
May 16, 2003 16:26 WSPC/117-ijseke 00126

International Journal of Software Engineering
and Knowledge Engineering
Vol. 13, No. 2 (2003) 191–214
c© World Scientific Publishing Company

A LAYERED METAMODEL FOR

HIERARCHICAL MODELING IN UML

CHEE-YANG SONG∗ and DOO-KWON BAIK†

Department of Computer Science and Engineering, Korea University,

#1, 5-Ka, Anam-dong, Sungbuk-ku, Seoul 136-701, South Korea
∗songyang@kt.co.kr

†baik@software.korea.ac.kr

Submitted 3 November 2001
Revised 12 March 2002
Accepted 12 July 2002

As software is becoming larger and more complex, it is increasingly important to use
the hierarchical modeling approach. Unfortunately, however, UML does not specify
each metamodel with hierarchy for model by modeling phase. Thus, most UML-based
methodologies do not address the hierarchical modeling for model. As a method for sup-
porting hierarchical modeling on UML, this paper proposes a layered metamodel which
defines hierarchically modeling elements of model according to the modeling phase. We
describe each metamodel with hierarchy for models in UML, then present the hierar-
chical integrated metamodel combined with each metamodel by three modeling phases
(conceptual phase, specific phase, and concrete phase). Therefore, designers are able
to construct the hierarchical model by applying the metamodel with hierarchy. Us-
ing the hierarchical metamodel enables designers to improve the usability of UML and
reusability of application model.

Keywords: Hierarchical modeling; layered metamodel; UML; modeling technique.

1. Introduction

Recently, with the increasing size, complexity, and variety of software, it is difficult

to understand a software system in its entirety. Accordingly, a development method

following on incremental approach from an abstract level to a concrete level is

necessary. That is, developing a software application hierarchically in terms of the

different levels of abstraction for designing complex and large-scale software is a

critical issue.

UML is being widely used as a standard language and a universal technique

for modeling object-oriented applications and component-based applications. The

metamodel for defining UML models has mainly been studied in OMG UML. The

structure of the UML metamodel is organizing its models into a logical package for

all models systematically [1–3]. However, this involves a complex structure in the

191

May 16, 2003 16:26 WSPC/117-ijseke 00126

192 C.-Y. Song & D.-K. Baik

syntax and semantics for defining the models. Most other studies [4–7] have brought

into focus the precise semantic definition for UML models using core elements and

extension mechanisms to apply in various fields. Also, the work in integrating the

modeling language and the formal language has been done to specify the UML mod-

els formally [8, 9]. Nevertheless, very little research has been paid to the metamodel

providing hierarchical modeling for the UML models.

The UML metamodel has many problems in modeling software hierarchically:

• Metamodels in OMG UML do not define each individual metamodel for each

model, owing to its focus on the entire structure while considering all models.

Each metamodel is needed since developers actually design an application model

independently with an individual UML model. Furthermore, UML does not pro-

vide a precise description of each metamodel that specifies hierarchically the mod-

eling elements or constructors by the abstraction levels of the modeling life cycle.

Just as in [10], it divides the use case model into three hierarchical structures

and classifies the class model into two development phases, without providing

for both the specification by the metamodel and the hierarchical structure for

the other models in UML, such as statechart model, subsystem model, etc. It

may confuse designers concerning the UML usage, and lead to a deterioration of

usability for the UML models.

• Likewise, most UML-based methodologies [10–14] do not support hierarchical

modeling by applying the hierarchical metamodel for UML models. It may de-

preciate reusability for application model. For modeling complex, various, and

sizable software, each metamodel has to be specified by adding the extended ele-

ments of the model corresponding to the modeling phase. For example, in making

a class diagram, it is generally applied from the conceptual analysis phase to the

concrete design phase. That is to say, the conceptual analysis phase requires the

class model to be designed with the modeling elements of class, attribute, and

relationship among the classes. Meanwhile, the design phase requires the class

model to be designed by including the elements of attribute type, operation,

tagged value, and parameter to the previous class diagram. Thus, it requires the

hierarchical metamodel specified with the suitable design elements according to

the modeling phase.

Accordingly, hierarchical modeling for UML models is needed for the follow-

ing reasons: Firstly, an incremental and abstract modeling approach is required as

software is becoming more large-scale. Secondly, it is difficult for designers to un-

derstand or capture the entire and detailed structure of an application system all

at once in the initial analysis stages. That is, it is useful to quickly obtain under-

standing for application. Finally, hierarchical modeling enhances reusability of the

application model.

In summary, although hierarchical approaches through division of the modeling

phase, task, and activity supports development methodologies well, a hierarchical

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 193

method for designing models is not provided. So to speak, the UML does not specify

each metamodel with a hierarchy individually. The UML-based methodologies do

not provide a hierarchical modeling based on the hierarchical metamodel for UML.

To address this problem, this paper proposes a hierarchical metamodel that

constructs an application model hierarchically in terms of three modeling phases.

The aim of our work is to enhance the usability for UML and reusability for the

application model. This is made possible: (1) by specifying each metamodel which

defines hierarchically the modeling elements conducted for each modeling phase;

(2) in terms of building hierarchical integrated metamodels by modeling phase.

The main concepts used in this paper are metamodel and hierarchy (Conceptual

modeling phase, Specific modeling phase, and Concrete modeling phase). We have

successfully applied our method to application domains such as the C MDR (Com-

ponent MetaData Registry) as a case study for addressing the effectiveness of the

hierarchical modeling approach to the software development.

The remainder of this paper is organized as follows. Section 2 sketches our ap-

proach concepts. Section 3 deals with the building of each metamodel with a hierar-

chy, considering both the abstract level and the concrete level. Section 4 describes

how each metamodel is combined to build the hierarchical integrated metamodel

in terms of three modeling phases. Section 5 illustrates how the hierarchical meta-

model is applied for the C MDR domain as a exploratory case study. Section 6

represents an assessment for the proposed metamodel with the UML metamodel

and other development methodologies. Finally, Sec. 7 summarizes this paper with

a contribution and a future plan.

2. Our Approach

The approach described in this paper is used to assist designers in the creation of

software using UML. Our goal is to support the hierarchical metamodel that can

produce a hierarchical model. This paper addresses a hierarchical approach by using

metamodel defining the suitable modeling elements for UML models according to

modeling phase. To provide it, the approach proceeds as follows:

• Create each metamodel with a hierarchy for the UML model

• Build the hierarchical integrated metamodel combined with each metamodel

The concept of metamodel and hierarchy is used to create the hierarchical meta-

model. Generally, the metamodel has been used to define the modeling language

[15] and to specify the application model in various domain fields [16–19]. In the

context of this paper, we define the metamodel as a conceptual framework that de-

scribes the core elements and relationships underlying the field of UML for defining

the abstract syntax and the static semantics of target models precisely and con-

cisely. To provide the syntax and static semantics to the metamodel, the syntax is

specified with the basic element including the target model (or diagram) and the

relationships among the elements. The static semantics is expressed by representing

May 16, 2003 16:26 WSPC/117-ijseke 00126

194 C.-Y. Song & D.-K. Baik

the multiplicity constraints and type of relationship among the elements.

The hierarchy is organized as a hierarchical structure for some target items. It

is important to note that the hierarchy separates design models for good software

reuse. This concept can be classified in terms of different levels of granularity and

degree of abstraction. Thus, the layered architecture types of the hierarchy by gran-

ularity are defined through a sequence of refinements as follows: architecture layer,

component layer, and object layer [20]. The hierarchy types in terms of abstraction

are categorized into Conceptual modeling phase, Specific modeling phase, and Con-

crete modeling phase in accordance with the development life cycle. The hierarchy

concept is used to build both the metamodel and the modeling procedure.

The principles for constructing the metamodel consist of:

• Constructing the hierarchical metamodel precisely based on the modeling phase

with core elements and relationships of the model frequently used in practice.

• Building the hierarchical integrated metamodel based on three modeling phases.

• Modeling based on design elements in the metamodel.

