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Measuring Design-Level Cohesion

James M. Bieman, Senior Member, IEEE, and Byung-Kyoo Kang

Abstract —Cohesion was first introduced as a software attribute that, when measured, could be used to predict properties of
implementations that would be created from a given design. Unfortunately, cohesion, as originally defined, could not be objectively
assessed, while more recently developed objective cohesion measures depend on code-level information. We show that
association-based and slice-based approaches can be used to measure cohesion using only design-level information. An analytical
and empirical analysis shows that the design-level measures correspond closely with code-level cohesion measures. They can be
used as predictors of or surrogates for the code-level measures. The design-level cohesion measures are formally defined, have
been implemented, and can support software design, maintenance, and restructuring.

Index Terms —Cohesion, software measurement and metrics, software design, software maintenance, software restructuring and

re-engineering, software visualization, software reuse.

1 INTRODUCTION

ODULE cohesion was defined by Yourdon and Con-
M stantine as “how tightly bound or related its internal
elements are to one another” [19, p. 106]. They describe co-
hesion as an attribute of designs, rather than code, and an
attribute that can be used to predict properties of imple-
mentations such as “ease of debugging, ease of mainte-
nance, and ease of modification” [19, p. 140]. Since cohesion
refers to the degree to which module components belong
together, cohesion measurement should prove to be a very
useful restructuring tool [7].

Following the original guidelines [15], the assessment of
module cohesion is conducted by skilled engineers. These
engineers would apply a set of subjective criteria to analyze
associations between “processing elements” and classify
the nature of these associations. Because of the subjective
nature of the assessment, the measurement of module cohe-
sion has been difficult to automate, and cohesion has not
been effectively used as a software quality indicator [18].

Existing techniques can measure or assess the cohesion of
procedural code [5], [9], [2], structured design documents
[15], [16], packages [13], [12], [3], and classes [4], [14], [1]. Our
objective is to develop techniques to objectively measure co-
hesion in terms of information available from the detailed
design of modules in procedural programs. More precisely,
for each procedure we assume that a detailed design includes
the specification of a procedure or function interface and the
dependencies between interface components. In this paper,
we assume that a “module” consists of one procedure or
function rather than a collection or file of procedures.

We follow two approaches that have been used to de-
velop objective, automatable methods for measuring mod-
ule cohesion. The first approach, an association-based ap-
proach, is used by Lakhotia [9] to formalize the notion of
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the associations between processing elements as a set of
rules concerning data dependencies in module code. Lak-
hotia’s methods require the analysis of code-level informa-
tion; they can be adapted for use on design-level constructs.

The second approach, a slice-based approach, is used by
Bieman and Ott [2]. They measure functional cohesion in
terms of the connections between code data tokens on
module output slices. The computation of functional cohe-
sion also requires code level information.

Class cohesion measures for object-oriented software
have also been defined using a slice-based approach, and
by analyzing the connectivity between methods through
common references to instance variables [1], [10], [11].
Method bodies are needed to apply these code-level class
cohesion measures.

Cohesion is only one of many attributes that designers
strive to improve. For example, designers also aim to re-
duce coupling. We need to be able to objectively measure
such attributes in order to evaluate alternative design op-
tions. Some design goals may be in conflict—high cohesion
with low coupling appear to be competing goals. We need
to be able to measure these attributes so that we can study
the relationships between such apparently conflicting ob-
jectives. Only then we can determine, for example, if high
cohesion and low coupling are mutually exclusive.

In this paper, we show that module cohesion can be ob-
jectively assessed using only design-level information. We
develop and compare a set of association-based and slice-
base design-level cohesion measures, and we describe how
these measures can be applied as design, maintenance, and
restructuring tools.

2 ASSOCIATION-BASED COHESION MEASURES

Stevens, Myers, and Constantine define module cohesion
(SMC Cohesion) on an ordinal scale. SMC Cohesion includes
coincidental, logical, temporal, procedural, communicational, se-
quential, and functional cohesion where coincidental cohesion
is the weakest and functional cohesion is strongest cohesion
[15]. SMC Cohesion is determined by inspecting the associa-
tion between all pairs of a module’s processing elements.
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Lakhotia uses the output variables of a module as the
processing elements of SMC Cohesion and defines rules for
designating a cohesion level which preserve the intent of
SMC Cohesion [9]. The associative principles of SMC Cohe-
sion are transformed to relate the output variables based on
data dependence relationships. A variable dependence graph
models the control and data dependencies between module
variables. The rules for designating a cohesion level are
defined using a strict interpretation of the association prin-
ciples of SMC Cohesion. Because the rules are formal, a tool
can automatically perform the classification. However, the
technique, as originally defined, can be applied only after
the coding stage since it is defined upon the implementa-
tion details.

