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Software engineering relies on the possibility of describing a system at different levels
of abstraction. Agent-oriented software engineering introduces a new level of abstrac-
tion, that we called agent level, to allow the architect modelling a system in terms of
interacting agents. This level of abstraction is not supported by an accepted set of tools
and notations yet, even if a number of proposals are available. This paper introduces:
(i) An UML-based notation capable of modelling a system at the agent level and (ii)
A development framework, called ParADE, exploiting such a notation. The notation
we propose is formalized in terms of a UML profile and it supports the realisation of
artefacts modelling two basic concepts of the agent level, i.e., the architecture of the
multi-agent system and the ontology followed by agents. The choice of formalising our
notation in terms of a UML profile allows using it with any off-the-shelf CASE tool. The
ParADE framework takes advantage of this choice by providing a code generator capa-
ble of producing skeletons of FIPA-compliant agents from XMI files of agent-oriented
models. The developer is requested to complete the generated skeletons exploiting the
services that ParADE and the underlying agent platform provide.
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1. Introduction

The ever-increasing importance of the Web is promoting the development of agent

technology and it is driving the introduction of agent-oriented software engineer-

ing [8, 16, 25, 28]. Agent technology is advocated as an ideal means to exploit

the possibilities of the Web [7] and agent-oriented software engineering has been

accepted in the software engineering community with the AOSE (Agent-Oriented

Software Engineering) workshop at ICSE and with the creation of the OMG Agent

Special Interest Group. Surprisingly, this wave of interest has not yet produced

accepted tools and notations capable of supporting the new concepts that agent

introduces in software engineering. In this paper we present some tools that we

propose to overcome this problem. In particular, we show:

• An UML-based notation that can be used to create agent-oriented artefacts;

• A development framework, called ParADE, capable of exploiting such artefacts.
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Our notation covers two basic concepts of agent-oriented software engineering: the

architecture of the multi-agent system and the ontology followed by agents. We

support such concepts by introducing two new UML models in the framework of

a new UML profile [14]. This approach is well-founded because it relies on the

extension mechanism that UML provides and it allows using any CASE tool to

employ our notation. Moreover, the availability of XMI [15], the standard XML-

based file format for exchanging UML models between CASE tools, allows realising

CASE-agnostic tools supporting our notation. The ParADE framework exploits

this file format to produce skeletons for agents relying on a goal-oriented agent

architecture. A description of ParADE code generators can be found in [4].

In order to define precisely the agent-oriented concepts that we support in our

tools, the following section briefly characterises software agents. Then, in Sec. 3

we build a UML profile capable of capturing the concepts that we used in our

characterisation. Section 4 describes the ParADE framework and shows how this

implements such concepts. Finally, Sec. 5 discusses the presented work and presents

some conclusions.

2. Software Agents

The agent community has not yet adopted an accepted definition for the word

agent. Many informal definitions are available, but none of them focuses on all the

elements that we want to support in our notation. This is the reason why we need

to provide our characterization for agents starting from Wooldridge’s work [27]:

Definition. An agent is a software system that is (i) situated in some environment,

(ii) capable of autonomous actions in order to meet its objectives, and (iii) capable

of communicating with other agents.

Agents are software systems that work in an environment formed by non-

agentised entities. Agents take the essential resources they need to work from their

environment. This characteristic emphasizes that agents are intended to work to-

gether with non-agentised entities to bring about their objectives.

The second characteristic that we allow for agents is autonomy: agents are ex-

plicitly associated with goals and they are capable of taking autonomous decisions

to bring about them without any external coercion. This characteristic is very im-

portant to deal with open and dynamic environments like the Web because it allows

agents reacting to unpredicted and/or unpredictable situations.

The third characteristic that we associate with agents is the so-called social

ability, i.e., the ability that agents have to cooperate. This characteristic relies on

communication. Various communication models are available in the literature, and

we adopt the model that FIPA (the Foundation for Intelligent Physical Agents) [11]

designed to promote interoperability [13] between agents realised by different de-

velopers. This communication model is a variation of the approach developed by

the KSE (Knowledge Sharing Effort) [10, 19] initiative and it derives from the
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speech-act theory [21]. The basic idea of the FIPA communication model is that an

agent can explicitly send messages to other agents and no implicit communication is

taken into account. Such messages belong to the FIPA ACL (Agent Communication

Language) [11] and each message is structured in two parts: a communication part

and a content part. The communication part carries content-independent informa-

tion such as the identifier of the sender and the receiver. The content part bares

the meaning of the message and it is structured in terms of one performative and

a domain content. The performative is a domain-independent verb that specifies

the meaning that the sender of the message wanted to associate with the domain

content in terms of the intention that guided the sender in sending the message.

