World Scientific

and Knowledge Engineering www.worldscientific.com

Vol. 13, No. 2 (2003) 191214
© World Scientific Publishing Company

International Journal of Software Engineering \\p

A LAYERED METAMODEL FOR
HIERARCHICAL MODELING IN UML

CHEE-YANG SONG* and DOO-KWON BAIK'

Department of Computer Science and Engineering, Korea University,
#1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul 136-701, South Korea
*songyang@kt.co.kr
tbaik@software. korea.ac.kr

Submitted 3 November 2001
Revised 12 March 2002
Accepted 12 July 2002

As software is becoming larger and more complex, it is increasingly important to use
the hierarchical modeling approach. Unfortunately, however, UML does not specify
each metamodel with hierarchy for model by modeling phase. Thus, most UML-based
methodologies do not address the hierarchical modeling for model. As a method for sup-
porting hierarchical modeling on UML, this paper proposes a layered metamodel which
defines hierarchically modeling elements of model according to the modeling phase. We
describe each metamodel with hierarchy for models in UML, then present the hierar-
chical integrated metamodel combined with each metamodel by three modeling phases
(conceptual phase, specific phase, and concrete phase). Therefore, designers are able
to construct the hierarchical model by applying the metamodel with hierarchy. Us-
ing the hierarchical metamodel enables designers to improve the usability of UML and
reusability of application model.

Keywords: Hierarchical modeling; layered metamodel; UML; modeling technique.

1. Introduction

Recently, with the increasing size, complexity, and variety of software, it is difficult
to understand a software system in its entirety. Accordingly, a development method
following on incremental approach from an abstract level to a concrete level is
necessary. That is, developing a software application hierarchically in terms of the
different levels of abstraction for designing complex and large-scale software is a
critical issue.

UML is being widely used as a standard language and a universal technique
for modeling object-oriented applications and component-based applications. The
metamodel for defining UML models has mainly been studied in OMG UML. The
structure of the UML metamodel is organizing its models into a logical package for
all models systematically [1-3]. However, this involves a complex structure in the

191

192 C.-Y. Song & D.-K. Baik

syntax and semantics for defining the models. Most other studies [4-7] have brought
into focus the precise semantic definition for UML models using core elements and
extension mechanisms to apply in various fields. Also, the work in integrating the
modeling language and the formal language has been done to specify the UML mod-
els formally [8, 9]. Nevertheless, very little research has been paid to the metamodel
providing hierarchical modeling for the UML models.

The UML metamodel has many problems in modeling software hierarchically:

e Metamodels in OMG UML do not define each individual metamodel for each
model, owing to its focus on the entire structure while considering all models.
Each metamodel is needed since developers actually design an application model
independently with an individual UML model. Furthermore, UML does not pro-
vide a precise description of each metamodel that specifies hierarchically the mod-
eling elements or constructors by the abstraction levels of the modeling life cycle.
Just as in [10], it divides the use case model into three hierarchical structures
and classifies the class model into two development phases, without providing
for both the specification by the metamodel and the hierarchical structure for
the other models in UML, such as statechart model, subsystem model, etc. It
may confuse designers concerning the UML usage, and lead to a deterioration of
usability for the UML models.

e Likewise, most UML-based methodologies [10-14] do not support hierarchical
modeling by applying the hierarchical metamodel for UML models. It may de-
preciate reusability for application model. For modeling complex, various, and
sizable software, each metamodel has to be specified by adding the extended ele-
ments of the model corresponding to the modeling phase. For example, in making
a class diagram, it is generally applied from the conceptual analysis phase to the
concrete design phase. That is to say, the conceptual analysis phase requires the
class model to be designed with the modeling elements of class, attribute, and
relationship among the classes. Meanwhile, the design phase requires the class
model to be designed by including the elements of attribute type, operation,
tagged value, and parameter to the previous class diagram. Thus, it requires the
hierarchical metamodel specified with the suitable design elements according to
the modeling phase.

Accordingly, hierarchical modeling for UML models is needed for the follow-
ing reasons: Firstly, an incremental and abstract modeling approach is required as
software is becoming more large-scale. Secondly, it is difficult for designers to un-
derstand or capture the entire and detailed structure of an application system all
at once in the initial analysis stages. That is, it is useful to quickly obtain under-
standing for application. Finally, hierarchical modeling enhances reusability of the
application model.

In summary, although hierarchical approaches through division of the modeling
phase, task, and activity supports development methodologies well, a hierarchical

A Layered Metamodel for Hierarchical Modeling in UML 193

method for designing models is not provided. So to speak, the UML does not specify
each metamodel with a hierarchy individually. The UML-based methodologies do
not provide a hierarchical modeling based on the hierarchical metamodel for UML.

To address this problem, this paper proposes a hierarchical metamodel that
constructs an application model hierarchically in terms of three modeling phases.
The aim of our work is to enhance the usability for UML and reusability for the
application model. This is made possible: (1) by specifying each metamodel which
defines hierarchically the modeling elements conducted for each modeling phase;
(2) in terms of building hierarchical integrated metamodels by modeling phase.
The main concepts used in this paper are metamodel and hierarchy (Conceptual
modeling phase, Specific modeling phase, and Concrete modeling phase). We have
successfully applied our method to application domains such as the C_.MDR, (Com-
ponent_MetaData Registry) as a case study for addressing the effectiveness of the
hierarchical modeling approach to the software development.

The remainder of this paper is organized as follows. Section 2 sketches our ap-
proach concepts. Section 3 deals with the building of each metamodel with a hierar-
chy, considering both the abstract level and the concrete level. Section 4 describes
how each metamodel is combined to build the hierarchical integrated metamodel
in terms of three modeling phases. Section 5 illustrates how the hierarchical meta-
model is applied for the C_.MDR domain as a exploratory case study. Section 6
represents an assessment for the proposed metamodel with the UML metamodel
and other development methodologies. Finally, Sec. 7 summarizes this paper with
a contribution and a future plan.