SMC Cohesion defines an intuitive notion of the cohesion
attribute of design components. In a previous paper [7], we
used SMC Cohesion as an empirical relation system to help
us to define a cohesion measure that satisfies the representa-
tion theorem of measurement [6] and can be readily auto-
mated. This new measure can be applied to both the design
and code of a module. It is derived from a design-level view
of a module, an input/output dependence graph. In this sec-
tion, the model and measure are summarized.

2.1 A Design-Level View of a Module

The input/output dependence graph (IODG), adapted from
the variable dependence graph of Lakhotia [9], is based on
the data and control dependence relationships between
input/ output components of a module. Input components
of a module include in-parameters and referenced global
variables. Output components include out-parameters,
modified global variables, and ‘function return’ values. The
term ‘component’ refers to a static entity. An array, a linked
list, a record, or a file is one component rather than a group
of components. We define data and control dependence
informally using the notation of Lakhotia [9]; formal defi-
nitions are given in compiler texts, for example, see refer-
ence [20].

DEFINITIONS.

* A variable y has a data dependence on another variable

x (x iR y) if x ‘reaches’ y through a path consisting of a
‘definition-use’ and “use-definition” chain (from Lak-
hotia [9]).

* A variable y has a control dependence on another vari-
able x if the value of x determines whether or not the
statement containing y will be performed (from Lak-
hotia [9]).

* A variable y is dependent on another variable x (x — y)
when there is a path from x to y through a sequence
of data or control dependence. We call the path a de-
pendence path.

* A variable y has condition-control dependence on an-
other variable x (x 5 y) if y has a control dependence
on x, and x is used in the predicate of a decision (i.e.,
if-then-else) structure.

* A variable y has iteration-control dependence on another
variable x (x 5 y) if y has a control dependence on x,
and x is used in the predicate of an iteration structure.

* A variable y has c-control dependence on another vari-
able x (x5 y) if the dependence path between x and y
contains a condition-control dependence but no itera-
tion-control dependence.

* A variable y has i-control dependence on another vari-
able x(x 5 y) if the dependence path between x and y
contains an iteration-control dependence.

IODG DEFINITION. The input/output dependence graph (IODG)
of a module M is a directed graph, G,, = (V, E) where
V is a set of input/output components of M, and E is
a set of edges labeled with dependence types such
that E = {(x, y) € V x V| y has data, c—control, and /or
i—control dependence on x}.

The IODG shows the relationship between input and
output components of a module. Each input contributes to
one or more outputs; it is used to compute output(s), as
input data, decision invariant, and/or loop invariant. The
IODG is used to define a design-level cohesion measure.

2.2 Design-Level Cohesion (DLC) Measure

In a manner similar to the approach used to develop SMC
Cohesion, we use six relations between a pair of output
components based on the IODG representation:

1) Coincidental relation (R)):
R(0y, 05) = 0, # 0, A —=(0; = 0,) A—(0, = 0) A
—3Jx [(x = 0,) A (x— 0,)]
Two outputs 0; and o0, of a module have neither de-
pendence relationship with each other, nor depend-

ence on a common input.
2) Conditional relation (R,):

Ry(0y,0,) =0, #0, A Jx [(xi>01)] A (xcéoz)]
Two outputs are c-control dependent on a common
input.

3) Iterative relation (R,):
R4(04,0,) =0, 20, Adx [(xL>ol) A (xléoz)]
Two outputs are i-control dependent on a common
input.

4) Communicational relation (R,):
Ry(0y,0,) =01 #0, A Ix [((x i>ol) A (x i>02) v
(x50) A (x>0,))], where p, g € {d, ¢, i}, and p # 4.

Two outputs are dependent on a common input. An
input is used to compute both outputs, but as neither
a condition flag to select one of two outputs nor a
loop invariant to compute both outputs.

5) Sequential relation (R;):

R4(0,,0,) =0, %0, A ((0; = 0,) v (0, = 0,))

One output is dependent on the other output.

6) Functional relation (R,):

R6(01/02) = (01 = 02)

There is only one output in a module.
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Our relations are derived from Lakhotia [9]; relations 1, 4,
and 5 are essentially identical to the corresponding rela-
tions of Lakhotia. The remaining relations are defined to fit
the IODG model.

Cohesion strength increases from relation R; to Ry. The
six relations correspond to six association principles
(temporal cohesion is not included) of SMC Cohesion with
some degree of overlap.

DLC MEASURE DEFINITION. The cohesion level of a module
is determined by the relation levels of output pairs.
For each pair of outputs, the strongest relation for that
pair is used. The cohesion level of the module is the
weakest (lowest level) of all of the pairs. That is, the
output pair with the weakest cohesion determines the
cohesion of the module.

We have shown that the DLC measure is on an ordinal
scale as long as we accept the ordering implied by the asso-
ciation principles of SMC Cohesion [8].

An IODG can be displayed visually in an IODG dia-
gram. In its graphical form, the IODG visually displays the
functional structure of the module. In such a diagram, the
caller-callee relationship is represented by including the
IODG of the callee in the IODG diagram of the caller. In an
IODG digram, an input is represented by a circle, and an
output by a square. The texts in each circle and square are
the names of input and output variables. Each arrow indi-
cates the dependence between two components. Fig. 1
shows six cohesion levels for six simple modules.