3. Each Metamodel with a Hierarchy

To build each hierarchical metamodel, this section describes the hierarchical division

for each model, rules for constructing the metamodel, and construction of each

metamodel with a hierarchy. The target models for building each metamodel are

represented by grouping the three aspects in Table 1.

Table 1. Target models for constructing each metamodel in UML.

Aspect Target model

Static model Subsystem diagram, Package diagram, Component diagram,
Deployment diagram, Class diagram

Behavioral model State Chart diagram, Interaction diagram (Sequence diagram,
Collaboration diagram)

Functional model Use case diagram, Activity diagram

The metamodel is expressed in class diagram. Each metamodel is constructed

with mandatory elements and relations in the target model. In order to construct the

hierarchical metamodel, each metamodel is divided into two or three metamodels

for the target model in Table 1 according to three modeling phases. Each metamodel

is combined as source constituents for building an integrated metamodel into three

modeling phases.

3.1. Hierarchical division of each model

In order to support hierarchical modeling, each metamodel should be built to meet

the abstraction degree of modeling phase. That is, each metamodel has to be divided

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 195

hierarchically by adding the extended elements corresponding to the concreteness

degree of the development life cycle.

The partition criteria of each metamodel by the modeling phase is based on:

• Applying the essential use scope of the model itself. For example, the package

diagram in Table 2 consists of the hierarchical metamodels being used up to the

Conceptual modeling and Specific modeling phase, since both have a grouping of

model elements (including package unit) and process unit of elements (including

class unit) that are large at the abstraction level.

• Correspondence based on the division level of element of the use case model and

class model described in [10].

• Same leveling compared with the elements in other models.

Based on these criteria, Table 2 represents the models’ application by partition-

ing into two phases, and Table 3 shows the models’ application by division into

three phases. Therefore, not all modeling works is completed at the concrete phase,

in some cases modeling at the specific phase can be finished (e.g., in the case of the

subsystem model).

Table 2. Two phase-applied models.

Model/ Interaction Usecase Component Subsystem Package Deployment
Phase Model Model Model Model Model Model

Conceptual System Conceptual Conceptual Conceptual Conceptual

modeling level level level level level

(requirement usecase component subsystem package deployment

analysis) metamodel metamodel metamodel metamodel metamodel

Specific Specific Subsystem Specific Specific Specific Specific

modeling level level level level level level

(preliminary interaction usecase component subsystem package deployment

design) metamodel metamodel metamodel metamodel metamodel metamodel

Concrete Concrete

modeling level

(detail interaction

design) metamodel

3.2. Construction of each model with a hierarchy

Models in UML have various elements and relationships separately. Therefore, some

rules are needed that can be applied to a variety of cases in common for deriving the

elements and the relationships between the models with consistency and clarity. The

criterion for extracting the elements and the relationships is based on the standard

specified in OMG UML V1.4. The following describes the related rules:

May 16, 2003 16:26 WSPC/117-ijseke 00126

196 C.-Y. Song & D.-K. Baik

Table 3. Three phase-applied models.

Model/Phase Usecase Description Class Model State Chart Model Activity Model

Conceptual High level Concept level System level System level

modeling usecase Class metamodel State chart activity

(requirement description metamodel metamodel

analysis) metamodel

Specific Essential level Specific level Usecase level Usecase level

modeling usecase class metamodel state chart activity

(preliminary description metamodel metamodel

design) metamodel

Concrete Real level Implemental level Class level Function level

modeling usecase class metamodel state chart activity

(detail design) description metamodel metamodel

metamodel

 2

Model element used to the Conceptual modeling phase

Model element used to the Specific modeling phase

Model element used to the Concrete modeling phase

Model element used to the Conceptual modeling phase

Model element used to the Specific modeling phase

Model element used to the Concrete modeling phase

Fig. 1. Element notation of the metamodel over three modeling phases

Fig. 1. Element notation of the metamodel over three modeling phases.

Rule 3.1. The selection of elements in the target model takes a necessary, core,

and widely used element of the many elements in a simple manner.

That is, the mandatory elements in the target model are captured. An

element is expressed to one class.

Rule 3.2. The relationship among elements is represented as association, aggre-

gation, composition, inheritance, and multiplicity.

Rule 3.3. The hierarchical metamodel is constructed by adding the extended ele-

ments of the current phase to the metamodel of the previous phase.

Rule 3.4. Stereotype is used for separating the duplicate elements over phases.

Some models are applied with the same notation of model according to

the different levels of granularity in the modeling target, for instance,

activity model and statechart model.

Each metamodel is built individually for ten models in UML as shown in

Table 1. As a partial illustration of the constructed metamodel, the commonly

used subsystem metamodel, use case metamodel, and class metamodel are shown.

As a notation legend of the hierarchical expression used in common for each meta-

model over the three modeling phases, Fig. 1 shows the notation for identifying the

hierarchy of each metamodel using the different notation to the element.

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 197

When UML models are applied for developing an application according to the

modeling process, each metamodel is referred hierarchically. Then, the designed

model of the application is verified by each metamodel.

3.2.1. Subsystem metamodel

The purpose of the subsystem construct is to provide a grouping mechanism for

specifying a behavioral unit of a physical system. The subsystem model is designed

at the level of software architecture for the initial requirement analysis. The hi-

erarchical metamodel required in the subsystem model should meet the modeling

levels from subsystem to operation for element being constructed. The subsystem

is obtained in Conceptual modeling phase. On the other hand, the operation can be

driven from the interaction model being constructed by the scenario in the use case

description. However, the interaction model is built in the Specific modeling phase

generally. Therefore, it needs two hierarchical metamodels to apply the model at

the Conceptual modeling phase and the Specific modeling phase. The conceptual-

level subsystem metamodel defines the modeling level to capture the elements of

the subsystems and relationships among subsystems at the conceptual level. The

specific-level subsystem metamodel specifies the modeling level with all elements

owning the subsystem model by newly adding operations, specification elements,

and realization elements.

With respect to the constitution elements of the subsystem model, the subsys-

tem consists of specification elements and realization elements. Here, the appended

elements for more details require the subsystem name, interface and relationship

among the subsystems, useCase and operation for detail of the specification ele-

ments, collaboration for mapping between the specification elements and the realiza-

tion elements, and component for representing a subsystem with components. They

become the elements and relationships of each metamodel for the subsystem model.

The subsystem metamodel to support the Conceptual modeling phase (elements

drawn as rectangles) and the Specific modeling phase (elements drawn as dotted

rectangles) is illustrated in Fig. 2 where the subsystem model contains the elements

of the subsystem and relationship by a composition with a multiplicity of 1 to 1..*.

The relationship between subsystem and interface is expressed by an aggregation

relationship labeled “has” relation label, because the ’interface’ element can be

shared. The relationship between the subsystem and the component is represented

by inheritance relationship since the component is a type representing the inner

part of a subsystem. Therefore, designers can easily build the subsystem model

using the elements and relationships included within the hierarchical subsystem

metamodel.

3.2.2. Use case metamodel

The use case model shows the relationship among useCases within a system and/or

the interaction between the system and their actors through usage scenarios of

May 16, 2003 16:26 WSPC/117-ijseke 00126

198 C.-Y. Song & D.-K. Baik

 3

Subsys_M

subsystem

contains

relationship

1

1

1..*

1..*

specification_element realization_element

operation usecase collaboration

interface
1..* 1

1

1

1

1 1

1

1

1

1
1..*

1..*

dependency

component
has

subsys_name

1

1

<<stereotype>>
class

1

1..*
1

1..* 1..*

relates

1

1

Subsys_M

subsystem

contains

relationship

1

1

1..*

1..*

specification_element realization_element

operation usecase collaboration

interface
1..* 1

1

1

1

1 1

1

1

1

1
1..*

1..*

dependency

component
has

subsys_name

1

1

<<stereotype>>
class

1

1..*
1

1..* 1..*

relates

1

1

Fig. 2. Subsystem metamodel providing the two modeling phases

Fig. 2. Subsystem metamodel providing the two modeling phases.

