ERP System

Resource Adapter

TP System

System Contracts
4-6 J2EE Connector Architecture Specification • November 2003

TPSoft Inc. is another enterprise system vendor that provides a transaction
processing (TP) system. TPSoft has also developed a standard resource adapter for
its TP system. The resource adapter library supports CCI as part of its
implementation.

AppServer Inc. is a system vendor that has an application server product which
supports the development and deployment of component-based enterprise
applications. This application server product has an EJB container that provides
deployment and runtime support for EJB components. The application server
supports the system-level contracts that enable a resource adapter, which also
supports these contracts, to plug into the application server and provide bi-
directional connectivity to the underlying EIS. The EJB container insulates EJB
components from the communication, transaction, security, and connection
management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order
processing system based on the ERP system for its business processes. Recently,
Manufacturer has acquired a firm that uses TPSoft’s TP system for its purchase order
processing. Manufacturer aims to integrate these two systems together into a single
integrated purchase order system. It wants a scalable, multi-user, secure, transaction-
enabled integrated purchase order system that is not tied to a specific computing
platform. Manufacturer plans to deploy the middle-tier of this system on the
application server from AppServer Inc.

The MIS department of Manufacturer develops a PurchaseOrder EJB that provides
an integrated view of the two underlying purchase order systems. While developing
PurchaseOrder EJB, the bean provider does not program the transactions, security,
connection management or inbound communication mechanisms required for
connectivity to the ERP and TP systems; it relies on the EJB container and
application server to provide these services.

The bean provider uses an application programming model based on the CCI to
access the business objects and function modules for purchase order processing in
the ERP system. The bean provider uses a similar application programming model
based on the CCI to access the purchase order processing programs in the TP
system.

The MIS department of Manufacturer assembles an integrated web-based purchase
order application using PurchaseOrder EJB with other types of application
components, such as JSPs and servlets.

The MIS department installs and configures the application server, ERP, and TP
system as part of its operational environment. It then deploys the integrated
purchase order application on this operational environment. As part of the
deployment, the MIS department configures the operational environment based on
the deployment requirements for the various application components that have been
assembled into the integrated enterprise application.
Chapter 4 Roles and Scenarios 4-7

After deploying and successfully testing the integrated purchase order system, the
MIS department makes the system available for other departments to use.

4.3 Scenario: Business Integration
This scenario illustrates the use of the connector architecture in a business
integration scenario.

Wombat Corp. is a manufacturing firm that aims to adopt an e-business strategy.
Wombat has huge existing investments in its EIS systems. The EISs include ERP
systems, mainframe transaction processing systems, and message providers.

Wombat needs to interact with its various partners. In order to do this, it needs
support for different interaction mechanisms. It also needs a mechanism to involve
all its EIS systems in the interaction. Further, it needs an application sever to host its
business applications which participate in the various interactions.

Wombat buys a J2EE based application server from EComm, Inc. to host its business
applications which interact with its EISs and its various partners. The application
server supports the connector architecture contracts which make it possible to use
appropriate resource adapters to drive interactions with its partners and its EISs.

The connector architecture enables Wombat to integrate its existing infrastructure
with the application server. Wombat buys off-the-shelf resource adapters for its
existing set of EISs and to support interactions with its partners and uses them to
integrate its business applications (deployed on the application server).
4-8 J2EE Connector Architecture Specification • November 2003

FIGURE 4-2 Connector Architecture Usage In Business Integration Scenario

App Server

Web clients

Java-based
Application
clients

Firm: Wombat Corp

Supplier A

XML over HTTP/s

Supplier B
Supplier C

based on
J2EE

 EIS
 Messaging
 System

External client applications

 Internal client applications

Resource
Adapters
Chapter 4 Roles and Scenarios 4-9

4-10 J2EE Connector Architecture Specification • November 2003

CHAPTER 5

Lifecycle Management

This chapter specifies a contract between an application server and a resource
adapter that allows an application server to manage the lifecycle of a resource
adapter. This contract provides a mechanism for the application server to bootstrap
a resource adapter instance during its deployment or application server startup,
and to notify the resource adapter instance during its undeployment or during an
orderly shutdown of the application server.

5.1 Overview
A resource adapter is a system component which is deployed in an application
server. When a resource adapter is deployed, or during application server startup,
an application server needs to bootstrap an instance of the resource adapter in its
address space. When a resource adapter is undeployed, or during application server
shutdown, the application server needs a mechanism to notify the resource adapter
instance to stop functioning so that it can be safely unloaded.

The lifecycle management contract provides such a mechanism for an application
server to manage the lifecycle of a resource adapter instance. This allows an
application server to bootstrap a resource adapter instance during resource adapter
deployment or application server startup and also to expose some of its useful
facilities to the resource adapter instance. It also provides a mechanism to notify the
resource adapter instance while it is undeployed or during an orderly shutdown of
the application server.
5-1

5.2 Goals
■ Provide a mechanism for an application server to manage the lifecycle of a

resource adapter instance.
5-2 J2EE Connector Architecture Specification • November 2003

5.3 Lifecycle Management Model
FIGURE 5-1 Lifecycle Management Contract (interfaces)

 ResourceAdapter
 (from adapter)

start()

 BootstrapContext
 (from app server)

getWorkManager()
stop()

 javax.resource.spi
Chapter 5 Lifecycle Management 5-3

FIGURE 5-2 Lifecycle Management (object diagram)

An application server implements the BootstrapContext and WorkManager
interfaces. A resource adapter implements the ResourceAdapter interface.

package javax.resource.spi;

import javax.resource.spi.work.WorkManager;

public interface ResourceAdapter {
void start(BootstrapContext) // startup notification

throws ResourceAdapterInternalException;
void stop(); // shutdown notification
... // other operations

}

public interface BootstrapContext {
WorkManager getWorkManager();
... // other operations

}

 Application Server Resource Adapter

ResourceAdapter

BootstrapContext

 WorkManager

getWorkManager()

 stop()

start(BootstrapContext)
5-4 J2EE Connector Architecture Specification • November 2003

5.3.1 ResourceAdapter JavaBean and Bootstrapping a
Resource Adapter Instance
The implementation class name of the ResourceAdapter interface is specified in
the resource adapter deployment descriptor. The ResourceAdapter class must be a
JavaBean. Refer to Section 16.3, “JavaBean Requirements” on page 16-2. During
resource adapter deployment, the resource adapter deployer creates a
ResourceAdapter JavaBean and configures it with the appropriate properties.

When a resource adapter is deployed, or during application server startup, an
application server bootstraps an instance of the resource adapter in its address
space. In order to bootstrap a resource adapter instance, the application server must
use the configured ResourceAdapter JavaBean and call its start method. The
start method call is a startup notification from the application server, and this
method is called by an application server thread.

During the start method call the ResourceAdapter JavaBean is responsible for
initializing the resource adapter instance. This may involve creating resource
adapter instance specific objects, creating threads (refer to Chapter 10, “Work
Management”), and setting up network endpoints. A ResourceAdapter JavaBean
represents exactly one functional resource adapter unit or instance. The application
server must instantiate exactly one ResourceAdapter JavaBean per functional
resource adapter instance. The application server must create at least one functional
resource adapter instance per resource adapter deployment1.

The application server is allowed to have multiple instances of a ResourceAdapter
JavaBean active simultaneously, in the same JVM, provided the instances are not
equal. Their equality is determined using the equals method, and therefore, the
ResourceAdapter JavaBean is required to implement the equals method.

During the start method call, an application server must provide a
BootstrapContext instance containing references to some of the application server
facilities (for example, WorkManager) for use by the resource adapter instance. The
application server facilities exposed via the BootstrapContext instance may be
used by the resource adapter instance during its lifetime.

During the start method call, the resource adapter instance initializes itself, and
may use the WorkManager to submit Work instances for execution (see Chapter 10,
“Work Management”). The start method call should return in a timely manner,
and should avoid blocking calls, such as use of doWork method call on the
WorkManager instance. The application server may throw a
WorkRejectedException in response to any or all doWork method calls on the

1. An application server may create more than one functional resource adapter instance per resource adapter
deployment, in order to create replicas of a single functional resource adapter instance on multiple Virtual
Machines (VMs). In general, however, there should be just one functional resource adapter instance per
deployment.
Chapter 5 Lifecycle Management 5-5

WorkManager instance, in order to enforce that a start method call does not block.
Resource adapter implementations are strongly recommended to use startWork
and scheduleWork methods on the WorkManager, instead of the doWork method.

Any exception thrown during the start method call indicates an error condition,
and the attempt by the application server to create a resource adapter instance fails.
A future version of the specification may add a two-phase startup procedure.

A resource adapter instance at runtime may contain several objects that may be
created and discarded during its lifetime. Such objects include
ManagedConnectionFactory JavaBean (refer to Chapter 6, “Connection
Management””), ActivationSpec JavaBean (refer to Chapter 12, “Message
Inflow””), various connection objects, resource adapter private objects, and other
resource adapter specific objects that are exposed to applications.

The ResourceAdapter JavaBean represents a resource adapter instance and
contains the configuration information pertaining to that resource adapter instance.
This configuration information may also be used as global defaults for
ManagedConnectionFactory and ActivationSpec JavaBeans. That is, when
ManagedConnectionFactory or ActivationSpec JavaBeans are created they
may inherit the global defaults (ResourceAdapter JavaBean configuration
information), which make it easier to configure them.

A resource adapter instance may provide bi-directional connectivity to multiple EIS
instances. A ManagedConnectionFactory JavaBean can be used to provide
outbound connectivity to a single EIS instance. An ActivationSpec JavaBean can
be used to provide inbound connectivity from an EIS instance. A resource adapter
instance may contain several such ManagedConnectionFactory and
ActivationSpec JavaBeans. FIGURE 5-3 on page 7 describes the association
between a resource adapter instance and its various ManagedConnectionFactory
and ActivationSpec JavaBeans.
5-6 J2EE Connector Architecture Specification • November 2003

FIGURE 5-3 Resource Adapter Instance (composition)

 Resource adapter instance

ResourceAdapter

ManagedConnectionFactory

JavaBean (exactly one)

Application JavaBean EIS instance

Application

Application

Application

EIS instance

EIS instance

EIS instance
ManagedConnectionFactory
JavaBean

ActivationSpec
JavaBean

ActivationSpec
JavaBean

Outbound communication

 Inbound communication

 (within an application server)
Chapter 5 Lifecycle Management 5-7

5.3.2 ManagedConnectionFactory JavaBean and
Outbound Communication
A ManagedConnectionFactory JavaBean represents outbound connectivity
information to an EIS instance from an application via a specific resource adapter
instance. This contains the configuration information pertaining to outbound
connectivity to an EIS instance. Refer to Chapter 6, “Connection Management” for
more details on the ManagedConnectionFactory JavaBean.

When a ManagedConnectionFactory JavaBean is created, it may inherit the
ResourceAdapter JavaBean (which represents the resource adapter instance)
configuration information, and overrides specific global defaults, if any, and may
add other configuration information specific to outbound connectivity.

That is, in the case of outbound communication, the outbound connectivity
configuration is a union of ResourceAdapter JavaBean and
ManagedConnectionFactory JavaBean configuration, with the intersecting
configuration properties based on the ManagedConnectionFactory JavaBean
settings.

Outbound communication is initiated by an application and the communication
occurs in the context of an application thread, even though resource adapter threads
may be involved in the interaction. Note, a resource adapter may use the work
management contract (refer to Chapter 10, “Work Management””) to request threads
to do work.

The ResourceAdapterAssociation interface specifies the methods to associate a
ManagedConnectionFactory JavaBean with a ResourceAdapter JavaBean.

Prior to using a ManagedConnectionFactory JavaBean, the application server
must create an association between the ManagedConnectionFactory JavaBean and
a ResourceAdapter JavaBean, by calling the setResourceAdapter method on

import javax.resource.spi.ResourceAdapterAssociation;
import javax.resource.spi.ManagedConnectionFactory;

public class ManagedConnectionFactoryImpl
 implements ManagedConnectionFactory,
ResourceAdapterAssociation {

 ResourceAdapter getResourceAdapter();
 void setResourceAdapter(ResourceAdapter) throws
ResourceException;
 ... // other methods
}

5-8 J2EE Connector Architecture Specification • November 2003

the ManagedConnectionFactory JavaBean. A successful association is established
only when the setResourceAdapter method on the
ManagedConnectionFactory JavaBean returns without throwing an exception.

The setResourceAdapter method on the ManagedConnectionFactory JavaBean
must be called exactly once; that is, the association must not change during the
lifetime of a ManagedConnectionFactory JavaBean.

5.3.3 ActivationSpec JavaBean and Inbound
Communication
An ActivationSpec JavaBean represents inbound connectivity information from
an EIS instance to an application via a specific resource adapter instance. This
contains the configuration information pertaining to inbound connectivity from an
EIS instance. Refer to Chapter 12, “Message Inflow”” for more details on the
ActivationSpec JavaBean.

When an ActivationSpec JavaBean is created, it may inherit the
ResourceAdapter JavaBean (which represents the resource adapter instance)
configuration information, and overrides specific global defaults, if any, and may
add other configuration information specific to inbound connectivity.

That is, in the case of inbound communication, the inbound connectivity
configuration is a union of ResourceAdapter JavaBean and ActivationSpec
JavaBean configuration, with the intersecting configuration properties based on the
ActivationSpec JavaBean settings.

Inbound communication is initiated by an EIS instance and the communication
occurs in the context of a resource adapter thread. There are no application threads
involved. Note, a resource adapter may use the work management contract (refer to
Chapter 10, “Work Management””) to request threads to do work.

import javax.resource.spi.ActivationSpec;

// ActivationSpec interface extends ResourceAdapterAssociation
interface.

public class ActivationSpecImpl implements ActivationSpec {
 ResourceAdapter getResourceAdapter();
 void setResourceAdapter(ResourceAdapter) throws
ResourceException;
 ... // other methods
}

Chapter 5 Lifecycle Management 5-9

The ResourceAdapterAssociation interface specifies the methods to associate
an ActivationSpec JavaBean with a ResourceAdapter JavaBean.

Prior to using an ActivationSpec JavaBean, the application server must create an
association between the ActivationSpec JavaBean and a ResourceAdapter
JavaBean, by calling the setResourceAdapter method on the ActivationSpec
JavaBean. A successful association is established only when the
setResourceAdapter method on the ActivationSpec JavaBean returns without
throwing an exception.

The setResourceAdapter method on the ActivationSpec JavaBean must be
called exactly once; that is, the association must not change during the lifetime of an
ActivationSpec JavaBean.

5.3.4 Resource Adapter Shutdown Procedure
The following are some likely situations during which an application server would
shutdown a resource adapter instance:

■ The application server is being shutdown.
■ The resource adapter is being undeployed.

Irrespective of what causes a resource adapter instance to be shutdown, the
application server must use the following two phases to shutdown a resource
adapter instance.

5.3.4.1 Phase One

Before calling the stop method on the ResourceAdapter JavaBean, the application
server must ensure that all dependant applications using the specific resource
adapter instance are stopped. This includes deactivating all message endpoints
receiving messages via the specific resource adapter. Note, however, since
dependant applications typically cannot be stopped until they are undeployed, the
application server may have to delay stopping the resource adapter instance, until
all such dependant applications are undeployed.

Completion of phase one guarantees that application threads will not use the
resource adapter instance, even though the resource adapter instance specific objects
may still be in the memory heap. This ensures that all application activities
including transactional activities are completed.

Thus, phase one ensures that even if a resource adapter instance does not properly
shutdown during phase two, the resource adapter instance is practically unusable.
5-10 J2EE Connector Architecture Specification • November 2003

5.3.4.2 Phase Two
■ The application server calls the stop method on the ResourceAdapter JavaBean

to notify the resource adapter instance to stop functioning so that it can be safely
unloaded. This is a graceful shutdown notification from the application server,
and this method is called by an application server thread.

The ResourceAdapter JavaBean is responsible for performing an orderly
shutdown of the resource adapter instance during the stop method call. This may
involve closing network endpoints, relinquishing threads, releasing all active Work
instances, allowing resource adapter internal in-flight transactions to complete if
they are already in the process of doing a commit, and flushing any cached data to
the EIS.

The resource adapter instance is considered fully functional until the application
server calls the stop method on the ResourceAdapter JavaBean.

Any unchecked exception thrown by the stop method call does not alter the
processing of the application server shutdown or resource adapter undeployment
that caused the stop method call. The application server may log the exception
information for error reporting purposes.

Note, it is possible for a resource adapter instance to become non-functional during
its lifetime even before the stop method is called, due to EIS failure or other
reasons. In such cases, the resource adapter instance should throw exceptions to
indicate the failure condition, when it is accessed by an application (during
outbound communication) or the application server.

A future version of the specification may add a forced shutdown method in addition
to the current graceful stop method.

5.3.5 Requirements
■ The application server must use a new ResourceAdapter JavaBean for

managing the lifecycle of each resource adapter instance and must discard the
ResourceAdapter JavaBean after its stop method has been called. That is, the
application server must not reuse the same ResourceAdapter JavaBean object to
manage multiple instances of a resource adapter, since the ResourceAdapter
JavaBean object may contain resource adapter instance specific state information.

■ The application server must call the start method on the ResourceAdapter
JavaBean (in order to create a functional resource adapter instance), before
accessing other methods on the ResourceAdapter JavaBean instance or before
using other objects that belong to the same resource adapter instance.

■ The application server thread which calls the start and the stop method on the
ResourceAdapter JavaBean executes in an unspecified context. However, the
application server thread must have at least the same level of security
permissions as that of the resource adapter instance.
Chapter 5 Lifecycle Management 5-11

FIGURE 5-4 Resource Adapter Lifecycle (state diagram)

 Unconfigured

 Non-functionalfunctional resource

 Configured
resource adapter resource adapter

resource adapter adapter instance

 configures the various JavaBean classes

 The resource adapter deployer

 Resource adapter
 is deployed in the
 application server

Resource adapter deployer

 resource adapter

Application server

 Deployment tool

deploy

undeploy

The start method of the ResourceAdapter JavaBean is called each time
a resource adapter instance is created. This may be during resource
adapter deployment, application server startup, or other situations.

The stop method of the ResourceAdapter JavaBean is called each time
a resource adapter instance is removed. This may be during resource
adapter undeployment, application server shutdown, or other situations.

Application server calls start method

Application server calls stop method

on the ResourceAdapter JavaBean

on the ResourceAdapter JavaBean
5-12 J2EE Connector Architecture Specification • November 2003

5.3.6 Resource Adapter Implementation Guidelines
The ResourceAdapter JavaBean should be treated as a central authority or registry
for resource adapter instance specific information, and it should have access to the
overall state of the resource adapter instance (network endpoints, etc.). This helps in
the manageability of the resource adapter instance, and in performing an orderly
shutdown.

Some conventions to follow:

■ Any resource adapter specific object (for example, ManagedConnectionFactory
JavaBean, ActivationSpec JavaBean, or others) which creates network
endpoints should register them with the ResourceAdapter JavaBean.

■ The resource adapter threads should periodically scan the ResourceAdapter
JavaBean state and behave accordingly. It is desirable that such threads avoid
boundless blocking on I/O calls, and instead use a bounded blocking duration.
This helps in resource adapter shutdown, and also potentially avoids deadlock
situations during shutdown.

The above conventions enable a ResourceAdapter JavaBean to effectively manage
the resource adapter instance and to perform an orderly shutdown of the resource
adapter instance.

5.3.7 JavaBean Configuration and Deployment
There is at most one ResourceAdapter JavaBean instance per resource adapter
instance. But there can be many ManagedConnectionFactory, ActivationSpec
or administered object instances (Section 12.4.2.3, “Administered Objects” on
page 12-12) per resource adapter instance.

The ResourceAdapter JavaBean instance is created and configured during resource
adapter deployment. The ManagedConnectionFactory, ActivationSpec and
administered object instances are created and configured during the lifetime of a
resource adapter instance.

At runtime, the resource adapter internally uses a union of the configured
ResourceAdapter and ManagedConnectionFactory JavaBean properties, to
represent outbound communication configuration.

Similarly, at runtime, the resource adapter internally uses a union of the configured
ResourceAdapter and ActivationSpec JavaBean properties, to represent
inbound communication configuration.
Chapter 5 Lifecycle Management 5-13

5.3.7.1 ResourceAdapter JavaBean instance Configuration
■ Create a ResourceAdapter JavaBean instance. This will initialize the instance

with the defaults specified via the JavaBean mechanism.
■ Apply the ResourceAdapter class configuration properties specified in the

resource adapter deployment descriptor, on the ResourceAdapter instance. This
may override some of the default values specified via the JavaBean mechanism.

■ The ResourceAdapter deployer may further override the values of the
ResourceAdapter instance before deployment.

5.3.7.2 Resource Adapter Deployment

The ResourceAdapter instance property values may be stored separately and
reused later while configuring ManagedConnectionFactory, ActivationSpec, or
administered object instances.

5.3.7.3 ManagedConnectionFactory JavaBean Instance Configuration
■ Create a ManagedConnectionFactory JavaBean instance. This will initialize the

instance with the defaults specified via the JavaBean mechanism.
■ Apply the ResourceAdapter instance property values, that were stored earlier,

on the ManagedConnectionFactory instance. Note, that the
ManagedConnectionFactory JavaBean may have none, some or all of the
properties of the ResourceAdapter JavaBean.

■ Apply the ManagedConnectionFactory class configuration properties specified
in the resource adapter deployment descriptor, on the
ManagedConnectionFactory instance.

■ The ManagedConnectionFactory deployer may further override the values of
the ManagedConnectionFactory instance before deployment.

At runtime, the resource adapter internally uses a union of the configured
ResourceAdapter and ManagedConnectionFactory JavaBean properties, to
represent outbound communication configuration. Note, the
ManagedConnectionFactory instance and the ResourceAdapter instance may
have intersecting property names. In such a situation, the values specified in the
ManagedConnectionFactory instance takes precedence.

5.3.7.4 ActivationSpec JavaBean instance Configuration
■ Create an ActivationSpec JavaBean instance. This will initialize the instance

with the defaults specified via the JavaBean mechanism.
■ Apply the ResourceAdapter instance property values, that were stored earlier,

on the ActivationSpec instance. Note, that the ActivationSpec JavaBean
may have none, some, or all of the properties of the ResourceAdapter JavaBean.
5-14 J2EE Connector Architecture Specification • November 2003

■ Apply the ActivationSpec class configuration properties specified in the
application deployment descriptor, on the ActivationSpec instance.

■ The ActivationSpec deployer may further override the values of the
ActivationSpec instance before deployment.

At runtime, the resource adapter internally uses a union of the configured
ResourceAdapter and ActivationSpec JavaBean properties, to represent
inbound communication configuration. Note, the ActivationSpec instance and the
ResourceAdapter instance may have intersecting property names. In such a
situation, the values specified in the ActivationSpec instance takes precedence.

5.3.7.5 Resource Adapter Implementation Guidelines

A resource adapter implementation may choose to use common properties, that is, a
ManagedConnectionFactory or an ActivationSpec JavaBean, may contain
some or all of the properties of the ResourceAdapter JavaBean. The choice is up to
the resource adapter implementation.

In general, there is no need for common properties, since these various objects are
associated at runtime with the ResourceAdapter JavaBean. However, there may be
situations, for example, a ManagedConnectionFactory JavaBean may need to
override the ResourceAdapter JavaBean values in order to successfully connect to
a different EIS. In such a scenario, providing common properties between the
ResourceAdapter and ManagedConnectionFactory JavaBeans, allows the
ManagedConnectionFactory deployer to override the ResourceAdapter
property values and configure the ManagedConnectionFactory appropriately.

5.3.8 Lifecycle Management In A Non-Managed
Environment
Although the lifecycle management contract is primarily intended for a managed
environment, it may still be used in a non-managed environment provided that the
application that bootstraps a resource adapter instance is capable of managing its
lifecycle.
Chapter 5 Lifecycle Management 5-15

5.3.9 A Sample Resource Adapter Implementation

CODE EXAMPLE 5-1 Sample Resource Adapter

package com.xyz.adapter;

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.work.*;

public class MyResourceAdapterImpl implements ResourceAdapter {

 void start(BootstrapContext serverCtx) {
 // 1. setup network endpoints
 ...

 // 2. get WorkManager reference
 WorkManager wm = serverCtx.getWorkManager();

 // 3. provide Work objects to WorkManager
 for (i = 0; i < 10; i++) {

 Work work = new MyWork(...);
 try {
 wm.startWork(work);
 } catch (WorkException we) { // handle the exception }

 }
 }

void stop() { // release Work instances, do cleanup and return.}
}

public class MyWork implements Work {

 void release() {
 // set a flag to hint the Work instance to complete.

 // Note, the calling thread is different from
 // the active thread in which this instance is executing.

 }

 void run() {
 // do work (call application components, monitor

 // network ports, etc.).
 }
}

5-16 J2EE Connector Architecture Specification • November 2003

FIGURE 5-5 Lifecycle Management Model (sequence diagram)

 J2EE app server WorkManager
 (from app server)

 BootstrapContext
 (from app server)

 ResourceAdapter
 (from adapter)

 Work
 (from adapter)

 2. create an instance (pass handle to WorkManager, etc.)

Application server startup

Resource adapter startup and bootstrap procedure.

 1. create an instance

 3. create an instance

 4. start(BootstrapContext)

 6. create Work instances

 8. run() (that is, dispatch threads to execute Work instances)

7. submit Work instances for execution

During runtime, the Resource adapter may submit
more Work instances and use dispatch contracts to
dispatch calls to application components, etc.

Resource adapter undeployment / app server shutdown

This may be when a resource adapter is deployed
or during server startup for those resource adapter
instances which had previously been deployed.

5. getWorkManager()

9. stop()
Chapter 5 Lifecycle Management 5-17

5-18 J2EE Connector Architecture Specification • November 2003

CHAPTER 6

Connection Management

This chapter specifies the connection management contract between an application
server and a resource adapter. It introduces the concepts and mechanisms relevant to
this contract, and delineates the responsibilities of the roles of the resource adapter
provider and application server vendor in terms of their system-level support for the
connection management contract. To complete the description of the connection
management contract, this chapter also refers to the responsibilities of the
application component provider and deployer. The chapter includes scenarios to
illustrate the connection management contract.

6.1 Overview
An application component uses a connection factory to access a connection instance,
which the component then uses to connect to the underlying EIS. A resource adapter
acts as a factory of connections. Examples of connections include database
connections, JMS (Java Message Service) connections, and SAP R/3 connections.

Connection pooling manages connections that are expensive to create and destroy.
Connection pooling of expensive connections leads to better scalability and
performance in an operational environment. The connection management contract
provides support for connection pooling.

6.2 Goals
The connection management contract has been designed with the following goals:

■ To provide a consistent application programming model for connection
acquisition for both managed and non-managed (two-tier) applications.
6-1

■ To enable a resource adapter to provide a connection factory and connection
interfaces based on the CCI specific to the type of resource adapter and EIS. This
enables JDBC drivers to be aligned with the connector architecture with minimum
impact on the existing JDBC APIs.

■ To provide a generic mechanism by which an application server can provide
different services—transactions, security, advanced pooling, error
tracing/logging—for its configured set of resource adapters.

■ To provide support for connection pooling.

The goal of the connector architecture is to enable efficient, scalable, and extensible
connection pooling mechanisms, not to specify a mechanism or implementation for
connection pooling. The goal is accomplished by defining a standard contract for
connection management with the providers of connections—that is, resource
adapters. An application server should use the connection management contract to
implement a connection pooling mechanism in its own implementation-specific way.

6.3 Architecture: Connection Management
The connection management contract specifies an architected contract between an
application server and a resource adapter. This connection management contract is
shown with bold flow lines in FIGURE 6-1 on page 5. It includes the set of interfaces
shown in the architecture diagram.

6.3.1 Overview: Managed Application Scenario
The application server uses the deployment descriptor mechanism (specified in
section Section 17.5.4, “Requirements” on page 17-23) to configure the resource
adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A
connection factory acts as a factory for EIS connections. For example,
javax.sql.DataSource and java.sql.Connection interfaces are JDBC-based
interfaces for connecting to a relational database.

The CCI (specified in Chapter 15, “Common Client Interface”) defines
javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection as interfaces for a connection factory and a
connection, respectively.
6-2 J2EE Connector Architecture Specification • November 2003

The application component does a lookup of a connection factory in the Java
Naming and Directory Interface (JNDI) name space. It uses the connection factory to
get a connection to the underlying EIS. The connection factory instance delegates the
connection creation request to the ConnectionManager instance.

The ConnectionManager enables the application server to provide different
quality of services in the managed application scenario. These quality of services
include transaction management, security, error logging and tracing, and connection
pool management. The application server provides these services in its own
implementation-specific way. The connector architecture does not specify how the
application server implements these services.

The ConnectionManager instance, on receiving a connection creation request from
the connection factory, does a lookup in the connection pool provided by the
application server. If there is no connection in the pool that can satisfy the
connection request, the application server uses the ManagedConnectionFactory
interface (implemented by the resource adapter) to create a new physical connection
to the underlying EIS. If the application server finds a matching connection in the
pool, it uses the matching ManagedConnection instance to satisfy the connection
request.

If a new ManagedConnection instance is created, the application server adds the
new ManagedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the
ManagedConnection instance. This listener enables the application server to get
event notifications related to the state of the ManagedConnection instance. The
application server uses these notifications to manage connection pooling, manage
transactions, cleanup connections, and handle any error conditions.

The application server uses the ManagedConnection instance to get a connection
instance that acts as an application-level handle to the underlying physical
connection. An instance of type javax.resource.cci.Connection is an example
of such a connection handle. An application component uses the connection handle
to access EIS resources.

The resource adapter implements the XAResource interface to provide support for
transaction management. The resource adapter also implements the
LocalTransaction interface so that the application server can manage transactions
internal to a resource manager. The chapter on transaction management describes
Chapter 6 Connection Management 6-3

this transaction management contract between the application server (and its
transaction manager) and the resource adapter (and its underlying resource
manager).
6-4 J2EE Connector Architecture Specification • November 2003

FIGURE 6-1 Architecture Diagram: Managed Application scenario

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnectionFactory

ManagedConnection

ConnectionEventListener

XAResource

Pool
Manager

SecurityService
Manager

LocalTransaction

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract
Implementation specific
Chapter 6 Connection Management 6-5

6.4 Application Programming Model
The application programming model for getting an EIS connection is similar across
both managed (application server based) and non-managed scenarios. The following
sections explain a typical application programming model scenario.

6.4.1 Managed Application Scenario
The following steps are involved in a managed scenario:

■ The application assembler or component provider specifies connection factory
requirements for an application component using a deployment descriptor
mechanism. For example, a bean provider specifies the following elements in the
deployment descriptor for a connection factory reference. Note that the
connection factory reference is part of the deployment descriptor for EJB
components and not the resource adapter. Refer EJB specification (“Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) for details on the
deployment mechanism for EJB components:

■ res-ref-name: eis/MyEIS
■ res-type: javax.resource.cci.ConnectionFactory
■ res-auth: Application or Container

■ During resource adapter deployment, the deployer sets the configuration
information (example: server name, port number) for the resource adapter. The
application server uses a configured resource adapter to create physical
connections to the underlying EIS. Refer to Chapter 16, “API Requirements” for
details on packaging and deployment of a resource adapter.

■ The application component looks up a connection factory instance in the
component’s environment using the JNDI interface.

The JNDI name passed in the method NamingContext.lookup is the same as
that specified in the res-ref-name element of the deployment descriptor. The
JNDI lookup results in a connection factory instance of type
java.resource.cci.ConnectionFactory as specified in the res-type
element.

// obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)
initctx.lookup(“java:comp/env/eis/MyEIS”);
6-6 J2EE Connector Architecture Specification • November 2003

■ The application component invokes the getConnection method on the
connection factory to get an EIS connection. The returned connection instance
represents an application-level handle to an underlying physical connection.

An application component obtains multiple connections by calling the method
getConnection on the connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

■ The application component uses the returned connection to access the underlying
EIS via the resource adapter. Chapter 15, “Common Client Interface” specifies in
detail the application programming model for EIS access.

Note – The JNDI context of an accessing application is available to a resource
adapter via the application thread that uses its connection object. The resource
adapter may use the JNDI context to access other resources.

■ After the component finishes with the connection, it closes the connection using
the close method on the Connection interface.

cx.close();

■ If an application component fails to close an allocated connection after its use,
that connection is considered an unused connection. The application server
manages the cleanup of unused connections. When a container terminates a
component instance, the container cleans up all connections used by that
component instance. Refer section 6.5.4 and scenario 6.8.3 for details on the cleanup
of connections.

6.4.2 Non-managed Application Scenario
In a non-managed application scenario, the application developer follows a similar
programming model to the managed application scenario. The non-managed case
involves looking up of a connection factory instance, getting an EIS connection,
using the connection for EIS access, and finally closing the connection.

6.5 Interface/Class Specification
This section specifies the Java classes and interfaces defined as part of the connection
management contract. For a complete specification of these classes and interfaces,
refer to the API documentation distributed with this document.
Chapter 6 Connection Management 6-7

FIGURE 6-2 shows the class hierarchy for the connection management contract. The
diagram also illustrates the responsibilities for the definition of an interface and its
implementation:
6-8 J2EE Connector Architecture Specification • November 2003

FIGURE 6-2 Class Diagram: Connection Management Architecture

<interface>
ConnectionManager

ConnectionFactory
<interface>

ManagedConnectionMetaData
<interface>

ManagedConnectionFactory
<interface>

ManagedConnectionImpl

ManagedConnectionFactoryImpl

XAResource
<interface>

XAResourceImpl

ConnectionManagerImpl

ConnectionEventListener
<interface>

<interface>

package: Resource Adapter Specific

package: javax.resource.spi

DefaultConnectionManager

ConnectionEventListenerImpl

package: (Application Server

package: javax.transaction.xa

 specific)

Connection

ConnectionImpl

ConnectionFactoryImpl

LocalTransactionImpl

LocalTransaction
<interface>

0-1

0-1

0-1

ManagedConnection
<interface>

package: javax.resource.cci

0-1

implements

inherits

association or use
relationship

contains

0-1

ManagedConnection-
MetaDataImpl
Chapter 6 Connection Management 6-9

6.5.1 ConnectionFactory and Connection1

A connection factory provides an interface to get a connection to an EIS instance. A
connection provides connectivity to an underlying EIS.

One goal of the connector architecture is to support a consistent application
programming model across both CCI and EIS specific client APIs. To achieve this
goal, the connector architecture recommends a design pattern (specified as an
interface template) for both the connection factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package
javax.resource.cci) are based on the above design pattern. Refer to Section 15.5,
“Connection Interfaces” on page 15-9 for details on the CCI connection factory and
connection interfaces. The following code sample shows the CCI interfaces:

1. In this document, the term ‘physical connection’ refers to aManagedConnection instance,
while the term ‘connection handle’ refers to an application-level connection handle. When the
distinction between ‘physical connection’ and ‘connection handle’ is not important, the term
‘connection’ is used to refer to an EIS connection.

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public javax.resource.cci.Connection getConnection()
throws javax.resource.ResourceException;

...
}

public interface javax.resource.cci.Connection {
public void close() throws javax.resource.ResourceException;
...

}

6-10 J2EE Connector Architecture Specification • November 2003

An example of a non-CCI interface is a resource adapter that uses the package
com.myeis for its EIS specific interfaces, as follows:

The JDBC interfaces—javax.sql.DataSource, java.sql.Connection—are
examples of non-CCI connection factory and connection interfaces.

Note that the methods defined on a non-CCI interface are not required to throw a
ResourceException. The exception can be specific to a resource adapter, for
example: java.sql.SQLException for JDBC (Section 3., “JDBC API specification,
version 3.0” on page F-1) interfaces.

The following are additional guidelines for the recommended interface template:

■ A resource adapter is allowed to add additional getConnection methods to its
definition of a connection factory interface. These additional methods are specific
to a resource adapter and its EIS. For example, CCI defines a variant of the
getConnection method that takes java.resource.cci.ConnectionSpec as
a parameter.

■ A resource adapter should only introduce additional getConnection methods if
it requires additional flexibility (beyond that offered by the default
getConnection method) in the connection request invocations.

■ A connection interface must provide a close method to close the connection. The
behavior of such an application-level connection closure is described in the OID
FIGURE 6-7 on page 43.

The above design pattern leads to a consistent application programming model for
connection creation and connection closing.

6.5.1.1 Requirements

A resource adapter must provide implementations for both the connection factory
and connection interfaces.

public interface com.myeis.ConnectionFactory
extends java.io.Serializable, javax.resource.Referenceable {

public com.myeis.Connection getConnection()
throws com.myeis.ResourceException;

...
}

public interface com.myeis.Connection {
public void close() throws com.myeis.ResourceException;
...

}

Chapter 6 Connection Management 6-11

In the connector architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This
differs from the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
architecture.

In the JDBC architecture, an application server provides the implementation of
javax.sql.DataSource interface. Using a similar design approach for the
connector architecture would have required an application server to provide
implementations of various connection factory interfaces defined by different
resource adapters. Since the connection factory interface may be defined as specific
to an EIS, the application server may find it difficult to provide implementations of
connection factory interfaces without any code generation.

The connection factory implementation class delegates the getConnection method
invocation from an application component to the associated ConnectionManager
instance. The ConnectionManager instance is associated with a connection factory
instance at its instantiation [refer to the OID shown in FIGURE 17-3 on page 22].

Note that the connection factory implementation class must call the
ConnectionManager.allocateConnection method in the same thread context in
which the application component had called the getConnection method.

The connection factory implementation class is responsible for taking connection
request information and passing it in a form required by the
ConnectionManager.allocateConnection method.

6.5.1.2 ConnectionRequestInfo

The ConnectionRequestInfo parameter to the
ConnectionManager.allocateConnection method enables a resource adapter to
pass its own request-specific data structure across the connection request flow.

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

public interface javax.resource.spi.ConnectionRequestInfo {
public boolean equals(Object other);
public int hashCode();

}

6-12 J2EE Connector Architecture Specification • November 2003

A resource adapter extends the ConnectionRequestInfo interface to support its
own data structure for the connection request.

This is typically used to allow a resource adapter to handle application component-
specified per-connection request properties (for example, client ID and
language). The application server passes these properties to the
createManagedConnection and matchManagedConnections method calls on
the ManagedConnectionFactory. These properties remain opaque to the
application server during the connection request flow.

It is important to note that the properties passed through the
ConnectionRequestInfo instance should be client-specific (for example, user
name, password, language) and not related to the configuration of a target EIS
instance (for example, port number, server name).

The ManagedConnectionFactory instance is configured with properties required
for the creation of a connection to a specific EIS instance. Note that a configured
ManagedConnectionFactory instance must have the complete set of properties
that are needed for the creation of the physical connections. This enables the
container to manage connection request without requiring an application component
to pass any explicit connection parameters. Configured properties on a
ManagedConnectionFactory can be overridden through
ConnectionRequestInfo in cases when a component provides client-specific
properties in the getConnection method invocation. Refer to Section 17.4.1,
“ResourceAdapter” on page 17-11 for details on the configuration of a
ManagedConnectionFactory.

When the ConnectionRequestInfo reaches the createManagedConnection or
matchManagedConnections methods on the ManagedConnectionFactory
instance, the resource adapter uses this additional per-request information to create
and match connections.

A resource adapter must implement the equals and hashCode methods defined in
the ConnectionRequestInfo interface. The equality must be defined in the
complete set of properties for the ConnectionRequestInfo instance. An
application server can use these methods to structure its connection pool in an
implementation-specific way. Since ConnectionRequestInfo represents a resource
adapter specific data structure, the conditions for equality are defined and
implemented by a resource adapter.

6.5.1.3 Additional Requirements

A resource adapter implementation is not required to support the mechanism for
passing resource adapter-specific connection request information. It can choose to
pass null for ConnectionRequestInfo in the allocateConnection invocation.
Chapter 6 Connection Management 6-13

An implementation class for a connection factory interface must implement
java.io.Serializable. This enables a connection factory instance to be stored in
the JNDI naming environment. A connection factory implementation class must
implement the interface javax.resource.Referenceable. Note that the
javax.resource.Referenceable interface extends the
javax.naming.Referenceable interface. Refer to section Section 17.5.3, “Scenario:
Referenceable” on page 17-17 for details on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter
implementation-specific way. It must use a
javax.resource.spi.ManagedConnection instance as its underlying physical
connection.

6.5.2 ConnectionManager
The javax.resource.spi.ConnectionManager interface provides a hook for a
resource adapter to pass a connection request to an application server. An
application server provides different quality of service as part of its handling of the
connection request.

6.5.2.1 Interface

The connection management contract defines a standard interface for the
ConnectionManager as follows:

The method allocateConnection is called by a resource adapter’s connection
factory instance so that the instance can delegate a connection request to the
ConnectionManager instance.

The ConnectionRequestInfo parameter represents information specific to a
resource adapter to handle the connection request.

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

6-14 J2EE Connector Architecture Specification • November 2003

6.5.2.2 Requirements

An application server must provide an implementation of the ConnectionManager
interface. This implementation is not specific to any particular resource adapter or
connection factory interface.

The ConnectionManager implementation delegates to the internal mechanisms of
an application server to provide various services: security, connection pool
management, transaction management, and error logging and tracing.

An application server should implement these services in a generic manner,
independent of any resource adapter and EIS-specific mechanisms. The connector
architecture does not specify how an application server implements these services;
the implementation is specific to each application server.

After an application server hooks-in its services, the connection request is delegated
to a ManagedConnectionFactory instance either for the creation of a new physical
connection or for the matching of an already existing physical connection.

An implementation class for the ConnectionManager interface must implement the
java.io.Serializable interface.

A resource adapter must provide a default implementation of the
javax.resource.spi.ConnectionManager interface. The implementation class
comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter must not use the default ConnectionManager implementation class. A
default implementation of ConnectionManager enables the resource adapter to
provide services specific to itself. These services can include connection pooling,
error logging and tracing, and security management. The default
ConnectionManager delegates to the ManagedConnectionFactory the creation of
physical connections to the underlying EIS.
Chapter 6 Connection Management 6-15

An implementation of the ConnectionManager interface may only be provided by
a resource adapter, for the purpose described in this section, or by an application
server that fully meets the requirements of this specification.

FIGURE 6-3 ConnectionManager and Application Server specific services

6.5.3 ManagedConnectionFactory
A javax.resource.spi.ManagedConnectionFactory instance is a factory of
both ManagedConnection and connection factory instances. This interface supports
connection pooling by defining methods for matching and creating connections.

ConnectionManager ConnectionFactory

Transaction
Manager

ManagedConnectionFactoryPool
Manager

SecurityService
Manager
6-16 J2EE Connector Architecture Specification • November 2003

6.5.3.1 Interface

The following code extract shows the interface specification for the
ManagedConnectionFactory.

The method createConnectionFactory creates a connection factory instance.
For CCI, the connection factory instance is of the type
javax.resource.cci.ConnectionFactory. The connection factory instance is
initialized with the ConnectionManager instance provided by the application
server.

When the createConnectionFactory method takes no arguments,
ManagedConnectionFactory provides a default ConnectionManager instance.
This occurs in a non-managed application scenario.

The method createManagedConnection creates a new physical connection to the
underlying EIS instance. The ManagedConnectionFactory instance uses the
security information (passed as a Subject instance) and an optional
ConnectionRequestInfo instance to create this new physical connection (refer to
Chapter 9, “Security Contract” for more details).

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public Object createConnectionFactory(
ConnectionManager connectionManager)

throws ResourceException;

public Object createConnectionFactory()
throws ResourceException;

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;

public ManagedConnection matchManagedConnections(
java.util.Set connectionSet,
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;

public boolean equals(Object other);
public int hashCode();

}

Chapter 6 Connection Management 6-17

A created ManagedConnection instance typically maintains internal information
about the security context (under which the connection has been created) and any
connection-specific parameters (for example, the socket connection).

The matchManagedConnections method enables the application server to use
resource adapter-specific criteria for matching a ManagedConnection instance to
service a connection request. The application server finds a candidate set of
ManagedConnection instances from its connection pool based on application
server-specific criteria, and passes this candidate set to the
matchManagedConnections method. If the application server implements
connection pooling, it must use the matchManagedConnections method to choose
a suitable connection.

The matchManagedConnections method matches a candidate set of connections
using criteria known internally to the resource adapter. The criteria used for
matching connections is specific to a resource adapter and is not specified by the
connector architecture.

A ManagedConnection instance has specific internal state information based on its
security context and physical connection. The ManagedConnectionFactory
implementation compares this information for each ManagedConnection instance
in the candidate set against the information passed in through the
matchManagedConnections method and the configuration of this
ManagedConnectionFactory instance. The ManagedConnectionFactory uses the
results of this comparison to choose the ManagedConnection instance that can best
satisfy the current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it
returns a null value. In this case, the application server requests the resource
adapter to create a new connection instance.

If the resource adapter does not support connection matching, it must throw a
NotSupportedException when matchManagedConnections method is invoked.
This allows an application server to avoid pooling connections obtained from that
resource adapter.

6.5.3.2 Requirements

A resource adapter must provide an implementation of the
ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend
the implementation of the hashCode and equals methods defined in
java.lang.Object. These two methods are used by an application server to
structure its connection pool in an implementation-specific way. The equals and
6-18 J2EE Connector Architecture Specification • November 2003

hashCode method implementation should be based on a complete set of
configuration properties that make a ManagedConnectionFactory instance unique
and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface must be a
JavaBean. Refer to Section 16.3, “JavaBean Requirements” on page 16-2.

6.5.3.3 Connection Pool Implementation

The connector architecture does not specify how an application server implements
connection pooling. However, it recommends that an application server should
structure its connection pool such that it uses the connection creation and matching
facility in an efficient manner and does not cause resource starvation.

The following paragraphs provide non-prescriptive guidelines for the connection
pool implementation by an application server.

An application server may partition its pool on a per ManagedConnectionFactory
instance (and thereby on a per EIS instance) basis. An application server may choose
to guarantee, in an implementation specific way, that it will always partition
connection pools with at least per ManagedConnectionFactory instance
granularity.

The per-ManagedConnectionFactory instance pool may be further partitioned
based on the transaction or security context or any client-specific parameters (as
associated with the ConnectionRequestInfo). When an application server calls the
matching facility, it is recommended that the application server narrow down the
candidate set of ManagedConnection instances to a reasonable limit, and achieves
matching efficiently. For example, an application server may pass only those
ManagedConnection instances to the matchManagedConnections method that are
associated with the target ManagedConnectionFactory instance (and thereby a
specific target EIS instance).

An application server may use additional parameters for its search and matching
criteria used in its connection pool management. These parameters may be EIS- or
application server- specific. The equals and hashCode methods defined in both
ManagedConnectionFactory and ConnectionRequestInfo facilitate connection
pool management and structuring by an application server.
Chapter 6 Connection Management 6-19

6.5.3.4 Detecting Invalid Connections

This interface may be implemented by a ManagedConnectionFactory instance that
supports the ability to validate ManagedConnection objects. The
getInvalidConnections method returns a set of invalid ManagedConnection
objects chosen from a specified set of ManagedConnection objects.

This optional functionality may be used by the application server to prune invalid
ManagedConnection objects from its connection pool periodically.

6.5.3.5 Requirement for XA Recovery

The ManagedConnectionFactory implementation for a transaction authority (XA)
protocol capable resource adapter (refer to Chapter 7, “Transaction Management” for
more details on transactions) must support the createManagedConnection
method that takes a Subject and a null for the parameter
ConnectionRequestInfo. This enables the application server to get an
XAResource instance using ManagedConnection.getXAResource and then call
the XAResource.recover method. Note that the application server uses this special
case only to get to the XAResource instance for the underlying resource manager.

The reason for this requirement is that the application server may not have a valid
ConnectionRequestInfo instance when it needs to get the ManagedConnection
instance to initiate recovery. Refer to Section 9.1.8, “ManagedConnectionFactory” on
page 9-9 for additional details on the
ManagedConnectionFactory.createManagedConnection method.

6.5.4 ManagedConnection
A javax.resource.spi.ManagedConnection instance represents a physical
connection to an underlying EIS.

import java.util.Set;

interface ValidatingManagedConnectionFactory {
 Set getInvalidConnections(Set connectionSet) throws
ResourceException;
}

6-20 J2EE Connector Architecture Specification • November 2003

Note – The connector architecture allows one or more ManagedConnection
instances to be multiplexed over a single physical pipe to an EIS. However, for
simplicity, this specification describes a ManagedConnection instance as being
mapped 1-1 to a physical connection.

The creation of a ManagedConnection instance typically results in the allocation of
EIS and resource adapter resources (for example, memory and network sockets) for
each physical connection. Since these resources can be costly and scarce, an
application server pools ManagedConnection instances in a managed environment.

Connection pooling improves the scalability of an application environment. An
application server uses the ManagedConnectionFactory and
ManagedConnection interfaces to implement connection pool management.

An application server also uses the transaction management-related methods
(getXAResource and getLocalTransaction) on the ManagedConnection
interface to manage transactions. These methods are discussed in more detail in
Chapter 7, “Transaction Management”.

The ManagedConnection interface also provides methods to support error logging
and tracing in a managed environment.
Chapter 6 Connection Management 6-21

6.5.4.1 Interface

The connection management contract defines the following interface for a
ManagedConnection. The following code extract shows only the methods that are
used for connection pool management. The remaining methods are introduced in
other parts of the specification.

The getConnection method creates a new application-level connection handle. A
connection handle is tied to an underlying physical connection represented by a
ManagedConnection instance. For CCI, the connection handle created by a
ManagedConnection instance is of the type javax.resource.cci.Connection.
A connection handle is tied to its ManagedConnection instance in a resource
adapter implementation-specific way.

A ManagedConnection instance may use the getConnection method to change
the state of the physical connection based on the Subject and
ConnectionRequestInfo arguments. For example, a resource adapter can re-
authenticate a physical connection to the underlying EIS when the application server
calls the getConnection method. Section 9.1.9, “ManagedConnection” on page 9-14
specifies re-authentication requirements in more detail.

The method addConnectionEventListener allows a connection event listener to
register with a ManagedConnection instance. The ManagedConnection instance
notifies connection close/error and local transaction-related events to its registered
set of listeners.

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(

javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
public void destroy() throws ResourceException;
public void cleanup() throws ResourceException;

// Methods for Connection and transaction event notifications
public void addConnectionEventListener(

ConnectionEventListener listener);
public void removeConnectionEventListener(

ConnectionEventListener listener);

public ManagedConnectionMetaData getMetaData()
throws ResourceException;

// Additional methods - specified in the other sections
...

}

6-22 J2EE Connector Architecture Specification • November 2003

The removeConnectionEventListener method removes a registered
ConnectionEventListener instance from a ManagedConnection instance.

The method getMetaData returns the metadata information (represented by the
ManagedConnectionMetaData interface) for a ManagedConnection and the
connected EIS instance.

6.5.4.2 Connection Sharing and Multiple Connection Handles

To support connection sharing, the application server can call getConnection
multiple times on a ManagedConnection instance. In this case, a call to the method
ManagedConnection.getConnection does not invalidate any previously created
connection handles. Multiple connection handles can exist concurrently for a single
ManagedConnection instance. This design supports the connection sharing
mechanism. Refer to Section 7.9, “Connection Sharing” on page 7-35 for more
details.

Because multiple connection handles to a single ManagedConnection can exist
concurrently, a resource adapter implementation may:

■ Provide thread-safe semantics for a ManagedConnection implementation to
support concurrent access to a ManagedConnection instance from multiple
connection handles. It is strongly recommended that resource adapters provide
support for concurrent access to a ManagedConnection instance from multiple
connection handles. This may be required in a future release of the specification.

■ Ensure that there is at most one connection handle associated actively with a
ManagedConnection instance. The active connection handle is the only
connection using the ManagedConnection instance until an application-level
close is called on this connection handle. For example, a
ManagedConnection.getConnection method implementation associates a
newly created connection handle as the active connection handle. Any operations
on the ManagedConnection from any previously created connection handles
should result in an application level exception. An example application level
exception extends the javax.resource.ResourceException interface and is
specific to a resource adapter. A scenario illustrating this implementation is
shown in the Section 7.10.3, “Scenario: Local Transaction” on page 7-40.

6.5.4.3 Connection Matching Contract

The application server invokes the
ManagedConnectionFactory.matchManagedConnections method (implemented
by a resource adapter) to find a matching ManagedConnection for servicing a
connection request. The application server passes a candidate set of
ManagedConnection instances to the matchManagedConnections method.
Chapter 6 Connection Management 6-23

The application server should use the connection matching contract for
ManagedConnection instances that have no existing connection handles. A
candidate set passed to the matchManagedConnections method should not have
any ManagedConnection instances with existing connection handles.

There is no requirement that the matchManagedConnections implementation be
capable of performing a match across a candidate set that includes
ManagedConnection instances with existing connection handles. Note that a
resource adapter can return a successful match with the requirement that the
ManagedConnection.getConnection method will later change the state of the
matched ManagedConnection. To avoid any unexpected matching behavior, the
application server should not pass a ManagedConnection instance with existing
connection handles to the matchManagedConnections method as part of a
candidate set.

A connection request can lead to the creation of additional connection handles for a
ManagedConnection instance that already has one or more existing connection
handles. In this case, the application server should take the responsibility of
checking whether or not the chosen ManagedConnection instance can service such
a request. Refer to Section 7.9, “Connection Sharing” on page 7-35 for details.

6.5.4.4 Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM) for a
ManagedConnection instance. Additionally, a ManagedConnection instance can
have state specific to a client, such as security context, data/function access
structures, and result set from a query.

The method ManagedConnection.cleanup initiates a cleanup of any client-specific
state maintained by a ManagedConnection instance. The cleanup must invalidate
all connection handles created using the ManagedConnection instance. Any
attempt by an application component to use the associated connection handle after
cleanup of the underlying ManagedConnection should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The
container keeps track of created connection handles in an implementation specific
mechanism. It invokes ManagedConnection.cleanup when it has to invalidate all
connection handles associated with this ManagedConnection instance and put the
ManagedConnection instance back in to the pool. This may be called after the end
of a connection sharing scope or when the last associated connection handle is closed
for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already
cleaned-up connection should not throw an exception.
6-24 J2EE Connector Architecture Specification • November 2003

The cleanup of a ManagedConnection instance resets its client-specific state and
prepares the connection to be put back into a connection pool. The cleanup method
should not cause the resource adapter to close the physical pipe and reclaim system
resources associated with the physical connection.

An application server should explicitly call ManagedConnection.destroy to
destroy a physical connection. An application server should destroy a physical
connection to manage the size of its connection pool and to reclaim system
resources.

A resource adapter should destroy all allocated system resources for this
ManagedConnection instance when the method destroy is called.

6.5.4.5 Requirements

A resource adapter must provide an implementation of the ManagedConnection
interface.

6.5.5 ManagedConnectionMetaData
The method ManagedConnection.getMetaData returns a
javax.resource.spi.ManagedConnectionMetaData instance. The
ManagedConnectionMetaData provides information about a ManagedConnection
and the connected EIS instance. This information is only available to the caller of this
method if a valid physical connection exists for an EIS instance.

6.5.5.1 Interface

The ManagedConnectionMetaData interface provides the following information
about an EIS instance:

■ Product name of the EIS instance
■ Product version of the EIS instance
■ Maximum number of concurrent connections from different processes that an EIS

instance can support
■ User name for this connection, as known to the EIS instance

The method getUserName returns the user name known to the underlying EIS
instance for an active connection. The name corresponds to the resource principal
under whose security context the connection to the EIS instance has been
established.
Chapter 6 Connection Management 6-25

6.5.5.2 Requirements

A resource adapter must provide an implementation of the
ManagedConnectionMetaData interface. An instance of this implementation class
should be returned from the ManagedConnection.getMetaData method.

6.5.6 ConnectionEventListener
The connector architecture provides an event callback mechanism that enables an
application server to receive notifications from a ManagedConnection instance. An
application server uses these event notifications to manage its connection pool, to
clean up invalid or terminated connections, and to manage local transactions.
Chapter 7, “Transaction Management” discusses local transaction-related event
notifications in more detail.

An application server implements the
javax.resource.spi.ConnectionEventListener interface. It uses the
ManagedConnection.addConnectionEventListener method to register a
connection listener with a ManagedConnection instance.

6.5.6.1 Interface

The following code extract specifies the ConnectionEventListener interface:

A ManagedConnection instance calls the
ConnectionEventListener.connectionClosed method to notify its
registered set of listeners when an application component closes a connection
handle. The application server uses this connection close event to make a decision on
whether or not to put the ManagedConnection instance back into the connection
pool.

public interface javax.resource.spi.ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);
public void connectionErrorOccurred(ConnectionEvent event);

// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent

event);
}

6-26 J2EE Connector Architecture Specification • November 2003

The ManagedConnection instance calls the
ConnectionEventListener.connectionErrorOccurred method to notify its
registered listeners of the occurrence of a physical connection-related error. The
event notification happens just before a resource adapter throws an exception to the
application component using the connection handle.

The connectionErrorOccurred method indicates that the associated
ManagedConnection instance is now invalid and unusable. The application server
handles the connection error event notification by initiating application server-
specific cleanup (for example, removing ManagedConnection instance from the
connection pool) and then calling ManagedConnection.destroy method to
destroy the physical connection.

A ManagedConnection instance also notifies its registered listeners for transaction-
related events by calling the following methods—localTransactionStarted,
localTransactionCommitted, and localTransactionRolledback. An
application server uses these notifications to manage local transactions. See
Section 7.7, “Local Transaction Management Contract” on page 7-31 for details on
the local transaction management.

The processing of event notifications by the registered event listeners may be
synchronous or asynchronous. That is, a listener may process an event notification
immediately (as part of the notification method call) or it may defer event processing
to a later in time. The resource adapter must not assume the processing of event
notifications by its listeners to be synchronous or asynchronous.

6.5.7 ConnectionEvent
A javax.resource.spi.ConnectionEvent class provides information about the
source of a connection-related event. A ConnectionEvent instance contains the
following information:

■ Type of the connection event
■ ManagedConnection instance that has generated the connection event. A

ManagedConnection instance is returned from the
ConnectionEvent.getSource method.

■ Connection handle associated with the ManagedConnection instance; required
for the CONNECTION_CLOSED event and optional for the other event types.

■ Optionally, an exception indicating a connection related error. Refer to
Section 19.2, “System Exceptions” on page 19-2 for details on the system
exception. Note that the exception is used for the
CONNECTION_ERROR_OCCURRED notification.

This class defines the following types of event notifications:

■ CONNECTION_CLOSED
■ LOCAL_TRANSACTION_STARTED
Chapter 6 Connection Management 6-27

■ LOCAL_TRANSACTION_COMMITTED
■ LOCAL_TRANSACTION_ROLLEDBACK
■ CONNECTION_ERROR_OCCURRED

6.6 Error Logging and Tracing
The connector architecture provides basic support for error logging and tracing in
both managed and non-managed environments. This support enables an application
server to detect errors related to a resource adapter and its EIS, and to use error
information for debugging.

6.6.1 ManagedConnectionFactory
The javax.resource.spi.ManagedConnectionFactory interface defines the
following methods for error logging and tracing:

The log writer is a character output stream to which all logging and tracing
messages for a ManagedConnectionFactory instance are printed.

A character output stream can be registered with a ManagedConnectionFactory
instance using the setLogWriter method. A ManagedConnectionFactory
implementation uses this character output stream to output error log and trace
information.

An application server manages the association of a log writer with a
ManagedConnectionFactory. When a ManagedConnectionFactory instance is
created, the log writer is initially null and logging is disabled. Associating a log
writer with a ManagedConnectionFactory instance enables logging and tracing
for the ManagedConnectionFactory instance.

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public void setLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getLogWriter()
throws ResourceException;

...
}

6-28 J2EE Connector Architecture Specification • November 2003

An application server administrator primarily uses the error and trace information
printed on a log writer by a ManagedConnectionFactory instance. This
information is typically system-level in nature (for example, information related to
connection pooling and transactions) rather than of direct interest to application
developers.

6.6.2 ManagedConnection
The javax.resource.spi.ManagedConnection interface defines the following
methods to support error logging and tracing specific to a physical connection.

A newly created ManagedConnection instance gets the default log writer from the
ManagedConnectionFactory instance that creates the ManagedConnection
instance. The default log writer can be overridden by an application server using the
ManagedConnection.setLogWriter method. The setting of the log writer on a
ManagedConnection enables an application server to manage error logging and
tracing specific to the physical connection represented by a ManagedConnection
instance.

An application server can optionally disassociate the log writer from a
ManagedConnection instance when this connection instance is put back into the
connection pool by using setLogWriter and passing null.

6.7 Object Diagram
FIGURE 6-4 shows the object diagram for the connection management architecture. It
shows invocations across the various object instances that correspond to the
architected interfaces in the connection management contract, as opposed to those
instances specific to implementations of the application server and the resource
adapter.

public interface javax.resource.spi.ManagedConnection {
public void setLogWriter(java.io.PrintWriter out)

throws ResourceException;
public java.io.PrintWriter getLogWriter()

throws ResourceException;
...

}

Chapter 6 Connection Management 6-29

To keep the diagram simple, it does not show the transaction management contract-
related interfaces (XAResource and LocalTransaction) and invocations.
6-30 J2EE Connector Architecture Specification • November 2003

FIGURE 6-4 Object Diagram: Connection Management architecture

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnectionFactory

ManagedConnection

ConnectionEventListener

Pool
Manager

SecurityService
Manager

Application

Enterprise Information System (EIS)

 Component

allocateConnection

create new instance

create new instance

Connection Event notifications

application server
specific

createManagedConnection-
matchManagedConnections

add/removeConnectionEventListener
getConnection

ResourceAdapter
specific

EIS specific

Application Server Resource Adapter

createConnectionFactory

create new instance

Architected interface
Instantiation
Implementation specific

application server
specific

create
new instance
Chapter 6 Connection Management 6-31

6.8 Illustrative Scenarios
The following section uses sequence diagrams to illustrate various interactions
between the object instances involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers
to various modules and classes internal to an application server. These modules and
classes communicate through contracts that are application server implementation
specific.

In this section, the CCI interfaces—javax.resource.cci.ConnectionFactory
and javax.resource.cci.Connection—represent connection factory and
connection interfaces respectively.

The description of these sequence diagrams does not include transaction-related
details. These are covered in Chapter 7, “Transaction Management.”