3 SLice-BAseD COHESION MEASURES

A program slice is the portion of the program that might
affect the value of a particular identifier at a specified point
in the program [17]. In developing cohesion measures,
slices can be used to represent the functional components of
a module.

3.1 Functional Cohesion (FC) Measures

Bieman and Ott developed cohesion measures that indicate
the extent to which a module approaches the ideal of func-
tional cohesion [2]. They introduced three measures of
functional cohesion as the relative number of “glue” or
“adhesive” data tokens based on “data slices” of a module
(procedure). The data slice of a variable is the sequence of
data tokens which have a dependence relationship with the
variable. A data slice is computed for each output of a pro-
cedure at the point of procedure exit. Glue tokens are data
tokens common to more than one data slice. The glue to-
kens common to every data slice of a module are superglue
tokens. The adhesiveness of a data token is the number of
data slices to which the data token is common.

The three measures of functional cohesion are Weak
Functional Cohesion (WFC), Strong Functional Cohesion (SFC),
and Adhesiveness (A). WEC is the ratio of glue tokens to the
total number of tokens in a procedure. SEC is the ratio of
superglue tokens to the total number of data tokens in a
procedure. Adhesiveness the ratio of the amount of adhe-
siveness to the total possible adhesiveness, which is the
adhesiveness when all data tokens are superglue tokens.
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Fig. 2 shows functional cohesion computations for an
example program. Each column in the figure corresponds
to a data slice for each output. For example, the numbers in
the first column are the number of data tokens in the corre-
sponding line that affect the output or are affected by the
output. The data tokens that are counted on more than one
column are glue data tokens and those that are counted on
all columns are superglue data tokens. In this example, we
find 17 glue data tokens and six superglue tokens.

The functional cohesion measure is formally defined.
Thus, measurement tools can be (and have been) readily
implemented. However, the measures depend on the im-
plementation details and can be applied only after the body
of a module has been coded.

3.2 Design-Level Functional Cohesion (DFC)
Measures

We derive DFC measures following the approach used to
develop the functional cohesion measures. Rather than
analyzing code details, we use a design level view modeled
by the IODG to define the measure. The DFC measures use
a ‘simplified” IODG which includes only dependence rela-
tionships between input/output components, without clas-
sifying the dependencies. The DFC measures are analogous
to the slice-based FC measures in that both are defined in
terms of the connections between components and outputs.
The components used to define the FC measures include all
“data tokens,” while only input and output components are
used to define the DFC measures. Inputs and outputs are the
only externally visible components, and they represent the
design-level information of the module. Fig. 3a shows a
graphical (IODG), and Fig. 3b shows a tabular (IODT) repre-
sentation of procedure Sum_Max_Avg of Fig. 2.

In Fig. 3b, the names of the output are listed in the first
row and the names of the components (inputs and outputs)
are in the first column of the figure. The “1” in the figure
indicates that the corresponding component has a depend-
ence relation with the named output, and the “0” indicates
no dependence relation.

The IODG and IODT show the relationship between in-
put/output components of a module. The DFC measures
are expressed in terms of the number of isolated and essential
components, and the connectedness of components:

DEFINITION. A component is isolated if it affects only one local
functionality, i.e., it has a dependence relationship with
only one output.

For example, in Fig. 3, component ‘max’ is isolated since
it has a dependence relationship with only one output, it-
self. The other components are not isolated.

DEFINITION. A component is essential if it affects (or is affected
by) all functionalities of the module, i.e., it has dependence
relationships with all outputs of the module.

If a module contains only one output, the output is the
only functionality of the module. Thus, every component in
the module is not isolated and is essential. In Fig. 3, compo-
nents ‘n” and ‘arr’ are essential since they affect all outputs.
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procedure Suml_and_Sum?2

(nl,n2 : integer;
arrl, arr2 : int_array;

var suml, (oD GarD (oD )

sum? : integer );

var i : integer; i\ d i\ d
begin
gsuml =0 suml
sum?2 :=0;

Coincidental cohesion
fori:=1tonl do

suml := suml + arrl[i];

fori:=1ton2do
sum?2 := sum?2 + arr2[i];
end;

(a)

procedure Prod1_and_Prod2
(n: integer;
arrl, arr2 : int_array;
var prodl,
prod2 : integer );
var i : integer;

begin
prodl :=1;
prod2 :=1; Iterative cohesion

fori:=1 to n do begin
prodl :=prodl * arrl[i];
prod2 := prod2 * arr2[i];
end;
end;

©

procedure Fibo_Avg
(n: integer;
var fib_arr : int_array;
var avg : float );
var sum : integer;

i: integer;
begin
fib_arr[1] :=1;
fib_arr[2] := 2;

fori:=3ton
fib_arr[i] := fib_arr[i-1]
+ fib_arr[i-2];
Sum(n, fib_arr, sum);
avg := sum / n; Sequential cohesion

end;