 4

useCase actor

Use_case_M

contains

relationship

association extend generalization include

1..* 1..* 1..* 1..*
1..*

Response/action1

1..*

1

1

1..*

<<subsystem level>>
Use_case_M

<<system level>>
Use_case_M

relates
useCase actor

Use_case_M

contains

relationship

association extend generalization include

1..* 1..* 1..* 1..*
1..*

Response/action1

1..*

1

1

1..*

<<subsystem level>>
Use_case_M

<<system level>>
Use_case_M

relates

Fig. 3. Use case metamodel for use case model supporting two modeling phases

Fig. 3. Use case metamodel for use case model supporting two modeling phases.

system. This model consists of the use case diagram and use case description to

design a further detailed design. The use case description stands for the semantics

of use case, and it is divided into three modeling phases according to the degree of

abstraction, such as High-level, Essential, and Real use case descriptions described

in [10]. To build the hierarchical metamodel, as shown in Fig. 3, the metamodel for

the use case model is divided into two metamodels so that it can be applied at the

Conceptual modeling phase supporting the modeling at the system level and the

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 199

 5

Use_case_Description

1

UC_type

1..*

actor

0..1
0..*

primary secondary optional

1..*
scenario

event_flow

relates

1..*

1..*

normal_flow

alter_flow

except_flow

has

1

1

0..*

0..*

Imple_tech

useCase
1

1

DependOn

1

1..*

1..*

1..*

1..*

1..*

contains

purpose
1..*

1
contains

user_interface
0..*

description

relate_useCase

1..*

1..*

Use_case_Description

1

UC_type

1..*

actor

0..1
0..*

primary secondary optional

1..*
scenario

event_flow

relates

1..*

1..*

normal_flow

alter_flow

except_flow

has

1

1

0..*

0..*

Imple_tech

useCase
1

1

DependOn

1

1..*

1..*

1..*

1..*

1..*

contains

purpose
1..*

1
contains

user_interface
0..*

description

relate_useCase

1..*

1..*

Fig. 4. Use case metamodel for use case description providing three modeling phases

Fig. 4. Use case metamodel for use case description providing three modeling phases.

Specific modeling phase providing the modeling at the subsystem level of granular-

ity, without adding its modeling element (not changing its express notation). It is

expressed separately using a 〈〈system level〉〉 stereotype and 〈〈subsystem level〉〉 in

the metamodel.

Each metamodel for the use case description, not specified in UML, creates

a hierarchical metamodel divided into three modeling phases as shown in Fig. 4.

For instance, the elements (Real use case description) indicated by thick rectangle,

such as user interface and implementation technology, are designed at the Concrete

modeling phase. Use case description has many elements like useCase, purpose,

actor, description, and so on. The relationship between scenario and event flow is

represented by dependOn. Elements of precondition and post condition are not

included in its metamodel since these are not mandatory elements.

3.2.3. Class metamodel

The class model describes the types of objects within the system and the relation-

ships (association and subtype) among them. The model also shows attributes and

operations of the objects it describes. In [10], it is divided into two modeling phases

according to the abstraction degree of the software life cycle. In this article, the

metamodel for the class model creates each metamodel by providing three phases

for covering up to the implemental viewpoint in order to support an implemental

property (such as language type) in greater detail and more precisely. The con-

ceptual level class diagram should be represented with little or no regard for the

software that might be implemented. The specific level class diagram shows the in-

terfaces of the software, not the implementation. The concrete level class diagram

actually has the classes and is laying the implementation bare.

The metamodel for the class model is composed of many modeling elements such

as class types, relationship types, visibility, attribute, operation, etc., as shown

in Fig. 5. For specifying the different types of class (such as the class type by

role and abstraction degree), various stereotypes are used in its metamodel, such

as the 〈〈concrete〉〉 class and 〈〈business concept〉〉 class. They are designed during

the Specific modeling phase. The relationship between them and the class ele-

May 16, 2003 16:26 WSPC/117-ijseke 00126

200 C.-Y. Song & D.-K. Baik

Class_M

attribute

feature

1

class

1

contains

1..*

<<business_concept>>

operation

1..*
visibility

class
<<DB_interface_concept>>

class
<<user_interface_concept>>

constraint

1

0..*

relationship
1

1..*

composition

<<concrete>>
class

<<generic>>
class

<<abstract>>
class

interface

att_name att_type

1

1 1

aggregation

realization

dependency

association

role

DependOn

1
public

private

protected

oper_name return_type parameter

1

1 1 1..*

multiplicity

0..*
0..1

relates

stereotype

class
1..*

invariant

tagged_value

class_method0..1 0..*

implementation

auxiliary

focus

type

1
1..*

{type depend on the language}

class
<<implementation_concept>>

0..*

0..*

package

Fig. 5. Class metamodel supporting three modeling phases Fig. 5. Class metamodel supporting three modeling phases.

ments has inheritance because of the various types of classes. The design for the

〈〈implementation concept〉〉 class and attribute type by an implementation language

is modeled at the Concrete modeling phase.

4. Hierarchical Integrated Metamodel

To provide the hierarchical modeling to designers, the hierarchical integrated meta-

model will be built by combining each metamodel according to the modeling phases.

Building of the integrated metamodel first captures core elements of each meta-

model, then joins each metamodel, taking into account the relationship among the

core elements between models. The integration is made in a seamless manner by

grouping each metamodel incrementally from the Conceptual modeling phase to the

Concrete modeling phase. The integrated metamodels built are used to reference

and to verify when UML models are applied for developing an application. Using

the hierarchical metamodel, we can do the hierarchical modeling.

4.1. Organization and relationship of the integrated metamodels

The integrated metamodel is organized by combination based on the hierarchical

metamodel of each metamodel. Concerning the phase view, Fig. 6 shows the entire

constitution of metamodels applied by each phase. The modeling phases consist of

the Conceptual modeling phase, Specific modeling phase, and Concrete modeling

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 201

 7

Fig. 6. Constitution and relationship of the integrated metamodels

Fig. 6. Constitution and relationship of the integrated metamodels.

phase. The modeling work in the conceptual modeling phase is performed with the

models included in this phase. The full name for abbreviations in Fig. 6 can be seen

in Tables 2 and 3.

Integrating each metamodel requires analysis of the relationship between each

metamodel and among the elements. At first, the relationship among the meta-

models is shown in Fig. 6 with the package diagram. Here, the mapping of each

metamodel among the phases (or layers) represents the inheritance relationship,

since each metamodel in the lower phase is inherited from each metamodel in the

upper phase. The mapping between each metamodel in the same phase is expressed

by the dependency relationship based on the interactive inclusion specified in the

UML.

Meanwhile, with respect to the relationship among the elements, the mapping

between each metamodel actually stands for the connection of the related elements

and needs relationship analysis among the elements. The relationship is derived

from each metamodel. For instance, the subsystem metamodel (see the part marked

oval in Table 4) shows the relationship between ‘component’ element and ‘subsys-

tem’ element, for example, their relationship has an inheritance since a subsystem

is a kind of component. The subsystem is a subclass of package and one class has

one sequence model. Within these relationships, Table 4 depicts the relationship

matrix as a road map among the core elements in each metamodel.

May 16, 2003 16:26 WSPC/117-ijseke 00126

202 C.-Y. Song & D.-K. Baik

Table 4. Relationship matrix among elements in each metamodel.