FIPA specifies a set of performatives that cover most of the intentions an agent

may have to send a message as it allows expressing variants of queries, requests and

information exchanges. The domain content of the message is a sentence expressed

in some language and its semantics is in the scope of some ontology. FIPA does not

prescribe any language for expressing domain contents and when an agent receives

a message it comes to know the language and the ontology used in the domain

content exploiting the communication part of the message.

An important characteristic of the FIPA communication model is that it is

not limited to isolated messages, but it allows grouping messages into interaction

protocols [11]. Interaction protocols are domain-independent message flows that can

be instantiated in concrete conversations between agents. They abstract a common

path of performatives from the set of possible conversations and they are designed

to ease the realisation of agents capable of complex conversations. FIPA provides a

set of general-purpose interaction protocols and it also provides guidelines for the

realisation of application-specific interaction protocols.

3. UML Profile for Agent-Oriented Software

Software engineering relies on the possibility of modelling a system at different

levels of abstraction. Agent-oriented software engineering introduces a new level of

abstraction, that we called agent level [3], to model a system in terms of interacting

agents. At this level, an agent is an atomic entity that communicates with other

agents and interacts with its environment to implement the functionality of the

system. The development of complex agent-based systems requires the extension of

the available development processes to take the peculiarities of the agent level into

account. A number of processes are already available [8, 28], but at the moment

none of them is supported by a diagrammatic notation. We address this problem

introducing a UML profile that can be used to model two important concepts

of the agent level: the ontology followed by agents and the architecture of the

multi-agent system. The notation that we propose differs significantly from other

proposals [1, 6, 9] found in the literature because:

• It is well founded as it is coherent with the UML extension mechanism;

• It can be exploited using available tools.
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Artefacts using such a notation can be produced with any off-the-shelf UML CASE

tool and we developed CASE-independent software tools relying on XMI.

Table 1 shows the stereotypes and the associated elements in the UML meta-

model that we introduce to formalise our notation. We introduce two new models,

called ontology model and architecture model, that are concretely realised as con-

strained class diagrams called ontology diagrams and architecture diagrams. An

ontology model describes the ontology followed by the agents in the system. It is

described in terms of a top-level package called ontology system. This package can

contain ontology packages and/or classes and relationships. An ontology package is

a package containing classes and relationships.

Architecture models are used to model the architecture of the multi-agent sys-

tem and they are structured like ontology models. Any architecture model is de-

scribed in terms of a top-level package called architecture system. This package

can contain architecture packages and/or classes and relationships. An architec-

ture package recursively contains other architecture packages and/or classes and

relationships.

The following subsections describe the constraints that we impose on classes

and relationships to complete our profile.

Table 1. Stereotypes supporting ontol-
ogy and architecture diagrams.

Metamodel class Stereotype name

Model ontology model

Model architecture model

Package ontology system

Package architecture system

Package ontology package

Package architecture package

Class entity

Class agent

Association communicate

Association predicate

3.1. Ontology diagrams

Modelling a multi-agent system at the agent level requires defining a model of the

environment in which agents execute. Agents exploit this model to reason about the

environment and to talk about it. The problem of describing the environment to

agents is traditionally solved by providing them with an ontology that models the

environment in terms of entities and relationships between such entities [9, 12]. On-

tology diagrams are class diagrams whose semantics is similar to the one employed

in conceptual diagrams. An ontology diagram allows describing the entities belong-
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ing to an ontology in terms of entity classes. These classes are characterised only in

terms of public attributes. These attributes are used to model the structure of the

entities comprised in the ontology, just like they are used in conceptual diagrams.

Moreover, ontology diagrams allow the architect defining the relationships between

the entities belonging to an ontology by exploiting relationships between entity

classes. These are mapped into UML by exploiting public relationships between

entity classes.

The agent level of abstraction does not deal with implementation details be-

cause these are normally tackled at a lower level of abstraction, that we called

object level [3], where agents are seen as object-oriented systems. This implies that

entity classes are not allowed to contain private and protected methods and at-

tributes. Similarly, class diagrams allow associating a set of public methods with

a class of objects to specify the messages objects may exchange to implement the

functionality of the system. This is not allowed at the agent level because the ac-

tors communicating to implement the system are the agents and not the entity

belonging to the ontology.