(e)

Fig. 1. IODG and DLC levels for six simple procedures.

procedure Sum1_or_Sum?2
(nl, n2, flag : integer;
arrl, arr2 : int_array;
var suml,
sum?2 : integer );
var i : integer;

begin
suml :=0;
sum? :=0;
if flag=1 Conditional cohesion

fori:=1tonldo
suml :=suml + arrl[i];
else
fori:=1ton2do
sum? := sum?2 + arr2[i];
end;

(b)
procedure Sum_and_Prod
(n: integer;
arr : int_array;
var sum,
prod : integer;
var avg : float );
var i : integer;

begin
sum :=0;
prod :=1; Communicational cohesion

fori:=1 ton do begin
sum := sum + arr[i];
prod := prod * arr[i];
end;
avg :=sum/n;
end;

procedure Sum
(n : integer;
arr : int_array;
var sum : integer );
var i : integer;

begin
sum :=0;
fori:=1tondo Functional cohesion
sum := sum + arr[i];
end;

®
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sum | max | avg statement
procedure Sum_Max_Avg
1 1 1 (n : integer; /* pre: n>0 */
1 1 1 var arr: int_array;
1 1 var sum,
1 max : integer;
1 1 var avg : float );
1 1 1 i:integer;
begin
2 2 sum :=0;
3 max :=arr[1];
3 3 3 fori:=1 ton do begin
4 4 sum := sum + arr[i];
3 if arr[i] > max
3 max := arr[i];
end;
3 3 avg :=sum/n;
end;

SMC Cohesion: Communicational cohesion
FC Measures:

WFC =17/27 = 0.63
A=(11*2+6%3)/(27*3) =049
SFC = 6/27 = 0.22

Fig. 2. Data slice profile for Sum_Max_Avg.

Sum_Max_Avg
gggle—nf”‘p”‘ sum max avg
n 1 1 1
arr 1 1 1
sum 1 0 1
max 0 1 0
avg 1 0 1

(a) (b)

Fig. 3. An example. (a) the IODG; (b) IODT of a procedure
Sum_Max_Avg.

We define the connectedness of a component as the degree
of “relatedness” of the component to the outputs. Connect-
edness provides more information than a simple classifica-
tion of a component as isolated or essential. The connected-
ness of a component represents the relative number of out-
puts that the component relates together. We do not ad-
dress the cases where an input does not contribute to the
computation of any output, i.e., in our model, every com-
ponent has a dependence relation with at least one output.
Therefore, the connectedness of a component is the relative
number of the other output(s) with which the component
has a dependence relation. If a module contains only one
output, the connectedness of every component in the mod-
uleis 1.
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DEFINITION. For an arbitrary module, the connectedness of the
ith component is:

C. =
1 otherwise

{ﬁ% if 0>1
where N; is the number of outputs with which the ith com-
ponent has a dependence relation, and O is the total num-
ber of outputs in the IODG model of the module.

The connectedness of an isolated component is 0 and the
connectedness of an essential one is 1. In Fig. 3b, the con-
nectedness of n and arr is 1, the connectedness of sum and
avg is 1/2, and the connectedness of max is 0.

Three measures, Loose Cohesiveness (LC), Tight Cohesive-
ness (TC), and Module Cohesiveness (MC) are defined as the
relative number of nonisolated components, the relative
number of essential components, and the average connect-
edness of the components of the model, respectively:

DFC MEASURE DEFINITION.

L.c(m)=D/T
TC(m)=E/T

T
MC(m) = %

where D, E, and C; are the number of nonisolated compo-
nents, the number of essential components, and the con-
nectedness of ith component, respectively, in the IODG of
module m. T is the total number of components in m.

Using the definition of component connectedness, mod-
ule cohesiveness can be expressed as:

SN =) (N, -T)
T«(O-1 ~ T+0-T

The three measures for the procedure Sum_Max_Avg in
Fig. 2 and Fig. 3 are:

LC(Sum_Max_Avg) =4/5=0.8
TC(Sum_Max_Avg)=2/5=04
MC(Sum_Max_Avg) =(2*2+2*1)/(5*2)=0.6

An isolated component has zero connectedness, a noni-
solated component has connectedness of greater than 0, and
essential component has connectedness of one. Thus, for a
given module m:

MC(m) =

T
E<Y C<D
i=1

where D, E, C;, and T are defined as above. Therefore,
TC(m) < MC(m) < LC(m)

DFC measures have been derived using only interface
components by following the approach used to define FC
measures. Thus, we expect that each measure of DFC has
some relationship with corresponding FC measures. DFC
and DLC measures are both design-level measures defined
in terms of program IODG information. We also determine
the relationship between DFC and DLC measures. In next
two sections, we investigate the relationships between the
cohesion measures analytically and empirically.
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4 ANALYTICAL COMPARISON OF COHESION

MEASURES
4.1 Relationship Between the DFC and FC Measures

The DFC measures correspond closely to the FC measures
of Bieman and Ott [2]. Each of the DFC measures (LC, TC,
and MC) was defined to correspond to one of the FC meas-
ures (weak functional cohesion, strong functional cohesion,
and adhesiveness), respectively. However, DFC measures
are defined in terms of relations between the components of
a module interface, while FC measures are based on the
relationship between the components in a module body.