Deployment Subsystem ComponentPackage Class Activity StateChart

Deployment

Subsystem

Component

Package

Class

Interaction

Activity

StateChart

1 : 1..*
node

�
◊
�
◊--

 component

1 : 1..*
node �◊�◊--
 package

1..* : 1
state -- �◊�◊
 object

1 : 1..*
subsystem�
♦

�
♦-- class

subsystem
< -->> node

1 : 1..*
package<<--
 subsystem

component
<<-- subsystem

1 : 1..*
subsystem�
◊
�
◊-- useCase

1 : 1..*
package
 -- �◊�◊ node

1 : 1..*
state �♦�♦--
 state

1..* : 1
useCase -- �◊�◊
 subsystem

subsystem
-->> component

1..* : 2..*
 link --
 object

1 : 1..*
package�
♦

�
♦--package

1 : 1..*
package 	◊	◊--
 useCase

1 : 1..*
package

♦
♦--class

1..* : 1
state -- �◊�◊
 class

2..* : 1..*
object --
 link

1..* : 1
useCase --
 component

1 : 1..*
class �◊�◊--
 state

1 : 1..*
package
◊
◊--
component

1 : 1..*
object �◊�◊--
 state

Use case

Use case

1 : 1..*
Component
 -- useCase

1 : 1..*
class -- �♦�♦
 component

1..* : 1
useCase
-- �◊�◊ package

1..* : 1
component
 -- �◊�◊ node

1..* : 1
component
-- �◊�◊package

1 : 1..*
component�
♦

�
♦--component

1 : 1..*
component�
♦

�
♦-- class

1 : 1..*
class -- �♦�♦
 subsystem

1 : 1..*
class -- �♦�♦
 package

Model

Interaction

Table 4. Relationship matrix among elements in each metamodel

4.2. Hierarchical integrated metamodel

Based on the constitution of the integrated metamodels and the relationship map-

ping among metamodels, we can build the hierarchical integrated metamodel by

combining each metamodel in terms of modeling phase. As the modeling phase

progresses from the abstract level to the concrete level, the elements of the tar-

get model append further additional elements or system granularity for modeling

attains smaller size. The integrated metamodels are constructed with the core ele-

ments in each metamodel to maintain simplicity. Thus, all elements in each meta-

model need not be included in the integrated metamodel, because we can always

reference each metamodel.

The hierarchical integrated metamodel creates three integrated metamodels by

three modeling phases. For example, Fig. 7 illustrates an integrated metamodel

constructed with eight metamodels at the Conceptual modeling phase.

The statechart metamodel and the activity metamodel include all elements

having their models, because these models are modeled with different granular-

ity according to abstraction level of application system without change of modeling

elements over three modeling phases.

Mapping between metamodels is combined by the connection among the core

elements. Here, the included elements belong to the conceptual level in each meta-

model. The designer in this phase can perform the modeling precisely and verify the

constructed application models easily with the elements and relationships specified

in Fig. 7.

The integrated metamodels for the specific modeling phase are built with ex-

tended elements of each model or small granularity of system for more detail

modeling.

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 203

 8

Subsystem

Component

Subsystem_name

1

1..*

Package

useCase

Relate_uc

Extend Actor

C_stereotype

Execution

1 1

Interface

1..*

UC_type

0..*

1..*

Purpose
1

1..*

1
1..*

Relationship

1 1..*

11..*

1..*

1..*

Node

Connection

1

1..*

1

1..*

C_Usecase_MM

C_Pack_MM C_Subs_MM

C_Deploy_MM

C_Comp_MM

1

1..*

UC_Description

1
1..*

include

1..*

Deployment

Work_product

1..* 1

N_stereotype

1
1..*

Processor

Devices

Abstract

layer

Architecture

layer

Component

layer

Concrete

layer

Object

layer

1..*

1..*

contains

has

relates
1..*

0..10..*

Description
1..*

State Transition

Event

1

1..*

Compositestate

1

Con_compositestate

Seq_compositestate

2..*

Event_trigger

Guard_cond

Target_cond

Action

11

Init_state

Final_state

Relates_IsSourceOf/
IsTargetOf

Call_event

Change_event

Signal_event

Time_event

Activity

Object

Activity_flow

Object_flow Triggerless Trigger

Sync_bar

Fork

Join

Action_state Subactivity_state

2..*1..* 1..*2..*
Swimlane

1..*

1

Obj_name

Sys_StateChart_MM

Sys_Activity_MM

1..*1

1..*1

Synch_state

SubMc_state

Type

1 1

1..*
1 1..*1..*

Synch_
Event

Asynch_
Event

Stub_Tr

Hist_Tr

Object_flow_state

1..*

1..*

class

feature

1

1..*

attribute

C_Class_MM

1..*

1..*

1..*

1

<<System_level>>

Model

Subsystem

Component

Subsystem_name

1

1..*

Package

useCase

Relate_uc

Extend Actor

C_stereotype

Execution

1 1

Interface

1..*

UC_type

0..*

1..*

Purpose
1

1..*

1
1..*

Relationship

1 1..*

11..*

1..*

1..*

Node

Connection

1

1..*

1

1..*

C_Usecase_MM

C_Pack_MM C_Subs_MM

C_Deploy_MM

C_Comp_MM

1

1..*

UC_Description

1
1..*

include

1..*

Deployment

Work_product

1..* 1

N_stereotype

1
1..*

Processor

Devices

Abstract

layer

Architecture

layer

Component

layer

Concrete

layer

Object

layer

1..*

1..*

contains

has

relates
1..*

0..10..*

Description
1..*

State Transition

Event

1

1..*

Compositestate

1

Con_compositestate

Seq_compositestate

2..*

Event_trigger

Guard_cond

Target_cond

Action

11

Init_state

Final_state

Relates_IsSourceOf/
IsTargetOf

Call_event

Change_event

Signal_event

Time_event

Activity

Object

Activity_flow

Object_flow Triggerless Trigger

Sync_bar

Fork

Join

Action_state Subactivity_state

2..*1..* 1..*2..*
Swimlane

1..*

1

Obj_name

Sys_StateChart_MM

Sys_Activity_MM

1..*1

1..*1

Synch_state

SubMc_state

Type

1 1

1..*
1 1..*1..*

Synch_
Event

Asynch_
Event

Stub_Tr

Hist_Tr

Object_flow_state

1..*

1..*

class

feature

1

1..*

attribute

C_Class_MM

1..*

1..*

1..*

1

<<System_level>>

Model

Fig. 7. The integrated metamodel in Conceptual modeling phase

Fig. 7. The integrated metamodel in Conceptual modeling phase.

In order to enhance understandability for all UML models, one unified inte-

grated metamodel, which combines all metamodels at the Concrete modeling phase,

is shown in Fig. 8. It can be used as a blueprint for UML. If all information rep-

resenting this integrated metamodel is managed through a repository of the Meta-

CASE Tool, it can realize the automatic verification for application models. This

metamodel is also used for checking consistency and traceability of the application

models.

5. An Exploratory Case Study

An exploratory case study illustrates the practical use of the hierarchical metamodel

for a software design. Its purpose is to ensure reliability of the approach mechanism

and the procedure of activities. The case study shows the hierarchical approach

using each metamodel and the integrated metamodel by modeling phase.