2. Our Approach

The approach described in this paper is used to assist designers in the creation of
software using UML. Our goal is to support the hierarchical metamodel that can
produce a hierarchical model. This paper addresses a hierarchical approach by using
metamodel defining the suitable modeling elements for UML models according to
modeling phase. To provide it, the approach proceeds as follows:

o Create each metamodel with a hierarchy for the UML model
e Build the hierarchical integrated metamodel combined with each metamodel

The concept of metamodel and hierarchy is used to create the hierarchical meta-
model. Generally, the metamodel has been used to define the modeling language
[15] and to specify the application model in various domain fields [16-19]. In the
context of this paper, we define the metamodel as a conceptual framework that de-
scribes the core elements and relationships underlying the field of UML for defining
the abstract syntax and the static semantics of target models precisely and con-
cisely. To provide the syntax and static semantics to the metamodel, the syntax is
specified with the basic element including the target model (or diagram) and the
relationships among the elements. The static semantics is expressed by representing

194 C.-Y. Song & D.-K. Baik

the multiplicity constraints and type of relationship among the elements.

The hierarchy is organized as a hierarchical structure for some target items. It
is important to note that the hierarchy separates design models for good software
reuse. This concept can be classified in terms of different levels of granularity and
degree of abstraction. Thus, the layered architecture types of the hierarchy by gran-
ularity are defined through a sequence of refinements as follows: architecture layer,
component layer, and object layer [20]. The hierarchy types in terms of abstraction
are categorized into Conceptual modeling phase, Specific modeling phase, and Con-
crete modeling phase in accordance with the development life cycle. The hierarchy
concept is used to build both the metamodel and the modeling procedure.

The principles for constructing the metamodel consist of:

e Constructing the hierarchical metamodel precisely based on the modeling phase
with core elements and relationships of the model frequently used in practice.

e Building the hierarchical integrated metamodel based on three modeling phases.

e Modeling based on design elements in the metamodel.

3. Each Metamodel with a Hierarchy

To build each hierarchical metamodel, this section describes the hierarchical division
for each model, rules for constructing the metamodel, and construction of each
metamodel with a hierarchy. The target models for building each metamodel are
represented by grouping the three aspects in Table 1.

Table 1. Target models for constructing each metamodel in UML.

Aspect Target model

Static model Subsystem diagram, Package diagram, Component diagram,
Deployment diagram, Class diagram

Behavioral model State Chart diagram, Interaction diagram (Sequence diagram,
Collaboration diagram)

Functional model Use case diagram, Activity diagram

The metamodel is expressed in class diagram. Each metamodel is constructed
with mandatory elements and relations in the target model. In order to construct the
hierarchical metamodel, each metamodel is divided into two or three metamodels
for the target model in Table 1 according to three modeling phases. Each metamodel
is combined as source constituents for building an integrated metamodel into three
modeling phases.

3.1. Hierarchical division of each model

In order to support hierarchical modeling, each metamodel should be built to meet
the abstraction degree of modeling phase. That is, each metamodel has to be divided

A Layered Metamodel for Hierarchical Modeling in UML 195

hierarchically by adding the extended elements corresponding to the concreteness
degree of the development life cycle.
The partition criteria of each metamodel by the modeling phase is based on:

e Applying the essential use scope of the model itself. For example, the package
diagram in Table 2 consists of the hierarchical metamodels being used up to the
Conceptual modeling and Specific modeling phase, since both have a grouping of
model elements (including package unit) and process unit of elements (including
class unit) that are large at the abstraction level.

e Correspondence based on the division level of element of the use case model and
class model described in [10].

e Same leveling compared with the elements in other models.

Based on these criteria, Table 2 represents the models’ application by partition-
ing into two phases, and Table 3 shows the models’ application by division into
three phases. Therefore, not all modeling works is completed at the concrete phase,
in some cases modeling at the specific phase can be finished (e.g., in the case of the
subsystem model).

Table 2. Two phase-applied models.

Model/ Interaction Usecase Component Subsystem Package Deployment
Phase Model Model Model Model Model Model
Conceptual System Conceptual Conceptual Conceptual Conceptual
modeling _level _level level _level _level
(requirement usecase component subsystem package deployment
analysis) metamodel metamodel metamodel metamodel metamodel
Specific Specific Subsystem Specific Specific Specific Specific
modeling _level _level _level level _level level
(preliminary interaction usecase component subsystem package deployment
design) metamodel metamodel metamodel metamodel metamodel metamodel
Concrete Concrete

modeling _level

(detail interaction

design) metamodel

3.2. Construction of each model with a hierarchy

Models in UML have various elements and relationships separately. Therefore, some
rules are needed that can be applied to a variety of cases in common for deriving the
elements and the relationships between the models with consistency and clarity. The
criterion for extracting the elements and the relationships is based on the standard
specified in OMG UML V1.4. The following describes the related rules:

196 C.-Y. Song & D.-K. Baik

Table 3. Three phase-applied models.

Model/Phase Usecase Description Class Model State Chart Model Activity Model
Conceptual High_level Concept_level System_level System _level
modeling usecase Class metamodel State chart activity
(requirement description metamodel metamodel
analysis) metamodel
Specific Essential_level Specific_level Usecase_level Usecase_level
modeling usecase class metamodel state chart activity
(preliminary description metamodel metamodel
design) metamodel
Concrete Real_level Implemental_level Class_level Function_level
modeling usecase class metamodel state chart activity
(detail design) description metamodel metamodel

metamodel

I:I —> Model element used to the Conceptual modeling phase

I — Model element used to the Specific modeling phase

|:] — Maodel element used to the Concrete modeling phase

Fig. 1.

Element notation of the metamodel over three modeling phases.

Rule 3.1. The selection of elements in the target model takes a necessary, core,

and widely used element of the many elements in a simple manner.
That is, the mandatory elements in the target model are captured. An
element is expressed to one class.

The relationship among elements is represented as association, aggre-
gation, composition, inheritance, and multiplicity.

The hierarchical metamodel is constructed by adding the extended ele-
ments of the current phase to the metamodel of the previous phase.
Stereotype is used for separating the duplicate elements over phases.
Some models are applied with the same notation of model according to
the different levels of granularity in the modeling target, for instance,
activity model and statechart model.