To be consistent with our derivation of the DFC meas-
ure, we can treat internal superglue tokens as essential in-
ternal tokens and internal nonglue as isolated internal to-
kens. Fig. 4 contains unlabeled IODG diagrams for different
module configurations. Input, output, and selected internal
data tokens are represented by circles, rectangles, and
square bars, respectively. Fig. 4d shows three modules with
the same number of inputs and outputs, and the same de-
pendence relations. Thus, their DFC measures are equal.
However, the second module contains more superglue or
essential data tokens. As a result, the FC measures of the
second module are higher than those of the first module.
The third module contains more nonglue or isolated data
tokens. As a result, the FC measures of the third module are
lower than those of the first module. Fig. 4e and 4f also
show that an increase in the number of essential or isolated
data tokens affects the FC measures.

Fig. 4a, 4b, and 4c show that a change in the number of
essential or isolated data tokens in a module may not affect
FC measures. All input/output components in a module
are isolated for case (a), and essential for cases (b) and (c). If
the FC values are 1 for a given module, the DFC values are
1, if the FC values are 0 for a given module, the DFC values
are 0. If the DFC values are between 0 and 1 for a given
module, the corresponding FC values depend on the rela-
tive number of isolated, nonisolated, and essential data to-
kens. Therefore, when FC > DFC, we know that there is a
greater relative number of essential data tokens than essen-
tial input/output components. When DFC > FC, there is a

1

DFC =FC DFC =FC

(b) %EZ? (e)

DFC = FC DFC =FC

S

DFC =FC DFC =FC

Fig. 4. Comparing the DFC and FC measures.

(d)

greater relative number of isolated data tokens than iso-
lated input/output components.

FC measures provide more detailed information for re-
structuring existing modules than DFC measures. The FC
measures captures the cohesion due to internal details.
For example, the second module in Fig. 4d is more diffi-
cult to decompose into two modules than the third mod-
ule in Fig. 4d. To decompose the second module, most of
the data tokens need to be rewritten. However, the FC
measures alone cannot capture input/output relation-
ships. For example, high values of FC measures may be
due to essential input/output components or other essen-
tial data tokens. Both measures, when used together, can
provide more complete information.

We see that the FC and DFC measures are equivalent
only for some modules. There is, however, a general corre-
spondence between the FC and DFC measures. An empiri-
cal study can determine the distribution of isolated and es-
sential data tokens in real software. We show, in Section 5,
that there is a strong empirical relationship between FC and
DFC measures.

4.2 Relationship Between the DLC and DFC
Measures

The DLC measure is an association-based measure and the
three DFC measures are slice-based measures. Both sets of
measures have been defined using an intuitive under-
standing of cohesion based on the “relatedness” of module
components. An analysis of the relationship between the
DLC and DFC measures provides further evidence of how
the measures correspond to the intuition of cohesion.

We demonstrate the effect on the measures of increases in
the number of connections between module components and
increases in the number of module components. To compare
the DFC measures with the DLC measure, we use the simpli-
fied IODG. The simplified IODG (without dependence la-
bels) cannot account for the difference between ‘conditional,’
‘iterative,” and ‘communicational” DLC levels. Thus, these
relation levels are represented as an ‘indirect’ relation, and
their corresponding cohesion levels are ‘indirect” cohesion.

R

B

DFC =FC DFC < FC DFC > FC
DFC =FC DFC =FC DFC > FC
DFC =FC DFC < FC DFC > FC
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4.2.1 The Effect of Increasing the Number of
Dependence Connections

Fig. 5 shows the IODG, IODT, and DFC measures, the asso-
ciation level of each pair of outputs, and the DLC measures
for seven module configurations. To show the effect of in-
creasing the number of connections on the measures, we fix
the number of inputs and outputs for each module. Each
module in the figure has three inputs and three outputs.

The number of direct or indirect dependence connec-
tions increases from module (a) to module (g). We look at
the effect of increasing the number of connections for each
measure.

MC Measure. The DFC MC measure always detects an
increase in the number of dependence connections, and is
clearly more sensitive than the LC and TC measures. Fig. 5
shows that the MC values precisely correspond to changes
in the number of dependence connections in each module,
which is consistent with our intuition about cohesion. That
is, modules with more related components are more cohe-
sive than modules with fewer related components.

LC Measure. The LC measure captures the relative
number of isolated (or nonisolated) components in a mod-
ule. A relatively low LC value means that there are more
isolated components than nonisolated ones.

