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Chapter 5

ORTHOGONAL EXPANSIONS

5.1. Orthogonal and Orthonormal Systems

Definition. Two vectors x and y in an inner product space V over F are said to be orthogonal to
each other if 〈x,y〉 = 0.

Definition. A system (xα)α∈I of vectors in an inner product space V over F is said to be an orthogonal
system if 〈xα,xβ〉 = 0 for every α, β ∈ I satisfying α �= β; in other words, if the system consists of vectors
in V that are orthogonal to each other.

Definition. An orthogonal system (xα)α∈I of vectors in an inner product space V over F is said to
be an orthonormal system if ‖xα‖ = 1 for every α ∈ I.

Remark. In the special case when I = N, an orthonormal system (xn)n∈N is sometimes also known as
an orthonormal sequence. Note also that the set Z has the same cardinality as the set N. It is convenient
to think of orthonormal systems (xn)n∈Z also as orthonormal sequences. Any result valid for a general
orthonormal sequence (xn)n∈N has an analogue that is valid for a general orthonormal sequence (xn)n∈Z.

Example 5.1.1. In the inner product space �2 of all square summable infinite sequences of complex
numbers, with inner product

〈x,y〉 =
∞∑

i=1

xiyi,

the system (xn)n∈N, given by

xn = (0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, 0, 0, . . .) for every n ∈ N,

is an orthonormal sequence, sometimes known as the standard orthonormal sequence in �2.
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Example 5.1.2. In the inner product space L2[−π, π] of all Lebesgue measurable complex valued
functions that are square integrable on [−π, π], with inner product

〈f, g〉 =
∫ π

−π

f(t)g(t) dt,

consider the system (fn)n∈Z, where for every n ∈ Z, the function fn : [−π, π] → C is defined by

fn(t) =
1

(2π)1/2
eint for every t ∈ [−π, π].

Then for every n, m ∈ Z, we have

〈fn, fm〉 =
1
2π

∫ π

−π

ei(n−m)t dt =
{

1 if n = m,
0 if n �= m.

It follows that (fn)n∈Z is an orthonormal sequence. Consider also the system (g0, g1, h1, g2, h2, . . .),
where the function g0 : [−π, π] → C is defined by

g0(t) =
1

(2π)1/2
for every t ∈ [−π, π],

and where for every n ∈ N, the functions gn : [−π, π] → C and hn : [−π, π] → C are defined by

gn(t) =
1

π1/2
cos nt and hn(t) =

1
π1/2

sin nt for every t ∈ [−π, π].

With a bit of work, it can be shown that (g0, g1, h1, g2, h2, . . .) is also an orthonormal system.

Suppose that (xn)n∈N is an orthonormal sequence in an inner product space V over F. Consider the
linear span span({xn : n ∈ N}), consisting of all finite linear combinations of the terms of the sequence
(xn)n∈N. Suppose that x is an element in this linear span. Then there exists a sequence (cn)n∈N in F

such that

x =
∞∑

n=1

cnxn.

Note that we do not have to worry about convergence here, as all but finitely many of the numbers cn

are equal to zero. Then for every n ∈ N, we have

〈x,xn〉 =

〈 ∞∑
m=1

cmxm,xn

〉
=

∞∑
m=1

cm〈xm,xn〉 = cn.

We now generalize this simple idea.

Definition. Suppose that (xn)n∈N is an orthonormal sequence in a Hilbert space V over F. Then for
every vector x ∈ V , the number cn = 〈x,xn〉 ∈ F is called the n-th Fourier coefficient of x with respect
to the orthonormal sequence, and the series

x ∼
∑
n∈N

cnxn =
∑
n∈N

〈x,xn〉xn

is called the Fourier series of x with respect to the orthonormal sequence.