Rule 3.2.
Rule 3.3.

Rule 3.4.

Each metamodel is built individually for ten models in UML as shown in
Table 1. As a partial illustration of the constructed metamodel, the commonly
used subsystem metamodel, use case metamodel, and class metamodel are shown.
As a notation legend of the hierarchical expression used in common for each meta-
model over the three modeling phases, Fig. 1 shows the notation for identifying the
hierarchy of each metamodel using the different notation to the element.

A Layered Metamodel for Hierarchical Modeling in UML 197

When UML models are applied for developing an application according to the
modeling process, each metamodel is referred hierarchically. Then, the designed
model of the application is verified by each metamodel.

3.2.1. Subsystem metamodel

The purpose of the subsystem construct is to provide a grouping mechanism for
specifying a behavioral unit of a physical system. The subsystem model is designed
at the level of software architecture for the initial requirement analysis. The hi-
erarchical metamodel required in the subsystem model should meet the modeling
levels from subsystem to operation for element being constructed. The subsystem
is obtained in Conceptual modeling phase. On the other hand, the operation can be
driven from the interaction model being constructed by the scenario in the use case
description. However, the interaction model is built in the Specific modeling phase
generally. Therefore, it needs two hierarchical metamodels to apply the model at
the Conceptual modeling phase and the Specific modeling phase. The conceptual-
level subsystem metamodel defines the modeling level to capture the elements of
the subsystems and relationships among subsystems at the conceptual level. The
specific-level subsystem metamodel specifies the modeling level with all elements
owning the subsystem model by newly adding operations, specification elements,
and realization elements.

With respect to the constitution elements of the subsystem model, the subsys-
tem consists of specification elements and realization elements. Here, the appended
elements for more details require the subsystem name, interface and relationship
among the subsystems, useCase and operation for detail of the specification ele-
ments, collaboration for mapping between the specification elements and the realiza-
tion elements, and component for representing a subsystem with components. They
become the elements and relationships of each metamodel for the subsystem model.

The subsystem metamodel to support the Conceptual modeling phase (elements
drawn as rectangles) and the Specific modeling phase (elements drawn as dotted
rectangles) is illustrated in Fig. 2 where the subsystem model contains the elements
of the subsystem and relationship by a composition with a multiplicity of 1 to 1..*.
The relationship between subsystem and interface is expressed by an aggregation
relationship labeled “has” relation label, because the ’interface’ element can be
shared. The relationship between the subsystem and the component is represented
by inheritance relationship since the component is a type representing the inner
part of a subsystem. Therefore, designers can easily build the subsystem model
using the elements and relationships included within the hierarchical subsystem
metamodel.

3.2.2. Use case metamodel

The use case model shows the relationship among useCases within a system and/or
the interaction between the system and their actors through usage scenarios of

198 C.-Y. Song & D.-K. Baik

subsys name
1
contains
1"*
interface subsystem | ————=; component ¥>-
1 1
relates

1 1
i operation i ! usecase : collaboration
-uuuuu[uuuuu' e asmamsmEmsmssEmEsEns - Beimamsmans l -
1 1

Fig. 2. Subsystem metamodel providing the two modeling phases.

<<subsystem level>>
Use_case M i

<<system level>>
Use_case M
[

EITTE

{

€ Use case M |

1 .
contains
1. 1.* 1.*

1.* 1.% - . 1.x 1.
useCase relationship actor

relates ?
|

association extend generalization include

1 Response/action

Fig. 3. Use case metamodel for use case model supporting two modeling phases.

system. This model consists of the use case diagram and use case description to
design a further detailed design. The use case description stands for the semantics
of use case, and it is divided into three modeling phases according to the degree of
abstraction, such as High-level, Essential, and Real use case descriptions described
in [10]. To build the hierarchical metamodel, as shown in Fig. 3, the metamodel for
the use case model is divided into two metamodels so that it can be applied at the
Conceptual modeling phase supporting the modeling at the system level and the

A Layered Metamodel for Hierarchical Modeling in UML 199

purpose

. 1.%
description =
contai

relate_useCase "

user_interface

0.* 1r

I

S -~
* |_\ " *
3

=2

I('D
H

=

| primary | |seoondary| | optional |

Fig. 4. Use case metamodel for use case description providing three modeling phases.

Specific modeling phase providing the modeling at the subsystem level of granular-
ity, without adding its modeling element (not changing its express notation). It is
expressed separately using a ((system level)) stereotype and ((subsystem level)) in
the metamodel.

Each metamodel for the use case description, not specified in UML, creates
a hierarchical metamodel divided into three modeling phases as shown in Fig. 4.
For instance, the elements (Real use case description) indicated by thick rectangle,
such as user_interface and implementation_technology, are designed at the Concrete
modeling phase. Use case description has many elements like useCase, purpose,
actor, description, and so on. The relationship between scenario and event_flow is
represented by dependOn. Elements of precondition and post condition are not
included in its metamodel since these are not mandatory elements.

3.2.3. Class metamodel

The class model describes the types of objects within the system and the relation-
ships (association and subtype) among them. The model also shows attributes and
operations of the objects it describes. In [10], it is divided into two modeling phases
according to the abstraction degree of the software life cycle. In this article, the
metamodel for the class model creates each metamodel by providing three phases
for covering up to the implemental viewpoint in order to support an implemental
property (such as language type) in greater detail and more precisely. The con-
ceptual_level class diagram should be represented with little or no regard for the
software that might be implemented. The specific_level class diagram shows the in-
terfaces of the software, not the implementation. The concrete level class diagram
actually has the classes and is laying the implementation bare.

