CHAPTER 1

Introduction to the
Logistic Regression Model

1.1 INTRODUCTION

Regression methods have become an integral component of any data
analysis concerned with describing the relationship between a response
variable and one or more explanatory variables. It is often the case that
the outcome variable is discrete, taking on two or more possible values.
Over the last decade the logistic regression model has become, in many
fields, the standard method of analysis in this situation.

Before beginning a study of logistic regression it is important to
understand that the goal of an analysis using this method is the same as
that of any model-building technique used in statistics: to find the best
fitting and most parsimonious, yet biologically reasonable model to de-
scribe the relationship between an outcome (dependent or response)
variable and a set of independent (predictor or explanatory) variables.
These independent variables are often called covariates. The most
common example of modeling, and one assumed to be familiar to the
readers of this text, is the usual linear regression model where the out-
come variable is assumed to be continuous.

What distinguishes a logistic regression model from the linear re-
gression model is that the outcome variable in logistic regression is bi-
nary or dichotomous. This difference between logistic and linear re-
gression is reflected both in the choice of a parametric model and in the
assumptions. Once this difference is accounted for, the methods em-
ployed in an analysis using logistic regression follow the same general
principles used in linear regression. Thus, the techniques used in linear
regression analysis will motivate our approach to logistic regression. We
illustrate both the similarities and differences between logistic regression
and linear regression with an example.
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Example

Table 1.1 lists age in years (AGE), and presence or absence of evidence
of significant coronary heart disease (CHD) for 100 subjects selected to
participate in a study. The table also contains an identifier variable (ID)
and an age group variable (AGRP). The outcome variable is CHD,
which is coded with a value of zero to indicate CHD is absent, or 1 to
indicate that it is present in the individual.

It is of interest to explore the relationship between age and the
presence or absence of CHD in this study population. Had our outcome
variable been continuous rather than binary, we probably would begin
by forming a scatterplot of the outcome versus the independent vari-
able. We would use this scatterplot to provide an impression of the na-
ture and strength of any relationship between the outcome and the in-
dependent variable. - A scatterplot of the data in Table 1.1 is given in
Figure 1.1.

In this scatterplot all points fall on one of two parallel lines repre-
senting the absence of CHD (y=0) and the presence of CHD (y=1).
There is some tendency for the individuals with no evidence of CHD to
be younger than those with evidence of CHD. While this plot does de-
pict the dichotomous nature of the outcome variable quite clearly, it
does not provide a clear picture of the nature of the relationship be-
tween CHD and age.

A problem with Figure 1.1 is that the variability in CHD at all ages
is large. This makes it difficult to describe the functional relationship
between age and CHD. One common method of removing some varia-
tion while still maintaining the structure of the relationship between the
outcome and the independent variable is to create intervals for the inde-
pendent variable and compute the mean of the outcome variable within
each group. In Table 1.2 this strategy is carried out by using the age
group variable, AGRP, which categorizes the age data of Table 1.1. Ta-
ble 1.2 contains, for each age group, the frequency of occurrence of
each outcome as well as the mean (or proportion with CHD present) for
each group.

By examining this table, a clearer picture of the relationship begins
to emerge. It appears that as age increases, the proportion of individuals
with evidence of CHD increases. Figure 1.2 presents a plot of the pro-
portion of individuals with CHD versus the midpoint of each age inter-
val. While this provides considerable insight into the relationship be-
tween CHD and age in this study, a functional form for this relationship
needs to be described. The plot in this figure is similar to what one
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Table I.I Age and Coronary Heart Disease (CHD)
Status of 100 Subjects

