
January 17, 2002 17:14 WSPC/117-ijseke 00075

International Journal of Software Engineering and Knowledge Engineering
Vol. 11, No. 6 (2001) 643–673
c© World Scientific Publishing Company

FORMALIZATION OF OBJECT BEHAVIOR AND

INTERACTIONS FROM UML MODELS∗

JOHN ANIL SALDHANA†, SOL M. SHATZ‡ and ZHAOXIA HU§

Concurrent Software Systems Laboratory, Department of Computer Science,
University of Illinois at Chicago, Chicago, IL 60607-7053, USA

†jsaldhan@cs.uic.ed
‡shatz@cs.uic.ed
§zhu@cs.uic.ed

Received 17 February 2000
Revised 11 October 2000

Accepted 7 June 2001

UML, being the industry standard as a common OO modeling language, needs a well-
defined semantic base for its notation. Formalization of the graphical notation enables
automated processing and analysis tasks. This paper describes a methodology for syn-
thesis of a Petri net model from UML diagrams. The approach is based on deriving
Object Net Models from UML statechart diagrams and connecting these object models
based on UML collaboration diagram information. The resulting system-level Petri net
model can be used as a foundation for formal Petri net analysis and simulation tech-
niques. The methodology is illustrated on some small examples and a larger case study.
The case study reveals some unexpected invalid system-state situations.

1. Introduction

The Unified Modeling Language (UML) specifies a modeling language that incor-

porates the object-oriented community’s consensus on core modeling concepts. The

behavioral specifications in UML are based on State Charts [10]. Statechart dia-

grams [2] in UML specify the sequences of states an object goes through during its

lifetime in response to events, together with its responses to events. A statechart

diagram models the behavior of a single object over its lifetime [2]. An interaction

diagram shows an interaction, consisting of a set of objects and their relation-

ships, including the messages (or events) that may be dispatched among them.

A collaboration diagram is an interaction diagram that emphasizes the structural

organization of the objects that send and receive messages.

Petri nets [17] are a formal and graphical appealing language, appropriate for

modeling systems with concurrency. Colored Petri nets (CPNs) [14] are a general-

∗This material is based upon work supported by the U.S. Army Research Office under grant
number DAAD19-99-1-0350, and the NSF under grant number CCR-9988168.

643

January 17, 2002 17:14 WSPC/117-ijseke 00075

644 J. A. Saldhana, S. M. Shatz & Z. Hu

ization of ordinary PNs, allowing convenient definition and manipulation of data

values. CPNs also have a formal, mathematical representation with a well-defined

syntax and semantics.

We suggest that design knowledge can be captured and formalized by the

methodology outlined in Fig. 1. The methodology can enable a UML designer to

verify UML models. In this paper, we focus on the key step of deriving an Object

Petri net (OPN) from UML diagrams. We start with UML models as created by a

system designer (appropriate UML editors can be used to develop UML statechart

and collaboration diagrams). In our methodology, statechart diagrams are first con-

verted to flat state machines. These state machines are then converted to a form of

OPN called Object Net Models (discussed in Sec. 3). Then the UML collaboration

diagrams are used to connect these object models to derive a single CPN for the

system under study. Any standard CPN analyzer can be used to support analysis

and simulation of the resulting CPN. This framework has the advantage of exploit-

ing the mature theory and tools for Petri nets and essentially hiding these details

from the end-user.

User
UML
Editor

State
charts

Collaboration
Diagrams

Flat
State

Machines

ONM ONM ONM
Colored

Petri
Net

UML Models

Net
Linker

Analysis/
Simulation

.....

....

Fig. 1. Block diagram of the proposed methodology.

2. Motivation and Related Work

Concurrent systems are systems composed of elements that can operate concur-

rently and communicate with each other. They are often part of safety-related or

mission-critical systems. They are notably difficult to design. Such systems can

usually exhibit an extremely large number of different behaviors. This is due to the

combinatorial explosion resulting from all possible interactions between the differ-

ent concurrent components of the system and the many possible race conditions

that may arise between them. This situation makes the development of concurrent

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 645

systems an extremely delicate task. Therefore, it is desirable to prove that the soft-

ware programs driving these systems are logically correct. However, formal proof

of system properties is difficult and verification of concurrent systems is further

hindered by the state explosion problem, as the system’s state space tends to grow

exponentially with the number of processes. Effective modeling of complex con-

current systems requires a formalism that can capture essential properties such as

nondeterminism, synchronization and parallelism. Petri nets offer a clean formalism

for concurrency, however basic Petri nets lack thorough modularization techniques.

Object orientation offers formalism for highly reusable and modular systems, but

lacks general concurrency features. There have been a number of attempts to com-

bine Petri nets with object-oriented concepts to profit from the strengths of both

approaches (e.g., [4, 15, 19]).

Object Petri nets [14] provide a formalism that extensively adopts object-

oriented structuring into Petri nets. The intention is to increase further the ex-

pressive comfort of Petri nets and thus make feasible the modeling of complex

systems, and at the same time reaping the benefits of object orientation including

clean interfaces, reusable software components and extensible component libraries.

Object Petri nets retain the important property of being transformable into behav-

iorally equivalent CPNs so that the analysis techniques developed for CPNs can be

applied. Our work also considers a form of object Petri net, but our emphasis is on

algorithmic synthesis of the net model.

Cheng [3] discusses the need to formalize the dynamic model of a system and

integrate it within Object Modeling Technique (OMT), a graphical notation that

was merged into UML. The researchers have used LOTOS, a formal specification

language to formalize the dynamic (or behavioral) model of a system. LOTOS uses

process algebra (an algebraic theory to formalize the notion of concurrent compu-

tation) and algebraic axioms. In contrast, our work uses the Petri net model, which

has strength in its intuitive graphical notation. Also, our work targets UML, which

is a superset of OMT with behavior being additionally represented using interac-

tion diagrams (collaboration diagrams and sequence diagrams). Thus, we present

a translation of UML statechart diagrams and derive message (or event) flow in-

formation from collaboration diagrams to yield a single system-level colored Petri

net that represents the composite behavior of a set of objects. A validation pro-

cess applied to this single comprehensive Petri net allows for a stronger behavioral

validation of the software system.

Other works that apply Petri net modeling to UML specifications include the

work of He, who has presented approaches to formally define class diagrams and

use case diagrams [11–13]. Thus, this work is complementary to our work, although

it uses a different type of Petri net called a Hierarchical Predicate Transition Net

(HPrTN).

A related research effort specifically aimed at validating UML models is the work

on a tool called vUML [16]. This tool uses SPIN, a model checker. One disadvantage

is that open models (models that react to external entities) cannot be directly

January 17, 2002 17:14 WSPC/117-ijseke 00075

646 J. A. Saldhana, S. M. Shatz & Z. Hu

verified by the model checker. Hence vUML tries to convert these open models to

closed models, if the external events do not carry any parameters. Our approach

appears to work well with external events with parameters because of the token

structure provided. If events are not completely defined, vUML has event generators

to generate the events. Our methodology uses similar event generators.