The metamodel for the class model is composed of many modeling elements such
as class types, relationship types, visibility, attribute, operation, etc., as shown
in Fig. 5. For specifying the different types of class (such as the class type by
role and abstraction degree), various stereotypes are used in its metamodel, such
as the {(concrete) class and {(business_concept)) class. They are designed during
the Specific modeling phase. The relationship between them and the class ele-

200 C.-Y. Song & D.-K. Baik

DR Imeiace soneeps | das | C'ass Y \H reationsip \<~
: | :

.......... 1
>E stereotype & 0

class ™~

1
{type depend on the language}

Fig. 5. Class metamodel supporting three modeling phases.

ments has inheritance because of the various types of classes. The design for the
{(implementation_concept)) class and attribute type by an implementation language
is modeled at the Concrete modeling phase.

4. Hierarchical Integrated Metamodel

To provide the hierarchical modeling to designers, the hierarchical integrated meta-
model will be built by combining each metamodel according to the modeling phases.
Building of the integrated metamodel first captures core elements of each meta-
model, then joins each metamodel, taking into account the relationship among the
core elements between models. The integration is made in a seamless manner by
grouping each metamodel incrementally from the Conceptual modeling phase to the
Concrete modeling phase. The integrated metamodels built are used to reference
and to verify when UML models are applied for developing an application. Using
the hierarchical metamodel, we can do the hierarchical modeling.

4.1. Organization and relationship of the integrated metamodels

The integrated metamodel is organized by combination based on the hierarchical
metamodel of each metamodel. Concerning the phase view, Fig. 6 shows the entire
constitution of metamodels applied by each phase. The modeling phases consist of
the Conceptual modeling phase, Specific modeling phase, and Concrete modeling

A Layered Metamodel for Hierarchical Modeling in UML 201

Architec here
L_G"EE‘ ¥
————————————— -—
~ HD_UC_™m
— LT
:
Cormponernt
L_(ZEE’Y
- ED_UC_MM
;
_Act MM |
5_FoerA MR
_______________________ — —
§_Seq MIM| [§_Colla MM
[
(:Eom:mte Modelinz Phase Object
ey
I_InierA MM
I_Class MM fe- -4 - - oo o] — —
I_Seq MM | [I_Colla_MM
= 7 RD_UC_MIM
1 - i -
! " Cla SC_MIME o TwedBens . [Fun_Act M~

Fig. 6. Constitution and relationship of the integrated metamodels.

phase. The modeling work in the conceptual modeling phase is performed with the
models included in this phase. The full name for abbreviations in Fig. 6 can be seen
in Tables 2 and 3.

Integrating each metamodel requires analysis of the relationship between each
metamodel and among the elements. At first, the relationship among the meta-
models is shown in Fig. 6 with the package diagram. Here, the mapping of each
metamodel among the phases (or layers) represents the inheritance relationship,
since each metamodel in the lower phase is inherited from each metamodel in the
upper phase. The mapping between each metamodel in the same phase is expressed
by the dependency relationship based on the interactive inclusion specified in the
UML.

Meanwhile, with respect to the relationship among the elements, the mapping
between each metamodel actually stands for the connection of the related elements
and needs relationship analysis among the elements. The relationship is derived
from each metamodel. For instance, the subsystem metamodel (see the part marked
oval in Table 4) shows the relationship between ‘component’ element and ‘subsys-
tem’ element, for example, their relationship has an inheritance since a subsystem
is a kind of component. The subsystem is a subclass of package and one class has
one sequence model. Within these relationships, Table 4 depicts the relationship
matrix as a road map among the core elements in each metamodel.

202 C.-Y. Song & D.-K. Baik

Table 4. Relationship matrix among elements in each metamodel.

Model | Deployment| Subsystem Package Component Use case Class Activity StateChart | Interaction
\ 1:1.* 1:1.*
Deployment node 0-- node 0--
package component
1:1.* 1:1.%
subsystem | subsystem
Subsystem h subsystem | subsystem
Sy --> node | --> component| o- " S~ o-—scylass
1:1.* 1:1.x 1:1.* 1:1.* 1:1x 1:1.*
Package | package package<-- | package package 0-- package0-- | package
-0 node subsystem | --package | component useCase ®--class
1x:1 1x:1 1:1.x 1:1.* 1:1x
component
Component | component (| - component | component Component | component
P EYTERAN Subsystem --Opackage | ®--component| --useCase | ®-- class
1.*:1 1.*%:1 1.*:1
Use case useCase--0 | useCase useCase --
subsystem | --0 package | component
1:1.* 1:1.* 1:1.* 1:1.%
Class class--& class--® class--& class 0--
subsystem package component state
- 1:1.% 2.5 1x
Activity object 0-- object --
state link
1.x:1 1.*%:1 1:1.*
StateChart state--¢ state -0 state --
class obj ect state
* D %
Interaction]I-i'nk' 2
object

4.2. Hierarchical integrated metamodel

Based on the constitution of the integrated metamodels and the relationship map-
ping among metamodels, we can build the hierarchical integrated metamodel by
combining each metamodel in terms of modeling phase. As the modeling phase
progresses from the abstract level to the concrete level, the elements of the tar-
get model append further additional elements or system granularity for modeling
attains smaller size. The integrated metamodels are constructed with the core ele-
ments in each metamodel to maintain simplicity. Thus, all elements in each meta-
model need not be included in the integrated metamodel, because we can always
reference each metamodel.

The hierarchical integrated metamodel creates three integrated metamodels by
three modeling phases. For example, Fig. 7 illustrates an integrated metamodel
constructed with eight metamodels at the Conceptual modeling phase.

The statechart metamodel and the activity metamodel include all elements
having their models, because these models are modeled with different granular-
ity according to abstraction level of application system without change of modeling
elements over three modeling phases.

Mapping between metamodels is combined by the connection among the core
elements. Here, the included elements belong to the conceptual level in each meta-
model. The designer in this phase can perform the modeling precisely and verify the
constructed application models easily with the elements and relationships specified
in Fig. 7.

The integrated metamodels for the specific modeling phase are built with ex-
tended elements of each model or small granularity of system for more detail
modeling.