6.8.1 Scenario: Connection Pool Management
The following object interactions are involved in the scenario shown in FIGURE 6-5
on page 36:

■ The application component calls the getConnection method on the
javax.resource.cci.ConnectionFactory instance (returned from the JNDI
lookup) to get a connection to the underlying EIS instance. Refer to Section 17.5,
“JNDI Configuration and Lookup” on page 17-13 for details on the JNDI
configuration and lookup.

■ The ConnectionFactory instance initially handles the connection request from
the application component in a resource adapter-specific way. It then delegates
the connection request to the associated ConnectionManager instance. The
ConnectionManager instance has been associated with the ConnectionFactory
instance when the ConnectionFactory was instantiated.

The ConnectionFactory instance receives all connection request information
passed through the getConnection method and, in turn, passes it in a form
required by the method ConnectionManager.allocateConnection. The
ConnectionRequestInfo parameter to the allocateConnection method
enables a ConnectionFactory implementation class to pass on client-specific
connection request information. This information is opaque to an application
server and is used subsequently by a resource adapter to do connection matching
and creation.
6-32 J2EE Connector Architecture Specification • November 2003

■ The ConnectionManager instance (provided by the application server) handles
the allocateConnection request by interacting with the application server-
specific connection pool manager. The interaction between a
ConnectionManager instance and pool manager is internal and specific to an
application server.

■ The application server finds a candidate set of ManagedConnection instances
from its connection pool. The candidate set includes all ManagedConnection
instances that the application server considers suitable for handling the current
connection allocation request. The application server finds the candidate set using
its own implementation-specific structuring and lookup criteria for the connection
pool. Refer to Section 6.5.3 “ManagedConnectionFactory” for guidelines of
connection pool implementation by an application.

■ If the application server finds no matching ManagedConnection instance that
can best handle this connection allocation request, or if the candidate set is empty,
the application server calls the
ManagedConnectionFactory.createManagedConnection method to create a
new physical connection to the underlying EIS instance. The application server
passes necessary security information (as JAAS Subject) as part of this method
invocation. For details on the security contract, refer to the Security
Management chapter. It can also pass the ConnectionRequestInfo information
to the resource adapter. The connection request information has been associated
with the connection allocation request by the resource adapter and is used during
connection creation.

■ The ManagedConnectionFactory instance creates a new physical connection to
the underlying EIS to handle the createManagedConnection method. This new
physical connection is represented by a ManagedConnection instance. The
ManagedConnectionFactory uses the security information (passed as a
Subject instance), ConnectionRequestInfo, and its default set of configured
properties (port number, server name) to create a new ManagedConnection
instance. Refer to Chapter 9, “Security Contract” for more details on the
createManagedConnection method.

■ The ManagedConnectionFactory instance initializes the created
ManagedConnection instance and returns it to the application server.

■ The application server registers a ConnectionEventListener instance with the
ManagedConnection instance, enabling it to receive notifications for events on
this connection. The application server uses these event notifications to manage
connection pooling and transactions.

■ The ManagedConnection instance obtains its log writer (for error logging and
tracing support) from the ManagedConnectionFactory instance that created
this connection. However, an application server can set a new log writer with a
ManagedConnection instance to do additional error logging and tracing at the
level of a ManagedConnection.

■ The application server does the necessary transactional setup for the
ManagedConnection instance. Chapter 7, “Transaction Management” explains
this step in more detail.
Chapter 6 Connection Management 6-33

■ Next, the application server calls ManagedConnection.getConnection method
to get an application level connection handle of type
javax.resource.cci.Connection. A ManagedConnection instance uses the
Subject and ConnectionRequestInfo parameters to the getConnection
method to change the state of the ManagedConnection.

Calling the getConnection method does not necessarily create a new physical
connection to the EIS instance. Calling getConnection produces a temporary
connection handle that is used by an application component to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnection instance.
6-34 J2EE Connector Architecture Specification • November 2003

■ The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that initiated the connection request.
Chapter 6 Connection Management 6-35

FIGURE 6-5 OID: Connection Pool Management with new Connection Creation

XAResource.start(XID)

Transaction.enlistResource(XAResource)

Application ManagedConnection
Factory Managed

Resource Adapter

Component

Resource Adapter

getConnection

Application server looks up a candidate
connection set from the connection pool

javax.resource.cci.

ConnectionManager.allocateConnection

Application

Note: Following steps happen if
no matching connection is found
or if candidate set is empty

createManagedConnection

create a new instance

Optional: setLogWriter(PrintWriter)

getXAResource

Transaction
Manager

XAResource

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

Connection ServerConnectionFactory

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

return javax.resource.cci.Connection

addConnectionEventListener(ConnectionEventListener)
6-36 J2EE Connector Architecture Specification • November 2003

6.8.2 Scenario: Connection Matching
FIGURE 6-6 on page 39 shows the object interactions for a connection matching
scenario—that is, a scenario in which the application server finds a non-empty
candidate connection set and calls the resource adapter to do matching on the
candidate set. The following steps are involved in this scenario:

■ The application server handles the connection allocation request by creating a
candidate set of ManagedConnection instances from the connection pool. The
candidate set includes the ManagedConnection instances that the application
server considers suitable for handling the current connection allocation request.
The application server finds this candidate set using its own implementation-
specific structuring and lookup criteria for the connection pool. Refer to Section
6.5.3 “ManagedConnectionFactory” for guidelines on connection pool
implementation by an application.

■ The application server calls the ManagedConnectionFactory.matchManaged-
Connections method to enable the resource adapter to do the connection
matching. It passes the candidate connection set, security information (as a
Subject instance associated with the current connection request), and any
ConnectionRequestInfo.

■ The ManagedConnectionFactory instance matches the candidate set of
connections using the criteria known internally to the resource adapter. The
matchManagedConnections method returns a ManagedConnection instance
that the resource adapter considers to be an acceptable match for the current
connection allocation request.

■ The application server can set a new log writer with the ManagedConnection
instance to do error logging and tracing at the level of the ManagedConnection.

■ The application server does the necessary transactional setup for the
ManagedConnection instance. Chapter 7, “Transaction Management” explains
this step in more detail.

■ The application server calls the ManagedConnection.getConnection method
to get a new application level connection handle.

■ The ManagedConnection.getConnection method implementation uses the
Subject parameter and any ConnectionRequestInfo to set the state of the
ManagedConnection instance based on the current connection allocation request.
Refer to Section 9.1.9, “ManagedConnection” on page 9-14 for details if a resource
adapter implements support for re-authentication of a ManagedConnection
instance.
Chapter 6 Connection Management 6-37

■ The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that initiated the connection request.
6-38 J2EE Connector Architecture Specification • November 2003

FIGURE 6-6 OID: Connection Pool Management with Connection Matching

XAResource.start(XID)

Transaction.enlistResource(XAResource)

Application Application
Server

ManagedConnection-
Factory Managed-

Resource Adapter

Component

Resource Adapter

getConnection

Application server looks up a candidate
connection set from the connection pool

javax.resource.cci.

ConnectionManager.allocateConnection

matchManagedConnections

Transaction
Manager XAResource

getConnection(Subject, ConnectionRequestInfo)

Case: ManagedConnection
found that satisfies allocation
request

Connection

addConnectionEventListener(ConnectionEventListener)

Optional: setLogWriter(PrintWriter)

ConnectionFactory

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions.

return javax.resource.cci.Connection

return javax.resource.cci.Connection
Chapter 6 Connection Management 6-39

6.8.3 Scenario: Connection Event Notifications and
Connection Close
For each ManagedConnection instance in the pool, the application server registers
a ConnectionEventListener instance to receive close and error events on the
connection. This scenario explains how the connection event callback mechanism
enables an application server to manage connection pooling.

The scenario involves the following steps (see FIGURE 6-7 on page 43) when an
application component initiates a connection close:

■ The application component releases an allocated connection handle using the
close method on the javax.resource.cci.Connection instance. The
Connection instance delegates the close method to the associated
ManagedConnection instance. The delegation happens through an association
between ManagedConnection instance and the corresponding connection handle
Connection instance. The mechanism by which this association is achieved is
specific to the implementation of a resource adapter.

■ The connection management contract places a requirement that a
ManagedConnection instance must not alter the state of a physical connection
while handling the connection close.

■ The ManagedConnection instance notifies all its registered listeners of the
application’s connection close request using the
ConnectionEventListener.connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED.

■ On receiving the connection close event notification, the application server
performs the transaction management-related cleanup of the
ManagedConnection instance. Refer to FIGURE 6-7 on page 43 for details on the
cleanup of a ManagedConnection instance participating in a JTA transaction.

■ The application server also uses the connection close event notification to manage
its connection pool. On receiving the connection close notification, the application
server calls the ManagedConnection.cleanup method (depending on whether
the ManagedConnection is shared and the presence of other active connection
handles) to perform cleanup on the ManagedConnection instance that raised the
connection close event. The application server-initiated cleanup of a
ManagedConnection instance prepares this ManagedConnection instance to be
reused for subsequent connection requests. See Section 7.9, “Connection Sharing”
on page 7-35 for a discussion of connection sharing and its implications on
ManagedConnection cleanup.

■ After initiating the necessary cleanup for the ManagedConnection instance, the
application server puts the ManagedConnection instance back into the
connection pool. The application server should be able to use this available
ManagedConnection instance to handle future connection allocation requests
from application components.
6-40 J2EE Connector Architecture Specification • November 2003

6.8.3.1 Connection Cleanup

The application server can also initiate cleanup of a ManagedConnection instance
when the container terminates the application component instance that has the
corresponding connection handle. The application server should call
ManagedConnection.cleanup to initiate the connection cleanup. After the
cleanup, the application server puts the ManagedConnection instance into the pool
to serve future allocation requests.

6.8.3.2 Connection Destroy

To manage the size of the connection pool, the application server can call
ManagedConnection.destroy method to destroy a ManagedConnection. A
ManagedConnection instance handles this method call by closing the physical
connection to the EIS instance and releasing all system resources held by this
instance.
Chapter 6 Connection Management 6-41

The application server also calls ManagedConnection.destroy when it receives a
connection error event notification that signals a fatal error on the physical
connection.
6-42 J2EE Connector Architecture Specification • November 2003

FIGURE 6-7 OID: Connection Event Notification

Application ManagedConnection
Factory Managed

Resource Adapter

Component

Resource Adapter

javax.resource.cci.

close()

Application Transaction
Manager

XAResource

Connection

Internal: Resource Adapter implementation specific

ManagedConnection
notifies all registered
ConnectionEventListeners

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

Case: JTA Transaction

Transaction.delistResource(XAResource)

XAResource.end(XID)

Application Server returns
ManagedConnection instance
to the connection pool

ManagedConnection.cleanup

 ServerConnection
Chapter 6 Connection Management 6-43

6.9 Architecture: Non-managed
Environment
The connection management contract enables a resource adapter to be used in a two-
tier application directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation
class may be provided either by a resource adapter (as a default
ConnectionManager implementation) or by application developers. Note that a
default implementation of the ConnectionManager should be defined for a
resource adapter (in terms of the functionality provided and third-party components
added) only at development time.

The default ConnectionManager instance interposes on the connection request and
delegates the request to the ManagedConnectionFactory instance. The
ManagedConnectionFactory creates a physical connection (represented by a
ManagedConnection instance) to the underlying EIS. The ConnectionManager
gets a connection handle (of type javax.resource.cci.Connection for CCI)
from the ManagedConnection and returns it to the connection factory. The
connection factory returns the connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in FIGURE 6-8)
between its internal objects in an implementation-specific way. For example, a
resource adapter can use the connection event listening mechanism as part of its
6-44 J2EE Connector Architecture Specification • November 2003

ManagedConnection implementation for connection management. However, the
resource adapter is not required to use the connection event mechanism to drive its
internal interactions.

FIGURE 6-8 Architecture Diagram: Non-Managed application scenario

6.9.1 Scenario: Programmatic Access to
ConnectionFactory
To maintain the consistency of the application programming model across both
managed and non-managed environments, application code should use the JNDI
namespace to look-up a connection factory instance.

ConnectionFactory Connection

ConnectionManager

Application Component

Enterprise Information System (EIS)

Resource Adapter

ManagedConnectionFactory

ManagedConnection

Architected contract
Implementation specific
Chapter 6 Connection Management 6-45

The following code extract shows how an application client accesses a connection
factory instance in a non-managed environment. The code extract does not show the
use of JNDI. It is used as an example to illustrate the use of
ManagedConnectionFactory and ConnectionFactory interfaces in the
application code. Refer to section Section 17.5, “JNDI Configuration and Lookup” on
page 17-13 for details on JNDI configuration and lookup.

// Application Client Code
// Create an instance of the ManagedConnectionFactory
// implementation class passing in initialization parameters
// (if any) for this instance
com.myeis.ManagedConnectionFactoryImpl mcf =

new com.myeis.ManagedConnectionFactoryImpl(...);

// Set properties on the ManagedConnectionFactory instance
// Note: Properties are defined on the implementation class
// and not on the javax.resource.spi.ManagedConnectionFactory
// interface
mcf.setServerName(...);
mcf.setPortNumber(...);

// set remaining properties
...

// Get access to connection factory. The ConnectionFactory
instance
// gets initialized with the default ConnectionManager provided
// by the resource adapter
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)
mcf.createConnectionFactory();

// Get a connection using the ConnectionFactory instance
javax.resource.cci.Connection cx = cxf.getConnection(...);

// use connection to access the underlying EIS instance
...

// Close the connection
cx.close();
6-46 J2EE Connector Architecture Specification • November 2003

6.9.2 Scenario: Connection Creation in Non-managed
Application Scenario
The following object interactions are involved in the scenario shown in FIGURE 6-9
on page 48:

■ The application client calls a method on the
javax.resource.cci.ConnectionFactory instance, returned from the JNDI
lookup, to get a connection to the underlying EIS instance.

■ The ConnectionFactory instance delegates the connection request from the
application to the default ConnectionManager instance. The resource adapter
provides the default ConnectionManager implementation.

■ The ConnectionManager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnectionFactory.createManagedConnection method.

■ The ManagedConnectionFactory instance handles the
createManagedConnection method by creating a new physical connection to
the underlying EIS, represented by a ManagedConnection instance. The
ManagedConnectionFactory uses the security information, passed as a
Subject instance, any ConnectionRequestInfo instance, and its configured
set of properties, such as port number, server name, to create a new
ManagedConnection instance.

■ The ManagedConnectionFactory initializes the state of the created Managed-
Connection instance and returns it to the default ConnectionManager instance.

■ The ConnectionManager instance calls the
ManagedConnection.getConnection method to get an application-level
connection handle. Calling the getConnection method does not necessarily
create a new physical connection to the EIS instance. Calling getConnection
produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnection instance.
Chapter 6 Connection Management 6-47

■ The ConnectionManager instance returns the connection handle to the
ConnectionFactory instance, which then returns the connection to the
application that initiated the connection request.

FIGURE 6-9 OID: Connection Creation in a Non-managed Application Scenario

Application Connection
Manager

ManagedConnection-
ManagedConnection

Resource Adapter

Client

getConnection

javax.resource.cci.

allocateConnection

createManagedConnection

create a new instance

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

ConnectionFactory Factory

return javax.resource.cci.Connection
6-48 J2EE Connector Architecture Specification • November 2003

6.10 Requirements
The following section outlines requirements for the connection management
contract.

6.10.1 Resource Adapter
The requirements for a resource adapter are as follows:

■ A resource adapter must provide implementations of the following interfaces:

■ javax.resource.spi.ManagedConnectionFactory
■ javax.resource.spi.ManagedConnection
■ javax.resource.spi.ManagedConnectionMetaData

■ The ManagedConnection implementation provided by a resource adapter must
use the following interface and classes to provide support to an application server
for connection management and transaction management, as explained later:

■ javax.resource.spi.ConnectionEvent
■ javax.resource.spi.ConnectionEventListener

To support non-managed environments, a resource adapter is not required to use
the above two interfaces to drive its internal object interactions.

■ A resource adapter must provide support for basic error logging and tracing by
implementing the following methods:

■ ManagedConnectionFactory.set/getLogWriter
■ ManagedConnection.set/getLogWriter

■ A resource adapter must provide a default implementation of the
javax.resource.spi.ConnectionManager interface. The implementation
class comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter must not use the default ConnectionManager implementation class.

A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection
pooling, error logging and tracing, and security management. The default
ConnectionManager delegates to the ManagedConnectionFactory the creation
of physical connections to the underlying EIS.

■ In a managed environment, with the exception of application client containers, a
resource adapter must not asynchronously (that is, using a separate thread other
than the application thread) call application objects other than message-driven
beans. However, this restriction does not apply to a non-managed scenario, as
well as application client containers. A resource adapter deployer may use the
Chapter 6 Connection Management 6-49

ResourceAdapter JavaBean to configure the resource adapter during its
deployment to set the desired behavior, based on the requirements of the
deployment environment.

■ A resource adapter is not allowed to support its own internal connection pooling
in a managed environment. In this case, the application server is responsible for
connection pooling. However, a resource adapter may multiplex connections (one
or more ManagedConnection instances per physical connection) over a single
physical pipe transparent to the application server and components.

In a non-managed two tier application scenario, a resource adapter is allowed to
support connection pooling internal to the resource adapter.

6.10.2 Application Server
The requirements for an application server are as follows:

■ An application server must use the interfaces defined in the connection
management contract to use services provided by a resource adapter. These
interfaces are as follows:

■ javax.resource.spi.ManagedConnectionFactory
■ javax.resource.spi.ManagedConnection
■ javax.resource.spi.ManagedConnectionMetaData

■ An application server must provide an implementation of the
javax.resource.spi.ConnectionManager interface. This implementation
should not be specific to any particular type of resource adapter, EIS, or
connection factory interface.

■ An application server must implement the javax.resource.spi.-
ConnectionEventListener interface and to register
ConnectionEventListener with a resource adapter to get connection-related
event notifications. An application server uses these event notifications to do its
pool management, transaction management, and connection cleanup.

■ An application server must use the following interfaces (supported by the
resource adapter) to provide basic error logging and tracing for its configured set
of resource adapters:

■ ManagedConnectionFactory.set/getLogWriter
■ ManagedConnection.set/getLogWriter

■ An application server must use the javax.resource.spi.ConnectionManager
hook-in mechanism to provide its specific quality of services. The connector
architecture does not specify the set of services the application server provides,
nor does it specify how the application server implements these services.
6-50 J2EE Connector Architecture Specification • November 2003

CHAPTER 7

Transaction Management

This chapter specifies the transaction management contract between an application
server (and supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management.
The J2EE component model specifications describe the application level transaction
model. For example, the EJB specification (Section 1., “Enterprise JavaBeans (EJBTM)
specification, version 2.1:” on page F-1) specifies the transaction model for EJB
components.
7-1

7.1 Overview
FIGURE 7-1 shows an application component deployed in a container provided by an
application server. The application component performs transactional access to
multiple resource managers. The application server uses a transaction manager that
takes the responsibility of managing transactions across multiple resource managers.

FIGURE 7-1 Transaction Management Contract

A resource manager can support two types of transactions:

■ A transaction that is controlled and coordinated by a transaction manager
external to the resource manager. This document refers to such a transaction as
JTA or XA transaction.

■ A transaction that is managed internal to a resource manager. The coordination of
such transactions involves no external transaction managers. This document
refers to such transactions as RM local transactions (or local transactions).

Enterprise Information
System

Resource AdapterApplication Server

System Contract

Transaction Manager

Transaction
Management

Application Component

Container-Component
Contract

EIS specific interface
7-2 J2EE Connector Architecture Specification • November 2003

A transaction manager coordinates transactions across multiple resource managers.
It also provides additional low-level services that enable transactional context to be
propagated across systems. The services provided by a transaction manager are not
visible directly to the application components.

The connector architecture defines a transaction management contract between an
application server and a resource adapter and its underlying resource manager. The
transaction management contract has two parts, depending on the type of
transaction:

■ a JTA javax.transaction.xa.XAResource based contract between a
transaction manager and a resource manager

■ a local transaction management contract

These contracts enable an application server to provide the infrastructure and
runtime environment for transaction management. Application components rely on
this transaction infrastructure to support their component-level transaction model.

7.2 Transaction Management Scenarios
The following section uses a set of scenarios to present an overview of the
transaction management architecture.
Chapter 7 Transaction Management 7-3

7.2.1 Transactions across multiple Resource Managers
In FIGURE 7-2, an application client invokes EJB component X. EJB X accesses
transaction programs managed by a TP system and calls EJB Y to access an ERP
system.

FIGURE 7-2 Scenario: Transactions Across Multiple Resource Managers

The application server uses a transaction manager to support a transaction
management infrastructure that enables an application component to perform
transactional access across multiple EIS resource managers. The transaction manager
manages transactions across multiple resource managers and supports propagation
of the transaction context across distributed systems.

The transaction manager supports a JTA XAResource-based transaction
management contract with a resource adapter and its underlying resource manager.
The ERP system supports JTA transactions by implementing a XAResource interface
through its resource adapter. The TP system also implements an XAResource
interface. This interface enables the two resource managers to participate in
transactions that are coordinated by an external transaction manager. The transaction
manager uses the XAResource interface to manage transactions across the two
underlying resource managers.

The EJBs X and Y access the ERP and TP system using the respective client access
API for the two systems. Behind the scenes, the application server enlists the
connections to both systems, obtained from their respective resource adapters, as
part of the transaction. When the transaction commits, the transaction manager
performs a two-phase commit protocol across the two resource managers, ensuring
that all read/write access to resources managed by both the TP system and ERP
system is either entirely committed or entirely rolled back.

X

client
Application Server

Y

TP System ERP System

Transaction Manager

XAResource based
contract
7-4 J2EE Connector Architecture Specification • November 2003

7.2.2 Local Transaction Management
The transactions are demarcated either by the container (called container-managed
demarcation) or by a component (called component-managed demarcation). In
component-managed demarcation, an application component can use the JTA
UserTransaction interface or a transaction demarcation API specific to an EIS (for
example, JDBC transaction demarcation using java.sql.Connection).

The EJB specification requires an EJB container to support both container-managed
and component-managed transaction demarcation models. The JSP and servlet
specifications require a web container to support component-managed transaction
demarcation.

If multiple resource managers participate in a transaction, the EJB container uses a
transaction manager to coordinate the transaction. The contract between the
transaction manager and resource manager is defined using the XAResource
interface.

If a single resource manager instance participates in a transaction (either component-
managed or container-managed), the container has two choices:

■ It uses the transaction manager to manage this transaction. The transaction
manager uses one-phase commit-optimization, described in Section 7.6.1
“Scenarios Supported”, to coordinate the transaction for this single resource
manager instance.

■ The container lets the resource manager coordinate this transaction internally
without involving an external transaction manager.

If an application accesses a single resource manager using a XA transaction, it has
more performance overhead compared to using a local transaction. The overhead is
due to the involvement of an external transaction manager in the coordination of the
XA transaction.
Chapter 7 Transaction Management 7-5

To avoid the overhead of using a XA transaction in a single resource manager
scenario, the application server may optimize this scenario by using a local
transaction instead of a XA transaction. This scenario is shown in FIGURE 7-3.

FIGURE 7-3 Scenario: Local Transaction on a Single Resource Manager

7.3 Transaction Management Contract
This section specifies the transaction management contract. The transaction
management contract builds on the connection management contract specified in
Chapter 6, “Connection Management.”

X

client
Application Server

TP System

Local
Transaction
contract

Application
Contract
7-6 J2EE Connector Architecture Specification • November 2003

FIGURE 7-4 shows the interfaces and flows in the transaction management contract. It
does not show the interfaces, classes, and flows that are the same in the connection
management contract.
Chapter 7 Transaction Management 7-7

FIGURE 7-4 Architecture Diagram: Transaction Management

ConnectionManager ConnectionFactory Connection

Transaction
Manager

ManagedConnection

ConnectionEventListener

XAResource

LocalTransaction

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract
Implementation specific
7-8 J2EE Connector Architecture Specification • November 2003

7.3.1 Interface: ManagedConnection
The javax.resource.spi.ManagedConnection instance represents a physical
connection to an EIS and acts as a factory for connection handles.

The following code extract shows the methods on the ManagedConnection
interface that are defined specifically for the transaction management contract:

A ManagedConnection instance provides access to a pair of interfaces:
javax.transaction.xa.XAResource and
javax.resource.spi.LocalTransaction.

Depending on the transaction support level of a resource adapter, these methods
should raise appropriate exceptions. For example, if the transaction support level for
a resource adapter is NoTransaction, an invocation of getXAResource method
should throw a ResourceException. Refer to Chapter 19, “Exceptions” for details
on the exception hierarchy.

public interface javax.resource.spi.ManagedConnection {
public XAResource getXAResource() throws ResourceException;
public LocalTransaction getLocalTransaction()

throws ResourceException;
...

}

Chapter 7 Transaction Management 7-9

FIGURE 7-5 illustrates this concept:

FIGURE 7-5 ManagedConnection Interface for Transaction Management

The transaction manager uses the XAResource interface to associate and dissociate a
transaction with the underlying EIS resource manager instance and to perform a
two-phase commit protocol. The transaction manager does not directly use the
ManagedConnection interface. The next section describes the XAResource interface
in more detail.

The application server uses the LocalTransaction interface to manage local
transactions.

Transaction
Manager

ManagedConnection

Enterprise Information System (EIS)

LocalTransaction

Application Server Resource Adapter

XAResource

create new instance

create new instance

EIS specific

getXAResource
getLocalTransaction
7-10 J2EE Connector Architecture Specification • November 2003

7.3.2 Interface: XAResource
The javax.transaction.xa.XAResource interface is a Java mapping of the
industry standard XA interface based on X/Open CAE specification (Section 4.,
“X/Open CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document” on page F-1).

The following code extract shows the interface specification for the XAResource
interface. For more details and API documentation, refer to the JTA (Section 2., “Java
Transaction API (JTA) specification, version 1.0.1B” on page F-1) and XA (Section 4.,
“X/Open CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document” on page F-1) specifications:

7.3.2.1 Implementation

A resource adapter for an EIS resource manager implements the XAResource
interface. This interface enables the resource manager to participate in transactions
that are controlled and coordinated by an external transaction manager. The
transaction manager uses the XAResource interface to communicate transaction
association, completion, and recovery to the resource manager.

A resource adapter typically implements the XAResource interface using a low-
level library available for the underlying EIS resource manager. This low-level
library either supports a native implementation of the XA interface or provides a
proprietary vendor-specific interface for transaction management.

A resource adapter is responsible for maintaining a 1-1 relationship between the
ManagedConnection and XAResource instances. Each time a
ManagedConnection.getXAResource method is called, the same XAResource
instance has to be returned.

A transaction manager can use any XAResource instance (if it refers to the proper
resource manager instance) to initiate transaction completion. The XAResource
instance used during the transaction completion process need not be the one initially
enlisted with the transaction manager for this transaction.

public interface javax.transaction.xa.XAResource {
public void commit(Xid xid, boolean onePhase) throws

XAException;
public void end(Xid xid, int flags) throws XAException;
public void forget(Xid xid) throws XAException;
public int prepare(Xid xid) throws XAException;
public Xid[] recover(int flag) throws XAException;
public void rollback(Xid xid) throws XAException;
public void start(Xid xid, int flags) throws XAException;

}

Chapter 7 Transaction Management 7-11

7.3.3 Interface: LocalTransaction
The following code extract shows the javax.resource.spi.LocalTransaction
interface:

A resource adapter implements the LocalTransaction interface to provide support
for local transactions that are performed on the underlying resource manager. An
application server uses the LocalTransaction interface to manage local
transactions for a resource manager.

Section 7.7.1 “Interface: Local Transaction” has more details on the local transaction
management contract.

7.4 Relationship to JTA and JTS
The Java Transaction API (JTA) (Section 2., “Java Transaction API (JTA)
specification, version 1.0.1B” on page F-1) is a specification of interfaces between a
transaction manager and the other parties involved in a distributed transaction
processing system: application programs, resource managers, and an application
server.

The Java Transaction Service (JTS) API is a Java binding of the Common
Object Request Broker Architecture (CORBA) Object Transaction Service (OTS) 1.1
specification. JTS provides transaction interoperability using the standard Internet
Inter-ORB Protocol (IIOP) for transaction propagation between servers. The JTS API
is intended for vendors who implement transaction processing infrastructure for
enterprise middleware. For example, an application server vendor can use a JTS
implementation as the underlying transaction manager.

7.4.1 JTA Interfaces
The application server uses the javax.transaction.TransactionManager and
javax.transaction.Transaction interfaces, specified in the JTA specification,
for its contract with the transaction manager.

public interface javax.resource.spi.LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

7-12 J2EE Connector Architecture Specification • November 2003

The application server uses the javax.transaction.TransactionManager
interface to control the transaction boundaries on behalf of the application
components that are being managed by the application server. For example, an EJB
container manages the transaction states for transactional EJB components. The EJB
container uses the TransactionManager interface to demarcate transaction
boundaries based on the calling thread’s transaction context.

The application server also uses the javax.transaction.Transaction interface
to enlist and delist transactional connections with the transaction manager. This
enables the transaction manager to coordinate transactional work performed by all
enlisted resource managers within a transaction.

7.5 Object Diagram
FIGURE 7-6 shows the object instances and their interactions related to transaction
management.
Chapter 7 Transaction Management 7-13

Since the transaction management contract builds upon the connection management
contract, the following diagram does not show object interactions that have already
been discussed in Chapter 6, “Connection Management.”
7-14 J2EE Connector Architecture Specification • November 2003

FIGURE 7-6 Object Diagram: Transaction Management

ConnectionManager Connection

Transaction
Manager

ManagedConnection

ConnectionEventListener

Pool
Manager

Application

Enterprise Information System (EIS)

 Component

LocalTransaction

Connection Event notifications

getLocalTransaction

EIS specific

Application Server Resource Adapter

getXAResource

Architected interface
Instantiation
Implementation specific

XAResource

create new instance

create new instance

EIS specific

create
new instance

Resource
Adapter specific
Chapter 7 Transaction Management 7-15

7.6 XAResource-based Transaction Contract
The following section specifies detailed requirements for a resource manager and a
transaction manager for the XAResource-based transaction management contract. In
this section, the following abbreviations are used: RM (Resource Manager), TM
(Transaction Manager), 1PC (one phase commit protocol), and 2PC (two phase
commit protocol).
7-16 J2EE Connector Architecture Specification • November 2003

7.6.1 Scenarios Supported
The following table specifies various transaction management scenarios and
mentions whether these scenarios are within the scope of the connector architecture.

TABLE 7-1 Transaction Management Scenarios

Description Supported / NotSupported

TM does two-phase commit (2PC) on
RMs that support two phase commit
(as defined in RM’s requirements for
XAResource implementation in the
subsection below)
Examples of RM: Oracle and DB2
installations that support 2PC in their
XAResource implementations.

Supported based on TM’s requirement to be
JTA/JTS and X/Open compliant, and RM’s
support for 2PC in the XAResource interface.

TM does one-phase commit (1PC)
optimization on the only RM involved
in a transaction. RM supports 2PC in
its XAResource implementation (as
defined in RM’s requirements for the
XAResource implementation in the
subsection below).
Example of RM: DB2 installation that
supports 2PC in its XAResource
implementation.

Supported based on TM’s requirement to be
JTA/JTS and X/Open compliant, and RM’s
support for the XAResource interface.
Note: This scenario will also work if TM does
2PC on RM.
Chapter 7 Transaction Management 7-17

7.6.2 Resource Adapter Requirements
The connector architecture does not require that all resource adapters must support
JTA XAResource based transaction contract.

If a resource adapter decides to support a XAResource based contract, then the
connector architecture places certain requirements on a resource adapter and its
underlying resource manager (RM).

The following requirements refer to a resource adapter and its resource manager
together as a resource manager (RM). The division of responsibility between a
resource adapter and its underlying resource manager for supporting the transaction
contract is implementation-specific and is out of the scope of the connector
architecture.

These requirements assume that a transaction manager (TM) supports JTA/XA and
JTS requirements.

TM does one-phase commit
optimization on the only RM involved
in a transaction. RM does not support
2PC but supports 1PC in its
XAResource implementation.
Example of RM: ERP system or
mainframe TP system that does not
support 2PC, but implements 1PC in
its XAResource implementation as
defined in the RM’s requirements for
1PC.

Supported by requiring that TM must support
1PC optimization. A successful transaction
coordination of 1PC only RM comes as a result of
required 1PC optimization for a TM.
The rationale behind this requirement is that this
scenario will be an important scenario to support
for the connector architecture.

TM does last-resource commit
optimization across multiple RMs
involved in a transaction—RMs that
support 2PC (for example: Oracle and
DB2) and a single RM that supports
only 1PC (for example: an ERP
system).

Out of the scope of the connector architecture
specification

More than one RM that support only
1PC involved in a transaction with
none or multiple 2PC enabled RMs

Out of the scope of the connector architecture
specification

TABLE 7-1 Transaction Management Scenarios

Description Supported / NotSupported
7-18 J2EE Connector Architecture Specification • November 2003

The following set of requirements are based on the JTA and XA specifications and
should be read in conjunction with these specifications. These detailed requirements
are included in this document to clearly specify the requirements from the connector
architecture perspective.

7.6.2.1 General
■ If a RM supports an XAResource contract, then it must support the one-phase

commit protocol by implementing XAResource.commit when the boolean flag
onePhase is set to True. The RM is not required to implement the two-phase
commit protocol support in its XAResource implementation.

■ However, if a RM supports the two-phase commit protocol, then the RM must use
the XAResource interface for supporting the two-phase commit protocol.

■ An RM is allowed to combine the implementation of 2PC protocol with 1PC
optimization by implementing XAResource.commit(onePhase=True) in
addition to the implementation requirements for 2PC.

7.6.2.2 One-phase Commit
■ An RM should allow XAResource.commit (onePhase=True) even if it has not

received XAResource.prepare for the transaction branch.
■ If the RM fails to commit a transaction during a 1PC commit, then the RM should

throw one of the XA_RB* exceptions. In the exception case, an RM should roll
back the transaction branch’s work and release all held RM resources.

■ The RM is responsible for deciding the outcome of a transaction branch on a
XAResource.commit method. The RM can discard knowledge of the transaction
branch once it returns from the commit call.

■ The RM is not required to maintain knowledge of transaction branches to support
failure recovery for the TM.

■ If an XAResource.prepare method is called on an RM that supports only one-
phase commit, then the RM should throw an XAException with XAER_PROTO or
XA_RB* flag.

■ The RM should return an empty list of XIDs for XAResource.recover, because
the RM is not required to maintain stable knowledge about transaction branches.

7.6.2.3 Two-phase Commit
■ If the RM supports 2PC, then its implementation of 2PC must be compliant with

the 2PC protocol definition with presumed rollback as specified in the OSI TP
(Transaction Protocol defined by ISO (ISO92)) specification.
Chapter 7 Transaction Management 7-19

■ The RM must implement the XAResource.prepare method and must be able to
report whether it can guarantee its ability to commit the transaction branch. If the
RM reports that it can, the RM must hold and record in a stable way all the
resources necessary to commit the branch. It must hold all these resources until
the TM directs it to commit or rollback the branch.

■ An RM that reports a heuristic completion to the TM must not discard its
knowledge of the transaction branch. The RM should discard its knowledge of the
branch only when the TM calls XAResource.forget. The RM must notify the
TM of all heuristic decisions.

■ On the TM’s XAResource.commit and XAResource.rollback calls, the RM is
allowed to report through an XAException that it has heuristically completed the
transaction branch. This feature is optional.

A TM supporting the OSI TP specification uses the one-phase commit optimization
by default to manage an RM that is the only resource involved in the transaction.
The mechanism to identify to the TM a particular RM that only supports 1PC is
beyond the scope of this specification.

7.6.2.4 Transaction Association and Calling Protocol
■ The RM XAResource implementation must support XAResource.start and

XAResource.end for association and disassociation of a transaction, as
represented by, unique XID, with recoverable units of work being done on the
RM.

■ The RM must ensure that the TM invokes XAResource calls in the legal sequence,
and must return XAER_PROTO or another suitable error if the caller TM violates
the state tables, as defined in Chapter 6 of the XA specification (Section 2., “Java
Transaction API (JTA) specification, version 1.0.1B” on page F-1).

7.6.2.5 Unilateral Roll-back
■ The RM need not wait for global transaction completion to report an error. The

RM can return a rollback-only flag as a result of any XAResource.start or
XAResource.end call. This can happen anytime except after a successful
prepare.

■ The RM is allowed to unilaterally rollback and forget a transaction branch any
time before it prepares it.
7-20 J2EE Connector Architecture Specification • November 2003

7.6.2.6 Read-Only Optimization
■ Support for read-only optimization is optional for RM implementation. An RM

can respond to the TM’s request to prepare a transaction by asserting that the RM
was not asked to update shared resources in this transaction branch. This
response concludes the RM’s involvement in the transaction, and the RM can
release all resources and discard its knowledge of the transaction.

7.6.2.7 XID Support
■ The RM must accept XIDs from TMs. The RM is responsible for using the XID to

maintain an association between a transaction branch and recoverable units of
work done by the application programs.

■ The RM must not alter in any way the bits associated in the data portion of an
XID. For example, if an RM remotely communicates an XID, it must ensure that
the data bits of the XID are not altered by the communication process.

7.6.2.8 Support for Failure Recovery
■ A full JTA compliant XAResource implementation that supports 2PC must

maintain the status of all transaction branches in which it is involved. After
responding affirmatively to the TM prepare call, an RM should not erase its
knowledge of the branch or of the work done in support of the branch until it
successfully receives a TM’s invocation to commit or rollback the branch.

■ If an RM that supports 2PC heuristically completes a branch, it should not forget
a branch until the TM explicitly tells it to by calling XAResource.forget.

■ On the TM’s XAResource.recover call, an RM that supports 2PC must return a
list of all transaction branches that it has prepared or has heuristically completed.

■ When an RM recovers from its own failure, it must recover prepared and
heuristically completed branches. It should discard its knowledge of all other
branches.

7.6.3 Transaction Manager Requirements
The following section specifies requirements of a TM. This section assumes that the
TM is compliant with JTA/JTS and X/Open ([Section 4., “X/Open CAE Specification
-- Distributed Transaction Processing: the XA specification, X/Open document” on
page F-1]) specifications.
Chapter 7 Transaction Management 7-21

7.6.3.1 Interfaces
■ The TM must use the XAResource interface supported by an RM for transaction

coordination and recovery. The TM must be written to handle consistently any
information or status that an RM can legally return. The TM must assume that it
can support RMs that have different capabilities as allowed by the RM
requirements specification section, for instance RMs that make heuristic decisions
and RMs that use the read-only optimization. [Requirement derived from Section
7.3, XA specification]

7.6.3.2 XID requirements
■ The TM must generate XIDs conforming to the structure defined in section 4.2 on

page 19 of the XA specification ([Section 2., “Java Transaction API (JTA)
specification, version 1.0.1B” on page F-1]). The generated XIDs must be globally
unique and must adequately describe a transaction branch.

7.6.3.3 One-phase Commit Optimization
■ The TM must support one-phase commit protocol optimization. The TM uses the

1PC optimization when the TM knows there is only one RM registered in a
transaction that is making changes to shared resources. In this optimization, the
TM makes its phase 2 commit request to that RM without having made a phase 1
prepare request.

■ The TM is not required to record in a stable manner such transactions, and in
some failure cases, the TM may not know the outcome of the transaction
completion.

7.6.3.4 Implementation Options
■ The support of last-resource optimization is an implementation-specific

option for a TM. A detailed specification of TM and RM requirements for this
optimization is outside the scope of the connector architecture.

7.6.4 Scenario: Transactional Setup for a
ManagedConnection
The following object interactions are involved in the scenario shown in FIGURE 7-7
on page 25.
7-22 J2EE Connector Architecture Specification • November 2003

■ The runtime scenario begins with a client method invocation on an EJB instance.
This invocation has a transaction context, represented by a unique transaction
Xid, associated with it if the invocation came from a client that was already
participating in the transaction. Alternatively, the EJB container starts a
transaction before dispatching the client request to the EJB method.

■ The EJB instance calls the getConnection method on the ConnectionFactory
instance. The resource adapter delegates the connection request to the application
server using the connection management contract. FIGURE 6-6 on page 39
explains this step.

■ The application server gains control and handles the connection allocation
request.

■ To handle the connection allocation request, the application server gets a
Managed-Connection instance either from the connection pool or creates a new
Managed-Connection instance. FIGURE 6-6 on page 39 describes this step.

■ The application server registers itself as a ConnectionEventListener with the
ManagedConnection instance. This enables the application server to receive
notifications for various events on this connection instance. The application server
uses these event notifications to manage connection pooling and transactions.

■ Based on the current transaction context associated with the connection-
requesting thread and the EJB instance, the application server decides whether or
not the transaction manager will participate in the coordination of the currently
active transaction.

■ If the application server decides that the transaction manager will manage the
current transaction, it conducts the following transactional setup on the
ManagedConnection instance:

■ The application server invokes the ManagedConnection.getXAResource
method to get the XAResource instance associated with the
ManagedConnection instance.

■ The application server enlists the XAResource instance with the transaction
manager for the current transaction context. The application server uses the
Transaction.enlistResource method (specified in the JTA specification) to
enlist the XAResource instance with the transaction manager. This enlistment
informs the transaction manager about the resource manager instance
participating in the transaction.

■ The transaction manager invokes XAResource.start to associate the current
transaction with the underlying resource manager instance. This enables the
transaction manager to inform the participating resource manager that all units
of work performed by the application on the underlying ManagedConnection
instance should now be associated with this transaction.

■ The application server calls the ManagedConnection.getConnection method
to get a new application-level connection handle. The underlying physical
connection is represented by a ManagedConnection instance.
Chapter 7 Transaction Management 7-23

■ The application server returns the connection handle to the resource adapter. The
resource adapter then passes the connection handle to the application component
that had initiated the connection request.
7-24 J2EE Connector Architecture Specification • November 2003

FIGURE 7-7 OID: Transactional Setup For Newly Created ManagedConnection Instances

XAResource.start(XID, flag)

Transaction.enlistResource(XAResource)

Application ManagedConnection-
Factory Managed-

Resource Adapter

Component

Resource Adapter

getConnection

javax.resource.cci.

ConnectionManager.allocateConnection

Application

getXAResource

Transaction
Manager

XAResource

getConnection(Subject, ConnectionRequestInfo)

return javax.resource.cci.Connection

Connection

Case: TM coordinated Transaction

Application server gets a ManagedConnection
instance from the connection pool or
creates a new instance.

 ServerConnectionFactory

return javax.resource.cci.Connection
Chapter 7 Transaction Management 7-25

7.6.5 Scenario: Connection Close and JTA Transactional
Cleanup
For each ManagedConnection instance in the pool, the application server registers
a ConnectionEventListener instance to receive specific events on the connection.
The connection event callback mechanism enables the application server to manage
connection pooling and transactions.

FIGURE 6-7 on page 43 describes the following steps when an application
component closes a connection:

■ The application component releases a Connection instance by calling the close
method. The Connection instance delegates the connection close request to its
associated Managed-Connection instance. A ManagedConnection must not
alter any state on the physical connection while handling a delegated connection
close request.

■ The ManagedConnection instance notifies all its registered listeners of the
application’s connection close request using the
ConnectionEventListener.connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED.

■ On receiving the connection close notification, the application server performs
transactional cleanup for the ManagedConnection instance. If the
ManagedConnection instance was participating in a transaction manager-
enlisted JTA transaction, the application server takes the following steps:

■ The application server dissociates the XAResource instance, corresponding to
the ManagedConnection instance, from the transaction manager using the
method Transaction.delistResource.

■ The transaction manager calls XAResource.end(Xid, flag) to inform the
resource manager that any further operations on the ManagedConnection
instance are no longer associated with the transaction, represented by the Xid
passed in XAResource.end call. This method invocation dissociates the
transaction from the resource manager instance.

■ After the JTA transaction completes, the application server initiates a cleanup of
the physical connection instance by calling ManagedConnection.cleanup
method. After calling the method cleanup on the ManagedConnection instance,
the application server returns the ManagedConnection instance to the
connection pool.
7-26 J2EE Connector Architecture Specification • November 2003

■ The application server can now use the ManagedConnection instance to handle
future connection allocation requests from either the same or another component
instance.
Chapter 7 Transaction Management 7-27

FIGURE 7-8 OID: Connection Close and Transactional Cleanup

Application Application ManagedConnection
Factory Managed

Resource Adapter

Component

Resource Adapter

close()

javax.resource.cci.
Transaction
Manager

XAResource

Connection

Internal: Resource Adapter implementation specific

ManagedConnection
notifies all registered
ConnectionEvent-
Listeners

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

Case: TM coordinated Transaction

Transaction.delistResource(XAResource, flag)

XAResource.end(XID, flag)

Application Server returns
ManagedConnection instance
to the connection pool

ManagedConnection.cleanup

ServerConnection
7-28 J2EE Connector Architecture Specification • November 2003

7.6.6 OID: Transaction Completion
The scenario in FIGURE 7-9 illustrates the steps taken by the transaction manager to
commit a transaction across multiple resource manager instances. These steps are
executed after the transaction manager calls the XAResource.end method for each
enlisted resource manager instance.

The following steps happen in this scenario:

■ The transaction manager calls XAResource.prepare to begin the first phase of
the transaction completion protocol. The transaction manager can call any
XAResource instance is associated with the proper underlying resource manager
instance, and is not restricted to the XAResource instance initially involved with
the transaction. The application server can assume that all XAResource instances
produced by a ManagedConnectionFactory instance refer to the same
underlying resource manager instance.
Chapter 7 Transaction Management 7-29

■ Assuming that all resource manager instances involved in the transaction agree to
commit, the transaction manager calls XAResource.commit to commit the
transaction. Otherwise, the transaction manager calls XAResource.rollback.

FIGURE 7-9 OID: Transaction Completion

Transaction
Manager

XAResource XAResource

Transaction manager initiates transaction
completion process on XAResource instances -
one for each participating resource manager
instance

Resource Manager
instance

Resource Manager
instance

Pre-condition: XAResource.end method called by TM on each
participating resource manager instance

XAResource.prepare

XAResource.prepare

Case: All resource manager instances
vote to commit

XAResource.commit

XAResource.commit
7-30 J2EE Connector Architecture Specification • November 2003

7.7 Local Transaction Management Contract
The main motivation for defining a local transaction contract between an application
server and a resource manager is to enable an application server to manage resource
manager local transactions, hereafter called local transactions.

The local transaction management contract has two parts:

■ The application server uses the javax.resource.spi.LocalTransaction
interface to manage local transactions transparently to an application component.
The scenarios in Section 7.10 “Transaction Scenarios”Note – illustrate this part of
the local transaction management contract.

■ The other part of the contract relates to notifications for local transaction-related
events. If the resource adapter supports a local transaction demarcation API, for
example, javax.resource.cci.LocalTransaction for the Common Client
Interface, the resource adapter needs to notify the application server of the events
(transaction begin, commit, and rollback) related to the local transaction. An
application server uses this part of the contract, as explained in Section 7.8
“Scenarios: Local Transaction Management”.

7.7.1 Interface: Local Transaction
The javax.resource.spi.LocalTransaction interface defines the contract
between an application server and resource adapter for local transaction
management. This interface is defined in Section 7.3.3 “Interface: LocalTransaction”.

7.7.2 Interface: ConnectionEventListener
An application server implements the
javax.resource.spi.ConnectionEventListener interface. It registers this
listener instance with the ManagedConnection instance by using
ManagedConnection.addConnectionEventListener method.
Chapter 7 Transaction Management 7-31

The following code extract specifies the ConnectionEventListener interface
related to the local transaction management contract:

The ManagedConnection instance notifies its registered listeners for transaction
related events by calling the methods localTransactionStarted,
localTransactionCommitted, and localTransactionRolledback.

The ConnectionEvent class defines the following types of event notifications
related to the local transaction management contract:

■ LOCAL_TRANSACTION_STARTED—a local transaction was started using the
ManagedConnection instance.

■ LOCAL_TRANSACTION_COMMITTED—a local transaction was committed using
the ManagedConnection instance.

■ LOCAL_TRANSACTION_ROLLEDBACK—a local transaction was rolled back using
the ManagedConnection instance.

7.7.2.1 Requirements

The connector specification requires an application server to implement the
ConnectionEventListener interface and handle local transaction related events.
This enables the application server to achieve local transaction cleanup and
transaction serial interleaving, as illustrated in Section 7.8 “Scenarios: Local
Transaction Management”. The connector specification provides the necessary
mechanisms for transaction management. Whether these mechanisms are used in an
application server depends on the application server’s implementation of the
transaction requirements of the J2EE component specifications.

The resource adapter must send local transaction events through the
ConnectionEventListener interface when an application component starts a local
transaction using the application level transaction demarcation interface. An
exception to this requirement is when the transaction demarcation API supports the
concept of an implicit begin of a local transaction. The JDBC API is an example
where there is no explicit local transaction begin method.

public interface javax.resource.spi.ConnectionEventListener {
// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);
public void localTransactionRolledback(ConnectionEvent

event);

...
}

7-32 J2EE Connector Architecture Specification • November 2003

However, resource adapters that allow implicit begin of a local transaction, for
instance, JDBC drivers, are strongly encouraged to provide support for local
transaction events. This may be required in a future release of the specification.

The resource adapter must not send local transaction events for local transactions
managed by the container.

7.8 Scenarios: Local Transaction
Management
This section illustrates how an application server uses the event notifications from
the resource adapter to manage local transactions and to restrict illegal transaction
demarcations by an application component.

In these scenarios, an application component starts a local transaction using an
application-level transaction demarcation interface, for example,
javax.resource.cci.LocalTransaction as defined in the CCI, supported by
the resource adapter. The resource adapter, in its implementation of the transaction
demarcation interface, sends event notifications related to the local transaction,
namely, local transaction begin, commit, and rollback. The application server is
notified of these local transaction-related events through the
ConnectionEventListener mechanism.

7.8.1 Local Transaction Cleanup
A stateless session bean with bean-managed transaction demarcation starts a local
transaction in a method invocation. It returns from the business method without
completing the local transaction.

The application server implements the ConnectionEventListener interface. The
resource adapter notifies the application server with a
LOCAL_TRANSACTION_STARTED event when the local transaction is started by the
session bean instance.

When the session bean instance returns from the method invocation without
completing the local transaction, the application server detects this as an incomplete
local transaction because it has not received any matching
LOCAL_TRANSACTION_COMMITTED or LOCAL_TRANSACTION_ROLLEDBACK events
from the resource adapter.
Chapter 7 Transaction Management 7-33

On detecting an incomplete local transaction, the application server aborts the
transaction, terminates the stateless session bean instance, and throws an exception
to the client.

7.8.2 Component Termination
The application server terminates a component instance, for example, because of
some system exception in a method invocation.

On termination of a component instance, the application server cleans up all
ManagedConnection instances being used by this component instance. The cleanup
of a connection involves resetting all local transaction and client-specific state. This
state is maintained internal to the ManagedConnection instance.

The application server initiates a cleanup of a ManagedConnection instance by
calling ManagedConnection.cleanup. After cleanup, the application server returns
this connection to the pool to serve future allocation requests.

7.8.3 Transaction Interleaving
The application server uses the connection event listener mechanism, specified
through the interfaces ConnectionEventListener and ConnectionEvent, to flag
illegal cases of transaction demarcation. The application server implements the
ConnectionEventListener interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction
demarcation.

7.8.3.1 Scenario

An EJB component with bean managed transaction demarcation starts a local
transaction using the application-level transaction demarcation interface, for
example, javax.resource.cci.LocalTransaction as defined in the CCI,
supported by the resource adapter. It then calls the UserTransaction.begin
method to start a JTA transaction before it has completed the local transaction.

In this scenario, the EJB component has started but not completed the local
transaction. When the application component attempts to start a JTA transaction by
invoking the UserTransaction.begin method, the application server detects it as
a transaction demarcation error and throws an exception from the
UserTransaction.begin method.
7-34 J2EE Connector Architecture Specification • November 2003

When the application component starts the local transaction, the resource adapter
notifies the application server of the LOCAL_TRANSACTION_STARTED connection
event. When the component invokes the UserTransaction.begin method, the
application server detects an error condition, because it has not received the
matching LOCAL_TRANSACTION_COMMITTED or
LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter for the
currently active local transaction.

7.9 Connection Sharing
Sharing connections typically results in efficient use of resources and better
performance. An application can indicate the ability to share its various resource
references, or connections, in its deployment descriptor. A connection can be marked
either as shareable or unshareable. The default is shareable.

When multiple shareable connections x and y acquired by an application are used
within a global transaction scope (for instance, container-managed or bean-
managed), the application server must provide a single shared connection behavior
under the following conditions:

■ x and y are collocated in a single Java Virtual Machine process address space.
■ x and y are using a single transactional resource manager.
■ x and y have identical properties.
■ x and y are marked as shareable.
■ x and y are used within a container-managed or bean-managed transaction scope.

The ability to share is unspecified for connections marked shareable that are used
outside a global transaction scope. Sharing is not supported for connections obtained
from a non-transactional resource adapter, that is, transaction support level is
NoTransaction.

The intent of the connection sharing requirement is to avoid resource manager lock
contentions and read isolation problems, and thus ensure portable behavior for
transactional applications. The application server may implement the connection
sharing semantics either using a single shared connection or through other
mechanisms1.

1. An application server may not share connections that are markedshareable, but still ensure the
portability of the transaction application across application servers. For instance, the application server may
choose to end XA association of connections when control flows from one application component to another,
in order to avoid concurrent access problems on XA Resource Managers, and thus provide single shared
connection behavior.
Chapter 7 Transaction Management 7-35

If a connection is marked as shareable, it must be transparent to the application
whether a single shared connection is used or not. The application must not make
assumptions about a single shared connection being used, and hence must use the
connection in a shareable manner.

However, a J2EE application component that intends to use a connection in an
unshareable way must leave a deployment hint to that effect, which will prevent the
connection from being shared by the container. Examples of unshareable usage of a
connection include changing the security attributes, isolation levels, character
settings, and localization configuration.

Containers must not attempt to share connections that are marked unshareable.

J2EE application components may use the optional deployment descriptor element
res-sharing-scope to indicate whether a connection to a resource manager is
shareable or unshareable. Containers must assume connections to be shareable if no
deployment hint is provided. Refer to EJB specification (Section 1., “Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) and the servlet
specification (Section 10., “Java Servlet specification, version 2.4:” on page F-1) for a
description of the deployment descriptor element.

J2EE application components may cache connection objects and reuse them across
multiple transactions. Containers that provide connection sharing should
transparently switch such cached connection objects, at dispatch time, to point to an
appropriate shared connection with the correct transaction scope. Refer to Section
7.11 “Connection Association” for more details on connection association.

Refer to Section 7.10 “Transaction Scenarios” for a special case of connection sharing
as applied to resource adapters that support local transactions.

7.9.1 Sharing Violation Detection
A resource adapter may detect sharing violations. Any operation on a shareable
connection which violates shareability is a sharing violation, for example, mutable
operations like changing connection attributes, security settings, isolation levels, etc.

When such a mutable operation is performed on a ManagedConnection, it may
throw a SharingViolationException when both the following conditions are
true:

■ The number of connection handle objects associated with the
ManagedConnection is more than one.

■ The ManagedConnection is associated with a transaction, either local or XA.

Further, a resource adapter may reject creation of a connection handle, by throwing a
SharingViolationException, if the connection is already in a unshareable
condition. Any mutable operation performed on a connection makes it unshareable.
7-36 J2EE Connector Architecture Specification • November 2003

7.9.1.1 Scenario 1

Application component A gets a shareable connection to a resource and invokes
component B which also gets a shareable connection to the same resource. Both A
and B are involved in a common transaction scope, either local or XA. The
application server shares the connections acquired by both A and B. From this point
onwards, any attempt to change a mutable property, such as isolation level, by either
component, results in a SharingViolationException being thrown by the
resource adapter to the offending component.

7.9.1.2 Scenario 2

Application component A gets a shareable connection to a resource. A is involved in
a transaction, either local or XA. A then modifies one of the mutable properties of
the resource, such as isolation level. This makes the connection unshareable. The
resource adapter does not throw an exception since only one connection handle is
present.

Later, A invokes B under the same transaction scope. B also attempts to acquire a
shareable connection to the same resource. The application server chooses to share
the connection that is already in use by A. At this point, the resource adapter throws
a SharingViolationException to B since sharing had been attempted on an
unshareable connection. The resource adapter does this by remembering that the
connection had been made unshareable earlier.

The resource adapter might throw a SharingViolationException to B, even if A
had closed its connection handle before it invoked B, since the connection acquired
by A had become unshareable.

7.10 Transaction Scenarios
This section specifies requirements for various transaction scenarios.

7.10.1 Requirements
The J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4:” on page F-1) identifies the following
as transactional resources:

■ JDBC connections
■ JMS sessions
Chapter 7 Transaction Management 7-37

■ Resource adapter connections at the XATransaction level

The J2EE platform specification requires that J2EE product providers must
transparently support transactions that span multiple components and transactional
resources. These requirements must be met regardless of whether a J2EE product is
implemented as a single process, multiple processes on the same node, or multiple
processes on multiple nodes.

In addition, J2EE product providers must support transactional applications that are
comprised of servlets or JSP pages accessing multiple enterprise beans within a
single transaction. Each component may also acquire one or more connections to
access transactional resources. J2EE product providers must support scenarios where
multiple components in an application access transactional resources as part of a
single transaction.

The J2EE platform specification requires J2EE platform products to support resource
adapters at the XATransaction level as a transactional resource. It must be possible
to access such resource adapters from multiple application components within a
single transaction.

The connector architecture has an additional requirement that is applicable to
resource adapters that support local transactions. Note that both
LocalTransaction and XATransaction resource adapters support local
transactions.

Application server must use local transactions in a scenario where the following
conditions hold:

■ Multiple components are involved in a global transaction scope.
■ Components use a single resource adapter that is local transaction capable.
■ Components get connections to the same EIS instance.
■ Components have not specified the res-sharing-scope flag as unshareable.

This condition accounts for potential sharing of connections in terms of security
context, client-specific connection parameters, and EIS specific configuration.

Note that this requirement does not apply to a local transaction that is started by a
component using an application level transaction demarcation API that is specific to
a resource adapter.

Application server may use connection sharing mechanisms to implement this local
transaction requirement.

Application servers must support transaction scenarios where access to a non-
transactional resource is combined with access to one or more transactional
resources within a single transaction. For example, in a container-managed
transaction, an EJB accesses JDBC and JMS resources and also accesses a non-
transactional EIS using its resource adapter. If there is a failure during the above
scenario, transactional resource managers operating under the transaction should
rollback, but the recovery of the non-transactional resource is unspecified in this
specification.
7-38 J2EE Connector Architecture Specification • November 2003

The application server is not required to support any additional transaction
scenarios beyond the above set of scenarios. A J2EE application should not depend
on an application server’s support for any optional transaction scenarios. The
application should also not depend on whether or not the container detects that a
specific optional transaction scenario is illegal. Any errors in optional transaction
scenarios are considered application programming errors.

7.10.2 Illustrative Scenarios
The following are examples of optional transaction scenarios. The following section
also describes, in a non-prescriptive manner, issues in support for these scenarios by
an application server:

■ Within a transaction, an EJB component acquires connections to two different
resource managers X and Y using their respective non-XA local transaction
capable resource adapters.

The container cannot manage a local transaction across two different resource
managers. Since resource adapters and underlying resource managers are not XA
capable, the container cannot use XA in this case. However, a J2EE application
should not depend on the container to detect this illegal scenario.

■ Within a transaction, EJB component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, EJB
component B under the same transaction context acquires a connection to a
different resource manager Y using a non-XA local transaction capable resource
adapter

The container cannot manage a local transaction across two different resource
managers. Since resource adapters are not XA capable, the container cannot use
XA in this case. However, a J2EE application should not depend on the container
to detect this illegal scenario.

■ Within a transaction, EJB component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, the
same EJB (or EJB B) under the same transaction context acquires a connection to a
different resource manager Y using an XA capable resource adapter

This scenario may be supported if the transaction manager supports last resource
commit optimization. Since this optimization feature is optional and not specified
in the connector architecture, a J2EE application should not depend on support
for this scenario.

■ Within a transaction, EJB A acquires a connection to a resource manager X using
an XA capable resource adapter. Next, the same EJB component (or another EJB
component B) under the same transaction context acquires a connection to a
different resource manager Y using a non-XA local transaction capable resource
adapter
Chapter 7 Transaction Management 7-39

This scenario may be supported if the transaction manager supports last resource
commit optimization. Since this optimization feature is optional and not specified
in the connector architecture, a J2EE application should not depend on support
for this scenario.

7.10.3 Scenario: Local Transaction
The following scenario illustrates the use of the connection sharing mechanism to
implement requirement for a local transaction to span components.

In this scenario, two EJB components get connections to the same EIS resource
manager within a single transaction. Both EJB components use the same local
transaction capable resource adapter.

A local transaction is associated with a single physical connection. Both EJB
components in this scenario share the same physical connection under the local
transaction scope. The container has the responsibility of managing connection
sharing as illustrated in the following scenario.

To share a physical connection in the local transaction scope, the container assumes
the connection to be shareable unless it has been marked unshareable in the res-
sharing-scope. The container uses connection sharing in a manner that is
transparent to application components.

In FIGURE 7-10, the stateful session beans A and B have container-managed
transaction demarcation with the transaction attribute set to Required. Both A and
B access a single EIS resource manager as part of their business logic.

FIGURE 7-10 Scenario to illustrate Local Transaction Management

The following steps happen in this scenario:

EJB A EJB Bclient
invocation

Local Transaction Contract

Container
7-40 J2EE Connector Architecture Specification • November 2003

■ The client invokes a method on session bean A with no transaction context. In its
method implementation, the EJB A acquires a connection to the EIS instance.

■ When acquiring the connection, the container starts a local transaction by
invoking the begin method of the javax.resource.spi.LocalTransaction
instance. The local transaction is tied to the ManagedConnection instance that is
associated with the connection handle acquired by the component in the previous
step.

■ After the local transaction starts, any recoverable unit of work performed by A on
the EIS resource manager using the acquired connection is automatically included
under the local transaction context.

■ Session bean A now invokes a method on the session bean B instance. In this
scenario, A does not close the connection handle before invoking the method on
B.

Note – A container should ensure that the connection sharing mechanism is equally
applicable if A were to close the connection handle before calling the B instance.