ID  AGE  AGRP CHD ID AGE  AGRP CHD
1 20 1 0 5l 44 4 1
) 23 1 0 52 44 4 ]
3 24 1 0 53 45 3 0
4 25 ] 0 54 45 ] |
= 25 1 1 35 46 5 0
6 26 1 0 56 46 5 ]
7 26 1 ] 57 47 ] 0
8 28 i 0 58 47 ] 0
9 28 1 0 59 47 5 1
10 29 1 0 60 48 5 0
11 30 2 0 61 48 5 l
12 30 2 0 62 48 5 I
13 30 2 0 63 44 5 )
14 30 2 0 G 49 ] 0
15 an 2 0 65 49 R 1
16 30 2 1 &6 30 & 0
17 32 2 0 67 50 ] 1
18 32 2 0 68 3l (i 0
19 33 2 0 69 52 6 0
20 33 2 0 70 52 f ]
21 34 2 0 | 53 £ 1
22 34 2 0 T2 53 & 1
2 34 2 1 13 54 & l
24 34 2 0 T4 55 7 0
25 i4 2 0 75 53 ki I
26 35 3 0 76 55 T 1
7 35 3 ] 77 56 f l
25 36 3 0 78 56 T I
29 is 3 l 79 56 T |
30 36 3 0 80 57 7 0
31 37 3 0 81 57 i 0
32 a7 3 l 2 57 7 1
33 37 3 0 83 57 7 |
i4 38 3 0 g4 57 T I
33 38 3 0 85 57 7 1
i6 i9 3 0 g6 58 T 0
37 39 3 1 87 58 T 1
3g 40 4 0 &8 58 7 ]
39 40 -4 1 &9 59 7 1
40 41 - 1] 80 59 7 |
41 41 - 0 91 &0 8 g
42 431 4 0 2 60 g ]
43 42 4 0 93 61 g |
44 42 4 a D4 62 8 1
45 42 4 1 95 62 g [
46 43 4 0 96 63 8 !
47 43 B 0 97 64 8 0
48 43 4 1 08 G4 8 I
49 44 e 0 99 65 8 !
50 44 4 0 100 69 8 l




4 INTRODUCTION TO THE LOGISTIC REGRESSION MODEL

| - ° L+ 0 00 00 0iI0KI00CO 0O OQOOOOOOOOOOCCOCO o

]

6 -

4 -

2 -

0 e 0080 000 00000000 CVIVINOO00CE © 00 © °
Ll T T T ) T
20 30 40 50 60 70

AGE

Figure 1.1 Scatterplot of CHD by AGE for 100 subjects.

might obtain if this same process of grouping and averaging were per-
formed in a linear regression. We will note two important differences.
The first difference concerns the nature of the relationship between
the outcome and independent variables. In any regression problem the
key quantity is the mean value of the outcome variable, given the value
of the independent variable. This quantity is called the conditional
mean and will be expressed as “E(Y | x)” where Y denotes the outcome

Table 1.2 Frequency Table of Age Group by CHD

CHD
Age Group n  Absent Present  Mean (Proportion)

20-29 10 9 1 0.10
30-34 15 13 2 0.13
35-39 12 9 3 0.25
40 - 44 15 10 5 0.33
45 - 49 13 7 6 0.46
50 - 54 8 3 5 0.63
55 -59 17 4 13 0.76
60 — 69 10 2 8 0.80

Total 100 57 43 0.43
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Figure 1.2 Plot of the percentage of subjects with CHD in each age
group.

variable and x denotes a value of the independent variable. The quan-
tity E(YIx) is read “the expected value of Y, given the value x.” In
linear regression we assume that this mean may be expressed as an
equation linear in x (or some transformation of x or Y), such as

E(Y1x)= B, +Bx.

This expression implies that it is possible for E(Y|x) to take on any
value as x ranges between —oo and +eo.

The column labeled “Mean” in Table 1.2 provides an estimate of
E(Y1x). We will assume, for purposes of exposition, that the estimated
values plotted in Figure 1.2 are close enough to the true values of
E(Y1x) to provide a reasonable assessment of the relationship between
CHD and age. With dichotomous data, the conditional mean must be
greater than or equal to zero and less than or equal to | [ie, O<
E(Y1x)<1). This can be seen in Figure 1.2. In addition, the plot shows
that this mean approaches zero and 1 “gradually.” The change in the
E(Y ) x) per unit change in x becomes progressively smaller as the con-
ditional mean gets closer to zero or 1. The curve is said to be S-shaped.
It resembles a plot of a cumulative distribution of a random vartable. It
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should not seem surprising that some well-known cumulative distribu-
tions have been used to provide a model for E(Y|x) in the case when Y
is dichotomous. The model we will use is that of the logistic distribu-
tion.