May 16, 2003 16:26 WSPC/117-ijseke 00126

204 C.-Y. Song & D.-K. Baik

 3

Class State

OperationAttribute

Feature

1
1

0..* 0..1

1..*
Transition

Event

1

1..*

1..*

1..*

Constraint

Visibility
1..* 1

Att_name Att_type

1

1 1

Oper_name Return_type

Parameter
1

1 1

1..*

Compositestate

1

Con_compositestate

Seq_compositestate

2..*

Event_trigger

Guard_cond

Target_cond

Action

11

Init_state

Final_state

Relates_IsRequestOf

Relates_refer_to

Subsystem

Component

Realizationation_element

Subsystem_name

1

1..*

Package

useCaseRelate_uc

Extend Actor

C_stereotype

Execution

1 1

Interface

Relates_IsSourceOf/
IsTargetOf

1..*

Invariant

Call_event

Change_event

Signal_event

Time_event

1..*
UC_type Event_flow Scenario

0..*
1..*

Purpose

UI

1

DependOn_se

1..* 1
1..*

Activity

Object

Activity_flow

Object_flow Triggerless Trigger

Sync_bar

Fork

Join

Action_state Subactivity_state

2..* 1..* 1..*2..*
Swimlane

Interface_method

Relationship

Association

Aggregation

Composition

Dependency

Multiplicity

Realization

1..*

1 1..*
1

11..*

1

1..*

1..*

1

import_inf

export_inf

Generalization
1..*

1..*

1
1

1

Node

Connection

1

1..*

1

1..*

Obj_name

Link

Message

Lifeline

Control_focus

Call Return Send Create

1

1..*

1..* 2..*

1

1..*

Seq_num

Usecase_MM

Package_MM Subsystem_MM

Deployment_MM

Component_MM

Seq/Colla_MM

Class_MM

StateChart_MM

Activity_MM

Tagged_value

1..*

1..*

UC_Description

1

1..*1

1..*1

1..*

Synch_state

SubMc_state

Type

1 1

Has_np

Cont_pv

1..*

1..*

11..*

1..*

1

0..1
0..*

1..*

1 1..*1..*1
1

1

1

1..*

2..*

1..*

1

Conc_class

Gene_class

Abst_class

{type depend on the language}

Contains_ccla

Relates_cu

1

include

Cla_method
0..1

0..*

1..*

Synch_
Event

Asynch_
Event

Stub_Tr

Hist_Tr

Object_flow_state

Deployment

Work_product

Specification_element

1

1..*

1..*

Has_spu

1..*

1

1

1..*

N_stereotype

1
1..*

Processor

Devices

Includes_pp

0..1

1..*

0..*

1..*

1..*

1..*

Description

Constraint

Stereotype

<< common element >>

UML_MM

Architecture layer

Component layer

Object layer

Class State

OperationAttribute

Feature

1
1

0..* 0..1

1..*
Transition

Event

1

1..*

1..*

1..*

Constraint

Visibility
1..* 1

Att_name Att_type

1

1 1

Oper_name Return_type

Parameter
1

1 1

1..*

Compositestate

1

Con_compositestate

Seq_compositestate

2..*

Event_trigger

Guard_cond

Target_cond

Action

11

Init_state

Final_state

Relates_IsRequestOf

Relates_refer_to

Subsystem

Component

Realizationation_element

Subsystem_name

1

1..*

Package

useCaseRelate_uc

Extend Actor

C_stereotype

Execution

1 1

Interface

Relates_IsSourceOf/
IsTargetOf

1..*

Invariant

Call_event

Change_event

Signal_event

Time_event

1..*
UC_type Event_flow Scenario

0..*
1..*

Purpose

UI

1

DependOn_se

1..* 1
1..*

Activity

Object

Activity_flow

Object_flow Triggerless Trigger

Sync_bar

Fork

Join

Action_state Subactivity_state

2..* 1..* 1..*2..*
Swimlane

Interface_method

Relationship

Association

Aggregation

Composition

Dependency

Multiplicity

Realization

1..*

1 1..*
1

11..*

1

1..*

1..*

1

import_inf

export_inf

Generalization
1..*

1..*

1
1

1

Node

Connection

1

1..*

1

1..*

Obj_name

Link

Message

Lifeline

Control_focus

Call Return Send Create

1

1..*

1..* 2..*

1

1..*

Seq_num

Usecase_MM

Package_MM Subsystem_MM

Deployment_MM

Component_MM

Seq/Colla_MM

Class_MM

StateChart_MM

Activity_MM

Tagged_value

1..*

1..*

UC_Description

1

1..*1

1..*1

1..*

Synch_state

SubMc_state

Type

1 1

Has_np

Cont_pv

1..*

1..*

11..*

1..*

1

0..1
0..*

1..*

1 1..*1..*1
1

1

1

1..*

2..*

1..*

1

Conc_class

Gene_class

Abst_class

{type depend on the language}

Contains_ccla

Relates_cu

1

include

Cla_method
0..1

0..*

1..*

Synch_
Event

Asynch_
Event

Stub_Tr

Hist_Tr

Object_flow_state

Deployment

Work_product

Specification_element

1

1..*

1..*

Has_spu

1..*

1

1

1..*

N_stereotype

1
1..*

Processor

Devices

Includes_pp

0..1

1..*

0..*

1..*

1..*

1..*

Description

Constraint

Stereotype

<< common element >>

UML_MM

Architecture layer

Component layer

Object layer

Fig. 8. One unified integrated metamodel for UML all models

Fig. 8. One unified integrated metamodel for UML of all models.

We design a C MDR application to share and to circulate standardized infor-

mation for commercial components [21]. The C MDR system is a tool to support

registration and management of the standardized metadata for component prod-

ucts. There are three service systems, namely the component metadata management

service, the component category code management service, and the analysis infor-

mation management service. The models constructed are the subsystem model,

interaction model, component model, etc., as shown in Table 1. Here, as an ex-

ample, for the models constructed to each metamodel in Sec. 3, we show this for

the subsystem model, use case model, and class model based on the hierarchical

metamodel.

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 205

 10

Component
Metadata
Manager

Component
CategoryCode

Manager

Information
Analysis
Manager

CategoryCode

<<Access>>

ComponentInfo

<<Analyze>>

Component
Metadata
Manager

Component
CategoryCode

Manager

Information
Analysis
Manager

CategoryCode

<<Access>>

ComponentInfo

<<Analyze>>

Fig. 9. Subsystem model in Conceptual modeling phase for C_MDR

Fig. 9. Subsystem model in Conceptual modeling phase for C MDR.

5.1. Conceptual modeling phase

The Conceptual modeling phase analyzes the domain requirements for C MDR. At

first, conceptual level subsystem model is made in terms of referencing and veri-

fying with the conceptual level subsystem metamodel. After that, conceptual level

use case model and conceptual level class model are designed using the previous

artifacts and verified by using the modeling elements of each hierarchical meta-

model. For the subsystem model, the modeling elements in Conceptual modeling

phase consist of subsystem, interface, and dependency among subsystems in terms

of each hierarchical metamodel in Fig. 2. With these elements, Fig. 9 illustrates a

conceptual level subsystem model organized with three subsystems for C MDR.

The use case model is designed as a use case diagram and use case descrip-

tion using each hierarchical metamodel. Based on the subsystem model in Fig. 9,

the use case model (constructed with the modeling elements of useCase, relation-

ship, and actor at the system level in the metamodel) for the C MDR system is

built as three useCases: the ‘Manage Component Metadata’, ‘Manage Component

CategoryCode’, and ‘Manage Analysis Information’, as shown in Fig. 10.

The use case description is constructed with respect to all useCases in Fig. 10

separately with the elements of useCase, actor, purpose, and relate useCase. Thus,

three use case descriptions are created. As an example, Table 5 illustrates High-level

use case description in this modeling phase for the ‘Manage Component Metadata’

useCase.

For the class diagram, the modeling elements of the class diagram in the Con-

ceptual modeling phase consist of class, attribute, and association among classes as

specified in the conceptual level class metamodel, only the business classes (compo-

nent class, configuration class, etc.) and attributes are captured for C MDR using

the artifacts of the use case diagram (Fig. 10) and use case description (Table 5).

With these as the modeling elements, Fig. 11 represents the class model designed

at the conceptual level.

May 16, 2003 16:26 WSPC/117-ijseke 00126

206 C.-Y. Song & D.-K. Baik

 11

1

1

1

*

*

*

1

Administrator User

Manage Component Metadata

Manage Component CategoryCode

Manage Analysis Information
* *

1

<<include>>
1

1

1

*

*

*

1

Administrator User

Manage Component Metadata

Manage Component CategoryCode

Manage Analysis Information
* *

1

<<include>>

Fig. 10. Use case model in conceptual modeling phase for C_MDR

Fig. 10. Use case model in conceptual modeling phase for C MDR.

Table 5. High-level use case description in conceptual modeling phase for the ‘Manage

Component Metadata’ useCase.

useCase Name Manage Component Metadata

Actor Administrator, User

UC Type Primary

Purpose Registering and managing the metadata for component products.

Description • Administrator registers the standardized metadata for a new com-
ponent product into database by category code scheme.

• Administrator updates the stored component metadata for the
changed products.

• User searches the component metadata using various retrieval
services.