■ In the invoked method, B makes a request to acquire a connection to the same EIS
resource manager.

■ The container returns a connection handle using the same ManagedConnection
instance that was used for handling the connection request from A.

■ The container retains the association of the ManagedConnection instance with
the local transaction context across the method invocation from A to B. This
means that any unit of work that B will perform on the EIS resource manager
using its acquired connection handle will be automatically included as part of the
Chapter 7 Transaction Management 7-41

current local transaction. The connection state, for example, any open cursors, can
also be retained across method invocations when the physical connection is
shared.
7-42 J2EE Connector Architecture Specification • November 2003

FIGURE 7-11 OID: Connection Sharing across Component instances

Application Server

Container
LocalTransaction

Pre-condition: Container decides to perform connection sharing and local

EJB A

Component Group that allows
Local Transaction Management

EJB B

LocalTransaction.begin

The container dispatches client-initiated
business method to EJB A

Business method ends without any application error

LocalTransaction.commit

Local Transaction Completed

ManagedConnection

close

ManagedConnection.getConnection

ManagedConnection.cleanup

ManagedConnection.getConnection

EJB A gets a connection handle and performs unit of work
on the EIS resource manager

Method Invocation

EJB B gets an EIS connection and performs its
unit of work on EIS resource manager under the
local transaction context

Connection Request

Connection Request

Connection cleanup done and
default state is restored

close

javax.resource.cci.
Connection

transaction management.
Chapter 7 Transaction Management 7-43

■ Before the method invocation on B completes, B calls the close method on the
connection handle. The container should not initiate any cleanup of the physical
connection at this time since there is still an uncompleted local transaction
associated with the shared physical connection. In this scenario, the cleanup of a
physical connection refers to the dissociation of the local transaction context from
the ManagedConnection instance.

■ When A regains control, A can use the same connection handle, provided A had
not called the close method on the connection handle, to access EIS resources.
All recoverable units of work on the EIS resource manager will be included in the
existing local transaction context.

Note – If A closes the connection handle before calling B, and then reacquires the
connection handle when regaining control, the container should ensure that the local
transaction context stays associated with the shared connection.

■ A eventually calls the close method on its connection handle. The container gets
a connection close event notification based on the scenario described in
Section 6.8.3, “Scenario: Connection Event Notifications and Connection Close”
on page 6-40.

■ Since there is an incomplete local transaction associated with the underlying
physical connection, the container does not initiate a cleanup of the
ManagedConnection on receiving the connection close event notification. The
container must still go through the completion process for the local transaction.

■ When the business method invocation on A completes successfully without any
application error, the container starts the completion protocol for the local
transaction. The container calls the LocalTransaction.commit method to
commit the transaction.

■ After the local transaction completes, the container initiates a cleanup of the
physical connection instance by calling the ManagedConnection.cleanup
method.

Note – The container should initiate cleanup of the ManagedConnection instance
in the case where A does not call the close method on the connection handle before
returning. The container identifies the need for cleaning up the
ManagedConnection instance based on the scope of connection sharing.

■ On the cleanup method invocation, the ManagedConnection instance does a
cleanup of its local transaction related state and resets itself to a default state.

■ The container returns the physical connection to the pool for handling subsequent
connection requests.
7-44 J2EE Connector Architecture Specification • November 2003

7.11 Connection Association
According to the connection management contract, a connection handle is created
from a ManagedConnection instance using the
ManagedConnection.getConnection method. A connection handle maintains an
association with the underlying ManagedConnection instance.

7.11.1 Scenario
In the scenario shown in FIGURE 7-12, session bean A acts as a client of entity bean C
and makes invocations on methods of entity bean C. Another session bean B also
acts as a client of entity bean C. The C is an entity bean that may be shared across
multiple clients.

A, B and C get connections to the same EIS. These EJB components have marked
res-sharing-scope for these connections to be shareable.

A and C define a connection sharing scope. Both A and C share the same physical
connection across a transaction that spans methods on A and C. Similarly, B and C
define another connection sharing scope. B and C also share the same physical
connection across a transaction that spans two components.

FIGURE 7-12 Connection Sharing Scenario

In this scenario, entity bean C obtains an application-level connection handle using
the method getConnection on the ConnectionFactory during its creation. Entity
bean C holds the connection handle during its lifetime.

EJB A

EJB C

client
invocation

Container

EJB B

<Session Bean>

<Session Bean>

<Entity Bean>

client
invocation
Chapter 7 Transaction Management 7-45

A gets a connection handle and invokes a method on C. At a different time, B gets a
connection handle and invokes a method on C.

In both cases, depending on the connection sharing scope, defined in terms of the
shared physical ManagedConnection instance, in which C is called, the container
supports a mechanism to associate the connection handle held by C as part of its
state with the current ManagedConnection instance.

FIGURE 7-13 State Diagram of Application-Level Connection Handle

7.11.2 Connection Association
The interface ManagedConnection defines method associateConnection as
follows:

The container uses the associateConnection method to change the association of
an application-level connection handle with a ManagedConnection instance. The
container finds the right ManagedConnection instance, depending on the
connection sharing scope, and calls the associateConnection method. To achieve

public interface javax.resource.spi.ManagedConnection {
public void associateConnection(Object connection)
throws ResourceException;
...

}

Active

Closed

ManagedConnection.
getConnection

Connection.close

ManagedConnection.
associateConnection

associated with a
ManagedConnection

no longer associated with a
ManagedConnection
7-46 J2EE Connector Architecture Specification • November 2003

this, the container needs to keep track of connection handles acquired by component
instances and ManagedConnection instances using an implementation-specific
mechanism.

The associateConnection method implementation for a ManagedConnection
should dissociate the connection handle passed as a parameter from its currently
associated ManagedConnection and associate the new connection handle with
itself.

Note that the switching of connection associations must happen only for connection
handles and ManagedConnection instances that correspond to the same
ManagedConnectionFactory instance. The container should enforce this restriction
in an implementation-specific manner. If a container cannot enforce the restriction,
the container should not use the connection association mechanism.

7.11.3 Requirements
The container must provide a mechanism to change the association of a connection
handle to different ManagedConnection instances depending on the connection
sharing and transaction scope. This mechanism is used in scenarios where
components hold on to connection handles across different local transaction and
connection sharing scopes.

The container may use the connection association mechanism in the XAResource-
based transaction management contract.

The resource adapter must implement the associateConnection method to
support connection sharing. The container makes a decision on whether or not to use
the associateConnection method implemented by a resource adapter. The
support for this method is required independent of the transaction support level of
the resource adapter. Note that the container makes the decision to invoke the
associateConnection method.

7.12 Local Transaction Optimization
If all the work done as a part of a transaction uses a single resource manager, the
application server can use a local transaction in place of an externally coordinated
JTA transaction. The use of a local transaction avoids the overhead of initiating a
global transaction, and involving the TM for transaction coordination, and leads to
more optimized performance.

Since a typical application accesses a single resource manager, the local transaction
optimization is a useful performance enhancement for transaction management.
Chapter 7 Transaction Management 7-47

The application server manages local transaction optimization transparent to the
J2EE application. Whenever a container-managed or bean-managed transaction is
started, the container may attempt local transaction optimization.

When the transaction begins, a container cannot determine beforehand whether or
not the unit of work done as part of this transaction will use a single resource
manager. The container uses an implementation-specific mechanism to achieve local
transaction optimization. For example, the container can choose to start a local
transaction when the first resource manager is accessed and lazily start a JTA
transaction only when more than one resource managers are accessed in an existing
transaction. The mechanism through which the application server and its transaction
manager coordinates the initial local transaction and lazily started JTA transactions is
outside the scope of the connector specification. Refer to the J2EE platform
specification (Section 8., “Java 2 Platform Enterprise Edition (J2EETM), Platform
specification, version 1. 4:” on page F-1) for more details on the local transaction
optimization.

7.12.1 Requirements
The container is not required to support the local transaction optimization.

7.13 Requirements
The following section outlines the requirements for the transaction management
contract.

7.13.1 Resource Adapter
A resource adapter can be classified based on the level of transaction support, as
follows:

■ NoTransaction—The resource adapter supports neither resource manager local
nor JTA transactions. It implements neither the XAResource nor
LocalTransaction interfaces.

■ LocalTransaction—The resource adapter supports resource manager local
transactions by implementing the LocalTransaction interface. The local
transaction management contract is specified in Section 7.7 “Local Transaction
Management Contract”.
7-48 J2EE Connector Architecture Specification • November 2003

■ XATransaction—The resource adapter supports both resource manager local
and JTA transactions by implementing the LocalTransaction and XAResource
interfaces. The requirements for supporting the XAResource-based contract are
specified in Section 7.6 “XAResource-based Transaction Contract”.

Note – Other levels of support (includes any transaction optimizations supported
by an underlying resource manager) are outside the scope of the connector
architecture.

The above levels reflect the major steps of transaction support that a resource
adapter needs to make to allow external transaction coordination. Depending on its
transactional capabilities and the requirements of its underlying EIS, a resource
adapter can choose to support any one of the above transaction support levels.

7.13.1.1 Auto Commit

When a connection is in an auto-commit mode, an operation on the connection
automatically commits after it has been executed. The auto-commit mode must be
off if multiple interactions have to be grouped in a single transaction, either local or
XA, and committed or rolled back as a unit.

A resource adapter must manage the auto-commit mode as follows:

■ A transactional resource adapter, either at XATransaction or
LocalTransaction level, must set the auto-commit mode to false within a
transaction, either local or XA, on a connection participating in the transaction.
This requirement holds for both container-managed and bean-managed
transaction demarcation.

■ A transactional resource adapter must set the auto-commit mode to true, on
connections that are used outside a transaction.

7.13.2 Application Server
An application server must support resource adapters with all three levels of
transaction support—NoTransaction, LocalTransaction, and XATransaction.

The following are the requirements for an application server for the transaction
management contract:

■ The application server must support a transaction manager that manages
transactions using the JTA XAResource-based contract. The requirements for a
transaction manager to support an XAResource-based contract are specified in
Section 7.6.3 “Transaction Manager Requirements”.
Chapter 7 Transaction Management 7-49

■ The application server must use the LocalTransaction interface-based contract
to manage local transactions for a resource manager.

■ The application server must use the deployment descriptor mechanism to
ascertain the transactional capabilities of a resource adapter. Refer to Section 17.3,
“Deployment” on page 17-6 for details on the deployment descriptor
specification.

■ The application server must implement the ConnectionEventListener
interface to get transaction-related event notifications.

7.14 Connection Optimizations
The following describes two optional connection optimizations:

■ Lazy connection association optimization
■ Lazy transaction enlistment optimization

7.14.1 Lazy Connection Association Optimization
Application components may acquire connections through a ConnectionFactory
object (resource-ref) obtained from the JNDI namespace. The connection(s) thus
obtained may be closed by the application before method completion, or may be
cached by the application for later use.

When a connection is cached by the application component, the cached connection
handle is considered active and remains associated with a ManagedConnection
instance from the application server’s connection pool. If the cached connection
handle is used infrequently, then the associated ManagedConnection instance
remains in hibernation during periods of non-use. This is because the application
server does not know when the hibernating ManagedConnection instance will be
used again by the application.

Such hibernating ManagedConnection instances result in suboptimal usage of
system resources. Avoiding hibernation of ManagedConnection instances leads to
more optimal resource utilization and better performance.

The following describes a mechanism that allows an application server to avoid
hibernating ManagedConnection instances (by dissociating the
ManagedConnection from its connection handles and using the freed
ManagedConnection instance for other applications). This mechanism also
provides a way to notify the application server when a dissociated connection
handle is used by the application, so that it can be associated with an appropriate
ManagedConnection instance.
7-50 J2EE Connector Architecture Specification • November 2003

FIGURE 7-14 on page 52 describes the processing of a getConnection method call
initiated by an application component (that is, when the application component first
acquires a connection). At a later point in time, the connection may be dissociated by
the application server by calling the dissociateConnections method on the
appropriate ManagedConnection instance. This dissociates the
ManagedConnection instance from all its connection handle objects.

When such a dissociated connection is used by the application (upon method re-
entry), it needs to be re-associated with an appropriate ManagedConnection
instance. FIGURE 7-15 on page 53 describes connection re-association processing.
The connection re-association processing depends on the connection notifying the
application server upon re-use (lazy re-association trigger). The connection object
invokes the associateConnection method on the ConnectionManager instance
in order to lazily re-associate itself with an appropriate ManagedConnection
instance.

Thus, a dissociate-able connection handle can exist in one of three states: Active,
Inactive or Closed. FIGURE 7-16 on page 54 describes the state transitions of a
dissociatable connection handle. Note that the state Inactive applies only to
dissociatable connection handles.
Chapter 7 Transaction Management 7-51

The application server may dissociate connections that are shareable. It must not
dissociate connections that are marked unshareable, however, since application-
specific state may be retained by a ManagedConnection instance.

FIGURE 7-14 Connection Acquisition Processing

 App Component

ConnectionFactory

ManagedConnectionFactory

1. getConnection(config)

2. allocateConnection(
 ManagedConnectionFactory,
 ConnectionRequestInfo)

ManagedConnectionConnectionManager

3. createManagedConnection(Subject, ConnectionRequestInfo)
 OR matchManagedConnections(ConnectionSet, Subject,
 ConnectionRequestInfo)

4. getConnection(
 Subject, ConnectionRequestInfo)
7-52 J2EE Connector Architecture Specification • November 2003

FIGURE 7-15 Connection Re-association Processing

 App Component

 Connection

ManagedConnectionFactory

1. execute operation

2. associateConnection(

ManagedConnectionConnectionManager

3. createManagedConnection(Subject, ConnectionRequestInfo)
 OR matchManagedConnections(ConnectionSet, Subject,
 ConnectionRequestInfo)

4. associateConnection(Connection)

 Connection,
 ManagedConnectionFactory,
 ConnectionRequestInfo)
Chapter 7 Transaction Management 7-53

FIGURE 7-16 State Diagram of a Dissociatable Application-level Connection Handle

Active

 Closed

ManagedConnection.
getConnection

Connection.close

ManagedConnection.
associateConnection

valid and associated with

 invalid and not associated with
 a ManagedConnection

 Inactive

valid but not associated with
a ManagedConnection

ManagedConnection.cleanup

ManagedConnection.
dissociateConnections

ManagedConnection.
associateConnection

Connection.close

a ManagedConnection
7-54 J2EE Connector Architecture Specification • November 2003

7.14.1.1 API Additions

Neither the application server nor the resource adapter must support this
optimization.

A resource adapter that does not support this optimization must provide a
ManagedConnection implementation that does not implement the
DissociatableManagedConnection interface. This allows an application server
to detect that the resource adapter does not support this optimization.

An application server that does not support this optimization must provide a
ConnectionManager implementation that does not implement the
LazyAssociatableConnectionManager interface. This allows a resource adapter
to detect that the application server does not support this optimization. In reality, a
resource adapter will not call this method (in order to re-associate a connection)
since an application server that does not support this optimization would never
dissociate a connection.

There are no changes to the resource adapter deployment descriptor since the
application server can programmatically detect whether a resource adapter supports
this optimization or not.

7.14.2 Lazy Transaction Enlistment Optimization
Transactions may be started by an application server before a method call on an
application component or it may be started by an application component during a
method call. It is also possible that an application server may use a transaction
imported from a different server during a method call.

package javax.resource.spi;

import javax.resource.ResourceException;

interface LazyAssociatableConnectionManager { // application
server

void associateConnection(
 Object connection, ManagedConnectionFactory mcf,

 ConnectionRequestInfo info)
throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter
void dissociateConnections() throws ResourceException;

}

Chapter 7 Transaction Management 7-55

Irrespective of how a transaction is started, an application server enlists all
connections (cached or newly acquired by an application component) with the
transaction, so that the work done using those connections will be part of the
transaction. This enlistment happens before the method call in the case of cached
connections and during the method call when connections are newly acquired
within the transaction.

But not all the connections that are cached or newly acquired by an application
component may be used within a transaction. Since the application server does not
know whether these connections would be used within the transaction, it statically
(eagerly) enlists all such connections with the transaction. Thus, connections that are
not used in a transaction are unnecessarily enlisted, which leads to sub-optimal
performance.

The following describes a dynamic mechanism that allows the application server to
enlist only those connections that are used within a transaction. A
ManagedConnection that supports this optimization must invoke the lazyEnlist
method on the ConnectionManager every time it is used outside of a local or XA
transaction. The application server uses this method call to lazily enlist the
connection in the transaction (if there is one). The application server may delist the
ManagedConnection instances from the transaction at a later point.

This optimization can be used only on connections that are lazily enlist-able.

7.14.2.1 API Additions

Neither the application server nor the resource adapter must support this
optimization.

A resource adapter that does not support this optimization must provide a
ManagedConnection implementation which does not implement the
LazyEnlistableManagedConnection interface. This allows an application server
to detect that the resource adapter does not support this optimization.

package javax.resource.spi;

import javax.resource.ResourceException;
import javax.transaction.xa.Xid;

interface LazyEnlistableConnectionManager { // application server
void lazyEnlist(ManagedConnection) throws ResourceException;

}

interface LazyEnlistableManagedConnection { // resource adapter
}

7-56 J2EE Connector Architecture Specification • November 2003

An application server that does not support this optimization must provide a
ConnectionManager implementation that does not implement the
LazyEnlistableConnectionManager interface. This allows a resource adapter to
detect that the application server does not support this optimization.

There are no changes to the resource adapter deployment descriptor since the
application server can programmatically detect whether a resource adapter supports
this optimization or not.
Chapter 7 Transaction Management 7-57

7-58 J2EE Connector Architecture Specification • November 2003

CHAPTER 8

Security Architecture

The following chapter specifies the security architecture for the integration of EISs
with the J2EE platform. It adds EIS integration-specific security details to the
security requirements specified in other J2EE specifications.

8.1 Overview
It is critical that an enterprise be able to depend on the information in its EIS for its
business activities. Any loss or inaccuracy of information or any unauthorized access
to the EIS can be extremely costly to an enterprise. There are several mechanisms
that can be used to protect an EIS against such security threats, including:

■ Identification and authentication of principals, human users to verify they are
who they claim to be.

■ Authorization and access control to determine whether a principal is allowed to
access an application server and/or an EIS.

■ Secure communication between an application server and an EIS. Communication
over insecure links can be protected using a protocol, for example, Kerberos, that
provides authentication, integrity, and confidentiality services. Communication
can also be protected by using a secure link protocol, for example, SSL.

8.2 Goals
The security architecture is designed to meet the following goals:

■ Extend the end-to-end security model for J2EE applications to include integration
with EISs based on the connector architecture.

■ Support authentication and authorization of users who are accessing EISs.
8-1

■ Keep the security architecture technology neutral and enable the specified
security contract to be supported by various security technologies.

■ Enable the security architecture to support a range of EISs with different levels of
security support and existing security environments.

■ Support security configuration of a resource adapter in an operational
environment.

■ Keep the security model for connector architecture-based EIS integration
transparent to an application component provider. This includes providing
support for single sign-on across multiple EISs.

The security model for EIS integration is not designed to:

■ Mandate a specific technology and describe how it can be used to implement the
security architecture for connector architecture-based EIS integration.

■ Specify and mandate a specific security policy. The security architecture enables
an application server and EIS to support the implementation and administration
of security policies based on their respective requirements.

8.3 Terminology
The following terms are used in this chapter:

■ Principal: A principal is an entity that can be authenticated by an authentication
mechanism deployed in an enterprise. A principal is identified using a
principal name and authenticated using authentication data. The content
and format of the principal name and the authentication data depend upon the
authentication mechanism.

■ Security Attributes: A principal has a set of security attributes associated with it.
These security attributes are related to the authentication and authorization
mechanisms. Some examples are security permissions, and credentials for a
principal.

■ Credential: A credential contains or references security information that can
authenticate a principal to additional services. A principal acquires a credential
upon authentication or from another principal that allows its credential to be
used. The latter is termed principal delegation.

■ End user: An end user is an entity, human or service, that acts as a source of a
request to an application. An end user is represented as a security principal
within a Subject as specified in the JAAS framework (“Java Authentication and
Authorization Service, version 1.0:” on page F-1).

■ Initiating Principal: The security principal representing the end-user that interacts
directly with the application. An end-user can authenticate using either a web
client or an application client.
8-2 J2EE Connector Architecture Specification • November 2003

■ Caller Principal: A principal that is associated with an application
component instance during a method invocation. For example, an EJB instance
can call the getCallerPrincipal method to get the principal associated with
the current security context.

■ Resource Principal: A security principal under whose security context a
connection to an EIS instance is established.

■ Security domain: A scope within which certain common security mechanisms
and policies are established. This specification does not specify the scope of a
security domain. An enterprise can contain more than one security domain. Thus
an application server and an EIS may either be in the same or different security
domains. Appendix D, “Security Scenarios” provides illustrative examples of how
security domains can be setup and managed.

In a managed environment, application components are deployed in web or EJB
containers. When a method gets invoked on a component, the principal associated
with the component instance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on
the principal delegation option for inter-container and inter-component calls. This
form of principal delegation is out of the scope of the connector architecture.

The relationship of a resource principal and its security attributes, for example,
credentials and access privileges, to an initiating or caller principal depends on how
the resource principal has been setup by the system administrator or deployer.

Refer to Section 9.1.1, “Interfaces and Classes” on page 9-1 for details on interfaces
and classes that are used to represent a resource principal and its credentials.

8.4 Application Security Model
The following section is a brief summary of the security model from the perspective
of an application component provider. Refer to the relevant specifications for more
detail.

The application component requests a connection to be established under the
security context of a resource principal. The security context includes security
attributes—access privileges, authorization level—for a resource principal. Once a
connection is successfully established, all application-level invocations to the EIS
instance using the connection happen under the security context of the resource
principal.

The application component provider has the following two choices related to EIS
sign-on:
Chapter 8 Security Architecture 8-3

■ Allow the deployer to set up the resource principal and EIS sign-on information.
For example, the deployer sets the user name and password for establishing a
connection to an EIS instance.

■ Perform sign-on to an EIS from the component code by providing explicit security
information for a resource principal.

The application component provider uses a deployment descriptor element, for
example, res-auth for EJB components, to indicate the requirements for one of the
above two approaches. If the res-auth element is set to Application, the
component code performs a programmatic sign-on to the EIS. If the res-auth
element is Container, the application server takes on the responsibility of setting
up and managing EIS sign-on.

8.4.1 Scenario: Container-Managed Sign-on
The application component provider sets the res-auth deployment descriptor
element to be Container letting the application server take the responsibility of
managing EIS sign-on.

The Deployer sets up the principal mapping such that the user account for
connecting to the EIS instance is always eStoreUser. The Deployer also
configures the authentication data, for example, the password, needed to
authenticate the eStoreUser to the EIS.

The component code invokes the getConnection method on the
ConnectionFactory instance with no security-related parameters. The
component relies on the application server to manage sign-on to the EIS instance
based on the security information configured by the Deployer.

// Method in an application component
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(
“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method
javax.resource.cci.Connection cx = cxf.getConnection();
...
8-4 J2EE Connector Architecture Specification • November 2003

8.4.2 Scenario: Component-Managed Sign-on
The application component provider sets the res-auth element to be
Application.

The component code performs a programmatic sign-on to the EIS. The application
component passes explicit security information, for example, the username and
password, to the getConnection method of the ConnectionFactory instance.

8.5 EIS Sign-on
Creating a new physical connection requires a sign-on to an EIS instance. Changing
the security context on an existing physical connection can also require EIS sign-on.
The latter is termed re-authentication.

An EIS sign-on typically involves one or more of the following steps:

■ Determine a resource principal under whose security context a physical
connection to an EIS will be established.

■ Authenticate a resource principal if it is not already authenticated.
■ Establish a secure association between the application server and the EIS. This

enables additional security mechanisms, for example, data confidentiality and
integrity, to be applied to communication between the two entities.

■ Set the access control to EIS resources.

// Method in an application component
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(
“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection
com.myeis.ConnectionSpecImpl properties = .. // get a new
ConnectionSpec
properties.setUserName(“...”);
properties.setPassword(“...”);
javax.resource.cci.Connection cx = cxf.getConnection(properties);
...
Chapter 8 Security Architecture 8-5

8.5.1 Authentication Mechanism
An application server and an EIS collaborate to ensure resource principals are
properly authenticated when the principal connects to the underlying EIS. The
connector architecture identifies the following as the commonly-supported
authentication mechanisms:

■ BasicPassword: Basic password based authentication mechanism specific to an
EIS

■ Kerbv5: Kerberos version 5-based authentication mechanism

The authentication-mechanism-type element is used in the deployment
descriptor to specify whether or not a resource adapter supports a specific
authentication mechanism. Refer to Section 17.5.4, “Requirements” on page 17-23 for
more details on the specification of the deployment descriptor for a resource adapter.

The connector architecture does not require that a specific authentication mechanism
be supported by an application server and an EIS. An application server may
support any other authentication mechanisms for EIS sign-on. The connector
security architecture is independent of security mechanisms.

8.5.2 Resource Principal
When an application component requests a connection from a resource adapter, the
connection request is made under the security context of a resource principal. The
Deployer can set a resource principal based on the following options:

■ Configured Identity: In this case, a resource principal has its own configured
identity and security attributes independent of the identity of the initiating or
caller principal. The identity of the resource principal can be configured either at
deployment time or specified dynamically by a component at the connection
creation. The scenario described in Section D.1, “EStore Application” on page D-1
illustrates an example where connections to an EIS are always established under
the security context of a valid EIS user account. This happens independent of the
initiating or caller principal. For example, if a caller principal is A, then the
configured resource principals can be B and C on two different EIS instances,
where A, B, and C are independent identities.

■ Principal Mapping: A resource principal is determined by mapping from the
identity and/or security attributes of the initiating or caller principal. In this case,
a resource principal does not inherit identity or security attributes of a principal
that it has been mapped from. The resource principal gets its identity and security
attributes based on the mapping. For example, if the caller principal has identity
A, then the mapped resource principal is mapping(A,EIS1) and mapping(A,
EIS2) on two different EIS instances.
8-6 J2EE Connector Architecture Specification • November 2003

■ Caller Impersonation: A resource principal acts on behalf of an initiating or caller
principal. Acting on behalf of a caller principal requires that the caller’s identity
and credentials be delegated to the EIS. The mechanism by which this is
accomplished is specific to a security mechanism and an application server
implementation. An example of the impersonation is described in Section D.2,
“Employee Self Service Application” on page D-4.

In some scenarios, a caller principal can be a delegate of an initiating principal. In
this case, a resource principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism.
For example, Kerberos supports a mechanism for the delegation of authentication.
Refer to the Kerberos v5 specification for more details. The security technology
specific details are out of the scope of the connector architecture.

■ Credentials Mapping: This mechanism may be used when an application server
and EIS support different authentication domains. For example, the initiating
principal has been authenticated and has public key certificate-based credentials.
The security environment for the EIS is configured with the Kerberos
authentication service. The application server is configured to map the public key
certificate-based credentials associated with the initiating principal to the
Kerberos credentials. In this case, the resource principal is the same as the caller
principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same
identity as the initiating or caller principal. For example, a principal with identity
A has initial credentials cred(A,mech1) and has credentials cred(A,mech2)
after mapping. mech1 and mech2 represents different mechanism types.

8.5.3 Authorization Model
Authorization checking to ensure that a principal has access to an EIS resource can
be applied at one or more of the following:

■ At the EIS.
■ At the application server.

Authorization checking at the target EIS can be done in an EIS-specific way and is
not specified here. For example, an EIS can define its access control policy in terms
of its specific security roles and permissions.

Authorization checking can also be done at the application server level. For example,
an application server can allow a principal to create a connection to an EIS only if
the principal is authorized to do so. J2EE containers such as EJB and servlet
containers support both programmatic and declarative security that can be used to
define authorization policies. Programmatic and declarative security are defined in
Chapter 8 Security Architecture 8-7

the individual specifications. Refer to the EJB and servlet specifications for more
details. An application component developer developing components for EIS access
must follow the requirements defined in these specifications.

8.5.4 Secure Association
The communication between an application server and an EIS can be subject to
security threats such as data modification and loss of data. Establishing a secure
association counters such threats. A secure association is shared security information
that allows a component on the application server to communicate securely with an
EIS.

Establishing a secure association includes several steps:

■ The resource principal is authenticated to the EIS. This may require that the target
principal in the EIS domain authenticate itself back to the application server. A
target principal can be set up by the system administrator as a security principal
associated with a running EIS instance or specific EIS resource.

■ Negotiate quality of protection such as confidentiality and integrity.
■ A pair of communicating entities—an application server and an EIS

instance—establish a shared security context using the credentials of the resource
principal. The security context encapsulates shared state information, required so
that communication between the application server and the EIS can be protected
through integrity and confidentiality mechanisms. Examples of shared state
information are cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established
by the resource adapter implementation. Note that a resource adapter library runs
within the address space of the application server.

A resource adapter can use any security mechanism to establish the secure
association. GSS-API (refer to IETF draft on GSS-API v2[5]) is an example of such a
mechanism. Note that the connector architecture does not require use of the GSS-API
by a resource adapter or application server.

Configuring a mechanism for establishing secure associations is outside the scope of
the connector architecture. This includes setting up the desired quality of protection
during secure communication.

Once a secure association is successfully established, the connection is associated
with the security context of the resource principal. Subsequently, all application-level
invocations to the EIS instance using the connection happen under the security
context of the resource principal.
8-8 J2EE Connector Architecture Specification • November 2003

8.6 Roles and Responsibilities
This section describes various roles involved in the security architecture. It also
describes responsibilities of each role from the security perspective.

The roles and responsibilities of the Application Component Provider and Deployer
are specified in detail in the respective J2EE component model specifications.

8.6.1 Application Component Provider
The following features are common across different J2EE component models from
the perspective of an Application Component Provider:

■ An Application Component Provider invariably avoids the burden of securing its
application and focuses on developing the business functionality of its
application.

■ A security-aware Application Component Provider can use a simple
programmatic interface to manage security at an application level. The
programmatic interface enables the Application Component Provider to program
access control decisions based on the security context—the principal and
role—associated with the caller of a method and to manage programmatic sign-on
to an EIS.

■ An Application Component Provider specifies security requirements for its
application declaratively in a deployment descriptor. The security requirements
include security roles, method permissions, and an authentication approach for
EIS sign-on.

■ More qualified roles—Application Server Vendor, Deployer, System
Administrator—have the responsibility of satisfying overall security requirements
through the deployment mechanism for resource adapters and components, and
managing the security environment.

8.6.2 Deployer
The Deployer specifies security policies that ensure secure access to the underlying
EISs from application components. The deployer adapts the intended security view of
an application for EIS access, specified through a deployment descriptor, to the
actual security mechanisms and policies used by the application server and EISs in
the target operational environment. The Deployer uses tools to accomplish the above
task.
Chapter 8 Security Architecture 8-9

The output of the Deployer’s work is a security policy descriptor specific to the
operational environment. The format of the security policy descriptor is specific to
an application server.

The Deployer performs the following deployment tasks for each connection factory
reference declared in the deployment descriptor of an application component:

■ Provides a connection factory specific security configuration that is needed for
opening and managing connections to an EIS instance.

■ Binds the connection factory reference in the deployment descriptor of an
application component to the JNDI registered reference for the connection factory.
Refer to Section 17.5, “JNDI Configuration and Lookup” on page 17-13 for the
JNDI configuration of a connection factory during deployment of a resource
adapter. The deployer can use the JNDI LinkRef mechanism to create a symbolic
link to the actual JNDI name of the connection factory.

■ If the value of the res-auth deployment descriptor element is Container, the
Deployer is responsible for configuring the security information for EIS sign-on.
For example, the Deployer sets up the principal mapping for EIS sign-on.

8.6.3 Application Server
The application server provides a security environment with specific security
policies and mechanisms that support the security requirements of the deployed
application components and resource adapters, thereby ensuring a secure access to
the connected EISs.

The typical responsibilities of an application server are as follows:

■ Provide tools to set up security information for a resource principal and EIS sign-
on when res-auth element is set to Container. This includes support for
principal delegation and mapping for configuring a resource principal.

■ Provide tools to support management and administration of its security domain.
For example, security domain administration can include setting up and
maintaining both underlying authentication services and trusts between domains,
plus managing principals, including identities, keys, and attributes. Such
administration is typically security technology specific and is outside the scope of
the connector architecture.

■ Support a single sign-on mechanism that spans the application server and
multiple EISs. The security mechanisms and policies through which single sign-
on is achieved are outside the scope of the connector architecture.

The Appendix E, “JAAS Based Security Architecture” specifies how JAAS can be
used by an application server to support the requirements of the connector security
architecture.
8-10 J2EE Connector Architecture Specification • November 2003

8.6.4 EIS Vendor
EIS provides a security infrastructure and environment that supports the security
requirements of the client applications. An EIS can have its own security domain
with a specific set of security policies and mechanisms, or it can be set up as part of
an enterprise-wide security domain.

8.6.5 Resource Adapter Provider
The resource adapter provider provides a resource adapter that supports the security
requirements of the underlying EIS.

The resource adapter implements the security contract specified as part of the
connector architecture. Chapter 9, “Security Contract” specifies the security contract
and related requirements for a resource adapter.

The resource adapter specifies its security capabilities and requirements through its
deployment descriptor. Section 17.5.4, “Requirements” on page 17-23 specifies a
standard deployment descriptor for a resource adapter.

8.6.6 System Administrator
The system administrator typically works in close association with administrators of
multiple EISs that have been deployed in an operational environment. The system
administration tasks can also be performed by the Deployer.

The following tasks are illustrative examples of the responsibilities of the system
administrator:

■ Set up an operational environment based on the technology and requirements of
the authentication service, and if an enterprise directory is supported.

■ Configure the user account information for both the application server and the
EIS in the enterprise directory. The user account information from the enterprise
directory can then be used for authentication of users requesting connectivity to
the EIS.

■ Establish a password synchronization mechanism between the application server
and the EIS. This ensures that the user’s security information is identical on both
the application server and the EIS. When an EIS requires authentication, the
application server passes the user’s password to the EIS.
Chapter 8 Security Architecture 8-11

8-12 J2EE Connector Architecture Specification • November 2003

CHAPTER 9

Security Contract

This chapter specifies the security contract between the application server and the
EIS. It also specifies the responsibilities of the Resource Adapter Provider and the
Application Server Vendor for supporting the security contract.

This chapter references the following chapters and documents:

■ The security model specified in the J2EE platform specification (Section 8., “Java 2
Platform Enterprise Edition (J2EETM), Platform specification, version 1. 4:” on
page F-1).

■ Security architecture specified in Chapter 8, “Security Architecture.”
■ Security scenarios based on the connector architecture (Refer to Appendix D,

“Security Scenarios”).

9.1 Security Contract
The security contract between the application server and the resource adapter
extends the connection management contract (described in Chapter 6, “Connection
Management”) by adding security-specific details.

This security contract supports EIS sign-on by:

■ Passing the connection request from the resource adapter to the application
server, enabling the application server to hook-in security services.

■ Propagation of the security context, that is, JAAS Subject with principal and
credentials, from the application server to the resource adapter.

9.1.1 Interfaces and Classes
The security contract includes the following classes and interfaces:
9-1

9.1.2 Subject
The following text has been taken from the JAAS specification. For detailed
information, refer to the JAAS specification (Section 7., “Java Authentication and
Authorization Service, version 1.0:” on page F-1).

A Subject represents a grouping of related information for a single entity, such as a
person. Such information includes the Subject’s identities and its security-related
attributes, for example, passwords and cryptographic keys. A Subject can have
multiple identities. Each identity is represented as a Principal within the Subject.
A Principal simply binds a name to a Subject.

A Subject can also own security-related attributes, which are referred to as
Credentials. Sensitive credentials that require special protection, such as private
cryptographic keys, are stored within a private credential set.

The Credentials intended to be shared, such as public key certificates or Kerberos
server tickets, are stored within a public credential set. Different permissions are
required to access and modify different credential sets.

The getPrincipals method retrieves all the principals associated with a Subject.
The methods getPublicCredentials and getPrivateCredentials respectively
retrieve all the public or private credentials belonging to a Subject. The methods
defined in the Set class modify the returned set of principals and credentials.

9.1.3 Resource Principal
The interface java.security.Principal represents a resource principal. The
following code extract shows the Principal interface:

The method getName returns the name of a resource principal.

An application server should use the Principal interface, or any derived interface,
to pass a resource principal as part of a Subject to a resource adapter.

public interface java.security.Principal {
public boolean equals(Object another);
public String getName();
public String toString();
public int hashCode();

}

9-2 J2EE Connector Architecture Specification • November 2003

9.1.4 GenericCredential

Note – This interface, introduced in Version 1.0 of this specification, has been
deprecated. The preferred way to represent generic credential information is via the
org.ietf.jgss.GSSCredential interface in J2SE Version 1.4, which provides
similar functionality.

The interface javax.resource.spi.security.GenericCredential defines a
security mechanism-independent interface for accessing the security credential of a
resource principal.

The GenericCredential interface provides a Java wrapper around an underlying
mechanism-specific representation of a security credential. For example, the
GenericCredential interface can be used to wrap Kerberos credentials.

The connector architecture does not define any standard format and requirements
for security mechanism specific credentials. For example, a security credential
wrapped by a Generic Credential interface can have a native representation
specific to an operating system.

Note – A contract for the representation of mechanism-specific credentials must be
established between an application server and a resource adapter and is outside the
scope of the connector architecture. This includes requirements for the exchange of
mechanism-specific credentials between a JAAS module and GSS provider. Refer to
Appendix E, “JAAS Based Security Architecture” for details on JAAS-based security
architecture.

The GenericCredential interface enables a resource adapter to extract information
about a security credential. The resource adapter can then manage an EIS sign-on for
a resource principal by either:

■ Using the credentials in an EIS specific manner if the underlying EIS supports the
security mechanism type represented by the GenericCredential instance, or,

■ Using GSS-AP I (Section 5., “RFC: Generic Security Service API (GSS-API)
specification, version 2:” on page F-1) if the resource adapter and underlying EIS
instance support GSS-API.
Chapter 9 Security Contract 9-3

9.1.4.1 Interface

The following code extract shows the GenericCredential interface:

The GenericCredential interface supports a set of getter methods to obtain
information about a security credential.

The method getName returns the name of the resource principal associated with a
GenericCredential instance.

The method getMechType returns the mechanism type for the
GenericCredential instance. The mechanism type definition for
GenericCredential must be consistent with the Object Identifier (OID) based
representation specified in the GSS specification (Section 5., “RFC: Generic Security
Service API (GSS-API) specification, version 2:” on page F-1). In the
GenericCredential interface, the mechanism type is returned as a stringified
representation of the OID specification.

The GenericCredential interface can be used to get security data for a specific
security mechanism. An example is authentication data required for establishing a
secure association with an EIS instance on behalf of the associated resource
principal. The getCredentialData method returns the credential representation as
an array of bytes. Note that the connector architecture does not define a standard
format for the returned credential data.

9.1.4.2 Implementation

If an application server supports the deployment of a resource adapter which
supports GenericCredential as part of the security contract, the application
server must provide an implementation of the GenericCredential interface. Refer
to the deployment descriptor specification in Section 17.5.4, “Requirements” on
page 17-23 for details on how a resource adapter specifies its support for
GenericCredential.

public interface javax.resource.spi.security.GenericCredential {
public String getName();
public String getMechType();
public byte[] getCredentialData()
throws javax.resource.spi.SecurityException;

public boolean equals(Object another);
public int hashCode();

}

9-4 J2EE Connector Architecture Specification • November 2003

9.1.5 GSSCredential
This interface org.ietf.jgss.GSSCredential is in J2SE Version 1.4. This
provides a mechanism to represent generic credential information. The functionality
provided by this interface is similar to the deprecated GenericCredential
interface.

9.1.5.1 Implementation

If an application server supports the deployment of a resource adapter which
supports GSSCredential as part of the security contract, the application server
must provide an implementation of the GSSCredential interface. Refer to the
deployment descriptor specification in Section 17.5.4, “Requirements” on page 17-23
for details on how a resource adapter specifies its support for GSSCredential.

9.1.6 PasswordCredential
The class javax.resource.spi.security.PasswordCredential acts as a holder
of username and password information. This class enables an application server to
pass the username and password to the resource adapter through the security
contract.

The method getUserName gets the name of the resource principal. The interface
java.security.Principal represents a resource principal.

The PasswordCredential class must implement the equals and hashCode
methods.

public final class javax.resource.spi.security.PasswordCredential
implements java.io.Serializable {
public PasswordCredential(String userName, char[] password) {

... }
public String getUserName() { ... }
public char[] getPassword() { ... }

public ManagedConnectionFactory getManagedConnectionFactory()
{ ... }

public void setManagedConnectionFactory(
ManagedConnectionFactory mcf) { ... }

public boolean equals(Object other) { ... }
public int hashCode() { ... }

}

Chapter 9 Security Contract 9-5

The getManagedConnectionFactory method returns the
ManagedConnectionFactory instance for which the user name and password has
been set by the application server. Refer to Section 9.1.8
“ManagedConnectionFactory”to see how a resource adapter uses this method.
9-6 J2EE Connector Architecture Specification • November 2003

9.1.7 ConnectionManager
The method allocateConnection is called by the resource adapter’s connection
factory instance. This method lets the resource adapter pass a connection request to
the application server, so the application server can hook-in security and other
services.

public interface javax.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(
ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
}

Chapter 9 Security Contract 9-7

FIGURE 9-1 Security Contract

Depending on whether the application server or application component is
configured to be responsible for managing EIS sign-on (refer to Section 8.6.1,
“Application Component Provider” on page 8-9), the resource adapter calls the
ConnectionManager.allocateConnection method in one of the following ways:

■ Container-managed Sign-on: The application component passes no security
information in the getConnection method and the application server is
configured to manage EIS sign-on.

The application server provides the required security information for the resource
principal through its configured security policies and mechanisms, for example,
principal mapping. The application server requests the authentication of the

Security Service
Manager

ManagedConnectionFactory

Resource AdapterApplication Server

Application Component

Enterprise Information System (EIS)

Architected contract
Implementation specific

ConnectionManager ConnectionFactory
9-8 J2EE Connector Architecture Specification • November 2003

resource principal to the EIS either itself or passes authentication responsibility to
the resource adapter. This aspect is explained later in the specification of the
ManagedConnectionFactory interface.

■ Component-managed Sign-on: In this case, the application component provides
explicit security information in the getConnection method. The resource
adapter invokes the allocateConnection method by passing security
information in the ConnectionRequestInfo parameter. Since the security
information in the ConnectionRequestInfo is opaque to the application server,
the application server should rely on the resource adapter to manage EIS sign-on,
as explained in the ManagedConnectionFactory interface specification under
option C.

9.1.8 ManagedConnectionFactory
The following code extract shows the methods of the ManagedConnectionFactory
interface that are relevant to the security contract:

During the JNDI lookup, the ManagedConnectionFactory instance is configured
by the application server with a set of configuration properties. These properties
include default security information and EIS instance-specific information, such as
hostname and port number, required for initiating a sign-on to the underlying EIS
during the creation of a new physical connection.

The default security configuration on a ManagedConnectionFactory can be
overridden by security information provided either by a component, in component
managed sign-on, or by the container, in container-managed sign-on.

The createManagedConnection method is used by the application server when it
requests the resource adapter to create a new physical connection to the underlying
EIS.

public interface javax.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
...

}

Chapter 9 Security Contract 9-9

9.1.8.1 Contract for the Application Server

The application server may provide specific security services, such as principal
mapping and delegation, and single sign-on, before using the security contract with
the resource adapter. For example, the application server can map the caller
principal to a resource principal before calling the createManagedConnection
method to create a new connection under the security context of the resource
principal.

In container-managed sign-on, the application server is responsible for creating a
Subject instance using its implementation-specific security mechanisms and
configuration. This should happen before the application server calls the
createManagedConnection method of the ManagedConnectionFactory. The
resource adapter is driven by the application server and acts as consumer of security
information in the created Subject.

If the application server maintains a cache of the security credentials, such as
Kerberos ticket granting ticket (TGT), the application server should reuse the
credentials as part of the newly created Subject instance. For example, the
application server uses the
Subject.getPrivateCredentials().add(credential) method to add a
credential to the private credential set.

FIGURE 9-2 Security Contract: Subject Interface and its Containment Hierarchy

FIGURE 9-2 on page 10 shows the relationship between the Subject, Principal,
PasswordCredential and GSSCredential interfaces. Note that in the following
options A and B defined for createManagedConnection method invocation, the
Subject instance contains a single resource principal, represented as
java.security.Principal, and multiple credentials.

<class>
javax.security.auth.Subject

<class>
PasswordCredential

<interface>
GSSCredential

<interface>
java.security.Principal

contains

contains

contains

0-n

0-n 0-n
9-10 J2EE Connector Architecture Specification • November 2003

The application server has the following options for invoking the
createManagedConnection method:

■ Option A: The application server invokes the createManagedConnection
method by passing in a non-null Subject instance that carries a single resource
principal and its corresponding password-based credentials, represented by the
class PasswordCredential that provides the user name and password. The
PasswordCredential should be set in the Subject instance as part of the
private credential set. Note that the passed Subject can contain multiple
PasswordCredential instances.

The resource adapter extracts the username and password from this Subject
instance by looking for the PasswordCredential instance in the Subject, and
uses this security information to sign-on to the EIS instance during connection
creation.

■ Option B: The application server invokes the createManagedConnection
method by passing in a non-null Subject instance that carries a single resource
principal and its security credentials. In this option, credentials are represented
through the GSSCredential interface. A typical example is a Subject instance
with Kerberos credentials.

For example, an application server may use this option for
createManagedConnection method invocation when the resource principal is
impersonating the caller or initiating principal, and has valid credentials acquired
through impersonation. An application server may also use this option for
principal mapping scenarios with credentials of a resource principal represented
through the GSSCredential interface.

Note that sensitive credentials requiring special protection, such as private
cryptographic keys, are stored within a private credential set, while credentials
intended to be shared, such as public key certificates or Kerberos server tickets,
are stored within a public credential set. The two methods
getPrivateCredentials and getPublicCredentials should be used
accordingly.

In the case of Kerberos mechanism type, the application server must pass the
principal’s ticket granting ticket (TGT) to a resource adapter in a private
credential set.

The resource adapter uses the resource principal and its credentials from the
Subject instance to go through the EIS sign-on process before creating a new
connection to the EIS.

■ Option C: The application server invokes the createManagedConnection
method by passing a null Subject instance. The application server must use
this option for the component-managed sign-on case. In this option, security
information is carried in the ConnectionRequestInfo instance. The application
server does not provide any security information that can be used by the resource
adapter for managing EIS sign-on.
Chapter 9 Security Contract 9-11

During the deployment of a resource adapter, the application server must be
configured to use one of the above specified invocation options. Refer to Chapter 17,
“Packaging Requirements” for more details.

9.1.8.2 Contract for Resource Adapter

A resource adapter can do EIS sign-on and connection creation in an
implementation-specific way, or it can use the GSS-API. The latter option is specified
in Appendix E, “JAAS Based Security Architecture.” A resource adapter has the
following options, corresponding to the options for an application server, for
handling the invocation of the createManagedConnection method:

■ Option A: The resource adapter explicitly checks whether the passed Subject
instance carries a PasswordCredential instance using the
Subject.getPrivateCredentials method.

Note that the security contract assumes that a resource adapter has the necessary
security permissions to extract a private credential set from a Subject instance.
The specific mechanism through which such permission is set up is outside the
scope of the connector architecture.

If the Subject instance contains a PasswordCredential instance, the resource
adapter extracts the username and password from the PasswordCredential. It
uses the security information to authenticate the resource principal,
corresponding to the username, to the EIS during the creation of a connection. In
this case, the resource adapter uses an authentication mechanism that is EIS
specific.

Since a Subject instance can carry multiple PasswordCredential instances, a
ManagedConnectionFactory should only use a PasswordCredential instance
that has been specifically passed to it through the security contract. The
getManagedConnectionFactory method enables a
ManagedConnectionFactory instance to determine whether or not a
PasswordCredential instance is to be used for sign-on to the target EIS
instance. The ManagedConnectionFactory implementation uses the equals
method to compare itself with the passed instance.

■ Option B: The resource adapter explicitly checks whether the passed Subject
instance carries a GSSCredential instance using the getPrivateCredentials
and getPublicCredentials methods defined in the Subject interface.

In the case of Kerberos mechanism type, the resource adapter must extract
Kerberos credentials using the getPrivateCredentials method in the Subject
interface.

The resource adapter uses the resource principal and its credentials, represented
by the GSSCredential interface, in the Subject instance to go through the EIS
sign-on process. For example, this option is used for Kerberos-based credentials
that have been acquired by the resource principal through impersonation.
9-12 J2EE Connector Architecture Specification • November 2003

A resource adapter uses the getter methods defined in the GSSCredential
interface to extract information about the credential and its principal. If a resource
adapter is using the GSS mechanism, the resource adapter uses a reference to the
GSSCredential instance in an opaque manner and is not required to understand
any mechanism-specific credential representation. However, a resource adapter
may need to interpret credential representation if the resource adapter initiates
authentication in an implementation-specific manner.

■ Option C: If the application server invokes the
ManagedConnectionFactory.createManagedConnection method with a
null Subject instance, a resource adapter has the following options:

■ The resource adapter should extract security information passed through the
ConnectionRequestInfo instance. The resource adapter should authenticate
the resource principal by combining the configured security information on the
ManagedConnectionFactory instance with the security information passed
through the ConnectionRequestInfo instance. The default behavior for the
resource adapter is to allow the security information in the
ConnectionRequestInfo parameter to override the configured security
information in the ManagedConnectionFactory instance.

■ If the resource adapter does not find any security configuration in the
ConnectionRequestInfo instance, the resource adapter uses the default
security configuration in the ManagedConnectionFactory instance.

■ If the EIS does not require authentication, the resource adapter does not need
any security information from the ConnectionRequestInfo instance, and
hence may ignore such security information. This may happen due to a
disconnect between the application and the resource adapter.

In the case of option A and option B, a resource adapter should throw a
javax.resource.spi.SecurityException, if the credential information
contained in the Subject instance is insufficient to perform authentication. A
non-null Subject instance with no credentials is not equivalent to a null
Subject instance, since they indicate different sign-on modes, and hence the
resource adapter may handle them differently. A non-null Subject instance with
no credentials may be interpreted by the resource adapter as follows:

■ If the EIS requires authentication, the resource adapter should throw a
javax.resource.spi.SecurityException. That is, an empty or
insufficient credential information is an error.

■ If the EIS does not require authentication, the resource adapter does not need
any security information from the non-null Subject instance, and hence may
ignore the Subject instance. This may happen due to a disconnect between
the application and the resource adapter.
Chapter 9 Security Contract 9-13

9.1.9 ManagedConnection
A resource adapter can re-authenticate a physical connection (that is, one that
already exists in the connection pool under a different security context) to the
underlying EIS. A resource adapter performs re-authentication when an application
server calls the getConnection method with a security context, passed as a
Subject instance, different from the context previously associated with the physical
connection.

If a resource adapter supports re-authentication, the matchManagedConnections
method in ManagedConnectionFactory may return a matched
ManagedConnection instance with the assumption that the
ManagedConnection.getConnection method will later switch the security context
through re-authentication. Note that the matchManagedConnections method
should consider a ManagedConnection instance as immutable. There is no
authentication involved in the matchManagedConnections method.

Support for re-authentication depends on whether an underlying EIS supports the
re-authentication mechanism for existing physical connections. If a resource adapter
does not support re-authentication, the getConnection method should throw a
javax.resource.spi.SecurityException if the passed Subject in the
getConnection method is different from the security context associated with the
ManagedConnection instance.

The getConnection method returns a new connection handle. If re-authentication
is successful, the resource adapter has changed the security context of the
underlying ManagedConnection instance to that associated with the passed
Subject instance.

A resource adapter has the following options for handling
ManagedConnection.getConnection invocation if it supports re-authentication:

■ Option A: The resource adapter extracts the PasswordCredential instance from
the Subject and performs an EIS-specific authentication. This option is similar to
option A defined in the specification of the method createManagedConnection
on the interface ManagedConnectionFactory (refer to Section 9.1.8
“ManagedConnectionFactory”).

public interface javax.resource.spi.ManagedConnection {
public Object getConnection(

javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

throws ResourceException;
...

}

9-14 J2EE Connector Architecture Specification • November 2003

■ Option B: The resource adapter extracts GSSCredential instance from the
Subject and manages authentication either through the GSS mechanism or an
implementation-specific mechanism. This option is similar to option B defined in
the specification of the method createManagedConnection on the interface
ManagedConnectionFactory (refer to Section 9.1.8
“ManagedConnectionFactory”).

■ Option C: In this case, the Subject parameter is null. The resource adapter
extracts security information from the ConnectionRequestInfo (if there is any)
and performs authentication in an implementation-specific manner. This option is
similar to option C defined in the specification of the method
createManagedConnection on the interface ManagedConnectionFactory
(refer to Section 9.1.8 “ManagedConnectionFactory”).

9.2 Requirements
The following are the requirements defined by the security contract:

9.2.1 Resource Adapter
The following are the requirements defined for a resource adapter:

■ The resource adapter must support the security contract by implementing the
method ManagedConnectionFactory.createManagedConnection.

■ The resource adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection method implementation.

■ If the security information provided by the component or the container is not
adequate to authenticate the caller, or if the security information is erroneous, the
resource adapter must throw a SecurityException to indicate the error
condition.

■ The resource adapter must specify its support for the security contract as part of
its deployment descriptor. The relevant deployment descriptor elements are:
authentication-mechanism, authentication-mechanism-type,
reauthentication-support and credential-interface (refer to
Section 17.5.4, “Requirements” on page 17-23 for details).

9.2.2 Application Server
The following are the requirements defined for an application server:
Chapter 9 Security Contract 9-15

■ The application server must use the method ManagedConnectionFactory.-
createManagedConnection to pass the security context to the resource adapter
during EIS sign-on.

■ The application server must be capable of using options A and C as specified in
Section 9.1.8 “ManagedConnectionFactory” for the security contract.

■ The application server provides an implementation of the GSSCredential
interface if the following conditions are both true:

■ The application server supports authentication mechanisms, specified as
authentication-mechanism-type in the deployment descriptor, other than
BasicPassword mechanism. For example, the application server should
implement the GSSCredential interface to support the kerbv5 authentication
mechanism type.

■ The application server supports the deployment of resource adapters that are
capable of handling GSSCredential, and thereby option B as specified in
Section 9.1.8 “ManagedConnectionFactory”, as part of the security contract.

■ The application server must implement the method allocateConnection in its
ConnectionManager implementation.

■ The application server must configure its use of the security contract based on the
security requirements specified by the resource adapter in its deployment
descriptor. For example, if a resource adapter specifies that it supports only
BasicPassword authentication, the application server should use the security
contract to pass a PasswordCredential instance to the resource adapter.
9-16 J2EE Connector Architecture Specification • November 2003

CHAPTER 10

Work Management

This chapter specifies a contract between an application server and a resource
adapter that allows a resource adapter to do work, such as monitor network
endpoints and call application components, by submitting Work instances to an
application server for execution. The application server dispatches threads to execute
submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for a resource adapter to perform
work, allows an application server to efficiently pool threads, and have more control
over its runtime environment. The resource adapter can control the security context
and transaction context with which Work instances are executed.

10.1 Overview
Some resource adapters merely function as a passive library that executes in the
context of an application thread. They do not need to create threads explicitly to do
their work. But more sophisticated resource adapters may need threads to function
properly. Such resource adapters may use threads to listen to network endpoints,
process incoming data, communicate with a network peer, do its internal work, or
dispatch calls to application components.

Even though a resource adapter may create Java threads directly and use them to do
its work, an application server may prevent it from creating threads for efficiency,
security, and manageability reasons. In such situations, a resource adapter needs a
mechanism to obtain threads from an application server to do its work.

The work management contract provides such a mechanism which allows a resource
adapter to submit Work instances to an application server for execution. The
application server dispatches threads to execute submitted Work instances. This
allows a resource adapter to avoid creating or managing threads directly, provides a
mechanism for the resource adapter to do its work, and allows an application server
more control over its runtime environment.
10-1

There are several advantages in allowing an application server to manage threads
instead of a resource adapter:

■ An application server is optimally designed to manage system resources such as
threads. It may pool threads and reuse them efficiently across different resource
adapters deployed in its runtime environment.

■ A resource adapter may create non-daemon threads that interfere with the orderly
shutdown of an application server. It is desirable for an application server to own
all the threads to exercise more control over its runtime environment.

■ Since an application server knows the overall state of its runtime environment, it
may make better decisions on granting threads to a resource adapter, and this
leads to better manageability of its runtime environment.

■ An application server may need to enforce control over the runtime behavior of
its system components, including resource adapters. For example, an application
server may choose to intercept operations on a thread object, perform checks, and
enforce correct behavior.

■ An application server may disallow resource adapters from creating their own
threads based on its security policy setting, enforced by a security manager.

10.2 Goals
■ Provide a flexible work execution model to handle the thread needs of a resource

adapter.
■ Provide a mechanism for an application server to pool and reuse threads.
■ Exercise more control over thread behavior in a managed environment.

10.3 Work Management Model
A resource adapter obtains a WorkManager instance from the BootstrapContext
instance provided by the application server during its deployment. The resource
adapter may create Work instances to do its work and submit them to the
WorkManager along with an optional execution context for execution.

The application server has a pool of free threads waiting for a Work instance to be
submitted. When a Work instance is submitted, one of the free threads picks up the
Work instance, sets up an appropriate execution context and calls the run method on
the Work instance. The application server is free to choose an appropriate thread to
execute the Work instance. There is no restriction on the number of Work instances
submitted by a resource adapter or when Work instances may be submitted. When
the run method on the Work instance completes, the application server reuses the
thread.
10-2 J2EE Connector Architecture Specification • November 2003

The application server may decide to reclaim active threads based on load
conditions. It calls the release method on specific Work instances from a separate
thread. This serves only as a hint to the resource adapter to release the active thread
executing the Work instance. The resource adapter should periodically monitor such
hints and do the necessary internal cleanup to avoid any inconsistencies. It is
expected that a resource adapter uses thread resources carefully and releases them
when not in use.

The application server is free to implement its own thread pooling strategy.
However, the application server must use threads of the same thread priority level to
process Work instances submitted by a specific resource adapter. This ensures that
multiple threads processing Work instances from the same resource adapter have
equal claim over CPU resources. This assumption helps the resource adapter build
its own internal priority-based task queue without having to worry about thread
priority levels.
Chapter 10 Work Management 10-3

10.3.1 Requirements
■ The application server must use threads of the same thread priority level to

process Work instances submitted by a specific resource adapter.
10-4 J2EE Connector Architecture Specification • November 2003

FIGURE 10-1 Work Management Contract (object diagram)

 Application Server Resource Adapter

 WorkManager

 WorkEvent

 WorkException

 WorkRejectedException

 WorkCompleted-
 Exception

Work

ExecutionContext

WorkListener

 run(), release()

 getXid(), setXid()

 workAccepted(), workStarted()

 workRejected(),
 workCompleted()

 getType(), getWork()

 getStartTime(),
 getException()

 doWork(), startWork()

 scheduleWork()

 getErrorCode()

 getTransactionTimeout()
 setTransactionTimeout()

 BootstrapContext
getWorkManager()
Chapter 10 Work Management 10-5

FIGURE 10-2 Work Management Contract (interfaces)

javax.resource.spi.work

 WorkManager
 (from app server)

doWork()

 Work

release()

 ExecutionContext
 (from adapter)

 getXid()
 getTransactionTimeout()

 WorkEvent
 (from app server)

 WorkListener
 (from adapter)

getType()
getWork()
getStartTime()
getException()

workAccepted()
workRejected()
workStarted()
workCompleted()

 WorkRejectedException
 extends WorkException

 (from app server)

 getErrorCode()
 setErrorCode()

 WorkException extends
 java.lang.Exception

 extends java.lang.Runnable
 (from adapter)

startWork()
scheduleWork()

 (from app server)

 WorkCompletedException
 extends WorkException
 (from app server)
10-6 J2EE Connector Architecture Specification • November 2003

CODE EXAMPLE 10-1 javax.resource.spi.work

package javax.resource.spi.work;

import java.lang.Object;
import java.lang.Runnable;
import java.lang.Exception;
import java.lang.Throwable;
import java.util.EventObject;
import java.util.EventListener;

import javax.transaction.xa.Xid;
import javax.resource.ResourceException;
import javax.resource.NotSupportedException;

public interface Work extends Runnable {
void release();

}
public interface WorkManager {

long IMMEDIATE = 0L; // immediate action
long INDEFINITE = Long.MAX_VALUE; // no time constraint
long UNKNOWN = -1; // indicates an unknown value.

void doWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

void doWork(Work work, long startTimeout, ExecutionContext ctx,
WorkListener lsnr) throws WorkException;

long startWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

long startWork(Work work, long startTimeout,
ExecutionContext ctx, WorkListener lsnr)
throws WorkException;

void scheduleWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

void scheduleWork(Work work, long startTimeout,
ExecutionContext ctx, WorkListener lsnr)
throws WorkException;

}

public interface WorkListener extends EventListener {
void workAccepted(WorkEvent e);
void workRejected(WorkEvent e);
void workStarted(WorkEvent e);
void workCompleted(WorkEvent e);

}

public class WorkAdapter implements WorkListener {
public void workAccepted(WorkEvent e) {}
Chapter 10 Work Management 10-7

public void workRejected(WorkEvent e) {}
public void workStarted(WorkEvent e) {}
public void workCompleted(WorkEvent e) {}

}

public class WorkEvent extends EventObject {

public static final int WORK_ACCEPTED = 1;
public static final int WORK_REJECTED = 2;
public static final int WORK_STARTED = 3;
public static final int WORK_COMPLETED = 4;

public WorkEvent(Object source, int type, Work work,
WorkException exc) { ... }

public WorkEvent(Object source, int type, Work work,
WorkException exc, long startDuration) { ... }

public int getType() { ... }
public Work getWork() { ... }
public long getStartDuration() { ... }
public WorkException getException() { ... }

}

public class ExecutionContext {

public void setXid(xid) { ... }
public Xid getXid() { ... }
public long getTransactionTimeout() { ... }
public void setTransactionTimeout(long seconds)

throws NotSupportedException { ... }
}

public class WorkException extends ResourceException {

// Indicates an internal error condition.
public static final String INTERNAL = "-1";

// Undefined error code.
public static final String UNDEFINED = "0";

// Indicates start timeout expiration.
public static final String START_TIMED_OUT = "1";

// Indicates that concurrent work within a transaction is
// disallowed.
public static final String TX_CONCURRENT_WORK_DISALLOWED = "2";

CODE EXAMPLE 10-1 javax.resource.spi.work
10-8 J2EE Connector Architecture Specification • November 2003

10.3.2 Work Interface
The Work interface models a Work instance which is executed by a WorkManager
upon submission. This is implemented by a resource adapter.