Remark. Note that Example 5.1.2 should be familiar to anyone with any knowledge of Fourier series.
Note also that at this point, we have not discussed the convergence or otherwise of the Fourier series.
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Example 5.1.3. Suppose that f ∈ L2[−π, π], the inner product space discussed in Example 5.1.2.
Then for every n ∈ Z, we have

cn = 〈f, fn〉 =
1

(2π)1/2

∫ π

−π

f(t)e−int dt,

and the Fourier series for f with respect to the orthonormal system (fn)n∈Z is given by

f(t) ∼
∑
n∈Z

cneint.

On the other hand,

a0 = 〈f, g0〉 =
1

(2π)1/2

∫ π

−π

f(t) dt.

Furthermore, for every n ∈ N, we have

an = 〈f, gn〉 =
1

π1/2

∫ π

−π

f(t) cos nt dt and bn = 〈f, hn〉 =
1

π1/2

∫ π

−π

f(t) sin nt dt,

and the Fourier series for f with respect to the orthonormal system (g0, g1, h1, g2, h2, . . .) is given by

f(t) ∼ a0

(2π)1/2
+

1
π1/2

∞∑
n=1

(an cos nt + bn sin nt).

5.2. Convergence of Fourier Series

We have yet to determine whether the Fourier series of a given vector actually represents the vector in
any way. In this section, we study first the problem of the convergence of the Fourier series of a given
vector with respect to an orthonormal sequence. We begin by showing that the sequence of Fourier
coefficients is square summable.

THEOREM 5A. (BESSEL’S INEQUALITY) Suppose that (xn)n∈N is an orthonormal sequence in
an inner product space V over F. Then for every vector x ∈ V , we have

∞∑
n=1

|〈x,xn〉|2 ≤ ‖x‖2.

Proof. For every N ∈ N, let

sN =
N∑

n=1

〈x,xn〉xn

denote the N -th partial sum of the Fourier series for x. Then (see Problem 4)

N∑
n=1

|〈x,xn〉|2 = ‖x‖2 − ‖sN − x‖2 ≤ ‖x‖2.

The result follows on letting N → ∞. ♣
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Recall that in a metric space (V, ρ), we say that a series

∞∑
n=1

yn

converges to y, denoted by
∞∑

n=1

yn = y,

if the sequence of real numbers

ρ

(
N∑

n=1

yn,y

)
→ 0 as N → ∞. (1)

If V is an inner product space over F, then the metric ρ is induced by the inner product via the norm.
Hence the condition (1) is equivalent to

∥∥∥∥∥
N∑

n=1

yn − y

∥∥∥∥∥ → 0 as N → ∞.

THEOREM 5B. Suppose that (xn)n∈N is an orthonormal sequence in a Hilbert space V over F.
Then for every sequence (λn)n∈N in F, the series

∞∑
n=1

λnxn (2)

converges in V if and only if the real series

∞∑
n=1

|λn|2 < ∞; (3)

in other words, if and only if the sequence (λn)n∈N is square summable.

Proof. (⇒) Suppose that
∞∑

m=1

λmxm = x.

For every n ∈ N, choosing N ∈ N to satisfy N ≥ n, we have

〈
N∑

m=1

λmxm,xn

〉
=

N∑
m=1

λm〈xm,xn〉 = λn.

In view of the continuity of the inner product, it follows on letting N → ∞ that

〈x,xn〉 =

〈 ∞∑
m=1

λmxm,xn

〉
= λn.

The conclusion (3) now follows on applying Bessel’s inequality.
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(⇐) For every m ∈ N, let

tN =
N∑

n=1

λnxn

denote the N -th partial sum of the series (2). Then for every M, N ∈ N satisfying M > N , we have

tM − tN =
M∑

n=N+1

λnxn.

On the other hand, it follows from Pythagoras’s theorem (see Problem 3) and the orthonormality of the
sequence (xn)n∈N that

∥∥∥∥∥
M∑

n=N+1

λnxn

∥∥∥∥∥
2

=
M∑

n=N+1

‖λnxn‖2 =
M∑

n=N+1

|λn|2‖xn‖2 =
M∑

n=N+1

|λn|2.