A Layered Metamodel for Hierarchical Modeling in UML 203

Archi tecture/

layer
Abstract
layer
A
&
0
N
\/,
concrete &
layer | Action state | |smmuv1ty sutal |cbjecr. flow sm:el Sys Activity MM
bart
i >‘ Act.thy [activity flov T *\Sym_k—[;
| 7(§
)
[
Sy ! B)_T N
|
bject |
layer H
1o+ . |
i
|
)
|
|
|

Fig. 7. The integrated metamodel in Conceptual modeling phase.

In order to enhance understandability for all UML models, one unified inte-
grated metamodel, which combines all metamodels at the Concrete modeling phase,
is shown in Fig. 8. It can be used as a blueprint for UML. If all information rep-
resenting this integrated metamodel is managed through a repository of the Meta-
CASE Tool, it can realize the automatic verification for application models. This
metamodel is also used for checking consistency and traceability of the application
models.

5. An Exploratory Case Study

An exploratory case study illustrates the practical use of the hierarchical metamodel
for a software design. Its purpose is to ensure reliability of the approach mechanism
and the procedure of activities. The case study shows the hierarchical approach
using each metamodel and the integrated metamodel by modeling phase.

204 C.-Y. Song & D.-K. Baik

<< common element >>

H Has_n)
i Package MM - Subsystem MM
i —d J $ _namd

E I J;ncludes_pp i N |

Cont_pv H 1 1| (P'ln |

i —MJ i - Realizationation_element

! 1 Tsid i

1 g
g . I :

Has_spu T
Usecase MM °f DependOn. se) 0.1 ", o e,
H ; s -4 ¢'i==1_Association IMM Component MM
i - | Lomponent MM
H |UC_typ4 | Event_flow | | Scenario | ' ‘Aggregation L.* L
i = \ ! [Composition | -1 IBUERE
H * - ! = * N *
: W 1' UC_Descrlptlonl | | Dependency | export_inf DI Interface MCamponent l% C_stereotype |
H — [e Pa——
Description |—| Iy ! [Multiplicity . S 28 7
i - 1~ Generatizaion LS
H ! ra—n Relationshij
i : [Deployment |
[include] [Extena ok produey
Contains ccla
Object layer
Seq/Colla |MM | Action_state | | Subactivity_state | | Object_flow_state Activity MM
2
/1.
{ Object flow Triggerless Trigger

'—| Attribute

o1 Operation
* ...
1.* | Titype depend on the language} 1

Init_state

Event_trigger
!

'
Final_state |

|

Synch_state | |
SubMc_state| |
|

1

:

Vi 1 1
|Att_name ” Att_type ||0per_nnme| | Return_type |

1.%

Seq_compositestate

StateChart MM

Call_event

[Signal_event |

Relates_refer_to ,v'.

Fig. 8.

One unified integrated metamodel for UML of all models.

We design a C_MDR application to share and to circulate standardized infor-
mation for commercial components [21]. The C_.MDR system is a tool to support
registration and management of the standardized metadata for component prod-
ucts. There are three service systems, namely the component metadata management
service, the component category code management service, and the analysis infor-
mation management service. The models constructed are the subsystem model,
interaction model, component model, etc., as shown in Table 1. Here, as an ex-
ample, for the models constructed to each metamodel in Sec. 3, we show this for
the subsystem model, use case model, and class model based on the hierarchical

metamodel.

A Layered Metamodel for Hierarchical Modeling in UML 205

S N
Component Category Code Component
Metadata [-------------- >(O)—— categoryCode
Manager <<Access>> Manager
.
<<Analyze>> Information
"""""" Analysis
Componentinfo Manager

Fig. 9. Subsystem model in Conceptual modeling phase for C_.MDR.

5.1. Conceptual modeling phase

The Conceptual modeling phase analyzes the domain requirements for C_ MDR. At
first, conceptual_level subsystem model is made in terms of referencing and veri-
fying with the conceptual_level subsystem metamodel. After that, conceptual level
use case model and conceptual_level class model are designed using the previous
artifacts and verified by using the modeling elements of each hierarchical meta-
model. For the subsystem model, the modeling elements in Conceptual modeling
phase consist of subsystem, interface, and dependency among subsystems in terms
of each hierarchical metamodel in Fig. 2. With these elements, Fig. 9 illustrates a
conceptual _level subsystem model organized with three subsystems for C_MDR.

The use case model is designed as a use case diagram and use case descrip-
tion using each hierarchical metamodel. Based on the subsystem model in Fig. 9,
the use case model (constructed with the modeling elements of useCase, relation-
ship, and actor at the system level in the metamodel) for the C_MDR system is
built as three useCases: the ‘Manage Component Metadata’, ‘Manage Component
CategoryCode’, and ‘Manage Analysis Information’; as shown in Fig. 10.

The use case description is constructed with respect to all useCases in Fig. 10
separately with the elements of useCase, actor, purpose, and relate_useCase. Thus,
three use case descriptions are created. As an example, Table 5 illustrates High-level
use case description in this modeling phase for the ‘Manage Component Metadata’
useCase.

For the class diagram, the modeling elements of the class diagram in the Con-
ceptual modeling phase consist of class, attribute, and association among classes as
specified in the conceptual level class metamodel, only the business classes (compo-
nent class, configuration class, etc.) and attributes are captured for C_MDR using
the artifacts of the use case diagram (Fig. 10) and use case description (Table 5).
With these as the modeling elements, Fig. 11 represents the class model designed
at the conceptual level.

206 C.-Y. Song & D.-K. Baik

-

Manage Componerﬁ‘\M etadata

1 I 1
I
1 * i

TS e
I
Manage Component CategoryCode 1
Administrator 1 | 1 s

I

>
Manage Analysis Information

Fig. 10. Use case model in conceptual modeling phase for C_.MDR.

Table 5. High-level use case description in conceptual modeling phase for the ‘Manage
Component Metadata’ useCase.

useCase Name Manage Component Metadata

Actor Administrator, User

UC_Type Primary

Purpose Registering and managing the metadata for component products.
Description e Administrator registers the standardized metadata for a new com-

ponent product into database by category code scheme.

e Administrator updates the stored component metadata for the
changed products.

e User searches the component metadata using various retrieval
services.