Relate useCase Manage Analysis Information

The designed models are verified by each metamodel applied individually in

this modeling phase. The relationship of elements between the produced models is

verified by the integrated metamodel for this phase in Fig. 7.

5.2. Specific modeling phase

The Specific modeling phase performs the preliminary design for C MDR. By utiliz-

ing artifacts or outputs of the Conceptual modeling phase, the application models

are made with the extended elements of this modeling phase specified in each hierar-

chical metamodel. As for the use case model, the use case diagram in this modeling

phase is the same as the use case diagram in the Conceptual modeling phase with-

out appending any modeling elements. But this phase further refines the use case

diagram of the Conceptual modeling phase with the granularity unit of a smaller

target size than that of the Conceptual modeling phase, as shown in Fig. 3. Hence,

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 207

 12

CompID
CompName
Purpose
Description
KindPlatform
Category
Version
SupportOutput
Cost
RegisterDate

Status
UseHistory
CreateDate
UpdateDate
ChangeContent
DevLanguage : Varchar
DevMethod : Varchar
DevCaseTool : Varchar

Configuration

Protocol : …
DBMS
OsType
FileSize

Environment

CertifyID : …
EvalResult
EvalCompany
EvalCriterion

Quality

PortRestrict : …
SecurityRestrict
LicenseRestrict
EvalCriterion
RelatedComponent
SpectialFacts

Constraint

SupName : …
SupEmail
SupURL

Supplier

InterfaceName
Method
Parameter

Interface

productCount
yearCost
Categorypercent

StatisticAnalysis

1 *

* *

1

* * * * *

Component

CompID
CompName
Purpose
Description
KindPlatform
Category
Version
SupportOutput
Cost
RegisterDate

Status
UseHistory
CreateDate
UpdateDate
ChangeContent
DevLanguage : Varchar
DevMethod : Varchar
DevCaseTool : Varchar

Configuration

Protocol : …
DBMS
OsType
FileSize

Environment

CertifyID : …
EvalResult
EvalCompany
EvalCriterion

Quality

PortRestrict : …
SecurityRestrict
LicenseRestrict
EvalCriterion
RelatedComponent
SpectialFacts

Constraint

SupName : …
SupEmail
SupURL

Supplier

InterfaceName
Method
Parameter

Interface

productCount
yearCost
Categorypercent

StatisticAnalysis

1 *

* *

1

* * * * *

Component

Fig. 11. Class model in conceptual modeling phase for C_MDR

Fig. 11. Class model in conceptual modeling phase for C MDR.

 13

1

1

1

*

*

*

* 1

*

1

Administrator User

Register Component Metadata

Search Component Metadata

Update Component Metadata

Delete Component Metadata

<<include>>

<<include>>

1

1

1

*

*

*

* 1

*

1

Administrator User

Register Component Metadata

Search Component Metadata

Update Component Metadata

Delete Component Metadata

<<include>>

<<include>>

Fig. 12. Use case model in Specific modeling phase for the ‘Manage Component Metadata’ useCase

Fig. 12. Use case model in Specific modeling phase for the ‘Manage Component Metadata’
useCase.

it creates the use case diagram individually using the same modeling elements for

each useCase constructed in conceptual phase. The use case diagram designed in

this modeling phase is shown in Fig. 12, as an example for the ‘Manage Component

Metadata’ useCase in Fig. 10. Its diagram is fulfilled in this modeling phase.

May 16, 2003 16:26 WSPC/117-ijseke 00126

208 C.-Y. Song & D.-K. Baik

However, use case description is designed by appending the elements of scenario

and event flow (normal flow, alter flow, and except flow) based on the Essential Use

case description metamodel as shown in Fig. 4. As an example, Table 6 represents

the use case description for the ‘Manage Component Metadata’ useCase in terms

of concrete specification more than that of conceptual modeling phase.

For the subsystem model, the modeling elements in the Specific modeling

phase are composed of its elements by appending specification elements (opera-

tion and useCase), realization elements (collaboration), and components to the

elements in the Conceptual modeling phase. The parts for the specification el-

ements and realization elements in subsystem model are modeled using the ar-

tifacts of the use case model in Fig. 12. In this modeling phase, the subsystem

model is designed with respect to all subsystems in Fig. 9 separately. Therefore,

three subsystem models are created. As an example, the designed subsystem model

of this phase is shown in Fig. 13 for ‘Component Metadata Manager’ subsys-

tem. The subsystem model divided into two modeling phases is completed in this

modeling phase.

The class diagram in this modeling phase concretes the class model in Con-

ceptual modeling phase with extended elements, such as attribute type, operation,

method, visibility, stereotype, UI interface class, etc. In this modeling phase, the

Table 6. Essential Use case description in specific phase for the ‘Manage Component
Metadata’ useCase.

 24

Table 6. Essential Use case description in specific phase for the ‘Manage Component Metadata’ useCase

NoneAlter Flow

[E-1] If the duplication of component name occurs,
then generates error messages.

[E-2] If there occurs some error when data is stored to DB,
then generates error messages for this.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Except Flow

** Register component metadata **

[Actor Action]

[N-1] Administrator requests the registration for
a new component

[N-3] Administrator types specification information,
category information, quality information, 
environment information, etc for component 
product on UI. On completion of item entry, then
request storing of this component metadata.

[N-6] After conformation of successive registration,
Administrator performs the registration for 

another
components repeatedly.

** Update component metadata **

~~~~~~~~~~~~~~~~~~~~~

Normal Flow

Manage Component MetadatauseCase Name

[System Response]

[N-2] displays the UI form for registration.
The kinds and category scheme for component
are presented.

[n-4] checks the duplication of component name.
If no errors, creates the objects for component
metadatas, then makes the records of component,
configuration, quality, supplier etc, store this
information into DB.

[N-5] presents a success message to administrator.

~~~~~~~~~~~~~~~~~~~~~

Same with High-level Use case Description 

Actor / 
UC_Type /
Purpose /
Description / 
Relate_useCase

NoneAlter Flow

[E-1] If the duplication of component name occurs, 
then generates error messages.

[E-2] If there occurs some error when data is stored to DB,
then generates error messages for this.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Except Flow

** Register component metadata **

[Actor Action]

[N-1] Administrator requests the registration for
a new component

[N-3] Administrator types specification information,
category information, quality information,
environment information, etc for component
product on UI. On completion of item entry, then
request storing of this component metadata.

[N-6] After conformation of successive registration,
Administrator performs the registration for

another
components repeatedly.

** Update component metadata **

~~~~~~~~~~~~~~~~~~~~~

Normal Flow

Manage Component MetadatauseCase Name

[System Response]

[N-2] displays  the UI form for registration. 
The kinds and category scheme for  component
are presented.

[n-4] checks the duplication of component name.
If no errors, creates the objects for component
metadatas, then makes the records of component,
configuration, quality, supplier etc, store this
information into DB.

[N-5] presents a success message to administrator.

~~~~~~~~~~~~~~~~~~~~~

Same with High-level Use case Description

Actor /
UC_Type /
Purpose /
Description /
Relate_useCase

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 209

 14

registerCompMetadata
updateCompMetadata
DeleteCompMetadata
searchCompMetadata

RegisterComponentMetadata

SearchComponentMetadata

UpdateComponentMetadata

RegisterComponentMetadata

SearchComponentMetadata

UpdateComponentMetadata

ComponentInfo

Specification Elements

Realization Elements

Component Metadata Manager

DeleteComponentMetadata DeleteComponentMetadata

registerCompMetadata
updateCompMetadata
DeleteCompMetadata
searchCompMetadata

RegisterComponentMetadata

SearchComponentMetadata

UpdateComponentMetadata

RegisterComponentMetadata

SearchComponentMetadata

UpdateComponentMetadata

ComponentInfo

Specification Elements

Realization Elements

Component Metadata Manager

DeleteComponentMetadata DeleteComponentMetadata

Fig. 13. Subsystem model in Specific modeling phase for the ‘Component Metadata Manager’ Subsystem

Fig. 13. Subsystem model in Specific modeling phase for the ‘Component Metadata Manager’
Subsystem.

class model identifies the UI class, DB class, etc. as shown in Fig. 14 where the parts

expressed in italics indicate the newly designed elements in this modeling phase.

