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Chapter 6

LINEAR FUNCTIONALS

6.1. Introduction

We shall be concerned with linear mappings from one vector space to another. Many of the ideas that
we shall encounter in this study can be introduced by studying the special case when the second vector
space is the underlying field of the first vector space. Since we are mainly concerned with vector spaces
over F, we shall therefore first study mappings from a vector space over F to F.

DEFINITION. Suppose that V is a vector space over F. By a linear functional on V', we mean a mapping
T :V — T satisfying the following conditions:

(LF1) For every x,y € V, we have T(x+y) =T(x) + T(y).

(LF2) For every c € F and x € V, we have T'(cx) = ¢T'(x).

EXAMPLE 6.1.1. Suppose that A1,..., A\, € F are fixed. It is not difficult to show that the mapping
T:F" — F, defined for every x = (x1,...,x,) € F" by writing

T(X) = )\1I1 + ...+ /\Txr,
is a linear functional on F".

EXAMPLE 6.1.2. Suppose that A € C0,1] is fixed. It is not difficult to show that the mapping
T :C[0,1] — C, defined for every f € C[0,1] by

T(f) = / SO dt,

is a linear functional on C[0, 1.
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EXAMPLE 6.1.3. Suppose that ()A;);en is a bounded infinite sequence of complex numbers. We can
define a mapping 7" : /! — C as follows. For every x = (z;);en in £}, we write

T(X) = i )\txl
=1

Clearly T'(x) is well defined, since the sequence (x;);en is absolutely summable. It is then easy to check
that (LF1) and (LF2) are satisfied. Hence T": ¢! — C is a linear functional.

EXAMPLE 6.1.4. Suppose that V is a Hilbert space over IF, and that x¢ € V is fixed. We can define a
mapping T : V — F by writing T'(x) = (x,x¢) for every x € V. It is easy to check that (LF1) and (LF2)
follow from the linearity of the inner product. Hence T': V' — F is a linear functional. This example
motivates the Riesz-Fréchet theorem in Section 6.3.

An important property of linear functionals is that continuity and boundedness in a normed vector
space are essentially the same. More precisely, we establish the result below.

THEOREM 6A. Suppose that V is a normed vector space over F. Then for any linear functional
T :V — T, the following statements are equivalent:

(a) T is continuous in V.

(b) T is continuous at x = 0.

(c) The set {|T(x)|:x € V and ||x|| < 1} is bounded.

PrOOF. ((a)=(b)) Trivial.
((b)=(c)) Suppose that T is continuous at x = 0. Then there exists ¢ > 0 such that

IT(x)| = |T(x)—T(0)] <1 whenever x € V and ||x|| = ||x — 0] < §.

For every x € V satisfying ||x|| < 1, we have ||[16x| < & and so [T(36x)| < 1. It follows from the
linearity of the functional T" that

2
|T(x)| < 5 whenever x € V and ||x|| < 1.

Hence the set {|T'(x)| : x € V and ||x|| < 1} is bounded.
((c)=(a)) Suppose that |T'(x)| < M whenever x € V and ||x|| < 1. For distinct x,y € V, we have

‘QH_L and so Hﬂ)‘gM
Ix —yll Ix —yll

It follows from the linearity of the functional T" that for distinct x,y € V', we have

T(x)-T(y)=Tx—-y) <Mlx—yl.
The continuity of T in V follows easily from this. &

EXAMPLE 6.1.5. Consider the normed space C![0,1] of all continuously differentiable complex valued
functions in [0, 1], with supremum norm

[fllec = sup |f(2)]-
te[0,1]

It is easy to check that the mapping T : C1[0,1] — C, where T'(f) = f/(1) for every f € C'0,1], is a
linear functional on C'[0,1]. For every n € N, the function f,, : [0,1] — C, defined for every ¢ € [0, 1] by
fn(t) = t", belongs to C'[0,1], and satisfies

fl(1)y=n  and |folleo = sup [t"| =1  for every n € N.
te[0,1]

It follows that the set {|T(f)| : f € C'[0,1] and ||f||sc < 1} is not bounded. Hence T is discontinuous
in C1[0, 1] with respect to the supremum norm.
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6.2. Dual Spaces

The purpose of this section is to show that the collection of all continuous linear functionals on a normed
vector space has a very nice algebraic structure.