Relate_useCase | Manage Analysis Information

The designed models are verified by each metamodel applied individually in
this modeling phase. The relationship of elements between the produced models is
verified by the integrated metamodel for this phase in Fig. 7.

5.2. Specific modeling phase

The Specific modeling phase performs the preliminary design for C_.MDR. By utiliz-
ing artifacts or outputs of the Conceptual modeling phase, the application models
are made with the extended elements of this modeling phase specified in each hierar-
chical metamodel. As for the use case model, the use case diagram in this modeling
phase is the same as the use case diagram in the Conceptual modeling phase with-
out appending any modeling elements. But this phase further refines the use case
diagram of the Conceptual modeling phase with the granularity unit of a smaller
target size than that of the Conceptual modeling phase, as shown in Fig. 3. Hence,

A Layered Metamodel for Hierarchical Modeling in UML 207

Component StatisticAnalysis

ComplD productCount

CompName * * | yearCost

Purpose Categorypercent

Description

KindPlatform

Category

Version

SupportOutput 1 . Interface

COSt_ O— InterfaceName

RegisterDate

Method
Parameter
1
* * * * *
Configuration Environment Quality Constraint Supplier

Status Protocol : ... CertifylD : ... PortRestrict : ... SupName : ...
UseHistory DBMS EvalResult SecurityRestrict SupEmail
CreateDate OsType EvalCompany LicenseRestrict SupURL
UpdateDate FileSize EvalCriterion EvalCriterion
ChangeContent RelatedComponent
DevLanguage : Varchar SpectialFacts
DevMethod : Varchar
DevCaseTool : Varchar

Fig. 11. Class model in conceptual modeling phase for C_.MDR.

. >

Register Component Metadata

1
N
1 Search Compcflhent Metadata ~
Administrator <<include>>1 \ User

AY
\<<include>>
\

Update Component Metadata N

A}

Delete Component Metadata

Fig. 12. Use case model in Specific modeling phase for the ‘Manage Component Metadata’
useCase.

it creates the use case diagram individually using the same modeling elements for
each useCase constructed in conceptual phase. The use case diagram designed in
this modeling phase is shown in Fig. 12, as an example for the ‘Manage Component
Metadata’ useCase in Fig. 10. Its diagram is fulfilled in this modeling phase.

208 C.-Y. Song & D.-K. Baik

However, use case description is designed by appending the elements of scenario
and event_flow (normal _flow, alter flow, and except_flow) based on the Essential Use
case description metamodel as shown in Fig. 4. As an example, Table 6 represents
the use case description for the ‘Manage Component Metadata’ useCase in terms
of concrete specification more than that of conceptual modeling phase.

For the subsystem model, the modeling elements in the Specific modeling
phase are composed of its elements by appending specification elements (opera-
tion and useCase), realization elements (collaboration), and components to the
elements in the Conceptual modeling phase. The parts for the specification el-
ements and realization elements in subsystem model are modeled using the ar-
tifacts of the use case model in Fig. 12. In this modeling phase, the subsystem
model is designed with respect to all subsystems in Fig. 9 separately. Therefore,
three subsystem models are created. As an example, the designed subsystem model
of this phase is shown in Fig. 13 for ‘Component Metadata Manager’ subsys-
tem. The subsystem model divided into two modeling phases is completed in this
modeling phase.

The class diagram in this modeling phase concretes the class model in Con-
ceptual modeling phase with extended elements, such as attribute type, operation,
method, visibility, stereotype, Ul interface class, etc. In this modeling phase, the

Table 6. Essential Use case description in specific phase for the ‘Manage Component
Metadata’ useCase.

useCase Name Manage Component Metadata
Actor /

UC_Type/ . . .

Purpose / Same with High-level Use case Description

Description /
Relate_useCase

** Register component metadata **

Actor Action
Normal Flow [] [System Response]
[Nélr]]eﬁ\?grmggﬁég{ requeststheregistrationfor - [N-2] displays the Ul form for registration.
bl e ’ The kinds and category scheme for component
[N-3] Administrator types specification information, are presented. egory P
category information, quality information,
enviranment infor mation, efc for component [n-4] checks the duplication of component name.
product on Ul of”tﬁ?’mp' etion of item ‘i;‘"yv then ™ |f no errors, creates the objects for component
request storing of this component metadata. metadatas, then makes the records of component,
[N-6] After conformation of successive registration, icrc])frg)f;gmg?gr? ?ﬁt%uglg y, supplier etc, store this
Administrator performs the registration for :
angg:ﬁyr)onents repeatedly. [N-5] presents a success message to administrator.
** Update component metadata **
Alter Flow None
Except Flow [E-1] If the duplication of component name occurs,

then generates error messages.
[E-2] If there occurs some error when data is stored to DB,
then generates error messages for this.

A Layered Metamodel for Hierarchical Modeling in UML 209

Component Metadata Manager |J—|

registerCompMetadata . _ Realization Elements

updateCompMetadata RN
DeleteCompMetadata) A == Componentinfo
searchCompMetadata <4~

1
1
Specification Elements E

Smm—— Y R SO
RegisterComponentMetadata RegisterComponentMetadata
S— e SO
SearchComponentMetadata SearchComponentMetadata
S LR SRS
UpdateComponentMetadata UpdateComponentMetadata
S L <ITTIIIIIE
DeleteComponentMetadata DeleteComponentMetadata

Fig. 13. Subsystem model in Specific modeling phase for the ‘Component Metadata Manager’
Subsystem.

class model identifies the Ul class, DB class, etc. as shown in Fig. 14 where the parts
expressed in italics indicate the newly designed elements in this modeling phase.

5.3. Concrete modeling phase

The Concrete modeling phase performs the concrete design in detail for the C_MDR,
application. This phase accomplishes the use case description and the class model.
All the models produced so far are verified at the end by the one unified integrated
metamodel, depicted in Fig. 8 for checking the consistency among the application
models.