The modules in Fig. 5¢ and 5d have the same number of
dependence connections and equal MC values. However,
module 5(d) has more isolated components than module
5(c). Module 5(c) has two input components connecting
output components, while module 5(d) has only one such
connection. This difference between modules 5(c) and 5(d)
is reflected by the LC measure.

TC Measure. The TC measure detects the relative num-
ber of the components with the strongest connection. These
are the essential components of the module. TC is zero
when there are no components that are used to compute
every output. TC equals one when all components in the
module are tightly related and essential to the functionality
of the module. Modules 5(a), 5(b), and 5(c) contain no es-
sential components. All components of module 5(g) are
essential and tightly related. Thus, TC is 0 for modules 5(a),
5(b), and 5(c), and 1 for module 5(g).

DLC Measure. Fig. 5 shows that DLC is not very sensitive
to the different number of connections in the modules. In
contrast to MC and LC, DLC does not distinguish between
modules 5(a), 5(b), and 5(c). DLC finds the weakest connec-
tion among module components. Finding the weakest con-
nection is important, because “for debugging, maintenance,
and modification purposes, a module behaves as if it were
only as strong as its weakest link” [19, p. 132]. Also, the DLC
measure computed using a labeled IODG (where depend-
ence is classified) provides more precise information about
the relationship between output components than the DFC
measures. For example, consider a module with an input that
is used by two outputs. The DFC measures simply treat the
input as an essential component for the outputs, while the
DLC measure classifies the relationship between the two
outputs into conditional, iterative, or communicational rela-
tion using the classified dependence information.

Among the MC, LC, and TC measures, TC is closest to
DLC. In calculating DLC, the lowest cohesion level of all

117

pairs is the cohesion of the module. The module in Fig. 5¢
contains three pairs of outputs. The lowest relation level is
‘coincidental,” so the corresponding cohesion level of the
module is coincidental. TC is 0 for the module since there are
no essential components—components that connect all out-
puts. Whenever the DLC level for a module is ‘coincidental,’
the TC value is 0. If there is even one pair of outputs whose
relation level is ‘coincidental,” there can be no component
that connects all outputs. The reverse is, however, not true.
When module TC is 0, the cohesion level is not always coin-
cidental, because there may be some components that con-
nect some portion of the outputs, and those components to-
gether connect all outputs. When all outputs are connected,
the DLC cohesion level is not coincidental.

Both DLC and TC are calculated using the most extreme
cases. Thus, they generally correspond to each other. This
correspondence between these measures is in all modules
of Fig. 5. In modules (a), (b), and (c) of Fig. 5, the DLC levels
are ‘coincidental” and the TC values are 0. In Fig. 5d and 5e,
the DLC levels are ‘indirect” and the TC values are 1/6.

4.2.2 The Effect of Increasing the Number of
Input/Output Components

Fig. 6 shows how the DFC measures change as the number

of input or output components are increased. Each module

in the figure has equal DFC measures (MC, LC, and TC)

which are represented as a single DFC value.

If there is only one output in a module, DFC = 1 no
matter how many inputs there are. The DLC measure indi-
cates functional cohesion.

If there are multiple outputs and every component is
isolated, the DFC measures are 0 without regard to the
number of inputs and outputs in the module. In this case,
The DLC indicates coincidental cohesion. These correspon-
dences between DFC and DLC are shown in Fig. 6a and 6b.

The DFC measures are sensitive to the relative number
of isolated or essential components in a module. As the
relative number of isolated components in a module is in-
creased (more components are not related with each other),
the DFC value decreases. Fig. 6c, 6d, and 6g show that DFC
decreases when the relative number of isolated components
is increased. Fig. 6f shows that when the relative number of
essential components in a module is increased, the DFC
value increases. In cases Fig. 6e and 6h, the relative number
of essential components are not changed, and the DFC val-
ues also show no change.

The IODG'’s in rows (d), (e), and (h) of Fig. 6 exhibit se-
quential DLC. The IODG’s in rows (e) and (h) all have DFC
= 1, while those in row (d) with more than 1 output show
lower DFC values. All components in the IODG’s with DFC
=1 are linked to all outputs; the second output is computed
only in terms of the first output, which is computed using
all inputs. The IODG’s with lower DFC values have one or
more components linked to only one output. The second
output makes use of input components that are independ-
ent of the first output. The differences in DFC values reflect
the relative connectedness of the input components. The
DLC measure does not show this difference, because it is
determined only by the weakest relation, the sequential
relation between the outputs.
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Fig. 5. The effect on the DFC and DLC measures of increasing the number of dependence connections.
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Except for the cases with sequential DLC, the most nota-
ble differences in DFC values are for one output IODG’s
versus two output IODG’s. For example, see the first two
IODG’s in row (g). In the IODG displayed in the first col-
umn one input is used to compute one output, while the
second column shows an IODG with one input that is used
to compute two outputs. The two outputs may involve
completely independent computation on the input, and
from the interface alone, we cannot tell if the two outputs
really belong in one procedure. Implementation details are
needed to determine the actual degree of independence
between the three outputs. Thus, as shown in Fig. 5d, the
FC values may be higher or lower than the DFC values.