// Indicates a failure in recreating the specified transaction.
public static final String TX_RECREATE_FAILED = "3";

public WorkException() { ... }
public WorkException(String message) { ... }
public WorkException(Throwable cause) { ... }
public WorkException(String message, Throwable cause) { ... }
public String getMessage() { ... }

}

public class WorkRejectedException extends WorkException {

public WorkRejectedException() { ... }
public WorkRejectedException(String message) { ... }
public WorkRejectedException(Throwable cause) { ... }
public WorkRejectedException(String message, Throwable cause)

{ ... }
}

public class WorkCompletedException extends WorkException {

public WorkCompletedException() { ... }
public WorkCompletedException(String message) { ... }
public WorkCompletedException(Throwable cause) { ... }
public WorkCompletedException(String message, Throwable cause)

{ ... }
}

public interface Work extends Runnable {
 void release();
}

CODE EXAMPLE 10-1 javax.resource.spi.work
Chapter 10 Work Management 10-9

■ run method: The WorkManager dispatches a thread that calls the run method to
begin execution of a Work instance. The execution completes when the run
method returns, with or without an exception. The Work instance can treat the
calling thread as any Java thread. However, the application server may interpose
java.lang.Thread methods and perform checks. The WorkManager must catch
any exception thrown during Work processing, which includes execution context
setup, and wrap it with a WorkCompletedException set to an appropriate error
code, which indicates the nature of the error condition.

■ release method: The WorkManager may call the release method to request
the active Work instance to complete execution as soon as possible. This would be
called on a separate thread than the one currently executing the Work instance.
Since this method call causes the Work instance to be simultaneously acted upon
by multiple threads, the Work instance implementation must be thread-safe, and
this method must be re-entrant.

The application server thread that calls the run method in the Work implementation
must execute with an unspecified context if no execution context has been specified,
or must execute with the specified execution context. It must have at least the same
level of security permissions as that of the resource adapter instance. Further, it does
not have access to a JNDI context.

Note – The JNDI context of an accessing application is available to a resource
adapter via the thread that uses its connection object. Refer to the note in
Section 6.4.1, “Managed Application Scenario” on page 6-6. The thread that accesses
the connection object could be an application thread, or, could be a Work object
accessing an application component. In the latter case, the worker thread gains
access to the application’s JNDI context during the method call on the component.

Both the run and release methods in the Work implementation may contain
synchronization blocks but they must not be declared as synchronized methods.

10.3.3 WorkManager Interface
The WorkManager interface provides a mechanism to submit Work instances for
execution. This is implemented by an application server. A WorkManager instance
can be obtained by calling the getWorkManager method of the
BootstrapContext instance. The BootstrapContext instance is provided by the
application server when a resource adapter instance is bootstrapped. The
WorkManager instance is not required to be unique.
10-10 J2EE Connector Architecture Specification • November 2003

This WorkManager facility frees the resource adapter from having to create Java
threads directly to do its work. Further, this allows efficient pooling of thread
resources by the application server and more control over thread usage.

■ doWork method: This call blocks until the Work instance completes execution. The
application server may execute a Work instance submitted via the doWork method
using the same calling thread. This method is useful to do work synchronously.
For nested Work submissions, this provides a first in, first out (FIFO) execution
start ordering and last in, first out (LIFO) execution completion ordering
guarantee.

■ startWork method: This call blocks until the Work instance starts execution but
not until its completion. This returns the time elapsed in milliseconds from Work
acceptance until the start of execution. Note, this does not offer real-time
guarantees. A value of -1 (WorkManager.UNKNOWN) must be returned, if the actual
start delay duration is unknown. This method is equivalent to the
java.lang.Thread.start method. For nested Work submissions, this
provides a FIFO execution start ordering guarantee, but no execution completion
ordering guarantee.

■ scheduleWork method: This call does not block and returns immediately once a
Work instance has been accepted for processing. This is useful for doing work
asynchronously. This does not provide any execution start or execution
completion ordering guarantee for nested Work submissions.

public interface WorkManager {

 long IMMEDIATE = 0L; // immediate action
 long INDEFINITE = Long.MAX_VALUE; // no time constraint
 long UNKNOWN = -1; // unknown start delay duration

 void doWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

 void doWork(Work work, long startTimeout, ExecutionContext,
WorkListener) throws WorkException;

 long startWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

long startWork(Work work, long startTimeout, ExecutionContext,
WorkListener) throws WorkException;

 void scheduleWork(Work work) // startTimeout = INDEFINITE
throws WorkException;

 void scheduleWork(Work work, long startTimeout,
ExecutionContext, WorkListener) throws WorkException;

}

Chapter 10 Work Management 10-11

The optional startTimeout parameter specifies a time duration in milliseconds
within which the execution of the Work instance must start. Otherwise, the Work
instance is rejected with a WorkRejectedException set to an appropriate error
code (WorkException.START_TIMED_OUT). Note, this does not offer real-time
guarantees.

The optional ExecutionContext parameter provides an execution context with
which the Work instance must be executed. The execution context is represented by
an ExecutionContext instance containing context information. The resource
adapter is responsible for populating the ExecutionContext instance with an
appropriate execution context. The default implementation provides a null context,
that is, an ExecutionContext instance with null values. A Work instance with null
context executes with an unspecified context.

The optional WorkListener parameter provides a callback event listener object
which is notified when the various Work processing events (work accepted, work
rejected, work started, work completed) occur. Refer to Section 10.3.4 “WorkListener
Interface and WorkEvent Class”.

The various stages in Work processing are:

10.3.3.1 Work Submit

A Work instance is being submitted for execution. The Work instance may either be
accepted or rejected with a WorkRejectedException set to an error code. A
submitted Work instance, irrespective of the mode of submission: doWork method,
10-12 J2EE Connector Architecture Specification • November 2003

startWork method or scheduleWork method, does not automatically inherit the
submitter’s execution context. It executes with an unspecified execution context if
none is specified, or it executes with the specified context.

FIGURE 10-3 Work Processing Stages and their Outcomes

10.3.3.2 Work Accepted

The submitted Work instance has been accepted for further processing. The accepted
Work instance may either start execution or may be rejected again with a
WorkRejectedException set to an appropriate error code.

There is no guarantee on when the execution starts unless a start timeout duration is
specified. When a start timeout is specified, the Work execution must be started
within the specified duration, failing which a WorkRejectedException set to an
error code WorkException.TIMED_OUT is thrown. This is not a real-time guarantee.
The start delay duration is measured from the moment a Work instance is accepted
for processing.

10.3.3.3 Work Rejected

The Work instance has been rejected. The Work instance may be rejected during
Work submittal or after the Work instance has been accepted, but before Work
instance starts execution. The rejection may be due to internal factors or start
timeout expiration. A WorkRejectedException with an appropriate error code
which indicates the nature of the error condition, is thrown in both cases.

 work submit

 work started work completed

 accept

 work rejected

 start

 reject

reject

work accepted

work completes
Chapter 10 Work Management 10-13

Since the scheduleWork method returns after a Work instance has been accepted
and does not block until a Work instance starts, a callback event listener may be used
to receive the WorkRejectedException. See Section 10.3.4 “WorkListener Interface
and WorkEvent Class” for details.

10.3.3.4 Work Started

The execution of the Work instance has started. This means a thread has been
allocated for Work execution. But this does not guarantee that the allocated thread
has been scheduled to run on a CPU resource. Once execution is started, the
allocated thread sets up an appropriate execution context and calls the run method
on the Work instance. Note, any exception thrown during execution context setup or
while executing the run method on the Work instance leads to processing
completion.

10.3.3.5 Work Completed

The execution of the Work instance has been completed. The execution may
complete with or without an exception. The WorkManager must catch any exception
thrown during Work processing, which includes execution context setup, and wrap
it with a WorkCompletedException set to an appropriate error code which
indicates the nature of the error condition.

Since the scheduleWork method and startWork method do not block until
execution completion, a callback event listener may be used to receive the
WorkCompletedException. See Section 10.3.4 “WorkListener Interface and
WorkEvent Class” for details).

10.3.3.6 Requirements
■ The application server must implement the WorkManager interface.
■ The application server must allow nested Work submissions.
■ Both the run and release methods must be declared as non-synchronized

methods.
■ When the application server is unable to recreate an execution context if it is

specified for the submitted Work instance, it must throw a
WorkCompletedException set to an appropriate error code.

■ The WorkManager must catch any exception thrown during Work processing,
which includes execution context setup and wrap it with a
WorkCompletedException set to an appropriate error code.
10-14 J2EE Connector Architecture Specification • November 2003

■ The application server must execute a submitted Work instance with an
unspecified context if no execution context has been specified, or must execute it
with the specified execution context. That is, a submitted Work instance must
never inherit the submitter’s execution context when no execution context is
specified.

■ If the application server is unable to start Work execution when a start timeout is
specified for the submitted Work instance, it must reject the Work instance with a
WorkRejectedException set to WorkException.START_TIMED_OUT.
Chapter 10 Work Management 10-15

■ The application server must use a value of -1 (WorkManager.UNKNOWN) to indicate
an unknown Work start delay duration.

FIGURE 10-4 Blocking Durations of Various Work Submissions

Work submit Work accepted Work started Work completed

doWork()

startWork()

scheduleWork()

 WorkRejectedException
WorkCompleted-
Exception
10-16 J2EE Connector Architecture Specification • November 2003

FIGURE 10-5 Work Submission - Blocking Behavior (sequence diagram)

 ResourceAdapter
 (from adapter)

 WorkManager
 (from app server)

 Work
 (from adapter)

 1. create an instance

 2. doWork() [blocks until work completes]

 Java thread
 (from app server)

3. dispatches a Java thread

4. set up execution context

 and call run()

 1. create an instance

 2. startWork() [blocks until work starts (that is, a thread is allocated)]

3. dispatches a Java thread

4. set up execution context

 and call run()

 1. create an instance

 2. scheduleWork() [blocks until work is accepted]

3. dispatches a Java thread

4. set up execution context

 and call run()
Chapter 10 Work Management 10-17

10.3.4 WorkListener Interface and WorkEvent Class
The WorkListener interface is optionally implemented by the resource adapter.
The WorkEvent and WorkAdapter classes are defined by the Connector 1.5
specification. The WorkListener instance is supplied to the WorkManager during
Work submittal and provides an event listener callback mechanism in order to be
notified when the various Work processing events, such as work accepted, work
rejected, work started, and work completed, occur. When a WorkListener is
provided by the resource adapter, the application server must send event
notifications to the WorkListener. These notifications may occur from any thread
with an unspecified context.

public interface WorkListener extends EventListener {
 void workAccepted(workEvent);
 void workRejected(WorkEvent);
 void workStarted(WorkEvent);
 void workCompleted(WorkEvent);
}

10-18 J2EE Connector Architecture Specification • November 2003

The WorkEvent class and WorkAdapter abstract class:

The WorkEvent instance provides the following information:

■ The event type.
■ The source object, that is, the Work instance, on which the event initially occurred.
■ A handle to the associated Work instance.
■ An optional start delay duration in millisecond.
■ Any exceptions that were thrown during Work processing. Possible exceptions are

WorkRejectedException, and WorkCompletedException.

The type of the event determines the specific contents of a WorkEvent.

The WorkAdapter class is provided as a convenience for easily creating
WorkListener instances by extending this class and overriding only those methods
of interest. This is a standard event listener pattern in Java.

public class WorkEvent extends EventObject {

 public static final int WORK_ACCEPTED = 1;
 public static final int WORK_REJECTED = 2;
 public static final int WORK_STARTED = 3;
 public static final int WORK_COMPLETED = 4;

 public WorkEvent(Object source, int type, Work work,
WorkException exc) { ... }

 public WorkEvent(Object source, int type, Work work,
WorkException exc, long startDuration) { ... }

 public int getType() { ... }
 public Work getWork() { ... }
 public long getStartDuration() { ... }
 public WorkException getException() { ... }
}

public abstract class WorkAdapter implements WorkListener {
 public void workAccepted(WorkEvent e) {}
 public void workRejected(WorkEvent e) {}
 public void workStarted(WorkEvent e) {}
 public void workCompleted(WorkEvent e) {}
}

Chapter 10 Work Management 10-19

10.3.4.1 Requirements
■ The WorkListener instance must not make any thread assumptions and must be

thread-safe. That is, a notification can occur from any arbitrary thread with an
unspecified context.

■ The application server must send Work events to the WorkListener instance, if
any, provided by the resource adapter.

■ The WorkListener implementation must not make any assumptions on the
ordering of notifications.

■ The application server must use a value of -1 (WorkManager.UNKNOWN) to indicate
an unknown Work start delay duration.

10.3.5 ExecutionContext Class

The ExecutionContext class allows a resource adapter to specify an execution
context, such as a transaction context, with which the Work instance must be
executed. The resource adapter is responsible for populating the
ExecutionContext instance with an appropriate execution context. The default
implementation provides a null context.

It is better for ExecutionContext to be a class rather than an interface because:

■ There is no need for a resource adapter to implement this class. It only needs to
implement the context information, like transaction context.

public class ExecutionContext {

 public void setXid(xid) { ... }
 public Xid getXid() { ... }
 public long getTransactionTimeout() { ... }
 public void setTransactionTimeout(long seconds)
 throws NotSupportedException { ... }
}

10-20 J2EE Connector Architecture Specification • November 2003

■ The resource adapter code does not have to change when the
ExecutionContext class evolves. For example, more context types could be
added to the ExecutionContext class in the future without forcing resource
adapter implementations to change.
Chapter 10 Work Management 10-21

FIGURE 10-6 Work Submission - Callback Mechanism (sequence diagram)

 WorkManager
 (from app server)

 WorkListener
 (from adapter)

 WorkEvent
(from app server)

 Work
 (from adapter)

 ResourceAdapter
 (from adapter)

 2. create an instance

 3. scheduleWork() [startWork() or doWork() may be used as well].

 4. create an instance

 1. create an instance

 5. workAccepted() / workRejected()

 7. create an instance

 8. workStarted()

 9. create an instance

 10. workCompleted()

6. when Work is accepted, dispatches a thread which sets up

 an execution context and calls run()
10-22 J2EE Connector Architecture Specification • November 2003

10.3.6 Resource Adapter Thread Usage
Recommendations
■ Resource adapters are strongly recommended to use the work management

contract to do work and interact with the application server only from within a
Work instance, instead of using Java threads directly. This allows the resource
adapter to be maximally portable across multiple deployment environments with
different security settings.

■ Resource adapters are allowed to create Java threads directly as permitted by the
server security settings.

■ If a resource adapter chooses to use Java threads directly, it is recommended they
use the threads as daemon threads, as it does not interfere with an orderly
shutdown of the server.

10.3.7 Periodic Execution of Work Instances
A resource adapter may need to periodically execute Work instances. It may use the
java.util.Timer facility available in the Java platform or may use the
BootstrapContext instance provided by the application server to obtain a Timer
instance.

A resource adapter may not be able to directly create a Timer instance, if it does not
have adequate runtime permissions to create threads. This is because the Timer
instance starts a background thread. In such a case, the resource adapter can instead
use the BootstrapContext instance to obtain a Timer instance from the
application server.

When the createTimer method of the BootstrapContext instance is invoked, the
application server provides a new Timer instance or an unshared instance (that is,
no one else has a reference) with an empty task queue. The application server must
throw an UnavailableException if a Timer instance is unavailable; the resource

package javax.resource.spi;

import java.util.Timer;
import javax.resource.spi.UnavailableException;

public interface BootstrapContext {
... // other methods
Timer createTimer() // returns a new or an unshared instance
throws UnavailableException;

}

Chapter 10 Work Management 10-23

adapter may retry later. The application server must throw an
java.lang.UnsupportedOperationException, if it does not support the Timer
service.

Sample code to illustrate periodic Work executions using a Timer instance:

package com.xyz.adapter;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.work.WorkManager;

// ResourceAdapter JavaBean
public class MyResourceAdapterImpl implements ResourceAdapter {
 BootstrapContext bootstrapCtx = null;
 public void start(BootstrapContext ctx) {
 bootstrapCtx = ctx;
 ... // other operations
 }
 ... // other methods
}

{ // sample resource adapter code snippet to show Timer usage
 MyResourceAdapterImpl myRA = ... // get ResourceAdapter
JavaBean

Timer timer = myRA.bootstrapCtx.createTimer(); // get a Timer
instance

WorkManager workManager = myRA.bootstrapCtx.getWorkManager();

 timer.schedule(
 new TimerTask () {
 public void run() {
 try {

 workManager.scheduleWork(new MyWork());
} catch (WorkException we) { we.printStackTrace(); }

 }
 }, 0, 1000); // one second interval
}

10-24 J2EE Connector Architecture Specification • November 2003

10.3.8 Illustration: Using a Work Instance to Listen on
Multiple Network Endpoints
J2SE Version 1.4 provides the java.nio package that includes a multiplexed, non-
blocking I/O facility. Using the java.nio package it is possible for a single thread,
such as a Work instance, to listen on multiple network endpoints or ports. Prior to
the java.nio facility each network endpoint needed a separate thread to listen to
incoming data.

10.3.9 Work Management in a Non-Managed
Environment
Although the work management contract is primarily intended for a managed
environment, it may still be used in a non-managed environment provided the
application that bootstraps a resource adapter instance is capable of functioning as a
WorkManager.

A resource adapter is free to create Java threads as permitted by the security policy
settings of the non-managed environment.
Chapter 10 Work Management 10-25

10-26 J2EE Connector Architecture Specification • November 2003

CHAPTER 11

Inbound Communicaton

This chapter provides a high level description of the inbound communication model;
that is, the communication from an EIS to an application residing in an application
server’s EJB container via a resource adapter. This also introduces concepts used in
subsequent chapters related to inbound communication: Message Inflow
(Chapter 12, “Message Inflow”), EJB Invocation (Chapter 13, “EJB Invocation”), and
Transaction Inflow (Chapter 14, “Transaction Inflow”).

11.1 Overview
In the inbound communication model, the EIS initiates all communication to an
application. In this case, the application may be composed of EJBs (session, entity
and message-driven beans) and resides in an EJB container.

FIGURE 11-1 Inbound Communication Model

 EISResource
Adapter

 Application

Inbound communi-

 cation contracts

 Application
 Server

 same address space

session, entity,
message-driven
 beans
11-1

In order to enable inbound communication, a mechanism to invoke EJBs (session,
entity and message-driven beans) from a resource adapter is necessary. Further, a
mechanism is needed to propagate transaction information from an EIS to an
application residing in an EJB container.

Chapter 12, “Message Inflow” describes a mechanism to invoke message-driven
beans from a resource adapter. Chapter 14, “Transaction Inflow” provides a
mechanism to import transaction information from an EIS into an EJB container.

11.2 An Illustrative Use Case
Wombat Inc. is a finance company which has a variety of software systems as part of
its enterprise infrastructure. The software systems include databases, enterprise
resource planning (ERP) and customer relationship management (CRM) systems,
messaging middleware, mainframe systems, as well as several J2EE application
11-2 J2EE Connector Architecture Specification • November 2003

servers which host business logic written as EJBs (session, entity and message-
driven beans). Further, there are web service interactions that occur as part of the
overall corporate workflow.

FIGURE 11-2 Inbound Communication Model (an illustrative use case)

 entity

 Outbound Resource Adapters

 session

 Inbound Resource Adapters

 Application
Application Server

same address space

 Message
 Providers

 Message
 Providers

corporate firewall boundary

 CRM
 Systems

 Web Service
 Clients

 SOAP / HTTP / HTTPS

 ERP
 Systems

 Message
Publishers

corporate firewall boundary

 Message
Publishers

 ERP
 Systems

 Web Service
 Endpoints

 Outbound contracts

 Inbound contracts

 SOAP / HTTP / HTTPS

 Database
 Systems

message-driven
 beans

 beans beans
Chapter 11 Inbound Communicaton 11-3

In order to integrate the various disparate software systems, and to allow them to
communicate with each other, Wombat Inc. did the following:

■ Used the application servers to hold the integration as well as business logic,
developed as EJBs.

■ Purchased resource adapters and deployed them on the application servers, in
order to provide bi-directional connectivity between the applications residing on
the application servers and the various software systems.

Thus, using the resource adapter as a connectivity enabler, Wombat Inc. was able to
integrate the disparate software systems in its enterprise infrastructure.
11-4 J2EE Connector Architecture Specification • November 2003

CHAPTER 12

Message Inflow

This chapter specifies a standard, generic contract between an application server and
a resource adapter that allows a resource adapter to asynchronously deliver
messages to message endpoints residing in the application server independent of the
specific messaging style, messaging semantics and messaging infrastructure used to
deliver messages. This contract also serves as the standard message provider
pluggability contract that allows a wide range of message providers to be plugged
into any J2EE compatible application server via a resource adapter.

12.1 Overview
Asynchronous message delivery or event notification is a widely used application
communication paradigm. Some of the characteristics of the asynchronous message-
based communication paradigm are:

■ The message producer may not be directly aware of message consumers. There
may be one or more consumers interested in the message.

■ Message delivery is solicited; that is, a message consumer has to express interest
in receiving messages.

■ The messaging infrastructure is type-agnostic; that is, it treats messages as a
Binary Large Object (BLOB). It stores and routes messages reliably, to interested
messsage consumers, depending on Quality of Service (QoS) capabilities.

■ The interaction is inherently loosely coupled. The message producer and the
consumer do not share any execution context.

■ The message producer generally is not interested in the outcome of message
processing by consumers. However, it is possible that the provider may care to
know if the message has been consumed or not.

■ The message delivery always involves a message routing infrastructure, which
offers varying QoS capabilities for storing (persistence) and routing messages
reliably.
12-1

The J2EE application programming model offers a rich set of components: EJBs
(session, entity and message-driven beans), JSPs, and servlets for applications to use.
The message-driven bean is an asynchronous message consumer, or message
endpoint.

J2EE applications may use two different patterns to interact with a message
provider:

■ It may directly use specific messaging APIs, such as Java Messaging Service
(JMS), to send and synchronously receive messages. This is achieved using the
standard connector contracts for connection management. See Chapter 6,
“Connection Management.” Any message provider may provide a connector
resource adapter that supplies connection objects for use by applications to send
and synchronously receive messages using the specific messaging API.

■ It may use message-driven beans to asynchronously receive messages via a
message provider. The EJB specification (Section 1., “Enterprise JavaBeans
(EJBTM) specification, version 2.1:” on page F-1) describes the message-driven
bean component contract in detail.

While the above patterns allow a J2EE application to send and receive messages,
they do not provide a standard system-level contract to plug-in message providers
to an application server and to deliver messages to message endpoints, or message-
driven beans, residing in the application server. Without a standard pluggability
contract, an application server would have to use special contracts to interact with
various message providers, and a message provider has to do the same to interact
with different application servers, which is a mxn problem.

FIGURE 12-1 Message Inflow Contract

Thus, there is a need for a standard, generic contract between an application server
and a message provider which allows a message provider to deliver messages to
message endpoints (message-driven beans) residing in the application server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. Such a contract also serves as the standard

 EISResource
adapter

 Application
 server

 Application Message
 provider

 Message inflow

 contract
12-2 J2EE Connector Architecture Specification • November 2003

message provider pluggability contract which allows a wide range of message
providers to be plugged into any J2EE compatible application server via a resource
adapter.

12.2 Goals
■ Provide a standard, generic mechanism to plug in a wide range of message

providers, including JMS, into a J2EE compatible application server via a resource
adapter and dispatch messages to message endpoints. This will allow J2EE
components to act as consumers of messages with no required changes to the
client programming models. Further, the J2EE components will be able to access
messages with no awareness that a resource adapter is delivering the message.

■ This generic contract must be capable of supporting various messaging delivery
guarantees provided by different messaging styles, as well as allow concurrent
delivery of messages.
Chapter 12 Message Inflow 12-3

12.3 Message Inflow Model
FIGURE 12-2 Message Inflow Contract (object diagram)

 Application Server Resource Adapter

MessageEndpoint

 UnavailableException NotSupported-

 endpointActivation()

 endpointDeactivation()

Exception

 MessageEndpoint-
 Factory

ResourceAdapter

 transactional notifications
XAResource

 message delivery calls
Message object

 createEndpoint(XAResource)

ActivationSpec

 isDeliveryTransacted()
12-4 J2EE Connector Architecture Specification • November 2003

FIGURE 12-3 Message Inflow Contract (interfaces)

 MessageEndpointFactory
 (from app server)

createEndpoint()

 ResourceAdapter
 (from adapter)

 endpointActivation()

 ActivationSpec
 (from adapter)

 javax.resource.spi javax.resource.spi.endpoint

validate()

 (from adapter)

getInvalidPropertyDescriptors()
setInvalidPropertyDescriptors()

 InvalidPropertyException

 MessageEndpoint
 (from app server)

beforeDelivery()

UnavailableException
 (from app server)

javax.resource

afterDelivery()

isDeliveryTransacted()

release()

 endpointDeactivation()
 getXAResources()

NotSupportedException
 (from adapter)
Chapter 12 Message Inflow 12-5

CODE EXAMPLE 12-1 javax.resource.spi

package javax.resource.spi;

import java.beans.PropertyDescriptor;
import javax.resource.NotSupportedException;
import javax.resource.spi.endpoint.MessageEndpointFactory;

public interface ResourceAdapter {
... // other methods
void endpointActivation(MessageEndpointFactory,

ActivationSpec) throws ResourceException;
void endpointDeactivation(MessageEndpointFactory,

ActivationSpec);
XAResource[] getXAResources(ActivationSpec[] specs)

throws ResourceException;
}

public interface ActivationSpec { // JavaBean
void validate() throws InvalidPropertyException;

}

public class InvalidPropertyException extends ResourceException {
public InvalidPropertyException() { ... }
public InvalidPropertyException(String message) { ... }
public InvalidPropertyException(String message,

String errorCode) { ... }
public void setInvalidPropertyDescriptors(

PropertyDescriptor[] invalidProperties) { ... }
public PropertyDescriptor[] getInvalidPropertyDescriptors() {

... }
}

public class UnavailableException extends ResourceException {
public UnavailableException() { ... }
public UnavailableException(String message) { ... }
public UnavailableException(Throwable cause) { ... }
public UnavailableException(String message, Throwable cause) {

... }
}

CODE EXAMPLE 12-2 javax.resource.spi.endpoint

package javax.resource.spi.endpoint;

import java.lang.Exception;
import java.lang.Throwable;
import java.lang.NoSuchMethodException;
import javax.transaction.xa.XAResource;
12-6 J2EE Connector Architecture Specification • November 2003

The ResourceAdapter interface supports methods used for endpoint activations
and deactivations. The endpointActivation method is called by the application
server when a message endpoint is activated and the endpointDeactivation
method is called by the application server when a message endpoint is deactivated.
The resource adapter is supplied a MessageEndpointFactory instance and a
configured ActivationSpec instance during endpoint activations and
deactivations. The resource adapter may reject an activation by throwing a
NotSupportedException, if the activation information is incorrect.

The resource adapter uses the MessageEndpointFactory instance to obtain
message endpoint instances for delivering messages either serially or concurrently.
The MessageEndpointFactory may be used for obtaining any number of message
endpoint instances. The createEndPoint method call may throw an
UnavailableException for several reasons:

■ The application server has not completed endpoint activation.
■ The application server may decide to limit concurrent message deliveries.
■ The application server is about to shutdown.
■ The application server may have encountered an internal error condition.

In some cases where the offending condition is temporary, the application server
may decide to block the createEndPoint method call instead of throwing an
UnavailableException.

The MessageEndpointFactory may also be used to find out whether message
deliveries to a target method on a message listener interface that is implemented by
a message endpoint will be transacted or not via the isDeliveryTransacted
method. The message delivery preferences must not change during the lifetime of a
message endpoint.

import javax.resource.ResourceException;
import javax.resource.spi.UnavailableException;

public interface MessageEndpointFactory {
MessageEndpoint createEndpoint(XAResource)

throws UnavailableException;
boolean isDeliveryTransacted(java.lang.reflect.Method)

throws NoSuchMethodException;
}

public interface MessageEndpoint {
void beforeDelivery(java.lang.reflect.Method)

throws NoSuchMethodException, ResourceException;
void afterDelivery() throws ResourceException;
void release();

}

CODE EXAMPLE 12-2 javax.resource.spi.endpoint
Chapter 12 Message Inflow 12-7

A resource adapter capable of message delivery to message endpoints must provide
an ActivationSpec JavaBean class for each supported endpoint message listener
type. The ActivationSpec JavaBean has a set of configurable properties specific to
the messaging style and the message provider. An instance of the ActivationSpec
JavaBean is configured by a message endpoint, or application, deployer to setup the
necessary configuration information for the endpoint activation, and passed on to
the resource adapter via the application server during endpoint deployment.

The resource adapter is expected to know the endpoint message listener type, either
by using the ActivationSpec JavaBean contents or based on the ActivationSpec
JavaBean class, and deliver messages to the endpoint. The resource adapter may
optionally pass an XAResource instance while creating a message endpoint in order
to receive transactional notifications when a message delivery is transacted.

The following steps in sequential order represent the various stages in the message
endpoint lifecycle, during which message inflow contracts are used:

■ Endpoint1 deployment.
■ Message delivery (transacted and non-transacted).
■ Endpoint undeployment.

1. Endpoint in this chapter refers to a message endpoint (for example, a message-driven bean application).
12-8 J2EE Connector Architecture Specification • November 2003

12.4 Endpoint Deployment
FIGURE 12-4 Endpoint (Message-Driven Bean) Deployment (Actors)

There are several actors involved in the deployment of a message endpoint:

■ A message endpoint that is to be deployed on an application server.
■ A resource adapter capable of message delivery. The resource adapter is typically

provided by a message provider or a third party, and is used to plug an external
message provider into an application server. The resource adapter may be
standalone that may be shared by different applications or it may be packaged
along with an endpoint application.

■ An application server that provides the runtime environment for the application.
■ A deployer of the application, a human, who understands the application’s needs,

and is also aware of the details of the runtime environment in which the
application will be deployed.

 Resource Adapter

 Application
 Server

 Endpoint Application

 Message
 Provider

Deployment Descriptor Deployment Descriptor

 Deployment Tool

Endpoint Deployer
Chapter 12 Message Inflow 12-9

■ A message provider, or messaging infrastructure, that is the source for messages.
A message provider may provide special tools that can be used by the deployer to
setup the message provider for message delivery.

The roles and responsibilities of the various actors are as follows:

12.4.1 Message Endpoint
The message endpoint is a message-driven bean application which is to be deployed
on the application server. It asynchronously consumes messages from a message
provider. It is also possible for the application to send and synchronously receive
messages by directly using messaging-style specific APIs.

The message-driven bean developer provides activation configuration information
in the message-driven bean deployment descriptor. This includes messaging style
specific configuration details, and possibly message provider-specific details as well,
which is used by the message-driven bean deployer to setup the activation.

The EJB specification (Section 1., “Enterprise JavaBeans (EJBTM) specification,
version 2.1:” on page F-1) has more details on the message-driven bean deployment
descriptor element activation-config used to hold the activation configuration
information. For example, the deployment descriptor of a message-driven bean
which consumes from a JMS resource adapter may contain:

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor

<!-- message-driven bean deployment descriptor -->
...
<activation-config>

<activation-config-property>
<activation-config-property-name>

destinationType
</activation-config-property-name>
<activation-config-property-value>

javax.jms.Topic
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
SubscriptionDurability

</activation-config-property-name>
<activation-config-property-value>

Durable
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
12-10 J2EE Connector Architecture Specification • November 2003

The EJB specification does not specify messaging style-specific descriptor elements
contained within the activation-config element. It is the responsibility of each
individual messaging specification or product to specify the standard descriptor
elements specific to the messaging style for representing the activation configuration
information.

12.4.2 Resource Adapter
The resource adapter is a system component located in the application server’s
address space (that is, it has already been deployed) that provides connectivity to
message providers and is capable of delivering messages to message endpoints
residing in the application server. The resource adapter is typically provided by a
message provider or a third party, and is used to plug an external message provider
into an application server. The resource adapter may be standalone, shared by
different applications, or may be packaged along with an endpoint application.

The resource adapter provides the following information via the resource adapter
deployment descriptor that is used by the endpoint deployer to setup endpoint
activation:

12.4.2.1 List of Supported Message Listener Types

The resource adapter provides a list of endpoint message listener types it supports.
Each type is represented as a fully qualified name of the Java type of the message
listener interface.

12.4.2.2 ActivationSpec JavaBean

The resource adapter provides the Java class name of an ActivationSpec
JavaBean, one for each supported message listener type, containing a set of
configurable properties that is used to specify endpoint activation configuration
information during endpoint deployment. Refer to Section 16.3, “JavaBean

MessageSelector
</activation-config-property-name>
<activation-config-property-value>

JMSType = 'car' AND color = 'blue'
</activation-config-property-value>

</activation-config-property>
...

</activation-config>
...

CODE EXAMPLE 12-3 Message-Driven Bean Deployment Descriptor
Chapter 12 Message Inflow 12-11

Requirements” on page 16-2. An ActivationSpec JavaBean instance is created
during endpoint deployment, and the instance is configured by the endpoint
deployer.

During configuration, an ActivationSpec JavaBean instance may check the
validity of the configuration settings provided by the endpoint deployer. The
ActivationSpec has a validate method which may be used during endpoint
deployment to validate the overall activation configuration information provided by
the endpoint deployer. This helps to catch activation configuration errors earlier on
without having to wait until endpoint activation time for configuration validation.
The implementation of this self-validation check behavior is optional.

Note, the ActivationSpec JavaBean instance must not make any assumptions
about the availability of a live resource adapter instance.

The resource adapter may also provide in its deployment descriptor, using the
required-config-property element, an optional list of configuration property
names required for each activation specification. This information may be used
during deployment to ensure that the required configuration properties are
specified. An endpoint activation should fail if the required property values are not
specified.

In the case of JMS message providers, the destination property value (refer to
Appendix B, “Activation Configuration for Message Inflow to JMS Endpoints) may
also be an object that implements the javax.jms.Destination interface. In such a
case, the resource adapter should provide an administered object (refer to
Section 12.4.2.3, “Administered Objects” on page 12-12) that implements the
javax.jms.Destination interface. The specific type of the JMS destination is
specified by the destinationType property value. The JMS ActivationSpec
JavaBean properties should be standardized by the JMS community.

12.4.2.3 Administered Objects

The resource adapter may provide the Java class name and the interface type of an
optional set of JavaBean classes representing various administered objects. Refer to
Section 16.3, “JavaBean Requirements” on page 16-2. Administered objects are
specific to a messaging style or message provider.

For example, some messaging styles may need applications to use special
administered objects for sending and synchronously receiving messages via
connection objects using messaging-style specific APIs. It is also possible that
administered objects may be used to perform transformations on an asynchronously
received message in a message provider-specific way.
12-12 J2EE Connector Architecture Specification • November 2003

Note, administered objects are not used for setting up asynchronous message
deliveries to message endpoints. The ActivationSpec JavaBean is used to hold all
the necessary activation information needed for asynchronous message delivery
setup.

12.4.2.4 Configuring Administered Objects
■ Create an administered object JavaBean instance. This will initialize the instance

with the defaults specified via the JavaBean mechanism.
■ Apply the administered object class configuration properties specified in the

resource adapter deployment descriptor, on the administered object instance. This
may override some of the default values specified via the JavaBean mechanism.

■ The deployer may further override the values of the administered object before
deployment.

12.4.3 Endpoint Deployer
The endpoint deployer is a human who has the responsibility to deploy the message
endpoint, or application, on an application server. The deployer is expected to know
the needs of the application and be aware of the details of the runtime environment
in which the application will be deployed.

The deployer selects a suitable resource adapter that matches the needs of the
application depending on endpoint message listener type, QoS capabilities, and so
on. The deployer configures an ActivationSpec JavaBean instance based on the
information provided by the application developer or assembler, which is contained
in the endpoint deployment descriptor. The deployer may also use additional
message provider-specific information to configure the ActivationSpec JavaBean
instance.

The deployer also configures a set of administered objects, if necessary. The resource
adapter provides the JavaBean classes for such administered objects. The deployer
may also interact with a message provider to do the necessary setup for message
delivery.

Then the deployer deploys the application on the application server. As part of the
deployment procedure, the deployer provides all the configured JavaBean instances
to the application server, and also specifies the chosen resource adapter instance to
be used for message delivery.
Chapter 12 Message Inflow 12-13

12.4.4 Application Server
The application server provides the runtime environment for the message endpoint.
It activates message endpoints when they are deployed. All such deployed
endpoints are automatically reactivated when an application server restarts after a
normal shutdown or system crash. When an application is undeployed, the
application server deactivates the endpoint.

When an endpoint is activated, the application server calls the chosen resource
adapter via the endpointActivation method and passes on a
MessageEndpointFactory instance and the ActivationSpec JavaBean, which
was configured by the endpoint deployer. The application server does not interpret
the contents of the ActivationSpec JavaBean and treats it as an opaque entity. The
resource adapter may reject an endpoint activation by throwing a
NotSupportedException during the endpointActivation method call. This is
due to incorrect activation information.

The resource adapter uses the MessageEndpointFactory to create message
endpoint instances to deliver messages either serially or concurrently. There is no
limit to the number of such endpoints that may be created to deliver messages.
However, in practice the application server may decide to limit concurrency by
rejecting attempts to create new endpoints by throwing an
UnavailableException. The application server may also attempt to block a
message delivery method call in order to limit concurrency and perform flow
control.

Note, a resource adapter may attempt to deliver messages during the
endpointActivation method call. It is up to the application server to decide
whether to allow message delivery before activation is completed. If the application
server chooses to prevent message delivery during endpoint activation, it may block
the createEndpoint method call until the activation is completed or throw an
UnavailableException.

The resource adapter may pass an XAResource instance while creating a message
endpoint in order to receive transactional notifications when a message delivery is
transacted. The application server must notify the resource adapter via the
XAResource instance if a message delivery is transacted.

During endpoint deployment, the application server places the configured
administered objects, if any, supplied by the endpoint deployer in the component
namespace java:comp/env. The endpoint deployer specifies a location in the
component namespace where each administered object should reside. The
configured administered objects residing in the component namespace are used by
the endpoint application in a messaging style-specific manner.
12-14 J2EE Connector Architecture Specification • November 2003

When an endpoint is deactivated, the application server notifies the resource adapter
via the endpointDeactivation method call. The application server must pass the
same MessageEndpointFactory instance and the ActivationSpec JavaBean
instance that was used during endpoint activation.
Chapter 12 Message Inflow 12-15

12.4.5 Message Provider
A message provider, or messaging infrastructure, is typically an external system that
is the source for messages. Message providers may vary in their QoS capabilities. A
message provider may provide special tools that can be directly used by the
endpoint deployer to setup the message provider for message delivery.
12-16 J2EE Connector Architecture Specification • November 2003

FIGURE 12-5 Endpoint (message-driven bean) Deployment Steps

 Resource Adapter

 Application
 Server

 Endpoint Application

 Message
 Provider

 Deployment Descriptor

 Deployment Descriptor

Endpoint Deployer

i. Message listener types
 supported.

ii. An ActivationSpec class
 (JavaBean) for each
 supported message listener.

iii. JavaBean classes for
 Administered objects,
 if any.

i. Activation configuration
 information (messaging
 style specific). May also have
 message provider specific
 details.

 1. Choose a suitable resource adapter.

 6. Create a ActivationSpec JavaBean instance
 from the chosen resource adapter and
 configure the JavaBean properties.

 7. Configure necessary administered objects.

2. Query resource adapter about
 message listener types, details on
 ActivationSpec, admin
 objects and QoS capabilities.

4. Get endpoint activation configuration
 information.

 3. Get activation config details from endpoint.

 8. Deploy application.

9. Supply the ActivationSpec JavaBean
 and administered objects (if any), and

11. Endpoint activation: Passes a handle
 to a MessageEndpointFactory and
 the ActivationSpec JavaBean.

 10. Place administered objects (if any)
 in the component namespace.

5. setup for message delivery.

 specify the chosen resource adapter.

 Deployment Tool
Chapter 12 Message Inflow 12-17

12.4.6 Endpoint Deployment Steps
The sequence of steps involved in endpoint deployment involving the various actors
is as follows:

■ The endpoint deployer obtains a list of resource adapters capable of delivering
messages to the message endpoint, and chooses a suitable one. The decision is
based on the message listener type supported by the resource adapter and its QoS
capabilities. However, it is possible that the message endpoint application may
already contain a suitable resource adapter. In such a case, the resource adapter is
deployed along with the endpoint application and is used to deliver messages to
the specific endpoint application.

■ The deployer obtains the activation configuration information provided by the
endpoint developer available in the endpoint deployment descriptor.

■ The deployer may need to setup the message provider for message delivery to the
endpoint. This may be done using a message provider specific tool.

■ The deployer obtains an ActivationSpec JavaBean from the selected resource
adapter and configures it. The configuration information is messaging style-
specific and may include message provider specific details.

■ The deployer configures the JavaBean instances of administered objects, if any are
necessary.

■ The deployer provides the configured JavaBean instances to the application
server, and also specifies the resource adapter chosen for message delivery. Note,
the contract between a deployment tool and an application server is out of scope
for this specification.

■ The application server places the administered objects, if any, in the
java:comp/env component namespace for use by the message endpoint.

■ The application server activates the message endpoint by calling the chosen
resource adapter via the endpointActivation method and passes a
MessageEndpointFactory instance and the configured ActivationSpec
JavaBean instance provided by the deployer. The resource adapter may reject the
endpoint activation by throwing a NotSupportedException, which is due to
incorrect activation information.

12.4.7 Requirements
■ A resource adapter that is capable of delivering messages to message endpoints

must provide a list of endpoint message listener types it supports, and also must
provide an ActivationSpec JavaBean class for each message listener type it
supports. This information must be part of the resource adapter deployment
descriptor.

■ ActivationSpec and all administered objects must be JavaBeans.
■ A resource adapter must allow an application server to make concurrent

endpointActivation method or endpointDeactivation method calls.
12-18 J2EE Connector Architecture Specification • November 2003

■ The endpoint application’s activation-config properties, specified in the
endpoint deployment descriptor, should be a subset of the ActivationSpec
JavaBean’s properties. There must be a one-to-one correspondence between the
activation-config property names and the ActivationSpec JavaBean’s
property names. This allows automatic merging of the activation-config
properties with an ActivationSpec JavaBean instance during endpoint
deployment. Any specified activation-config property which does not have a
matching property in the ActivationSpec JavaBean should be treated as an
error.

■ When an application server notifies a resource adapter during endpoint
deactivation, it must pass the same MessageEndpointFactory instance and the
ActivationSpec JavaBean instance that was used during endpoint activation.

■ Any exception thrown by the endpointDeactivation method call must be
ignored. After this method call the endpoint is deemed inactive.

■ All deployed endpoints must be automatically reactivated by the application
server when it restarts after a normal shutdown or system crash.

■ Before a resource adapter is undeployed, the application server must deactivate
all active endpoints consuming messages from that specific resource adapter.

12.4.8 Structure of a Message Listener Interface
A message listener interface implemented by a message endpoint, a message-driven
bean, is allowed to have multiple methods. Each method of a message listener
interface is allowed to have multiple arguments, a return value, and throw checked
application exceptions or unchecked system exceptions.

Checked exceptions are thrown only by a message listener implementation. The
message-driven bean container must propagate to the resource adapter any checked
exception that occurs during message dispatch.

Unchecked exceptions (java.lang.RuntimeException and java.lang.Error)
may be thrown by either the message listener implementation or may be thrown by
the application server code during message dispatch. The application server must
wrap such an unchecked exception within a javax.ejb.EJBException, which is a
java.lang.RuntimeException, and throw the javax.ejb.EJBException to
the resource adapter.

The EJB specification describes in detail the structural requirements of a message
listener interface implemented by a message-driven bean.
Chapter 12 Message Inflow 12-19

12.4.9 Multiple Endpoint Activations With Similar
Activation Configuration
Since multiple endpoints, that is, different applications, with similar activation
configuration may be deployed in a single application server, the application server
may call the endpointActivation method on a resource adapter instance multiple
times with similar activation configuration. The resource adapter must treat multiple
endpoint activations with similar activation configuration separately. When
messages start arriving, the resource adapter must, for each active endpoint, deliver
a separate copy of incoming messages, even if there are multiple endpoints with
similar activation configuration.

12.4.9.1 Requirements
■ The application server must supply a unique MessageEndpointFactory

instance for each activation.
■ Refer to Section 16.4, “Equality Constraints” on page 16-3 for equality constraints

on MessageEndpointFactory and ActivationSpec implementations.
■ The resource adapter must treat multiple endpoints with similar activation

configuration separately and guarantee message delivery semantics.
■ The resource adapter must treat each ActivationSpec JavaBean uniquely

irrespective of its contents. That is, the resource adapter must not treat two
separate ActivationSpec JavaBeans as equals.
12-20 J2EE Connector Architecture Specification • November 2003

FIGURE 12-6 Endpoint Deployment (sequence diagram)

 ResourceAdapter
 (from adapter)

 MessageEndpointFactory
 (from app server)

 Message provider

3. create an instance

 4. endpointActivation(MessageEndpointFactory, ActivationSpec)

 Endpoint J2EE app server

 5. setup for message delivery (private contract)

The endpoint deployer chooses a suitable resource adapter based on supported
message listener type and QoS capabilities , configures an ActivationSpec JavaBean
instance obtained from the resource adapter. The configuration includes message
style-specific information and may include message provider specific information.

 ActivationSpec
 (from adapter)

 1. create and configure an ActivationSpec JavaBean

 2. deploy endpoint application (pass the configured ActivationSpec JavaBean)

 deployer
Chapter 12 Message Inflow 12-21

12.5 Message Delivery
Once endpoints are activated, they are ready to receive messages. When messages
arrive, the resource adapter uses the MessageEndpointFactory to create an
endpoint instance. The resource adapter narrows the endpoint instance to the actual
message listener type (it knows the endpoint type from the ActivationSpec), and
delivers the message to the endpoint instance. The EJB specification (Section 1.,
“Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1) prescribes
the rules for the message listener interface structure. The same endpoint instance
may be used again to deliver subsequent messages serially, but it must not use the
same endpoint instance concurrently.

Note that the endpoint instance supplied by the createEndPoint method call is a
proxy which implements the endpoint message listener type and the
MessageEndpoint interface and it is not the actual endpoint. This is necessary
because the application server may need to intercept the message delivery in order
to inject transactions, depending on the actual endpoint preferences, and to perform
other checks.

The proxy endpoint instance is implemented by the application server and is used to
intercept the message delivery, performs checks, inject transactions, and so on, and
to route the message to the actual message endpoint instance. The resource adapter
does not have to make this distinction, and should treat the proxy endpoint instance
as the actual endpoint instance.

The resource adapter may use a proxy endpoint instance to serially deliver
messages. The resource adapter must not use a proxy endpoint instance concurrently
from different threads. The proxy endpoint may throw a
java.lang.IllegalStateException when invoked concurrently. However, a
proxy endpoint instance may be used by different threads in a serial fashion.

The resource adapter may call the release method on the proxy endpoint instance
to indicate that it no longer needs the proxy instance. This hint may be used by the
application server for proxy endpoint pooling decisions. This method call frees the
state of the proxy instance. The released proxy instance may be reused for further
proxy endpoint requests from the same resource adapter. A proxy endpoint instance
must not be reused across multiple resource adapter instances.

Between the time a proxy endpoint instance is released and before it is granted back
to the same resource adapter (via a createEndpoint method call), the proxy
endpoint instance is considered to be in a free and available state. Any attempted
use of a free proxy must result in a java.lang.IllegalStateException thrown
by the application server.
12-22 J2EE Connector Architecture Specification • November 2003

The application server may start a transaction before delivering the message to the
actual endpoint depending on the endpoint preferences. The resource adapter may
optionally pass an XAResource instance via the createEndPoint method in order
to receive transaction notifications for those transactions started by an application
server before message delivery.
Chapter 12 Message Inflow 12-23

12.5.1 Sample Resource Adapter Code To Illustrate
Message Delivery

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter

// Reader Thread(s)
{

// 1. Strip off msg header and parse message description
// 2. Choose a set of endpoints which match message description
// 3. Place message in appropriate buffer / queue
// 4. Notify worker threads

}

// Worker Thread(s)
{

// 1. Wake up on notification (message arrival)
// 2. Pick up the message and locate the MessageEndpointFactory
// associated with the subscription
Message msg = ...;
MessageEndpointFactory endpointFactory = ...;
MyXAResource xaResource = ...; // for transacted delivery

// 4. Obtain a message endpoint and narrow it to the
// correct type.

// ActivationSpec has endpoint message listener type
// information.
Object obj = endpointFactory.createEndpoint(xaResource);
javax.jms.MessageListener endpoint =

(javax.jms.MessageListener) obj;

// 5. Link the XAResource with the endpoint. This allows the
// XAResource object to know which endpoint/message delivery
// is transacted when it receives transaction notifications.
// This may be unnecessary depending on the implementation.
xaResource.setEndpoint(endpoint);

// Note: It may be possible to make the XAResource object
// thread-safe/reentrant and reuse the same object for receiving
// transaction notifications for different endpoints.
// The XAResource object may use thread-local storage to
// remember state, and thus avoid creating multiple
// XAResource objects.

// 6. Deliver the message.
endpoint.onMessage(msg);

// 7. Wait for notification of incoming messages
12-24 J2EE Connector Architecture Specification • November 2003

// and repeat the above steps on message arrival.
}

package com.wombat.ra;

import javax.transaction.xa.*;

class MyXAResource implements javax.transaction.xa.XAResource {

public void start(Xid xid) throws XAException {
// Associate the message delivery with the transaction id.
// That is, create the tuple (msg id, transaction id) in
// memory.

}

public int prepare(Xid xid) throws XAException {
// Forward the tuple (message id, transaction id) to the
// message provider. The provider must persist this
// information, which is used during crash recovery by the
// application server. During crash recovery,
// the application calls the message provider, via the
// recover method on an XAResource object, queries for
// a list of in-doubt transactions and completes them.
// Upon successful completion, return "ready_to_commit"
// vote, else return "rollback_only" vote.

}

public void commit(Xid xid, boolean onePhase)
throws XAException {
// forward the transaction id to the message provider. This
// serves as the acknowledgement that a message was
// delivered.

}

public void rollback(Xid xid) throws XAException {
// forward the transaction id to the message provider. This
// indicates to the provider that the message was not
// delivered.

}

...; // other methods
}

CODE EXAMPLE 12-4 Message Delivery In a Resource Adapter
Chapter 12 Message Inflow 12-25

12.5.1.1 Requirements
■ The application server’s proxy endpoint instance must implement the endpoint

message listener type and the MessageEndpoint interface.
■ The application server must pass by reference all the method parameter objects

passed by the resource adapter during a message delivery method call on a proxy
endpoint. The application server must not copy or clone the passed method
parameter objects during message delivery to the actual endpoint instance.

■ If the application server starts a new transaction, depending on endpoint
preferences, before delivering a message to an endpoint instance, it must send all
transaction notifications to the XAResource instance optionally supplied by the
resource adapter as part of the createEndPoint method call.

■ A resource adapter must not attempt to deliver messages concurrently to a single
endpoint instance. The application server must reject concurrent usage of an
endpoint instance.

12.5.2 Message Redelivery Upon Crash Recovery
An application server may crash during message delivery. In the case of message
deliveries transacted by the application server, the application server must notify the
commit decision to the message provider during crash recovery.

During crash recovery:

■ The application server must first restart resource adapter instances by calling the
start method on each persisted ResourceAdapter JavaBean, each
corresponding to a resource adapter instance that was active prior to the crash.

■ The application server must call the getXAResources method on each
ResourceAdapter JavaBean, and pass in an array of ActivationSpec
JavaBeans, each of which corresponds to a deployed endpoint application that
was active prior to the system crash. This method need not be called if there were
no endpoint applications that were active prior to the crash.

■ Upon being called by the application server during crash recovery via the
getXAResources method, the resource adapter must return an array of
XAResource objects, each of which represents a unique resource manager.

The resource adapter may return null if it does not implement the XAResource
interface. Otherwise, it must return an array of XAResource objects, each of
which represents a unique resource manager that was used by the endpoint
applications. The resource adapter may throw a ResourceException if it
encounters an error condition.

Since each returned XAResource object represents a unique resource manager,
the number of returned XAResource objects must be less than or equal to the
number of ActivationSpec instances specified.
12-26 J2EE Connector Architecture Specification • November 2003

■ Since it is possible that multiple resource adapters may use the same resource
manager, there may be more than one XAResource object in the collection
representing a resource manager. The application server may still need to narrow
the collection of XAResource objects to a unique set of resource managers by
using the isSameRM method on the XAResource object.

■ The application server must use the XAResource objects to query each resource
manager for a list of in-doubt in an already prepared state awaiting a commit
decision transactions. Then, it must complete each pending transaction by
sending the commit decision to the participating resource managers. Note, it is
possible that a resource manager may not have pending in-doubt transactions.

The crash recovery procedure ensures that the message provider gets notified about
the outcome of all message deliveries that were in an in-doubt transaction state at
the time of the crash. Upon such notification, the message provider, depending on
the delivery outcome, may decide to redeliver the undelivered messages to the
various endpoints when they are reactivated.

12.5.3 Durable Message Delivery Setup
Once message endpoints are activated, they are ready to receive messages from a
message provider. Message delivery setup may either be durable or non-durable.

In the case of non-durable message deliveries, messages are lost during application
server downtime. When the application server becomes functional again, it
automatically reactivates all message endpoints that were previously deployed, and
message delivery starts again. But the messages that were produced during the
downtime are lost. This is because messages are not persisted by the message
provider and redelivered when the message endpoints are reactivated.

In the case of durable activations, messages are not lost during application server
downtime. When the application server becomes functional again, it automatically
reactivates all message endpoints that were previously deployed, and message
delivery starts again. The messages that were produced during the downtime are
persisted by the message provider and redelivered when the message endpoints are
reactivated. It is the responsibility of the message provider to persist undelivered
messages and redeliver them when the endpoint is available; that is, when the
endpoint is reactivated by the app server.

Durability of message delivery may be an attribute of the activation setup, and thus
it must be captured as part of the endpoint activation information. No additional
contracts are required to support durable activations. Activation durability can be
specified by a endpoint deployer via the ActivationSpec JavaBean. Note, some
message providers may not support durable message deliveries and hence it is a
QoS capability offered by the message provider.
Chapter 12 Message Inflow 12-27

12.5.4 Concurrent Delivery of Messages
During message endpoint activation, the application server supplies a
MessageEndpointFactory to the resource adapter. The
MessageEndpointFactory is used to get an endpoint instance via the
createEndPoint method call. Each call results in a new or an unused endpoint
instance that may be used to deliver messages concurrently; that is, for each active
message endpoint, there may be multiple endpoint instances consuming messages
concurrently.

Thus, for each message endpoint, depending on traffic, the resource adapter may
choose to deliver messages serially using a single endpoint instance or concurrently
using multiple endpoint instances.

There is no limit to the number of such endpoint instances that may be created,
although the application server may limit the concurrency by either throwing an
UnavailableException or by blocking the createEndPoint method call.

The application server may also attempt to block a message delivery method call in
order to limit concurrency and perform flow control.

12.5.4.1 Requirements
■ The application server must return a new or an unused endpoint instance for

every createEndPoint method call on a MessageEndpointFactory.

12.5.5 Delivery Semantics and Acknowledgement
When the resource adapter delivers a message to an endpoint instance, which is
really a proxy endpoint instance, the application server intercepts the message
delivery to perform checks, inject transactions, and so on, and routes the message to
the actual message endpoint instance.

The application server may start a transaction before delivering the message to the
actual endpoint depending on the endpoint preferences. In the case of a transacted
delivery, the resource adapter may use the transaction notifications received via the
XAResource object to send back an acknowledgement to its message provider.

In the case of non-transacted delivery, that is, the application server does not start a
transaction, the resource adapter has to rely on the successful completion of the
message delivery call in order to send back an acknowledgement to its provider.
12-28 J2EE Connector Architecture Specification • November 2003

12.5.6 Transacted Delivery (Using Container-Managed
Transaction)
Depending on the endpoint preferences, the application server brackets the message
delivery to an endpoint instance with a Java Transaction API (JTA) transaction.

■ This ensures that all the work done by the endpoint instance is enlisted as part of
the transaction.

■ This provides atomic message delivery/message consumption; that is, if the
transaction were to be aborted by the application server due to an exceptional
condition, all the work done by the endpoint instance is aborted, and the delivery
is undone. If this does not occur, the transaction is committed, all the work done
by the endpoint instance is committed and the delivery is completed.

The application server notifies the resource adapter while beginning and completing
transactions by using the XAResource instance optionally supplied via the
createEndPoint method call.

■ This allows the adapter to know the outcome of a transacted delivery, and also
influence the outcome of the transaction via the prepare method call on the
XAResource instance.

■ This allows the adapter to send back an acknowledgement to its message
provider contingent on successful delivery; that is, when notified via the commit
method call on the XAResource instance.

■ This also allows the adapter to be notified of the correct delivery outcome upon
failure recovery processing; that is, if the system crashes when the transaction is
in-doubt, that is, when the transaction has already been prepared, the application
server upon recovery correctly completes the transaction and notifies the adapter
of the outcome of the transaction. Thus, the adapter can send back an
acknowledgement to its message provider after failure recovery, if the message
had been successfully delivered.

A resource adapter may optionally provide an XAResource instance via the
createEndPoint method call in order to receive transactional notifications for
those transactions started by an application server before message delivery. The
resource adapter may find out whether message deliveries to a target method on a
message endpoint will be transacted or not via the isDeliveryTransacted
method in the MessageEndPointFactory instance, and decide whether to provide
an XAResource instance via the createEndPoint method. Note, this does not
require the resource adapter to support the transaction inflow contract (see
Chapter 14, “Transaction Inflow”).

There are two delivery options available to the resource adapter for transacted
deliveries:

■ Option A, traditional XA style: The resource adapter optionally provides a
XAResource instance via the createEndPoint method in order to receive XA
transaction notifications for transacted message deliveries. In this case, the
Chapter 12 Message Inflow 12-29

application server fully controls the transaction boundaries and the resource
adapter is merely a participant (the XAResource Resource Manager (RM)). See
FIGURE 12-7 on page 35.

■ Option B, beforeDelivery/afterDelivery: The resource adapter still
optionally provides an XAResource instance via the createEndPoint method
in order to receive XA transaction notifications for transacted message deliveries.
But the resource adapter controls the transaction boundaries via the
beforeDelivery/afterDelivery calls, in spite of being only a participant, an
XAResource RM.

During the beforeDelivery call from the resource adapter, depending on the
transactional preferences of the intended target method (specified via the
java.lang.reflect.Method method parameter), the application server starts a
transaction and enlists the XAResource instance in the transaction. The
processing (by the application server) of the actual message delivery method call
on the endpoint must be independent of the class loader associated with the
descriptive method object (parameter).

During the afterDelivery call from the resource adapter, the application server
completes the transaction and sends transaction completion notifications to the
XAResource instance. The actual message delivery happens in between the
beforeDelivery and afterDelivery calls.

In this case, the resource adapter controls when the transaction is started and
completed by the application server, even though the application server decides
on the outcome of the transaction. This allows resource adapters more flexibility
in handling message deliveries. For example, the resource adapter may choose to
dequeue a message from within the container-managed transaction so that the
message dequeue is automatically undone if the container-managed transaction
aborts.

There must not be more than one message delivery in-between a single
beforeDelivery and afterDelivery method call pair. The application server
must reject beforeDelivery or afterDelivery calls that are out of sequence
by throwing an IllegalStateException.

The beforeDelivery and afterDelivery method calls are considered part of
a single message delivery call. For each message delivery, the beforeDelivery,
afterDelivery methods and the actual message delivery method, must be
called from a single thread of control.

Further, the application server must set the thread context class loader to the
endpoint application class loader during the beforeDelivery call and must
reset it during a corresponding afterDelivery call. This allows a resource
adapter to use the application class loader to load application specific classes
while deserializing, or reconstructing, a message object. Note, setting of the
thread context class loader during the beforeDelivery call is independent of
whether an XAResource instance is provided by the resource adapter.
12-30 J2EE Connector Architecture Specification • November 2003

For each message delivery to an endpoint instance, the application server must
match an afterDelivery call with a corresponding beforeDelivery call;
that is, for each message delivery to an endpoint instance, beforeDelivery and
afterDelivery calls are treated as a pair. See FIGURE 12-8 on page 36.

Thus, in the case of transacted deliveries:

■ If a resource adapter does not provide an XAResource instance, it does not get
XA transaction notifications.

■ If a resource adapter provides an XAResource instance, it gets XA transaction
notifications.

■ If a resource adapter calls beforeDelivery and afterDelivery methods in
addition to providing an XAResource instance, it not only receives XA
transaction notifications but also gains control over when the transaction is
started and completed. The beforeDelivery and afterDelivery calls have
no effect when the resource adapter does not provide an XAResource instance or
when the delivery is not transacted.

These various delivery options provide more choices to the resource adapter and
allow a wide range of resource adapter and messaging provider implementations to
be plugged-in. The application server must support both delivery options, option A
and option B.

The release method call on a proxy endpoint instance releases the state of the
proxy instance and makes it available for reuse. If the release method is called
while a message delivery is in-progress, the application server must throw a
java.lang.IllegalStateException, since concurrent calls on a proxy endpoint
instance is disallowed. In the case of option B, if the release method is called in-
between beforeDelivery and afterDelivery method calls, any transaction
started during the corresponding beforeDelivery method call must be aborted by
the application server.

12.5.7 Non-transacted Delivery
1. The application server does not bracket the message delivery to an endpoint

instance within a JTA transaction.

2. The resource adapter relies on the successful return of the message delivery call
on the endpoint instance for delivery confirmation and may send out an
acknowledgement to its message provider if appropriate.