Hence the condition (3) implies that the sequence (tN )N∈N is a Cauchy sequence in V . The convergence
of the series (2) now follows from the completeness of the Hilbert space V . ♣

5.3. Orthonormal Bases

We now wish to study the problem of whether a given vector is equal to its Fourier series with respect
to some orthonormal sequence. More precisely, we wish to determine whether the Fourier series of a
given vector with respect to some orthonormal sequence converges to the vector itself. Note that by
convergence in a Hilbert space, we mean convergence with respect to the norm induced by the inner
product. In the case of Hilbert spaces of functions, this does not necessarily mean pointwise convergence.

To motivate our next definition, let us consider a Hilbert space V over F, with a given orthonormal
sequence (xn)n∈N. For any vector x ∈ V , consider its Fourier series

∞∑
n=1

〈x,xn〉xn.

Let

y = x −
∞∑

m=1

〈x,xm〉xm

denote the difference between x and its Fourier series. We would like to show that y = 0.
First of all, for every n ∈ N, we have

〈y,xn〉 = 〈x,xn〉 −
〈 ∞∑

m=1

〈x,xm〉xm,xn

〉
= 〈x,xn〉 −

∞∑
m=1

〈x,xm〉〈xm,xn〉 = 〈x,xn〉 − 〈x,xn〉 = 0.

On the other hand, in the inner product space �2 discussed in Example 5.1.1, if we remove x1 from
the standard orthonormal sequence, the system (xn)n∈N\{1} still constitutes an orthonormal sequence.
However, it is easy to see that the Fourier series of the vector x1 with respect to the orthonormal system
(xn)n∈N\{1} converges to the zero vector 0. It follows that y = x1 in this case.

Definition. An orthonormal sequence (xn)n∈N in a Hilbert space V over F is said to be an orthonormal
basis of V if the only vector y ∈ V that satisfies the condition

〈y,xn〉 = 0 for every n ∈ N

is the zero vector y = 0.
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Example 5.3.1. The standard orthonormal sequence in �2, given in Example 5.1.1 clearly forms an
orthonormal basis of �2. Suppose that y = (y1, y2, y3, . . .) ∈ �2 satisfies 〈y,xn〉 = 0 for every n ∈ N.
Then since 〈y,xn〉 = yn for every n ∈ N, it follows that y = 0 is the zero sequence.

THEOREM 5C. Suppose that (xn)n∈N is an orthonormal basis in a Hilbert space V over F. Then
for every vector x ∈ V , we have

x =
∞∑

n=1

〈x,xn〉xn and ‖x‖2 =
∞∑

n=1

|〈x,xn〉|2.

Proof. The first assertion has already been established earlier. On the other hand, as in the proof
of Theorem 5B, it follows from Pythagoras’s theorem and the orthonormality of the sequence (xn)n∈N

that for every N ∈ N, we have

∥∥∥∥∥
N∑

n=1

〈x,xn〉xn

∥∥∥∥∥
2

=
N∑

n=1

‖〈x,xn〉xn‖2 =
N∑

n=1

|〈x,xn〉|2‖xn‖2 =
N∑

n=1

|〈x,xn〉|2.

The second assertion now follows on letting N → ∞. ♣

Remark. The orthonormal systems in Example 5.1.2 form orthonormal bases of the Hilbert space
L2[−π, π]. We shall not prove this assertion here. Suffice to say that this forms the foundation of the
theory of classical Fourier series.

An orthonormal basis in a Hilbert space is sometimes also called a complete orthonormal sequence
by some authors. The result below is an attempt to explain this terminology.

THEOREM 5D. Suppose that (xn)n∈N is an orthonormal sequence in a Hilbert space V over F.
Then the following statements are equivalent:
(a) (xn)n∈N is an orthonormal basis in V .
(b) The linear span span({xn : n ∈ N}) has closure V .
(c) For every x ∈ V , we have

‖x‖2 =
∞∑

n=1

|〈x,xn〉|2.