THEOREM 6B. Suppose that V is a normed vector space over F, and that V* is the set of all
continuous linear functionals on V. Then V* is a Banach space over F, with norm

IT]= sup |T(x)] for every T € V*. (1)
x€V, |Ix[|<1
Furthermore, we have
IT(x)] < [ITIHxII for every x € V and T € V*. (2)

REMARK. The normed vector space V* is called the dual space of V. Note that V* is a Banach space
irrespective of whether V is or not.

PRrROOF OF THEOREM 6B. Suppose that T' € V*. Then the inequality in (2) is clearly valid if x = 0.
For any non-zero x € V, the vector x/||x|| has unit norm, so that

i ()| = | ()

To show that V* is a Banach space over F, we must show that (i) V* is a vector space over F; (ii) the
function || - || : V* — R, defined by (1), is a norm; and (iii) V* is complete. The proof of (i) is lengthy
but straightforward. To prove (ii), note that for any continuous linear functional T': V' — F, it follows
immediately from Theorem 6A that the supremum in (1) exists, so that ||T']| is a real number. It is then
easy to check conditions (NS1)—(NS4). To prove (iii), suppose that (T, )ren is a Cauchy sequence in V*.
Then given any € > 0, there exists N € N such that

T(x)| = [l < T[]

T —Tull= sup |Tm(x) —Th(x)| <e whenever m > n > N. (3)
xeV, ||x]|<1

It follows from (2) with T replaced by T,,, — T,, that

| T (%) — T (%)] < | T, — To|llIx]| < €]x]] whenever m >n > N,
and so the sequence (T}, (x))nen is a Cauchy sequence in F. Since F is complete, the sequence (T}, (X))nen
converges in F. Suppose that T,,(x) — T(x) as n — oco. Then it is easy to show that T : V' — F is a
linear functional. It remains to show that T is continuous in V, and that ||T;, — T|| — 0 as n — oo. It
is a consequence of (3) that for every x € V satisfying ||x|| < 1, we have

[T (x) — T (x)] < € whenever m > n > N.

Letting m — oo, we conclude that for every x € V satisfying ||x|| < 1, we have

|T(x) — Th(x)| < € whenever n > N. (4)
It follows that
T, —T||= sup |Th(x)—Tx)|<e whenever n > N.
xeV, |Ix|[<1

Hence || T, — T|| — 0 as n — oo. On the other hand, note in particular that the inequality in (4) holds
when n = N. This means that T — T is bounded on the closed unit ball {x € V : x| < 1}, and
therefore is continuous in V' in view of Theorem 6A. Hence T' = (T' — Ty) + T is continuous in V. &



64 W WL Chen : Linear Functional Analysis

EXAMPLE 6.2.1. We shall show that the dual space (¢})* of the space ¢! of all absolutely summable
infinite sequences x = (x;);en of complex numbers is isomorphic to the space £°° of all bounded infinite
sequences A = (\;);en of complex numbers. To do so, we shall construct a unitary transformation of the

type
Gl — (I X Ty,

where

o0
Ty(x) = Z AiZ; for every x = (x;)ien € £
i=1

see Example 6.1.3. In other words, we need to show that ¢ is linear, onto and norm preserving. Note that
we are somewhat lacking in rigour, as we have only considered unitary transformations for Hilbert spaces.
However, the discussion here will suffice for the purpose of gaining some insight into the situation. To
show that ¢ is linear is straightforward, and we shall omit the details. To show that ¢ is onto, suppose
that A € (£1)* is given. We need to find X € £*° such that A = Ty. Suppose that (e;);en is the standard
basis in ¢*. For every i € N, let \; = A(e;). Then clearly

Al < sup - JA(x)] = [[A].- (5)

xelt, [x|I<1

It follows that A = ()\;)ien is a bounded infinite sequence of complex numbers and so belongs to £°°.
Furthermore, for every x = (7;);en in ¢!, we have

oo oo (o]
Ax)=A (Z xiei> and Ta(x) = Z Ay = ZIZ‘A(QZ‘).
i=1 i=1 i=1
For every N € N, we clearly have
N N
i=1 i=1
Letting N — oo preserves equality, and so A(x) = T)(x) as required. Finally, note that
> x| < (supad ) (Dm) = [\l
i=1 teN i=1

Hence ||Ty]| < |[AM]oo- On the other hand, (5) gives the opposite inequality ||A]lcc < ||Th]|. We must
therefore have ||Ty|| = ||A|loo, SO that ¢ is norm preserving.