3. Any exception thrown by an endpoint instance during message delivery is taken
as a failed delivery. The application server must propagate any exception thrown
during message delivery to the resource adapter.
Chapter 12 Message Inflow 12-31

4. The application server does not notify the resource adapter about the delivery
outcome upon crash recovery. Note, system failures may happen before the
application server calls the actual endpoint instance, or while the actual endpoint
instance is doing work, or after the endpoint has completed its work but before
the message delivery on the endpoint returns.

■ The application server does not have delivery status information available during
failure recovery, nor does it know what state the actual endpoint instance was in
when the failure happened. Consequently, it is hard to model exactly once
delivery semantics for non-transacted dispatches.

12.5.8 Transacted Delivery Using an Imported
Transaction
It is possible that a resource adapter may attempt message delivery to an endpoint
instance with a transaction initiated by a message source, or message provider; that
is, the message source initiates a transaction, and pushes a message to the resource
adapter from within the transaction. The resource adapter in turn imports the
transaction and attempts message delivery on an endpoint instance from within the
source managed transaction.

The resource adapter must use the transaction inflow contract (see Chapter 14,
“Transaction Inflow”) to import transactions initiated by a message source.

It must be possible to serially deliver one or more messages to one or more endpoint
instances belonging to one or more endpoint applications within a single transaction,
and be able to commit or abort the transaction as a single unit.

That is, it must be possible for a resource adapter to serially submit one or more
Work objects (associated with a single transaction) that deliver messages to one or
more endpoint instances belonging to one or more endpoint applications. If the
enclosing transaction successfully commits, the messages are deemed to have been
successfully delivered. If the enclosing transaction aborts, the messages that were
delivered as part of the transaction are canceled.
12-32 J2EE Connector Architecture Specification • November 2003

12.5.9 Requirements
An application server must implement the following behavior for transacted and
non-transacted message delivery to an endpoint instance. Before invoking the actual
endpoint instance the application server must do the checks prescribed in Table 12-1
shown below, depending on the endpoint transaction preferences and the presence
of a source managed transaction:

The application server must propagate any exception thrown during a message
delivery to the resource adapter irrespective of whether the delivery is transacted or
not.

For transacted deliveries, the application server must support both delivery options,
option A and option B.

12.6 Endpoint Undeployment
■ When a message endpoint is undeployed, the application server notifies the

resource adapter via the endpointDeactivation method. The application
server must pass the same MessageEndpointFactory instance and the
ActivationSpec JavaBean instance that was used during the endpoint
activation.

TABLE 12-1 Application Server Behavior For Transacted and Non-transacted Message
Delivery

Source managed transaction No source managed transaction

endpoint instance
requires transacted
message delivery

Use the source managed
transaction. Ignore the
XAResource instance
supplied by the resource
adapter, if any.

Start a new transaction. Notify the
XAResource instance supplied
by the resource adapter, if any.

endpoint does not need
transacted message
delivery

Suspend the source
managed transaction.
Ignore the XAResource
instance supplied by the
resource adapter, if any.

No action. Ignore the
XAResource instance supplied
by the resource adapter, if any.
Chapter 12 Message Inflow 12-33

■ The resource adapter removes the endpoint information from its internal state
and in turn may notify the message provider.
12-34 J2EE Connector Architecture Specification • November 2003

FIGURE 12-7 Transacted Message Delivery: Option A (sequence diagram)

 ResourceAdapter
 (from adapter)

 MessageEndpointFactory
 (from app server)

 TransactionManager
 (from app server)

 XAResource
(from adapter)

 actual endpoint

 2. create an instance

 5. deliver message

 7. start(Xid)

 10. end(Xid)

 11. prepare(Xid)

 12. commit(Xid)

 instance

 4. create proxy endpoint

 6. start a transaction

 8. deliver message

 9. complete transaction

 1. pushes a message (private contract)

 Message provider
 proxy endpoint
 instance (from
 app server)

 3. createEndpoint(XAResource)
Chapter 12 Message Inflow 12-35

FIGURE 12-8 Transacted Message Delivery: Option B (sequence diagram)

 ResourceAdapter
 (from adapter)

 MessageEndpointFactory
 (from app server)

 TransactionManager
 (from app server)

 XAResource
(from adapter)

 actual endpoint

 2. create an instance

 5. beforeDelivery()

 7. start(Xid)

 11. end(Xid)

 12. prepare(Xid)

 13. commit(Xid)

 instance

 4. create proxy endpoint

 6. start a transaction

 9. deliver message

 10. complete transaction

 1. pushes a message (private contract)

 Message provider
 proxy endpoint
 instance (from
 app server)

 3. createEndpoint(XAResource)

 8. deliver message

 10. afterDelivery()
12-36 J2EE Connector Architecture Specification • November 2003

FIGURE 12-9 Non-transacted Message Delivery (sequence diagram)

 ResourceAdapter
 (from adapter)

 MessageEndpointFactory
 (from app server)

 actual endpoint

 4. deliver message

 instance
 Message

 proxy endpoint
 instance (from
 app server)

 2. createEndpoint(null)

5. deliver message

3. create proxy endpoint

 provider

 1. pushes a message (private contract)
Chapter 12 Message Inflow 12-37

FIGURE 12-10 Endpoint Undeployment (sequence diagram)

12.7 Java Message Service (JMS) Use Case
For illustration purposes, a JMS use case involving a JMS resource adapter is
discussed. The intent is to show how

■ The JMS resource adapter uses the generic message inflow contract and
asynchronously delivers messages to message-driven beans via the onMessage
method on the javax.jms.MessageListener interface.

■ The JMS resource adapter is used by an EJB application to send and
synchronously receive messages via a javax.jms.Connection object.

This illustrates how a JMS provider is plugged into a J2EE application server using
the standard connector contracts.

 ResourceAdapter
 (from adapter)

 MessageEndpointFactory
 (from app server)

 Message provider

 1. undeploy an endpoint

 Deployer J2EE app server

 2. endpointDeactivation

 Resource adapter removes endpoint information
 from its internal state.

 3. remove (private contract)
12-38 J2EE Connector Architecture Specification • November 2003

12.7.0.1 A Sample JMS Resource Adapter Deployment Descriptor

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.5">
<display-name>Wombat-JMSAdapter</display-name>
<vendor-name>Wombat Software Inc.</vendor-name>
<eis-type>JMS Provider</eis-type>
<resourceadapter-version>1.0</resourceadapter-version>

<resourceadapter>
<resourceadapter-class>

com.wombat.connector.jms.JMSAdapterImpl
</resourceadapter-class>

<!-- ResourceAdapter default configuration properties -->
<config-property>

<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>WombatServer</config-property-value>

</config-property>
<config-property>

<config-property-name>PortNumber</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>1050</config-property-value>

</config-property>
<config-property>

<config-property-name>OperationalMode</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>Managed</config-property-value>

</config-property>
<config-property>

<config-property-name>ContainerType</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>EJB-WEB</config-property-value>

</config-property>

<outbound-resourceadapter>

<connection-definition>
<managedconnectionfactory-class>

com.wombat.connector.jms.QueueManagedConnectionFactoryImpl
</managedconnectionfactory-class>

<!-- ManagedConnectionFactory default configuration properties -->
<config-property>
Chapter 12 Message Inflow 12-39

<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>

WombatQueueServer
</config-property-value>

<config-property>
<config-property-name>PortNumber</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>1051</config-property-value>

</config-property>

<connectionfactory-interface>
javax.jms.QueueConnectionFactory

</connectionfactory-interface>
<connectionfactory-impl-class>

com.wombat.connector.jms.QueueConnectionFactoryImpl
</connectionfactory-impl-class>

<connection-interface>
java.jms.QueueConnection

</connection-interface>
<connection-impl-class>

com.wombat.connector.jms.QueueConnectionImpl
</connection-impl-class>

</connection-definition>

<connection-definition>
<managedconnectionfactory-class>

com.wombat.connector.jms.TopicManagedConnectionFactoryImpl
</managedconnectionfactory-class>

<!-- ManagedConnectionFactory default configuration properties -->
<config-property>

<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>

WombatTopicServer
</config-property-value>

</config-property>
<config-property>

<config-property-name>PortNumber</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>1052</config-property-value>

</config-property>

<connectionfactory-interface>

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor
12-40 J2EE Connector Architecture Specification • November 2003

javax.jms.TopicConnectionFactory
</connectionfactory-interface>
<connectionfactory-impl-class>

com.wombat.connector.jms.TopicConnectionFactoryImpl
</connectionfactory-impl-class>

<connection-interface>
java.jms.TopicConnection

</connection-interface>
<connection-impl-class>

com.wombat.connector.jms.TopicConnectionImpl
</connection-impl-class>

</connection-definition>

<connection-definition>
<managedconnectionfactory-class>

com.wombat.connector.jms.ManagedConnectionFactoryImpl
</managedconnectionfactory-class>

<!--
This ManagedConnectionFactory JavaBean inherits the ResourceAdapter
JavaBean configuration properties, and does not override any
of the global defaults.
-->

<connectionfactory-interface>
javax.jms.ConnectionFactory

</connectionfactory-interface>
<connectionfactory-impl-class>

com.wombat.connector.jms.ConnectionFactoryImpl
</connectionfactory-impl-class>

<connection-interface>
java.jms.Connection

</connection-interface>
<connection-impl-class>

com.wombat.connector.jms.ConnectionImpl
</connection-impl-class>

</connection-definition>

<transaction-support>XATransaction</transaction-support>
<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

<inbound-resourceadapter>
<messageadapter>

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor
Chapter 12 Message Inflow 12-41

<messagelistener>
<messagelistener-type>

javax.jms.MessageListener
</messagelistener-type>

<activationspec>
<activationspec-class>

com.wombat.connector.jms.ActivationSpecImpl
</activationspec-class>

<!--
The endpoint deployer configures the ActivationSpec JavaBean
and may override some of the global defaults inherited from
the ResourceAdapter JavaBean. For example, the ServerName
and the PortNumber properties.
-->

<!-- required config property names for ActivationSpec -->
<required-config-property>

<config-property-name>Destination</config-property-name>
</required-config-property>

</activationspec>

</messagelistener>
</messageadapter>

</inbound-resourceadapter>

<adminobject>
<adminobject-interface>javax.jms.Queue</adminobject-interface>
<adminobject-class>

com.wombat.connector.jms.QueueImpl
</adminobject-class>

</adminobject>
<adminobject>

<adminobject-interface>javax.jms.Topic</adminobject-interface>
<adminobject-class>

com.wombat.connector.jms.TopicImpl
</adminobject-class>

</adminobject>
<adminobject>

<adminobject-interface>
javax.jms.Destination

</adminobject-interface>
<adminobject-class>

com.wombat.connector.jms.DestinationImpl
</adminobject-class>

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor
12-42 J2EE Connector Architecture Specification • November 2003

</adminobject>

</resourceadapter>
</connector>

CODE EXAMPLE 12-5 Sample JMS Resource Adapter Deployment Descriptor
Chapter 12 Message Inflow 12-43

12.7.0.2 A Sample JMS ActivationSpec Implementation

12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment

package com.wombat.connector.jms;

import java.io.Serializable;
import javax.resource.spi.ActivationSpec;
import javax.resource.spi.InvalidPropertyException;

public class ActivationSpecImpl implements ActivationSpec,
Serializable {

 public setAcknowledgeMode(String mode) { ... }
 public String getAcknowledgeMode() { ... }

 public setSubscriptionDurability(String durability) { ... }
 public String getSubscriptionDurability() { ... }

 public setMessageSelector(String selector) { ... }
 public String getMessageSelector() { ... }

 public setDestinationType(String destType) { ... }
 public String getDestinationType() { ... }

 public setDestination(String dest) { ... }
 public String getDestination() { ... }

 public setSubscriptionName(String name) { ... }
 public String getSubscriptionName() { ... }

 public setClientId(String id) { ... }
 public String getClientId() { ... }

public void validate() throws InvalidPropertyException { ... }
}

12-44 J2EE Connector Architecture Specification • November 2003

Descriptor

12.7.0.4 A Sample EJB 2.1 Message-driven Bean Deployment
Descriptor

<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD
Enterprise
JavaBeans 2.0//EN’ ’http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
 <display-name>MDB1</display-name>
 <enterprise-beans>
 <message-driven>

 <display-name>MDB_DURABLE_CMT</display-name>
 <ejb-name>MDB_DURABLE_CMT</ejb-name>

 <ejb-class>msgbean.MsgBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>

<subscription-durability>Durable</subscription-durability>
 </message-driven-destination>
 <message-selector>JMSType = ’car’ AND color = ’blue’
 </message-selector>

 </message-driven>
 </enterprise-beans>
</ejb-jar>

CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="2.1">

<display-name>MDB1</display-name>
<enterprise-beans>

<message-driven>
<display-name>MDB_DURABLE_CMT</display-name>
<ejb-name>MDB_DURABLE_CMT</ejb-name>
<ejb-class>msgbean.MsgBean</ejb-class>
<messaging-type>javax.jms.MessageListener
Chapter 12 Message Inflow 12-45

</messaging-type>
<transaction-type>Container</transaction-type>
<activation-config>

<activation-config-property>
<activation-config-property-name>

destinationType
</activation-config-property-name>
<activation-config-property-value>

javax.jms.Topic
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
SubscriptionDurability

</activation-config-property-name>
<activation-config-property-value>

Durable
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
MessageSelector

</activation-config-property-name>
<activation-config-property-value>

JMSType = ’car’ AND color = ’blue’
</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>
</enterprise-beans>

</ejb-jar>

CODE EXAMPLE 12-6 Message-Driven Bean Deployment Descriptor
12-46 J2EE Connector Architecture Specification • November 2003

12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor

12.7.1 Message-driven Bean Asynchronously Receiving
Messages

12.7.1.1 Message-Driven Bean Deployment
■ A message-driven bean application developer or assembler supplies a

deployment descriptor which specifies a destination type, message selector, and
subscription durability information needed to setup subscription to a certain
destination, Queue or Topic. Note, this information is a hint which is used by the
message-driven bean deployer to setup the subscription.

CODE EXAMPLE 12-7 Sample EJB 2.1 Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="2.1">

<display-name>Ejb1</display-name>
<enterprise-beans>

<session>
<display-name>JMSBean</display-name>
<ejb-name>JMSBean</ejb-name>
<home>jms.JMSHome</home>
<remote>jms.JMS</remote>
<ejb-class>jms.JMSEJB</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>

<description>description</description>
<res-ref-name>jms/MyQueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
<resource-env-ref>

<resource-env-ref-name>jms/QueueName</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
</session>

</enterprise-beans>
</ejb-jar>
Chapter 12 Message Inflow 12-47

■ The message-driven bean deployer selects an appropriate JMS resource adapter
based on the quality of service and creates an ActivationSpec JavaBean
instance and configures the required property "Destination" as well as other
properties related to the JMS messaging style and the specific resource adapter.

■ The endpoint deployer may need to interact with the JMS provider to setup an
appropriate "Destination" and other steps necessary to complete message-driven
bean deployment.

■ The deployer deploys the message-driven bean application. During deployment,
the deployer provides the configured ActivationSpec JavaBean to the
application server, along with information about the chosen JMS resource adapter.

■ The application server calls the endpointActivation method on the JMS
resource adapter and passes the configured ActivationSpec JavaBean instance
and a MessageEndpointFactory instance. During the endpointActivation
method call the JMS adapter interacts with its provider to setup message delivery
to the message-driven bean. This completes the endpoint activation, and the
message-driven bean is ready to receive messages.

12.7.1.2 Message Delivery
■ When messages start arriving, the JMS adapter uses the

MessageEndpointFactory instance to get an endpoint instance and delivers
messages to the endpoint via the javax.jms.MessageListener.onMessage
method.

■ The application server interposes the message delivery and injects transactions
based on the message-driven bean preferences, container-managed transaction or
bean-managed transaction, before delivering the message to a message-driven
bean instance.

■ When a delivery is transacted, the application server notifies the JMS resource
adapter using the XAResource object. The JMS resource adapter may use the
notifications to send acknowledgements to its message provider.

■ The JMS resource adapter, depending on the traffic, may attempt concurrent
delivery of messages by using multiple endpoint instances obtained via
MessageEndpointFactory. The application server appropriately handles
concurrent message deliveries and dispatches messages to separate message-
driven bean instances.

12.7.1.3 Message-Driven Bean Undeployment
■ When the message-driven bean is undeployed, the application server calls the

endpointDeactivation method on the JMS resource adapter to deactivate the
message endpoint.

■ The JMS adapter in turn notifies its message provider.
12-48 J2EE Connector Architecture Specification • November 2003

12.7.2 EJB Using JMS API to Send and Synchronously
Receive Messages Via a JMS Resource Adapter
■ The JMS resource adapter provides javax.jms.Connection objects which

expose the JMS API to the EJB application. The EJB directly uses the JMS API to
send and synchronously receive messages. The javax.jms.Connection objects
are obtained from a ConnectionFactory supplied by the JMS resource adapter.

■ Based on the EJB deployment descriptor information (resource-ref’s and
resource-env-ref’s), the EJB deployer configures the appropriate
ConnectionFactory objects (resource-ref’s) in the component name space
(java:comp/env). The application deployer also configures the necessary Queue
or Topic administered objects (resource-env-ref’s) in the component name
space. The JMS resource adapter provides the implementation of the various
ConnectionFactory and administered objects.

■ At runtime, the component does a JNDI lookup of a ConnectionFactory object
from its component name space (java:comp/env), and uses it to create a
javax.jms.Connection object which is used for sending and synchronously
receiving messages. Similarly, the component uses the JNDI lookup mechanism to
obtain the configured Queue or Topic administered objects.
Chapter 12 Message Inflow 12-49

12.7.2.1 Using JMS API to Send Messages

12.7.2.2 J2EE Component Using JMS API to Synchronously Receive
Messages

CODE EXAMPLE 12-8 Sending Messages Using the JMS API

// get JNDI handle
Context jndiContext = new InitialContext();

// get connection factory
ConnectionFactory connectionFactory = (ConnectionFactory)

jndiContext.lookup("QueueConnectionFactory");

// get connection from factory
Connection connection = connectionFactory.getConnection();

// get session from connection
Session session = connection.createSession(true,

AUTO_ACKNOWLEDGE);

// get destination from JNDI
Queue stockQueue = (Queue) jndiContext.lookup("StockQueue");

// create a message producer
MessageProducer sender = session.createProducer(stockQueue);

// create a message
TextMessage message = session.createTextMessage();
message.setText(msgData);

// send the message
sender.send(message);

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component

// get JNDI handle
Context jndiContext = new InitialContext();

// get connection factory
ConnectionFactory connectionFactory = (ConnectionFactory)

jndiContext.lookup("QueueConnectionFactory");

// get connection from factory
Connection connection = connectionFactory.getConnection();

// get session from connection
12-50 J2EE Connector Architecture Specification • November 2003

12.8 A Non-JMS Use Case
This illustration is intended to show that it is possible to plug a wide range of
message providers into a J2EE application server via the standard connector
contracts, such that it is possible for an application to either asynchronously receive
messages via the message inflow contract or to use a connection object to send and
synchronously receive messages.

12.8.1 Resource Adapter Deployment Descriptor
This is an example deployment descriptor for a resource adapter that can provide
both inbound and outbound communication with a particular EIS.

On the inbound side, it can deliver messages to a message-driven bean that
implements a com.kangaroo.MessageListener. Note, the deployment descriptor
has a messagelistener-type element with the value
com.kangaroo.MessageListener. The activationspec-class is of type
com.kangaroo.MyEISActivationSpecImpl. This ActivationSpec JavaBean
has a single required property PortNumber, that is required to establish a
connection to the remote EIS. When the EIS data is received, the resource adapter
will convert it to a com.kangaroo.Message and deliver it to a message-driven
bean instance.

Session session = connection.createSession(true,
AUTO_ACKNOWLEDGE);

// get destination from JNDI
Queue stockQueue = (Queue) jndiContext.lookup("StockQueue");

// create a message consumer
MessageConsumer receiver = session.createConsumer(stockQueue);

// enable connection to receive messages
connection.start();

// synchronously receive the message
TextMessage message = (TextMessage) receiver.receive(message);

CODE EXAMPLE 12-9 Synchronously Receiving Messages in a J2EE Component
Chapter 12 Message Inflow 12-51

The resource adapter also provides a ManagedConnectionFactory
implementation for outbound communication to the EIS. This also takes a single
configuration parameter called PortNumber.

CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.5">

<display-name>KangarooAdapter</display-name>
<vendor-name>Kangaroo Software Inc.</vendor-name>
<eis-type>JMS Provider</eis-type>
<resourceadapter-version>1.0</resourceadapter-version>

<resourceadapter>
<resourceadapter-class>

com.kangaroo.MyEISAdapterImpl
</resourceadapter-class>

<!-- ResourceAdapter default configuration properties -->
<config-property>

<description>URL for EIS instance</description>
<config-property-name>EIS_URL</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>TBD</config-property-value>

</config-property>

<outbound-resourceadapter>
<connection-definition>

<managedconnectionfactory-class>
com.Kangaroo.MyManagedConnectionFactoryImpl

</managedconnectionfactory-class>

<!-- ManagedConnectionFactory default configuration properties -->
<config-property>

<config-property-name>PortNumber</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>1051</config-property-value>

</config-property>

<connectionfactory-interface>
javax.resource.cci.ConnectionFactory

</connectionfactory-interface>
<connectionfactory-impl-class>

com.Kangaroo.MyConnectionFactoryImpl
</connectionfactory-impl-class>
12-52 J2EE Connector Architecture Specification • November 2003

12.8.2 Resource Adapter Deployment
Before use, the resource adapter needs to be deployed on the application server.
During resource adapter deployment, the deployer configures a ResourceAdapter
JavaBean instance and deploys the resource adapter.

<connection-interface>
javax.resource.cci.Connection

</connection-interface>
<connection-impl-class>

com.Kangaroo.MyConnectionImpl
</connection-impl-class>

</connection-definition>

<transaction-support>NoTransaction</transaction-support>
<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>

com.kangaroo.MessageListener
</messagelistener-type>
<activationspec>

<activationspec-class>
com.Kangaroo.MyEISActivationSpecImpl

</activationspec-class>
<required-config-property>

<config-property-name>PortNumber</config-property-name>
</required-config-property>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

</resourceadapter>
</connector>

CODE EXAMPLE 12-10 Deployment Descriptor for a Resource Adapter
Chapter 12 Message Inflow 12-53

12.8.3 Message-Driven Bean Asynchronously Receiving
Notifications From an EIS

12.8.3.1 The Message-Driven Bean Deployment Descriptor

When the message-driven bean is deployed, the bean deployer chooses an
appropriate resource adapter based on the type of the message listener it supports.
In this case, the deployer chooses the resource adapter with the ResourceAdapter

CODE EXAMPLE 12-11 Deployment Descriptor for a Message-Driven Bean

<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE ejb-jar PUBLIC ?-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.1//EN? ?http://java.sun.com/dtd/ejb-jar_2_1.dtd?>

<ejb-jar>
<display-name>Ejb1</display-name>
<enterprise-beans>

<message-driven>
<display-name>EIS Receiver Bean</display-name>
<ejb-name>EISReceiver</ejb-name>
<ejb-class>myapp.EISReceiverBean</ejb-class>
<messaging-type>com.kangaroo.MessageListener</messaging-type>
<transaction-type>Container</transaction-type>
<activation-config>

<activation-config-property>
<activation-config-property-name>

functionName
</activation-config-property-name>
<activation-config-property-value>

CustomerChangeNotification
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
CustomerName

</activation-config-property-name>
<activation-config-property-value>

Wombat Inc.
</activation-config-property-value>

</activation-config-property>
</activation-config>

</message-driven>
</enterprise-beans>

</ejb-jar>
12-54 J2EE Connector Architecture Specification • November 2003

class com.vendor.MyEISAdapterImpl since it supports the
com.kangaroo.MessageListener type.

Then the deployer creates an instance of
com.vendor.MyEISActivationSpecImpl and populates it with values. The
ActivationSpec JavaBean instance will also contain values of properties that are
set in the activation-config section of the bean’s deployment descriptor. In the
example above, the properties are FunctionName, with the value
CustomerChangeNotification, and CustomerName, with the value Wombat,
Inc., which the deployer may choose to override.

Finally, the deployer provides the configured ActivationSpec JavaBean instance
to the application server.

12.8.4 Message-Driven Bean and Resource Adapter
Activation
When the application server is started, it will activate the resource adapter by calling
its start method. The application server will create an instance of the message-
driven bean with class name myapp.EISReceiverBean. Then the application
server will call the endpointActivation method on the resource adapter instance
and pass in the configured ActivationSpec instance associated with the deployed
message-driven bean, and a MessageEndpointFactory instance. The resource
adapter will use the information in the ActivationSpec to establish a subscription
to the requested data from the EIS.

12.8.5 Message Delivery
When a notification arrives from the EIS, the resource adapter has the responsibility
of converting its data to a com.kangaroo.Message if it is not already in this
format. The resource adapter will then use the MessageEndpointFactory to
deliver the notification to the message-driven bean. Note that, rather than calling the
MessageEndpointFactory directly, the resource adapter is likely to instantiate a
Work object, and pass it to the application server via the WorkManager interface.
When the doWork method of the WorkManager is called the dispatch will occur.
This will allow the resource adapter to continue to process incoming messages
without blocking until message-driven bean dispatch has completed.
Chapter 12 Message Inflow 12-55

12-56 J2EE Connector Architecture Specification • November 2003

CHAPTER 13

EJB Invocation

This chapter describes how to invoke session and entity beans from a resource
adapter.

13.1 Overview
A resource adapter may need to call session or entity beans for several reasons:

■ To dispatch calls from an EIS to a bean in order to execute business logic.
■ To use EJB container-managed persistence (CMP) mechanism for persistence.

In order to dispatch calls to a session or entity bean, the resource adapter needs to
know the target bean type, the method name, and the method parameters. Upon
receiving a request from the EIS via a remote protocol, the resource adapter’s
dispatch logic needs to:

■ Choose an appropriate bean and a target method name based on the request
received from the EIS.

■ Unmarshall, that is, deserialize, the request parameters received from the EIS and
call the target bean method.
13-1

13.2 EJB Invocation Model
FIGURE 13-1 EJB Invocation Model

For session or entity bean invocations, the resource adapter’s bean dispatch logic can
use the bean client view model via a message-driven bean. The EJB specification
(Section 1., “Enterprise JavaBeans (EJBTM) specification, version 2.1:” on page F-1)
defines the EJB client view, and describes how the client view is used to access
session or entity beans. The EJB client view is available to a message-driven bean.

The resource adapter could structure its code such that its bean dispatch logic is
written as a message-driven bean. The message-driven bean chooses an appropriate
session or entity bean and a target method, unmarshalls the request parameters and
invokes the chosen bean based on the request information received from the EIS.

The resource adapter can use the message inflow contract to call a message-driven
bean, and use the message-driven bean to dispatch calls to session and entity beans
using the EJB client view model. The EJB specification allows a request-response
style message-driven bean call which could be used for synchronous RPC-style calls.
The message-driven bean could be packaged either with the resource adapter or
separately.

 EIS

Resource
Adapter

Application

Inbound communi-

 cation contracts

 message-drivensession and
 Application
 Server

 same address space

entity beans beans
13-2 J2EE Connector Architecture Specification • November 2003

Thus, the message-driven bean could be used as a replaceable unit of the resource
adapter which serves the job of a bean dispatcher. The message inflow contract
allows the creation of multiple endpoint instances (message-driven beans) at
runtime, and hence it is possible to do concurrent bean dispatches.

Further, the transaction inflow mechanism (described in Chapter 14, “Transaction
Inflow”) allows the resource adapter to use the transaction information obtained
from the EIS for bean invocations. Note, however, the application server may
suspend the imported transaction depending on the transaction preference of the
target bean method.

13.3 An Illustrative Use Case
Wombat Inc. is a resource adapter vendor. The resource adapter supports inbound
communication from an EIS to application components residing in an application
server container. The resource adapter uses the message inflow contract to call
message-driven beans which serve as a dispatcher for session and entity bean
invocations. In this case, Wombat Inc. supplies both the resource adapter and the
message-driven beans, even though these could be supplied by different vendors.

The EIS uses multiple concurrent conversations in its interactions with the resource
adapter. Each conversation may involve multiple serial requests. The resource
adapter has a set of Work objects (threads), each of which is used for carrying on a
specific conversation. The resource adapter manages the multiple concurrent
conversations, and calls a message-driven bean instance whenever a request
message arrives as part of a conversation.

The following code sample shows a possible message-driven bean implementation:

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation

package com.wombat.ra;

import javax.ejb.MessageDrivenBean;
import javax.naming.InitialContext;

public class WombatMDB
implements MessageDrivenBean, WombatMessageListener {

public static int CONV_START = 0;
public static int CONV_CONTINUE = 1;
public static int CONV_END = 2;

private Context jndiContext = null;
private ConvBeanHome chome = null;
Chapter 13 EJB Invocation 13-3

The resource adapter uses the message-driven bean as a generic dispatcher for
session and entity bean invocations, and relies on the application server to efficiently
pool message-driven bean instances. Each message-driven bean call should be just as
efficient as a method call on a resource adapter local object.

public void ejbCreate() {
jndiContext = new InitialContext();
chome = (ConvBeanHome)

jndi.lookup("java:comp/env/ConvBeanHome");
}

ConvResponse onMessage(ConvRequest requestMsg) {
// get conversation id and request type from the request
// message
int convId = ...;
int type = ...;

if (type == CONV_START) {
// create entity EJB for holding the specific
// conversation state
ConvBean cbean = chome.create(convId);

} else if (type == CONV_CONTINUE) {
ConvBean cbean = chome.findByPrimaryKey(convId);

// unmarshall EJB method parameters
...;

// invoke EJB and return response
Object resp = cbean.myBusinessMethod(params);
ConvResponse cresp = Utility.convert(resp);
return cresponse;

} else if (type == CONV_END) {
cbean.remove();

}

return null;

}

public void ejbRemove() {
jndiContext = null;
chome = null;

}
}

CODE EXAMPLE 13-1 A Message-Driven Bean Implementation
13-4 J2EE Connector Architecture Specification • November 2003

13.3.0.1 Message-driven Bean Dispatcher Pattern

When a worker thread from a resource adapter accesses a message-driven bean
method, the JNDI context of the bean is available to the thread, although only
during the method call on the bean.

The resource adapter may take advantage of this, and use the bean as a dispatcher.
That is, the resource adapter may park the thread within the bean method inside a
while loop, and use it to process resource adapter specific data structures passed into
the bean method as method parameters, and also use the JNDI context of the bean to
access resources and other components.

In this case, the bean becomes a special Java object that has access to JNDI context,
which the resource adapter may use. This usage pattern illustrates a tight coupling
between the resource adapter and the message-driven bean, and it is likely that the
resource adapter would provide the bean implementation as well.
Chapter 13 EJB Invocation 13-5

13-6 J2EE Connector Architecture Specification • November 2003

CHAPTER 14

Transaction Inflow

This chapter specifies a contract between an application server and a resource
adapter that allows a resource adapter to propagate an imported transaction to an
application server, so that the application server and subsequent participants can do
work as part of the imported transaction. This contract also allows a resource
adapter to flow-in transaction completion and crash recovery calls initiated by an
EIS, and ensures that the atomicity, consistency, isolation and durability (ACID)
properties of the imported transaction are preserved.

14.1 Overview
A resource adapter may need to import an incoming external transaction context
obtained from a remote protocol message and do work as part of the imported
transaction. The work done by the resource adapter as part of the imported
transaction may involve interactions with the application server and the application
components.

The resource adapter is expected to know the wire protocol and the transaction
context format and be able to import an incoming transaction in an EIS-specific way.
The resource adapter needs to propagate the imported transaction to the application
server and also flow-in transaction completion and crash recovery calls initiated by
the EIS. In order for the resource adapter to accomplish this, it needs the following:

■ A standard form to represent the transaction context imported by the resource
adapter.

■ A mechanism to associate the work done by the resource adapter as part of the
imported transaction.
14-1

■ A mechanism to treat the application server like a resource manager in order to
make it participate in the 2-phase commit and crash recovery flows initiated by
the external transaction originator, the EIS.

FIGURE 14-1 Transaction Inflow Contract

14.2 Goals
■ Provide a standard mechanism for a resource adapter to propagate an imported

transaction to an application server.
■ Provide a standard mechanism for a resource adapter to flow-in transaction

completion and crash recovery calls from an EIS.
■ Ensure that the ACID properties of the transaction imported by a resource

adapter are preserved.

14.3 Use Case Scenario
An EIS initiates a transaction and calls application components residing in an
application server via a resource adapter. The EIS propagates the transaction context
as part of each call to the resource adapter, which is used by the application server to
recreate the transaction context before the application components are called. The
work done by the application components is automatically enlisted as part of the
imported transaction. When the EIS completes the transaction, the transaction
completion notifications flow to the application server via the resource adapter, and
the transaction is completed.

The transaction inflow contract may be used in various situations. For example:

■ A message provider may use the contract to push messages to a resource adapter
for delivery to application components.

 EISResource
adapter

 Application
 server

 Application

Transaction
originator

Transaction
participant

Transaction
participant

Transaction
participant

 Transaction inflow

 contract
14-2 J2EE Connector Architecture Specification • November 2003

■ The contract may be leveraged to make the application components do work as
part of a transaction initiated by a legacy EIS1.

FIGURE 14-2 Transaction Inflow Contract (object diagram)

1. Note that application components may not always do work as part of an EIS-initiated transaction, for
example, when the declarative transaction attribute of an enterprise bean’s method is RequiresNew, Never,
NotSupported, or if bean-managed transaction demarcation is used.

 Application Server Resource Adapter

 BootstrapContext

 XATerminator

 XAException

 XA method calls

 getXATerminator()

 errorCode

Xid
Chapter 14 Transaction Inflow 14-3

14.4 Transaction Inflow Model

The BootstrapContext interface allows the resource adapter to obtain a
WorkManager instance and an XATerminator instance. These instances are not
required to be unique. The resource adapter uses the WorkManager instance to
submit Work instances for execution, and uses the XATerminator instance for
transaction completion and crash recovery flows.

14.4.1 Processing of Transactional Calls
The steps involved in propagating an imported transaction from a resource adapter
to the application server in order to do transactional work is as follows:

■ The EIS makes a transactional call to the resource adapter. The resource adapter is
expected to know the EIS-specific transaction context structure and the wire
protocol. The resource adapter imports the transaction context that arrived along
with the incoming message.

■ The resource adapter represents the imported transaction context in a standard
form using the javax.transaction.xa.Xid instance.

package javax.resource.spi;

import javax.transaction.xa.Xid;
import java.transaction.xa.XAException;
import javax.resource.spi.work.WorkManager;

public interface BootstrapContext {
 WorkManager getWorkManager();
 XATerminator getXATerminator();
 ... // other methods
}

public interface XATerminator {
 public void commit(Xid xid, boolean onePhase) throws
XAException;
 public void forget(Xid xid) throws XAException;
 public int prepare(Xid xid) throws XAException;
 public Xid[] recover(int flag) throws XAException;
 public void rollback(Xid xid) throws XAException;
}

14-4 J2EE Connector Architecture Specification • November 2003

■ The resource adapter constructs a Work instance, which is expected to do work as
part of the transactional message, and also creates an ExecutionContext
instance containing the constructed Xid. It then submits the Work instance along
with the ExecutionContext instance to the application server’s WorkManager
for execution.

■ The application server’s WorkManager accepts the submitted Work instance and
recreates the execution context for the Work instance. That is, the work to be done
is enlisted as part of the imported transaction. It then calls the run method on the
Work object.
Note, however, all the work done by the Work object may not be part of the
transaction. For example, the application server may suspend the imported
transaction depending on the transaction preference of the bean method that may
be invoked.

The above steps may be repeated any number of times for a particular transaction
from any resource adapter. However, the application server must disallow
transactional Work submissions with a WorkCompletedException set to an
appropriate error code, irrespective of which resource adapter it comes from, under
the following circumstances:

■ If a Work instance associated with the transaction is already present. That is,
concurrent work within an imported transaction is disallowed. The error code to
indicate this is WorkException.TX_CONCURRENT_WORK_DISALLOWED.

■ The application server is unable to recreate the transaction. That is, it fails in its
attempt to enlist the Work instance with the transaction. The error code to indicate
this is WorkException.TX_RECREATE_FAILED.

14.4.2 Transaction Completion Processing
The steps involved in completing of the imported transaction initiated by the
external EIS are as follows:

■ The EIS sends a prepare message for a particular transaction.
■ The resource adapter obtains an XATerminator instance from the application

server via the getXATerminator method of the BootstrapContext instance.
Note, this step may be done at any time, and the obtained XATerminator
instance may be used for transaction completion flows across multiple imported
transactions. The XATerminator implementation should be thread-safe and re-
entrant.

■ The resource adapter calls the prepare method of the XATerminator instance
with an appropriate Xid instance, and returns the outcome of the prepare
operation to the EIS.
Chapter 14 Transaction Inflow 14-5

■ When the EIS sends a commit message for the transaction, the resource adapter
calls the commit method of the XATerminator instance with an appropriate Xid
instance. Note, it is possible for the commit method to be called without a prior
prepare method call in the case of one-phase commit.
14-6 J2EE Connector Architecture Specification • November 2003

FIGURE 14-3 Transactional Calls and Transaction Completion Flow (sequence diagram)

 EIS Resource Xid
 (from adapter)

 BootstrapContext
 (from app server)

 Work
 (from adapter)

 XATerminator
(from app server)

 WorkManager
 adapter

 ExecutionContext
 (from adapter) (from app server)

 1. incoming transactional message with an EIS-specific transaction context

 2. construct an Xid based on the information derived from the transactional call

 3. create an execution context containing the constructed Xid

 4. create a Work instance

 5. submit the Work instance for execution with the execution context

 The above sequence of steps may be repeated any number of times for a given
 transaction across any resource adapter.

 1. prepare message

 getXATerminator() [this step may be done just once]

 create an instance

 2. prepare(Xid)

 3. commit / rollback message [this may happen without a prior prepare call]

 4. commit(Xid) or rollback(Xid)

 Transaction completion flow

 getWorkManager() [this step may be done once at any time]

 create an instance

 6. dispatches a thread which sets up an execution context and calls run()
Chapter 14 Transaction Inflow 14-7

14.4.3 Crash Recovery Processing
■ If the EIS detects the failure of the application server while the transaction is

active (that is, transaction completion has not begun), it does not wait for the
application server to recover or do any recovery processing. The transactional
work done by the application server site is presumed aborted.

■ If the EIS detects the failure of the application server while the transaction is in-
doubt (that is, the transaction has already been prepared), the EIS retries
completion by attempting to re-establish network communication until it
succeeds. When the application server recovers from the crash, it should recover
the state of all transactions that were successfully prepared before the crash, and
complete them upon receiving a commit method or rollback method call from
the EIS via the resource adapter.

■ If the resource adapter detects the failure of the EIS while the transaction is active
(that is, transaction completion has not begun), it aborts all active transactions
that originated from the EIS. The resource adapter should keep a list of active
transactions and abort them upon EIS failure.
14-8 J2EE Connector Architecture Specification • November 2003

■ If the resource adapter detects the failure of the EIS while the transaction is in-
doubt (that is, the transaction has already been prepared), it waits for the EIS to
recover. When the EIS recovers, it re-establishes network communication with the
resource adapter, and queries it for a list of in-doubt transactions. It then
completes the in-doubt transactions.
Chapter 14 Transaction Inflow 14-9

FIGURE 14-4 Crash Recovery Flows When Application Server Crashes (sequence diagram)

 1. commit or rollback message [EIS retries completion]

 5. commit(Xid) or rollback(Xid)

 Application server crashes when a transaction is in an in-doubt state

 When the EIS detects the failure of the application server site while the
 transaction is in-doubt (that is, the transaction has already been prepared), the
 EIS retries completion by attempting to re-establish the network communication
 until it succeeds. When the application server recovers from the crash, it
 should recover the state of all transactions that were successfully prepared
 before the crash, and complete them upon receiving a commit(Xid) or
 rollback(Xid) from the EIS via the resource adapter.

 EIS Resource Xid
 (from adapter)

 XATerminator
 adapter

BootstrapContext
 (from app server) (from app server)

 2. getXATerminator()

 4. construct an Xid

 3. create an instance

 Application server crashes when a transaction is in an active state

 When the EIS detects the failure of the application server site while the transaction
 is active (that is, transaction completion has not begun), it does not wait for the
 application server to recover or do any recovery processing. The transactional
 work done by the application server site is presumed aborted.
14-10 J2EE Connector Architecture Specification • November 2003

FIGURE 14-5 Crash Recovery Flows When EIS Crashes (sequence diagram)

 1. EIS recovers and queries for a list of in-doubt transactions

 EIS crashes when a transaction is in an in-doubt state

 When the resource adapter detects the failure of the EIS site while the
 transaction is in-doubt (that is, the transaction has already been prepared), it

 EIS Resource Xid
 (from adapter)

 XATerminator
 adapter (from app server)

 EIS crashes when a transaction is in an active state

 When the resource adapter detects the failure of the EIS site while the
 transaction is active (that is, transaction completion has not begun), it aborts all
 active transactions which originated from the EIS. The resource adapter

 waits for the EIS to recover. When the EIS recovers, it re-establishes network
 communication with the resource adapter, and queries it for a list of in-doubt
 transactions. It then completes the in-doubt transactions.

 4. send commit or rollback to the in-doubt transactions

 must keep a list of active transactions and abort them upon EIS failure.

 1. create an Xid for each active transaction

 2. rollback(Xid) for each active transaction

 2. recover() [returns a list of in-doubt transactions]

 5. construct an Xid for each in-doubt transaction

 6. commit(Xid) or rollback(Xid) the in-doubt transaction
Chapter 14 Transaction Inflow 14-11

14.4.4 Requirements
■ An application server must implement the transaction inflow contract. That is, it

must allow Work submissions with a transaction context, an Xid, and provide a
valid XATerminator instance when called via the getXATerminator method of
the BootstrapContext instance.

■ A resource adapter may optionally choose to use the transaction inflow contract.
But, a resource adapter that uses the transaction inflow contract to import an EIS
transaction and do transactional work must implement the prescribed transaction
inflow contract.

■ The XATerminator instance provided by the application server must be thread-
safe and re-entrant. The resource adapter may use an XATerminator instance
across different transactions concurrently.

■ When the application server is unable to recreate the transaction context, if any,
specified for a Work instance, it must throw a WorkCompletedException set to
the error code WorkException.TX_RECREATE_FAILED.

■ For a particular imported transaction, at any given time, there must be at most
one Work instance associated with the transaction. The associated Work instance
may be in any state, that is, waiting for execution to begin or already executing.
However, it must be possible for several Work instances to do work on a
transaction as long as there is at most one Work instance associated with the
transaction at any time. It must also be possible for different resource adapters to
participate in the same transaction.

The application server must disallow Work submissions with a
WorkCompletedException set to the error code
WorkException.TX_CONCURRENT_WORK_DISALLOWED, if there is already a Work
instance associated with the transaction, irrespective of which resource adapter is
involved in the Work submission. This must be done using the
getGlobalTransactionId method of the Xid object present in the execution
context of the submitted Work instance. The Xid’s branch identifier must be
ignored.

The application server must not try to serialize Work processing based on
transaction information.

■ The application server must reject Work submissions for a transaction whose
completion is in-progress, with a WorkCompletedException set to the error
code WorkException.TX_CONCURRENT_WORK_DISALLOWED.

■ The application server must reject transaction completion or crash recovery calls
for a specific transaction with a javax.transaction.xa.XAException, when
a Work instance associated with the transaction is present. The application server
must not block or serialize transaction completion or crash recovery calls waiting
for a Work instance associated with the transaction to complete.

■ The application server must reject multiple transaction completion or crash
recovery calls for the same transaction with a
javax.transaction.xa.XAException.
14-12 J2EE Connector Architecture Specification • November 2003

■ The application server must reject transaction completion or crash recovery calls
with a javax.transaction.xa.XAException upon any errors.

■ The application server should recover the state of all in-doubt transactions upon
failure recovery.

14.4.5 Non-Requirements
■ The application server is not responsible for ensuring transaction ids of the

imported transactions from different EISs are unique. Each EIS is expected to use
unique transaction ids.

■ It is possible that a rogue resource adapter or EIS may provide non-unique Xids,
or attempt to complete transactions that it does not own. The application server is
not required to detect the above cases. It is also not required to detect
transactional, transaction completion, or crash recovery calls from a rogue EIS.

14.4.6 Recommendations
■ The resource adapter should keep a list of active transactions and abort them

upon detecting EIS failure.

14.4.7 Transaction Inflow in a Non-managed
Environment
Though the transaction inflow contract is primarily intended for a managed
environment, it may be used in a non-managed environment provided the
application that bootstraps a resource adapter instance is capable of functioning as a
resource manager.

In a non-managed environment, support for the transaction inflow contract is not
required. That is, the getXATerminator method of the BootstrapContext
instance may return a null instance.
Chapter 14 Transaction Inflow 14-13

14-14 J2EE Connector Architecture Specification • November 2003

CHAPTER 15

Common Client Interface

The following chapter specifies the Common Client Interface (CCI).
15-1

15.1 Overview
The CCI defines a standard client API for application components. The CCI enables
application components and Enterprise Application Integration (EAI) frameworks to
drive interactions across heterogeneous EISs using a common client API. FIGURE 15-1
shows a high-level view of the CCI and its relationship to other application
components.

FIGURE 15-1 Common Client Interface

15.2 Goals
The CCI is designed with the following goals:

■ It defines a remote function-call interface that focuses on executing functions on
an EIS and retrieving the results. The CCI can form a base level API for EIS access
on which higher level functionality can be built.

■ It is targeted primarily towards application development tools and EAI
frameworks.

Enterprise Information
System

Resource Adapter

Application Component

Application Server

System Contracts

Common Client

EIS specific interface

Interface
15-2 J2EE Connector Architecture Specification • November 2003

■ Although it is simple, it has sufficient functionality and an extensible application
programming model.

■ It provides an API that both leverages and is consistent with various facilities
defined by the J2SE and J2EE platforms.

■ It is independent of a specific EIS. For example, it does not use data types specific
to an EIS. However, the CCI can be capable of being driven by EIS-specific
metadata from a repository.

An important goal for the CCI is to complement existing standard JDBC API and not
to replace this API. The CCI defines a common client API that is parallel to the JDBC
for EISs that are not relational databases.

Since the CCI is targeted primarily towards application development tools and EAI
vendors, it is not intended to discourage the use of JDBC APIs by these vendors. For
example, an EAI vendor will typically combine JDBC with CCI by using the JDBC
API to access relational databases and using CCI to access other EISs.

15.3 Scenarios
The following scenarios illustrate the use of CCI by enterprise tools and Enterprise
Application Integration (EAI) vendors:

15.3.1 Enterprise Application Integration Framework
The EAI vendor uses the Common Client Interface as a standard way to plug-in
resource adapters for heterogeneous EISs. The vendor provides an application
integration framework on top of the functionality provided by the resource adapters.
The framework uses the standard CCI interfaces to drive interactions with the
connected EISs.
Chapter 15 Common Client Interface 15-3

FIGURE 15-2 also shows the use of JDBC by the EAI framework for connecting to and
accessing relational databases.

FIGURE 15-2 Scenario: EAI Framework

15.3.2 Metadata Repository and API
An EAI or application development tool uses a metadata repository to drive CCI-
based interactions with heterogeneous EISs. See FIGURE 15-2 and FIGURE 15-3 for
illustrative examples. A repository may maintain meta information about functions,
with type mapping information and data structures for the invocation parameters,
existing on an EIS system.

Note – The specification of a standard repository API and metadata format is
outside the scope of the current version of the connector architecture.

15.3.3 Enterprise Application Development Tool
The CCI functions as a plug-in contract for an application development tool that
develops additional functionality around a resource adapter.

The application development tool generates Java classes based on the meta
information accessed from a metadata repository. These Java classes encapsulate
CCI-based interactions and expose a simple application programming model,
typically based on the JavaBeans framework, to the application developers. An
application component uses the generated Java classes for EIS access.

Enterprise Application Integration
Framework

Resource Adapter

Common Client
Interface

JDBC Driver

JDBC API

Metadata
Repository
15-4 J2EE Connector Architecture Specification • November 2003

An application development tool can also compose or generate an application
component that uses the generated Java classes for EIS access. See FIGURE 15-3.

FIGURE 15-3 Scenario: Enterprise Application Development Tool

15.4 Common Client Interface
The CCI is divided in to the following parts:

■ Connection-related interfaces that represent a connection factory and an
application level connection:

■ javax.resource.cci.ConnectionFactory
■ javax.resource.cci.Connection
■ javax.resource.cci.ConnectionSpec
■ javax.resource.cci.LocalTransaction

■ Interaction-related interfaces that enable a component to drive an interaction,
specified through an InteractionSpec, with an EIS instance:

■ javax.resource.cci.Interaction
■ javax.resource.cci.InteractionSpec

■ Service endpoint message listener interface:

■ javax.resource.cci.MessageListener

Enterprise Application Development
Tool

Resource Adapter

Common Client
Interface

JDBC Driver

JDBC API

Application Components or
generates and/or composes

Java Classes

 Metadata
Repository
Chapter 15 Common Client Interface 15-5

■ Data representation-related interfaces that are used to represent data structures
involved in an interaction with an EIS instance:

■ javax.resource.cci.Record
■ javax.resource.cci.MappedRecord
■ javax.resource.cci.IndexedRecord
■ javax.resource.cci.RecordFactory
■ javax.resource.cci.Streamable
■ javax.resource.cci.ResultSet
■ java.sql.ResultSetMetaData

■ Metadata related-interfaces that provide basic meta information about a resource
adapter implementation and an EIS connection:

■ javax.resource.cci.ConnectionMetaData
■ javax.resource.cci.ResourceAdapterMetaData
■ javax.resource.cci.ResultSetInfo

■ Additional classes:

■ javax.resource.ResourceException
■ javax.resource.cci.ResourceWarning

See FIGURE 15-4 on page 8 for the class diagram for CCI.

15.4.1 Requirements
A resource adapter provider provides an implementation of the CCI interfaces as
part of its resource adapter implementation. The connector architecture does not
mandate that a resource adapter support the CCI interfaces as its client API.

Note – A resource adapter is allowed to support a client API specific to its
underlying EIS. An example of an EIS-specific client APIs is JDBC API for relational
databases.

The connector architecture also allows a third party vendor to provide an
implementation of CCI interfaces above a resource adapter. For example, a base
resource adapter supports the system contracts and provides an EIS specific client
API. A third party tools vendor may provide the CCI implementation above this
base resource adapter.
15-6 J2EE Connector Architecture Specification • November 2003

The connector architecture also allows a resource adapter implementation to support
all interfaces except the data representation-related interfaces. In this case, a third
party vendor provides both the development-time and runtime aspects of data
structures required to drive interactions with an EIS instance. The section on the
Record interface specification describes this case in more detail.
Chapter 15 Common Client Interface 15-7

FIGURE 15-4 Class Diagram: Common Client Interface

implements

inherits

association or use

<interface>
ConnectionFactory

<interface>
Connection

<interface>
Interaction

relationship

<interface>
InteractionSpec

<interface>
LocalTransaction

<interface>
RecordFactory

<interface>
Record

<interface>
MappedRecord

<interface>
IndexedRecord

<interface>
java.sql.ResultSet

contains

<interface>
java.util.Map

<interface>
java.util.List

0-n

0-1

creates

0-1

uses uses

uses

inherits inherits<interface>
Streamable

package: javax.resource.cci

0-n

0-1

0-n

<interface>

inherits

ResultSet

inherits inherits inherits

contains

0-n

contains

0-n

<interface>
MessageListener

uses

0-n
15-8 J2EE Connector Architecture Specification • November 2003

15.5 Connection Interfaces
The following section specifies interfaces for the connection factory and application
level connection.

15.5.1 ConnectionFactory
The javax.resource.cci.ConnectionFactory provides an interface for getting
a connection to an EIS instance. A component looks up a ConnectionFactory
instance from the JNDI namespace and then uses it to get a connection to the EIS
instance.

The following code extract shows the ConnectionFactory interface:

The getConnection method gets a connection to an EIS instance. The
getConnection variant with no parameters is used when a component requires the
container to manage EIS sign-on. In this case of the container-managed sign-on, the
component does not pass any security information.

A component may also use the getConnection variant with a
javax.resource.cci.ConnectionSpec parameter, if it needs to pass any
resource adapter specific security information and connection parameters. In the

public interface javax.resource.cci.ConnectionFactory
extends java.io.Serializable,
javax.resource.Referenceable {

public RecordFactory getRecordFactory()
throws ResourceException;

public Connection getConnection()
throws ResourceException;

public Connection getConnection(
javax.resource.cci.ConnectionSpec properties)

throws ResourceException;

publicResourceAdapterMetaData getMetaData()
throws ResourceException;

}

Chapter 15 Common Client Interface 15-9

component-managed sign-on case, an application component passes security
information, such as username and password, through the ConnectionSpec
instance.

It is important to note that the properties passed through the getConnection
method should be client-specific, such as username, password, and language, and
not be related to the configuration of a target EIS instance, such as port number or
server name. The ManagedConnectionFactory instance is configured with a
complete set of properties required for the creation of a connection to an EIS
instance. Configured properties on a ManagedConnectionFactory can be
overridden by client-specific properties passed by an application component
through the getConnection method. Refer to Section 17.4.2,
“ManagedConnectionFactory” on page 17-11 for configuration of a
ManagedConnectionFactory.

Note that in a managed environment, the getConnection method with no
parameters is the recommended model for getting a connection. The container
manages the EIS sign-on in this case.

The ConnectionFactory interface also provides a method to get a
RecordFactory instance. The ConnectionFactory implementation class may
throw a javax.resource.NotSupportedException from the method
getRecordFactory.

15.5.1.1 Requirements

An implementation class for ConnectionFactory must implement the
java.io.Serializable interface to support JNDI registration. A
ConnectionFactory implementation class is also required to implement
javax.resource.Referenceable. Note that the
javax.resource.Referenceable interface extends the
javax.naming.Referenceable interface. Refer to Section 17.5, “JNDI
Configuration and Lookup” on page 17-13 for more details on JNDI based
requirements for the ConnectionFactory implementation.

An implementation class for ConnectionFactory must provide a default
constructor.

15.5.2 ConnectionSpec
The interface javax.resource.cci.ConnectionSpec is used by an application
component to pass connection request-specific properties to the getConnection
method.
15-10 J2EE Connector Architecture Specification • November 2003

The ConnectionSpec interface has been introduced to increase the toolability of the
CCI. The ConnectionSpec interface must be implemented as a JavaBean. Refer to
Section 16.3, “JavaBean Requirements” on page 16-2.

The following code extract shows the ConnectionSpec interface.

The CCI specification defines a set of standard properties for a ConnectionSpec.
The properties are defined either on a derived interface or an implementation class
of an empty ConnectionSpec interface. In addition, a resource adapter may define
additional properties specific to its underlying EIS.

The following standard properties are defined by the CCI specification for
ConnectionSpec:

An important point to note is about the relationship between ConnectionSpec and
ConnectionRequestInfo. The ConnectionSpec is used at the application level
and is defined under the scope of CCI while ConnectionRequestInfo is defined as
part of the system contracts. Separate interfaces have been defined to ensure the
separation between CCI interfaces and system contracts. ConnectionRequestInfo
has no explicit dependency on CCI. Note that a resource adapter may not implement
CCI but it must implement system contracts. The specification of a standard
repository API and metadata format is outside the scope of the current version of the
connector architecture. The mapping between CCI’s ConnectionSpec and
ConnectionRequestInfo is achieved in an implementation-specific manner by a
resource adapter.

15.5.3 Connection
A javax.resource.cci.Connection represents an application level connection
handle that is used by a component to access an EIS instance. The actual physical
connection associated with a Connection instance is represented by a
ManagedConnection.

public interface javax.resource.cci.ConnectionSpec {
}

TABLE 15-1 Standard Properties for ConnectionSpec

Property Description

UserName The name of the user establishing a connection to an EIS instance.

Password The password for the user establishing a connection.
Chapter 15 Common Client Interface 15-11

A component gets a Connection instance by using the getConnection method of
a ConnectionFactory instance. A Connection instance may be associated with
zero or more Interaction instances.

The following code extract shows the Connection interface:

The createInteraction method creates an Interaction instance associated with
the Connection instance. An Interaction enables a component to access EIS data
and functions.

The getMetaData method returns information about the EIS instance associated
with a Connection instance. The EIS instance-specific information is represented by
the ConnectionMetaData interface.

The getResultSetInfo method returns information on the result set functionality
supported by the connected EIS instance. If the CCI implementation does not
support result set functionality, then the method getResultSetInfo must throw a
NotSupportedException.

The close method initiates a close of the connection. The OID in FIGURE 6-6 on
page 39 describes the resulting behavior of such an application level connection
close.

The getLocalTransaction method returns a LocalTransaction instance that
enables a component to demarcate resource manager local transactions. If a resource
adapter does not allow a component to demarcate local transactions using the
LocalTransaction interface, the getLocalTransaction method must throw a
NotSupportedException.

public interface javax.resource.cci.Connection {
public Interaction createInteraction() throws

ResourceException;

public ConnectionMetaData getMetaData() throws
ResourceException;

public ResultSetInfo getResultSetInfo() throws
ResourceException;

public LocalTransaction getLocalTransaction()
throws ResourceException;

public void close() throws ResourceException;
}

15-12 J2EE Connector Architecture Specification • November 2003

15.5.3.1 Auto Commit

When a Connection is in an auto-commit mode, an Interaction, associated with
the Connection, automatically commits after it has been executed. The auto-commit
mode must be turned off if multiple interactions have to be grouped in a single
transaction and committed or rolled back as a unit.

CCI does not provide explicit set/getAutoCommit methods in the Connection
interface. This simplifies the application programming model for the transaction
management.

A resource adapter must manage the auto-commit mode as follows:

■ A transactional resource adapter either at the XATransaction or
LocalTransaction level must set the auto-commit mode of Connection
instances participating in a transaction to off within the transaction. This
requirement holds for true both container-managed and bean-managed
transaction demarcation.

■ A transactional resource adapter must set the auto-commit mode of Connection
instances to on when used outside a transaction.

These requirements are independent of whether a transaction is managed as a local
or XA transaction. A transactional resource adapter should implement this
requirement in an implementation-specific manner.

A non-transactional resource adapter at the NoTransaction level, is not required to
support the auto-commit mode for Connection.

15.6 Interaction Interfaces
The following section specifies interfaces that enable a component to drive an
interaction with an EIS instance and to demarcate resource manager local
transactions.

15.6.1 Interaction
The javax.resource.cci.Interaction enables a component to execute EIS
functions. An Interaction instance supports the following interactions with an EIS
instance:

■ An execute method that takes an input Record, output Record, and an
InteractionSpec. This method executes the EIS function represented by the
InteractionSpec and updates the output Record.
Chapter 15 Common Client Interface 15-13

■ An execute method that takes an input Record and an InteractionSpec. This
method implementation executes the EIS function represented by the
InteractionSpec and produces the output Record as a return value.

If an Interaction implementation does not support a variant of the execute
method, the method must throw a javax.resource.NotSupportedException.

Refer to Section 15.10.2 “Interaction and Record” for details on how input and
output records are created and used in the above variants of the execute method.

An Interaction instance is created from a Connection and must maintain its
association with the Connection instance. The close method releases all resources
maintained by the resource adapter for the Interaction. The close of an
Interaction instance should not close the associated Connection instance.

The following code extract shows the Interaction interface:

15.6.2 InteractionSpec
A javax.resource.cci.InteractionSpec holds properties for driving an
Interaction with an EIS instance. An InteractionSpec uses an Interaction
to execute the specified function on an underlying EIS.

public interface javax.resource.cci.Interaction {

public Connection getConnection();

public void close() throws ResourceException;

public boolean execute(InteractionSpec ispec,
Record input,
Record output) throws ResourceException;

public Record execute(InteractionSpec ispec,
Record input) throws ResourceException;

...
}

15-14 J2EE Connector Architecture Specification • November 2003

The CCI specification defines a set of standard properties for an InteractionSpec.
The properties are defined either on a derived interface or an implementation class
of an empty InteractionSpec interface. The following code extract shows the
InteractionSpec interface.

An InteractionSpec implementation is not required to support a standard
property if that property does not apply to its underlying EIS. The
InteractionSpec implementation class must provide getter and setter methods for
each of its supported properties. The getter and setter methods convention should be
based on the JavaBeans design pattern.

15.6.2.1 Standard Properties

The standard properties are as follows:

■ FunctionName: A string representing the name of an EIS function. Some
examples are the name of a transaction program in a CICS system or the name of
a business object or function module in an ERP system. The format of the name is
specific to an EIS and is outside the scope of the CCI specification.

■ InteractionVerb: An integer representing the mode of interaction with an EIS
instance as specified by the InteractionSpec. The values of the interaction verb
may be one of the following:

■ SYNC_SEND: The execution of an Interaction does only a send to the target
EIS instance. The input record is sent to the EIS instance without any
synchronous response in terms of an output Record or ResultSet.

■ SYNC_SEND_RECEIVE: The execution of an Interaction sends a request to
the EIS instance and receives a response synchronously. The input record is
sent to the EIS instance with the output received either as Record or a
ResultSet.

■ SYNC_RECEIVE: The execution of an Interaction results in a synchronous
receive of an output Record. For instance, a session bean gets a method
invocation and it uses this SYNC_RECEIVE form of interaction to retrieve
messages that have been delivered to a message queue.

The default InteractionVerb property is SYNC_SEND_RECEIVE.

public interface javax.resource.cci.InteractionSpec
 extends java.io.Serializable {

// Standard Interaction Verbs
public static final int SYNC_SEND = 0;
public static final int SYNC_SEND_RECEIVE = 1;
public static final int SYNC_RECEIVE = 2;

}

Chapter 15 Common Client Interface 15-15

If the InteractionVerb property is not defined for an InteractionSpec, the
default mode for an interaction is SYNC_SEND_RECEIVE.

Other forms of interaction verbs are outside the scope of the CCI specification.

The CCI does not support asynchronous delivery of messages to the component
instances. The message inflow contract should be used for asynchronous delivery
of messages.

■ ExecutionTimeout: An integer representing the number of milliseconds an
Interaction waits for an EIS to execute the specified function.