Proof. In view of Theorem 5C, it remains to prove that (b)⇒(a) and (c)⇒(a).
((b)⇒(a)) Suppose that y ∈ V satisfies 〈y,xn〉 = 0 for every n ∈ N. Consider the set

S = {x ∈ V : 〈y,x〉 = 0}.

It is easy to check that S is a linear subspace of V . Since xn ∈ S for every n ∈ N, it follows that S must
contain the linear span span({xn : n ∈ N}). On the other hand, S is closed in view of the continuity
of the inner product, and so S must contain the closure of the linear span span({xn : n ∈ N}). Hence
S = V . In particular, we have y ∈ S, and so 〈y,y〉 = 0, whence y = 0 as required.

((c)⇒(a)) Suppose on the contrary that the orthonormal sequence (xn)n∈N does not form an
orthonormal basis in V . Then there exists a non-zero x ∈ V such that 〈x,xn〉 = 0 for every n ∈ N.
Then ‖x‖ �= 0, but

∞∑
n=1

|〈x,xn〉|2 = 0,

clearly a contradiction. ♣
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5.4. Separable Hilbert Spaces

We now turn to the problem of the existence of an orthonormal basis in a Hilbert space. Suppose first
of all that V is a finite dimensional inner product space over F. Then any basis of V can be converted to
an orthogonal basis by the Gram-Schmidt process and then normalized. Hence every finite dimensional
Hilbert space V over F has an orthonormal basis.

Definition. A Hilbert space V over F is said to be separable if it is finite dimensional or if it has
an orthonormal sequence that forms an orthonormal basis. In other words, V is separable if it has a
countable orthonormal basis.

The purpose of this section is to show that we have already studied all the separable Hilbert spaces
over F. More precisely, we shall show that every separable Hilbert space over F is similar to one of the
examples that we have studied. To do so, we must first give a meaning to the word “similar”.

Definition. Suppose that V and W are Hilbert spaces over F. A mapping φ : V → W is said to be a
unitary transformation if the following conditions are satisfied:

(UT1) φ : V → W is linear: For every x,y ∈ V and α, β ∈ F, we have φ(αx + βy) = αφ(x) + βφ(y).
(UT2) φ : V → W is onto: For every z ∈ W , there exists x ∈ V such that φ(x) = z.
(UT3) φ : V → W is one-to-one: For every x,y ∈ V , we have x = y whenever φ(x) = φ(y).
(UT4) φ : V → W preserves inner product: For every x,y ∈ V , we have 〈φ(x), φ(y)〉 = 〈x,y〉.

Remark. The conditions (UT3) and (UT4) can be replaced by the following:
(UT5) φ : V → W preserves norm: For every x ∈ V , we have ‖φ(x)‖ = ‖x‖.

Clearly (UT5) follows from (UT4). On the other hand, if φ(x) = φ(y), then it follows from (UT1) that
φ(x − y) = 0, so that ‖φ(x − y)‖ = ‖0‖ = 0. It then follows from (UT5) that ‖x − y‖ = 0, so that
x − y = 0, giving (UT3). Finally, (UT4) follows from (UT5) in view of (UT1) and the Polarization
identity (see Problem 9(b) in Chapter 4) in the case when F = C. In the case when F = R, the
Polarization identity is replaced by a simpler identity (see Problem 8(b) in Chapter 4).

Definition. Two Hilbert spaces V and W over F are said to be isomorphic if there exists a unitary
transformation φ : V → W from V to W .

THEOREM 5E. Suppose that V is a separable complex Hilbert space. Then either V is isomorphic
to C

r for some r ∈ N, or V is isomorphic to the separable Hilbert space �2.