An attempt has been made at modeling interactive systems with hierarchical

colored Petri nets [7]. Here the use cases define behavioral specifications and are

converted to hierarchical colored Petri nets. Finally, in the area of performance

estimation of systems, [18] uses UML to derive Stochastic Petri net models. The

approach does not focus on a process for derivation of a system-level model repre-

senting the complete behavior of a system.

3. Generating and Linking Object Petri Net Models

3.1. Overview of the approach

As mentioned earlier, our goal is to define a process for the generation of Petri

nets from UML behavioral specifications and thereby provide a formalization of

behavior. More specifically, we focus here on two key steps: (1) Generation of Object

Net Models (ONMs) of individual objects or components, and (2) Linking these

object models to create a system-level model. A “standard” CPN represents the

final system-level model. We assume that the objects respond to events created

internally within the object and to events created externally by other objects in the

environment. The collaboration diagrams indicate such event flows between objects.

The statechart diagram represents the lifetime of an object. An algorithm to model

the lifetime of an object is given in [2].

Before we present the specifics of our approach, including key definitions and

algorithms, we would like to provide the reader with a preview of how the basic

approach works. We do this by referring to some pieces of an example that will be

discussed in more detail later. The example is that of a microwave oven system,

which includes the following objects: A microwave oven (the cooking part of the

oven), a power tube (that provides power for cooking), a light tube (that provides

power to a light inside the oven), and a user. For now, let us just consider the oven

object. Figure 6 shows a statechart diagram for the oven. The oven object has six

states and changes its state on the occurrence of events. For example, if the oven is

in the state “Idle with door closed” when event V1 occurs, the oven changes to the

state “Initial Cooking Period” — cooking begins. The event V1 indicates that the

user has pushed the start button; the generation of this event can be seen in Fig. 5.

When the oven enters the “Initial Cooking Period” state, the oven itself generates

two new events (L1 and P1) that can trigger state changes in the light tube and

the power tube, respectively.

Using our approach, the statechart for the oven object is converted into an

Object Net Model (ONM), as shown in Fig. 8(a). This Petri net-based model models

the internal state changes of the oven object as well as the routing of events (tokens)

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 647

into and out of the object model. Event tokens (generated by other objects) enter

the object model via the ITA port and event tokens (generated by this object) exit

the object model via the OTA port. The ED place node routes the event tokens.

Once we have generated ONMs for each of the objects, the ONMs are linked in a

way that creates a system-level model. This can be seen in Fig. 10(b). The final

system-level model can then be used to support design simulation, analysis, code

generation, etc. With this as an overview of the key steps in the approach, we can

now proceed to a more detailed discussion on each of the steps.

3.2. Definitions and algorithms

An object has a unique event-based behavior in relation to other objects in the

environment. As we will see, this behavior can be modeled as a CPN. Also an object

has a well-defined interface with its environment. To fully incorporate both these

features, we propose a model for an object called an Object Net Model (ONM).

The general architecture of an ONM model is shown in Fig. 2. We describe the

structure of such a model in the following paragraphs.

ITA

OTA
�

LM
of�

the
�

Object
�

Event
Dispatcher

In-place

Out-place
�

Object
�

<type,ex>

Outgoing
�

external events�

external events� incoming

<type,ex>

<type,ex>

<type,in>

<type,ex>

...

.....

Fig. 2. A generic Object Net Model (ONM).

Definition: An Object Net Model is a three tuple (LM, EGM, IA). LM is a model

for the object’s lifetime behavior (this model is specified by a CPN). EGM is the

Event Generation/Management mechanism and IA is a set of interface arcs.

The event generation/management (EGM) mechanism supports the generation

and routing of events in the object. The EGM mechanism defines three places —

in-place (IP), out-place (OP) and event-dispatcher (ED) place. The IP models the

flow of events into the object and OP models the flow of events out of the object.

January 17, 2002 17:14 WSPC/117-ijseke 00075

648 J. A. Saldhana, S. M. Shatz & Z. Hu

The ED has two functions: (1) Creating internal event tokens and (2) Routing the

event tokens. The set IA defines two arcs. The Input Transition Arc (ITA) and

Output Transition Arc (OTA). These provide an interface for the object with the

external environment. In our model, all object interactions are assumed to be via

explicit messages. Thus, the interface arcs allow the flow of event tokens into, and

out of, an object model. This will be discussed further below.

To model the dynamic behavior of a system represented by a Petri net, we need

to introduce tokens. In our methodology, we use an event token. The structure of

the event token is of the form <type, flag>, where type denotes the event type (may

contain a structure to represent parameters passed by external events) and flag is

a variable to tell if an event is an internal event or an external event; flag equals in

or ex, respectively. The possibility of a multiple structured type of an event token

helps us to handle events with parameters from external entities. To fully describe

the EGM mechanism in ONM, we need a few definitions.

Definition: An Event-Place is a place of the ONM that can generate or store an

event token.

Definition: An Event-Dispatcher place is an event-place that can generate event

tokens of the form < type, in> and store event tokens of the form < type, ex>.

Definition: An in-place is an event-place that can store event tokens of the form

< type, in> or < type, ex>.

Definition: An out-place is an event-place that can store event tokens of the form

< type, ex>.

Once the event-dispatcher place generates an internal event token, it moves this

token to the in-place, which interfaces to the lifetime model of the ONM. Also, since

external event tokens are to be routed to the environment of the object, the event-

dispatcher place forwards these tokens to the out-place. The in-place stores all event

tokens that are used by the object and the out-place stores the event tokens that

are to be sent to the environment of the system. All event tokens that are generated

by the object (within the LM component of the model) are forwarded to the event-

dispatcher place for appropriate dispatching. Because of the event-dispatcher place,

internal event tokens of an object are used only internally and are never passed to

the external environment.

An arc exists from the in-place to all transitions in the LM that model actions

initiated by events. An arc exists from a transition t in the LM to the event-

dispatcher place, if an event is generated by the transition. For example, in Fig. 8(a),

the transition from the “Initial Cooking Period” state to the “Cooking Interrupted”

state takes place if, and when, the external event V3 has occurred. This transition

generates an external event P2. The ITA carries external event tokens (〈type, ex〉)
that get deposited into the in-place. The OTA carries external event tokens that

are removed from the out-place.

Now that we have defined and described the Object Net Model, we proceed to

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 649

describe the generation of such models from UML diagrams. In our approach, we

derive the LM from the statechart diagram of the object using a set of algorithmic

transformations (sketched below). Then, given a collaboration diagram showing

the connection between objects, we connect the ONMs, to yield a single system-

level CPN. Thus, the top-level view of our approach is defined by the following

conceptually simple 2-step process:

Formalization of UML object model behavior:

Input: A set of UML statechart diagrams S and a UML collaboration diagram C.

Output: a system-level colored Petri net.

BEGIN

1. For each statechart diagram s ∈ S, convert s into an Object Net Model.

2. Using the collaboration diagram C, connect the ONM’s obtained in step 1.

END

First, we describe the generation of ONMs from UML statechart diagrams.