Ontology diagrams contain the main features needed to support the commu-

nication between agents, i.e., they contain a subset of the vocabulary of domain

contents, because we treat the relationships between entity classes as predicates

defined over such classes. This approach allows the architect to exploit an ontology

diagram as a description of the entities and the predicates that agents may use to

create domain contents. To this extent, we introduce the stereotype predicate for

association between entity classes.

Figure 1 shows an ontology diagram we modelled for the realisation of an agent-

based system managing a restaurant service. This service will be probably included

in the services provided by the Agentcities initiative [26]. It comprises various entity

classes and predicates and it is rich enough for modelling complex domain contents.

The stereotype predicate is not shown because all relationships in the diagram are

predicates.

3.2. Architecture diagrams

All proposed agent-oriented development processes emphasise the importance of

modelling a multi-agent system in terms of a society of related agents. This in-

troduces the concept of architeture of a multi-agent system. Such architecture is

composed of a set of agent classes and each class represents a class of agents with

a precise set of responsibilities [17]. A complete model of an agent class requires

describing the set of features used to characterise an agent belonging to that class.

Such features include:

• The accepted content messages, taking into account the ontology model;

• The supported interaction protocols;

• The network of acquaintance an agent can have.
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Fig. 1. Ontology diagram for an agent-based restaurant service.
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Architecture diagrams allow modelling such characteristics with class diagrams

where classes can contain only public methods. These methods correspond to the

actions that an agent belonging to that class can be requested to perform and they

must be declared void because in the FIPA communication model messages are

asynchronous, i.e., they are not explicitly associated with a reply. Moreover, the

parameters passed to these methods must belong to entity classes defined in the

ontology model. The list of actions associated with an agent class does not include

the performatives of the agent communication language because these are almost

embedded in the chosen agent model.

The actions that the architect associates with agent classes complete the ele-

ments provided by the ontology model to create valid domain contents. An agent

can understand all messages composed using the entities and predicates found in

the ontology model and can be requested to perform the actions specified in its

class.

This approach restricts agents understanding only messages based on first-order

logic. While this is a limitation of the considered logic framework, it does not limit

strongly the set of messages that agents may wish to exchange in a real-world

system. Therefore, the development of a more comprehensive logic framework is

considered for a future work.

The problem of modelling application-specific interaction protocols has been

investigated by Odell et al. [1, 6], but we believe that allowing agents using

application-specific interaction protocols may cause problems from the interoper-

ability point of view. Even if we provide agents with a run-time description of an

interaction protocol, it is extremely difficult to implement an agent capable of tak-

ing such a description and learn how to use it without any explicit help from the

developer. Therefore, agents using application-specific protocols may not be able

to run in open and dynamic systems where third-party agents join and leave dy-

namically. Moreover, the semantics of the paths of an interaction protocol must

be coherent with the semantics of the employed performatives. This coherence is

very difficult to achieve and only well-studied and accepted interaction protocols

can guarantee this property. FIPA provides a set of generic interaction protocols

that can be composed to create complex interactions and we take the assumption

that agents use only these interaction protocols. Nevertheless, FIPA states that no

interaction protocol is mandatory and we need a way to express which interaction

protocol each agent supports. We do this by informally annotating agent classes

with structured comments.

Architecture diagrams use public relationships to express relationships between

agents. It is quite common to avoid distributing responsibilities to agents using

relationships because this approach may be problematic in systems where agents can

leave and join dynamically. Therefore, we use relationships between agent classes

only to model the privileged communication relationships and we introduce the

stereotype communicate.
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Fig. 2. Architecture diagram for an agent-based restaurant service.

Figure 2 shows the small architecture diagram that we build for our restaurant

service. It contains only two agent classes and only restaurateur agents can per-

form non-communicative actions. The stereotype communicate is not explicit in the

diagram because normally all relationships in architecture models are of this type.

4. The ParADE Framework

The need of an agent-oriented support for programmers was felt long before the in-

troduction of agent-oriented software engineering. The first attempt to provide this

support were agent-oriented programming languages [22]. Nowadays, the approach

of agent-oriented languages is no longer adopted and the greater majority of agents

are developed in Java exploiting one of the available agent platforms [2, 5, 20, 24, 23].

Besides, agent platforms are only runtime environment designed to support the

agent lifecycle and to provide a communication mechanism. They do not provide

any support for autonomy and the only support for interoperability that they grant

are the services for producing and parsing correct messages in some agent com-

munication language. Therefore, programmers cannot exploit easily the concepts

introduced at the agent level.