For the use case model, we create a Real use case description by using addi-
tional elements like user_interface and implementation technique (such as input
and output items, and so on), and by concreting the more normal flow with the
implementation view to the Essential use case description of the previous phase.
The Real Use case description for this modeling phase is shown in Fig. 15 with an
added ‘user interface’ modeling element as an example.

The class model in the Concrete modeling phase builds the model with more
concrete modeling elements, such as class and attribute_type by taking into account
implementation properties to the class model in the Specific modeling phase. The
implementation properties represent language dependent elements (such as param-
eter and return type), database dependent elements, and so on.

As a result, other models in UML can be designed hierarchically using the
layered metamodel in this way. This case study has shown a hierarchical modeling
precisely from the Conceptual modeling phase to the Concrete modeling phase using

210 C.-Y. Song & D.-K. Baik

<<Ul_Interface>> <<business>> <<business>>
MainForm Component StatisticAnalysis
1 1 ComplD : number productCount : number
+0pen() CompName : Varchar * * | yearCost: number
+DiaplayForm() ?;(:ﬁi.o\r/‘afr\t;r;;har Categorypercent : Varchar
+DisplayResult() KindPIpaIforrﬁ - Varchar +CategoryAnalysis(CategorylD)
+DisplayError() . +PlatformAnalysis(KindFlatform)
Category : number alysIS(KI
Version : Varchar +\C{:ost//-_\\nal|ys!sg$ost))
<< Ul Interfaces> SupportOutput : Varchar +YearAnalysis(Year
RegisterForm Cost : number +CreateAnaIyReport(category,
RegisterDate : date kindPlatform)

-CheckCompName(CompName)
+NewRegister(CompName, Purpose, et

Description, KindPlatform,,.) JavaBeans

<<business>> +VersionRegister(CompName, Version,
Category Status,..) EJB
K UpdateComp(CompName,..)

CategoryID : Varchar +
CategoryName : Varchar| 1 1 | +DeleteComp(CompName)

CategoryCode : Varchar +RecentSearch(Currentdate)

+OpenRegisterForm()

+KeywordSearch(keyword) <<pusiness>>
+RegisterCategory() +CategorySearch(Category) 1 . Interface
+UpdateCategory() +DateSearch(SearchDate) (————— InterfaceName : Varchar
+DeleteCategory() Method : Varchar
+SearchCategory() 1 Parameter : Varchar
* * * * *
<<business>> <<business>> <<business>> <<business>> <<business>>
Configuration Environment Quality Constraint Supplier
Status : Varchar Protocol : ... CertifylD : ... PortRestrict : ... SupName: ...
UseHistory : Varchar DBMS EvalResult SecurityRestrict SupEmail
CreateDate : date OsType EvalCompany LicenseRestrict SupURL
UpdateDate : date FileSize EvalCriterion EvalCriterion
ChangeContent : Varchar RelatedComponent
DevLanguage : Varchar SpectialFacts
DevMethod : Varchar
DevCaseTool : Varchar

Fig. 14. Class model in Specific modeling phase for C_.MDR.

the proposed modeling elements of the hierarchical metamodel. Furthermore, the
metamodel is used in the referencing and verification of the designed models.

6. Assessment

With various experiments, we assess the proposed hierarchical metamodel with
UML metamodel and existing methodology in terms of usability, reusability, and
extendability. Usability is a measuring criterion of how many elements in the
metamodel are used in software development. We knew that the elements within
the proposed metamodel were actually used more than that of existing UML
metamodel in designing software, such as business_concept class and implemen-
tation_concept_class in the class metamodel with precise division over modeling
phases. Figure 16 illustrates the usage rate of modeling elements according to the
scale of software system. As the system scale grows, the elements of the proposed
metamodel are used rather than that of UML metamodel.

A Layered Metamodel for Hierarchical Modeling in UML 211
useCase
Man mponent Metadat
Name anage Component Metadata
Actor /
UC_Type/
Purpose /
Description / Same with Essential Use case Description
Relate_useCase /
Normal Flow /
Alter Flow /
Except Flow
User z%g Metadata Service
Interface i
ComponentService 3 Component Registration
RegisterComNew i - .
RegisterVersion il:l [Specification of Information]
Update/Delete ! Name
RecentComp !
SearchKeyword | Purpose
SearchDate i Description
SearchCategory 3 Kind JavaBeans |v| D
CategoryService i Category Large [r] Middle [¥] Small [¥]
! : —
RegisterCatNew i Version
Update/Delete i ResistDate
SearchcatName i SupCompany |
SearchCodeNum !
1
1 - - .
AnalysisService i [Configuration of Information]
StatisticsAnaly i
SearchAnalysis !
AnalysisReport |
]
1
Fig. 15. Real Use case description in concrete phase for the ‘Manage Component Metadata’

useCase.

Modeling
elements ___ Proposed
metamodel
_____ .-~ UML
o metamodel
1 Scale of
u _U u Software
Small Middle large system
scale scale scale
Fig. 16. Comparison results for usability through modeling elements.

212 C.-Y. Song & D.-K. Baik

Table 7. Comparison with the UML metamodel.

Metamodel/ Hierarchical
Measure Matrix UML Metamodel Metamodel
Systemic architecture Fully support Support

of metamodel
Each metamodel Partial support Fully support

(subsystem etc.)

Hierachical No support Support
metamodel
Integrated metamodel No support Support

by modeling phase
Understandability Complex Easy
Usability Medium High

Table 8. Comparison with the existing methodologies.

Method/ Hierarchical
Measure Matrix RUP OSP Advisor Modeling
Systemic architecture Fully support Fully support Medium

of methodology

Hierachical No support Partial support No support Support
no modeling (class, useCase)

Checking of Difficult Difficult Difficult Easy (using
consistency and metamodel)
traceability

Reusability Medium Medium Medium High

For reusability of application model, the constructed models are powerfully
reusable according to each modeling phase at the various abstraction levels, by
using the hierarchical structure of the metamodel. For extendability, the approach
using metamodel type gives high extendability since the metamodel can be modi-
fied flexibly by updating variable elements for the change of UML model. We just
modify the elements within target layer of updated elements owing to the hierar-
chical structure. The elements in the low layer do not change since it is inherited
from the upper layer.