A statechart diagram [2] contains states (simple and composite) and transitions

(events and actions). Statechart transitions are not to be confused with Petri net

transitions; statechart transitions are denoted by standard finite state machine arcs

that define a change from one state to a successor state. A state has several parts,

namely Name (textual string for identification, can be anonymous), Entry/exit ac-

tions (actions executed on entering and exiting the state respectively), Internal

transitions (transitions that are handled without causing a change in state), Sub-

states (nested structure of a state, can be sequentially active or concurrent sub-

states) and Deferred events (a list of events that are not handled in that state, but

are postponed and queued for handling by the object in another state). Note that

in our Object Net Models, we treat all events as deferred events.

A statechart transition has five parts, namely Source state (state affected by

the transition), Event Trigger (event whose reception makes the transition fire-

able), Guard Condition (boolean expression that must evaluate to true to allow the

transition to fire), Action (executable atomic computation), and Target state (state

that becomes active after the completion of the transition).

A statechart diagram example is shown in Fig. 3. In this diagram, the darkened

ovals denote the initial states. The ovals labeled as A,C,D,E and Receiving are

states. Receiving is an example of a composite state, and states C and D are nested

states. There is a triggerless transition from state D to state A. On an event error,

there is a state transition from state A to state E and the action associated with

the transition is printReport. There is an entry action and an exit action for the

state Receiving.

Since statechart diagrams may contain hierarchical or nested states, effective

conversion to Petri nets requires that the nested states be “flattened”. Given a

statechart diagram that models the lifetime of an object, one can generate a Shlaer-

Mellor object life cycle [20], which is a flat state machine (containing just simple

January 17, 2002 17:14 WSPC/117-ijseke 00075

650 J. A. Saldhana, S. M. Shatz & Z. Hu

C

D

A
�

entry/pickup
exit/disconnect

initial state

Receiving
ringing

headerOK

E

error/
printReport

Fig. 3. A statechart diagram example.

states and arcs). Then these flat state machines can be converted into a CPN that

forms the LM of the ONM. Basically, state machine states are mapped onto Petri

net places and state machine transitions are mapped onto Petri net transitions.

This process will be clarified by an algorithm presented shortly.

To aid the modeling of actions and events defined in a statechart, we introduce

the concept of an event generator and some associated conversion rules.

Definition: An Event Generator is a function that generates an event — when used

in a Petri net, an event generator generates an event token. An event generator

that generates the specific event E is denoted as GEN(E).

Conversion 1: Actions that are associated with statechart transitions are mapped

onto arc event generators. So, an event Y appearing as an arc label in some state-

chart is mapped to a function GEN(Y) associated with the arc.

Conversion 2: Statechart guard conditions of the form when(X) or after(X) are

mapped, by the environment or the object in question, onto an event token that is

created when the condition becomes true. For example, when(temp is greater than

200F) or after(2secs) are all mapped to events that are generated when the named

condition holds.

We introduce two special event generator functions that can be associated with a

state, rather than a transition arc. First, if a state S contains the function GEN(X),

it means that the event X is generated upon entry to state S (via any transition).

Likewise, if a state S contains the function GEN’(Y), it means that event Y is

generated upon exit from state S.

Conversion 3: The entry and exit actions of a statechart state can be mapped

onto events that are generated before the object enters the state (i.e., of the form

GEN(X)) and after it leaves the state (i.e., GEN’(X)), respectively.

Conversion 4: Composite states may involve sequential or concurrent substates.

Sequential substates have a distinct feature that the state can exit from any of the

substates when a triggered transition fires. A concurrent composite state can move

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 651

to the next state only when the concurrent subpaths within the composite state

join into one flow.

We now formalize the conversion concepts that we have been discussing in terms

of an algorithmic process.

Algorithm 1: Convert a statechart diagram into an Object Net Model.

Input: A UML statechart diagram S.

Output: An Object Net Model M .

BEGIN

1. Let M be an ONM with an empty LM component (i.e., no places or transitions

in LM). Note that by definition, M does contain other ONM components such

as the IP and ED places.

2. Let sm be a flat state machine containing all the states of diagram S excluding

the composite states.

3. For all s ∈ S, where s is a sequential composite state, convert s into a flat state

machine fsm using Algorithm 2 (given below). Merge fsm into sm.

4. For all s ∈ S, where s is a concurrent composite state, convert s into a flat

state machine fsm using Algorithm 3 (given below). Merge fsm into sm.

5. Map all actions that are associated with arcs in S onto event generators for the

arc in sm.

6. Map all entry actions of a state in S onto event generators GEN for the

corresponding state in sm.

7. Map all exit actions of a state in S onto event generators GEN’ for the

corresponding state in sm.

8. Map all the states, and arcs, of sm onto places, and transitions, in M ,

respectively.

9. For each transition in M generate an input arc from the place IP if the corre-

sponding arc in S represents a state transition on the occurrence of an event.

10. For each transition t in M , generate an output arc from t to the place ED if

either of the following two conditions holds: (1) a state (in sm), corresponding

to one of t’s input places, has an associated exit event (i.e., GEN’), (2) a state

(in sm), corresponding to one of t’s ouput places, has an associated entry event

(i.e., GEN).

END

In Fig. 4(a), we show the conversion of a sequential composite state X into a

flat state machine. For the composite state X, the internal substate B is the initial

state. Since states B,C, and D are substates of X, when the system is in states

B,C or D, we can identify the state as X/B, X/C or X/D, respectively. The state

transition from composite state X to state E is possible from any of the substates

B,C and D. Hence there are four arcs leading to state E. The corresponding Petri

net is also shown.

January 17, 2002 17:14 WSPC/117-ijseke 00075

652 J. A. Saldhana, S. M. Shatz & Z. Hu

X
�

A

B

C

D

E

p q�

A
�

E

X|B
�

X|C
�

X|D

q�

q�

p

A

E

X|B

X|C

X|D

q�

q�

p

q� q�

(a)

A

B

C
�

D

Q
�

P

X

P

A
�

B

C
�

D

Q
�

Fork

Join
�

P

A
�

B

C
�

D

Q
�

(b)

Fig. 4. (a) Conversion of a sequential composite state (X) to flat form and Petri net form.
(b) Conversion of a concurrent composite state (X) to flat form and Petri net form.

Algorithm 2: Convert a sequential composite state into a flat state machine.

Input: A UML statechart diagram S containing a sequential composite state scs.

Output: Flat state machine O.

BEGIN

1. Let O be a flat state machine with zero states and zero transitions.

2. For all states s ∈ S and s 6= scs, add state s and all its transition arcs into O.

3. If s ∈ S and s = scs,

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 653

• Add each state sx ∈ scs and all its transition arcs into O.

• For each transition from a state s 6= scs to a state sx ∈ scs, add a transition

from s ∈ O to sx ∈ O.

• For each transition from a state sx ∈ scs to a state s 6= scs, add a transition

from sx ∈ O to s ∈ O.

• For an entry transition from a state s ∈ S and s 6= scs to state scs, add a

transition from s ∈ O to sx ∈ O such that sx corresponds to an initial state

of state scs.

• For an exit transition from state scs to a state s ∈ S and s 6= scs, if the

transition is triggered by an event, add a transition from each state sx ∈ O
to s ∈ O such that sx ∈ scs.
• For an exit transition from state scs to a state s ∈ S and s 6= scs, if the

transition is triggerless, add a transition from state sx ∈ O to s ∈ O such

that sx corresponds to an ending state of state scs.

