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Chapter 6

LINEAR FUNCTIONALS

6.1. Introduction

We shall be concerned with linear mappings from one vector space to another. Many of the ideas that
we shall encounter in this study can be introduced by studying the special case when the second vector
space is the underlying field of the first vector space. Since we are mainly concerned with vector spaces
over F, we shall therefore first study mappings from a vector space over F to F.

Definition. Suppose that V is a vector space over F. By a linear functional on V , we mean a mapping
T : V → F satisfying the following conditions:

(LF1) For every x,y ∈ V , we have T (x + y) = T (x) + T (y).
(LF2) For every c ∈ F and x ∈ V , we have T (cx) = cT (x).

Example 6.1.1. Suppose that λ1, . . . , λr ∈ F are fixed. It is not difficult to show that the mapping
T : F

r → F, defined for every x = (x1, . . . , xr) ∈ F
r by writing

T (x) = λ1x1 + . . . + λrxr,

is a linear functional on F
r.

Example 6.1.2. Suppose that λ ∈ C[0, 1] is fixed. It is not difficult to show that the mapping
T : C[0, 1] → C, defined for every f ∈ C[0, 1] by

T (f) =
∫ 1

0

f(t)λ(t) dt,

is a linear functional on C[0, 1].
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Example 6.1.3. Suppose that (λi)i∈N is a bounded infinite sequence of complex numbers. We can
define a mapping T : �1 → C as follows. For every x = (xi)i∈N in �1, we write

T (x) =
∞∑

i=1

λixi.

Clearly T (x) is well defined, since the sequence (xi)i∈N is absolutely summable. It is then easy to check
that (LF1) and (LF2) are satisfied. Hence T : �1 → C is a linear functional.

Example 6.1.4. Suppose that V is a Hilbert space over F, and that x0 ∈ V is fixed. We can define a
mapping T : V → F by writing T (x) = 〈x,x0〉 for every x ∈ V . It is easy to check that (LF1) and (LF2)
follow from the linearity of the inner product. Hence T : V → F is a linear functional. This example
motivates the Riesz-Fréchet theorem in Section 6.3.

An important property of linear functionals is that continuity and boundedness in a normed vector
space are essentially the same. More precisely, we establish the result below.

THEOREM 6A. Suppose that V is a normed vector space over F. Then for any linear functional
T : V → F, the following statements are equivalent:
(a) T is continuous in V .
(b) T is continuous at x = 0.
(c) The set {|T (x)| : x ∈ V and ‖x‖ ≤ 1} is bounded.

Proof. ((a)⇒(b)) Trivial.
((b)⇒(c)) Suppose that T is continuous at x = 0. Then there exists δ > 0 such that

|T (x)| = |T (x) − T (0)| < 1 whenever x ∈ V and ‖x‖ = ‖x − 0‖ < δ.

For every x ∈ V satisfying ‖x‖ ≤ 1, we have ‖ 1
2δx‖ < δ and so |T ( 1

2δx)| < 1. It follows from the
linearity of the functional T that

|T (x)| <
2
δ

whenever x ∈ V and ‖x‖ ≤ 1.

Hence the set {|T (x)| : x ∈ V and ‖x‖ ≤ 1} is bounded.
((c)⇒(a)) Suppose that |T (x)| ≤ M whenever x ∈ V and ‖x‖ ≤ 1. For distinct x,y ∈ V , we have∥∥∥∥ x − y

‖x − y‖

∥∥∥∥ = 1, and so
∣∣∣∣T

(
x − y
‖x − y‖

)∣∣∣∣ ≤ M.

It follows from the linearity of the functional T that for distinct x,y ∈ V , we have

|T (x) − T (y)| = |T (x − y)| ≤ M‖x − y‖.