15.6.2.2 ResultSet Properties

The following standard properties give hints to an Interaction instance about the
ResultSet requirements:

■ FetchSize: An integer representing the number of rows that should be fetched
from an EIS when more rows are needed for a result set. If the value is zero, the
hint is ignored. The default value is zero.

■ FetchDirection: An integer representing the direction in which the rows in a
result set are processed. The valid integer values are defined in the
java.sql.ResultSet interface. The default value is
ResultSet.FETCH_FORWARD.

■ MaxFieldSize: An integer representing the maximum number of bytes allowed
for any value in a column of a result set or a value in a Record.

■ ResultSetType: An integer representing the type of the result set produced by
an execution of the InteractionSpec. The java.sql.ResultSet interface
defines the result set types.

■ ResultSetConcurrency: An integer representing the concurrency type of the
result set produced by the execution of the InteractionSpec. The
java.sql.ResultSet interface defines the concurrency types for a result set.

Note that if a CCI implementation cannot support the specified requirements for a
result set, it should choose an appropriate alternative and raise a SQLWarning from
the ResultSet methods to indicate this condition. Refer to Section 15.11 “ResultSet”
for more details.

A component can determine the actual scrolling ability and concurrency type of a
result set by invoking the getType and getConcurrencyType methods of the
ResultSet interface.

15.6.2.3 Additional Properties

An InteractionSpec implementation may define additional properties besides the
standard properties. Note that the format and type of the additional properties is
specific to an EIS and is outside the scope of the CCI specification.
15-16 J2EE Connector Architecture Specification • November 2003

15.6.2.4 Implementation

The InteractionSpec interface must be implemented as a JavaBean to support
tools. The properties on the InteractionSpec implementation class must be
defined through the getter and setter methods design pattern.

The CCI implementation may, though is not required to, provide a BeanInfo class
for the InteractionSpec implementation. This class provides explicit information
about the properties supported by the InteractionSpec.

An implementation class for the InteractionSpec interface must implement the
java.io.Serializable interface.

The specified properties must be implemented as either bound or constrained
properties. Refer to the JavaBeans specification (refer to
http://java.sun.com/products/javabeans) for details on bound and
constrained properties.

15.6.2.5 Administered Object

An InteractionSpec instance may be, though it is not required to be, registered as
an administered object in the JNDI namespace. This enables a component provider
to access InteractionSpec instances using logical names, called resource
environment references. Resource environment references are special entries in the
component’s environment. The deployer binds a resource environment reference to
an InteractionSpec administered object in the operational environment.

The EJB specification (Section 1., “Enterprise JavaBeans (EJBTM) specification,
version 2.1:” on page F-1) specifies resource environment references in more detail.

15.6.2.6 Illustrative Scenario

The development tool introspects the InteractionSpec implementation class and
shows a property sheet with all the configurable properties. The developer then
configures the properties for an InteractionSpec instance.

At runtime, the configured InteractionSpec instance is used to specify properties
for the execution of an Interaction. The runtime environment may lookup an
InteractionSpec instance using a logical name from the JNDI namespace.
Chapter 15 Common Client Interface 15-17

15.6.3 LocalTransaction
The javax.resource.cci.LocalTransaction defines a transaction demarcation
interface for resource manager local transactions. An application component uses the
LocalTransaction interface to demarcate local transactions. Refer to Chapter 7,
“Transaction Management” for more details on local transactions.

Note that this interface is used for local transaction demarcation at the application
level, while the javax.resource.spi.LocalTransaction interface is defined as
part of the system contracts and is used by a container for local transaction
management.

The following code extract shows the LocalTransaction interface:

15.6.3.1 Requirements

A CCI implementation may, though is not required to, implement the
LocalTransaction interface.

If the LocalTransaction interface is supported by a CCI implementation, the
Connection.getLocalTransaction method must return a LocalTransaction
instance. A component may then use the returned LocalTransaction to demarcate
a resource manager local transaction on the underlying EIS instance.

A resource adapter is allowed to implement the
javax.resource.spi.LocalTransaction interface without implementing the
application-level javax.resource.cci.LocalTransaction interface. In this case,
a container uses the system contract-level LocalTransaction interface for
managing local transactions. Refer to Section 7.7, “Local Transaction Management
Contract” on page 7-31 for more details on local transaction management.

15.7 Basic Metadata Interfaces
The following section specifies the interfaces that provide basic meta information
about a resource adapter implementation and an EIS connection.

public interface javax.resource.cci.LocalTransaction {
public void begin() throws ResourceException;
public void commit() throws ResourceException;
public void rollback() throws ResourceException;

}

15-18 J2EE Connector Architecture Specification • November 2003

15.7.1 ConnectionMetaData
The javax.resource.cci.ConnectionMetaData interface provides information
about an EIS instance connected through a Connection instance. A component calls
the Connection.getMetaData method to get a ConnectionMetaData instance.

The following code extract shows the ConnectionMetaData interface:

The getEISProductName and getEISProductVersion methods return
information about the EIS instance.

The getUserName method returns the user name for an active connection as known
to the underlying EIS instance. The name corresponds the resource principal under
whose security context a connection to the EIS instance has been established.

15.7.1.1 Implementation

A CCI implementation must provide an implementation class for the
ConnectionMetaData interface.

A resource adapter provider or third-party vendor may extend the
ConnectionMetaData interface to provide additional information. Note that the
format and type of the additional information is specific to an EIS and is outside the
scope of the CCI specification.

15.7.2 ResourceAdapterMetaData
The javax.resource.cci.ResourceAdapterMetaData interface provides
information about the capabilities of a resource adapter implementation. Note that
this interface does not provide information about an EIS instance that is connected
through a resource adapter.

A component uses the ConnectionFactory.getMetaData method to get metadata
information about a resource adapter. The getMetaData method does not require
that an active connection to an EIS instance be established.

public interface javax.resource.cci.ConnectionMetaData {
public String getEISProductName() throws ResourceException;
public String getEISProductVersion() throws

ResourceException;
publicString getUserName() throws ResourceException;

}

Chapter 15 Common Client Interface 15-19

The following code extract shows the ResourceAdapterMetaData interface:

The getSpecVersion method returns a string representation of the version of the
connector architecture specification that is supported by the resource adapter.

The getInteractionSpecsSupported method returns an array of fully-qualified
names of InteractionSpec types supported by the CCI implementation for this
resource adapter. Note that the fully-qualified class name is for the implementation
class of an InteractionSpec. This method may be used by tools vendors to find
information on the supported InteractionSpec types. The method should return
an array of length 0 if the CCI implementation does not define specific
InteractionSpec types.

The supportsExecuteWithInputAndOutputRecord and
supportsExecuteWithInputRecordOnly methods are used by tools vendors to
find information about the Interaction implementation. It is important to note
that the Interaction implementation must support at least one variant of the
execute methods.

The supportsExecuteWithInputAndOutputRecord method returns true if the
implementation class for the Interaction interface implements the public
boolean execute(InteractionSpec ispec, Record input, Record
output) method. If not, the method returns false.

The supportsExecuteWithInputRecordOnly method returns true if the
implementation class for the Interaction interface implements the public
Record execute(InteractionSpec ispec, Record input) method. If not,
the method returns false.

The supportsLocalTransactionDemarcation method returns true if the
resource adapter implements the LocalTransaction interface and supports local
transaction demarcation on the underlying EIS instance through the
LocalTransaction interface.

public interface javax.resource.cci.ResourceAdapterMetaData {
public String getAdapterVersion();
public String getAdapterVendorName();
public String getAdapterName();
public String getAdapterShortDescription();

public String getSpecVersion();

public String[] getInteractionSpecsSupported();
public boolean supportsExecuteWithInputAndOutputRecord();
public boolean supportsExecuteWithInputRecordOnly();

public boolean supportsLocalTransactionDemarcation();
}

15-20 J2EE Connector Architecture Specification • November 2003

The ResourceAdapterMetaData interface may be extended to provide more
information specific to a resource adapter implementation.

15.8 Service Endpoint Message Listener
Interface
The MessageListener interface serves as a request-response message listener type
that message endpoints (refer to Chapter 12, “Message Inflow”) may implement.
This allows an EIS to communicate with an endpoint using a request-response style.

15.9 Exception Interfaces
The following section specifies ResourceException class defined by the CCI.

15.9.1 ResourceException
The javax.resource.ResourceException class is used as the root of the
exception hierarchy for CCI. A ResourceException provides the following
information:

■ A resource adapter-specific string describing the error. This string is a standard
Java exception message and is available through the getMessage method.

■ A resource adapter-specific error code.
■ A reference to another exception. A ResourceException is often the result of a

lower level problem. If appropriate, this lower level exception, a
java.lang.Exception or its derived exception type, can be linked to a
ResourceException instance. Note, this has been deprecated in favor of the
J2SE release 1.4 exception chaining facility.

A CCI implementation can extend the ResourceException interface to throw more
specific exceptions. It may also chain instances of java.lang.Exception or its
subtypes to a ResourceException.

interface javax.resource.cci.MessageListener {
 Record onMessage(Record inputData) throws ResourceException;
}

Chapter 15 Common Client Interface 15-21

15.9.2 ResourceWarning
The javax.resource.cci.ResourceWarning class provides information on the
warnings related to interactions with EIS. A ResourceWarning is silently chained to
an Interaction instance that has caused the warning to be reported.

The Interaction.getWarnings method enables a component to access the first
ResourceWarning in a chain of warnings. Other ResourceWarning instances are
chained to the first returned ResourceWarning instance.

15.10 Record
A Record is the Java representation of a data structure used as input or output to an
EIS function.

A Record has both development-time and runtime aspects. See FIGURE 15-5 for an
illustration of this. An implementation of a Record is either:
■ A custom Record implementation that gets generated at the development time by

a tool. The generation of a custom implementation is based on the meta
information accessed by the tool from a metadata repository. The type mapping
and data representation is generated as part of the custom Record
implementation. So the custom Record implementation typically does not need
to access the metadata repository at runtime.

■ A generic Record implementation that uses a metadata repository at runtime for
meta information. For example, a generic type of Record may access the type
mapping information from the repository at runtime.
15-22 J2EE Connector Architecture Specification • November 2003

Note: The specification of a standard repository API and metadata format is outside
the scope of the current version of the connector architecture.

FIGURE 15-5 Record at Development-time and Runtime

The meta information used in a Record representation and type mapping may be
available in a metadata repository as:
■ Meta information expressed in an EIS-specific format. For example, an ERP

system has its own descriptive format for its meta information.
■ Formatted in structures based on the programming language that has been used

for writing the target EIS function, such as, COBOL structures used by CICS
transaction programs.

■ A standard representation of data structures as required for EIS functions. The
standard representation is typically aggregated in a metadata repository based on
the meta information extracted from multiple EISs.

A resource adapter may provide an implementation of all CCI interfaces except the
data representation-related interfaces, namely, Record and RecordFactory. In this
case, a third party vendor provides both development-time and runtime support for

Component Builder Tool

Metadata
Repository

Component

RecordGenerator

Resource Adapter

Resource Adapter-view
Contract

generates custom

generic Record

Record

Component-view

DEVELOPMENT TIME RUN TIME

driven by metadata
Contract
Chapter 15 Common Client Interface 15-23

the Record and RecordFactory interfaces. This requires that a Record
implementation must support both component-view and resource adapter-view
contracts, as specified in the following subsections.

15.10.1 Component-view Contract
The component-view contract provides a standard contract for using a Record for
components and component building tools. A Record implementation must support
the component-view contract.

The application programming model for a Record is as follows:
■ A component creates an instance of a generated implementation class for a

custom record. The implementation class represents an EIS-specific data structure.
■ A component uses the RecordFactory interface to create an instance of the

generic Record implementation class. The implementation class of a generic
Record is independent of any EIS-specific data structure.

Note – A related CCI issue is the level of support in the CCI data representation
interfaces (namely, Record, MappedRecord, and IndexedRecord) for the type
mapping facility. The issue has to be addressed based on the following parameters:

■ There is no standardized mapping across various type systems. For example, the
existing type systems range from Java, CORBA, COM, COBOL and many more. It is
difficult to standardize the type specification and mappings across such a diverse
set of type systems within the connector architecture scope.

■ Building a limited type mapping facility into the CCI data representation
interfaces will constrain the use of CCI data representation interfaces across
different types of EISs. For example, it may be difficult to support EISs that have
complex structured types with a limited type mapping support.

■ Building an extensive type mapping facility into the current version of CCI data
representation interfaces will limit the future extensibility of these interfaces. This
applies specifically to the support for standards that are emerging for XML-based
data representation. An important goal for CCI data representation interfaces is to
support XML-based facilities. This goal is difficult to achieve in the current scope
of the connector architecture.

This specification proposes that the type mapping support for the CCI be kept open
for future versions. A future version of this specification may standardize type
mappings.
15-24 J2EE Connector Architecture Specification • November 2003

15.10.1.1 Type Mapping

Type mapping for EIS-specific types to Java types is not directly exposed to an
application component. For example in the case of a custom Record
implementation, the getter and setter methods, defined in a Record and exposed to
an application component, return the correct Java types for the values extracted from
the Record. The custom Record implementation internally handles all the type
mapping.

In the case of a generic Record implementation, the type mapping is done in the
generic Record by means of the type mapping information obtained from the
metadata repository. Since the component uses generic methods on the Record
interface, the component code does the required type casting.

The compatibility of Java types and EIS types should be based on a type mapping
that is defined specific to a class of EISs. For example, an ERP system from vendor X
specifies a type mapping specific to its own EIS. Another example is type mapping
between Java and COBOL types. Note that the JDBC specification specifies a standard
mapping of SQL data types to Java types specific to relational databases.

In cases of both custom and generic Records, the type mapping information is
provided by a metadata repository either at development-time or runtime.
Chapter 15 Common Client Interface 15-25

15.10.1.2 Record Interface

The javax.resource.cci.Record interface is the base interface for the
representation of a record. A Record instance is used as an input or output to the
execute methods defined in an Interaction. See FIGURE 15-6.

FIGURE 15-6 Component-view Contract

The Record interface may be extended to form one of the following representations:
■ javax.resource.cci.MappedRecord: A key-value pair based collection

represents a record. This interface is based on java.util.Map.
■ javax.resource.cci.IndexedRecord: An ordered and indexed collection

represents a record. This interface is based on java.util.List.
■ javax.resource.cci.ResultSet: This interface extends both

java.sql.ResultSet and javax.resource.cci.Record. A result set
represents tabular data. Section 15.11 “ResultSet” specifies the requirements for
the ResultSet interface in detail.

■ A JavaBean based representation of an EIS data structure: An example is a custom
record generated to represent a purchase order in an ERP system or an invoice in
a mainframe TP system.

Refer to Section 15.12 “Code Samples” for code samples that illustrate the use of
record.

<interface>
Record

<interface>
MappedRecord

<interface>
IndexedRecord

<interface>
java.util.Map

<interface>
java.util.List

inherits inherits

<interface>
ResultSet

inherits

<interface>
java.sql.ResultSet

package: javax.resource.cci

0-n

contains contains

0-n
15-26 J2EE Connector Architecture Specification • November 2003

MappedRecord or IndexedRecord may contain another Record. This means that
MappedRecord and IndexedRecord can be used to create a hierarchical structure of
any arbitrary depth.

MappedRecord and IndexedRecord can be used to represent either a generic or
custom record.

A basic Java type is used as the leaf element of a hierarchical structure represented
by a MappedRecord or IndexedRecord.

A generated custom Record may also contain other records to form a hierarchical
structure.

The following code extract shows the Record interface:

The Record interface defines the following set of standard properties:

■ Name of a Record: Note that the CCI does not define a standard format for
naming a Record. The name format is specific to an EIS type.

■ Description of a Record: This property is used primarily by tools to show a
description of a Record instance.

public interface javax.resource.cci.Record
extends java.lang.Cloneable, java.io.Serializable {

public String getRecordName();
public void setRecordName(String name);

public void setRecordShortDescription(String description);
public String getRecordShortDescription();

public boolean equals(Object other);
public int hashCode();

public Object clone() throws CloneNotSupportedException;
}

Chapter 15 Common Client Interface 15-27

15.10.1.3 MappedRecord and IndexedRecord Interfaces

The javax.resource.cci.MappedRecord interface is used for representing a key-
value map based collection of record elements. The MappedRecord interface extends
both the Record and java.util.Map interface.

The javax.resource.cci.IndexedRecord interface represents an ordered
collection of record elements based on the java.util.List interface. This interface
allows a component to access record elements by their integer index, position in the
list, and search for elements in the list.

15.10.1.4 RecordFactory

The javax.resource.cci.RecordFactory interface is used for creating
MappedRecord and IndexedRecord instances. Note that the RecordFactory is
only used for creating generic record instances. A CCI implementation provides an
implementation class for the RecordFactory interface.

The following code extract shows the RecordFactory interface:

public interface javax.resource.cci.MappedRecord
extends Record, java.util.Map,
java.io.Serializable {

}

public interface javax.resource.cci.IndexedRecord
extends Record, java.util.List,
java.io.Serializable {

}

public interface javax.resource.cci.RecordFactory {
public MappedRecord createMappedRecord(String recordName)

throws ResourceException;

public IndexedRecord createIndexedRecord(String
recordName) throws ResourceException;

}

15-28 J2EE Connector Architecture Specification • November 2003

The methods createMappedRecord and createIndexedRecord take the name of
the record that is to be created by the RecordFactory. The name of the record acts
as a pointer to the meta information stored in the metadata repository for a specific
record type. The format of the name is outside the scope of the CCI specification and
specific to a CCI implementation and/or metadata repository.

A RecordFactory implementation should be capable of using the name of the
desired Record and accessing meta information for the creation of the Record.

15.10.2 Interaction and Record
Records should be used as follows for the two variants of the execute method of
the Interaction interface:

boolean execute(InteractionSpec, Record input, Record output)

■ A custom record instance is used as an input or output to the execute method. A
custom record implementation class is generated by an application development
tool or EAI framework based on the meta information.

■ The RecordFactory interface is used to create a generic MappedRecord or
IndexedRecord instance. The generic record is used as input or output to the
execute method.

Record execute(InteractionSpec, Record input)

■ The input record can be either a custom or generic record.
■ The returned record is a generic record instance created by the implementation of

the execute method. The generic record instance may represent a ResultSet or
a hierarchical structure as represented through the MappedRecord and
IndexedRecord interfaces.

When the Interaction.execute method is called, a generic record instance may
use the connection associated with the Interaction instance to access the metadata
from the underlying EIS. If there is a separate metadata repository, then the generic
record gets the metadata from the repository. The generic record implementation
may use the above illustrative mechanism to achieve the necessary type mapping.

The generic record implementation encapsulates the above behavior and interacts
with Interaction implementation in the execute method to get the active
connection, if so needed. The contract between the generic record and Interaction
implementation classes is specific to a CCI implementation.

15.10.3 Resource Adapter-view Contract
A resource adapter views the data represented by a Record either as:

■ A stream of bytes through the Streamable interface, or,
Chapter 15 Common Client Interface 15-29

■ A format specific to a resource adapter. For example, a resource adapter may
extract or set the data for a Record using an interface defined specifically for the
resource adapter.

A resource adapter-specific interface for viewing the Record representation is
outside the scope of the CCI specification. A resource adapter must describe the
resource adapter-specific interface to the users, typically tools vendors, of the
resource adapter-view contract.

15.10.3.1 Streamable Interface

The javax.resource.cci.Streamable interface enables a resource adapter to
extract data from an input Record or set data into an output Record as a stream of
bytes. See FIGURE 15-7.

FIGURE 15-7 Streamable Interface

The Streamable interface provides a resource adapter’s view of the data set in a
Record instance by a component. A component uses Record or any derived
interfaces to manage records.

A component does not directly use the Streamable interface. The interface is used
by a resource adapter implementation.

Resource Adapter View

Component View

Streamable
<interface>

MappedRecord
<interface>
IndexedRecord

<interface> <interface>
Record

Record
<Impl Class>

implements

Resource Adapter specific
<interface>
15-30 J2EE Connector Architecture Specification • November 2003

The following code extract shows the Streamable interface:

The read extracts method data from an InputStream and initializes fields of a
Streamable object. The write method writes fields of a Streamable object to an
OutputStream. The implementations of both the read and write methods for a
Streamable object must call the read and write methods respectively on the super
class if there is one.

An implementation class of Record may choose to implement the Streamable
interface or support a resource adapter-specific interface to manage record data.

15.11 ResultSet
A result set represents tabular data that is retrieved from an EIS instance by the
execution of an interaction. The execute method on the Interaction interface can
return a ResultSet instance.

The CCI ResultSet interface is based on the JDBC ResultSet interface. The
ResultSet extends the java.sql.ResultSet and javax.resource.cci.-
Record interfaces.

public interface javax.resource.cci.Streamable {
public void read(InputStream istream) throws IOException;
public void write(OutputStream ostream) throws IOException;

}

Chapter 15 Common Client Interface 15-31

The following code extract shows the ResultSet interface:

FIGURE 15-8 ResultSet Interface

The following section specifies the requirements for a CCI ResultSet
implementation.

Refer to the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
specification and Java docs for more details on the java.sql.ResultSet interface.
The following section specifies only a brief outline of the ResultSet interface. It
focuses on the differences between the implementation requirements set by the CCI
and JDBC. Note that the JDBC semantics for a ResultSet hold for the cases that are
not explicitly mentioned in the following section.

CCI uses the JDBC ResultSet interface because:

■ JDBC ResultSet is a standard, established, and well-documented interface for
accessing and updating tabular data.

■ JDBC ResultSet interface is defined in the core java.sql package. An
introduction of an independent CCI-specific ResultSet interface (that is,
different from the JDBC ResultSet interface) may create confusion in terms of
differences in the programming model and functionality.

public interface javax.resource.cci.ResultSet
extends Record, java.sql.ResultSet {

}

<interface>
Record

<interface>
ResultSet

inherits

<interface>
java.sql.ResultSet

package: javax.resource.cci

inherits
15-32 J2EE Connector Architecture Specification • November 2003

■ The use of the JDBC ResultSet interface enables a tool or EAI vendor to
leverage existing facilities that have been for the JDBC ResultSet.

Note – A CCI implementation is not required to support the
javax.resource.cci.ResultSet interface. If a CCI implementation does not
support result set functionality, it should not support interfaces and methods that
are associated with the result set functionality. An example is the
java.sql.ResultSetMetaData interface.

15.11.1 ResultSet Interface
The ResultSet interface provides a set of getter methods for retrieving column
values from the current row. A column value can be retrieved using either the index
number of the column or the name of the column. The columns are numbered
starting at one. For maximum portability, result set columns within each row should
be read left-to-right, and each column should be read only once.

The ResultSet interface also defines a set of updateXXX methods for updating the
column values of the current row.

15.11.1.1 Type Mapping

A ResultSet implementation should attempt to convert the underlying EIS-specific
data type to the Java type as specified in the XXX part of the getXXX method and
return a suitable Java value.

A ResultSet implementation must establish a type mapping between the EIS
specific data types and Java types. The type mapping is specific to an EIS.

The CCI specification does not specify standard type mappings specific to each type
of EIS.

15.11.1.2 ResultSet Types

The CCI ResultSet, similar to the JDBC ResultSet, supports the following types
of result set: forward-only, scroll-insensitive, and scroll-sensitive.

A forward-only result set is non-scrollable; its cursor moves only forward, from top
to bottom. The view of data in the result set depends on whether the EIS instance
materializes results incrementally.
Chapter 15 Common Client Interface 15-33

A scroll-insensitive result set is scrollable; its cursor can move forward or backward
and can be moved to a particular row or to a row whose position is relative to the
current row. This type of result set is not sensitive to any changes made by another
transaction or result sets in the same transaction that are made while the result set is
open. This type of result set provides a static view of the underlying data with
respect to changes made by other result sets. The order and values of rows are set at
the time of the creation of a scroll-insensitive result set.

A scroll-sensitive result set is scrollable. It is sensitive to changes that are made while
the result set is open. This type of result set provides a more dynamic view of the
underlying data.

A component can use the ownUpdatesAreVisible, ownDeletesAreVisible, and
ownInsertsAreVisible methods of the ResultSetInfo interface to determine
whether a result set can see its own changes while the result set is open. For
example, a result set’s own changes are visible if the updated column values can be
retrieved by calling the getXXX method after the corresponding updateXXX method.
Refer to the JDBC (Section 3., “JDBC API specification, version 3.0” on page F-1)
specification for more details on this feature.

15.11.1.3 Scrolling

The CCI ResultSet supports the same scrolling ability as the JDBC ResultSet.

If a resource adapter implements the cursor movement methods, its result sets are
scrollable. A scrollable result set created by executing an Interaction can move
through its contents in both a forward (first-to-last) or backward (last-to-first)
direction. A scrollable result set also supports relative and absolute positioning.

The CCI ResultSet, similar to the JDBC ResultSet , maintains a cursor that
indicates the row in the result set that is currently being accessed. The cursor
maintained on a forward-only result set can only move forward through the
contents of the result set. The rows are accessed in a first-to-last order. A scrollable
result set can also be moved in a backward direction (last-to-first) and to a particular
row.

Note that a CCI ResultSet implementation should only provide support for
scrollable result sets if the underlying EIS supports such a facility.

15.11.1.4 Concurrency Types

A component can set the concurrency type of a CCI ResultSet to be either read-
only or updatable. These types are consistent with the concurrency types defined by
the JDBC ResultSet.
15-34 J2EE Connector Architecture Specification • November 2003

A result set that uses read-only concurrency does not allow updates of its content,
while an updatable result set allows updates to its contents. An updatable result set
may hold a write lock on the underlying data item and thus reduce concurrency.

Refer to the JDBC specification (Section 3., “JDBC API specification, version 3.0” on
page F-1) for detailed information and examples.

15.11.1.5 Updatability

A result set of concurrency type CONCUR_UPDATABLE supports the ability to update,
insert, and delete its rows. The CCI support for this type of result set is similar to the
JDBC ResultSet.

The methods updateXXX on the ResultSet interface are used to modify the values
of an individual column in the current row. These methods do not update the
underlying EIS. The updateRow method must be called to update data on the
underlying EIS. A resource adapter may discard changes made by a component if
the component moves the cursor from the current row before calling the method
updateRow.

Refer to the JDBC specification (Section 3., “JDBC API specification, version 3.0” on
page F-1) for more information.

15.11.1.6 Persistence of Java Objects

The ResultSet interface provides the getObject method to enable a component to
retrieve column values as Java objects. The type of the Java object returned from the
getObject method is compatible with the type mapping supported by a resource
adapter-specific to its underlying EIS. The updateObject method enables a
component to update a column value using a Java object.

15.11.1.7 Support for SQL Types

It is optional for a CCI ResultSet to support the SQL type JAVA_OBJECT as defined
in java.sql.Types.The JDBC specification specifies the JDBC support for
persistence of Java objects.

The support for the following SQL types as defined in java.sql.Types is optional
for a CCI ResultSet implementation:

■ Binary large object (BLOB)
■ Character large object (CLOB)
■ SQL ARRAY type
■ SQL REF type
■ SQL DISTINCT type
Chapter 15 Common Client Interface 15-35

■ SQL STRUCT type

If an implementation of the CCI ResultSet interface does not support these types,
it must throw a java.sql.SQLException indicating that the method is not
supported, or java.lang.UnsupportedOperationException from the following
methods:
■ getBlob
■ getClob
■ getArray
■ getRef

15.11.1.8 Support for Customized SQL Type Mapping

The CCI is not required to support customized mapping of SQL structured and
distinct types to Java classes. The JDBC API defines support for such customization
mechanisms.

The CCI ResultSet should throw a java.sql.SQLException indicating that the
method is not supported or java.lang.UnsupportedOperationException from
the getObject method that takes a java.util.Map parameter.

15.11.2 ResultSetMetaData
The java.sql.ResultSetMetaData interface provides information about the
columns in a ResultSet instance. A component uses ResultSet.getMetaData
method to get information about a ResultSet.

Refer to the JDBC Javadocs for a detailed specification of the ResultSetMetaData
interface.

15.11.3 ResultSetInfo
The javax.resource.cci.ResultSetInfo interface provides information on the
support provided for ResultSet functionality by a connected EIS instance. A
component calls the Connection.getResultInfo method to get the
ResultSetInfo instance.

A CCI implementation is not required to support the
javax.resource.cci.ResultSetInfo interface. The implementation of this
interface is provided only if the CCI supports the ResultSet facility.
15-36 J2EE Connector Architecture Specification • November 2003

The following code extract shows the ResultSetInfo interface:

The type parameter to the above methods represents the type of the ResultSet,
defined as TYPE_XXX in the ResultSet interface.

Note that these methods should throw a ResourceException in the following
cases:

■ A resource adapter and the connected EIS instance cannot provide any
meaningful values for these properties.

■ The CCI implementation does not support the ResultSet functionality. In this
case, a NotSupportedException should be thrown from invocations on the
above methods.

public interface javax.resource.cci.ResultSetInfo {
public boolean updatesAreDetected(int type)

throws ResourceException;
public boolean insertsAreDetected(int type)

throws ResourceException;
public boolean deletesAreDetected(int type)

throws ResourceException;

public boolean supportsResultSetType(int type)
throws ResourceException;

public boolean supportsResultTypeConcurrency(int type,
int concurrency)
throws ResourceException;

public boolean ownUpdatesAreVisible(int type)
throws ResourceException;

public boolean ownInsertsAreVisible(int type)
throws ResourceException;

public boolean ownDeletesAreVisible(int type)
throws ResourceException;

public boolean othersUpdatesAreVisible(int type)
throws ResourceException;

public boolean othersInsertsAreVisible(int type)
throws ResourceException;

public boolean othersDeletesAreVisible(int type)
throws ResourceException;

}

Chapter 15 Common Client Interface 15-37

A component uses the rowUpdated, rowInserted, and rowDeleted methods of
the ResultSet interface to determine whether a row has been affected by a visible
update, insert, or delete is the result set is open. The updatesAreDetected,
insertsAreDetected and deletesAreDetected methods enable a component to
find out whether or not changes to a ResultSet are detected.

A component uses the ownUpdatesAreVisible, ownDeletesAreVisible and
ownInsertsAreVisible methods to determine whether a ResultSet can see its
own changes when the result set is open.

A component uses the supportsResultSetType method to check the ResultSet
types supported by a resource adapter and its underlying EIS instance.

The supportsResultSetTypeConcurency method provides information on the
ResultSet concurrency types supported by a resource adapter and its underlying
EIS instance.

15.12 Code Samples
The following code extracts illustrate the application programming model based on
the CCI.

An application development tool or EAI framework normally hides all the CCI-
based programming details from an application developer. For example, an
application development tool generates a set of Java classes that abstract the CCI-
based application programming model and offers a simple programming model to
an application developer.

15.12.1 Connection
■ Get a Connection to an EIS instance after a lookup of a ConnectionFactory

instance from the JNDI namespace. In this case, the component allows the
container to manage the EIS sign-on.

■ Create an Interaction instance:

javax.resource.cci.Interaction ix = cx.createInteraction();

javax.naming.Context nc = new InitialContext();
javax.resource.cci.ConnectionFactory cf =

(ConnectionFactory)nc.lookup(
"java:comp/env/eis/ConnectionFactory");

javax.resource.cci.Connection cx = cf.getConnection();
15-38 J2EE Connector Architecture Specification • November 2003

15.12.2 InteractionSpec
■ Create a new instance of the respective InteractionSpec class or look up a pre-

configured InteractionSpec in the runtime environment using JNDI.

15.12.3 Mapped Record
■ Get a RecordFactory instance:

javax.resource.cci.RecordFactory rf = // ... get a RecordFactory

■ Create a generic MappedRecord using the RecordFactory instance. This record
instance acts as an input to the execution of an interaction. The name of the
Record acts as a pointer to the meta information, stored in the metadata
repository, for a specific record type.

■ Populate the generic MappedRecord instance with input values. The component
code adds the values based on the meta information it has accessed from the
metadata repository.

■ Create a generic IndexedRecord to hold the output values that are set by the
execution of the interaction.

■ Execute the Interaction:

boolean ret = ix.execute(ixSpec, input, output);

com.wombat.cci.InteractionSpecImpl ixSpec = // ...

ixSpec.setFunctionName("<EIS_SPECIFIC_FUNCTION_NAME>");
ixSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);
...

javax.resource.cci.MappedRecord input =
rf.createMappedRecord(“<NAME_OF_RECORD>”);

input.put(“<key: element1>", new String(“<VALUE>”));
input.put(“<key: element2>", ...);
...

javax.resource.cci.IndexedRecord output =
rf.createIndexedRecord(“<NAME_OF_RECORD>”);
Chapter 15 Common Client Interface 15-39

■ Extract data from the output IndexedRecord. Note that the type mapping is
done in the generic IndexedRecord by means of the type mapping information
in the metadata repository. Since the component uses generic methods on the
IndexedRecord, the component code does the required type casting.

15.12.4 ResultSet
■ Set the requirements for the ResultSet returned by the execution of an

Interaction. This step is optional. Default values are used if the requirements
are not explicitly set:

■ Execute an Interaction that returns a ResultSet:

■ Iterate over the ResultSet. The example here positions the cursor on the first
row and then iterates forward through the contents of the ResultSet. The
getXXX methods are used to retrieve column values:

java.util.Iterator iterator = output.iterator();
while (iterator.hasNext()) {

// Get a record element and extract value
}

com.wombat.cci.InteractionSpecImpl ixSpec = .. // get an
// InteractionSpec;

ixSpec.setFetchSize(20);
ixSpec.setResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);

javax.resource.cci.ResultSet rs = (javax.resource.cci.ResultSet)
ix.execute(ixSpec, input);

rs.beforeFirst();
while (rs.next()) {

// get the column values for the current row using getXXX
// method

}

15-40 J2EE Connector Architecture Specification • November 2003

■ The following example shows a backward iteration through the ResultSet:

15.12.5 Custom Record
■ Extend the Record interface to represent an EIS-specific custom Record. The

CustomerRecord interface supports a simple getter-setter design pattern for its
field values. A development tool generates the implementation class of the
CustomerRecord.

■ Create an empty CustomerRecord instance to hold output from the execution of
an Interaction.

CustomerRecord customer = ... // create an instance

■ Create a PurchaseOrderRecord instance as an input to the Interaction and
set the properties on this instance. The PurchaseOrderRecord is another
example of a custom Record.

rs.afterLast();
while (rs.previous()) {

// get the column values for the current row using getXXX
// method

}

public interface CustomerRecord extends
javax.resource.cci.Record,

javax.resource.cci.Streamable {

public void setName(String name);
public void setId(String custId);
public void setAddress(String address);

public String getName();
public String getId();
public String getAddress();

}

PurchaseOrderRecord purchaseOrder = ... // create an instance
purchaseOrder.setProductName(“...”);
purchaseOrder.setQuantity(“...”);
...
Chapter 15 Common Client Interface 15-41

■ Execute an Interaction that populates the output CustomerRecord instance.

// Execute the Interaction
boolean ret = ix.execute(ixSpec, purchaseOrder, customer);

// Check the CustomerRecord
System.out.println(customer.getName() + ":" +

customer.getId() + ":" +
customer.getAddress());
15-42 J2EE Connector Architecture Specification • November 2003

CHAPTER 16

API Requirements

This chapter specifies the API requirements for the resource adapter and application
server implementations.

16.1 Requirements of the Application Server
■ The application server must support the deployment of a resource adapter in EJB

and Web containers.
■ The application server must support all the connector architecture API

requirements in EJB and Web containers.
■ A single resource adapter instance may be shared by both a Web container and an

EJB container.
■ The application server must support all versions of the resource adapter DTDs

(Document Type Definitions) and the resource adapter XML Schema Definition.
This ensures that resource adapters written to previous versions of this
specification can be deployed on products supporting the current version of this
specification.

16.2 Requirements of the Resource adapter
The following matrix specifies the required (+) and optional (?) API requirements on
a resource adapter.

LM - Lifecycle management contract

WM - Work management contract

MI - Message Inflow contract
16-1

TI - Transaction Inflow contract

CM - Connection management contract

TM- Transaction management contract

SM - Security management contract

CCI - Common Client Interface

Note, the message inflow contract must be supported by an inbound resource
adapter.

16.3 JavaBean Requirements
The various JavaBean implementations provided by a resource adapter must adhere
to the following rules:

■ A JavaBean implementation must contain a null constructor.
■ A JavaBean implementation must provide getter and setter methods, to access

and modify the public properties of the JavaBean instance.

Note, for JavaBean serialization, implementing the java.io.Serializable
interface is not necessary. The XML long-term persistence mechanism introduced in
J2SE 1.4 can save the state of a JavaBean in an XML format that is resilient to version
changes in the implementation of that JavaBean. Refer to J2SE 1.4 (Section 12., “Java
2 Platform, Standard Edition (J2SETM), API specification, version 1.4:” on page F-1)
classes java.beans.XMLEncoder, java.beans.XMLEncoder, and
java.beans.PersistenceDelegate.

For details, refer to JavaBeans specification (Section 14., “JavaBeansTM Specification
1.01 Final Release” on page F-2).

TABLE 16-1 Resource Adapter API Requirements

LM WM MI TI CM TM SM CCI

Outbound ? ? + + + ?

Inbound + ? + ?

Bi-directional + ? + ? + + + ?
16-2 J2EE Connector Architecture Specification • November 2003

16.4 Equality Constraints
This section specifies the equality constraints on object implementations of the
various types defined by this specification.

Equality based on Java object identity

The candidate objects are implementations of MessageEndpointFactory,
ActivationSpec, ManagedConnection types.

These objects, in general, should not override the default equals and hashCode
methods. However, if these methods are overridden, they must preserve the equality
constraints based on Java object identity; that is, no two objects are considered equal.

Equality based on config properties and class information

The candidate objects are implementations of ResourceAdapter,
ManagedConnectionFactory, ConnectionRequestInfo,
java.security.Principal, org.ietf.jgss.GSSCredential,
GenericCredential, PasswordCredential, and Record types.

These objects must override the default equals and hashCode methods, and
provide an equality behavior based on the configuration properties and class
information. That is, any two objects can be equal only if their configuration
properties match and they have the same class implementation.
Chapter 16 API Requirements 16-3

16-4 J2EE Connector Architecture Specification • November 2003

CHAPTER 17

Packaging Requirements

This chapter specifies requirements for packaging and deploying a resource adapter.
These requirements support a modular, portable deployment of a resource adapter
into a J2EE compliant application server.

17.1 Overview
A resource adapter provider develops a set of Java interfaces and classes as part of
its implementation of a resource adapter. These Java classes implement connector
architecture-specified contracts and EIS-specific functionality provided by the
resource adapter. The development of a resource adapter may also require the use of
native libraries specific to the underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries,
help files, documentation, and other resources) with a deployment descriptor to
create a Resource Adapter Module. A deployment descriptor defines the
contract between a resource adapter provider and a deployer for the deployment of
a resource adapter.

FIGURE 17-1 Packaging and Deployment Lifecycle of a Resource adapter

Resource Adapter
created by
Resource Adapter

Resource Adapter
Module Processed by

Deployer

DeploymentDevelopment

deploy
Application

Server

Resource
Adapter

Provider
17-1

A resource adapter module corresponds to a J2EE module in terms of the J2EE
composition hierarchy. Refer to the J2EE Platform specification (Section 8., “Java 2
Platform Enterprise Edition (J2EETM), Platform specification, version 1. 4:” on
page F-1) for more details on the deployment of J2EE modules and applications. A
J2EE module represents the basic unit of composition of a J2EE application. Examples
of J2EE modules include EJB modules, application client modules, and web client
modules.

A resource adapter module must be deployed either:

■ Directly into an application server as a stand-alone unit or,
■ Deployed with a J2EE application that consists of one or more J2EE modules in

addition to a resource adapter module. The J2EE specification specifies
requirements for the assembly and packaging of J2EE applications.
17-2 J2EE Connector Architecture Specification • November 2003

FIGURE 17-2 shows the composition model of a resource adapter module with other
J2EE modules.

FIGURE 17-2 Deployment of a Resource Adapter Module

The stand-alone deployment of a resource adapter module into an application server
is typically done to support scenarios in which multiple J2EE applications share a
single resource adapter module. However, in certain scenarios, a resource adapter

EJB

EJB

EJB

Web client
module

DD

2

WEB

WEB

DD

3

3

DD

2

DD

APP
DD

1

DD

DD
1

DD
2

DD
3

Deployment
Tool

add/delete ingredients

Components J2EE ApplicationJ2EE Modules

EJB
module

DD

1

application
client

module

Resource

module

DD

Adapter
4

DD

4

DD
4

deploy stand-alone modules
Chapter 17 Packaging Requirements 17-3

module is required only by components within a single J2EE application. The
deployment option of a resource adapter module bundled with a J2EE application
supports the latter scenario.

At deployment time, a resource adapter deployer deploys a resource adapter module
to an application server.

17.2 Packaging
The file format for a packaged resource adapter module defines the contract between
a resource adapter provider and deployer.

A packaged resource adapter includes the following elements:

■ Java classes and interfaces that are required for the implementation of both the
connector architecture contracts and the functionality of the resource adapter.

■ Utility Java classes for the resource adapter.
■ Platform-dependent native libraries required by the resource adapter.
■ Help files and documentation.
■ Descriptive meta information that ties the above elements together.

17.2.0.1 Resource Adapter Archive

A resource adapter must be packaged using the Java ARchive (JAR) format in to an
RAR (ResourceAdapter ARchive). For example, a resource adapter for EIS A can be
packaged as an archive with a filename eisA.rar.

The RAR file must contain a deployment descriptor based on the format specified in
Section 17.5.4 “Requirements”. The deployment descriptor must be stored with the
name META-INF/ra.xml in the RAR file.

The Java interfaces, implementation, and utility classes required by the resource
adapter must be packaged as one or more JAR files as part of the resource adapter
module. A JAR file must use the .jar file extension.

The platform-specific libraries required by the resource adapter must be packaged
with the resource adapter module.
17-4 J2EE Connector Architecture Specification • November 2003

17.2.0.2 RAR Contents

The following describes the contents of a RAR file, their respective location within
the RAR file and whether they are required.

17.2.0.3 Sample Directory Structure

The following lists the files in a sample resource adapter module:

META-INF/ra.xml

howto.html

images/icon.jpg

ra.jar

cci.jar

win.dll

solaris.so

In the above example, ra.xml is the deployment descriptor. ra.jar and cci.jar
contain Java interfaces and implementation classes for the resource adapter.
win.dll and solaris.so are examples of native libraries.

Note that a resource adapter module can be structured such that various elements
are partitioned using subdirectories.

17.2.0.4 Requirements
■ When a standalone resource adapter RAR is deployed, the resource adapter must

be made available to all J2EE applications in the application server.
■ When a resource adapter RAR packaged within a J2EE application EAR is

deployed, the resource adapter must be made available only to the J2EE
application with which it is packaged.

TABLE 17-1 Description of RAR File Contents

Contents of RAR file Requirements Relative location within RAR file

Deployment descriptor Required META-INF/ra.xml

howto.html, image files,
locale files, etc.

Optional Arbitrary (that is, could be at root
level or at a sub-level).

JAR files Optional Arbitrary

Platform-specific native
libraries

Optional Arbitrary
Chapter 17 Packaging Requirements 17-5

17.3 Deployment
A deployment descriptor defines the contract between a resource adapter provider
and a deployer. It captures the declarative information that is intended for the
deployer to enable deployment of a resource adapter in a target operational
environment.

A resource adapter module must be deployed based on the deployment
requirements specified by the resource adapter provider in the deployment
descriptor. Section 17.5.4 “Requirements” specifies the XML DTD for the deployment
descriptor for a resource adapter module.

The J2EE Deployment API Specification (Section 13., “J2EETM Deployment API
Specification” on page F-2) describes the general deployment procedure in detail.

17.3.1 Resource Adapter Provider
The resource adapter provider is responsible for specifying the deployment
descriptor for a resource adapter.

The resource adapter provider must specify the following information in the
deployment descriptor:

■ General information: The resource adapter provider should specify the following
general information about a resource adapter:

■ Name of the resource adapter.
■ Description of the resource adapter.
■ URI of a UI icon for the resource adapter.
■ Name of the vendor who provides the resource adapter.
■ Licensing requirement and description. Note that the management of licensing

is outside the scope of the connector architecture.
■ Type of the EIS system supported. For example, the name of a specific

database, ERP system, or mainframe TP system without any versioning
information.

■ Version of the connector architecture specification, represented as a string,
supported by the resource adapter.

■ Version of the resource adapter represented as a string.
■ ResourceAdapter class: The resource adapter provider must specify the fully

qualified name of a Java class that implements the
javax.resource.spi.ResourceAdapter interface. The implementation of this
class must be a JavaBean. A ResourceAdapter JavaBean is configured by the
resource adapter deployer during deployment. The application server must
instantiate exactly one ResourceAdapter JavaBean per functional resource
17-6 J2EE Connector Architecture Specification • November 2003

adapter instance. The application server must create at least one functional
resource adapter instance per resource adapter deployment. The configuration
properties are specific to a resource adapter.

■ ResourceAdapter class configuration properties: The resource adapter provider
may optionally provide a set of configuration properties for the
ResourceAdapter instance, which may be used by the resource adapter
deployer to configure a ResourceAdapter JavaBean instance.

■ Outbound resource adapter information

■ ManagedConnectionFactory class: The resource adapter provider must specify
the fully qualified name of the Java class that implements the
javax.resource.spi.ManagedConnectionFactory interface. The
implementation must be a JavaBean.

Typically, a ManagedConnectionFactory class is used to produce
ConnectionFactory and Connection objects of a particular type. In order
to produce objects of different types, a separate ManagedConnectionFactory
class can be used for each supported type. The deployment descriptor element
connection-definition can be used to specify different
ManagedConnectionFactory classes, each pertaining to a particular type.

■ ConnectionFactory interface and implementation class: The resource adapter
provider must specify the fully-qualified name of the Java interface and
implementation class for each connection factory supported by the resource
adapter.

■ Connection interface and implementation class: The resource adapter
provider must specify the fully-qualified name of the Java interface and
implementation class for each connection supported by the resource adapter.

■ Transactional Support: The resource adapter provider must specify the level of
transaction support provided by the resource adapter implementation. The
level of transaction support must be any one of the following:
NoTransaction, LocalTransaction, or XATransaction. Note that this
support is specified for a resource adapter and not for the underlying EIS
instance.
NoTransaction: The resource adapter does not support either the resource
manager local or JTA transactions. It does not implement either XAResource
or LocalTransaction interfaces.
LocalTransaction: The resource adapter supports resource manager local
transactions by implementing the LocalTransaction interface. The local
transaction management contract is specified in Section 7.7, “Local
Transaction Management Contract” on page 7-31.
XATransaction: The resource adapter supports both resource manager local
and JTA transactions by implementing the LocalTransaction and
XAResource interfaces respectively. The requirements for supporting the
XAResource based contract are specified in Section 7.6, “XAResource-based
Transaction Contract” on page 7-16.
Chapter 17 Packaging Requirements 17-7

■ Configurable properties per ManagedConnectionFactory instance: The
resource adapter provider specifies the name, type, description, and an
optional default value for the properties that have to be configured on a per
ManagedConnectionFactory instance.

Each ManagedConnectionFactory instance creates connections to a specific
EIS instance based on the properties configured on the
ManagedConnectionFactory instance. The configurable properties are
specified only once in the deployment descriptor, even though a resource
adapter can be used to configure multiple ManagedConnnectionFactory
instances that create connections to different instances of the same
underlying EIS type.

■ Authentication Mechanism: The resource adapter provider must specify all
authentication mechanisms supported by the resource adapter. This includes
the support provided by the resource adapter implementation but not by the
underlying EIS instance. The standard values are: BasicPassword and
Kerbv5. A resource adapter may support one or more of these authentication
mechanisms.

• BasicPassword:user-password based authentication mechanism that is
specific to an EIS.

• Kerbv5: Kerberos version 5 based authentication mechanism.

If no authentication mechanism is specified as part of the deployment
descriptor, the resource adapter supports no standard security authentication
mechanism as part of the security contract.

■ Reauthentication support: The resource adapter provider must specify
whether a resource adapter supports re-authentication of an existing physical
connection.

■ Extended Security Permissions: The security permissions listed in the
deployment descriptor are different from those required by the default
permission set. Refer to Chapter 18, “Runtime Environment” for more details
on security permissions.

■ Inbound resource adapter information

■ Message listener type: The resource adapter provider must specify one or
more message listener types supported by a messaging resource adapter. The
message listener type is the fully qualified name of the Java type of a message
listener interface.

■ ActivationSpec class: The resource adapter provider must specify the fully
qualified Java class name of the activation specification class. The
implementation of this class must be a JavaBean. An ActivationSpec
specifies an activation specification per message listener type. The
ActivationSpec is configured by a message endpoint deployer during
application deployment.
17-8 J2EE Connector Architecture Specification • November 2003

■ Required ActivationSpec properties: The resource adapter provider may
optionally specify a set of required properties for an ActivationSpec. This is
useful in validating the ActivationSpec during endpoint application
deployment.

■ Administered objects: The resource adapter provider must specify the fully
qualified name of the Java type of the interface implemented by an administered
object, which must be a JavaBean, and its Java class name. Administered objects
are specific to a messaging style or message provider. There may be zero to more
administered objects specified.

The deployment descriptor specified by the resource adapter provider for its
resource adapter must be consistent with the XML DTD specified in Section 17.5.4
“Requirements”.

Note – The connector architecture does not specify standard deployment properties
for the configuration of non-Java parts, such as native libraries, of a resource
adapter. This applies only to the properties of the non-Java part not exposed through
the Java part of the resource adapter. The non-Java part of a resource adapter should
be configured using mechanisms specific to a resource adapter.

17.3.2 Deployer
During resource adapter deployment, the deployer is responsible for configuring a
resource adapter. The configuration of a resource adapter is based on the properties
defined in the deployment descriptor as part of the resource adapter module.

17.3.2.1 Stand-Alone Resource Adapter Module

During deployment, the deployer configures and deploys a resource adapter based
on the deployment descriptor information. The deployer may choose to override the
information in the deployment descriptor.

17.3.2.2 Resource Adapter Module with J2EE Application

Refer to the J2EE platform specification (Section 8., “Java 2 Platform Enterprise
Edition (J2EETM), Platform specification, version 1. 4:” on page F-1) for the
requirements specified for the deployment of a J2EE application.
Chapter 17 Packaging Requirements 17-9

17.3.2.3 Configuration

The deployer must perform the following tasks to configure a resource adapter:

■ Configure a ResourceAdapter JavaBean instance. The configuration properties
are specific to a resource adapter.

In the case of outbound resource adapters,

■ Configure one or more property sets (one property set per
ManagedConnectionFactory instance) for creating connections to various
underlying EIS instances. The deployer creates a property set to set valid values
for various configurable fields. The configuration of each field is based on the
name, type and description of the field specified in the deployment descriptor.

Each property set represents a specific configuration to be set on a Managed-
ConnectionFactory instance for creating connections to a specific EIS instance.
Since a resource adapter may be used to create connections to multiple instances
of the same EIS, there can be multiple property sets for a single resource adapter,
one for each configured ManagedConnectionFactory instance.

■ Configure application server mechanisms for transaction management based on
the level of transaction support specified by the resource adapter.

■ Configure security in the target operational environment based on the security
requirements specified by the resource adapter in its deployment descriptor.

17.3.2.4 Security Configuration

The security configuration is based on:

■ Whether or not the resource adapter supports a specific authentication
mechanism and credentials interface. The deployment descriptor includes an
element authentication-mechanism that specifies a supported authentication
mechanism and the corresponding credentials interface.

■ Whether or not the application server is configured to support a specific
mechanism type. For example, if the application server is not configured for the
Kerberos mechanism, it is not capable of passing Kerberos credentials to the
resource adapter as part of the security contract.

During the deployment, the deployer may, though is not required to, check whether
or not an underlying EIS supports the same capabilities, such as transaction support
and authentication mechanisms, as the corresponding resource adapter.

For example, if a resource adapter provides implementation support for Kerberos
based authentication but the underlying EIS instance does not support Kerberos, the
deployer may decide not to configure Kerberos for authentication to this EIS
instance. However if the deployer does not perform such checks during deployment,
any invalid configurations should lead to runtime exceptions.
17-10 J2EE Connector Architecture Specification • November 2003

17.4 Interfaces/Classes
This section specifies the Java classes and interfaces related to the configuration of a
resource adapter in an operational environment.

17.4.1 ResourceAdapter
The Java class which implements the interface
javax.resource.spi.ResourceAdapter must be a JavaBean. A
ResourceAdapter JavaBean represents exactly one functional resource adapter unit
or instance. The application server must instantiate exactly one ResourceAdapter
JavaBean per functional resource adapter instance. The application server must
create at least one functional resource adapter instance per resource adapter
deployment. A ResourceAdapter JavaBean instance is configured by the resource
adapter deployer during deployment. The configuration properties are specific to a
resource adapter.

The resource adapter provider may optionally provide a set of configuration
properties, specified in the resource adapter deployment descriptor, for the
ResourceAdapter instance, which is used by the resource adapter deployer to
configure the ResourceAdapter JavaBean instance during deployment. The
deployer may override the configuration information in the deployment descriptor
while configuring the ResourceAdapter JavaBean instance.

17.4.1.1 Requirements

The ResourceAdapter implementation must be a JavaBean.

17.4.2 ManagedConnectionFactory
The class that implements the ManagedConnectionFactory interface supports a set
of properties. These properties provide information required by the
ManagedConnectionFactory for the creation of physical connections to the
underlying EIS.

A resource adapter must implement the ManagedConnectionFactory interface as a
JavaBean. As a JavaBean implementor, the resource adapter can also provide a
BeanInfo class that implements the java.beans.BeanInfo interface and provides
explicit information about the methods and properties supported by the
ManagedConnectionFactory implementation class.
Chapter 17 Packaging Requirements 17-11

The implementation of ManagedConnectionFactory as a JavaBean improves the
ability of tools that are based on the JavaBeans framework to manage the
configuration of ManagedConnectionFactory instances.

17.4.2.1 Requirements

The ManagedConnectionFactory implementation must be a JavaBean. Any
specified ManagedConnectionFactory property in the deployment descriptor
which does not have a matching property in the ManagedConnectionFactory
JavaBean should be treated as an error.

17.4.3 Properties Conventions
The ManagedConnectionFactory implementation class must provide getter and
setter methods for each of its supported properties. The supported properties must
be consistent with the specification of configurable properties specified in the
deployment descriptor.

The getter and setter methods convention must be based on the JavaBeans design
pattern. These methods are defined in the implementation class and not in the
ManagedConnectionFactory interface. This requirement keeps the
ManagedConnectionFactory interface independent of any resource adapter or EIS-
specific properties.

17.4.4 Standard Properties
The connector architecture identifies a standard set of properties common across
various types of resource adapters and EISs. A resource adapter is not required to
support a standard property if that property does not apply to its configuration.

These standard properties are defined as follows:

TABLE 17-2 Standard Properties of the Connector Architecture

Property Description

ServerName Name of the server for the EIS instance.

PortNumber Port number for establishing a connection to an EIS instance.

UserName Name of the user establishing a connection to an EIS instance.

Password Password for the user establishing a connection.

ConnectionURL URL for the EIS instance to which it connects.
17-12 J2EE Connector Architecture Specification • November 2003

In addition to these standard properties, a ManagedConnectionFactory
implementation class may support properties specific to a resource adapter and its
underlying EIS.

All properties are administered by the deployer and are not visible to an application
component provider.

The specified properties are required to be implemented as either bound or
constrained properties. Refer to the JavaBeans specification (refer to
http://java.sun.com/products/javabeans) for details on bound and
constrained properties.

In the XML deployment descriptor, any bounds or well-defined values of properties
should be described in the description element.

17.5 JNDI Configuration and Lookup
This section specifies requirements for the configuration of the JNDI environment for
a resource adapter.

In both managed and non-managed application scenarios, an application component
or application client must look up a connection factory instance in the component’s
environment using the JNDI interface. The application component then uses the
connection factory instance to get a connection to the underlying EIS. Section 6.4,
“Application Programming Model” on page 6-6 specifies the application
programming model in more detail.

The following code extract shows the JNDI lookup of a
javax.resource.cci.ConnectionFactory instance.

// Application Component/Client Code
obtain the initial JNDI context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/
env/eis/MyEIS”);

javax.resource.cci.Connection cx = cxf.getConnection();
Chapter 17 Packaging Requirements 17-13

17.5.1 Responsibilities
In both managed and non-managed environments, registration of a connection
factory instance in the JNDI namespace must use either the JNDI Reference or
Serializable mechanism.

The choice between the two JNDI mechanisms depends on:

■ Whether or not the JNDI provider being used supports a specific mechanism.
■ Whether or not the application server and resource adapter provide the necessary

support, specified in the respective requirements.
■ Constraints on the size of serialized objects that can be stored in the JNDI

namespace. The reference mechanism allows only a reference to the actual object
to be stored in the JNDI namespace. This is preferable to the serializable
mechanism, which stores the whole serialized object in the namespace.

The following section specifies the responsibilities of the roles involved in the JNDI
configuration of a resource adapter.

17.5.1.1 Deployer

The deployer is responsible for configuring connection factory instances in the JNDI
environment. The deployer should manage the JNDI namespace such that the same
programming model, as shown in Section 17.5 “JNDI Configuration and Lookup”,
for the JNDI-based connection factory lookup is supported in both managed and
non-managed environments.

17.5.1.2 Resource Adapter

The implementation class for a connection factory interface must implement both the
java.io.Serializable and javax.resource.Referenceable interfaces to
support JNDI registration.

The following code extract shows the javax.resource.Referenceable interface:

The ManagedConnectionFactory implementation class must implement the
java.io.Serializable interface.

public interface javax.resource.Referenceable
extends javax.naming.Referenceable {

public void setReference(Reference ref);
}

17-14 J2EE Connector Architecture Specification • November 2003

To support the Reference mechanism in a non-managed environment, a resource
adapter or a helper class must provide an implementation of the
javax.naming.spi.ObjectFactory interface.

17.5.1.3 Application Server

The implementation class for javax.resource.spi.ConnectionManager must
implement the java.io.Serializable interface.

An application server must provide an implementation class for the
javax.naming.spi.ObjectFactory interface to support JNDI Reference
mechanism-based connection factory lookup. The implementation of this interface is
application server-specific.

Section 17.5.3 “Scenario: Referenceable” specifies more details on Reference
mechanism-based JNDI configuration in a managed environment.

17.5.2 Scenario: Serializable
The implementation classes for both the
javax.resource.cci.ConnectionFactory and
javax.resource.spi.ManagedConnectionFactory interfaces implement the
java.io.Serializable interface.

The deployment code retrieves the configuration properties from the XML
deployment descriptor for the resource adapter. The deployment code then creates
an instance of the ManagedConnectionFactory implementation class and
configures the properties of the instance.

// Deployment Code
// Create an instance of the ManagedConnectionFactory class
com.myeis.ManagedConnectionFactoryImpl mcf =

new com.myeis.ManagedConnectionFactoryImpl();

// Set the properties of the ManagedConnectionFactory instance
// Note: Properties are defined in the implementation class and
// not in the
// javax.resource.spi.ManagedConnectionFactory interface
mcf.setServerName(“...”);
mcf.setPortNumber(“...”);
...
Chapter 17 Packaging Requirements 17-15

Note that in a non-managed environment, an application developer writes the
deployment code. In a managed environment, the deployment tool typically hides
the deployment code.

The deployment code uses the ManagedConnectionFactory instance to create a
connection factory instance. The code then registers the connection factory instance
in the JNDI namespace.

When an application component does a JNDI lookup of a connection factory
instance, the returned connection factory instance should get associated with a
configured ManagedConnectionFactory instance and a ConnectionManager
instance. The implementation class for connection factory should achieve the
association between these instances in an implementation-specific manner.

The following section illustrates JNDI configuration in a managed environment
based on the Reference mechanism. This section uses the CCI interfaces
javax.resource.cci.ConnectionFactory and
javax.resource.cci.Connection as the connection factory and connection
interfaces respectively.

// Deployment Code
// In a managed environment, create a ConnectionManager specific to
// the application server. Note that in a non-managed environment,
// ConnectionManager will be specific to the resource adapter.
com.wombatserver.ConnectionManager cm =

new com.wombatserver.ConnectionManager(...);

// Create an instance of a connection factory
Object cxf = mcf.createConnectionFactory(cm);

// Get the JNDI context
javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Bind to the JNDI namespace specifying a factory name
ctx.bind("...", cxf);
17-16 J2EE Connector Architecture Specification • November 2003

17.5.3 Scenario: Referenceable
The implementation class for the ConnectionFactory interface implements
javax.resource.Referenceable shown in the following code extract. Refer to
the JNDI specification for more details on the Referenceable interface.

The getReference method on the ConnectionFactory implementation class
must return a non-null value or throw javax.naming.NamingException.

17.5.3.1 ObjectFactory Implementation

An application server provides a class (in an application server-specific
implementation) that implements the javax.naming.spi.ObjectFactory
interface. Refer to the JNDI specification for more details on the ObjectFactory
interface.

In the ObjectFactory.getObjectInstance method, the information carried by
the Reference parameter (set in the ConnectionFactoryImpl.setReference
method) is used to lookup the property set to be configured on the target
ManagedConnectionFactory instance.

public class com.myeis.ConnectionFactoryImpl implements
javax.resource.Referenceable,
java.io.Serializable,
javax.resource.cci.ConnectionFactory {

// Reference to this ConnectionFactory
javax.naming.Reference reference;

// setReference is called by the deployment code
public void setReference(Reference ref) {

reference = ref;
}

// getReference is called by the JNDI provider during
// Context.bind
public Reference getReference() throws NamingException {

return reference;
}
...

}

Chapter 17 Packaging Requirements 17-17

The mapping from a Reference instance to multiple configured property sets
enables an application server to configure multiple ManagedConnectionFactory
instances with respective property sets. An application server maintains the property
set configuration in an implementation-specific way based on the deployment
descriptor specification.

The implementation and structure of Reference is specific to an application server.
The following code extract is an illustrative example. It illustrates an implementation
of the ObjectFactory.getObjectInstance method:

public class com.wombatserver.ApplicationServerJNDIHandler
implements javax.naming.spi.ObjectFactory {

// ...
public Object getObjectInstance(Object obj, Name name,

Context ctx, Hashtable env)
 throws Exception {

javax.naming.Reference ref =
(javax.naming.Reference)obj;

// Using the information carried by the Reference
// instance,
// (<referenceName, logicalName> in this example) lookup
// a configured property set and then configure a
// ManagedConnectionFactory instance with specified
// properties.
... // [implementation specific]
//
// For example, instantiation of the
// ManagedConnectionFactory
// class and invocation of its setter method
// can be done using the Java Reflection mechanism.

javax.resource.spi.ManagedConnectionFactory mcf = ...