END

In Fig. 4(b), we show the conversion of a concurrent composite state X into a

flat state machine. Here the state X does not transit to state Q until the goal states

for both paths have been reached. This is modeled by the special state join in the

state machine diagram.

Definition: A fork state denotes parallel activation of all immediate successor states.

Definition: A join state denotes synchronized activation of an immediate successor

state, with respect to the join state’s source states.

It should be quite clear from Fig. 4(b) that the fork state concurrently invokes

both of the states A and C, and the join state will cause a transition to the state

Q when states B and D have been reached. In the corresponding Petri net, each of

these special fork and join states is mapped onto a Petri net transition, as is also

shown in the figure.

Algorithm 3: Convert a concurrent composite state into a flat state machine.

Input: A UML statechart diagram S containing a concurrent composite state ccs.

Output: Flat state machine O.

BEGIN

1. Let O be a flat state machine with zero states and zero transitions.

2. For all states s ∈ S and s 6= ccs, add state s and all its transition arcs into O.

3. If s ∈ S and s = ccs,

• Add all the states along each distinct path in s into O.

• Add a state fork into O and add a transition from fork to each state in O

that corresponds to an initial state on a distinct path in s.

• Add a state join into O and add a transition to join from each state in O

that corresponds to an ending state on a distinct path in s.

January 17, 2002 17:14 WSPC/117-ijseke 00075

654 J. A. Saldhana, S. M. Shatz & Z. Hu

4. For all states s ∈ S such that s 6= ccs and there is a transition from s to ccs,

add a transition from s ∈ O to state fork ∈ O.
5. For all states s ∈ S such that s 6= ccs and there is a transition from ccs to s, if

the transition is triggerless, add a transition from state join ∈ O to s ∈ O.

END

For a transition from a concurrent composite state, if the transition is trig-

gered by an event, similar conversion rules can be derived based on the ideas of

Algorithm 3.

As mentioned earlier, our goal is to generate ONMs for objects in a system and

then connect them, using UML collaboration diagrams. If the naming of events

is kept uniform between statechart diagrams and collaboration diagrams, we can

connect the ONMs for each object to create a system-level CPN for the whole

system. We present two examples to illustrate the ONM generation and linking

process.

3.3. Examples

Example 1: Consider an example of a one-minute microwave oven adapted from [20].

The oven is powered by a Power Tube and contains a Light Tube. Four events are

possible: V1 (user pushes the on-button), V2 (the time-out when the cooking period

has expired), V3 (user opens the door) and V4 (user closes the door). The arrival of

V1 during a not-yet-completed cooking period has the effect of extending the period

by another minute. We consider V2 as an internal event created in the oven on a

time-out. For the power tube, events are P1 (Energize) and P2 (Deenergize). For

the light tube, the events are L1 (Turn On) and L2 (Turn Off). The state diagrams

depicting the entire life cycle of the oven, the user, the light and the Power tube

objects are shown in Figs. 5 and 6. We can assume that the initial states are Idle

(for user), Idle with door open (for oven), Deenergized (for power tube), and Off

(for light tube). Note that the event generators within a state of the form GEN(X)

Idle

Pushing

GEN(V1)
�

Opening
�

GEN(V3)
�

Closing
�

GEN(v4)
�

Fig. 5. State diagram for a user object for the Microwave Oven example.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 655

Idle with door closed

GEN(L2)

Initial Cooking Period
GEN(L1),GEN(P1)

Cooking
Extended

Cooking
Interrupted

GEN(P2)

Idle with door open
GEN(L1)

Cooking
Complete

GEN(P2),GEN(L2)

V1

V4

V3

V1

V1

V2

V3

V2

V4
V3

V3

L1

L2

Off On

Statechart diagram of the Light Tube

P1

P2

Deenergized Energized

Statechart diagram of the Power Tube

Statechart diagram of the Oven

Fig. 6. Statechart diagrams for the Microwave Oven example.

Idle

P u s h ing

O pen in g

C los ing

/ G E N (V 3)

/ G E N (V 4)/ G E N (V 1)

O bject L ife C y c le of th e U s e r

Deene rg ized E n ergized

P 1

P 2

O bject L ife C y c le of the Power Tube

O ff O n

L 2

O bject L ife C y c le of th e L igh t Tube

L 1

Init ial
C o o k in g

Pe r iod

C o o k in g
E x tended

C o o k in g
Inter rupted

Idle with
D o o r
O pen

Idle with
D o o r

C losed

C o o k in g
C o m p lete

V 1

V 2

V 1 / GEN(L1) ,
G E N (P 1)

V 3 / G E N (L 1)

V 4 / G E N (L 2)

V 2 / GEN(P2) ,
G E N (L 2)

V 3 / G E N (P 2)

O bject L ife C y c le of th e O v en

V 1

V 3 / G E N (P 2)

V 3 / G E N (L 1)V 4 / G E N (L 2)

Fig. 7. Object life cycle models for the Microwave Oven example.

January 17, 2002 17:14 WSPC/117-ijseke 00075

656 J. A. Saldhana, S. M. Shatz & Z. Hu

denote the entry action and those of the form GEN’(X) denote the exit action that

occurs in a state (as given by conversion 3). For the oven design being considered,

the state Cooking Interrupted is distinct from the state Idle with door open since

entry to the state Cooking Interrupted does not require the light to be turned on

(it is already on). The object life cycle models of the user, oven, power tube and

the light bulb are shown in Fig. 7.

In our approach, we model the environment as a “super place” storing all the

events generated by a subsystem to be used in other subsystems. Each object (sub-

system) in the environment has a place (event-dispatcher place) for generating

and storing tokens representing internal events. The corresponding ONMs for the

microwave oven example are shown in Figs. 8(a), 8(b) and 9. The collaboration

diagram shows the sequences of events that are passed between the objects. In

our approach, we assume for simplicity that the designer maintains uniformity in

the naming of events in the statechart diagrams and the collaboration diagrams.

An event e in a collaboration diagram corresponds to an event e in a statechart

diagram (associated with an event generator, denoted GEN(e)). Given the connec-

tion between the objects by the collaboration diagram (Fig. 10(a)), the ONMs of

the various objects can be combined together to form a system-level Petri net, as

shown in Fig. 10(b). The complete details of the system-level Petri net are not

shown because of the complexity of the diagram. The system-level CPN is obtained

by connecting the ITA and ITA arcs of the ONMs to the general event place rep-

resenting the environment. The resultant Petri net is a CPN, with event tokens as

defined earlier in the section.

ONMs are linked by a place called an Intelligent Linking Place (ILP). Based

on the UML collaboration diagram, a token tag is attached to each ITA (input

transition arc) of an ONM in the system. The token tag is of the form <TK >,

where TK is a set of event types. Each token tag denotes the event tokens that

the input transition arc can carry. In the case of the microwave example, the ITA

of the ONM for the microwave oven will have the tag <{V 1, V 3, V 4}>. A token

tag of the form <{}> denotes that the ITA can carry no event tokens. Also, the

ILP attaches an extra parameter, an ObjectID (a unique identifier assigned to each

object in the system) to the token. The intent behind adding this identifier is to

allow the appropriate tokens to be routed to appropriate objects. Let us consider

the case when two or more events of the same type need to be sent to more than

one unique object. To solve this problem, the ILP replicates the event tokens and

based on the information from the collaboration diagram, attaches the ObjectID

as described earlier.