Many distribution functions have been proposed for use in the
analysis of a dichotomous outcome variable. Cox and Snell (1989) dis-
cuss some of these. There are two primary reasons for choosing the
logistic distribution. First, from a mathematical point of view, it is an
extremely flexible and easily used function, and second, it lends itself to
a clinically meaningful interpretation. A detailed discussion of the in-
terpretation of the model parameters is given in Chapter 3.

In order to simplify notation, we use the quantity 7(x)=E(Y!x) to
represent the conditional mean of Y given x when the logistic distribu-
tion is used. The specific form of the logistic regression model we use
is:

eﬂo +Byx

n(x)= (1.1

1+ eﬂo +fyx

A transformation of 7(x)that is central to our study of logistic regres-
sion is the logit transformation. This transformation is defined, in terms
of 7(x), as:

I I C))
glx)= ln[l - ﬂ(x)]

=By +Bix

The importance of this transformation is that g(x) has many of the de-
sirable properties of a linear regression model. The logit, g(x), is linear
in its parameters, may be continuous, and may range from —oo to +oo,
depending on the range of x.

The second important difference between the linear and logistic
regression models concerns the conditional distribution of the outcome
variable. In the linear regression model we assume that an observation
of the outcome variable may be expressed as y=E(Ylx)+¢&. The
quantity € is called the error and expresses an observation’s deviation
from the conditional mean. The most common assumption is that €
follows a normal distribution with mean zero and some variance that is
constant across levels of the independent variable. It follows that the
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conditional distribution of the outcome variable given x will be normal
with mean E(Y|x), and a variance that is constant. This is not the case
with a dichotomous outcome variable. In this situation we may express
the value of the outcome variable given x as y=m(x)+¢€. Here the
quantity € may assume one of two possible values. If y=1 then
g=1-m(x) with probability m(x), and if y=0 then &=-n(x) with
probability 1-7(x). Thus, & has a distribution with mean zero and
variance equal to n(x)[l —n(x)]. That is, the conditional distribution of
the outcome variable follows a binomial distribution with probability
given by the conditional mean, 7(x).

In summary, we have seen that in a regression analysis when the

outcome variable is dichotomous:

(1) The conditional mean of the regression equation must be
formulated to be bounded between zero and 1. We have
stated that the logistic regression model, 7(x) given in equa-
tion (1.1), satisfies this constraint.

(2) The binomial, not the normal, distribution describes the distri-
bution of the errors and will be the statistical distribution upon
which the analysis is based.

(3) The principles that guide an analysis using linear regression
will also guide us in logistic regression.

1.2 FITTING THE LOGISTIC REGRESSION MODEL

Suppose we have a sample of n independent observations of the pair
(x,, %), i=12,...,n, where y, denotes the value of a dichotomous out-
come variable and x; is the value of the independent variable for the i
subject. Furthermore, assume that the outcome variable has been coded
as 0 or 1, representing the absence or the presence of the characteristic,
respectively. This coding for a dichotomous outcome is used through-
out the text. To fit the logistic regression model in equation (1.1) to a
set of data requires that we estimate the values of f, andf, the un-
known parameters.

In linear regression, the method used most often for estimating un-
known parameters is least squares. In that method we choose those val-
ues of B, and f, which minimize the sum of squared deviations of the
observed values of Y from the predicted values based upon the model.
Under the usual assumptions for linear regression the method of least
squares yields estimators with a number of desirable statistical proper-
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ties. Unfortunately, when the method of least squares is applied to a
model with a dichotomous outcome the estimators no longer have these
same properties.

The general method of estimation that leads to the least squares
function under the linear regression model (when the error terms are
normally distributed) is called maximum likelihood. This method will
provide the foundation for our approach to estimation with the logistic
regression model. In a very general sense the method of maximum
likelihood yields values for the unknown parameters which maximize
the probability of obtaining the observed set of data. In order to apply
this method we must first construct a function, called the likelihood
function. This function expresses the probability of the observed data
as a function of the unknown parameters. The maximum likelihood es-
timators of these parameters are chosen to be those values that maximize
this function. Thus, the resulting estimators are those which agree most
closely with the observed data. We now describe how to find these val-
ues from the logistic regression model.