Ta(x)] =

6.3. Self Duality of Hilbert Spaces
The following result is motivated by Example 6.1.4.

THEOREM 6C. (RIESZ—FRECHET) Suppose that V is a Hilbert space over F. Then for every
continuous linear functional T : V' — T, there exists a unique xg € V such that ||T|| = ||xo]|| and

T(x) = (x,X0) for every x € V. (6)
PROOF. (Uniqueness) This follows immediately from (IP1) and Theorem 4B.
(Existence) The result is obvious if T : V' — T is the zero functional, since we simply take xo = 0.

Suppose now that T': V' — F is not the zero functional. Then it is easy to show that

W=kerT={xeV:T(x)=0}
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is a proper closed linear subspace of V. It follows from Theorem 5F that V = W & W+, where
W+ # {0}, so that there exists a non-zero vector z € W+. Multiplying by a suitable non-zero element
of T if necessary, we may further assume that T'(z) = 1. Suppose now that x € V. We can write

x=(x—Tx)z) + T(x)z.

Then it is easy to check that T(x — T'(x)z) = 0, so that x — T'(x)z € W and so T'(x)z € W. It follows
that
(x,2) = (T(x)z,2) = T(x)|z|? for every x € V.

Taking xo = z/||z||?> now gives (6). Finally, note that for every x € V satisfying ||x|| < 1, we have
T (x)| = [(x,%0)| < [Ix]llIx0ll,
so that ||T|| < ||xo||. On the other hand, x = x¢/||%¢|| is a unit vector, and so

17 2 o) = el = LBl

Hence ||T|| = ||xo|| as required. &

REMARK. Theorem 6C shows that there exists an onto and norm preserving mapping ¢ : V — V=*,
given by ¥(x9) = (-,xq) for every xq € V. It is for this reason that we say that Hilbert spaces are
self dual. Note that 1 is conjugate linear; in other words, we have ¥ (x0 + yo) = ©¥(x0) + ¥(yo) and
P(exo) = ep(x9) for every xo,yo € V and ¢ € F.

PROBLEMS FOR CHAPTER 6

1. Consider a linear functional T': C[0,1] — C, defined for every f € C[0,1] by T(f) = f(1).
a) Show that T is continuous in C[0, 1] with respect to the supremum norm

£l = sup [f(2)].
tefo,1]

b) Determine whether T is continuous in C[0, 1] with respect to the norm

1
I91= [ I,
0
and justify your assertion.

2. Consider the vector space P[0, 1] of all polynomials (in variable t) with complex coefficients defined
on [0,1]. For every k € NU{0}, consider the mapping T}, : P[0, 1] — C defined for every f € P|0, 1]
by Ti(f) = ay, where ay, is the coefficient of t* in f.

a) Show that for every k& € NU {0}, the mapping T} : P[0,1] — C is a linear functional.
b) By considering polynomials of the form

Jalt) = (1 = 1"

for natural numbers n > k, show that Ty : P[0, 1] — C is not continuous in P[0, 1] with respect
to the supremum norm

£l = sup [f(?)]-
te0,1]
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a) Consider the vector space C[0, 1], with supremum norm

£l = sup [f(?)],
te0,1]

and a linear functional T : C[0,1] — C, defined for every f € C0, 1] by

1
1) = [ o

(i) Determine ||7T|.
(ii) Find an element f € C]0, 1] such that |T'(f)| = ||T.
b) Consider the linear subspace W = {f € C[0,1] : f(1) = 0} of C[0, 1], with the same supremum
norm, and the restriction Ty : W — C of the linear functional T to W.
(i) Show that [|[Tw| = ||T|-
(ii) Show that there does not exist any element g € W such that |Tw (g)| = [|Tw ||

Suppose that T : V — F is a non-zero continuous linear functional on a Banach space V over F.
a) Show that W = {x € V : T(x) = 1} is a non-empty, closed and convex linear subspace of V.

b) Show that

1
inf x| = —.
Jnf x| A

¢) What can you say about the minimum distance of W to the origin 0 € V' if the norm ||T|| is
not attained? Comment in view of Theorem 4G.

By following the ideas in Example 6.2.1, show that the dual space (¢g)* of the space ¢y of all infinite
sequences X = (x;);en of complex numbers such that z; — 0 as i — oo, with supremum norm

[1%[|oo = sup [,
ieN

is isomorphic to the space £! of all absolutely summable infinite sequences of complex numbers.