Tokens that are generated in the environment (represented by an Event place in

a system-level CPN) are passed to the ILP for appropriate dispatching. Any events

that are shown by the user in a statechart diagram, but not in a collaboration

diagram, are considered as events local to that object and are created by the event

dispatcher place of the ONM of the object in consideration.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 657

Initial
Cooking
Period

Idle
with door

closed�

Cooking
�

Extended

Cooking
�

complete

Cooking
Interrupted

Idle with
door open

IP

IP

<V2,in>

<V1,ex>

<V2,in>

<V3,ex>

<V4,ex>

<V3,ex>

<V4,ex>

<V3,ex>

<V1,ex>

<V1,ex>

<V3,ex>

E D

<P1,ex>
<L1,ex>

<L2,ex>

<L1,ex>

<P2,ex>

IP

ED

O P

<P2,ex>,<L2,ex>

<P2,ex>
<L2,ex><P2,ex>

*

*

*

OV E N

<L1,ex>
OTA

ITA

<L2,ex>

(a)

Idle

Pushing

Opening
�

Closing
�

IP

OP
�

ED

<_,ex>

<_,in>

ITA

OTA
�

USER

<V1,ex>

<V4,ex>

<V3,ex>

(b)

Fig. 8. (a) ONM for the Oven object [Places IP and ED (asterisked) are duplicated for clarity].
(b) ONM for the User object.

January 17, 2002 17:14 WSPC/117-ijseke 00075

658 J. A. Saldhana, S. M. Shatz & Z. Hu

Deenergized

Energized

IP

ED

OP
�

Power Tube

<P2,ex>�

<P1,ex>�

ITA

OTA
�

Off
�

On
�

IP

ED

OP
�

Light Tube

<L2,ex>�

<L1,ex>�

ITA

OTA
�

Fig. 9. ONM’s for the Power Tube and Light Tube objects.

User Oven

Power
Tube

Light
Tube

V3:Door Opened

V4:Door Closed
P2:Deenergize Power Tube

P1:Energize Power Tube

L2:Turn Off Light

L1:Turn On Light

V1:Button Pushed

(a)

LM
of the
OVEN

OVEN

IP

ED

OP

...

LM
of the
USER

USER

IP

ED

OP

....

...

... LM
of

the
�

Power
Tube

�

LM
of

the
�

Light
Tube

�

Power Tube

Light Tube

.....

.....

IP

ED

OP

IP

OP

ED

.....

......

ITA

OTA

ITA

OTA

ITA

OTA

ITA

OTA

<{V1,V3,V4}>

<{}>

<{P2,P1}>

<{L2,L1}>

Event

ILP

(b)

Fig. 10. (a) Collaboration diagram for the Microwave Oven example. (b) System-level colored
Petri net architecture for the Microwave Oven example.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 659

GEN’(I3:ejectCard)

I1:Maintain

U4:Cancel

U1:Card Inserted
�

Idle

Active
�

 GEN(I2:readCard) Printing

U3:Not Continue

ProcessingU2:Continue
�

Selecting
�

Validating

Maintenance

(a)

Idle

Choosing
Not Continue

GEN(U3)

Choosing
Cancel

GEN(U4)

Choosing
Continue

GEN(U2)

Inserting

GEN(U1)

(b)

Fig. 11. (a) Statechart diagram for the ATM machine. (b) Statechart diagram for an ATM user.

USER
ATM

U1:Card Inserted
U2:Continue

U3:Not Continue

U4:Cancel

Fig. 12. Collaboration diagram for the ATM machine example.

Example 2: Consider an example of an ATM machine, dispensing cash to a user

[2]. The statechart diagrams and the collaboration diagram are shown in Figs. 11

and 12, respectively. The description of the problem is as follows: An ATM machine

January 17, 2002 17:14 WSPC/117-ijseke 00075

660 J. A. Saldhana, S. M. Shatz & Z. Hu

I1

U2

Printing
Active/

U3

Processing
Active/

U4/
GEN(I3)

�

U1/ GEN(I2) U4/GEN(I3)

U4/GEN(I3)

Validating
�

Active/
�

Selecting
Active/

U4/
GEN(I3)

�

Maintenance

Idle
/GEN(I3)

�

Fig. 13. Object life cycle model of the ATM machine.

has three basic states: Idle (waiting for customer interaction), Active (handling a

customer transaction) and Maintenance (perhaps having a cash store replenished).

While active, the behavior of the ATM follows a simple path: Validate the customer,

select a transaction, process the transaction and then print a receipt. After printing,

the ATM returns to the idle state. While in the active state, the user might any

time cancel the transaction, returning to the ATM to the idle state.

The ATM behavior is modeled using a sequential composite state (See Fig. 11(a),

the statechart diagram of the ATM machine). Using the conversion rules described

earlier, we can obtain the object life cycle model for the ATM machine shown in

Fig. 13. Finally, the ONMs for the two objects are shown in Fig. 14. Note that

events “Maintain”, “readCard” and “ejectCard” are all internal events to the ATM

and are denoted as I1, I2 and I3, respectively. The collaboration diagram shows how

the objects interact with each other. All named events in the statechart diagrams,

which do not show up on the collaboration diagram, form the internal events of

that respective object. The system-level CPN obtained after linking of the ONMs

is shown in Fig. 15. If the system is a closed system which has no interaction

with the external environment, we do not need the super place (labeled at Event)

representing the environment. For a closed system, any event that is of interest to

some specified object is generated by one of the specified objects. In this case, all

event tokens that are routed by the ILP place originate from one of the specified

object models (ONMs); thus the EVENT place, which represents the environment,

can be removed.

4. Case Study Spacecraft Control System

Consider a Spacecraft Control system that consists of the cooperating subsystems

defined in Table 1. The description of the problem is based on an example de-

scribed in [5]. The Mission Control subsystem issues a goal to a Trajectory Planner

subsystem. A goal is basically of the form “Get the Spacecraft from here to there”.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 661

Choosing
Not Continue

Choosing
Cancel

Idle

Choosing
Continue

Inserting

IP

ED

OP

USER

<U1,ex>

<U4,ex>

ITA

OTA

<U2,ex>

<U3,ex>

Idle

Maintain

Active/
Select ing

Active/
Val idat ing

Active/
Process ing

Active/
Printing

IP*

ED*

IP*

IP

E D

O P

A T M

Legend: 1:<U1, ex> 2:<U2, ex> 3:<U3, ex> 4:<U4, ex> 5:< I1 , in> 6:< I2 , in> 7:< I3 , in>

3
7

7

4

2

4
4

1

4

6

ITA

O T A

ED*

7

7

7

5

Fig. 14. ONM’s for the user and ATM machine objects [IP is duplicated as IP* for clarity].

Table 1. Subsystems in the Spacecraft Control example and their roles.