5.3. Concrete modeling phase

The Concrete modeling phase performs the concrete design in detail for the C MDR

application. This phase accomplishes the use case description and the class model.

All the models produced so far are verified at the end by the one unified integrated

metamodel, depicted in Fig. 8 for checking the consistency among the application

models.

For the use case model, we create a Real use case description by using addi-

tional elements like user interface and implementation technique (such as input

and output items, and so on), and by concreting the more normal flow with the

implementation view to the Essential use case description of the previous phase.

The Real Use case description for this modeling phase is shown in Fig. 15 with an

added ‘user interface’ modeling element as an example.

The class model in the Concrete modeling phase builds the model with more

concrete modeling elements, such as class and attribute type by taking into account

implementation properties to the class model in the Specific modeling phase. The

implementation properties represent language dependent elements (such as param-

eter and return type), database dependent elements, and so on.

As a result, other models in UML can be designed hierarchically using the

layered metamodel in this way. This case study has shown a hierarchical modeling

precisely from the Conceptual modeling phase to the Concrete modeling phase using

May 16, 2003 16:26 WSPC/117-ijseke 00126

210 C.-Y. Song & D.-K. Baik

 15

CompID : number
CompName : Varchar
Purpose : Varchar
Description : Varchar
KindPlatform : Varchar
Category : number
Version : Varchar
SupportOutput : Varchar
Cost : number
RegisterDate : date

-CheckCompName(CompName)
+NewRegister(CompName, Purpose,

Description, KindPlatform,,.)
+VersionRegister(CompName, Version,

Status,..)

+UpdateComp(CompName,..)
+DeleteComp(CompName)
+RecentSearch(Currentdate)
+KeywordSearch(keyword)
+CategorySearch(Category)
+DateSearch(SearchDate)

CategoryID : Varchar
CategoryName : Varchar
CategoryCode : Varchar

+RegisterCategory()
+UpdateCategory()
+DeleteCategory()
+SearchCategory()

<<business>>
Category

Status : Varchar
UseHistory : Varchar
CreateDate : date
UpdateDate : date
ChangeContent : Varchar
DevLanguage : Varchar
DevMethod : Varchar
DevCaseTool : Varchar

<<business>>
Configuration

Protocol : …
DBMS
OsType
FileSize

<<business>>
Environment

CertifyID : …
EvalResult
EvalCompany
EvalCriterion

<<business>>
Quality

PortRestrict : …
SecurityRestrict
LicenseRestrict
EvalCriterion
RelatedComponent
SpectialFacts

<<business>>
Constraint

SupName : …
SupEmail
SupURL

<<business>>
Supplier

InterfaceName : Varchar
Method : Varchar
Parameter : Varchar

<<business>>
Interface

JavaBeans

EJB

COM+

productCount : number
yearCost : number
Categorypercent : Varchar

+CategoryAnalysis(CategoryID)
+PlatformAnalysis(KindFlatform)
+CostAnalysis(Cost)
+YearAnalysis(Year)
+CreateAnalyReport(category,

kindPlatform)

<<business>>
StatisticAnalysis

1 *

1 1

* *+Open()
+DiaplayForm()
+DisplayResult()
+DisplayError()

<<UI_Interface>>
MainForm

1

+OpenRegisterForm()

<< UI_Interface>>
RegisterForm

1

1

* * * * *

<<business>>
Component

CompID : number
CompName : Varchar
Purpose : Varchar
Description : Varchar
KindPlatform : Varchar
Category : number
Version : Varchar
SupportOutput : Varchar
Cost : number
RegisterDate : date

-CheckCompName(CompName)
+NewRegister(CompName, Purpose,

Description, KindPlatform,,.)
+VersionRegister(CompName, Version,

Status,..)

+UpdateComp(CompName,..)
+DeleteComp(CompName)
+RecentSearch(Currentdate)
+KeywordSearch(keyword)
+CategorySearch(Category)
+DateSearch(SearchDate)

CategoryID : Varchar
CategoryName : Varchar
CategoryCode : Varchar

+RegisterCategory()
+UpdateCategory()
+DeleteCategory()
+SearchCategory()

<<business>>
Category

Status : Varchar
UseHistory : Varchar
CreateDate : date
UpdateDate : date
ChangeContent : Varchar
DevLanguage : Varchar
DevMethod : Varchar
DevCaseTool : Varchar

<<business>>
Configuration

Protocol : …
DBMS
OsType
FileSize

<<business>>
Environment

CertifyID : …
EvalResult
EvalCompany
EvalCriterion

<<business>>
Quality

PortRestrict : …
SecurityRestrict
LicenseRestrict
EvalCriterion
RelatedComponent
SpectialFacts

<<business>>
Constraint

SupName : …
SupEmail
SupURL

<<business>>
Supplier

InterfaceName : Varchar
Method : Varchar
Parameter : Varchar

<<business>>
Interface

JavaBeans

EJB

COM+

productCount : number
yearCost : number
Categorypercent : Varchar

+CategoryAnalysis(CategoryID)
+PlatformAnalysis(KindFlatform)
+CostAnalysis(Cost)
+YearAnalysis(Year)
+CreateAnalyReport(category,

kindPlatform)

<<business>>
StatisticAnalysis

1 *

1 1

* *+Open()
+DiaplayForm()
+DisplayResult()
+DisplayError()

<<UI_Interface>>
MainForm

1

+OpenRegisterForm()

<< UI_Interface>>
RegisterForm

1

1

* * * * *

<<business>>
Component

Fig. 14. Class model in Specific modeling phase for C_MDR

Fig. 14. Class model in Specific modeling phase for C MDR.

the proposed modeling elements of the hierarchical metamodel. Furthermore, the

metamodel is used in the referencing and verification of the designed models.

6. Assessment

With various experiments, we assess the proposed hierarchical metamodel with

UML metamodel and existing methodology in terms of usability, reusability, and

extendability. Usability is a measuring criterion of how many elements in the

metamodel are used in software development. We knew that the elements within

the proposed metamodel were actually used more than that of existing UML

metamodel in designing software, such as business concept class and implemen-

tation concept class in the class metamodel with precise division over modeling

phases. Figure 16 illustrates the usage rate of modeling elements according to the

scale of software system. As the system scale grows, the elements of the proposed

metamodel are used rather than that of UML metamodel.

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 211

 16

Actor /
UC_Type /
Purpose /
Description /
Relate_useCase /
Normal Flow /
Alter Flow /
Except Flow

Same with Essential Use case Description

User
Interface

Component Metadata Service

[Specification of Information]

Component RegistrationComponentService

RegisterComNew
RegisterVersion
Update/Delete
RecentComp
SearchKeyword
SearchDate
SearchCategory

CategoryService

RegisterCatNew
Update/Delete
SearchcatName
SearchCodeNum

AnalysisService

StatisticsAnaly
SearchAnalysis
AnalysisReport

Name

Purpose

Kind JavaBeans

Description

Category Large Middle Small

Version

ResistDate Calendar

SupCompany

[Configuration of Information]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

useCase
Name

Manage Component Metadata

Actor / 
UC_Type /
Purpose /
Description / 
Relate_useCase /
Normal Flow /
Alter Flow /
Except Flow

Same with Essential Use case Description 

User
Interface

Component Metadata Service

[Specification of Information]

Component RegistrationComponentService

RegisterComNew
RegisterVersion
Update/Delete
RecentComp
SearchKeyword
SearchDate
SearchCategory

CategoryService

RegisterCatNew
Update/Delete
SearchcatName
SearchCodeNum

AnalysisService

StatisticsAnaly
SearchAnalysis
AnalysisReport

Name

Purpose

Kind JavaBeans

Description

Category Large Middle Small

Version

ResistDate Calendar

SupCompany

[Configuration of Information]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

useCase
Name

Manage Component Metadata

Fig. 15. Real Use case description in concrete phase for the ‘Manage Component Metadata’ useCase

Fig. 15. Real Use case description in concrete phase for the ‘Manage Component Metadata’
useCase.