The continuity of T in V follows easily from this. ♣

Example 6.1.5. Consider the normed space C1[0, 1] of all continuously differentiable complex valued
functions in [0, 1], with supremum norm

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

It is easy to check that the mapping T : C1[0, 1] → C, where T (f) = f ′(1) for every f ∈ C1[0, 1], is a
linear functional on C1[0, 1]. For every n ∈ N, the function fn : [0, 1] → C, defined for every t ∈ [0, 1] by
fn(t) = tn, belongs to C1[0, 1], and satisfies

f ′
n(1) = n and ‖fn‖∞ = sup

t∈[0,1]

|tn| = 1 for every n ∈ N.

It follows that the set {|T (f)| : f ∈ C1[0, 1] and ‖f‖∞ ≤ 1} is not bounded. Hence T is discontinuous
in C1[0, 1] with respect to the supremum norm.
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6.2. Dual Spaces

The purpose of this section is to show that the collection of all continuous linear functionals on a normed
vector space has a very nice algebraic structure.

THEOREM 6B. Suppose that V is a normed vector space over F, and that V ∗ is the set of all
continuous linear functionals on V . Then V ∗ is a Banach space over F, with norm

‖T‖ = sup
x∈V, ‖x‖≤1

|T (x)| for every T ∈ V ∗. (1)

Furthermore, we have

|T (x)| ≤ ‖T‖‖x‖ for every x ∈ V and T ∈ V ∗. (2)

Remark. The normed vector space V ∗ is called the dual space of V . Note that V ∗ is a Banach space
irrespective of whether V is or not.

Proof of Theorem 6B. Suppose that T ∈ V ∗. Then the inequality in (2) is clearly valid if x = 0.
For any non-zero x ∈ V , the vector x/‖x‖ has unit norm, so that

|T (x)| =
∣∣∣∣‖x‖T

(
x

‖x‖

)∣∣∣∣ =
∣∣∣∣T

(
x
‖x‖

)∣∣∣∣ ‖x‖ ≤ ‖T‖‖x‖.

To show that V ∗ is a Banach space over F, we must show that (i) V ∗ is a vector space over F; (ii) the
function ‖ · ‖ : V ∗ → R, defined by (1), is a norm; and (iii) V ∗ is complete. The proof of (i) is lengthy
but straightforward. To prove (ii), note that for any continuous linear functional T : V → F, it follows
immediately from Theorem 6A that the supremum in (1) exists, so that ‖T‖ is a real number. It is then
easy to check conditions (NS1)–(NS4). To prove (iii), suppose that (Tn)n∈N is a Cauchy sequence in V ∗.
Then given any ε > 0, there exists N ∈ N such that

‖Tm − Tn‖ = sup
x∈V, ‖x‖≤1

|Tm(x) − Tn(x)| < ε whenever m > n ≥ N. (3)

It follows from (2) with T replaced by Tm − Tn that

|Tm(x) − Tn(x)| ≤ ‖Tm − Tn‖‖x‖ < ε‖x‖ whenever m > n ≥ N,

and so the sequence (Tn(x))n∈N is a Cauchy sequence in F. Since F is complete, the sequence (Tn(x))n∈N

converges in F. Suppose that Tn(x) → T (x) as n → ∞. Then it is easy to show that T : V → F is a
linear functional. It remains to show that T is continuous in V , and that ‖Tn − T‖ → 0 as n → ∞. It
is a consequence of (3) that for every x ∈ V satisfying ‖x‖ ≤ 1, we have

|Tm(x) − Tn(x)| < ε whenever m > n ≥ N.

Letting m → ∞, we conclude that for every x ∈ V satisfying ‖x‖ ≤ 1, we have

|T (x) − Tn(x)| < ε whenever n ≥ N. (4)

It follows that
‖Tn − T‖ = sup

x∈V, ‖x‖≤1

|Tn(x) − T (x)| ≤ ε whenever n ≥ N.