Classes Roles

Mission Control Main control system that generates goals. A goal being “Get the
spacecraft from location x to location y”.

Trajectory Planner Plans the full trajectory, including positional and attitudinal
changes.

Movement Coordinator Applies a trajectory received from the Trajectory Planner. It sends
a command to the Controller to adjust the position and attitude of
the Spacecraft.

Rocket Gives thrust to the Spacecraft according to a trajectory.

Controller Controls the Spacecraft’s position/attitude by controlling the
Rocket.

Sensor Ensures that the Spacecraft is moving correctly within the six-
degree-of-freedom frame of reference.

January 17, 2002 17:14 WSPC/117-ijseke 00075

662 J. A. Saldhana, S. M. Shatz & Z. Hu

LM
of�

the
�

User

LM
of�

the ATM
�

ATM
� USER

Event

IP

ED

IP

ED

OP
�

OP
�

ITA
ITA

OTA
�OTA

�

....

...
....

<{U1,U2,U3,U4}>�

<{}>�

ILP

Fig. 15. System-level colored Petri net for the ATM machine example.

Idle

PreparingShutting Down
�

Calculating
�

Correction
�Evaluating

Waiting Checking
�

Progress

/ evSensorBegin;
�

evRocketBegin�

evSensorData�

/evRocketAdjust
�

Adjusting
/

�

evRocketFlameOn�

evRocketDone�

/
�

evSensorShutDown�

evRocketShutDown�

/evCoordinatorFinish
�

/evSensorStartUp;
�

evRocketStartUp�

Controlling
�

evAdjust�

evAbort�

Fig. 16. Statechart diagram of the Controller.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 663

The Planner builds a trajectory (a path to be taken by the spacecraft) and passes

it to a Motion Coordinator subsystem. The Motion Coordinator actually gets a

command of the form GoTo(x, y, z, t, a, b, c) where x, y, z are the positions, a, b, c

are rotations along the X,Y and Z axes, respectively, and t is the time variable.

Using a Controller, the Coordinator coordinates the position (a coordinate position

in space relative to a fixed coordinate origin (x, y, z, t) and attitude (amount of

rotation in three axes) adjustment of the Rocket powering the Spacecraft. The

Controller issues commands to the Rocket and a Sensor that monitors the Rocket’s

position and attitude. The Sensor reports results to the Controller, which are used

to apply corrections to the Rocket.

The various events that are generated in the subsystems are listed in Table 2.

Please note that event tokens in the methodology can contain passed parameters.

For example, the event token from the Trajectory Planner to the Motion Coordi-

nator subsystem may contain parameters x, y, z, t, a, b and c.

The statechart diagram of the Controller is shown in Fig. 16. We see that the

diagram contains a nested state called ‘Adjusting’ when the Controller is in the

‘Controlling’ state. This is an instance of a sequential composite state. When the

Controller receives an event evAbort, it can exit from any of the states in the

composite state and become idle. To convert the statechart diagram into an Object

Net Model, first we convert it into an object life cycle applying Algorithm 2 (from

Sec. 3). The object life cycle model is shown in Fig. 17. The ONM of the Controller

Control l ing |
Prepar ing

Control l ing |
�

Shutt ing
Down

Control l ing |
�

Evaluat ing

Control l ing |
�

Calculat ing
Correct ion
�

Control l ing |
�

Adjust ing |
Check ing Progress
�

Control l ing |
Adjust ing |

W ait ing

Idle

M 1

C1 / GEN(S1) ;
�

GEN(R1)
�

M1

/ GEN(C2)
�

M1

M1

M1

M1
/ GEN(S2);

�

GEN(R2)
�

/ GEN(R4)
�

S4
�

/ GEN(R3)
�

R 6

R 6

/ GEN(S3);
�

GEN(R5)
�

Fig. 17. Object life cycle model of the Controller object.

January 17, 2002 17:14 WSPC/117-ijseke 00075

664 J. A. Saldhana, S. M. Shatz & Z. Hu

Table 2. Events generated in the Spacecraft Control example.

Sub System Event Short Name Type Role

Mission
Control

evAbort M1 External Abort the carrying of the cur-
rent goal

evCancel M2 Internal Signal generated to abort the
goal

evGoal TP1 External Ask Trajectory Planner to
carry this goal

evApplyGoal TP2 External Signal Planner to carry on the
built plan

Trajectory
Planner

evApplyTrajectory MC1 External Signal Movement Coordinator
to execute the trajectory

Movement
Coordinator

evAdjust C1 External Ask Controller to apply ad-
justment

Controller evControllerFinish C2 External Signal Coordinator that it has
completed the goal

evRocketStartUp R1 External Signal Rocket to boot

evRocketBegin R2 External Signal Rocket to begin the
process

evRocketAdjust R3 External Signal Rocket to start the ad-
justment process

evRocketFlameOn R4 External Signal Rocket to begin flaming

evRocketShutDown R5 External Signal Rocket to shut down
flaming

evSensorStartUp S1 External Signal Sensor to start up

evSensorBegin S2 External Signal Sensor to begin sensing

evSensorShutDown S3 External Signal Sensor to shut down
sensing

Rocket evRocketDone R6 External Signal Controller that the goal
has been carried out

evStop R7 Internal Internal signal indicating a

problem

tm(FlameTime) R8 Internal End of a timer set for a specific
flaming period

Sensor evSensorData S4 External Pass sensory data to Con-
troller

tm(SenseTime) S5 Internal Internal event when the timer
set to sensing period has
expired

is a direct mapping of the states in the object life cycle model to Petri net states

and the arcs to Petri net transitions, in accordance with the procedure described

in Sec. 3. The ONM of the Controller is not shown due to lack of space, but the

mapping from the object life cycle to an ONM is based on the algorithm described

in Sec. 3.

The statechart diagram of the Movement Coordinator, given in Fig. 18, shows

that there is a concurrent composite state when the Coordinator is in the ‘Coordi-

nating’ state. In order to convert this concurrent composite state into a flat state

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 665

Adjusting
 Position

Adjusting
Attitude

�

Coordinating

Idle
evAbort

evControllerFinish

evApplyTrajectory / GEN(evAdjust)

Fig. 18. Statechart diagram of the Movement Coordinator.

machine, we apply an algorithm that is derived from, but a bit more complex than,

Algorithm 3 (from Sec. 3). In this case, we must deal with the triggered transitions

from the concurrent composite state. The Coordinator moves to ‘idle’ state from

the ‘Coordinating’ state when there is an event evAbort or the Controller sends an

event evControllerFinish indicating the success of the goal. As discussed in Sec. 3,

we use two special states fork and join. The fork state replicates the token it receives

to equal the number of outgoing arcs and the join state waits until it receives the

tokens from all incoming arcs and then reduces the number of tokens to one. The

corresponding ONM of the Movement Coordinator object is shown in Fig. 19.