Proof. Suppose first of all that V is finite dimensional, of dimension r, say. Then V has a basis of
r elements which can be orthogonalized by the Gram-Schmidt process and then normalized to give an
orthonormal basis (x1, . . . ,xr). Consider now a mapping φ : V → C

r, defined as follows. For every
vector x ∈ V with unique Fourier series

x =
r∑

i=1

〈x,xi〉xi =
r∑

i=1

cixi,

we write
φ(x) = (c1, . . . , cr) ∈ C

r.

It is not difficult to check that φ : V → C
r is linear. On the other hand, for every (c1, . . . , cr) ∈ C

r, the
vector x = c1x1 + . . . + crxr satisfies φ(x) = (c1, . . . , cr), so that φ : V → C

r is onto. Finally, note from
Pythagoras’s theorem that

‖x‖2 =
r∑

i=1

|〈x,xi〉|2 =
r∑

i=1

|ci|2 = ‖φ(x)‖2,

so that φ : V → C
r is norm preserving. Hence φ : V → C

r is a unitary transformation, and so V is
isomorphic to C

r.
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Suppose next that V has an orthonormal sequence (xn)n∈N that forms an orthonormal basis. Con-
sider now a mapping φ : V → �2, defined as follows. For every vector x ∈ V with unique Fourier
series

x =
∞∑

n=1

〈x,xn〉xn =
∞∑

n=1

cnxn,

we write
φ(x) = (c1, c2, c3, . . .).

In view of Theorem 5D, we have φ(x) ∈ �2 and ‖φ(x)‖ = ‖x‖, so that φ : V → �2 well defined and norm
preserving. On the other hand, it is not difficult to check that φ : V → �2 is linear. Finally, for every
(c1, c2, c3, . . .) ∈ �2, it follows from Theorem 5B that

∞∑
n=1

cnxn

converges to a vector x ∈ V , and that φ(x) = (c1, c2, c3, . . .), and so φ : V → �2 is onto. Hence φ : V → �2

is a unitary transformation, and so V is isomorphic to �2.
That the Hilbert space �2 is separable is an immediate consequence of Example 5.3.1. ♣

Remark. Similarly, one can show that if V is a separable real Hilbert space, then either V is isomorphic
to R

r for some r ∈ N, or V is isomorphic to �2(R), the space of all square summable infinite sequences
of real numbers.

5.5. Splitting up a Hilbert Space

Suppose that V is a vector space. We often seek to split V into smaller parts. More precisely, suppose
that W and U are subspaces of V such that W ∩ U = {0} and every x ∈ V can be written in the form
x = y + z for some y ∈ W and z ∈ U . Then we say that V is a direct sum of W and U , and write
V = W ⊕ U . Suppose further that V has an inner product, and that every vector in W is orthogonal
to every vector in U . Then we say that V is an orthogonal direct sum of W and U . In this section, we
shall study this problem when V is a Hilbert space over F and W is a closed subspace of V .

Definition. Suppose that V is a Hilbert space over F, and that W is a non-empty subset of V . By
the orthogonal complement of W , we mean the set

W⊥ = {x ∈ V : 〈x,y〉 = 0 for every y ∈ W}.

Remark. It is not difficult to show that for every Hilbert space V over F and subset W ⊆ V , the
orthogonal complement W⊥ is a closed subspace of V . The picture below shows a very interesting
property of W⊥ in the special case when W is a closed subspace of V .
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Here the vector z is orthogonal to every vector in W . Note that

‖z‖ ≤ ‖z − u‖ for every u ∈ W.

We shall need this idea in the proof of our next result.

THEOREM 5F. Suppose that V is a Hilbert space over F and W is a closed subspace of V . Then
for every x ∈ V , there exist unique y ∈ W and z ∈ W⊥ such that x = y + z.

Proof. Let x ∈ V be chosen. We shall make use of the closest point property. It is not difficult to
show that W is convex in V , and so it follows from Theorem 4G that there exists a vector y ∈ W such
that

‖x − y‖ ≤ ‖x − v‖ for every v ∈ W.