We address this problem implementing an agent-development framework called

ParADE (Parma Development Environment). This framework is intended to pro-

vide tools for easily implementing autonomous and interoperable agents over the

Jade [2] FIPA-compliant platform. The goal driving the work on ParADE is provid-

ing the developer with a support capable of exploiting the UML notation that we

have just introduced in the scope of a hybrid agent architecture that tries to bal-

ance between goal-orientation and reactiveness to achieve a good trade-off between

autonomy, interoperability and performances. This approach was chosen because

goal-orientation is a fundamental key in supporting autonomy while reactive agents

are easier to design and to implement.

ParADE is composed of a set of development tools supporting the developer

at the agent level and at the object level. At the agent level, the developer can

produce UML models as described in this paper and ParADE can generate code
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for the skeletons of agents. This code relies on the ParADE development library

and on the services provided by the underlying agent platform. It is worth noting

that ParADE does not integrate any CASE tool because the code generator works

with XMI files that any off-the-shelf CASE tool should be able to produce.

The code that ParADE generates relies on an goal-oriented agent architecture

that integrates also reactive behaviours. A number of goal-oriented architectures are

available in the literature and a review of the more important ones can be found

in [27]. Nevertheless, such architectures are not meant to exploit FIPA specifications

and therefore they do not integrate the semantics of FIPA ACL and they do not take

FIPA generic interaction protocols into account. The idea behind our approach is to

exploit goal-orientation to assembly plans composed of actions and FIPA generic

interaction protocols. Plans are built and scheduled autonomously, i.e., starting

from the current goals of the agent, but during the execution of an interaction

protocol the agent is reactive and it simply responds to incoming messages. If,

during the execution of a plan, an action or a protocol fails, then the whole plan is

dropped and the agent needs to reconsider how to satisfy its goals [18]. Three basic

advantages that derive from this approach are:

• Our agents are autonomous because they are driven only by their goals and

therefore they can cope well with dynamic environments;

• Our agents are interoperable because we use only FIPA generic interaction pro-

tocols and we assemble them into complex interaction exploiting their formal

semantics;

• We promote efficiency because agents exploit the semantics of FIPA ACL without

the need for reasoning on how to build an interaction protocol in terms of isolated

communicative acts.

Our architecture relies on the possibility of generating plans to achieve the goals

of the agent. To this extent, the planning engine is provided with a description of

the roles that the agents in the system play. This description is generated from the

architecture model of the system and contains:

• The actions that the agent can perform;

• The generic interaction protocols that the agent supports.

Similarly to other models found in the literature, actions and protocols are charac-

terized in terms of a feasibility precondition and a post-condition. For the case of

actions, the feasibility precondition states what must be true for that action to be

feasible. This allows agents to decide whether they can perform an action or not,

but it does not impose on the agent to perform that action if it does not intend

to do it. The post-condition of an action asserts what is certainly true after the

execution of that action. For the case of a protocol, the feasibility precondition is a

generalization of the feasibility precondition for the actions. In particular, the fea-

sibility precondition of a protocol states what must be true for an agent to initiate

that protocol. The definition of post-conditions for protocols requires noting that
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all FIPA generic interaction protocols are characterized by one success state and

one failure state. Sometimes such states are graphically repeated in the diagrams

used in FIPA specifications, but this is only a drawing convention and it does not

mean that the protocol can end in more than two different states. Success and fail-

ure states represent success or failure of the protocol from the point of view of the

initiator.

The availability of feasibility preconditions and post-conditions for actions and

for the generic interaction protocols allows defining the planning engine. We use

protocols as plan templates and we use their post-conditions to decide when we

should employ a particular protocol. We say that a protocol is a plan template

because it must be instantiated providing application-specific domain contents.

The planning engine is in charge of building a sequence of protocols and actions

capable of satisfying a chosen goal starting from the current state of the environment

and the current state of the agent. This is a classic planning problem and it has

been studied intensively in the literature. Therefore, we can access to a huge set of

techniques that can be adopted to solve this problem. In the current implementation

of ParADE we provide an implementation of the simplest of such techniques and a

future work is intended to evaluate the adoptability of more sophisticated planning

algorithms. Figure 3 shows a coarse-grained pseudo-code of the planning engine

currently implemented in ParADE. First, the engine verifies if the goal is currently

asserted in the knowledge base and if so it stops the planning process. Otherwise,

it analyses the goal to see whether it contains references to other agents or not. If

the goal does not contain any reference to another agent, then the planner looks

for an action to execute in the space of the actions the agent can perform. In the

case that the goal refers to other agents, the planning engine searches for a protocol

that may satisfy the goal. Choosing an action or a protocol simply means unifying

the current goal with the post-condition of such action or protocol. The problem

of instantiating the protocol is solved by this unification, as it allows associating

a value with the initial proposition of the protocol. The remaining propositions

are instantiated during the execution of the protocol because the agent behaves

reactively in these situations. The algorithm shown in figure 3 recursively builds

plans until a first plan leading to the goal is found. This algorithm uses the priorities

associated with protocols to sort the set of protocols unifying the current goal.