The statechart diagram of the Rocket object is shown in Fig. 20. The Rocket gets

the signal events from the Controller. When the Rocket is flaming, the Controller

sends the event evRocketAdjust to apply new correction to the Rocket. If there is

any internal event evStop, the Rocket becomes idle, waiting for the Controller to

send an event evRocketFlameOn. At the expiration of the Flame Time timer, an

internal event R8 is generated. Then the Rocket stops flaming and waits for the

Controller’s signal to start flaming again or the goal to be aborted. To save space

in this presentation, we do not explicitly show the object life cycle model or ONM

for the Rocket object.

The statechart diagram of the Sensor is shown in Fig. 21. When the Sensor is

in ‘Active’ state, the Sensor waits for a finite amount of time (SenseT ime). When

an internal event S5 signaling the expiration of SenseTime timer is generated, the

Sensor starts the ‘Sensing’ state. Once finished with sensing, the Sensor generated

an external event evSensorData, for the Controller to accept the sensory data. After

applying Algorithm 2 to reduce the sequential composite state ‘Active’, the object

life cycle model of the Sensor is shown in Fig. 22. The ONM of the Sensor is a direct

January 17, 2002 17:14 WSPC/117-ijseke 00075

666 J. A. Saldhana, S. M. Shatz & Z. Hu

Coordinating|
Adjusting
Position

Idle

Coordinating|
Adjusting
Attitude

OP

ED

IP

Movement Coordinator

<C2, ex>

ITA <MC1, ex>

<M1, ex>

OTA

<C1, ex>

Fig. 19. ONM of the Movement Coordinator object.

evRocketFlameOn�

evStop�

tm(FlameTime)
�

/
�

GEN(evRocketDone)
�

Inactive

Preparing

Idle

Flaming
evRocketAdjust�

Active

evRocketBegin�

evRocketStartUp�

Shutting Down
�

evRocketShutDown�

evAbort�

Fig. 20. Statechart diagram of the Rocket.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 667

tm(senseTime)
� /

�

GEN(evSensorData)
�

Inactive

Preparing

Waiting

Sensing
�

Active

evSensorBegin�

evSensorStartUp�

Shutting Down
�

evSensorShutDown�

evAbort�

Fig. 21. Statechart diagram of the Sensor.

Active |
�

Waiting

Active |
Sensing

Shutting
Down

Preparing

Inactive

S2

S1

M1

M1

S3

S3

S5
/

�

GEN(S4)

Fig. 22. Object life cycle model of the Sensor object.

January 17, 2002 17:14 WSPC/117-ijseke 00075

668 J. A. Saldhana, S. M. Shatz & Z. Hu

Idle

Building

Trajectory
Ready

evGoalevApplyGoal
/evApplyTrajectory

evAbort

Fig. 23. Statechart diagram of the Trajectory Planner Object.

mapping of the states in the object life cycle model to Petri net states and the arcs

to Petri net transitions, in accordance with the procedure described in Sec. 3. The

ONM of the Sensor is not shown to save space.

The statechart diagram of the Trajectory Planner is shown in Fig. 23. The

resulting ONM of the Trajectory Planner object is shown in Fig. 24. The statechart

diagram of the Mission Control object is shown in Fig. 25. When there is an internal

event evCancel, the Mission Control subsystem aborts the goal process and sends

an event evAbort to all the other subsystems. The corresponding ONM is shown in

Fig. 26.

Now that we have generated the ONMs of the individual objects, the link-

ing process described earlier is applied, using the collaboration diagram shown in

Fig. 27. The resulting system-level Petri net is shown in Fig. 28. This synthesized

system-level Petri net was subjected to a manual analysis and simulation process.

The results indicate that there is a possibility for the system to enter some invalid

states — in 3 cases. These invalid system-wide state situations are not mentioned

in [5], but are summarized below.

Invalid state 1: Consider the scenario when the Trajectory Planner is in the state

‘Trajectory Ready’ and an event evAbort (i.e., <M1, ex>) (generated by the Mission

Control subsystem) is received by all the subsystems. All the subsystems reset

and become inactive. But the Planner subsystem remains in the current state.

During the next cycle, the system will enter an invalid state. The Planner is in

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 669

Idle

B u ildin g

T rajectory
R eady

IP

E D

O P
�

< T P 2 , e x >

< M C 1 , e x >�

< M 1 , e x >

< T p 1 , e x >�

T ra jectory P lanner

Fig. 24. ONM of the Trajectory Planner object.

S e n d
�

i n g
G o a

�
l

A p p l y ing
G o a

�
lA b o r t i n g

G o a
�

l

G E N (e v A b o r t)
�

G E N (e v G o a l)
�

G E N (e v A p p l y G o a l)
�

I nac t i ve

A c t i ve

e v C a n c e l�

Fig. 25. Statechart diagram of the Mission Control object.

state ‘Trajectory Ready’ and waiting for an event evApplyGoal (i.e., <TP2, ex>)

from the Mission Control object. A new goal is issued by the Mission Control

object when it issues an event evGoal (i.e., <TP1, ex>) and enters state ‘Active |
Sending Goal.’ When the Mission Control object issues an event evApplyGoal (i.e.,

<TP2, ex>), indicating a command to apply the new goal, the Planner will respond

to this event, but apply the previous goal that has already been aborted. The invalid

system-state is detected because the Mission Control object is in its ‘Inactive’ state,

but the Planner object is in its ‘Trajectory Ready’ state. The solution to this invalid

January 17, 2002 17:14 WSPC/117-ijseke 00075

670 J. A. Saldhana, S. M. Shatz & Z. Hu

Inactive

Active |
Sending
�

Goal

Active |
Applying
�

Goal

Aborting
Goal
�

<M2,in>

<M2,in>

IP

ED

OP

Mission Control

<M1,ex>

ED*
<TP1,ex>

<TP2,ex>

<M1,ex>

Fig. 26. ONM of the Mission Control object [ED is duplicated as ED* for clarity].

Mission
Control

�

Trajectory
�

Planner

Movement
Coordinator

�

Controller
�

Rocket
Sensor

�

evGoal

evApplyGoal

evAbort

evApplyTrajectory

evAbort

.
evAdjust

evAbort

evControllerrFinish

evAbort

evRocketBegin

evRocketStartUp

evRocketAdjust

evRocketFlameOn

evRocketShutDown

evRocketDone

evAbort

evSensortBegin

evSensorStartUp

evSensorShutDown

evSensorData

Fig. 27. Collaboration diagram for the Spacecraft Control example.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 671

ONM
�

of �

Mission
Control

ONM
�

 of
Rocket

ONM
�

of �

Trajectory
�

Planner

ONM
�

of�

Sensor

ONM
�

of �

Movement Coordinator

ONM
�

of�

Controller
<{MC1,C2,M1}>

<{M1,R1,R2,R3,R4,R5}>

<{S1,S2,S3,M1}>

<{}>

<{M1,C1,S4,R6}>

Event

ILP<{TP1,TP2,M1}>

Fig. 28. System-level Petri net for the Spacecraft Control example.

system state is to change the design of the statechart diagram of the Trajectory

Planner object by adding a transition from state ‘Trajectory Ready’ to ‘Idle’ on an

event evAbort.

Invalid state 2: This scenario is similar to the previous one. Consider when the

Rocket object is in the state ‘Preparing’ when the event evAbort (i.e., <M1, ex>)

is received by all the subsystems. All the subsystems reset and become inactive.