Every u ∈ W can be written in the form u = v − y, where v ∈ W . Hence

‖x − y‖ ≤ ‖x − y − u‖ for every u ∈ W.

Let z = x − y. Then
‖z‖ ≤ ‖z − u‖ for every u ∈ W.

We shall show that z ∈ W⊥. For every u ∈ W and λ ∈ F, we have λu ∈ W , and so

‖z‖2 ≤ ‖z − λu‖2 = 〈z − λu, z − λu〉 = ‖z‖2 − λ〈u, z〉 − λ〈z,u〉 + |λ|2‖u‖2.

It follows that
2Re

(
λ〈z,u〉

)
≤ |λ|2‖u‖2.

We now choose λ = tc, where t > 0 and c ∈ F satisfies |c| = 1 and c〈z,u〉 = |〈z,u〉|. Then

2t|〈z,u〉| ≤ t2‖u‖2, and so |〈z,u〉| ≤ 1
2 t‖u‖2.

But λ ∈ F is arbitrary, and therefore so is t > 0. We must therefore have |〈z,u〉| = 0, so that 〈z,u〉 = 0,
and so z and u are orthogonal. Since u ∈ W is arbitrary, it follows that z ∈ W⊥. Finally, suppose that

x = y + z = y′ + z′, where y,y′ ∈ W and z, z′ ∈ W⊥.

Then y− y′ = z′ − z ∈ W ∩W⊥. It is not difficult to show that W ∩W⊥ = {0}. It follows that y = y′

and z = z′, giving uniqueness. ♣

THEOREM 5G. Suppose that V is a Hilbert space over F and W is a closed subspace of V . Then
(W⊥)⊥ = W .

Proof. It follows from the definition of orthogonal complement that W ⊆ (W⊥)⊥. To show the
opposite inclusion, suppose that x ∈ (W⊥)⊥. Write x = y + z, where y ∈ W and z ∈ W⊥. Clearly
〈y, z〉 = 0. Furthermore 〈x, z〉 = 0. But then 〈x, z〉 = 〈y + z, z〉 = 〈y, z〉 + 〈z, z〉 = ‖z‖2. It follows that
z = 0, and so x = y ∈ W . ♣

Problems for Chapter 5

1. Consider the system (fα)α∈R, where for every α ∈ R, the function fα : R → C is defined by
fα(t) = eiαt for every t ∈ R.
a) Show that (fα)α∈R is an orthonormal system in the inner product space Ψ in Problem 3 in

Chapter 4.
b) Is (fα)α∈R an orthonormal sequence? Justify your assertion.
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2. Show that the sequence (g0, g1, h1, g2, h2, . . .) in Example 5.1.2 is an orthonormal system by following
the steps below:
a) Show that 〈gm, gn〉 = 0 and 〈hm, hn〉 = 0 for every m, n ∈ N satisfying m �= n.
b) Show that 〈gm, hn〉 = 0 for every m, n ∈ N.
c) Show that 〈g0, gn〉 = 0 and 〈g0, hn〉 = 0 for every n ∈ N.
d) Show that 〈g0, g0〉 = 1.
e) Show that 〈gn, gn〉 = 1 and 〈hn, hn〉 = 1 for every n ∈ N.

3. Suppose that I is a finite set, and that (xα)α∈I is an orthogonal system in an inner product space
over F. By writing the left hand side as an inner product and then expanding, prove Pythagoras’s
theorem, that ∥∥∥∥∥∑

α∈I

xα

∥∥∥∥∥
2

=
∑
α∈I

‖xα‖2.

4. Suppose that I is a finite set, and that (xα)α∈I is an orthonormal system in an inner product space
V over F. Suppose further that x ∈ V , and that cα = 〈x,xα〉 for every α ∈ I.
a) By writing the left hand side as an inner product and then expanding, show that for every

system (λα)α∈I in F, we have

∥∥∥∥∥x −
∑
α∈I

λαxα

∥∥∥∥∥
2

= ‖x‖2 +
∑
α∈I

|λα − cα|2 −
∑
α∈I

|cα|2.

b) Show that the closest point y in the linear span span({xα : α ∈ I}) to x is given by

y =
∑
α∈I

〈x,xα〉xα,

and that ∑
α∈I

|〈x,xα〉|2 = ‖x‖2 − ‖y − x‖2.

c) Show that if x ∈ span({xα : α ∈ I}), then

x =
∑
α∈I

〈x,xα〉xα.