If Y is coded as O or 1 then the expression for m(x) given in equa-
tion (1.1) provides (for an arbitrary value of B=(f,,p,), the vector of
parameters) the conditional probability that Y is equal to 1 given x. This
will be denoted as P(Y =11x). It follows that the quantity 1-7(x) gives
the conditional probability that Y is equal to zero given x, P(Y=0Ix).
Thus, for those pairs (x,-,y,-), where y, =1, the contribution to the likeli-
hood function is n’(x,-), and for those pairs where y, =0, the contribu-
tion to the likelihood function is 1 - 7(x;), where the quantity 7(x;) de-
notes the value of 7(x) computed at x;. A convenient way to express
the contribution to the likelihood function for the pair (x,-, y,.) is

through the expression
20y [1-m(x)] ™

Since the observations are assumed to be independent, the likeli-
hood function is obtained as the product of the terms glven in expres-
sion (1.2) as follows:

1B =[xy [1-n()] ™
i=}
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The principle of maximum likelihood states that we use as our es-
timate of  the value which maximizes the expression in equation (1.3).
However, it is easier mathematically to work with the log of equation
(1.3). This expression, the log likelihood, is defined as

L(B) =In[I(B)] = i{y,. In[7(x,)]+(1- ;) In[1 - x(x,)]} (1.4)

To find the value of B that maximizes L(B) we differentiate L(B) with
respect to 3, and B, and set the resulting expressions equal to zero.
These equations, known as the likelihood equations, are:

> [y - #(x)]=0 (1.5)

and

> xi[yi—n(x)]=0. (1.6)

In equations (1.5) and (1.6) it is understood that the summation is over i
varying from 1 to n. (The practice of suppressing the index and range
of summation, when these are clear, is followed throughout the text.)

In linear regression, the likelihood equations, obtained by differen-
tiating the sum of squared deviations function with respect to P are lin-
ear in the unknown parameters and thus are easily solved. For logistic
regression the expressions in equations (1.5) and (1.6) are nonlinear in
B, and B, and thus require special methods for their solution. These
methods are iterative in nature and have been programmed into avail-
able logistic regression software. For the moment we need not be con-
cerned about these iterative methods and will view them as a computa-
tional detail taken care of for us. The interested reader may see the text
by McCullagh and Nelder (1989) for a general discussion of the meth-
ods used by most programs. In particular, they show that the solution to
equations (1.5) and (1.6) may be obtained using an iterative weighted
least squares procedure.

The value of B given by the solution to equations (1.5) and (1.6) is

called the maximum likelihood estimate and will be denoted as [3 In
general, the use of the symbol “A” denotes the maximum likelihood
estimate of the respective quantity. For example, #(x;) is the maximum
likelihood estimate of 7(x;). This quantity provides an estimate of the
conditional probability that Y is equal to 1, given that x is equal to x;.
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Table 1.3 Results of Fitting the Logistic
Regression Model to the Data in Table 1.1
Variable Coeff. Std. Err. 4 P>zl

Log likelihood = —53.67656

As such, it represents the fitted or predicted value for the logistic regres-
sion model. An interesting consequence of equation (1.5) is that

gy,:gft(x,)

That is, the sum of the observed values of y is equal to the sum of the
predicted (expected) values. This property will be especially useful in
later chapters when we discuss assessing the fit of the model.

As an example, consider the data given in Table 1.1. Use of a lo-
gistic regression software package, with continuous variable AGE as the
independent variable, produces the output in Table 1.3. The maximum

likelihood estimates of f3, and J, are thus seen to be ﬁo =-5.309 and

~

B, =0.111. The fitted values are given by the equation

P 5.309+0.111 xAGE

A0
m(x)= T S0 TIIXAGE

and the estimated logit, g(x), is given by the equation
8(x)=-5309+0. XAGE

The log likelihood given in Table 1.3 is the value of equation (1.4)
computed using ﬁo and B,.

Three additional columns are present in Table 1.3. One contains
estimates of the standard errors of the estimated coefficients, the next
column displays the ratios of the estimated coefficients to their esti-
mated standard errors and the last column displays a p-value. These
quantities are discussed in the next section.

Following the fitting of the model we begin to evaluate its ade-
quacy.



