Software engineering

REQUIREMENTS
~ ANALYSIS AND UML

INTERACTION DIAGRAMS AND STATE TRANSITION DIAGRAMS

by Richard Vidgen

n part 1 of this article (April 2003 C&CE, p. 12)
four arguments for conceptual modelling were
advanced; to clarify our thinking about an area of
concern; as an illustration of a concept; as an aid
to defining structure and logic; and, as a
prerequisite to design. The unified modelling
language (UML) is a widely accepted object-oriented
notation for modelling and specifying system
requirements. In part 1, the UML use case diagram
and class diagram were introduced and applied to the
fictional Barchester Playhouse, an organisation
investigating the implementation of an
Internet theatre ticket booking system.

THE SEQUENCE

exchange of messages needed to accomplish a specific
purpose. Typically, a sequence diagram is prepared to
represent a single use case. As with class diagrams,
sequence diagrams are elaborated throughout the
development process with design detail. At the con-
ceptual level the sequence diagram should be
consistent with the use case and the conceptual class
model.

Fig. 1 is a sequence diagram for the use case
“Internet ticket sale”. The dashed vertical line
represents an object’s lifeline, with time moving from
the top of the diagram to the bottom.
Objects are spread out across the

Use cases represent the system from a DIAGRAM page. Note that the class name is
functional, user-centred perspective, while shown after a colon — this indicates
the class diagram exposes the structure of MODELS THE that we are referring to an instance of
and ymamic aspects will be explored COLLABORATION - e ther. than the el

E: ormance rather than the class
using interaction diagrams and state BETWEEN OBIJECTS itself. Arrows represent the passing of
transition diagrams. AND ACTORS messages from object to object. When

a message 1s sent to an object it

INTERACTION DIAGRAMS

The use case diagram identifies the
functionality of the system from the point of view of
the user. Using an interaction diagram we can show
how the instances of the structural classes will
interact and collaborate to achieve the implemen-
tation of each of the use cases. There are two types of
interaction diagram in UML, the sequence diagram
and the collaboration diagram:

e Sequence diagram: The sequence diagram models the
collaboration between objects and actors, showing the

invokes an operation supported by
that object’s interface. The period of
time that the operation is active is shown by a
rectangle on the object’s lifeline.

In Fig. 1 the collaboration begins with the Internet
user finding a production. The production responds to
the user by returning the details of the selected
production (the return message is not shown, although
it can be where it aids understanding). The user then
requests a list of performances for the production by
invoking the listPerformances() operation of the =

IEE COMPUTING & CONTROL ENGINEERING | IUNE/ULY 2005 7

production object. The production object satisfies the
request by sending the message (for all of the
production’s performances) getPerformanceDetails().
The iteration is shown by an asterisk. The Internet
user then finds the prices for the different parts of the
theatre by sending a message to the
theatre. The next stage of the process is
to find available seats.

In the second part of the Internet
ticket sale use case (Fig. 2) the sequence
is to check for an existing customer (and
add a new one if needed), to check if the
customer is due a discount on the price
as a member, take payment and write the
transaction, and finally to change the
seat at performance status to booked.

IT EASY

THE
COLLABORATION
DIAGRAM MAKES

HOW OBIJECTS
WORK TOGETHER

performance associated with that performance
object (Fig. 3). The performance then sends a message
to itself (reflexive) to destroy the performance
instance.

e Collaboration diagram: Collaboration diagrams are
the second interaction modelling
technigque in UML. They do the same job
as a sequence diagram — they show how
objects work together to achieve a use
case. In the collaboration diagram
arrows show messages and boxes
represent objects, with numbers being
used to show the sequence of messaging
(Fig. 4). With the collaboration diagram
it is easier to see how the objects work
together to achieve a use case, while the

TO SEE

Note that instances are created for new
customers and for the transaction class. The creation
is shown at the point in the timeline they are created.
Separating the use case into two parts is rather
useful since the find seats and book seats parts of the
use case could be reused. As well as creating new
objects, a message might invoke the destruction of an
object. In the use case “cancel performance” the
performance object then sends messages to invoke the
object destruction operation for the seats at

vertical lines presentation of the
sequence diagram makes the ordering clearer.