 17

Scale of
Software
system

Modeling
elements

Small
scale

U M L
metamodel

Proposed
metamodel

Middle
scale

large
scale

Scale of
Software
system

Modeling
elements

Small
scale

U M L
metamodel

Proposed
metamodel

Middle
scale

large
scale

Fig. 16. Comparison results for usability through modeling elements

Fig. 16. Comparison results for usability through modeling elements.

May 16, 2003 16:26 WSPC/117-ijseke 00126

212 C.-Y. Song & D.-K. Baik

Table 7. Comparison with the UML metamodel.

Metamodel/ Hierarchical

Measure Matrix UML Metamodel Metamodel

Systemic architecture Fully support Support

of metamodel

Each metamodel Partial support Fully support

(subsystem etc.)

Hierachical No support Support

metamodel

Integrated metamodel No support Support

by modeling phase

Understandability Complex Easy

Usability Medium High

Table 8. Comparison with the existing methodologies.

Method/ Hierarchical

Measure Matrix RUP OSP Advisor Modeling

Systemic architecture Fully support Fully support Medium

of methodology

Hierachical No support Partial support No support Support

no modeling (class, useCase)

Checking of Difficult Difficult Difficult Easy (using

consistency and metamodel)

traceability

Reusability Medium Medium Medium High

For reusability of application model, the constructed models are powerfully

reusable according to each modeling phase at the various abstraction levels, by

using the hierarchical structure of the metamodel. For extendability, the approach

using metamodel type gives high extendability since the metamodel can be modi-

fied flexibly by updating variable elements for the change of UML model. We just

modify the elements within target layer of updated elements owing to the hierar-

chical structure. The elements in the low layer do not change since it is inherited

from the upper layer.

As shown in Table 7, the metamodel in UML supports well the precise descrip-

tion for the entire architectural structuring for all modeling elements in the UML

models. However, we provide nicely a simplified hierarchical metamodel widely used

in practice for the software development. Using each hierarchical metamodel, de-

signers are able to develop the software hierarchically with regard to variety, large

size, and complexity. Moreover, the designers can easily approach modeling sepa-

rately per model. Hence, these improve the understandability and usability of UML

by modeling based on the hierarchical metamodel.

May 16, 2003 16:26 WSPC/117-ijseke 00126

A Layered Metamodel for Hierarchical Modeling in UML 213

Most methodologies apply the same model elements without regard to the de-

sign level of the development phase. The approach in this paper addressed this

problem by a hierarchical modeling based on each hierarchical metamodel and the

integrated metamodel. Table 8 demonstrates the excellence of hierarchical modeling

using metamodels against existing methodologies. By using the integrated meta-

models, our mechanism enables designers to check for consistency and traceability

among the designed models which we have proved through a case study of C MDR.

Furthermore, the modular approach through a hierarchical design can enhance the

reusability of software according to the abstract level.

7. Conclusion

This paper has presented a hierarchical metamodel for UML to support hierarchical

modeling. We looked at each metamodel with a hierarchy by modeling phases for

all models in UML, and then created three integrated metamodels combining each

metamodel by the modeling phase. Moreover, one unified integrated metamodel was

proposed as a blueprint for UML. For proving the effectiveness of the hierarchical

metamodel, we have performed the hierarchical modeling through a case study with

a C MDR application system, and then compared it with UML metamodel and the

existing methodologies.

The main contributions of the hierarchical approach for UML models are sum-

marized as follows. First, Designers are able to make the hierarchical model by ap-

plying each metamodel with hierarchy. It enhances more reusability of application

model. Second, UML models can further be used effectively, easily, and precisely. It

enhances further usability for UML. Third, Consistency and traceability among the

designed application models is promoted by verifying and using metamodel manu-

ally. For practical use, the metamodel can be embedded as a reference metamodel

in the M2 layer on OMG UML 4-layer architecture, and be applied in practice to

existing development methodologies.

For future work, we will further refine precisely the metamodels by embedding

dynamic semantics. Then, the refined metamodel will be specified by a formal

language like Object-Z. We will develop the tools to verify the consistency check

by using the hierarchical metamodel.

References

1. Object Management Group, OMG Unified Modeling Language Specification, Version
1.4, September 2001, http://www.omg.org.

2. Object Management Group, Meta Object Facility (MOF) Specification, Version 1.4,
April 2002, http://www.omg.org.

3. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

4. B. Henderson-Sellers, “Some problems with the UML V1.3 metamodel”, in Proc. 34th

Hawaii Int. Conf. on System Sciences (HICSS-34), Maui, Hawaii, January 3–6, 2001.

May 16, 2003 16:26 WSPC/117-ijseke 00126

214 C.-Y. Song & D.-K. Baik

5. A. Evans and S. Kent, “Core meta-modelling semantics of UML: The pUML
approach”, in Proc. UML’99, Colorado, USA, October 1999, pp. 140–155.

6. A. Schleicher and B. Westfechtel, “Beyond Stereotyping: Metamodeling Approaches
for the UML”, in Proc. 34th Hawaii Int. Conf. on System Sciences (HICSS-34), Maui,
Hawaii, January 3–6, 2001.

7. S. Kent, S. Gaito, and N. Ross, “A meta-model semantics for structural constraints
in UML”, in H. Kilov, B. Rumpe, and I. Simmonds, Behavioral Specifications for

Businesses and Systems, Chapter 9, Kluwer Academic Publishers, 1999, pp. 123–141.
8. E. Robbins, N. Medvidovic, F. Redmiles, and S. Rosenblum, “Integrating architecture

description languages with a standard design method”, in Proc. ICSE’98, Kyoto,
Japan, April 1998.

9. C. Y. Song and D. K. Baik, “An integrated metamodel and its formal specification in
Z for component architecture”, Int. J. Computer and Information Science 3 (2002)
137–145.

10. C. Larman, Applying UML and Patterns, Prentice Hall PTR, New Jersey, 2002.
11. P. Kruchten, The Rational Unified Process: An Introduction, Second Edition, Addison-

Wesley, 2000.
12. Sterling Software Corporation, Sterling Software Application Management Group,

The CBD96 Standard Version 2.1, Standards for Specifying and Delivering Software
Components Using COOL: gEN, July 1998.

13. Compuware Corporation, UNIFACE Development Methodology, V7.2, 1998.
14. R. Veryad, “SCIPIO: Aims, principles and structure”, SCIPIO Consortium, April

1998.
15. Metamodel.com, Metamodel, 2002, http://www.metamodel.com.
16. G. Nordstrom, J. Sztipanovits, G. Karsai, and A. Ledeczi, “Metamodeling — Rapid

design and evolution on domain-specific modeling environment”, in Proc. IEEE

ECBS’99 Conference, Nashville, Tennessee, March 1999, pp. 68–74.
17. G. Nordstrom, “Formalizing the specification of model integrated program synthesis

environment”, in Proc. IEEE Aerospace 2000 Conference, Big Sky, Montana, March
2000, pp. 523–532.

18. K. C. Kang, W. S. Choi, and J. J. Lee, “A metamodel approach method for the
description and analysis of software architecture”, Korea Information Science Society

— Software Engineering Review 13 (2000) 49–60.
19. K. L. Mills, “A knowledge-based method for inferring semantic concepts from visual

models of system behavior”, ACM Transactions 9 (2000) 306–337.
20. S. Dakhli, C. Toffolon, “A three layers software development method: Foundations

and definition”, in Proc. 3rd IEEE International (ICECCS ’97), Lake Como, Italy,
September 1997, pp. 162–172.

21. C. Y. Song, S. B. Yim, D. K. Baik, and C. H. Kim, “A construction of the C MDR
(Component Metadata Registry) for the environment of exchange the component”,
Korea Information Science Society — Software Engineering Society Journal 7 (2001)
614–629.