As we see in Fig. 6, the DLC measure does not capture
differences in the relative number of cohesive components.
When the number of isolated or essential components is
changed, the corresponding DLC levels are not changed.

To summarize, the DFC measures MC, LC, and TC are
sensitive to the relative number of dependence connections,
the relative number of isolated components, and the rela-
tive number of essential components, respectively. The
DLC measure is, however, not very sensitive to the relative
number of connections, isolated, and essential components
in a module. However, the DLC measure always reflects
the weakest connection among module components and
this weakest connection determines the cohesion level. DLC
also provides more precise information characterizing the
relationship between output components than the DFC
measures. Among the three DFC measures, the TC measure
corresponds most closely to the DLC measure.

There is a fundamental difference between the DFC
measure and the DLC measure. When calculating a cohe-
sion value, the DFC measures average the cohesion values
of all components, while the DLC measure finds the most
weakly connected relation. This difference is intentional.
The generated data from both measures should be inter-
preted differently.

5 EMPIRICAL COMPARISON OF COHESION
MEASURES

In this section, we empirically test the relationship between
the design-level functional cohesion (DFC) measures and
the functional cohesion (FC) measures, and the relationship
between the DFC measures and the design-level cohesion
(DLC) measure.

We developed tools to automate the cohesion measures
and collected a set of C programs. Using the measurement
tools, the collected programs have been processed to gener-
ate the cohesion data. The data are tested statistically and
analyzed to find relationships between cohesion measures.
The empirical study included the following tasks:

1) Cohesion Tool Development. We developed tools to
measure FC, DFC, and DLC for C programs using lex
and yacc from the gcc compiler. This work included
the conversion of scalar analysis problems such as the
reaching definition problem into monotone data flow
systems, MDSs. We implemented the iterative algo-
rithm for each MDS [20]. As a simplification, alias
problems were ignored, since they are rare in actual

programs and thus have little affect on the cohesion
measurements. The tools process C programs in a
Unix workstation environment. They have been in-
stalled and tested for Sun SPARCstatations running
SUN-OS and IBM RS6000 systems running AILX.

2) Input Program Collection. We collected programs
from two sites: 1) a collection of student programs,
and 2) Unix system software. A total of 607 C func-
tions have been collected: 390 C functions have been
collected from five graduate students who major in
computer science, and 217 C functions from three
Unix system programs (FTP, PASSWD, and TALK).

3) Cohesion Data Generation. We generated the three FC
measures (WFC, ADH, and SFC), three DFC measures
(LC, MC, and TC), and the DLC measure for the col-
lected input programs.

4) Correlation Test and Analysis. We use the cohesion
data to find relationships between FC and DFC meas-
ures and between DFC and DLC measures. We test
correlations between the related measures by gener-
ating correlation coefficient values and significance
values of each pair of corresponding measures for
each partition of programs, i.e., student and system
programs, small, medium, and large programs, and
the entire set of programs.

A correlation coefficient is always a number be-
tween -1.0, a perfect negative correlation and 1.0, a
perfect positive correlation. A high positive or low
negative value of the correlation coefficient for two
variables means that they have a strong association.
The significance value is the probability of obtaining a
particular sample result given the null hypothesis. In
our correlation test, the null hypothesis is that two
corresponding measures are not correlated, i.e., they
are independent from each other. By convention, if
the significance value is less than 0.05, we call it sta-
tistically significant.

5.1 Cohesion Measurement Data

Table 1 shows average cohesion values of the seven cohe-
sion measures for all 607 C functions. We find that 343 of
the functions have only one output. Their DLC levels are 6
(functional cohesion) and their FC and DFC values are 1.
(For a given program, when its DLC is 6, its three FC meas-
ures and three DFC measures are always 1.) To avoid this
“ceiling effect,” we remove the cases where the DLC level is
6 and use the remaining 264 functions to find the relation-
ship between cohesion measures. Table 2 shows the aver-
age values for seven cohesion measures after removing the
functions with only one output.

Table 2 shows that the WFC, ADH, and SFC values and
LC, MC, and TC are ordered. This ordering is consistent
with ordering demonstrated analytically in Section 3: For a
given program, WEC < ADH < SFC and TC <MC <LC.