5. Consider the system (fj)j∈Z, where for every j ∈ Z, the function fj(z) = zj is a rational function
analytic on the unit circle T = {z ∈ C : |z| = 1}.
a) Show that (fj)j∈Z is an orthonormal sequence in the inner product space Q(T ) studied in

Example 4.2.3.
b) Suppose that α ∈ C satisfies |α| �= 1. Find the Fourier coefficients of the function f ∈ Q(T ),

defined by f(z) = (z − α)−1, with respect to the orthonormal sequence in part (a). Take care
to distinguish the cases |α| > 1 and |α| < 1.

6. Suppose that V is a Hilbert space over F, and that W is a closed subspace of V . Suppose further
that (xn)n∈N is an orthonormal basis of W . Show that for every vector x ∈ V , the vector

y =
∞∑

n=1

〈x,xn〉xn

satisfies
‖x − y‖ ≤ ‖x − u‖ for every u ∈ W.
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7. Suppose that W is a closed subspace of a Hilbert space over F. Show that W ∩ W⊥ = {0}.

8. Consider the set �2
Z

of all doubly infinite sequences x = (. . . , x−2, x−1, x0, x1, x2, . . .) of complex
numbers such that ∞∑

i=−∞
|xi|2 < ∞.

a) Show that for every x,y ∈ �2
Z
, the quantity

〈x,y〉 =
∞∑

i=−∞
xiyi

is well defined, and gives rise to an inner product on �2
Z
.

b) Show that �2
Z

is isomorphic to �2 by writing down an isomorphism explicitly.

9. Suppose that V is a Hilbert space over F, and that y ∈ V is non-zero. Suppose further that

W = {x ∈ V : 〈x,y〉 = 0}.

Describe the set W⊥.

10. Consider the inner product space L2[−1, 1] as discussed in Example 4.4.4.
a) Let W = {f ∈ L2[−1, 1] : f(t) = 0 for every t ∈ [−1, 0]}. Find W⊥.
b) Let

Wodd = {f ∈ L2[−1, 1] : f(−t) = −f(t) for every t ∈ [−1, 1]}
and

Weven = {f ∈ L2[−1, 1] : f(−t) = f(t) for every t ∈ [−1, 1]}.
Show that L2[−1, 1] = Wodd ⊕ Weven represents an orthogonal direct sum.

11. Consider the inner product space �0 consisting of all infinite sequences of complex numbers with
only finitely many non-zero terms, with the inner product of �2, as discussed in Section 4.1. Let
a =

(
1, 1

2 , 1
3 , . . .

)
∈ �2.

a) Show that W = {x ∈ �0 : 〈x,a〉 = 0 in �2} is a closed subspace of �0.
b) Show that W⊥ = {0}, where 0 denotes the sequence with all terms zero.
c) Is �0 = W ⊕ W⊥? Comment on your answer.

12. Suppose that f, g ∈ L2[−π, π], with Fourier series

f(t) ∼
∑
n∈Z

cneint and g(t) ∼
∑
n∈Z

dneint.

a) By establishing a suitable unitary transformation φ : L2[−π, π] → �2
Z
, where �2

Z
is the inner

product space described in Problem 8, prove Parseval’s formula, that

1
2π

∫ π

−π

f(t)g(t) dt =
∑
n∈Z

cndn.

b) Deduce that
1
2π

∫ π

−π

|f(t)|2 dt =
∑
n∈Z

|cn|2.

− ∗ − ∗ − ∗ − ∗ − ∗ −


