>~ CUT HERE ~

I
]
'
1
i
I
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
[}
1
I
]
L}
1
1
1
1
1
1
1
1
1
1
I
1
1
]
I
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
]
1
1
1
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L}
1
1
1
1
]
1
]
1
1
1
|}
1
1
i
L}
1
1
]
]
1
]
i
|}
1
]
]
]
]
]
1
1
]
]
]
1
|
1
i
1
1
1
1
i
1
1
1
1
1
L]
]
1

UML Sequence Diagrams

by Bruce Powel Douglass

The Unified Modeling Language
(UML) is a graphical language for rep-
resenting system structure and behavior.
In a previous article, we looked at UML
class diagrams, which are used to repre-
sent structure (“UML Class Diagrams,”
February 2003, p. 39). In this and a sub-
sequent article, we will look at diagrams
that can be used to represent behavior.
There are two primary kinds of
behavioral views in UML. The first,
called sequence diagrams, shows the
interactive behavior of collaborations of
objects working together (called interac-
tions). The second, called statecharts,
shows the behavioral specification of
individual objects. This article focuses on
the modeling of interactions to capture
system behavior via sequence diagrams.

Modeling interactions

Interactions model how objects communi-
cate by sending messages to each other
over time. A stimiudus represents a com-
munication between instances. Formally,
messages define the communication sent
among classes, though most UML users
treat stimuli and messages synonymously.

The UML provides two common
notations for interactions: sequence dia-
grams and collaboration diagrams.
Sequence diagrams are far more com-
monly used than collaboration dia-
grams and show roughly the same
information.

Sequence diagrams can be used in
a number of ways during the software
development process. During require-
ments capture, they can help define
messages sent between the actors and

the system, their allowable sequences
(sometimes called the “protocol of
interaction”), and quality of service
constraints. During system modeling,
used to
demonstrate how internal structural

sequence diagrams are
elements interact to provide higher
level behavior, such as to “realize” a
use case. And finally, during testing,
sequence diagrams can be used to
specify expected behavior (given a set
of preconditions and an ordered set of
stimuli) and validate output.

Figure 1 shows a sequence diagram
depicting the interaction of instances of
the elements from the class diagram in
the article mentioned earlier. Callouts
identify the different elements of the
sequence diagram. The most important
elements are the object lifelines and the
stimuli (or messages). The object life-
lines represent objects playing roles in a
collaboration and the stimuli show the
messages sent between the lifelines over
time. The lifelines represent instances
(or roles that instances play) of any clas-
sifier in the UML. They are commonly
things like objects (instances of classes),
actors (objects of interest outside the sys-
tem), systems, subsystems, components,
or even use cases. When a use case is
found on a sequence diagram, it repre-
sents the part of the system that executes
to realize that use case (in other words,
the realizing collaboration).

The whole story
Each sequence diagram explicitly shows

alegal sequence of messages in the order
in which they occur, Well, almost explic-

ily—sequence diagrams specify what is
called partial ordering. Because instance
lifelines may be running in different
threads, the relative order of messages is
only fully-ordered in two senses: first, a
message-receive event always occurs after
that message is sent (no surprise there).
Second, all events along a single lifeline
are fully ordered in time. However, if two
different messages occur on different
lifelines, the sequence diagram really
doesn’t say anything about the relative
timing of those particular messages.

Stimuli are the arrowed lines on
the sequence diagrams. They can refer
to the sending of events from one
object to another (and consumed by
the target object’s state machine) or to
synchronous invocation (or calling) of
methods defined by the target object.
The notation for a synchronous mes-
sage is a solid arrowhead; an open
arrowhead is used for asynchronous
events. The dashed arrows are explicit
returns, although they're optional
because it's assumed that every call has
a matching return.

A sequence diagram shows one
possible trace of execution of the col-
laboration; it’s not necessarily the only
one. The set and order of messages
shown isn’t the only possible interac-
tion. The collaboration may well have
other interactions.

Other details

Figure 1 shows a few other items that
appear on sequence diagrams. The bars
on the lifelines are called activations and
represent the execution of a method

Embedded Systems june 2003 55

BEGINNER’S CORNER

1. Constrain

.

-

0] CCET TR

Betoriotis bobevitacl U TG TR bt S b L b L2 e R A o B £ LSt Collaboration role
Co“aboratlon veweny i Bgensgr- Power
boundary i Co;troLKb: ! ; :Eowter Mf{;n?tattery Voltage :PSoIa: P dicabon
¥ i] i Sensor i Light
Constructor L _S;stér; starts up;l;c;fei b
“| | Constructor : Subsystem creates its
3 ‘ = parts and sets the
"o Stimulus i i > Solar Panel to provide
Constructor _ i | power as the default.
: select(FALSE) } : i
{ . Partition e Note -
-:7 line select(TRUE) 3
B iRy ey T T T PRIt TSI (U SRS
£ (source may be a BATTERY or SOLARPANEL)
i wm@) D i selectBATTERY) ; State -
(") . =~
E H I (ZAPELIEN T | FEFRE: Shhisiy
: > | select(TRUE i ™
g i _-).- i | User selects the Battery IS
| B select(FALSE) _ | as the power source.
E o e
< | Agtivation ..
:
o i Return

LTI

Display

’
H
H
b
v

H
e T I P

| Light gets a command to
: | display power source

i | (ORANGE for Battery)

| and level.

.

: lifeline

mranerrmnen

: Object .

sesessene

A

getSougce(): BATTERY

.

Esannraveanarens

sefColor{ORANGE)

A

(colu}r may be ORANéE
(Battery), GREEN (Solar Pane:l),
‘or RED {unknown))

Tverareaanaven

H getléevel(): 100 44

P et

" setiritensity(BRIGHT)

provided by that object. Activations are
really only useful for synchronous mes-
sages, so many people don't use them.
The thick line at the left of the figure
is called a collaboration boundary and
stands for “everything else”—all objects
in the universe other than those you've
explicitly drawn. This notational short-
hand is useful and also provides a place
to hook into a testing environment. A
test environment plays the role of the
collaboration boundary as it stimulates
and monitors the objects under test.
The rounded rectangle on the
Power Indicator instance lifeline is an
indication of that instance's state. The
state holds until it receives an event

56 une 2003 Embedded Systems

that causes a change in state, such as
the return from the getSource() call.
We also see notes and constraints on
the figure. A note is just uninterpreted
free text, usually enclosed in a box with a
folded comer. A constraint is a user-
defined rule of correcmess that applies
to some set of model elements. The tm-
ing constraint in the middle left of the
figure specifies an upper boundary for
the execution of a portion of the inter-
action. Other constraints may apply
other limitations, such as the set of possi-
ble colors on the setColor() operation
towards the bottom of the diagram.
Because sequence diagrams show a
trace of execution, some UML tools can

create them dynamically as a system
runs, capturing what the collaboration
actually does under a certain set of con-
ditions. This makes automatic validation
possible.

Practically speaking, sequence dia-
grams are a view that binds specification
and test together. And now you know
how to read them. esp
Bruce Powel Douglass is the chief evangelist at
ELogix. He has over 25 years of experience
designing safety-oritical veal-time applications
and is the awthor of several books, including
Real-Time UML, Doing Hard Time, and
Real-Time Design Patterns. He can be
reached al bpd@ilogix.com.

Copyright © 2003 EBSCO Publishing