Hence ‖Tn − T‖ → 0 as n → ∞. On the other hand, note in particular that the inequality in (4) holds
when n = N . This means that T − TN is bounded on the closed unit ball {x ∈ V : ‖x‖ ≤ 1}, and
therefore is continuous in V in view of Theorem 6A. Hence T = (T − TN ) + TN is continuous in V . ♣
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Example 6.2.1. We shall show that the dual space (�1)∗ of the space �1 of all absolutely summable
infinite sequences x = (xi)i∈N of complex numbers is isomorphic to the space �∞ of all bounded infinite
sequences λλλ = (λi)i∈N of complex numbers. To do so, we shall construct a unitary transformation of the
type

φ : �∞ → (�1)∗ : λλλ �→ Tλλλ,

where

Tλλλ(x) =
∞∑

i=1

λixi for every x = (xi)i∈N ∈ �1;

see Example 6.1.3. In other words, we need to show that φ is linear, onto and norm preserving. Note that
we are somewhat lacking in rigour, as we have only considered unitary transformations for Hilbert spaces.
However, the discussion here will suffice for the purpose of gaining some insight into the situation. To
show that φ is linear is straightforward, and we shall omit the details. To show that φ is onto, suppose
that Λ ∈ (�1)∗ is given. We need to find λλλ ∈ �∞ such that Λ = Tλλλ. Suppose that (ei)i∈N is the standard
basis in �1. For every i ∈ N, let λi = Λ(ei). Then clearly

|λi| ≤ sup
x∈�1, ‖x‖≤1

|Λ(x)| = ‖Λ‖. (5)

It follows that λλλ = (λi)i∈N is a bounded infinite sequence of complex numbers and so belongs to �∞.
Furthermore, for every x = (xi)i∈N in �1, we have

Λ(x) = Λ

( ∞∑
i=1

xiei

)
and Tλλλ(x) =

∞∑
i=1

λixi =
∞∑

i=1

xiΛ(ei).

For every N ∈ N, we clearly have

Λ

(
N∑

i=1

xiei

)
=

N∑
i=1

xiΛ(ei).

Letting N → ∞ preserves equality, and so Λ(x) = Tλλλ(x) as required. Finally, note that

|Tλλλ(x)| =

∣∣∣∣∣
∞∑

i=1

λixi

∣∣∣∣∣ ≤
(

sup
i∈N

|λi|
) ( ∞∑

i=1

|xi|
)

= ‖λλλ‖∞‖x‖.

Hence ‖Tλλλ‖ ≤ ‖λλλ‖∞. On the other hand, (5) gives the opposite inequality ‖λλλ‖∞ ≤ ‖Tλλλ‖. We must
therefore have ‖Tλλλ‖ = ‖λλλ‖∞, so that φ is norm preserving.

6.3. Self Duality of Hilbert Spaces

The following result is motivated by Example 6.1.4.

THEOREM 6C. (RIESZ-FRÉCHET) Suppose that V is a Hilbert space over F. Then for every
continuous linear functional T : V → F, there exists a unique x0 ∈ V such that ‖T‖ = ‖x0‖ and

T (x) = 〈x,x0〉 for every x ∈ V . (6)

Proof. (Uniqueness) This follows immediately from (IP1) and Theorem 4B.
(Existence) The result is obvious if T : V → F is the zero functional, since we simply take x0 = 0.

Suppose now that T : V → F is not the zero functional. Then it is easy to show that

W = ker T = {x ∈ V : T (x) = 0}
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is a proper closed linear subspace of V . It follows from Theorem 5F that V = W ⊕ W⊥, where
W⊥ �= {0}, so that there exists a non-zero vector z ∈ W⊥. Multiplying by a suitable non-zero element
of F if necessary, we may further assume that T (z) = 1. Suppose now that x ∈ V . We can write

x = (x − T (x)z) + T (x)z.

Then it is easy to check that T (x− T (x)z) = 0, so that x− T (x)z ∈ W and so T (x)z ∈ W⊥. It follows
that

〈x, z〉 = 〈T (x)z, z〉 = T (x)‖z‖2 for every x ∈ V .