Even if the presented planning technique is very simple, it may fit many ap-

plication scenarios. Nevertheless, the current implementation of ParADE allows

integrating any planning engine as long as the appropriate Java interface is imple-

mented.

The proposed agent architecture is split in two parallel threads. A main thread

runs the main loop of the architecture, while a second thread, called messaging

thread, waits for messages on the agent’s mailbox and changes the knowledge base

taking into account the semantics of FIPA ACL. These threads do not interact

directly because the information produced by the messaging thread is stored in the

knowledge base and the main thread observes only the changes of the knowledge
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boolean planner(goal, knowledgebase, plan)

if knowledgebase asserts goal then

return true

end if

if goal contains only Me then

space = my actions

else

space = my interaction protocols

end if

forall action in space whose post-

condition unifies goal

queue action to plan

assert goal in knowledgebase

success = planner(action precondition,

knowledgebase, plan)

if success then

/* stop at first plan */

return true

else

remove action from plan

deny goal in knowledgebase

end if

end forall

/* if here no action can be found */

return false

end plan

Fig. 3. Pseudo-code of ParADE planning engine.

base. When a message is taken from the agent’s mailbox, the messaging thread

asserts that the sender of the message intended to achieve the rational effect of

the communicative act and it also asserts the feasibility precondition of this act.

Such assertions rely on two assumptions: the feasibility precondition does not take

time into account and agents are rational, i.e., they want to achieve the rational

effect of the communicative acts they perform. The first assumption is coherent

with the logic framework that ParADE provides to applications, while the second

is a fundamental assumption of FIPA compliancy.

First, the agent waits for new goals or for new actions to perform. New goals

and new actions may result from the execution of other actions or from the arrival

of messages. A message within the scope of a protocol stimulates the execution of

an action to continue the protocol, while messages outside the scope of protocols

cause changes in the knowledge base and may stimulate goals. FIPA does not con-

straint the behavior of an agent receiving a message outside the scope of a protocol

and therefore the application developer can choose what to do without breaking
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interoperability. In the current implementation, ParADE reacts to this kind of mes-

sages putting the rational effect of the incoming message as a new goal. This is a

cooperative behaviour that the developer can change simply extending the Java

class implementing the agent template.

Once new goals or new actions become available, the main loop tests if new goals

are available. If this is the case, the planning engine is invoked and possibly a new

plan is generated. If a new plan can be generated, then the first action of the plan

is scheduled. In the case that no new goals are available, then an action is ready

to be executed. The main loop performs this action and receives the next action

of the plan in return. If such an action exists, then it is scheduled, otherwise the

plan is finished in the success or failure state. If the plan ended in the success state,

then the corresponding goal can be asserted, otherwise the goal remains pending

and the agent may decide to achieve it later. This is the only point where agents

reconsider their intentions [18]. The decision on whether a goal is unreachable or not

is completely application-specific and therefore the main loop calls a Java method

that the developer can re-implement to test the achievability of goals.

5. Conclusions

Agent-oriented software engineering introduces the agent level of abstraction to

allow the architect describing a system in terms of interacting agents. At this level

of abstraction, an agent is considered as an atomic entity that communicates with

other agents to implement the functionality of the system. Besides, the architect

may not exploit the benefits offered by this new level of abstraction for the lack

of accepted notations and tools. This paper shows a new UML profile that can

be used to model a system at the agent level. This profile introduces two new

models for modelling the ontology that agents follow and the architecture of the

multi-agent system. We support this notation with a development framework called

ParADE that can be used to implement FIPA-compliant agents. These agents rely

on a goal-oriented agent architecture designed as a compromise between autonomy,

interoperability and performances. ParADE can be used both at the agent level

and at the object level. At the agent level, it provides a code generator capable of

producing Java skeletons for agents. The generated skeletons must be completed

with application-specific code at the object level exploiting a development library

and the services offered by the underlying agent platform. For a deeper description

of ParADE internal architecture can be found in [4].
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