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Antibiotic Production

There are approx. 8000 known antibiotics

More than 100 are produced commercially by
microbial fermentation

/0% of these are produced by Streptomyces
spp.

Strain selection and development has resulted
In very high product yields (e.g., 1100 g/L
Penicillin)



Common antibiotics and their sources

Bacitracin
Cephalosporin(s)
Chloramphenicol
Cycloheximide
Hygromycin
Penicillin
Streptomycin
Tetracycline(s)
Vancomycin

Bacillus subtilis
Cephalosporium sp.
. venezuelae

. griseus

. hygromyces

. chrysogenum
. griseus

. aurofaciens

. orientalis
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Industrial evolution of penicillin production

Date Yield (units/mL) Development

1929 2-20 Wild-type (P. notatum)
1941 40-80 Better WT

1943 80-100 New WT (P. chrysogenum)
1944 100-200 Colony selection

1944 300-500 X-irradiation

1945 800-1000 UV-irradiation

1949 1500-2000 Chemical mutagenesis
1951 2400 Chemical mutagenesis
1953 2700 Strain selection

1960 5000 Strain selection

1970 10000 Strain selection
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The emergence of antimicrobial drug-resistant bacteria. (a) Relationship between antibiotic use
and the percentage of bacteria isolated from diarrheal patients resistant to the antibiotic. Those
agents that have been used in the largest amounts, as indicated by the amount produced
commercially, are those for which drug-resistant strains are most frequent. (b) Percentage of
reported cases of gonorrhea caused by drug-resistant strains. The actual number of reported
drug-resistant cases in 1985 was 9000. This number rose to 59,000 in 1990. Greater than 95%
of the reported drug-resistant cases are due to penicillinase-producing strains of Neisseria
gonorrhoeae. Since 1990, penicillin has not been recommended for treatment of gonorrhea
because of emerging drug resistance. (Source: Centers for Disease Control, Atlanta, GA).
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Representative structure
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Annual worldwide production and use of antibiotics. Each year more than 500 metric
tons of chemotherapeutic agents are manufactured.



Macrolide
ring

Structure of erythromycin, a macrolide antibiotic.
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Products of industrial microbiology/biocatalysis. The products may be the cells
themselves or products made from cells. In the case of bioconversion, cells are used to

chemically convert a specific substance from one form to another.
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Relationship of the primary
metabolic pathway for the
synthesis of aromatic amino
acids (Section 5.15) and
formation of a variety of
secondary metabolite
antibiotics containing aromatic
rings. This is a composite
scheme of processes occurring
in a variety of microorganisms:
No one organism produces all
these secondary metabolites,
and many individual steps exist
between amino acid and
antibiotic in all cases.



Glutamate Amino acid
Proline families. Note how
> o-Ketoglutarate I::> Glutamine

e the carbon
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The biosynthesis of fatty acids; shown
Is the biosynthesis of the C16 fatty
acid, palmitate (Figure 3.7). The
condensation of acetyl-ACP and
malonyl-ACP forms acetoacetyl-CoA.
Each successive addition of an acetyl
unit comes from malonyl-CoA.
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(a) Core NRPS domains
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Core NRPS domains Core PKS domains
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Type Il PKSs are composed of discrete monofunctional
enzymes (KS, ACP etc.), e. g. aromatic PKSs.

With Type | PKSs the enzymes are covalently linked.

Type | PKSs are composed of one or more
multienzyme polypeptides.

Modular type | PKSs have a set of enzymes
(KS-AT-reduction domains-ACP) for every cycle of chain
extension.



lterative type | PKSs have one set of enzymes
that is used repeatedly.

These systems make simpler polyketides than modular PKSs.

KS — AT - (DH) - ACP>




Orsellinic acid occurs in the antibiotic avilamycin,
and the anticancer enediyne calicheamicin.

It is synthesised by an iterative (non-modular) type | PKS.

KS — AT - (DH) - ACP>

Enz—S
O COOH

O OH

Orsellinic acid



Napthalinic acid is also synthesised by an iterative type | PKS.

S—Enz O OH
OH



Enediyne antibiotics contain two polyketide-derived moieties.

Both are synthesised by iterative type | PKSs.

Enediyne core

Orsellinic acid

OH MeO

Calicheamicin



Napthalinic acid

. OCHs

8 0 Enediyne core

Enediyne C1029



Enediyne cores are derived from polyunsaturated acyl chains
that are synthesised by iterative type | PKSs.

SSSCH;

NHCO,CHs

OH
HO



Type Il PKSs are composed of KS domains only.
They assemble the polyketide chain on CoA pantetheine thiol
(not ACP).
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Type lll PKSs synthesise pigments (e. g. flower colours),
chalcones, flavonoids, flaviolins.

COCOH OH O
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H
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Flaviolin



Mixed PKS-NRPS (non-ribosomal peptide synthetase) systems

Modular PKSs that can use amino acid extenders
as well as dicarboxylic acid extenders.

Condensation domain \ \

o . Peptidyl carrier protein
AA activating domain (has pantetheine arm).
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In principle, mixed PKS-NRPSs could make a greater
diversity of products because there are
potentially scores of different AA extenders.
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Types of PKS
Type Il (KS domains only, build chains on CoA)

Type Il (composed of small discrete enzymes, synthesise
aromatic polyketides.

Type | (covalently linked enzymes|e.g. KS-AT-X- Y-ACP])
Type | iterative — one set of enzymes is used repeatedly.
Relatively simple chains are made.

Type | modular — a set of enzymes for every cycle
Includes mixed PKS-NRPSs.
Complex polyketides are made.
Can be reprogrammed.



Figure 1. The structure of microcystin and its biosynthetic pathways (left). The
gene organization is shown on the top. The amino acids in the X and Z
positions represent variable amino acids. Anabaena (top right) and Microcystis
(bottom) as seen under a microscope.
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Useful references.

Combinatorial biosynthesis of erythromycin and complex
polyketides. Staunton, J. 1998.
Current Opinion in Chemical Biology 2: 339- 345.

Polyketide biosynthesis beyond the type I, Il and Il PKS
paradigms. Shen, B. 2003. Current Opinion in Chemical
Biology 7: 285- 295.

Building block selectivity of polyketide synthases.
Liou, G. F. and Khosla, C. 2003. Current Opinion In
Chemical Biology 7: 279-284.
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