// Create a Connection Manager instance specific to the
// application server
com.wombatserver.ConnectionManager cxManager = ...

// Create a connection factory instance.
// The ConnectionManager instance provided by the
// application
// server gets associated with the created
// connection factory instance
return mcf.createConnectionFactory(cxManager);

}
...

}

17-18 J2EE Connector Architecture Specification • November 2003

17.5.3.2 Deployment

The following deployment code shows the registration of a reference to a connection
factory instance in the JNDI namespace:

Note that the deployment code should be designed as generic, though the above
example does not show it that way. The code should dynamically create an instance
of a connection factory, create a Reference instance, and then set the reference.

The Context.bind method registers a Reference to the connection factory
instance in the JNDI namespace.

17.5.3.3 Scenario: Connection Factory Lookup

The following steps occur when an application component calls the method JNDI
Context.lookup to lookup a connection factory instance:

■ JNDI passes control to the application server. The ObjectFactory-
.getObjectInstance method implemented by the application server is called.

■ The application server creates a new instance of the
ManagedConnectionFactory implementation class provided by the resource
adapter.

■ The application server calls setter methods on the ManagedConnectionFactory
instance to set various configuration properties of this instance. These properties
provide information required by the ManagedConnectionFactory instance to

// Deployment Code
javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Create an instance of the connection factory
com.myeis.ConnectionFactoryImpl cf =

new com.myeis.ConnectionFactoryImpl();

// Create a reference for the ConnectionFactory instance
javax.naming.Reference ref = new javax.naming.Reference(

ConnectionFactoryImpl.class.getName(),
new javax.naming.StringRefAddr(
“<referenceName>”, “<logicalName>”),

ApplicationServerJNDIHandler.class.getName(),
null);

cf.setReference(ref);

// Bind to the JNDI namespace specifying a name for the connection
// factory
ctx.bind("...", cf);
Chapter 17 Packaging Requirements 17-19

create physical connections to the underlying EIS. The application server uses an
existing property set configured during the deployment of a resource adapter to
set the required properties of the ManagedConnectionFactory instance.

■ After the newly created ManagedConnectionFactory instance has been
configured with its properties set, the application server creates a new
ConnectionManager instance.

■ The application server calls the createConnectionFactory method of the
ManagedConnectionFactory instance, passing in the ConnectionManager
instance from the previous step, to get a ConnectionFactory instance.
17-20 J2EE Connector Architecture Specification • November 2003

■ The application server returns the connection factory instance to the JNDI
provider, so that this instance can be returned as a result of the JNDI lookup. The
application component gets the ConnectionFactory instance as a result of the
JNDI lookup.
Chapter 17 Packaging Requirements 17-21

FIGURE 17-3 OID: Lookup of a ConnectionFactory Instance from JNDI

createConnectionFactory(ConnectionManager)

Application Application
Server ManagedConnectionFactory

Resource Adapter

Component JNDI Naming
Context

Implementation
Class

lookup

JNDI passes control to the
application server

create a new instance

set properties by calling setter methods

The application server returns the
connection factory instance.
This instance is the one returned
from JNDI lookup.

Connection
Manager

create a new instance

ManagedConnectionFactory-
creates a ConnectionFactory

return ConnectionFactory

Initial configuration of the resource adapter, followed by the
application deployment

instance and returns it to the
application server

The application server maintains the configuration properties of
the ManagedConnectionFactory instance in an implementation-

specification
specific way based on the XML deployment descriptor
17-22 J2EE Connector Architecture Specification • November 2003

17.5.4 Requirements
The default configuration values for the various JavaBean classes specified in the
resource adapter deployment descriptor via the config-property element override
and take precedence over the defaults specified for the same classes by the resource
adapter developer through the JavaBean mechanism. Note, a deployer may finally
override such default configuration information while configuring the various
JavaBean instances.

17.6 Resource Adapter XML Schema
Definition
This section specifies the XML Schema Definition (XSD) for the deployment
descriptor for a resource adapter. Some of the types used in this XSD are defined in
the J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4:” on page F-1). The comments in the
XSD specify additional requirements for syntax and semantics that cannot be
specified by using the XML Schema language. Note, the description-group
element defined in j2ee_1_4.xsd allows multiple descriptions, in order to allow
specifying the same description for different locales.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.5">

 <xsd:annotation>
 <xsd:documentation>
 @(#)connector_1_5.xsds1.27 06/17/03
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

This is the XML Schema for the Connector 1.5 deployment
descriptor. The deployment descriptor must be named
Chapter 17 Packaging Requirements 17-23

"META-INF/ra.xml" in the connector’s rar file. All Connector
deployment descriptors must indicate the connector resource
adapter schema by using the J2EE namespace:

http://java.sun.com/xml/ns/j2ee

and by indicating the version of the schema by
using the version element as shown below:

 <connector xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"
 version="1.5">
 ...
 </connector>

The instance documents may indicate the published version of
the schema using the xsi:schemaLocation attribute for J2EE
namespace with the following location:

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 The following conventions apply to all J2EE
 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file’s namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the
JAR file’s namespace. In general, relative names are
preferred. The exception is .war files where absolute
names are preferred for consistency with the Servlet API.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-24 J2EE Connector Architecture Specification • November 2003

<!-- ** -->

 <xsd:element name="connector" type="j2ee:connectorType">
 <xsd:annotation>
 <xsd:documentation>

The connector element is the root element of the deployment
descriptor for the resource adapter. This element includes
general information - vendor name, resource adapter version,
icon - about the resource adapter module. It also includes
information specific to the implementation of the resource
adapter library as specified through the element
resourceadapter.

 </xsd:documentation>
 </xsd:annotation>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="activationspecType">
 <xsd:annotation>
 <xsd:documentation>

The activationspecType specifies an activation
specification. The information includes fully qualified
Java class name of an activation specification and a set of
required configuration property names.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="activationspec-class"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element activationspec-class specifies the fully
 qualified Java class name of the activation
 specification class. This class must implement the
 javax.resource.spi.ActivationSpec interface. The
 implementation of this class is required to be a

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-25

 JavaBean.

 Example:
 <activationspec-class>com.wombat.ActivationSpecImpl
 </activationspec-class>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="required-config-property"

 type="j2ee:required-config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="adminobjectType">
 <xsd:annotation>
 <xsd:documentation>

The adminobjectType specifies information about an
administered object. Administered objects are specific to a
messaging style or message provider. This contains
information on the Java type of the interface implemented by
an administered object, its Java class name and its
configuration properties.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="adminobject-interface"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element adminobject-interface specifies the
 fully qualified name of the Java type of the
 interface implemented by an administered object.

 Example:
<adminobject-interface>javax.jms.Destination

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-26 J2EE Connector Architecture Specification • November 2003

</adminobject-interface>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="adminobject-class"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element adminobject-class specifies the fully
 qualified Java class name of an administered object.

 Example:
 <adminobject-class>com.wombat.DestinationImpl
 </adminobject-class>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>

 <xsd:element name="config-property"
 type="j2ee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="authentication-mechanismType">
 <xsd:annotation>
 <xsd:documentation>

The authentication-mechanismType specifies an authentication
mechanism supported by the resource adapter. Note that this
support is for the resource adapter and not for the
underlying EIS instance. The optional description specifies
any resource adapter specific requirement for the support of
security contract and authentication mechanism.

Note that BasicPassword mechanism type should support the

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-27

javax.resource.spi.security.PasswordCredential interface.
The Kerbv5 mechanism type should support the
org.ietf.jgss.GSSCredential interface or the deprecated
javax.resource.spi.security.GenericCredential interface.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"

 type="j2ee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="authentication-mechanism-type"
 type="j2ee:xsdStringType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element authentication-mechanism-type specifies
 type of an authentication mechanism.

 The example values are:

 <authentication-mechanism-type>BasicPassword
 </authentication-mechanism-type>

 <authentication-mechanism-type>Kerbv5
 </authentication-mechanism-type>

 Any additional security mechanisms are outside the
 scope of the Connector architecture specification.

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="credential-interface"

 type="j2ee:credential-interfaceType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-property-nameType">

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-28 J2EE Connector Architecture Specification • November 2003

 <xsd:annotation>
 <xsd:documentation>

<![CDATA[

 The config-property-nameType contains the name of a
 configuration property.

 The connector architecture defines a set of well-defined
 properties all of type java.lang.String. These are as
 follows.

 ServerName
 PortNumber
 UserName
 Password
 ConnectionURL

 A resource adapter provider can extend this property set to
 include properties specific to the resource adapter and its
 underlying EIS.

 Possible values include
 ServerName
 PortNumber
 UserName
 Password
 ConnectionURL

 Example: <config-property-name>ServerName</config-property-name>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="j2ee:xsdStringType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-property-typeType">
 <xsd:annotation>
 <xsd:documentation>

<![CDATA[

 The config-property-typeType contains the fully
 qualified Java type of a configuration property.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-29

 The following are the legal values:
 java.lang.Boolean, java.lang.String, java.lang.Integer,
 java.lang.Double, java.lang.Byte, java.lang.Short,
 java.lang.Long, java.lang.Float, java.lang.Character

 Used in: config-property

 Example:
 <config-property-type>java.lang.String</config-property-type>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="j2ee:string">

<xsd:enumeration value="java.lang.Boolean"/>
<xsd:enumeration value="java.lang.String"/>
<xsd:enumeration value="java.lang.Integer"/>
<xsd:enumeration value="java.lang.Double"/>
<xsd:enumeration value="java.lang.Byte"/>
<xsd:enumeration value="java.lang.Short"/>
<xsd:enumeration value="java.lang.Long"/>
<xsd:enumeration value="java.lang.Float"/>
<xsd:enumeration value="java.lang.Character"/>

 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-propertyType">
 <xsd:annotation>
 <xsd:documentation>

The config-propertyType contains a declaration of a single
configuration property that may be used for providing
configuration information.

The declaration consists of an optional description, name,
type and an optional value of the configuration property. If
the resource adapter provider does not specify a value than
the deployer is responsible for providing a valid value for
a configuration property.

Any bounds or well-defined values of properties should be
described in the description element.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-30 J2EE Connector Architecture Specification • November 2003

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"

 type="j2ee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="config-property-name"
 type="j2ee:config-property-nameType"/>

 <xsd:element name="config-property-type"
 type="j2ee:config-property-typeType"/>

 <xsd:element name="config-property-value"
 type="j2ee:xsdStringType"
 minOccurs="0">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element config-property-value contains the value
 of a configuration entry. Note, it is possible for a
 resource adapter deployer to override this
 configuration information during deployment.

 Example:
 <config-property-value>WombatServer</config-property-value>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="connection-definitionType">
 <xsd:annotation>
 <xsd:documentation>

The connection-definitionType defines a set of connection
interfaces and classes pertaining to a particular connection
type. This also includes configurable properties for
ManagedConnectionFactory instances that may be produced out
of this set.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-31

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="managedconnectionfactory-class"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element managedconnectionfactory-class specifies
 the fully qualified name of the Java class that
 implements the
 javax.resource.spi.ManagedConnectionFactory interface.
 This Java class is provided as part of resource
 adapter’s implementation of connector architecture
 specified contracts. The implementation of this
 class is required to be a JavaBean.

 Example:
 <managedconnectionfactory-class>
 com.wombat.ManagedConnectionFactoryImpl
 </managedconnectionfactory-class>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="config-property"

 type="j2ee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="connectionfactory-interface"
 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element connectionfactory-interface specifies
 the fully qualified name of the ConnectionFactory
 interface supported by the resource adapter.

 Example:
 <connectionfactory-interface>com.wombat.ConnectionFactory
 </connectionfactory-interface>

 OR

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-32 J2EE Connector Architecture Specification • November 2003

 <connectionfactory-interface>javax.resource.cci.ConnectionFactory
 </connectionfactory-interface>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>

 <xsd:element name="connectionfactory-impl-class"
 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element connectionfactory-impl-class specifies
 the fully qualified name of the ConnectionFactory
 class that implements resource adapter
 specific ConnectionFactory interface.

 Example:

 <connectionfactory-impl-class>com.wombat.ConnectionFactoryImpl
 </connectionfactory-impl-class>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="connection-interface"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The connection-interface element specifies the fully
 qualified name of the Connection interface supported
 by the resource adapter.

 Example:

 <connection-interface>javax.resource.cci.Connection
 </connection-interface>

]]>
 </xsd:documentation>
</xsd:annotation>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-33

 </xsd:element>
 <xsd:element name="connection-impl-class"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The connection-impl-classType specifies the fully
 qualified name of the Connection class that
 implements resource adapter specific Connection
 interface. It is used by the connection-impl-class
 elements.

 Example:

 <connection-impl-class>com.wombat.ConnectionImpl
 </connection-impl-class>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="connectorType">
 <xsd:annotation>
 <xsd:documentation>

The connectorType defines a resource adapter.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:group ref="j2ee:descriptionGroup"/>
 <xsd:element name="vendor-name"

 type="j2ee:xsdStringType">
<xsd:annotation>
 <xsd:documentation>

 The element vendor-name specifies the name of
 resource adapter provider vendor.

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-34 J2EE Connector Architecture Specification • November 2003

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="eis-type"

 type="j2ee:xsdStringType">
<xsd:annotation>
 <xsd:documentation>

 The element eis-type contains information about the
 type of the EIS. For example, the type of an EIS can
 be product name of EIS independent of any version
 info.

 This helps in identifying EIS instances that can be
 used with this resource adapter.

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="resourceadapter-version"

 type="j2ee:xsdStringType">
<xsd:annotation>
 <xsd:documentation>

 The element resourceadapter-version specifies a string-based version
 of the resource adapter from the resource adapter
 provider.

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="license"

 type="j2ee:licenseType"
 minOccurs="0"/>

 <xsd:element name="resourceadapter"
 type="j2ee:resourceadapterType"/>

 </xsd:sequence>
 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"
 fixed="1.5"
 use="required">

 <xsd:annotation>
<xsd:documentation>

 The version specifies the version of the

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-35

 connector architecture specification that is
 supported by this resource adapter. This information
 enables deployer to configure the resource adapter to
 support deployment and runtime requirements of the
 corresponding connector architecture specification.

</xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="credential-interfaceType">
 <xsd:annotation>
 <xsd:documentation>

The credential-interfaceType specifies the
interface that the resource adapter implementation
supports for the representation of the
credentials. This element(s) that use this type,
i.e. credential-interface, should be used by
application server to find out the Credential
interface it should use as part of the security
contract.

The possible values are:

javax.resource.spi.security.PasswordCredential
org.ietf.jgss.GSSCredential
javax.resource.spi.security.GenericCredential

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="j2ee:fully-qualified-classType">

<xsd:enumeration
 value="javax.resource.spi.security.PasswordCredential"/>
<xsd:enumeration
 value="org.ietf.jgss.GSSCredential"/>
<xsd:enumeration
 value="javax.resource.spi.security.GenericCredential"/>

 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-36 J2EE Connector Architecture Specification • November 2003

<!-- ** -->

 <xsd:complexType name="inbound-resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

The inbound-resourceadapterType specifies information
about an inbound resource adapter. This contains information
specific to the implementation of the resource adapter
library as specified through the messageadapter element.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="messageadapter"

 type="j2ee:messageadapterType"
 minOccurs="0">
<xsd:unique name="messagelistener-type-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The messagelistener-type element content must be
 unique in the messageadapter. Several messagelisteners
 can not use the same messagelistener-type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="j2ee:messagelistener"/>
 <xsd:field xpath="j2ee:messagelistener-type"/>
</xsd:unique>

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="licenseType">
 <xsd:annotation>
 <xsd:documentation>

The licenseType specifies licensing requirements for the
resource adapter module. This type specifies whether a
license is required to deploy and use this resource adapter,
and an optional description of the licensing terms
(examples: duration of license, number of connection

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-37

restrictions). It is used by the license element.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"

 type="j2ee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="license-required"
 type="j2ee:true-falseType">
<xsd:annotation>
 <xsd:documentation>

 The element license-required specifies whether a
 license is required to deploy and use the
 resource adapter. This element must be one of
 the following, "true" or "false".

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="messageadapterType">
 <xsd:annotation>
 <xsd:documentation>

The messageadapterType specifies information about the
messaging capabilities of the resource adapter. This
contains information specific to the implementation of the
resource adapter library as specified through the
messagelistener element.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="messagelistener"

 type="j2ee:messagelistenerType"
 maxOccurs="unbounded"/>

 </xsd:sequence>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-38 J2EE Connector Architecture Specification • November 2003

 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="messagelistenerType">
 <xsd:annotation>
 <xsd:documentation>

The messagelistenerType specifies information about a
specific message listener supported by the messaging
resource adapter. It contains information on the Java type
of the message listener interface and an activation
specification.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="messagelistener-type"

 type="j2ee:fully-qualified-classType">
<xsd:annotation>
 <xsd:documentation>
 <![CDATA[

 The element messagelistener-type specifies the fully
 qualified name of the Java type of a message
 listener interface.

 Example:

<messagelistener-type>javax.jms.MessageListener
</messagelistener-type>

]]>
 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="activationspec"

 type="j2ee:activationspecType"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-39

 <xsd:complexType name="outbound-resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

The outbound-resourceadapterType specifies information about
an outbound resource adapter. The information includes fully
qualified names of classes/interfaces required as part of
the connector architecture specified contracts for
connection management, level of transaction support
provided, one or more authentication mechanisms supported
and additional required security permissions.

If there is no authentication-mechanism specified as part of
resource adapter element then the resource adapter does not
support any standard security authentication mechanisms as
part of security contract. The application server ignores
the security part of the system contracts in this case.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="connection-definition"

 type="j2ee:connection-definitionType"
 maxOccurs="unbounded"/>

 <xsd:element name="transaction-support"
 type="j2ee:transaction-supportType"/>

 <xsd:element name="authentication-mechanism"
 type="j2ee:authentication-mechanismType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="reauthentication-support"
 type="j2ee:true-falseType">
<xsd:annotation>
 <xsd:documentation>

 The element reauthentication-support specifies
 whether the resource adapter implementation supports
 re-authentication of existing Managed- Connection
 instance. Note that this information is for the
 resource adapter implementation and not for the
 underlying EIS instance. This element must have
 either a "true" or "false" value.

 </xsd:documentation>
</xsd:annotation>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-40 J2EE Connector Architecture Specification • November 2003

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="required-config-propertyType">
 <xsd:annotation>
 <xsd:documentation>

<![CDATA[

 The required-config-propertyType contains a declaration
 of a single configuration property used for specifying a
 required configuration property name. It is used
 by required-config-property elements.

 Example:

 <required-config-property>Destination</required-config-property>

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"

 type="j2ee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="config-property-name"
 type="j2ee:config-property-nameType"/>

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

The resourceadapterType specifies information about the
resource adapter. The information includes fully qualified
resource adapter Java class name, configuration properties,
information specific to the implementation of the resource
adapter library as specified through the

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-41

outbound-resourceadapter and inbound-resourceadapter
elements, and an optional set of administered objects.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="resourceadapter-class"

 type="j2ee:fully-qualified-classType"
 minOccurs="0">
<xsd:annotation>
 <xsd:documentation>

 The element resourceadapter-class specifies the
 fully qualified name of a Java class that implements
 the javax.resource.spi.ResourceAdapter
 interface. This Java class is provided as part of
 resource adapter’s implementation of connector
 architecture specified contracts. The implementation
 of this class is required to be a JavaBean.

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 <xsd:element name="config-property"

 type="j2ee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="outbound-resourceadapter"
 type="j2ee:outbound-resourceadapterType"
 minOccurs="0">
<xsd:unique name="connectionfactory-interface-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The connectionfactory-interface element content
 must be unique in the outbound-resourceadapter.
 Multiple connection-definitions can not use the
 same connectionfactory-type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="j2ee:connection-definition"/>
 <xsd:field xpath="j2ee:connectionfactory-interface"/>
</xsd:unique>

 </xsd:element>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-42 J2EE Connector Architecture Specification • November 2003

 <xsd:element name="inbound-resourceadapter"
 type="j2ee:inbound-resourceadapterType"
 minOccurs="0"/>

 <xsd:element name="adminobject"
 type="j2ee:adminobjectType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="security-permission"
 type="j2ee:security-permissionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-permissionType">
 <xsd:annotation>
 <xsd:documentation>

The security-permissionType specifies a security
permission that is required by the resource adapter code.

The security permission listed in the deployment descriptor
are ones that are different from those required by the
default permission set as specified in the connector
specification. The optional description can mention specific
reason that resource adapter requires a given security
permission.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence>
 <xsd:element name="description"

 type="j2ee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xsd:element name="security-permission-spec"
 type="j2ee:xsdStringType">
<xsd:annotation>
 <xsd:documentation>

 The element security-permission-spec specifies a security
 permission based on the Security policy file
 syntax. Refer to the following URL for Sun’s

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
Chapter 17 Packaging Requirements 17-43

 implementation of the security permission
 specification:

http://java.sun.com/products/jdk/1.4/docs/guide/security/PolicyFiles.html#File
Syntax

 </xsd:documentation>
</xsd:annotation>

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="transaction-supportType">
 <xsd:annotation>
 <xsd:documentation>

The transaction-supportType specifies the level of
transaction support provided by the resource adapter. It is
used by transaction-support elements.

The value must be one of the following:

 NoTransaction
 LocalTransaction
 XATransaction

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="j2ee:string">

<xsd:enumeration value="NoTransaction"/>
<xsd:enumeration value="LocalTransaction"/>
<xsd:enumeration value="XATransaction"/>

 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

</xsd:schema>

CODE EXAMPLE 17-1 Schema Definition for the Deployment Descriptor for a Resource Adapter
17-44 J2EE Connector Architecture Specification • November 2003

CHAPTER 18

Runtime Environment

This chapter focuses on the Java portion of a resource adapter that executes within a
Java compatible runtime environment. A Java runtime environment is provided by
an application server and its containers.

The chapter specifies the Java APIs that a J2EE-compliant application server and its
containers must make available to a resource adapter at runtime. A portable resource
adapter can rely on these APIs to be available on all J2EE-compliant application
servers.

The chapter also specifies programming restrictions imposed on a resource adapter.
These restrictions enable an application server to enforce security and manage a
runtime environment with multiple configured resource adapters.

18.1 Programming APIs
A resource adapter provider relies on a J2EE compliant application server to provide
the following APIs:

■ Java 2 SDK, Standard Edition, version 1.4 that includes the following as part of
either the core platform or standard extensions: JavaIDL, JNDI Standard
Extension, and RMI-IIOP.

■ Required APIs for Java 2 SDK, Enterprise Edition, version 1.4 as specified in the
J2EE platform specification (Section 8., “Java 2 Platform Enterprise Edition
(J2EETM), Platform specification, version 1. 4:” on page F-1), version 1.4.

■ Java Authentication and Authorization Service (JAAS) 1.0 that requires at least
Java 2 SDK, Standard Edition, version 1.3 or the Java 2 Runtime Environment
version 1.3.
18-1

18.2 Security Permissions
An application server must provide a set of security permissions for executing a
resource adapter in a managed runtime environment. A resource adapter must be
granted explicit permissions to access system resources.

Since the exact set of required security permissions for a resource adapter depends
on the overall security policy for an operational environment and the
implementation requirements of a resource adapter, the connector architecture does
not define a fixed set of permissions.
18-2 J2EE Connector Architecture Specification • November 2003

The following permission set represents the default set of security permissions that a
resource adapter should expect from an application server. These security
permissions are described in detail in the Java 2 platform documentation. Refer to
http://java.sun.com/products/jdk/1.4/docs/guide/security/permission
s.html.

TABLE 18-1 Default Security Permission Set

Security Permission Default Policy Notes

java.security.

AllPermission

deny Extreme care should be taken
before granting this permission
to a resource adapter. This
permission should only be
granted if the resource adapter
code is completely trusted and
when it is prohibitively
cumbersome to add necessary
permissions to the security
policy.

java.awt.AWTPermission deny * A resource adapter must not use
AWT code to interact with
display or input devices.

java.io.FilePermission grant read and
write <pathname>

deny rest

A
java.io.FilePermission
represents access to a file or
directory. A FilePermission
consists of a pathname and a set
of actions valid for that
pathname.
A resource adapter is granted
permission to read/write files as
specified by the pathname,
which is specific to a configured
operational environment.
It is important to consider the
implications of granting Write
permission for <<ALL
FILES>> because this grants the
resource adapter permissions to
write to the entire file system.
This can allow a malicious
resource adapter to mangle
system binaries for the JVM
environment.

java.net.NetPermission deny *
Chapter 18 Runtime Environment 18-3

java.util.

PropertyPermission

grant read
(allows
System.getProper
ty to be called)

deny rest

Granting code permission to
access certain system properties
(java.home) can potentially
give malevolent code sensitive
information about the system
environment, such as the Java
installation directory.

java.lang.reflect.Refl
ectPermission

deny *

java.lang.

RuntimePermission

deny * By default,
RuntimePermission is
denied to the resource adapter
code.
A resource adapter should
explicitly request
LoadLibrary.{libraryNam
e} to link a dynamic library. The
libraryName represents a
specific library.
A resource adapter that manages
threads must explicitly request
permission to modifyThread
through its deployment
descriptor.
A resource adapter should never
be granted exitVM permission
in a managed application server
environment.

TABLE 18-1 Default Security Permission Set

Security Permission Default Policy Notes
18-4 J2EE Connector Architecture Specification • November 2003

18.3 Requirements
A resource adapter provider must ensure that resource adapter code does not
conflict with the default security permission set. By ensuring this, a resource adapter
can be deployed and run in any application server without execution or
manageability problems.

If a resource adapter needs security permissions other than those specified in the
default set, it must describe such requirements in the XML deployment descriptor
using the security-permission element.

java.security.

SecurityPermission

deny *

java.net.

SocketPermission

grant connect *

deny rest

This represents permission to
access a network via sockets. A
SocketPermission consists
of a host specification and a set of
actions specifying ways to
connect to that host.
A resource adapter is granted
permission to connect to any host
as indicated by the wildcard *.
A resource adapter may be
granted permission to accept
connections from other hosts via
a “grant accept *”. This may
be necessary for resource
adapters that support inbound
communication.

java.security.

SerializablePermission

deny * This ensures that a resource
adapter cannot subclass
ObjectOutputStream or
ObjectInputStream to
override the default serialization
or deserialization of objects or to
substitute one object for another
during serialization or
deserialization.

TABLE 18-1 Default Security Permission Set

Security Permission Default Policy Notes
Chapter 18 Runtime Environment 18-5

A deployment descriptor-based specification of an extended permission set for a
resource adapter allows the deployer to analyze the security implications of the
extended permission set and make a deployment decision accordingly. An
application server must be capable of deploying a resource adapter with the default
permission set.

18.3.1 Example
The resource adapter implementation creates a java.net.Socket and retrieves the
hostname using the getHostName method in java.net.InetAddress.

The default SocketPermission, as specified in Table 18-1, is grant connect and
deny rest. This means that if resource adapter uses the default permission set, the
first method Socket(...) will be allowed while the second method
InetAddress.getHostName is disallowed.

The resource adapter needs to explicitly request security permission for the
InetAddress.getHostName method in the security-permission-spec element
of its XML deployment descriptor. The following is an example of allowing
additional security permissions:

TABLE 18-2 Methods and Security Permissions required

Method Security Manager Method Called Permission

java.net.Socket

Socket(...)

checkConnect({host}, {port}) java.net.SocketPermission
"{host}:{port}", "connect"

java.net.InetAddres
s

public String

getHostName()

checkConnect({host}, -1) java.net.SocketPermission
"{host}", "resolve"

<security-permission-spec>
grant {

permission java.net.SocketPermission *, "resolve";
};

</security-permission-spec>
18-6 J2EE Connector Architecture Specification • November 2003

18.4 Privileged Code
A resource adapter runs in its own protection domain as identified by its code
source and security permission set. For the resource adapter to be allowed to
perform a secured action, such as writing a file, it must have been granted
permission for that particular action.

Resource adapter code is considered system code which may require more security
permissions than the calling application component code. For example, when an
application component calls a resource adapter method to execute a function call on
the underlying EIS instance, the resource adapter code may need more security
permissions than allowed to the calling component, such as the ability to create a
thread.

The Java 2 security architecture requires that whenever a system resource access or
any secured action is attempted, all code traversed by the current execution thread
up to that point must have the necessary permissions for the system resource access,
unless some code on the thread has been marked as privileged. Refer to
http://java.sun.com/products/jdk/1.4/docs/guide/security/doprivileg
ed.html.

To support such scenarios, the resource adapter code should use the privileged
code feature in the Java security architecture. This enables the resource adapter code
to temporarily perform more secured actions than are available directly to the
application code calling the resource adapter.

18.4.1 Example
A resource adapter from Wombat Inc. packaged in the wombat.rar file contains the
following permission specification:

<security-permission>
 <security-permission-spec>
 grant {
 permission java.io.FilePermission
 "${user.home}${file.separator}trace{file.separator}-",
 "read,write,delete";
 };
 </security-permission-spec>
</security-permission>
Chapter 18 Runtime Environment 18-7

During resource adapter deployment, the application server processes this
security-permission-spec and grants the necessary permissions to the
wombat.rar code base. This is an implementation-specific mechanism and not
prescribed by the specification. As an example, the application server may append
these permissions to the java.policy file or some implementation-specific policy
file, and this may involve manual intervention.

In addition to specifying these required permissions, the resource adapter must also
use doPrivileged blocks at strategic locations in its code to prevent the permission
checking from reaching the application code or the application server code. The
doPrivileged block allows the AccessController to temporarily grant the
necessary permissions to the resource adapter code and to stop checking the rest of
the call stack. This allows the resource adapter code to be unaffected by the calling
application code’s security permission restrictions.

// application code
...
WombatConnectionFactory wcf =

(WombatConnectionFactory)
jndi.lookup("WombatConnectionFactory");
WombatConnection wc = wcf.getConnection(..);
doWork(wc); // calls into resource adapter code
// resource adapter implementation of WombatConnection
...
AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 // privileged code goes here, for example:
 File file = File.createNewFile();
 writeTraceInfoToFile(file);
 return null; // nothing to return
 }
});
18-8 J2EE Connector Architecture Specification • November 2003

CHAPTER 19

Exceptions

This chapter specifies standard exceptions that identify error conditions which may
occur as part of the connector architecture.

The connector architecture defines two classes of exceptions:

■ System Exceptions—Indicate an unexpected error condition that occurs as
part of an invocation of a method defined in the system contracts. For example,
system exceptions are used to indicate transaction management-related errors. A
system exception is targeted for handling by an application server or resource
adapter, depending on who threw the exception, and may not be reported in its
original form directly to an application component.

■ Application Exceptions—Thrown when an application component accesses
an EIS resource. For example, an application exception may indicate an error in
the execution of a function on a target EIS. These exceptions are meant to be
handled directly by an application component.

The connector architecture defines the javax.resource.ResourceException
class as the root of the system exception hierarchy. The ResourceException class
extends the java.lang.Exception class and is a checked exception.

The javax.resource.ResourceException is also the root of the application
exception hierarchy for CCI. Application level exceptions are specified in more detail
in the API documentation for CCI.

Note, an extended implementation of an exception type provided by a resource
adapter may override the getLocalizedMessage method to provide a localized
message.

19.1 ResourceException
A ResourceException provides the following information:
19-1

■ A resource adapter-specific string describing the error. This string is a standard
Java exception message and is available through the getMessage method.

■ A resource adapter-specific error code that identifies the error condition
represented by the ResourceException.

■ A reference to another exception. Often a ResourceException results from a
lower-level problem. If appropriate, a lower-level exception, such as
java.lang.Exception or any derived exception type, may be linked to a
ResourceException instance.

19.2 System Exceptions
The connector architecture requires that methods, as part of a system contract
implementation, use the checked ResourceException and other standard
exceptions derived from it to indicate system-level error conditions. Using checked
exceptions leads to a strict enforcement of the contract for throwing and catching
system exceptions and dealing with error conditions.

In addition, a method implementation may use java.lang.RuntimeException or
any derived exception to indicate runtime error conditions of varying severity levels.
Using unchecked exceptions to indicate important system-level error conditions is
not recommended for an implementation of system contracts.

If a method needs to indicate a serious error condition that it does not want the
caller to catch, the method should use java.lang.Error to indicate such
conditions. A method is not required to declare in its throws clause any subclasses of
Error that may be thrown but not caught during the execution of the method, since
these errors are abnormal conditions that should never occur.

19.2.1 Exception Hierarchy
The ResourceException represents a generic form of exception. A derived
exception represents a specific class of error conditions. This design enables the
method invocation code to catch a class of error conditions based on the exception
type and to handle error conditions appropriately.

The following exceptions are derived from ResourceException to indicate more
specific classes of system error conditions:

■ javax.resource.spi.SecurityException: A SecurityException indicates
error conditions related to the security contract between an application server and
resource adapter. The common error conditions represented by this exception are:
19-2 J2EE Connector Architecture Specification • November 2003

■ Invalid security information, represented by a Subject instance, passed across
the security contract. For example, credentials may have expired or be in an
invalid format.

■ Lack of support for a specific security mechanism in an EIS or resource
adapter.

■ Failure to create a connection to an EIS because of failed authentication or
authorization.

■ Failure to authenticate a resource principal to an EIS or failure to establish a
secure association with an underlying EIS instance.

■ Access control exception indicating that a requested access to an EIS resource
or a request to create a new connection has been denied.

■ javax.resource.spi.LocalTransactionException: A LocalTransaction-
Exception represents various error conditions related to the local transaction
management contract. The JTA specification specifies the javax.transaction-
.xa.XAException class for exceptions related to an XAResource-based
transaction management contract. The LocalTransactionException is used for
the local transaction management contract to indicate the following types of error
conditions:

■ Invalid transaction context when a transaction operation is executed. For
example, calling the LocalTransaction.commit method without an active
local transaction is an error condition.

■ Transaction is rolled back instead of being committed in the
LocalTransaction.-commit method.

■ Attempt to start a local transaction from the same thread on a
ManagedConnection instance that is already associated with an active local
transaction.

■ All resource adapter or resource manager-specific error conditions related to
local transaction management. Examples are violation of integrity constraints,
deadlock detection, communication failure during transaction completion, or
any retry requirement.

■ javax.resource.spi.ResourceAdapterInternalException: This exception
indicates all system-level error conditions related to a resource adapter. The
common error conditions indicated by this exception type are:

■ Invalid configuration of the ManagedConnectionFactory for creating a new
physical connection. An example is an invalid server name for a target EIS
instance.

■ Failure to create a physical connection to a EIS instance due to a
communication protocol error or a resource adapter implementation-specific
error.

■ Error conditions internal to a resource adapter implementation.
■ javax.resource.spi.EISSystemException: An EISSystemException is

used to indicate any EIS-specific system-level error conditions. Examples of
common error conditions are failure or inactivity of an EIS instance,
communication failure, and an EIS-specific error during the creation of a physical
connection.
Chapter 19 Exceptions 19-3

■ javax.resource.spi.ApplicationServerInternalException: This
exception is thrown by an application server to indicate error conditions specific
to an application server. Example error conditions are: errors related to an
application server configuration or implementation of mechanisms internal to an
application server, such as connection pooling and thread management.

■ javax.resource.spi.ResourceAllocationException: This exception is
thrown by an application server or resource adapter to indicate a failure to
allocate system resources, such as threads and physical connections. An example
is an error condition that results when an upper bound is reached for the
maximum number of physical connections that can be managed by an application
server-specific connection pool.

■ javax.resource.spi.IllegalStateException: This exception is thrown
from a method if the invoked code, either the resource adapter or the application
server for system contracts, is in an illegal or inappropriate state for the method
invocation.

■ javax.resource.NotSupportedException: This exception is thrown to
indicate that invoked code, either the resource adapter or the application server
for system contracts, cannot execute an operation because the operation is not a
supported feature. For example, if the transaction support level for a resource
adapter is NoTransaction, an invocation of the
ManagedConnection.getXAResource method throws a
NotSupportedException exception.

■ javax.resource.spi.CommException: This exception indicates errors related
to failed or interrupted communication with an EIS instance. Examples of
common error conditions represented by this exception type include
communication protocol errors and invalidated connections due to server failure.

■ javax.resource.spi.InvalidPropertyException: This exception is thrown
to indicate invalid configuration property settings.

■ javax.resource.spi.UnavailableException: This exception is thrown to
indicate that a service is unavailable.

19.3 Work Exceptions
These exceptions are thrown by an application server to report error conditions
related to the work management contract.

■ javax.resource.spi.work.WorkException: A common base class for all
Work processing related exceptions.

■ javax.resource.spi.work.WorkRejectedException: This exception is
thrown to indicate that a submitted Work instance has been rejected. The rejection
may be due to internal factors or start timeout expiration.

■ javax.resource.spi.work.WorkCompletedException: This exception is
thrown to indicate that a submitted Work instance has completed with an
exception.
19-4 J2EE Connector Architecture Specification • November 2003

19.4 Additional Exceptions
The JTA specification (Section 2., “Java Transaction API (JTA) specification, version
1.0.1B” on page F-1) specifies the javax.transaction.xa.XAException class for
exceptions related to the XAResource-based transaction management contract.
Chapter 19 Exceptions 19-5

19-6 J2EE Connector Architecture Specification • November 2003

CHAPTER 20

Projected Items

The following are some of the features planned for future versions of this
specification:

■ Security Inflow: This would allow an EIS to propagate a security context to the
application server to be used while accessing application components.

■ Common Client Interface: The CCI may become required as part of a future
version of the connector architecture. The CCI may also be extended to include
support for XML, type mapping, and metadata facility.
20-1

20-2 J2EE Connector Architecture Specification • November 2003

APPENDIX A

Previous Version DTDs

This appendix contains Document Type Definitions (DTDs) for Deployment
Descriptors from previous versions of the J2EE Connector Architecture specification.
All J2EE products are required to support these DTDs as well as the XML Schema
Definition specified in this version of the specification. This ensures that resource
adapters written to previous versions of this specification can be deployed on
products supporting the current version of this specification.

A.1 J2EE Connector Architecture 1.0
Resource Adapter XML DTD
This section specifies the XML DTD for the 1.0 resource adapter deployment
descriptor. The comments in the DTD specify additional requirements for syntax and
semantics that cannot be specified by the DTD mechanism.

A resource adapter, or an application server on behalf of a resource adapter, may
specify additional deployment information beyond the standard deployment
descriptor. The additional information should be stored in a separate file and should
refer to the standard deployment descriptor.

A resource adapter is not allowed to add any non-standard information into a
standard deployment descriptor.

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD

<!--
This is the XML DTD for the Connector 1.0 deployment descriptor.
All Connector 1.0 deployment descriptors must include a DOCTYPE of
the following form:
A-1

<!DOCTYPE connector PUBLIC"-//Sun Microsystems, Inc.//DTD
Connector 1.0//EN" "http://java.sun.com/dtd/connector_1_0.dtd">

-->

<!--
The following conventions apply to all J2EE deployment descriptor
elements unless indicated otherwise.

- In elements that contain PCDATA, leading and trailing whitespace
 in the data may be ignored.

- In elements whose value is an "enumerated type", the value is
case sensitive.

- In elements that specify a pathname to a file within the same
JAR file, relative filenames (i.e., those not starting with "/")
are considered relative to the root of the JAR file’s namespace.
Absolute filenames (i.e., those starting with "/") also specify

 names in the root of the JAR file’s namespace. In general,
relative
names are preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.
-->

<!--
The connector element is the root element of the deployment
descriptor
for the resource adapter. This element includes general information
- vendor
name, version, specification version supported, icon - about the
resource adapter module. It also includes information specific to
the
implementation of the resource adapter library as specified through
the element resourceadapter.
-->
<!ELEMENT connector (display-name?, description?, icon?, vendor-
name,
spec-version, eis-type, version, license?, resourceadapter>

<!--
The element authentication-mechanism specifies an authentication
mechanism
supported by the resource adapter. Note that this support is for
the resource adapter and not for the underlying EIS instance. The

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-2 J2EE Connector Architecture Specification • November 2003

optional description specifies any resource adapter specific
requirement
for the support of security contract and authentication mechanism.

Note that BasicPassword mechanism type should support the
javax.resource.spi.security.PasswordCredential interface. The
Kerbv5
mechanism type should support the
javax.resource.spi.security.Generic-
Credential interface.

Used in: resourceadapter
-->
<!ELEMENT authentication-mechanism (
description?, authentication-mechanism-type, credential-
interface)>

<!--
The element authentication-mechanism-type specifies type of an
authentication
mechanism.

The example values are:
<authentication-mechanism-type>BasicPassword
 </authentication-mechanism-type>
 <authentication-mechanism-type>Kerbv5
 </authentication-mechanism-type>

Any additional security mechanisms are outside the scope of the
Connector architecture specification.

Used in: authentication-mechanism
-->
<!ELEMENT authentication-mechanism-type (#PCDATA)>

<!--
The element config-property contains a declaration of a single
configuration property for a ManagedConnectionFactory instance.

Each ManagedConnectionFactory instance creates connections to a
specific EIS instance based on the properties configured on the
ManagedConnectionFactory instance. The configurable properties are
specified only once in the deployment descriptor, even though a
resource adapter can be used to configure multiple
ManagedConnnection-
Factory instances (that create connections to different instances
of

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-3

the same EIS).

The declaration consists of an optional description, name, type
and an optional value of the configuration property. If the
resource
adapter provider does not specify a value than the deployer is
responsible for providing a valid value for a configuration
property.

Any bounds or well-defined values of properties should be described
in the description element.

Used in: resourceadapter
-->
<!ELEMENT config-property (description?, config-property-name,
config-property-type, config-property-value?)>

<!--
The element config-property-name contains the name of a
configuration
property.

The connector architecture defines a set of well-defined properties
all of type java.lang.String. These are as follows:
 <config-property-name>ServerName</config-property-name>
 <config-property-name>PortNumber</config-property-name>
 <config-property-name>UserName</config-property-name>
 <config-property-name>Password</config-property-name>
 <config-property-name>ConnectionURL</config-property-name>

A resource adapter provider can extend this property set to include
properties specific to the resource adapter and its underlying EIS.

Used in: config-property

Example: <config-property-name>ServerName</config-property-name>
-->
<!ELEMENT config-property-name (#PCDATA)>

<!--
The element config-property-type contains the fully qualified Java
type of a configuration property as required by ManagedConnection-
Factory instance.

The following are the legal values of config-property-type:
 java.lang.Boolean, java.lang.String, java.lang.Integer,
 java.lang.Double, java.lang.Byte, java.lang.Short,

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-4 J2EE Connector Architecture Specification • November 2003

java.lang.Long, java.lang.Float, java.lang.Character

Used in: config-property

Example: <config-property-type>java.lang.String</config-property-
type>
-->
<!ELEMENT config-property-type (#PCDATA)>

<!--
The element config-property-value contains the value of a
configuration
entry.

Used in: config-property

Example: <config-property-value>WombatServer</config-property-
value>
-->
<!ELEMENT config-property-value (#PCDATA)>

<!--
The element connection-impl-class specifies the fully-qualified
name of the Connection class that implements resource adapter
specific Connection interface.

Used in: resourceadapter

Example: <connection-impl-class>com.wombat.ConnectionImpl
 </connection-impl-class>
-->
<!ELEMENT connection-impl-class (#PCDATA)>

<!--
The element connection-interface specifies the fully-qualified
name of the Connection interface supported by the resource
adapter.

Used in: resourceadapter

Example: <connection-interface>javax.resource.cci.Connection
 </connection-interface>
-->
<!ELEMENT connection-interface (#PCDATA)>

<!--

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-5

The element connectionfactory-impl-class specifies the fully-
qualified
name of the ConnectionFactory class that implements resource
adapter
specific ConnectionFactory interface.

Used in: resourceadapter

Example: <connectionfactory-impl-
class>com.wombat.ConnectionFactoryImpl
 </connectionfactory-impl-class>
-->
<!ELEMENT connectionfactory-impl-class (#PCDATA)>

<!--
The element connectionfactory-interface specifies the fully-
qualified
name of the ConnectionFactory interface supported by the resource
adapter.

Used in: resourceadapter

Example: <connectionfactory-
interface>com.wombat.ConnectionFactory
 </connectionfactory-interface>
OR
<connectionfactory-interface>javax.resource.cci.ConnectionFactory
 </connectionfactory-interface>
-->
<!ELEMENT connectionfactory-interface (#PCDATA)>

<!--
The element credential-interface specifies the interface that the
resource adapter implementation supports for the representation
of the credentials. This element should be used by application
server
to find out the Credential interface it should use as part of the
security contract.

The possible values are:
 <credential-
interface>javax.resource.spi.security.PasswordCredential
 </credential-interface>
 <credential-
interface>javax.resource.spi.security.GenericCredential
 </credential-interface>

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-6 J2EE Connector Architecture Specification • November 2003

Used in: authentication-mechanism
-->
<!ELEMENT credential-interface (#PCDATA)>

<!--
The description element is used to provide text describing the
parent
element. The description element should include any information
that
the component file producer wants to provide to the consumer of the
component file (i.e., to the Deployer). Typically, the tools used
by
the component file consumer will display the description when
processing the parent element that contains the description.

Used in: authentication-mechanism, config-property, connector,
license,
security-permission
-->
<!ELEMENT description (#PCDATA)>

<!--
The display-name element contains a short name that is intended to
be
displayed by tools. The display name need not be unique.

Used in: connector

Example:

<display-name>Employee Self Service</display-name>
-->
<!ELEMENT display-name (#PCDATA)>

<!--
The element eis-type contains information about the type of the
EIS. For example, the type of an EIS can be product name of EIS
independent of any version info.

This helps in identifying EIS instances that can be used with
this resource adapter.

Used in: connector
-->
<!ELEMENT eis-type (#PCDATA)>

<!--

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-7

The icon element contains a small icon and large icon element
which specify the URIs for a small and a large GIF or JPEG icon
image to represent the application in GUI.

Used in: connector
-->
<!ELEMENT icon (small-icon?, large-icon?)>

<!--
The large-icon element contains the name of a file containing a
large
(32 x 32) icon image. The file name is a relative path within the
component’s jar file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>
-->
<!ELEMENT large-icon (#PCDATA)>

<!--
The element license specifies licensing requirements for the
resource
adapter module. This element specifies whether a license is
required
to deploy and use this resource adapter, and an optional
description
of the licensing terms (examples: duration of license, number of
connection restrictions).

Used in: connector
-->
<!ELEMENT license (description?, license-required)>

<!--
The element license-required specifies whether a license is
required
to deploy and use the resource adapter. This element must be one of
the following:

<license-required>true</license-required>
<license-required>false</license-required>

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-8 J2EE Connector Architecture Specification • November 2003

Used in: license
-->
<!ELEMENT license-required (#PCDATA)>

<!--
The element managedconnectionfactory-class specifies the fully
qualified
name of the Java class that implements the
javax.resource.spi.Managed-
ConnectionFactory interface. This Java class is provided as part of
resource adapter’s implementation of connector architecture
specified
contracts.

Used in: resourceadapter

Example:
 <managedconnectionfactory-
class>com.wombat.ManagedConnectionFactoryImpl
 </managedconnectionfactory-class>
-->
<!ELEMENT managedconnectionfactory-class (#PCDATA)>

<!--
The element reauthentication-support specifies whether the
resource
adapter implementation supports re-authentication of existing
Managed-
Connection instance. Note that this information is for the resource
adapter implementation and not for the underlying EIS instance.

This element must be one of the following:
<reauthentication-support>true</reauthentication-support>
<reauthentication-support>false</reauthentication-support>

Used in: resourceadapter
-->
<!ELEMENT reauthentication-support (#PCDATA)>

<!--
The element resourceadapter specifies information about the
resource
adapter. The information includes fully-qualified names of
class/interfaces required as part of the connector architecture
specified contracts, level of transaction support provided,
configurable properties for ManagedConnectionFactory instances,
one or more authentication mechanisms supported and additional

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-9

required security permissions.

If there is no authentication-mechanism specified as part of
resource adapter element then the resource adapter does not
support any standard security authentication mechanisms as part
of security contract. The application server ignores the security
part of the system contracts in this case.

Used in: connector
-->

<!ELEMENT resourceadapter (
managedconnectionfactory-class, connectionfactory-interface,
connectionfactory-impl-class, connection-interface,
connection-impl-class, transaction-support, config-property*,
authentication-mechanism*, reauthentication-support, security-
permission*
)>

<!--
The element security permission specifies a security permission
that
is required by the resource adapter code.

The security permission listed in the deployment descriptor are
ones
that are different from those required by the default permission
set
as specified in the connector specification. The optional
description
can mention specific reason that resource adapter requires a given
security permission.

Used in: resourceadapter
-->
<!ELEMENT security-permission (description?, security-permission-
spec)>

<!--
The element permission-spec specifies a security permission based
on the Security policy file syntax. Refer the following URL for
Sun’s implementation of security permission specification:

http://java.sun.com/products/jdk/1.3/docs/guide/security/PolicyFi
les.html#FileSyntax

Used in: security-permission

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-10 J2EE Connector Architecture Specification • November 2003

-->
<!ELEMENT security-permission-spec (#PCDATA)>

<!--
The small-icon element contains the name of a file containing a
small
(16 x 16) icon image. The file name is a relative path within the
component’s jar file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>
-->
<!ELEMENT small-icon (#PCDATA)>

<!--
The element spec-version specifies the version of the connector
architecture specification that is supported by this resource
adapter. This information enables deployer to configure the
resource
adapter to support deployment and runtime requirements of the
corresponding connector architecture specification.

Used in: connector

Example:
 <spec-version>1.0</spec-version>
-->
<!ELEMENT spec-version (#PCDATA)>

<!--
The transaction-support element specifies the level of transaction
support provided by the resource adapter.
The value of transaction-support must be one of the following:
<transaction-support>NoTransaction</transaction-support>
 <transaction-support>LocalTransaction</transaction-support>
 <transaction-support>XATransaction</transaction-support>

Used in: resourceadapter
-->
<!ELEMENT transaction-support (#PCDATA)>

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-11

<!--
The element vendor-name specifies the name of resource adapter
provider
vendor.

Used in: connector

Example:
 <vendor-name>Wombat Corp.</vendor-name>
-->
<!ELEMENT vendor-name (#PCDATA)>

<!--
The element version specifies a string-based version of the
resource adapter from the resource adapter provider.

Used in: connector

Example:
 <version>1.0</version>
-->
<!ELEMENT version (#PCDATA)>

<!--
The ID mechanism is to allow tools that produce additional
deployment
information (i.e., information beyond the standard deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to
the
information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the
standard deployment descriptor.
-->

<!ATTLIST authentication-mechanism id ID #IMPLIED>
<!ATTLIST authentication-mechanism-type id ID #IMPLIED>
<!ATTLIST config-property id ID #IMPLIED>
<!ATTLIST config-property-name id ID #IMPLIED>
<!ATTLIST config-property-type id ID #IMPLIED>
<!ATTLIST config-property-value id ID #IMPLIED>
<!ATTLIST connection-impl-class id ID #IMPLIED>
<!ATTLIST connection-interface id ID #IMPLIED>
<!ATTLIST connectionfactory-impl-class id ID #IMPLIED>
<!ATTLIST connectionfactory-interface id ID #IMPLIED>
<!ATTLIST connector id ID #IMPLIED>

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
A-12 J2EE Connector Architecture Specification • November 2003

<!ATTLIST credential-interface id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST eis-type id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST license id ID #IMPLIED>
<!ATTLIST license-required id ID #IMPLIED>
<!ATTLIST managedconnectionfactory-class id ID #IMPLIED>
<!ATTLIST reauthentication-support id ID #IMPLIED>
<!ATTLIST resourceadapter id ID #IMPLIED>
<!ATTLIST security-permission id ID #IMPLIED>
<!ATTLIST security-permission-spec id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST spec-version id ID #IMPLIED>
<!ATTLIST transaction-support id ID #IMPLIED>
<!ATTLIST vendor-name id ID #IMPLIED>
<!ATTLIST version id ID #IMPLIED>

CODE EXAMPLE A-1 Connector Architecture 1.0 Resource Adapter DTD
Appendix A Previous Version DTDs A-13

A-14 J2EE Connector Architecture Specification • November 2003

APPENDIX B

Activation Configuration for
Message Inflow to JMS Endpoints

B.1 Introduction
The following conventions are recommended to support message inflow to a JMS
endpoint, a message-driven bean application, using a Connector API- based JMS
resource adapter. The following describes the ActivationSpec JavaBean used by a
JMS resource adapter, the mapping of an endpoint’s activation configuration
elements, specified in the endpoint deployment descriptor, to the ActivationSpec
JavaBean properties, and how to map earlier versions of the endpoint’s deployment
descriptor information to the ActivationSpec JavaBean properties. The JMS
ActivationSpec JavaBean properties should be standardized by the JMS
community.

B.2 JMS ActivationSpec JavaBean
The ActivationSpec JavaBean is used by the endpoint deployer to provide
configuration information when an endpoint is deployed and activated. JMS
providers are strongly encouraged to include the following elements in their
ActivationSpec JavaBean implementation.

The recommended properties for JMS ActivationSpec JavaBean are: destination
(required), destinationType (required), messageSelector, acknowledgeMode,
subscriptionDurability, clientId, subscriptionName.
B-1

The ActivationSpec JavaBean may contain more properties than the
recommended set, so that an endpoint deployer may configure additional properties
during endpoint deployment.

B.2.1 JMS ActivationSpec JavaBean Properties
The following is a description of the recommended set of JMS ActivationSpec
JavaBean properties:

B.2.1.1 destination

In general, a destination is a logical link between a message producer and a
consumer. A message producer produces messages addressed to a destination, and a
message consumer consumes messages from a chosen destination.

A destination could be represented by a JMS provider in different ways. For
example, it could be encapsulated as textual data (this may be specified by endpoint
developer or assembler in the endpoint deployment descriptor) or as a private object
available only at deployment time. Hence, it may not always be specified in an
endpoint deployment descriptor (since deployment descriptor entries contain textual
data only).

However, during endpoint deployment JMS ActivationSpec JavaBean requires a
value for the destination property. While configuring the JMS ActivationSpec
JavaBean, the endpoint deployer must provide a value for this property (if it is not
already present in the endpoint deployment descriptor).

It is recommended that destination be specified by a JMS resource adapter provider
as a property on the ActivationSpec JavaBean that requires a value. This can be
specified in the JMS resource adapter deployment descriptor.

The destination property value may also be an object that implements the
javax.jms.Destination interface. In such a case, the resource adapter should
provide an administered object that implements the javax.jms.Destination
interface.

B.2.1.2 destinationType

The destinationType identifies whether the specified destination is a JMS Queue or JMS
Topic. The valid values are javax.jms.Queue or javax.jms.Topic.
B-2 J2EE Connector Architecture Specification • November 2003

This property requires a value to be specified. The endpoint deployer must provide
a value for this property (if it is not already present in the endpoint deployment
descriptor). It is recommended that destinationType be specified by a JMS resource
adapter provider as a property on the ActivationSpec JavaBean that requires a
value. This can be specified in the JMS resource adapter deployment descriptor.

B.2.1.3 messageSelector

The value for a messageSelector property is a string which is used to select a subset of
the available messages. Its syntax is based on a subset of the SQL 92 conditional
expression syntax and is described in detail in JMS specification (Section 11., “Java
Message Service, version 1.1:” on page F-1). Specifying a value for the messageSelector
property on the ActivationSpec JavaBean is optional.

B.2.1.4 acknowledgeMode

The acknowledgeMode indicates how a message received by an endpoint (message-
driven bean) should be acknowledged. The EJB specification (Section 1., “Enterprise
JavaBeans (EJBTM) specification, version 2.1:” on page F-1) describes the restrictions
for message acknowledgements under different transactional modes. The valid
values are Auto-acknowledge or Dups-ok-acknowledge.

Specifying a value for the acknowledgeMode property on the ActivationSpec
JavaBean is optional. If no value is specified, Auto-acknowledge is assumed.

B.2.1.5 subscriptionDurability

This property applies only to endpoints (message-driven beans) that receive
messages published to a JMS Topic. It indicates whether messages should be
retained by the message provider while the endpoint (message-driven bean) is not
available, and subsequently delivered when the endpoint becomes available.

The valid values are Durable or NonDurable. If the value is set to Durable,
messages will be retained and redelivered by the provider. If the value is set to
NonDurable, messages will be not retained or redelivered by the provider.

Specifying a value for the subscriptionDurability property on the ActivationSpec
JavaBean is optional. If no value is specified, NonDurable is assumed.
Appendix B Activation Configuration for Message Inflow to JMS Endpoints B-3

B.2.1.6 clientId

The value specified for a clientId property is a unique identifier that identifies a client
(message consumer) within the context of a specific message provider. This is used
by the message provider for durable subscriptions, in order to uniquely identify a
client consumer and redeliver persisted messages upon client availability.

It is the responsibility of the endpoint deployer to specify a unique client identifier
in the JMS ActivationSpec JavaBean for durable JMS Topic subscriptions, that
uniquely identifies a client consumer within the context of a message provider.

Specifying a value for the clientId property on the ActivationSpec JavaBean is
required for durable JMS Topic subscriptions.

B.2.1.7 subscriptionName

This applies only to endpoints (message-driven beans) that durably subscribe to a
JMS Topic. The value for the subscriptionName property is a string that is combined
with the client identifier to uniquely identify the message consumer within the
context of a message provider.

It is the responsibility of the endpoint deployer to specify a subscription name in the
JMS ActivationSpec JavaBean for durable JMS Topic subscriptions.

Specifying a value for the subscriptionName property on the ActivationSpec
JavaBean is required for durable JMS Topic subscriptions.

B.2.2 JMS ActivationSpec JavaBean Property Values
The following is a recommended set of acceptable values for the various JMS
ActivationSpec properties.

TABLE B-1 JMS ActivationSpec JavaBean Property Values

JMS ActivationSpec property name JMS ActivationSpec property values

destinationType javax.jms.Queue or javax.jms.Topic

acknowledgeMode Auto-acknowledge (default) or Dups-ok-
acknowledge

subscriptionDurability NonDurable (default) or Durable
B-4 J2EE Connector Architecture Specification • November 2003

B.3 JMS Endpoint with EJB 2.1 Activation
Configuration Elements
EJB 2.1 specification (Section 1., “Enterprise JavaBeans (EJBTM) specification, version
2.1:” on page F-1) allows a JMS endpoint developer or assembler to specify
activation configuration elements in the endpoint deployment descriptor.

The following is a recommended set of endpoint activation configuration elements
in the endpoint deployment descriptor (EJB 2.1 style) for endpoints which
implement the javax.jms.MessageListener. Further, the mapping between each
recommended JMS endpoint activation configuration element to a corresponding
JMS ActivationSpec JavaBean property is described.

Note the one-to-one correspondence between the endpoint activation configuration
elements and the JMS ActivationSpec JavaBean property names. This allows
automatic merging of the activation configuration element values with the
corresponding entries in the JMS ActivationSpec JavaBean, while configuring the
JMS ActivationSpec JavaBean during endpoint deployment.

The JMS ActivationSpec JavaBean may contain more properties than the above
recommended set, that an endpoint deployer may configure during endpoint
deployment.

TABLE B-2 Activation Configuration Elements (EJB 2.1) and ActivationSpec JavaBean
Properties

Activation configuration elements in
endpoint deployment descriptor (EJB 2.1
style) JMS ActivationSpec properties

destination destination (required)

destinationType destinationType (required)

messageSelector messageSelector

acknowledgeMode acknowledgeMode

subscriptionDurability subscriptionDurability

clientId clientId

subscriptionName subscriptionName
Appendix B Activation Configuration for Message Inflow to JMS Endpoints B-5

B.4 JMS Endpoint with EJB 2.0 Deployment
Descriptor Elements
The EJB 2.0 specification provides endpoint deployment descriptor elements which
allows a JMS endpoint developer or assembler to specify JMS specific configuration
information in the endpoint deployment descriptor. These elements are contained in
the message-driven element as specified in the EJB 2.0 specification.

The following is a recommended mapping between relevant EJB 2.0 endpoint
deployment descriptor elements and JMS ActivationSpec JavaBean properties.

TABLE B-3 EJB 2.0 Deployment Descriptor Elements and JMS ActivationSpec
JavaBean Properties

EJB 2.0 deployment descriptor elements JMS ActivationSpec properties

destination-type destinationType

message-selector messageSelector

acknowledge-mode acknowledgeMode

subscription-durability subscriptionDurability
B-6 J2EE Connector Architecture Specification • November 2003

APPENDIX C

Caching Manager

The following section describes how the connector architecture supports caching.

This section serves as a brief introduction to the caching support in the connector
architecture. A future version of the connector architecture will address this issue in
detail.

C.1 Overview
The connector architecture provides a standard way of extending an application
manager for plugging in caching managers. A caching manager may be provided by
a third party vendor or a resource adapter provider.

A caching manager manages cached state for application components while they
access EISs across transactions.

A caching manager is provided above a resource adapter. An application component
may access a resource manager either through a caching manager (thereby
maintaining a cached state across application requests) or directly through the
resource adapter with no caching involved.

The XAResource based transaction management contract enables an external
transaction manager to control and coordinate transactions across multiple resource
managers. A caching manager (provided above the resource adapter) needs to be
synchronized relative to the transaction coordination flow (defined by the JTA
XAResource interface) on the underlying resource manager. This leads to a
requirement for a synchronization contract between the application server and
caching manager.

The connector architecture defines a standard synchronization contract between the
application server and caching manager. The caching manager uses the
synchronization notifications to manage its cached state and to flush it to the
C-1

resource adapter. The resource adapter then takes the responsibility of managing its
recoverable units of work and participates in the transaction coordination protocol
from the transaction manager.

FIGURE C-1 Synchronization Contract between Caching Manager and Application Server

The above diagram shows a caching manager layered above a resource adapter. The
contract between caching manager and resource adapter is specific to a resource
adapter.

C.2 Synchronization contract

Note – To support a caching manager as a standard extension to the application
server, additional contracts between the application server and the caching manager
are required. This version of the specification introduces only the synchronization
contract.

This section specifies the synchronization contract between the application server
and the caching manager.