As shown in Table 7, the metamodel in UML supports well the precise descrip-
tion for the entire architectural structuring for all modeling elements in the UML
models. However, we provide nicely a simplified hierarchical metamodel widely used
in practice for the software development. Using each hierarchical metamodel, de-
signers are able to develop the software hierarchically with regard to variety, large
size, and complexity. Moreover, the designers can easily approach modeling sepa-
rately per model. Hence, these improve the understandability and usability of UML
by modeling based on the hierarchical metamodel.

A Layered Metamodel for Hierarchical Modeling in UML 213

Most methodologies apply the same model elements without regard to the de-
sign level of the development phase. The approach in this paper addressed this
problem by a hierarchical modeling based on each hierarchical metamodel and the
integrated metamodel. Table 8 demonstrates the excellence of hierarchical modeling
using metamodels against existing methodologies. By using the integrated meta-
models, our mechanism enables designers to check for consistency and traceability
among the designed models which we have proved through a case study of C_.MDR.
Furthermore, the modular approach through a hierarchical design can enhance the
reusability of software according to the abstract level.

7. Conclusion

This paper has presented a hierarchical metamodel for UML to support hierarchical
modeling. We looked at each metamodel with a hierarchy by modeling phases for
all models in UML, and then created three integrated metamodels combining each
metamodel by the modeling phase. Moreover, one unified integrated metamodel was
proposed as a blueprint for UML. For proving the effectiveness of the hierarchical
metamodel, we have performed the hierarchical modeling through a case study with
a C_MDR application system, and then compared it with UML metamodel and the
existing methodologies.

The main contributions of the hierarchical approach for UML models are sum-
marized as follows. First, Designers are able to make the hierarchical model by ap-
plying each metamodel with hierarchy. It enhances more reusability of application
model. Second, UML models can further be used effectively, easily, and precisely. It
enhances further usability for UML. Third, Consistency and traceability among the
designed application models is promoted by verifying and using metamodel manu-
ally. For practical use, the metamodel can be embedded as a reference metamodel
in the M2 layer on OMG UML 4-layer architecture, and be applied in practice to
existing development methodologies.

For future work, we will further refine precisely the metamodels by embedding
dynamic semantics. Then, the refined metamodel will be specified by a formal
language like Object-Z. We will develop the tools to verify the consistency check
by using the hierarchical metamodel.

References

1. Object Management Group, OMG Unified Modeling Language Specification, Version
1.4, September 2001, http://www.omg.org.

2. Object Management Group, Meta Object Facility (MOF') Specification, Version 1.4,
April 2002, http://www.omg.org.

3. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

4. B. Henderson-Sellers, “Some problems with the UML V1.3 metamodel”, in Proc. 34th
Hawaii Int. Conf. on System Sciences (HICSS-34), Maui, Hawaii, January 3-6, 2001.

214 C.-Y. Song & D.-K. Baik

5.

6.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Evans and S. Kent, “Core meta-modelling semantics of UML: The pUML
approach”, in Proc. UML’99, Colorado, USA, October 1999, pp. 140-155.

A. Schleicher and B. Westfechtel, “Beyond Stereotyping: Metamodeling Approaches
for the UML”, in Proc. 34th Hawaii Int. Conf. on System Sciences (HICSS-34), Maui,
Hawaii, January 3-6, 2001.

S. Kent, S. Gaito, and N. Ross, “A meta-model semantics for structural constraints
in UML”, in H. Kilov, B. Rumpe, and I. Simmonds, Behavioral Specifications for
Businesses and Systems, Chapter 9, Kluwer Academic Publishers, 1999, pp. 123-141.
E. Robbins, N. Medvidovic, F. Redmiles, and S. Rosenblum, “Integrating architecture
description languages with a standard design method”, in Proc. ICSE’98, Kyoto,
Japan, April 1998.

C. Y. Song and D. K. Baik, “An integrated metamodel and its formal specification in
Z for component architecture”, Int. J. Computer and Information Science 3 (2002)
137-145.

C. Larman, Applying UML and Patterns, Prentice Hall PTR, New Jersey, 2002.

P. Kruchten, The Rational Unified Process: An Introduction, Second Edition, Addison-
Wesley, 2000.

Sterling Software Corporation, Sterling Software Application Management Group,
The CBDY6 Standard Version 2.1, Standards for Specifying and Delivering Software
Components Using COOL: gEN, July 1998.

Compuware Corporation, UNIFACE Development Methodology, V7.2, 1998.

R. Veryad, “SCIPIO: Aims, principles and structure”, SCIPIO Consortium, April
1998.

Metamodel.com, Metamodel, 2002, http://www.metamodel.com.

G. Nordstrom, J. Sztipanovits, G. Karsai, and A. Ledeczi, “Metamodeling — Rapid
design and evolution on domain-specific modeling environment”, in Proc. IEEE
ECBS’99 Conference, Nashville, Tennessee, March 1999, pp. 68—74.

G. Nordstrom, “Formalizing the specification of model integrated program synthesis
environment”, in Proc. IEEE Aerospace 2000 Conference, Big Sky, Montana, March
2000, pp. 523-532.

K. C. Kang, W. S. Choi, and J. J. Lee, “A metamodel approach method for the
description and analysis of software architecture”, Korea Information Science Society
— Software Engineering Review 13 (2000) 49—-60.

K. L. Mills, “A knowledge-based method for inferring semantic concepts from visual
models of system behavior”, ACM Transactions 9 (2000) 306-337.

S. Dakhli, C. Toffolon, “A three layers software development method: Foundations
and definition”, in Proc. 8rd IEEE International (ICECCS ’97), Lake Como, Italy,
September 1997, pp. 162-172.

C. Y. Song, S. B. Yim, D. K. Baik, and C. H. Kim, “A construction of the C_.MDR,
(Component_Metadata Registry) for the environment of exchange the component”,
Korea Information Science Society — Software Engineering Society Journal 7 (2001)
614-629.

Copyright © 2003 EBSCO Publishing