Taking x0 = z/‖z‖2 now gives (6). Finally, note that for every x ∈ V satisfying ‖x‖ ≤ 1, we have

|T (x)| = |〈x,x0〉| ≤ ‖x‖‖x0‖,

so that ‖T‖ ≤ ‖x0‖. On the other hand, x = x0/‖x0‖ is a unit vector, and so

‖T‖ ≥ |T (x)| =
|T (x0)|
‖x0‖

=
|〈x0,x0〉|
‖x0‖

= ‖x0‖.

Hence ‖T‖ = ‖x0‖ as required. ♣

Remark. Theorem 6C shows that there exists an onto and norm preserving mapping ψ : V → V ⊥,
given by ψ(x0) = 〈·,x0〉 for every x0 ∈ V . It is for this reason that we say that Hilbert spaces are
self dual. Note that ψ is conjugate linear; in other words, we have ψ(x0 + y0) = ψ(x0) + ψ(y0) and
ψ(cx0) = cψ(x0) for every x0,y0 ∈ V and c ∈ F.

Problems for Chapter 6

1. Consider a linear functional T : C[0, 1] → C, defined for every f ∈ C[0, 1] by T (f) = f(1).
a) Show that T is continuous in C[0, 1] with respect to the supremum norm

‖f‖ = sup
t∈[0,1]

|f(t)|.

b) Determine whether T is continuous in C[0, 1] with respect to the norm

‖f‖ =
∫ 1

0

|f(t)|2 dt,

and justify your assertion.

2. Consider the vector space P [0, 1] of all polynomials (in variable t) with complex coefficients defined
on [0, 1]. For every k ∈ N∪ {0}, consider the mapping Tk : P [0, 1] → C defined for every f ∈ P [0, 1]
by Tk(f) = ak, where ak is the coefficient of tk in f .
a) Show that for every k ∈ N ∪ {0}, the mapping Tk : P [0, 1] → C is a linear functional.
b) By considering polynomials of the form

fn(t) = (1 − t)n

for natural numbers n ≥ k, show that Tk : P [0, 1] → C is not continuous in P [0, 1] with respect
to the supremum norm

‖f‖ = sup
t∈[0,1]

|f(t)|.
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3. a) Consider the vector space C[0, 1], with supremum norm

‖f‖ = sup
t∈[0,1]

|f(t)|,

and a linear functional T : C[0, 1] → C, defined for every f ∈ C[0, 1] by

T (f) =
∫ 1

0

tf(t) dt.

(i) Determine ‖T‖.
(ii) Find an element f ∈ C[0, 1] such that |T (f)| = ‖T‖.

b) Consider the linear subspace W = {f ∈ C[0, 1] : f(1) = 0} of C[0, 1], with the same supremum
norm, and the restriction TW : W → C of the linear functional T to W .
(i) Show that ‖TW ‖ = ‖T‖.
(ii) Show that there does not exist any element g ∈ W such that |TW (g)| = ‖TW ‖.

4. Suppose that T : V → F is a non-zero continuous linear functional on a Banach space V over F.
a) Show that W = {x ∈ V : T (x) = 1} is a non-empty, closed and convex linear subspace of V .
b) Show that

inf
x∈W

‖x‖ =
1

‖T‖ .

c) What can you say about the minimum distance of W to the origin 0 ∈ V if the norm ‖T‖ is
not attained? Comment in view of Theorem 4G.

5. By following the ideas in Example 6.2.1, show that the dual space (c0)∗ of the space c0 of all infinite
sequences x = (xi)i∈N of complex numbers such that xi → 0 as i → ∞, with supremum norm

‖x‖∞ = sup
i∈N

|xi|,

is isomorphic to the space �1 of all absolutely summable infinite sequences of complex numbers.

− ∗ − ∗ − ∗ − ∗ − ∗ −