Caching
Manager

Enterprise Information
System

Resource Adapter

Application Server

System Contract
Transaction Management

Transaction Manager

Synchronization Contract

Application
Contract
C-2 J2EE Connector Architecture Specification • November 2003

C.2.1 Interface
Each caching manager implements the javax.transaction.Synchronization
interface. A caching manager registers its Synchronization instance with the
application server when it is configured with the application server.

The caching manager receives synchronization notifications only for transactions
managed by an external transaction manager. In the case of transactions managed
internally by a resource manager, the resource adapter and caching manager define
their own implementation-specific mechanisms for synchronizing caches.

The Synchronization.beforeCompletion method is called prior to the start of
the two-phase commit transaction completion process. This call executes in the same
transaction context of the caller who initiated the transaction completion. The
caching manager uses this notification to flush its cached state to the resource
adapter.

The Synchronization.afterCompletion method is called after the transaction
has completed. The status of transaction completion is passed in as a parameter. The
caching manager uses this notification to do any cache cleanups if a rollback has
occurred.

C.2.2 Implementation
The caching manager must support the javax.transaction.Synchronization
interface. If the caching manager implements the Synchronization interface and
registers it with the application server, then the application server must invoke the
beforeCompletion and afterCompletion notifications.

The application server is responsible for ensuring that synchronization notifications
are delivered first to the application components (that have expressed interest in
receiving synchronization notification through their respective application
component and container-specific mechanisms) and then to the caching managers
that implement the Synchronization interface.
Appendix C Caching Manager C-3

C-4 J2EE Connector Architecture Specification • November 2003

APPENDIX D

Security Scenarios

The following section describes various scenarios for EIS integration. These
scenarios focus on security aspects of the connector architecture.

Note that these scenarios establish the requirements to be addressed by the
connector architecture. Chapter 8, “Security Architecture” and Chapter 9, “Security
Contract” specify the requirements that are supported in this version of the
specification.

A J2EE application is a multi-tier, web-enabled application that accesses EISs. It
consists of one or more application components—EJBs, JSPs, servlets—which are
deployed on containers. These containers can be one of the following:

■ Web containers that host JSP, servlets, and static HTML pages
■ EJB containers that host EJB components
■ Application client containers that host standalone application clients

In the following scenarios, the description of the architecture and security
environments are illustrative in scope.

D.1 EStore Application
Company A has an eStore application based on the J2EE platform. The eStore
application is composed of EJBs and JSP/servlets; together they collaborate to
provide the overall functionality of the application. The application also utilizes an
eStore database to store data related to product catalog;, shopping carts; customer
registration and profiles; transaction status and records; and order status.
D-1

The architecture of this application is illustrated in the following diagram:

FIGURE D-1 Illustrative Architecture of an Estore Application

D.1.1 Scenario
A customer, using a web browser, initiates an e-commerce transaction with the
eStore application. The e-commerce transaction consists of a series of customer
actions. The customer:

■ Browses the catalog
■ Makes a selection of products
■ Puts the selected products into a shopping cart
■ Enters her user name and password to initiate a secure transaction
■ Fills in order-related information
■ And, finally, places an order

In this scenario, the eStore application stores all persistent information about
customers and their transactions in a database.

D.1.2 Security Environment
To support the above interaction scenario, the system administrator configures a
unique security domain (with specific security technology and security policies) for
the eStore application. A firewall protects this security domain from unauthorized
Internet access.

Estore Application

eStore Database

Web Browser

JSP/Servlet EJB

Company A

HTTP/S

Application Security Domain EIS Security Domain

Internet
Application Server
D-2 J2EE Connector Architecture Specification • November 2003

The security domain configuration for the eStore application includes secure web
access to the eStore application. Secure web access is set up based on the
requirements specified in the J2EE specification. Note that the focus of this section is
security related to EIS integration, not on web access security. As a result, this
description ignores web access security.

The system administrator sets up a database to manage persistent data for the eStore
application. In terms of security, the database system is configured with an
independent security domain. This domain has its own set of user accounts, plus its
own security policies and mechanisms for authentication and authorization.

The system administrator (or database administrator DBA) creates a unique database
account (called EStoreUser) to handle database transactions; the database
transactions correspond to different customer-driven interactions with the eStore
application. He also sets up an additional database account (called
EStoreAdministrator) to manage the database on behalf of the eStore
administrator. This administrative account has a higher level of access privileges.

To facilitate better scaling of the eStore application, the system administrator may
choose to set the load balancing of database operations across multiple databases.
He may also partition persistent data and transactions across multiple database
accounts, based on various performance optimization criteria. These areas are out of
the scope for this document.

This scenario deals only with the simple case of a single database and a single user
account to handle all database transactions.

D.1.3 Deployment

Note – This document does not address how principal delegation happens between
the web and EJB containers. When an EJB instance acquires an EIS connection, a
caller principal is associated with the EJB instance. This document does not address
determining which caller principal is associated with the EJB instance.

During the deployment of the eStore application, the deployer sets up access control
for all authenticated customer accounts—the customer accounts that are driving e-
commerce transactions over the web—based on a single role eStoreUserRole.

The deployer configures the resource adapter with the security information that is
required for the creation of database connections. This security information is the
database account EStoreUser and its password.
Appendix D Security Scenarios D-3

The deployer sets up the resource principal for accessing the database system as
illustrated in the FIGURE D-2:

FIGURE D-2 Resource Principal for Estore Application Scenario

The deployment configuration ensures that all database access is always performed
under the security context of the database account EStoreUser.

All authenticated customers (referred to as Initiating Principal) map to a
single EStoreUser database account. The eStore application uses an
implementation-specific mechanism to tie database transactions (performed under a
single database account) to the unique identity (social security number or eStore
account ID) of the initiating principal. To ensure that database access has been
properly authorized, the eStore application also performs access control based on the
role of the initiating principal. Because all initiating principals map to a single role,
this is in effect a simple case.

This scenario describes an n-to-1 mapping. However, depending on the requirements
of an application, the deployer can set the principal mapping to be different from an
n-to-1 mapping. For example, the deployer can map each role to a single resource
principal, where a role corresponds to an initiating principal. This results in a [m
principals and n roles] to [p resource principals] mapping. When doing such
principal mapping, the deployer has to ensure not to compromise the access rights of
the mapped principals. An illustrative example is:

■ User is in administrator role: Principal EISadmin
■ User is in manager role: Principal EISmanager
■ User is in employee role: Principal EISemployee

D.2 Employee Self Service Application
Company B has developed and deployed an employee self-service (ESS) application
based on the J2EE platform. This application supports a web interface to the existing
Human Resources (HR) applications, which are supported by the ERP system from
Vendor X. The ESS application also provides additional business processes
customized to the needs of Company B.

Initiating Principal: Customer Resource Principal: Database Account
EStoreUser

EIS Security domainApplication Security domain

Maps To
D-4 J2EE Connector Architecture Specification • November 2003

The application tier is composed of EJBs and JSPs that provide the customization of
the business processes and support a company-standardized web interface. The ESS
application enables an employee (under the roles of Manager, HR manager, and
Employee) to perform various HR functions, including personal information
management, payroll management, compensation management, benefits
administration, travel management, and HR cost planning.

D.2.1 Architecture
The IS department of Company B has deployed its HR ESS application and ERP
system in a secure environment on a single physical location. Any access to the HR
application is permitted Only legal employees of the organization are permitted
access to the HR application. Access is based on the employee’s roles and access
privileges. In addition, access to the application can only be from within the
organization-wide intranet. See FIGURE D-3.

D.2.2 Security Environment
To support the various interaction scenarios related to the ESS application, the
system administrator sets up an end-to-end Kerberos-based security domain for this
application environment.

Note – The Security policies and mechanisms that are required to achieve this single
security domain are technology dependent. Refer to Kerberos V5 specification for
more details.

The system administrator configures the security environment to support single
sign-on; the user logs on only once and can then access all the services provided by
the ESS application and its underlying ERP system. Single sign-on is achieved
through the security mechanism and policies specific to the underlying security
technology, which in this case is Kerberos.
Appendix D Security Scenarios D-5

The ERP system administrator configures all legal employees as valid user accounts
in the ERP system. He also must set up various roles (Manager, HRManager, and
Employee), default passwords, and access privileges. This security information is
kept synchronized with the enterprise-wide directory service, which is used by
Kerberos to perform the initial authentication of end-users.

FIGURE D-3 Illustrative Architecture of an Employee Self-service Application

D.2.3 Deployment
During deployment of the ESS application, the deployer sets a default delegation
policy of client impersonation for EIS sign-on. In this case, the application server and
ERP system know that it is the initiating principal accessing their respective services
and they perform access control based on this knowledge. See FIGURE D-4.

FIGURE D-4 Principal Mapping

In this scenario, both the initiating principal and the resource principal refer to the
same principal. This common principal is authenticated using Kerberos and its
Kerberos credentials are valid in the security domains of both the application and
the ERP system.

The deployer sets up access control for all authenticated employees (initiating
principal) based on the configured roles—Manager, HR Manager, and Employee.

Web-enabled Application HR Applications

Web Browser

JSP/Servlet EJB

HTTP/S

ERP System X

Company B

Application Server

Kerberos based Integrated Security Domain

Initiating Principal = Resource Principal

ERP System Security domainApplication Security domain
D-6 J2EE Connector Architecture Specification • November 2003

If the ERP system does not support Kerberos, then an alternate scenario is utilized.
The deployer or application server administrator sets up an automatic mapping of
Kerberos credentials (for the initiating principal) to valid credentials (for the same
principal) in the security domain of the ERP system. Note that when the ERP system
does support Kerberos, the application server performs no credentials mapping.

D.2.4 Scenario
An employee initiates an initial login to his client desktop. He enters his username
and password. As part of this initial login, the employee (called initiating principal
C) gets authenticated with Kerberos KDC. [Refer to the details for Kerberos KDC
authentication in the Kerberos v5 specification.]

After a successful login, the employee starts using his desktop environment. He
directs his web browser to the URL for the ESS application deployed on the
application server. At this point, the initiating principal C authenticates itself to the
application server and establishes a session key with the application server.

The ESS application is set up to impersonate initiating principal C when accessing
the ERP system, which is running on another server. Though the application server
directly connects to the ERP system, access to the ERP system is requested on behalf
of the initiating principal. For this to work, principal C needs to delegate its identity
and Kerberos credential to the application server and allow the application server to
make requests to the ERP system on C’s behalf.

D.3 Integrated Purchasing Application
Company C has an integrated purchasing application that enables an employee to
use a web-based interface to perform multiple purchasing transactions. An employee
can manage the entire procurement process, from creating a purchase requisition
through invoice approval. The purchasing application also integrates with the
enterprise’s existing financial applications so that the accounting and financial
aspects of the procurement business processes can be tracked.

D.3.1 Architecture
FIGURE D-5 illustrates an architecture for this purchasing application. The application
has been developed and deployed based on the J2EE platform and is composed of
EJBs and JSPs. The EJB components provide the integration across the different
applications—the logistics application from a separate vendor (this application
Appendix D Security Scenarios D-7

provides integrated purchasing and inventory management functions) and the
financial accounting applications (the applications supported by the legacy system
from vendor Y).

Company B is a huge decentralized enterprise; its business units and departments
are geographically distributed. In this scenario, different IS departments manage
ERP system X and legacy system Y. In addition, ERP system X and legacy system Y
have been deployed at secured data centers in different geographic locations. Lastly,
the integrated purchasing application has been deployed at a geographic location
different from both ERP system X and legacy system Y.

FIGURE D-5 Illustrative Architecture of an Integrated Purchasing Application

D.3.2 Security Environment
ERP system X and legacy system Y are also in different security domains; they use
different security technologies and have their own specific security policies and
mechanisms. The integrated purchasing application is deployed in a security domain
that is different from both that of ERP system X and legacy system Y.

To support the various interaction scenarios for this integrated purchasing
application, the ERP system administrator creates a unique account
LogisticsAppUser in the ERP system. He sets up the password and specific access
rights for this account. This user account is allowed access only to the logistics
business processes that are used by the integrated purchasing application.

Purchase Requisition

Logistics Application

Web Browser

JSP/Servlet EJB

Company C

HTTP/S

Application Security Domain

ERP System X

Financial Application

Legacy System Y

Integrated Application

Application Server
D-8 J2EE Connector Architecture Specification • November 2003

Likewise, the system administrator for the legacy system creates a unique account
FinancialAppUser. He also sets up the password and specific access rights for this
account.

The application server administrator, as part of the operational environment of the
application server, configures the access to an organization-wide directory. This
directory contains security information (name, password, role, and access rights) for
all the employees in the organization. It is used for authentication and authorization
of employees accessing the purchasing application.

Due to their physical separation in this scenario, EISs X and Y are accessed over
either a secure private network or over the Internet. This requires that a secure
association be established between the application server and the EISs. A secure
association allows a component on the application server to communicate securely
with an EIS.

D.3.3 Deployment
During the deployment of this application, the deployer configures the security
information (that is, the user account LogisticsAppUser and its password)
required to create connections to the ERP system. This configuration is done using
the resource adapter for ERP system X. The deployer also configures the security
information (that is, user account FinancialAppUser and its password) required to
create connections to the legacy system Y.

The deployer configures security information in the application server to achieve the
principal mapping shown in FIGURE D-6.

FIGURE D-6 Principal Mapping

This principal mapping ensures that all connections to the ERP system are
established under the security context of LogisticsAppUser, the resource principal
for the ERP system security domain. Similarly, all connections to legacy system Y are
established under the security context of the FinancialAppUser.

Initiating Principal: Employee

Resource Principal: ERP System Account
LogisticsAppUser

ERP system Security domain

Application Security domain
Resource Principal: Legacy System Account

FinancialAppUser

Legacy System Security domain
Appendix D Security Scenarios D-9

The application server does this principal mapping for all authenticated initiating
principals (that is, employees accessing the integrated purchasing application) when
the application connects to either the ERP system or the legacy system.
D-10 J2EE Connector Architecture Specification • November 2003

APPENDIX E

JAAS Based Security Architecture

This chapter extends the security architecture specified in Chapter 8, “Security
Architecture” and Chapter 9, “Security Contract” to include support for JAAS-based
pluggable authentication. The chapter refers to the following documents:

■ White Paper on User Authentication and Authorization in Java platform:
http://java.sun.com/security/jaas/doc/jaas.html

■ JAAS 1.0 documentation

E.1 Java Authentication and Authorization
Service (JAAS)
JAAS provides a standard Java framework and programming interface that enables
applications to authenticate and enforce access controls upon users. JAAS is divided
into two parts based on the security services that it provides:

■ Pluggable Authentication: This part of the JAAS framework allows a system
administrator to plug in the appropriate authentication services to meet the
security requirements of an application environment. There is no need to modify
or recompile an existing application to support new or different authentication
services.

■ Authorization: Once authentication has successfully completed, JAAS provides
the ability to enforce access controls based upon the principals associated with an
authenticated subject. The JAAS principal-based access controls (access controls
based on who runs code) supplement the existing Java 2 code source-based access
controls (access controls based on where code came from and who signed it).
E-1

E.2 Requirements
The connector security architecture uses JAAS in two ways:

■ Security Contract: The connector security architecture uses the JAAS Subject
class as part of the security contract between an application server and a resource
adapter. Use of JAAS interfaces enables the security contract to remain
independent of specific security technologies or mechanisms. The security
contract has been specified in Section 9.2, “Requirements” on page 9-15.

■ JAAS Pluggable Authentication framework: This framework lets an application
server and its underlying authentication services remain independent from each
other. When additional EISs and new authentication services are required (or are
upgraded), they can be plugged in an application server without requiring
modifications to the application server.

The connector architecture requires that the application server and the resource
adapter must support the JAAS Subject class as part of the security contract.
However, it recommends (but does not mandate) that an application server use the
JAAS pluggable authentication framework.

The connector architecture does not require support for the authorization portion of
the JAAS framework.
E-2 J2EE Connector Architecture Specification • November 2003

E.3 Security Architecture
The following section specifies the JAAS based security architecture. The security
architecture addresses how JAAS may be used by an application server to support
authentication requirements of heterogeneous EISs.
Appendix E JAAS Based Security Architecture E-3

FIGURE E-1 Security Architecture.

Security Service
Manager

ManagedConnectionFactory

Resource Adapter

Application Server

Application Component

Enterprise Information System (EIS)

Architected contract
Implementation specific

Java Authentication And Authorization Service (JAAS)

JAAS Module JAAS Module EIS provided

ConnectionManager ConnectionFactory

JAAS Module

Security
Configuration
E-4 J2EE Connector Architecture Specification • November 2003

E.3.1 JAAS Modules
The connector architecture recommends (but does not mandate) that an application
server support platform-wide JAAS modules (also called authentication modules) for
authentication mechanisms that are common across multiple EISs. The
implementation of these JAAS modules is typically specific to an application server.
However, these modules may be developed to be reusable across application servers.

A resource adapter provider can provide a resource adapter-specific custom
implementation of a JAAS module. The connector architecture recommends that a
resource adapter provider provide a custom JAAS module when the underlying EIS
supports an authentication mechanism that is EIS specific and is not supported by
an application server.

A custom JAAS module can be packaged together with a resource adapter and can be
pluggable into an application server using the JAAS architecture.

The JAAS specification (Section 7., “Java Authentication and Authorization Service,
version 1.0:” on page F-1) specifies requirements for developing and configuring
JAAS modules.

E.3.2 Illustrative Examples: JAAS Module
It is not a goal of the connector architecture to specify a standard architecture for
JAAS modules. The following are illustrative examples of JAAS modules used
typically in the JAAS-based security architecture:

E.3.2.1 Principal Mapping Module

The application server invokes the principal mapping module passing in the
Subject instance corresponding to the caller/initiating principal. The JAAS
specification specifies the interfaces/classes and mechanisms involved in the
invocation of a JAAS module.

The principal mapping module maps a caller/initiating principal to a valid resource
principal and returns the mapped resource principal as part of a Subject instance.
The authentication data (example, password) for the mapped resource principal is
added to the Subject’s credentials. The authentication data is used later to
authenticate the resource principal to the underlying EIS.

A special case of the principal mapping module takes a null Subject as an input
parameter and forms a Subject instance with a valid resource principal and
authentication data. This is the case of default principal mapping.
Appendix E JAAS Based Security Architecture E-5

The principal mapping module achieves its mapping functionality by using security
information configured in the application server or an enterprise directory.

The principal mapping module does not authenticate a resource principal and is
configured to perform only principal mapping. The authentication of a mapped
resource principal is performed separately by an authentication mechanism-specific
JAAS module.

E.3.2.2 Credential Mapping Module

The credential mapping module automatically maps credentials from one
authentication domain to those in a different target authentication domain. For
example, an application server can provide a module that maps the public key
certificate-based credential associated with a principal to a Kerberos credential.

The credentials mapping module can use the JAAS callback mechanism (note that
this involves no user-interface based interaction) to get authentication data from the
application server. The authentication data is used to authenticate the principal to
the target authentication domain during the credentials mapping. This module can
also use an enterprise directory to get security information or pre-configured
mapped credentials.

E.3.2.3 Kerberos Module

This type of JAAS module supports Kerberos-based authentication for a principal. A
sample Kerberos module supports:

■ Getting a TGT (ticket granting ticket) to the Kerberos server in the local domain.
The TGT is created by the KDC. The TGT is placed on the credentials structure for
a principal.

■ Delegation of authentication based on either a forwardable or proxy mechanism
as specified in the Kerberos specification.

0.1 Generic Security Service API: GSS-API

The GSS-API is a standard API that provides security services to caller applications
in a generic fashion. These security services include authentication, authorization,
principal delegation, secure association establishment, per-message confidentiality,
and integrity. These services can be supported by a wide range of security
mechanisms and technologies. However, an application using GSS-API accesses these
services in a generic mechanism-independent fashion and achieves source-level
portability.

In the context of the connector architecture, a resource adapter uses GSS-API to
establish a secure association with the underlying EIS. The use of the GSS
mechanism by a resource adapter is typical in the following scenarios:
E-6 J2EE Connector Architecture Specification • November 2003

■ The EIS supports Kerberos as a third-party authentication service and uses GSS-
API as a generic API for accessing security services.

■ The resource adapter and EIS need data integrity and confidentiality services
during their communication over insecure links.

The GSS-API has been implemented over a range of security mechanisms, including
Kerberos V5. See Section 6., “Java Specification Request: Generic Security Service
API (GSS-API), Java bindings:” on page F-1 for a Java binding of GSS-API.

Note – The connector architecture does not require a resource adapter to use GSS-
API.

E.4 Security Configuration
During deployment of a resource adapter, the deployer is responsible for configuring
JAAS modules in the operational environment. The configuration of JAAS modules is
based on the security requirements specified by a resource adapter in its deployment
descriptor. Refer to Section 17.5.4, “Requirements” on page 17-23.

The element authentication-mechanism in the deployment descriptor specifies
an authentication mechanism supported by a resource adapter. The standard types
of authentication mechanisms are: BasicPassword and Kerbv5. For example, if a
resource adapter specifies support for kerbv5 authentication mechanism, the
deployer configures a Kerberos JAAS module in the operational environment.

E.4.1 JAAS Configuration
The deployer sets up the configuration of JAAS modules based on the JAAS-specified
mechanism. Refer to javax.security.auth.login.Configuration specification
for more details. The JAAS configuration includes the following information on a per
resource adapter basis:

■ One or more authentication modules used to authenticate a resource principal.
■ The order in which authentication modules need to invoked during a stacked

authentication.
■ The flag value controlling authentication semantics if stacked modules are

invoked.

The format for the above configuration is specific to an application server
implementation.
Appendix E JAAS Based Security Architecture E-7

E.5 Scenarios
The following section illustrates security scenarios for JAAS based security
architecture.

E.5.1 Scenario: Resource Adapter Managed
Authentication
This scenario enables the connector architecture to support EIS specific username
and pasword-based authentication. It involves the following steps:

■ The application component invokes connection request method on the resource
adapter without passing in any security arguments. The resource adapter passes
the connection request to the application server.

■ During the deployment of the resource adapter, the application server is
configured to use a principal mapping module. This principal mapping module
takes a Subject instance with the caller principal and returns a Subject instance
with a valid resource principal and PasswordCredential instance. The
PasswordCredential has the password for authentication of the resource
principal.
E-8 J2EE Connector Architecture Specification • November 2003

■ The application server calls LoginContext.login method. On a successful
return from the principal mapping module, the application server gets a Subject
instance that has the mapped resource principal with a valid
PasswordCredential.

FIGURE E-2 Resource Adapter-Managed Authentication

■ The application server invokes the method ManagedConnectionFactory.
create-ManagedConnection passing in a non-null Subject instance. The
Subject instance carries the resource principal and its corresponding
PasswordCredential, which holds the user name and password.

■ The resource adapter extracts the user name and password from the Password-
Credential instance. The resource adapter uses the getter methods
(getPrivateCredentials method) defined on the Subject interface to extract
the PasswordCredential instance.

■ The resource adapter uses username and password information (extracted from
the PasswordCredential instance) to authenticate the resource principal to the
EIS. The authentication happens during the creation of the connection through an
authentication mechanism specific to the underlying EIS.

Application Server

Resource Adapter

Security
Contract

EIS

Security
Configuration

[resource

[caller
principal]

principal]

JAAS Framework

Principal Mapping
JAAS Module
Appendix E JAAS Based Security Architecture E-9

E.5.2 Scenario: Kerberos and Principal Delegation
The scenario in FIGURE E-3 involves the following steps:

FIGURE E-3 Kerberos Authentication with Principal Delegation

■ The initiating principal has already authenticated itself to the application server
using Kerberos. The initiating principal has a service ticket for the application
server and a TGT (ticket granting ticket issued by the KDC) as part of its Kerberos
based credentials.

■ In this scenario, the application server is configured to impersonate the initiating
principal when connecting to the EIS instance. So even though application server
is directly connecting to the EIS, access to the EIS is being requested on behalf of
the initiating principal. The initiating principal needs to pass its identity to the
application server and allow the application server to make requests to the EIS on
behalf of the initiating principal. The above is achieved through delegation of
authentication.

■ The application server calls the method
ManagedConnectionFactory.createManaged-Connection by passing in a
Subject instance with the initiating principal and its Kerberos credentials. The
credentials contain a Kerberos TGT and are represented through the
GSSCredential interface.

■ The resource adapter extracts the resource principal and its Kerberos credentials
from the Subject instance.

■ The resource adapter creates a new physical connection to the EIS.
■ If the resource adapter and EIS support GSS-API for establishing a secure

association, the resource adapter uses the Kerberos credentials based on the GSS
mechanism as follows. For details, see GSS-API specification:

Application Server

Resource Adapter

Security
Contract

GSS-Provider
<Kerberos>

GSS GSS

EIS B

Security
Configuration

GSS-API
E-10 J2EE Connector Architecture Specification • November 2003

■ resource adapter calls GSS_Acquire_cred method to acquire cred_handle in
order to reference the credentials for establishing the shared security context.

■ resource adapter calls the GSS_Init_sec_context method. The method
GSS_Init_sec_context yields a service ticket to the requested EIS service
with the corresponding session key.

Note – The mechanism and representation through which Kerberos credentials are
shared across the underlying JAAS module and GSS provider is beyond the scope of
the connector architecture.

■ After success, GSS_Init_sec_context builds a specific Kerberos-formatted
message and returns it as an output token. The resource adapter sends the
output token to the EIS instance.

■ EIS service passes the received token to the GSS_Accept_sec_context
method.

■ Resource adapter and EIS now hold the shared security context (so have
established a secure association) in the form of a session key associated with
the service ticket. They can now use the session key in the subsequent per-
message methods: GSS-GetMIC, GSS_VerifyMIC, GSS_Wrap, GSS_Unwrap.

■ If the resource adapter and EIS fail to establish a secure association, the resource
adapter cannot use the physical connection as a valid connection to the EIS
instance. The resource adapter returns a security exception on the
createManagedConnection method.
Appendix E JAAS Based Security Architecture E-11

E.5.3 Scenario: GSS-API
If an EIS supports the GSS mechanism, a resource adapter may (but is not required
to) use GSS-API to set up a secure association with the EIS instance. (See FIGURE E-4.)
The section Generic Security Service API: GSS-API on page 6 gives a brief overview
of GSS-API.

FIGURE E-4 GSS-API use by Resource Adapter

A formal specification of the use of GSS-API by a resource adapter is beyond the
scope of the connector architecture. However, GSS-API has been mentioned as a
possible implementation option for a resource adapter that has the GSS mechanism
supported by its underlying EIS.

Resource Adapter

Security
Contract

GSS-Provider
<Kerberos>

GSS GSS

EIS B

GSS-API

[resource
principal]
E-12 J2EE Connector Architecture Specification • November 2003

E.5.4 Scenario: Kerberos Authentication After Principal
Mapping
The scenario depicted in FIGURE E-5 involves the following steps:

FIGURE E-5 Kerberos Authentication After Principal Mapping

■ The application server is configured to use the principal mapping module and
Kerberos module. The two authentication modules are stacked together with the
principal mapping module first.

■ The application server creates a LoginContext instance by passing in the
Subject instance for the caller principal and a CallbackHandler instance. Next,
the application server calls the login method on the LoginContext instance.

■ The principal mapping module takes a Subject instance with caller principal
and returns a Subject instance with a valid resource principal and Kerberos-
based authentication data. The principal mapping module does not authenticate
the resource principal; it does only principal mapping to find the mapped
resource principal and its authentication data.

■ Next, the Kerberos module (called after the principal mapping module) uses the
resource principal and its authentication data to authenticate the resource
principal. The Kerberos module leads to a valid TGT for the Kerberos domain
supported by the EIS. The TGT is contained in the Kerberos credentials
represented through the GSSCredential interface.

■ The application server calls the method ManagedConnectionFactory.create-
ManagedConnection passing in a Subject instance with the resource principal
and its Kerberos credentials.

■ The remaining steps are the same as in the previous scenario, Section E.5.2,
“Scenario: Kerberos and Principal Delegation” on page E-10

Application Server

Resource Adapter

JAAS Framework

JAAS Module

Security
Contract

<Kerberos>
GSS-Provider
<Kerberos>

GSS GSS

EIS B

Security
Configuration

GSS-API

<Principal Mapping>
JAAS Module
Appendix E JAAS Based Security Architecture E-13

E.5.5 Scenario: EIS-Specific Authentication
FIGURE E-6 Authentication Through EIS-Specific JAAS Module

The scenario in FIGURE E-6 involves the following steps:

■ During the configuration of a resource adapter, the application server is
configured to use an EIS-specific JAAS module for authentication to the
underlying EIS.

The configured JAAS module supports an authentication mechanism specific to
the EIS. The application server is responsibility for managing the authentication
data and JAAS configuration.

■ The application server gets a request from the application component to create a
new physical connection to the EIS. Creating a new physical connection requires
the resource principal to authenticate itself to the underlying EIS instance.

■ The application server initiates the authentication of the resource principal. It
creates a LoginContext instance by passing in the Subject instance and a
CallbackHandler instance. Next, the application server calls the login method
on the LoginContext instance.

■ The JAAS module authenticates the resource principal to the underlying EIS. It
uses the callback handler provided by the application server to get the
authentication data.

■ The application server invokes the method ManagedConnectionFactory.
create-ManagedConnection passing in the Subject instance with the
authenticated resource principal and its credential.

Application Server

Resource Adapter

JAAS Framework

JAAS Module

Security
Contract

<EIS A>

EIS A

Security
Configuration

EIS specific Authentication
protocol
E-14 J2EE Connector Architecture Specification • November 2003

■ The resource adapter extracts the credential (associated with the Subject
instance) for the resource principal using the getter methods defined on the
Subject interface. The resource adapter uses this credential to create a
connection to the underlying EIS.

In this scenario, authenticating a resource principal (initiated by the application
server and performed by the JAAS module) is separate from creating a connection to
the EIS. The resource adapter uses the credential of the resource principal to create a
connection to the EIS. This connection creation can involve further authentication.

After successfully creating a connection to the EIS, the resource adapter returns the
newly created connection from the method
ManagedConnectionFactory.createManagedConnection.
Appendix E JAAS Based Security Architecture E-15

E-16 J2EE Connector Architecture Specification • November 2003

APPENDIX F

Related Documents

1. Enterprise JavaBeans (EJBTM) specification, version 2.1:

http://java.sun.com/products/ejb/

2. Java Transaction API (JTA) specification, version 1.0.1B

http://java.sun.com/products/jta/

3. JDBC API specification, version 3.0

http://java.sun.com/products/jdbc/

4. X/Open CAE Specification -- Distributed Transaction Processing: the XA
specification, X/Open document

5. RFC: Generic Security Service API (GSS-API) specification, version 2:

http://www.ietf.org/rfc/rfc2078.txt

6. Java Specification Request: Generic Security Service API (GSS-API), Java bindings:

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_072_gss.html

7. Java Authentication and Authorization Service, version 1.0:

http://java.sun.com/products/jaas/

8. Java 2 Platform Enterprise Edition (J2EETM), Platform specification, version 1. 4:

http://java.sun.com/j2ee/

9. Java Server Pages (JSP) specification, version 1.3:

http://java.sun.com/products/jsp/

10. Java Servlet specification, version 2.4:

http://java.sun.com/products/servlet/

11. Java Message Service, version 1.1:

http://java.sun.com/products/jms/

12. Java 2 Platform, Standard Edition (J2SETM), API specification, version 1.4:
F-1

http://java.sun.com/j2se/1.4/docs/api/

13. J2EETM Deployment API Specification

http://java.sun.com/j2ee/tools/deployment/index.html

14. JavaBeansTM Specification 1.01 Final Release

http://java.sun.com/products/javabeans
F-2 J2EE Connector Architecture Specification • November 2003

APPENDIX G

Change History for Version 1.0

G.1 Version 0.9
■ Editorial run through the document
■ Added section 1.4 on relationship between JDBC and Connector architecture
■ Added scenario on B2B in the chapter 4
■ Added java.io.Serializable to the code specification of interfaces that are required

to support Serializable interface
■ Added clarifications in the chapter 5 based on the expert comments. The changes

are marked by change bars.
■ Added equals and hashCode methods to interface ConnectionRequestInfo
■ Added section 6.8 on Connection Association
■ Added clarifications to the chapter 7. Did minor restructuring of the chapter

based on review comments. The changes are marked by change bars.
■ Added clarifications to the chapter 8 based on expert comments
■ Changed few details and added clarifications in the chapter 9 based on the review

comments. The changes are marked by change bars.
■ Added more description for packaging and deployment in the chapter 10
■ Clarified version dependencies in the chapter 11
■ Introduced interface javax.resource.Referenceable for the standard setReference

method
■ Removed scenarios on Credentials Mapping and Single sign-on from Appendix C.

Updated scenario C.6.2 to refer GSS-API.
G-1

G.2 Version 1.0 - Public Draft 1
■ Removed definition of "Connector" from 2.1. The term Connector is now used

broadly refer to the Connector architecture, while resource adapter refers to the
system library.

■ Added requirement for ConnectionEventListener to 6.9.2: Application Server
■ Added connection handle property to the ConnectionEvent, section 5.5.7
■ Introduced getResultSetInfo method in the Connection interface
■ Added "Administered Object" in the section 9.6.2
■ Added more details to section "Auto Commit" in 9.5.2
■ Introduced separate interface for ResultSetInfo in the section 9.10.3
■ Changed specification of element config-property-type in section 10.6
■ Added an example to illustrate security permission specification in the section

11.3
■ Added CCI related information to Projected Items, chapter 12

G.3 Version 1.0 - Public Draft 2
■ Section 5.5.1: Change based on introduction of ConnectionSpec interface
■ Section 5.5.1: Added clarification to ConnectionRequestInfo section
■ Section 5.5.4: Added clarification to section on "Cleanup of ManagedConnection"
■ Section 5.5.6: Added clarification to paragraph after the interface for

ConnectionEventListener
■ Section 5.9.1: Added clarification to description of the scenario
■ Section 6.8: Moved earlier section "Details on Local transaction" ahead of

connection sharing section and renamed it "Scenarios: Local Transaction
Management". No change in any content.

■ Section 6.9: Added more details on connection sharing based on the changes in
EJB 2.0 and J2EE 1.3 platform specification.

■ Section 6.10: Added this section to clarify local transaction optimization. This is
based on changes in EJB 2.0 and J2EE 1.3 platform specification.

■ Section 6.11: Made a new section on "Scenarios: Connection sharing". No change
in content.

■ Section 6.12: Added clarifications and requirements in the section on "Connection
Association"

■ Section 6.13.2: Moved requirements on connection sharing to section 6.9
■ Section 7.4.2: Code sample changed to reflect ConnectionSpec usage
■ Section 9.5.1: Changed getConnection(Map) to getConnection(ConnectionSpec)

and added clarifications.
■ Section 9.5.2: Introduced a section on ConnectionSpec
G-2 J2EE Connector Architecture Specification • November 2003

■ Section 9.7.2: Added methods to ResourceAdapterMetaData interface. Added
description of these methods.

■ Section 9.9.1: Record, MappedRecord and IndexedRecord now extend Serializable
interface.

■ Section 9.10: Added note on JDBC semantics in relation to CCI ResultSet
■ Section 9.10.3: Added note on ResultSetInfo implementation requirements
■ Section 10.6: Change to auth-mechanism specification in DTD. Removed + from

credential-interface.
■ Figure 29: Added clarifications for the diagram
■ Section 8.3: Clarified security contract requirements for the application server
■ Section 9.5.1: Moved method getRecordFactory from Interaction to

ConnectionFactory. Note that it is not necessary to have an active connection to
create generic record instances.

G.4 Version 1.0 - Proposed Final Draft 2
■ Reviewed requirements in terms of compliance testing. marked with change bars

in the document
■ Fixed documentation errors
■ System Contracts:

■ Section 5.5.4: Clarified requirements for the method
matchManagedConnections on ManagedConnectionFactory interface

■ Section 6.9: Made requirements for connection sharing consistent with J2EE 1.3
platform specification

■ Section 6.10: Added specification of requirements for different transaction
scenarios. Added illustrative scenarios

■ Section 6.11: Removed a transaction scenario that illustrated connection sharing
■ Section 6.11: Clarified requirements for connection association

■ Common Client Interface:

■ Removed setLogWriter, getLogWriter, setTimeout, getTimeout methods
from ConnectionFactory interface

■ Added description for exceptions in Java docs for the CCI interfaces. Note that
no new exception has been introduced

■ ConnectionFactory implementation class required to provide a default
constructor

■ Added clarifications; marked by change bars
■ Deployment and Packaging:

■ Section 10.2: Clarified requirements for packaging and deployment of a
resource adapter

■ DTD changes based on a review of DTDs for various J2EE specifications:

■ Ordered elements alphabetically except the root element
■ <display-name> changed to optional in <connector> element
Appendix G Change History for Version 1.0 G-3

■ Used common elements from other DTDs: <description>, <small-icon>,
<large-icon>

■ Used common header comments across all J2EE DTDs
■ <auth-mechanism> changed to <authentication-mechanism>
■ <auth-mech-type> changed to <authentication-mechanism-type>
■ Added java.lang.Character to <config-property-type>:
■ Changed defined values in <authentication-mechanism-type>: basic-

password to BasicPassword, kerbv5 to Kerbv5
■ Changed defined values in <transaction-support> element:

no_transaction to NoTransaction, local_transaction to
LocalTransaction, xa_transaction to XATransaction

G.5 Version 1.0 - Final Release
■ Clarification on reauthentication in the section 8.2.7
■ Change in auto-commit in section 9.5.3. Removed set/getAutoCommit methods

from the Connection interface
G-4 J2EE Connector Architecture Specification • November 2003

APPENDIX H

Change History for Version 1.5

H.1 Public Review Draft
■ some minor clarifications to sections 5.3.1, 5.3.4, 5.3.5
■ some minor clarifications to section 10.3
■ added chapter 11: Inbound communication
■ added chapter 13: EJB invocation
■ section 12.3
■ added method release on Endpoint interface
■ added method getXAResources on ResourceAdapter interface
■ updated section 12.5.1 to illustrate XAResource implementation
■ added section 12.5.2: Message redelivery upon crash recovery
■ section 12.5.6: added an application server requirement to set thread context class

loader
■ section 12.7: updated the JMS use case to comply with the Connector 1.5 XSD
■ updated section 16.2: application server requirements
■ some minor clarifications to sections 17.4.1, 17.4.2
■ section 17.6 Converted Connector 1.5 DTD to Connector 1.5 XSD
■ added Appendix B: Activation Configuration for Message Inflow to JMS

endpoints

H.2 Proposed Final Draft
■ Section 7.9: connection sharing requirements have been updated.
■ Section 9.2.3: GenericCredential interface has been deprecated.
■ Section 9.3: added a resource adapter requirement to throw a

SecurityException if the authentication information provided is erroneous.
H-1

■ Section 10.3.1: clarified use of synchronized blocks within a Work implementation.
■ Section 12.3: a new method parameter java.lang.reflect.Method has been

added to beforeDelivery and isDeliveryTransacted methods.
■ Section 12.4.2: added separate sections to describe ActivationSpec JavaBean

and Administered objects.
■ Section 12.4.9: clarified multiple endpoint activations
■ Section 12.4.7: this new section describes the structure of a message listener

interface.
■ Section 12.5.2: clarified crash recovery processing
■ Section 12.7.2: updated the sample code to use JMS 1.1 style generic APIs.
■ Section 16.2: removed application client container requirements for supporting

connector contracts.
■ Section 17.2: added description of RAR file contents.
■ Section 17.6: updated Connector 1.5 XSD - resourceadapter-class element has

been made optional, and config-property element has been added to
adminobject element.

■ Section 18.4: added an example to illustrate usage of doPrivileged blocks in
resource adapter code.

■ Section 19.2: added InvalidPropertyException and
UnavailableException to the exception list.

■ Appendix B: added descriptions to the various ActivationSpec JavaBean
properties.

■ Appendix F: updated links to related documents.

H.3 Proposed Final Draft 2
■ Section 6.5.2: clarifications on ConnectionManager requirements.
■ Section 7.9.1: this new section describes how a resource adapter may detect and

report sharing violations.
■ Section 7.13.1: added description to clarify the auto-commit behavior of

transactional resource adapters.
■ Section 7.14: this new section describes two optional connection optimizations.
■ Section 12.5.6: clarified that the message delivery must not rely on the class loader

that is associated with the java.lang.reflect.Method object parameter.
■ Section 12.5.8: clarified the usage of source managed transactions.
■ Section 14.4.4: clarified the requirements on transaction inflow contracts.
■ Section 17.6: XSD modification: The contents of the connectionfactory-

interface element must be unique in the outbound-resourceadapter.
H-2 J2EE Connector Architecture Specification • November 2003

H.4 Final Release
■ Section 5.3.1: clarification on the behavior of start method call.
■ Section 5.3.2: ResourceAdapterAssociation interface.
■ Section 5.3.4.1, 5.3.4.2: clarifications on resource adapter shutdown.
■ Section 6.4.1: fifth bullet item, clarification on access to application JNDI context.
■ Section 6.5.3: ValidatingManagedConnectionFactory interface.
■ Section 6.5.4: clarifications on connection sharing and multiple connection

handles.
■ Section 6.5.6: clarifications on event listener mechanism.
■ Section 7.7.2: clarifications on local transaction events and implicit transaction

begin.
■ Section 7.9: SharingViolationException, and clarification on non-

transactional resource adapters.
■ Section 7.9.1: clarifications on sharing violation detection.
■ Section 9.1.8.2: clarifications on security options A, B and C.
■ Section 10.3: numeric string values for WorkException error code values.
■ Section 10.3.1: clarification on access to JNDI context from Work objects.
■ Section 10.3.7: createTimer method throws UnavailableException.
■ Section 12.4.2.2: clarifications on required configuration properties on

ActivationSpec JavaBean, and JMS ActivationSpec JavaBean.
■ Section 12.4.2.4: clarifications on configuring administered objects.
■ Section 12.3: changes to endpointActivation, beforeDelivery,

afterDelivery and isDeliveryTransacted method signatures.
■ Section 12.4.4: clarifications on message delivery during endpoint activation.
■ Section 12.4.4: clarifications on endpointDeactivation method.
■ Section 12.4.6: clarifications on contract between deployment tool and application

server.
■ Section 12.5.6: description of IllegalStateException thrown by

beforeDelivery and afterDelivery method calls.
■ Section 12.5.8: clarifications on use of transaction inflow.
■ Section 15.8: service endpoint javax.resource.cci.MessageListener

interface.
■ Section 16.2: Table 16-1, updates to column corresponding to lifecycle

management.
■ Section 16.3: JavaBean requirements.
■ Section 16.4: Equality constrains.
■ Section 17.5.3: clarifications on getReference method.
■ All exception classes have been provided constructors that have a cause param.
■ Section 17.6: XSD modifications: vendor-name has been assigned a string type,

security-permission has been moved one level up such that the permissions
apply to the whole resource adapter code, deployment-extension element has
been removed, indentations have been reformatted to follow standard XML
conventions.
Appendix H Change History for Version 1.5 H-3

H-4 J2EE Connector Architecture Specification • November 2003

	Contents
	Tables
	Figures
	Code Samples
	1. Introduction
	1.1 Overview
	1.2 Scope
	1.3 Target Audience
	1.4 JDBC and Connector Architecture
	1.5 Organization
	1.6 Document Convention
	1.7 Connector Architecture Expert Group for Version 1.5 (JSR-112)
	1.8 Acknowledgements for Version 1.5
	1.9 Connector Architecture Expert Group for Version 1.0 (JSR-16)
	1.10 Acknowledgements for Version 1.0

	2. Overview
	2.1 Definitions
	2.1.1 Enterprise Information System (EIS)
	2.1.2 Connector Architecture
	2.1.3 EIS Resource
	2.1.4 Resource Manager (RM)
	2.1.5 Managed Environment
	2.1.6 Non-Managed Environment
	2.1.7 Connection
	2.1.8 Application Component
	2.1.9 Container

	2.2 Rationale
	2.2.1 System Contracts
	2.2.2 Common Client Interface

	2.3 Goals

	3. The Connector Architecture
	3.1 System Contracts
	3.2 Client API
	3.3 Requirements
	3.4 Non-Managed Environment

	4. Roles and Scenarios
	4.1 Roles
	4.1.1 Resource Adapter Provider
	4.1.2 Application Server Vendor
	4.1.3 Container Provider
	4.1.4 Application Component Provider
	4.1.5 Enterprise Tools Vendors
	4.1.6 Application Assembler
	4.1.7 Deployer
	4.1.8 System Administrator

	4.2 Scenario: Integrated Purchase Order System
	4.3 Scenario: Business Integration

	5. Lifecycle Management
	5.1 Overview
	5.2 Goals
	5.3 Lifecycle Management Model
	5.3.1 ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance
	5.3.2 ManagedConnectionFactory JavaBean and Outbound Communication
	5.3.3 ActivationSpec JavaBean and Inbound Communication
	5.3.4 Resource Adapter Shutdown Procedure
	5.3.4.1 Phase One
	5.3.4.2 Phase Two

	5.3.5 Requirements
	5.3.6 Resource Adapter Implementation Guidelines
	5.3.7 JavaBean Configuration and Deployment
	5.3.7.1 ResourceAdapter JavaBean instance Configuration
	5.3.7.2 Resource Adapter Deployment
	5.3.7.3 ManagedConnectionFactory JavaBean Instance Configuration
	5.3.7.4 ActivationSpec JavaBean instance Configuration
	5.3.7.5 Resource Adapter Implementation Guidelines

	5.3.8 Lifecycle Management In A Non-Managed Environment
	5.3.9 A Sample Resource Adapter Implementation

	6. Connection Management
	6.1 Overview
	6.2 Goals
	6.3 Architecture: Connection Management
	6.3.1 Overview: Managed Application Scenario

	6.4 Application Programming Model
	6.4.1 Managed Application Scenario
	6.4.2 Non-managed Application Scenario

	6.5 Interface/Class Specification
	6.5.1 ConnectionFactory and Connection
	6.5.1.1 Requirements
	6.5.1.2 ConnectionRequestInfo
	6.5.1.3 Additional Requirements

	6.5.2 ConnectionManager
	6.5.2.1 Interface
	6.5.2.2 Requirements

	6.5.3 ManagedConnectionFactory
	6.5.3.1 Interface
	6.5.3.2 Requirements
	6.5.3.3 Connection Pool Implementation
	6.5.3.4 Detecting Invalid Connections
	6.5.3.5 Requirement for XA Recovery

	6.5.4 ManagedConnection
	6.5.4.1 Interface
	6.5.4.2 Connection Sharing and Multiple Connection Handles
	6.5.4.3 Connection Matching Contract
	6.5.4.4 Cleanup of ManagedConnection
	6.5.4.5 Requirements

	6.5.5 ManagedConnectionMetaData
	6.5.5.1 Interface
	6.5.5.2 Requirements

	6.5.6 ConnectionEventListener
	6.5.6.1 Interface

	6.5.7 ConnectionEvent

	6.6 Error Logging and Tracing
	6.6.1 ManagedConnectionFactory
	6.6.2 ManagedConnection

	6.7 Object Diagram
	6.8 Illustrative Scenarios
	6.8.1 Scenario: Connection Pool Management
	6.8.2 Scenario: Connection Matching
	6.8.3 Scenario: Connection Event Notifications and Connection Close
	6.8.3.1 Connection Cleanup
	6.8.3.2 Connection Destroy

	6.9 Architecture: Non-managed Environment
	6.9.1 Scenario: Programmatic Access to ConnectionFactory
	6.9.2 Scenario: Connection Creation in Non-managed Application Scenario

	6.10 Requirements
	6.10.1 Resource Adapter
	6.10.2 Application Server

	7. Transaction Management
	7.1 Overview
	7.2 Transaction Management Scenarios
	7.2.1 Transactions across multiple Resource Managers
	7.2.2 Local Transaction Management

	7.3 Transaction Management Contract
	7.3.1 Interface: ManagedConnection
	7.3.2 Interface: XAResource
	7.3.2.1 Implementation

	7.3.3 Interface: LocalTransaction

	7.4 Relationship to JTA and JTS
	7.4.1 JTA Interfaces

	7.5 Object Diagram
	7.6 XAResource-based Transaction Contract
	7.6.1 Scenarios Supported
	7.6.2 Resource Adapter Requirements
	7.6.2.1 General
	7.6.2.2 One-phase Commit
	7.6.2.3 Two-phase Commit
	7.6.2.4 Transaction Association and Calling Protocol
	7.6.2.5 Unilateral Roll-back
	7.6.2.6 Read-Only Optimization
	7.6.2.7 XID Support
	7.6.2.8 Support for Failure Recovery

	7.6.3 Transaction Manager Requirements
	7.6.3.1 Interfaces
	7.6.3.2 XID requirements
	7.6.3.3 One-phase Commit Optimization
	7.6.3.4 Implementation Options

	7.6.4 Scenario: Transactional Setup for a ManagedConnection
	7.6.5 Scenario: Connection Close and JTA Transactional Cleanup
	7.6.6 OID: Transaction Completion

	7.7 Local Transaction Management Contract
	7.7.1 Interface: Local Transaction
	7.7.2 Interface: ConnectionEventListener
	7.7.2.1 Requirements

	7.8 Scenarios: Local Transaction Management
	7.8.1 Local Transaction Cleanup
	7.8.2 Component Termination
	7.8.3 Transaction Interleaving
	7.8.3.1 Scenario

	7.9 Connection Sharing
	7.9.1 Sharing Violation Detection
	7.9.1.1 Scenario 1
	7.9.1.2 Scenario 2

	7.10 Transaction Scenarios
	7.10.1 Requirements
	7.10.2 Illustrative Scenarios
	7.10.3 Scenario: Local Transaction

	7.11 Connection Association
	7.11.1 Scenario
	7.11.2 Connection Association
	7.11.3 Requirements

	7.12 Local Transaction Optimization
	7.12.1 Requirements

	7.13 Requirements
	7.13.1 Resource Adapter
	7.13.1.1 Auto Commit

	7.13.2 Application Server

	7.14 Connection Optimizations
	7.14.1 Lazy Connection Association Optimization
	7.14.1.1 API Additions

	7.14.2 Lazy Transaction Enlistment Optimization
	7.14.2.1 API Additions

	8. Security Architecture
	8.1 Overview
	8.2 Goals
	8.3 Terminology
	8.4 Application Security Model
	8.4.1 Scenario: Container-Managed Sign-on
	8.4.2 Scenario: Component-Managed Sign-on

	8.5 EIS Sign-on
	8.5.1 Authentication Mechanism
	8.5.2 Resource Principal
	8.5.3 Authorization Model
	8.5.4 Secure Association

	8.6 Roles and Responsibilities
	8.6.1 Application Component Provider
	8.6.2 Deployer
	8.6.3 Application Server
	8.6.4 EIS Vendor
	8.6.5 Resource Adapter Provider
	8.6.6 System Administrator

	9. Security Contract
	9.1 Security Contract
	9.1.1 Interfaces and Classes
	9.1.2 Subject
	9.1.3 Resource Principal
	9.1.4 GenericCredential
	9.1.4.1 Interface
	9.1.4.2 Implementation

	9.1.5 GSSCredential
	9.1.5.1 Implementation

	9.1.6 PasswordCredential
	9.1.7 ConnectionManager
	9.1.8 ManagedConnectionFactory
	9.1.8.1 Contract for the Application Server
	9.1.8.2 Contract for Resource Adapter

	9.1.9 ManagedConnection

	9.2 Requirements
	9.2.1 Resource Adapter
	9.2.2 Application Server

	10. Work Management
	10.1 Overview
	10.2 Goals
	10.3 Work Management Model
	10.3.1 Requirements
	10.3.2 Work Interface
	10.3.3 WorkManager Interface
	10.3.3.1 Work Submit
	10.3.3.2 Work Accepted
	10.3.3.3 Work Rejected
	10.3.3.4 Work Started
	10.3.3.5 Work Completed
	10.3.3.6 Requirements

	10.3.4 WorkListener Interface and WorkEvent Class
	10.3.4.1 Requirements

	10.3.5 ExecutionContext Class
	10.3.6 Resource Adapter Thread Usage Recommendations
	10.3.7 Periodic Execution of Work Instances
	10.3.8 Illustration: Using a Work Instance to Listen on Multiple Network Endpoints
	10.3.9 Work Management in a Non-Managed Environment

	11. Inbound Communicaton
	11.1 Overview
	11.2 An Illustrative Use Case

	12. Message Inflow
	12.1 Overview
	12.2 Goals
	12.3 Message Inflow Model
	12.4 Endpoint Deployment
	12.4.1 Message Endpoint
	12.4.2 Resource Adapter
	12.4.2.1 List of Supported Message Listener Types
	12.4.2.2 ActivationSpec JavaBean
	12.4.2.3 Administered Objects
	12.4.2.4 Configuring Administered Objects

	12.4.3 Endpoint Deployer
	12.4.4 Application Server
	12.4.5 Message Provider
	12.4.6 Endpoint Deployment Steps
	12.4.7 Requirements
	12.4.8 Structure of a Message Listener Interface
	12.4.9 Multiple Endpoint Activations With Similar Activation Configuration
	12.4.9.1 Requirements

	12.5 Message Delivery
	12.5.1 Sample Resource Adapter Code To Illustrate Message Delivery
	12.5.1.1 Requirements

	12.5.2 Message Redelivery Upon Crash Recovery
	12.5.3 Durable Message Delivery Setup
	12.5.4 Concurrent Delivery of Messages
	12.5.4.1 Requirements

	12.5.5 Delivery Semantics and Acknowledgement
	12.5.6 Transacted Delivery (Using Container-Managed Transaction)
	12.5.7 Non-transacted Delivery
	12.5.8 Transacted Delivery Using an Imported Transaction
	12.5.9 Requirements

	12.6 Endpoint Undeployment
	12.7 Java Message Service (JMS) Use Case
	12.7.0.1 A Sample JMS Resource Adapter Deployment Descriptor
	12.7.0.2 A Sample JMS ActivationSpec Implementation
	12.7.0.3 A Sample EJB 2.0 Message-driven Bean Deployment Descriptor
	12.7.0.4 A Sample EJB 2.1 Message-driven Bean Deployment Descriptor
	12.7.0.5 A Sample EJB 2.1 EJB Deployment Descriptor
	12.7.1 Message-driven Bean Asynchronously Receiving Messages
	12.7.1.1 Message-Driven Bean Deployment
	12.7.1.2 Message Delivery
	12.7.1.3 Message-Driven Bean Undeployment

	12.7.2 EJB Using JMS API to Send and Synchronously Receive Messages Via a JMS Resource Adapter
	12.7.2.1 Using JMS API to Send Messages
	12.7.2.2 J2EE Component Using JMS API to Synchronously Receive Messages

	12.8 A Non-JMS Use Case
	12.8.1 Resource Adapter Deployment Descriptor
	12.8.2 Resource Adapter Deployment
	12.8.3 Message-Driven Bean Asynchronously Receiving Notifications From an EIS
	12.8.3.1 The Message-Driven Bean Deployment Descriptor

	12.8.4 Message-Driven Bean and Resource Adapter Activation
	12.8.5 Message Delivery

	13. EJB Invocation
	13.1 Overview
	13.2 EJB Invocation Model
	13.3 An Illustrative Use Case
	13.3.0.1 Message-driven Bean Dispatcher Pattern

	14. Transaction Inflow
	14.1 Overview
	14.2 Goals
	14.3 Use Case Scenario
	14.4 Transaction Inflow Model
	14.4.1 Processing of Transactional Calls
	14.4.2 Transaction Completion Processing
	14.4.3 Crash Recovery Processing
	14.4.4 Requirements
	14.4.5 Non-Requirements
	14.4.6 Recommendations
	14.4.7 Transaction Inflow in a Non-managed Environment

	15. Common Client Interface
	15.1 Overview
	15.2 Goals
	15.3 Scenarios
	15.3.1 Enterprise Application Integration Framework
	15.3.2 Metadata Repository and API
	15.3.3 Enterprise Application Development Tool

	15.4 Common Client Interface
	15.4.1 Requirements

	15.5 Connection Interfaces
	15.5.1 ConnectionFactory
	15.5.1.1 Requirements

	15.5.2 ConnectionSpec
	15.5.3 Connection
	15.5.3.1 Auto Commit

	15.6 Interaction Interfaces
	15.6.1 Interaction
	15.6.2 InteractionSpec
	15.6.2.1 Standard Properties
	15.6.2.2 ResultSet Properties
	15.6.2.3 Additional Properties
	15.6.2.4 Implementation
	15.6.2.5 Administered Object
	15.6.2.6 Illustrative Scenario

	15.6.3 LocalTransaction
	15.6.3.1 Requirements

	15.7 Basic Metadata Interfaces
	15.7.1 ConnectionMetaData
	15.7.1.1 Implementation

	15.7.2 ResourceAdapterMetaData

	15.8 Service Endpoint Message Listener Interface
	15.9 Exception Interfaces
	15.9.1 ResourceException
	15.9.2 ResourceWarning

	15.10 Record
	15.10.1 Component-view Contract
	15.10.1.1 Type Mapping
	15.10.1.2 Record Interface
	15.10.1.3 MappedRecord and IndexedRecord Interfaces
	15.10.1.4 RecordFactory

	15.10.2 Interaction and Record
	15.10.3 Resource Adapter-view Contract
	15.10.3.1 Streamable Interface

	15.11 ResultSet
	15.11.1 ResultSet Interface
	15.11.1.1 Type Mapping
	15.11.1.2 ResultSet Types
	15.11.1.3 Scrolling
	15.11.1.4 Concurrency Types
	15.11.1.5 Updatability
	15.11.1.6 Persistence of Java Objects
	15.11.1.7 Support for SQL Types
	15.11.1.8 Support for Customized SQL Type Mapping

	15.11.2 ResultSetMetaData
	15.11.3 ResultSetInfo

	15.12 Code Samples
	15.12.1 Connection
	15.12.2 InteractionSpec
	15.12.3 Mapped Record
	15.12.4 ResultSet
	15.12.5 Custom Record

	16. API Requirements
	16.1 Requirements of the Application Server
	16.2 Requirements of the Resource adapter
	16.3 JavaBean Requirements
	16.4 Equality Constraints
	Equality based on Java object identity
	Equality based on config properties and class information

	17. Packaging Requirements
	17.1 Overview
	17.2 Packaging
	17.2.0.1 Resource Adapter Archive
	17.2.0.2 RAR Contents
	17.2.0.3 Sample Directory Structure
	17.2.0.4 Requirements

	17.3 Deployment
	17.3.1 Resource Adapter Provider
	17.3.2 Deployer
	17.3.2.1 Stand-Alone Resource Adapter Module
	17.3.2.2 Resource Adapter Module with J2EE Application
	17.3.2.3 Configuration
	17.3.2.4 Security Configuration

	17.4 Interfaces/Classes
	17.4.1 ResourceAdapter
	17.4.1.1 Requirements

	17.4.2 ManagedConnectionFactory
	17.4.2.1 Requirements

	17.4.3 Properties Conventions
	17.4.4 Standard Properties

	17.5 JNDI Configuration and Lookup
	17.5.1 Responsibilities
	17.5.1.1 Deployer
	17.5.1.2 Resource Adapter
	17.5.1.3 Application Server

	17.5.2 Scenario: Serializable
	17.5.3 Scenario: Referenceable
	17.5.3.1 ObjectFactory Implementation
	17.5.3.2 Deployment
	17.5.3.3 Scenario: Connection Factory Lookup

	17.5.4 Requirements

	17.6 Resource Adapter XML Schema Definition

	18. Runtime Environment
	18.1 Programming APIs
	18.2 Security Permissions
	18.3 Requirements
	18.3.1 Example

	18.4 Privileged Code
	18.4.1 Example

	19. Exceptions
	19.1 ResourceException
	19.2 System Exceptions
	19.2.1 Exception Hierarchy

	19.3 Work Exceptions
	19.4 Additional Exceptions

	20. Projected Items
	A. Previous Version DTDs
	A.1 J2EE Connector Architecture 1.0 Resource Adapter XML DTD

	B. Activation Configuration for Message Inflow to JMS Endpoints
	B.1 Introduction
	B.2 JMS ActivationSpec JavaBean
	B.2.1 JMS ActivationSpec JavaBean Properties
	B.2.1.1 destination
	B.2.1.2 destinationType
	B.2.1.3 messageSelector
	B.2.1.4 acknowledgeMode
	B.2.1.5 subscriptionDurability
	B.2.1.6 clientId
	B.2.1.7 subscriptionName

	B.2.2 JMS ActivationSpec JavaBean Property Values

	B.3 JMS Endpoint with EJB 2.1 Activation Configuration Elements
	B.4 JMS Endpoint with EJB 2.0 Deployment Descriptor Elements

	C. Caching Manager
	C.1 Overview
	C.2 Synchronization contract
	C.2.1 Interface
	C.2.2 Implementation

	D. Security Scenarios
	D.1 EStore Application
	D.1.1 Scenario
	D.1.2 Security Environment
	D.1.3 Deployment

	D.2 Employee Self Service Application
	D.2.1 Architecture
	D.2.2 Security Environment
	D.2.3 Deployment
	D.2.4 Scenario

	D.3 Integrated Purchasing Application
	D.3.1 Architecture
	D.3.2 Security Environment
	D.3.3 Deployment

	E. JAAS Based Security Architecture
	E.1 Java Authentication and Authorization Service (JAAS)
	E.2 Requirements
	E.3 Security Architecture
	E.3.1 JAAS Modules
	E.3.2 Illustrative Examples: JAAS Module
	E.3.2.1 Principal Mapping Module
	E.3.2.2 Credential Mapping Module
	E.3.2.3 Kerberos Module

	E.4 Security Configuration
	E.4.1 JAAS Configuration

	E.5 Scenarios
	E.5.1 Scenario: Resource Adapter Managed Authentication
	E.5.2 Scenario: Kerberos and Principal Delegation
	E.5.3 Scenario: GSS-API
	E.5.4 Scenario: Kerberos Authentication After Principal Mapping
	E.5.5 Scenario: EIS-Specific Authentication

	F. Related Documents
	G. Change History for Version 1.0
	G.1 Version 0.9
	G.2 Version 1.0 - Public Draft 1
	G.3 Version 1.0 - Public Draft 2
	G.4 Version 1.0 - Proposed Final Draft 2
	G.5 Version 1.0 - Final Release

	H. Change History for Version 1.5
	H.1 Public Review Draft
	H.2 Proposed Final Draft
	H.3 Proposed Final Draft 2
	H.4 Final Release