Both forms of interaction diagram, therefore, show
collaboration between objects. From an analysis and
conceptual modelling perspective it is probably
sufficient to prepare a sequence diagram. As the
diagrams are refined for design purposes then the
collaboration diagram becomes more useful, allowing
packages of processing to be identified from clusters of
interactions. We have introduced some conditional

and ticket price

findSeats()

Find available seats

Object _
Internet user ‘\\
:Production :Performance Theatre Part of :PriceList Seat at
: " Theatre ' Performance
i i | 1 i |
]] 1 [} 1 I
] (] I i I 1
1 I 1 1 1 I
]] 1 [} [l I
R 3 1 i 1 1 1 i
Find production ! ; ! ! ;
] 1 1] |
] I I 1 1
1 | 1 1 I
; listPerformances() 1 ! i i | i
Find performance getPerformance i ! ! s
Detads() I 1 | | |
i I |]
] 1 1 I
i} 1 1 1
I 1 1 1
Find part of theatre listParts() _ | ' ' I
l |
1 1
i I
1
1
]
]
1
1
[}
1
1

Y Obi’ect
lifeline

FIG. 1 SEQUENCE DIAGRAM “MAKE INTERNET TICKET PURCHASE: FIND SEATS AT PERFORMANCE”

|
i
*getSeatAtPerformanceDetails()
i
1
I
1

" Activation

IEE COMPUTING & CONTROL ENGINEERING | JUNE/JULY 2003

Software engineering

Internet user

ﬂ\ :Customer

'
|
I
I
t
i

Find customer

If customer found
If Member
End if

Else
Add new
customer

End if

addNewCust() newCust:

Customer

addTrans()

:Member

I getDiscount()

:Seat at

:Theatre Club Performance

I
{
|
1
1
1
I
I
I
1}

Object
creation
,.—" Self-
delegation

Add transaction

|
I
|
|
1
I
I
I
|
|
I
L
1
I
1
I
I
I
|
1
I
I
I
]

e |

1
FIG. 2 SEQUENCE DIAGRAM “MAKE INTERNET TICKET PURCHASE (CONTINUED): BOOK SEATS AT PERFORMANCE"

_ newTrans: b
Transaction -

-
o

authorise
Payment()

*book()

[
I

behaviour into the second part of the sequence diagram
(Fig. 2) to branch for customers who are members. As
more conditional processing is added the interaction
diagrams get more and more convoluted and it is wise
to consider developing different diagrams for different
scenarios, e.g. “Internet ticket purchase by member”
and “Internet ticket purchase by non-member”.

STATE TRANSITION DIAGRAMS

The class model has defined the structural aspects of
the system and interaction diagrams show how objects
interact to achieve a specific purpose, as defined by a
use case. As we have seen already, an object can take on
a number of states at different times — is the seat at
performance available, reserved or booked? More
formally, a state is a “condition or situation in the life
of an object during which it satisfies some condition,
performs some activity, or waits for some event”
(Booch et al. Addison-Wesley, 1999).

An event is something that happens in space and
time: “user clicks on button”, “it begins to rain”, “I've
been waiting for five minutes in a telephone queue”. It
is events that trigger changes in the state of objects —
a state transition. When a user clicks on a button the
result might be to maximise a window on the screen,
i.e. a state change for the window from minimised to
maximised. If it starts to rain then person changes to
person with open umbrella; if I have been waiting for
ten minutes I will cancel my call and become a
dissatisfied customer.

A state transition diagram shows the different life
cycles that an object of a class can undergo. The state
of an instance is given by the attributes and
associations it has. For example, a seat at a
performance that has been booked will have an
association with a transaction object. States are shown

as rounded rectangles and transitions as arrows. The
labels on the transitions are of the form:

event [guard]/action

In Fig. 5 the transitions are labelled with events, such
as “Die”, “Marry” and “Divorce”. In the UK it is
necessary to get divorced before remarrying. If
polygamy is allowed then a married person can get
married again without being divorced. This is shown
as a self-transition in Fig. 5 and a guard has been added
to ensure that this transition can only take place if
“Polygamy OK" (of course, although our model is
accurate from a legal standpoint, it does not stop
people committing bigamy). The state transition
diagram is a template. It describes the possible —»

Box office
manager

i

cancelPerformance()!

’ :Seat at
Performance Pérformmanica

I |
1 L}
]]
] |

|
[}
|l
]

*destray() Object

destruction

#

i
L]

destroy()

FIG. 3 SEQUENCE DIAGRAM WITH OBJECT DESTRUCTION

IEE COMPUTING & CONTROL ENGINEERING | JUNE/IULY 2003

10

2.1: *getPerformanceDetails()
—_—

:Production

I:ﬂn%

2: listPerformances()

Internet
user

.—.-, .
4: findSeats()

\S:IistParts()

Theatre

3.1: *getPartDetails()
_’.

FIG. 4 COLLABORATION DIAGRAM “MAKE INTERNET TICKET PURCHASE: FIND SEATS AT PERFORMANCE”

:Performance

l 4.1; *getSeatAtPerformanceDetails()

Seat at
Performance

3.1.1: getPrice()
:Part Of »

Theatre ‘Price List

paths that an object might take. For example, some
people will be born and die without getting married.
Others will marry once and others might marry
multiple times. By definition, an object must have a
state and can only be in one state at any one time.
State transition diagrams are prepared for those
classes that have sufficiently complex states and
transitions to warrant modelling. Some classes will
have simple states and transitions going directly from
creation to destruction. Others will have more
complex behaviour, such as objects in the class
SeatAtPerformance (Fig. 6). Note that the action is
specified as an operation, such as “release”, which is
supperted by a class, in this case SeatAtPerformance
(see the theatre system class diagram in part 1 of this
article for details of the classes and operations).