But the Rocket subsystem remains in the current state. During the next cycle, the

system will enter an invalid state. The Rocket is in state ‘Preparing’ and waiting

for an event evRocketBegin (i.e., <R2, ex>) from the Controller. A new goal is gen-

erated by the Controller when it issues an event evRocketStartUp (i.e., <R1, ex>)

and enters state ‘Controlling | Preparing’. When the Controller issues an event

evRocketBegin (i.e., <R2, ex>), indicating starting the new goal, the Rocket will

respond to this event and start the previous goal that has already been aborted.

The solution to this invalid system state is to change the design of the statechart

diagram of the Rocket object by adding a transition from state ‘Preparing’ to ‘In-

active’ on an event evAbort.

Invalid state 3: Again, this scenario is similar in cause to the other two. Con-

sider when the Sensor object is in the state ‘Preparing’ and an event evAbort (i.e.,

<M1, ex>) is received by all the subsystems. All the subsystems reset and become

inactive. But the Sensor subsystem remains in the current state. During the next

cycle, the system will enter an invalid state. The Sensor is in state ‘Preparing’ and

waiting for an event evSensorBegin (i.e., <S2, ex>) from the Controller. A new

goal is generated by the Controller when it issues an event evSensorStartUp (i.e.,

<S1, ex>) and enters state ‘Controlling | Preparing.’ When the Controller issues an

January 17, 2002 17:14 WSPC/117-ijseke 00075

672 J. A. Saldhana, S. M. Shatz & Z. Hu

event evSensorBegin (i.e., <S2, ex>), indicating starting the new goal, the Sensor

will respond to this event and start the previous goal that has already been aborted.

Hence this is a very dangerous situation because the position and the attitude of

the Spacecraft may be wrong. The solution to this problem is to change the design

of the statechart diagram of the Sensor object by adding a transition from state

‘Preparing’ to ‘Inactive’ on an event evAbort.

The results of the analysis and simulation phase point to the need for verification

and validation of concurrent computing systems and the need for formalizing a

notation like UML. Thus the methodology described in this paper has the potential

to aid UML designers in identifying design flaws.

5. Conclusions and Future Work

In this paper, we have presented a methodology to support formal validation of

UML specifications. The main idea is to generate a PN model for UML compo-

nents to allow use of existing net analysis techniques. We defined a generic form

of an object Petri net, called an Object Net Model (ONM), and discussed two

key activities: (1) Generation of ONMs of individual objects or components, and

(2) Linking these object models to create a system-level model. The method was

defined algorithmically and illustrated on some small examples, as well as on a large

case study.

One area for future research is to investigate the use of UML use case dia-

grams in our approach to strengthen the behavioral modeling and analysis. This

can involve integration with existing work in this direction, as mentioned in Sec. 2.

Another direction for future work is to develop a set of tools to support the pre-

sented methodology. This will involve the creation of custom tools to carry out the

net synthesis process and possible integration with existing Petri net tools for net

analysis and display. One other related direction for research is to explore ways

to present the system-level analysis and simulation results to the user. Since the

methodology calls for a UML architect to provide the input specifications, it is only

reasonable for the output results to be in a form that is meaningful to that user.

Thus, we will investigate ways to map from the CPN analysis results back to the

UML specifications. Perhaps this can be aided by development and use of a special

form of query language, along the same lines as previous work done for Ada analysis

[6, 1].

Acknowledgments

We thank Dr. G. Richter, of the GMD Institute for Autonomous Intelligent Systems

(Germany), for his comments on an earlier version of this paper.

January 17, 2002 17:14 WSPC/117-ijseke 00075

Formalization of Object Behavior and Interactions from UML Models 673

References

1. C. Black, S. M. Shatz, and S. Tu, “A query language for automated general anal-
ysis of concurrent Ada programs”, Int. Journal of Computer Systems Science and
Engineering 13 (1998) 83–95.

2. G. Booch, I. Jacobson and J. Rumbaugh, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

3. B. Cheng et al., “Formalizing and integrating the dynamic model within OMT”, Proc.
19th Int. Conf. on Software Engineering, Boston, MA, May 17–23, 1997.

4. Y. Deng, et al., “Integrating software engineering methods and Petri nets for the
specification and prototyping of complex information systems”, Proc. 14th Int. Conf.
On Application and Theory of Petri Nets, 1993, Chicago, Illinois, June 1993. Also,
Lecture Notes in Computer Science, Springer-Verlag.

5. B. P. Douglass, Doing Hard Time — Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns, Addison-Wesley, 1999.

6. S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz, “Application and experimental
evaluation of state space reduction methods for deadlock analysis in Ada”, ACM
Trans. on Software Engineering Methodology 3 (1994) 340–380.

7. M. Elkoutbi and R. F.Keller, “Modeling interactive systems with hierarchical colored
Petri nets”, Proc. Conf. on High Performance Computing, Boston, April 6–9, 1998.

8. R. France et al., “Towards a formalization of UML class structures in Z”, Proc.
21st Annual Int. Computer Software and Applications Conference, Washington, D.C.,
August 11–15, 1997.

9. M. Gogolla and F. Presicce, “State Diagrams in UML: A Formal Semantics using
Graph Transformations”, Proc. Workshop on Precise Semantics of Modeling Tech-
niques (PSMT ′98), Technical University of Munich, Technical Report TUM-I9803,
1998, pp. 55–72.

10. D. Harel, “Statecharts: A visual formalism for complex systems”, Science of Computer
Programming 8 (1987) 231–274.

11. X. He, “Formalizing class diagrams using hierarchical predicate transition nets”, Proc.
24th Int. Computer Software and Application Conference, Taiwan, October 2000.

12. X. He, “Defining UML class diagrams using hierarchical predicate transition nets”,
Proc. Workshop on Defining Precise UML Semantics in ECOOP-2000 (European
Conf. on Object-Oriented Programming).

13. X. He, “Formalizing use case diagrams in hierarchical predicate transition nets”, Proc.
IFIP 16th World Computer Congress, Beijing, China, August, 2000, pp. 484–491.

14. K. Jensen, Coloured Petri Nets, Vol. 1: Basic Concepts, Springer-Verlag 1992.
15. C. Lakos, “Object Petri Nets — Definition and Relationship to Colored Petri Nets”,

Technical Report TR94-3, Computer Science Department, University of Tasmania,
1994.

16. J. Lilius and I. Paltor, “vUML: A Tool for Verifying UML Models”, Technical Report
272, Turku Centre for Computer Science, TUCS, 1999.

17. T. Murata, “Petri nets: Properties, analysis and applications”, Proc. IEEE 77 (1989)
541–580.

18. R. Pooley and P. King, “Using UML to derive stochastic Petri net models”, Proc.
15th Annual UK Performance Engineering Workshop, July 1999, pp. 45–56.

19. S. Shatz and A. Khetarpal, “Applying an object-based Petri net to the modeling of
communication primitives for distributed Software”, Proc. Conf. on High Performance
Computing, 1998.

20. S. Shlaer and S. J. Mellor, Object Life Cycles — Modeling the World in States,
Yourdon Press, Prentice-Hall, 1992.