Self-transition

Transition

State ----- i
Married Guard
Event ----- Die Marry .- 7
[polygamy OK]
Die
End

FIG. 5 STATE TRANSITION DIAGRAM

IEE COMPUTING & CONTROL ENGINEERING | JUNE/IULY 20045

The state transition diagram therefore represents
the possible life cycle of objects of a given class. It is
closely related to the sequence diagram, which shows
the message passing that will result in state changes in
objects.

MOVING TO SOFTWARE SYSTEM DESIGN

The aim of this two-part article has been to use UML to
model business requirements in conceptual terms.
However, as noted earlier, UML is used throughout
analysis and design and provides a basis for software
implementation. We will therefore, look in outline
terms at a suitable software system architecture for the
ticket booking system. Any large and complex system
needs to be divided into layers if it is to be
comprehended and managed. The system design for the
theatre booking application has been implemented in
software using a three-tier client-server architecture.
A client—server architecture links computers such that
some computers — servers — perform functions for
other computers — clients (usually end-user PCs).
Indeed, this is how the worldwide web works. The user
browses the web using a client PC that can request web
pages (a service) from Internet web servers.

The three layers of the application can be
configured in different ways, ranging from server-
intensive (distributed presentation) to client-intensive
(distributed data management). For the development
of a demonstration theatre booking system a
straightforward approach was taken: remote
presentation. The presentation layer is handled by the
user's web browser. The business logic layer resides on
the server and is written in a scripting language
(Macromedia's ColdFusion), but some of it could be
distributed to the client (distributed function) to
reduce network traffic and server load. For example,

form validation and simple calculations, such as VAT
(sales tax), could be handled using JavaScript or a Java
applet downloaded by the client. Data management
also resides on the server. Although cookies can be
used to store data on the client, for example, to identify
returning customers, client-side cookies are only used
for transient data. All permanent data are stored on the
central server since cookies are ephemeral and specific
to individual client PCs.

The architecture of the theatre booking system
consists of three layers: business data services,
business logic services, and user presentation services
(Fig. 7). In UML notation, each of these layers is
represented as a package. The user presentation
services are the responsibility of the client, while
business logic and business data services reside on the
server. The business logic services handle business
functions such as “find available seats at
performance”, and the business data services layer is
responsible for maintaining details of productions,
performances, ticket transactions ete.

The UML stereotype <<import>> in Fig. 7 indicates
that one layer has access to the contents of another
layer, for example the user presentation layer can
access the business logic services, but not the other
way around. This architecture will make the
application easier to maintain and extend in the future;
changes to the databases or the addition of new
business logic can be localised to individual layers
such that they are transparent to the invoeating layer.
So, if the way the seat allocation algorithm works was
re-specified, then the change is localised to the
business logic layer — no changes are required to the

Action—event uses and
operation supported by class
Seat At Performance

Performance scheduled

Available

Seat reserved/ | Seat released/
Ticket release()

returned

Reserved

Performance takes place Seat confirmed

Completed

Removal time

FIG. 6 STATE TRANSITION DIAGRAM FOR CLASS SEAT
AT PERFORMANCE

Software engineering

e

User
Presentation
Services

<<Import>>

%

Business
Logic
Services

Business
Data
Services

FIG. 7 UML PACKAGE DIAGRAM FOR A THREE-TIER
CLIENT-SERVER ARCHITECTURE

user presentation services, assuming that the interface
exported by the seat allocation business logic is
unchanged.

BASIS FOR DESIGN

The UML notation can be used to model business and
organisational reqguirements from a conceptual
perspective with aims that include gaining under-
standing of the current situation, redesigning business
processes, and providing a structural and behavioural
model suitable for developing a software system. In the
first part of this article use cases were used to model
functions from a user perspective and class diagrams
to lay out the structure of the situation. In this part the
behavioural aspects were modelled using interaction
diagrams and state transition diagrams. Collectively,
these models of the business domain form a basis for
the design and construction of a software system to
support the ticket booking process.

ACKNOWLEDGMENTS

This article is reproduced with the permission of the
publisher and is an abridged extract from: Vidgen, R.
T.. Avison, D. E., Wood, J. R. G. and Wood-Harper, A. T.:
“Developing Web Information Systems” (Butterworth-
Heinemann, 2003). Further details of WISDM are
available at www.wisdm.net together with a demon-
stration theatre ticket booking system developed using
ColdFusion MX.

Richard Vidgen is with the School of Management,
University of Bath, Bath BA2 7AY, UK, e-mail:
mnsrtv@management.bath.ac.uk

IEE COMPUTING & CONTROL ENGINEERING | JUNE/JULY 20035

Copyright © 2003 EBSCO Publishing