Table 2 also shows that for all 264 programs, the following
relationships hold: WEC < LC, ADH < MC, and SFC < TC. These
relations hold also for all partitioned groups, the student
programs and system programs, three groups of programs
by program size.
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TABLE 1
MEAN AND MEDIAN OF FC, DFC, AND DLC MEASURES FOR 607 C FUNCTIONS
FC DFC
No. of No. of
Average | data tokens | input/outputs | WFC ADH SFC LC MC TC DLC
Mean 57.36 6.35 0.75 0.72 0.68 0.78 0.74 0.71 4.76
Median 30.00 4 1 1 1 1 1 1 1
TABLE 2
MEAN AND MEDIAN OF FC, DFC, AND DLC MEASURES FOR 264 C FUNCTIONS
AFTER REMOVING FUNCTIONS HAVING ONLY ONE OUTPUT
FC DFC
No. of No. of
Average | data tokens | input/outputs | WFC ADH SFC LC MC TC DLC
Mean 83.77 8.98 0.42 0.36 0.27 0.50 0.41 0.33 3.16
Median 52 8 0.42 0.31 0.14 0.50 0.33 0.20 4
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The above relations occur because, on average, the dis-
tribution of data tokens are more ‘isolated’” and less
‘essential” when compared to the distribution of interface
components. In other words, programs include more iso-
lated data tokens than isolated interface components. Fig. 7
shows graphically the relationship between the six meas-
ures, represented by Table 2.

We find very few programs exhibiting the third DLC
level, iterative cohesion. This does not mean there are few
iterative associations between output components. Actually,
we find many iterative associations in programs, however,
when DLC cohesion level is determined, iterative associa-
tions are hidden by other stronger or weaker associations.

5.2 Relationship Between FC and DFC Measures

Since each of DFC measures (LC, MC, and TC) was derived
using an approach that parallels each of the FC measures
(WFC, ADH, and SFC), we expect that the DFC measures
will correspond closely to the FC measures. We showed
analytically in Section 4.1 that a general correspondence be-
tween the FC and DFC measures is expected. We also
showed empirically the LC, MC, and TC measures are
greater than the WFC, ADH, and SFC measures, respectively.
In order to know how closely the measures are related, we

0.6 —
LC DFC measures

5 MC
g 04r TC
= WEFC
Q
@ — ADH
S
- 021 FC measures SFC

Cohesion Measures

test correlations between WFC and LC measures, between
ADH and MC measures, and between SFC and TC measures.

We also consider the effects of program development en-
vironment and program size which are possible extraneous
variables. The entire set of C functions is partitioned into stu-
dent programs and system programs, and small size pro-
grams (data token count < 50), medium size programs (50 <
data token count < 100), and large size programs (100 < data
token count). Table 3 shows correlation coefficient values of
each pair of corresponding measures for each partition of
programs. The significance value for each pair is 0.0001.

We observe that:

1) The FC and DFC measures are strongly correlated.
The correlations between WFC and LC, between
ADH and MC, and between SFC and TC are all
strong. There is a general correspondence between the
FC and DFC measures; if a program has a high MC
value, then it is very likely that the program has a
high ADH value too. It follows that we can predict FC
values of a program from its DFC values with an ex-
pected error range. In another words, cohesion of
program code can be predicted during design.

2) The correlation between the FC and DFC measures
for the small programs is slightly stronger than that
for the large programs. This difference between small
and large programs is due to the definitions of FC and
DFC measures. The FC measures are defined using
module body information while the DFC measures
are defined using only module interface. The possible
difference between a programs FC values and DFC
values increase as the number of data tokens in a pro-
gram increases.

3) The correlation between the FC and DFC measures
for the system programs is slightly stronger than that
for the student programs. The difference is due to
outliers. Fig. 8 and Fig. 9 show scatter plots of ADH
and MC for student programs, and of ADH and MC
for system programs, respectively. From the figures,
we find more outliers for the student programs than
for the system programs. A small number of outliers
can cause a large correlation coefficient difference.
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TABLE 3
CORRELATION COEFFICIENTS OF WFC AND LC, ADH AND MC, AND SFC AND TC
FOR EACH PARTITION OF COLLECTED PROGRAMS
Correlation Coefficient
No. of Mean and Median

Site/Size functions data tokens WFC-LC | ADH-MC | SFC-TC

Student Programs 141 95.36 53 0.8412 0.8437 0.8526

System Programs 123 70.47 51 0.9285 0.9418 0.9556

data token cnt < 50 129 25,51 24 0.9535 0.9486 0.9565

50 < data token cnt < 100 69 73.61 73 0.8286 0.8337 0.8720

100 < data token cnt 66 208.24 172 0.8065 0.8242 0.8208

Total 264 83.77 52 0.8896 0.8939 0.9043
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Fig. 9. Scatter plotting of ADH and MC for system programs in Table 3.

5.3 Relationship Between DFC and DLC Measures

The DLC measure finds the weakest connection among
module interface components, while the DFC measure is
defined as the degree of connectivity between module in-
terface components. We showed analytically there is fun-
damental difference between those measures though there
is some correspondence between them.

In order to know how closely the measures are related
with each other, we test correlations between DLC and LC

1) The DFC and DLC measures are correlated. The rela-
tionship between DLC and TC is stronger than the
relationship between DLC and MC, and the relation-
ship between DLC and LC is the weakest. This result
matches our analytical study. When calculating a co-
hesion value, the DFC measures average the cohesion
values of all components, while the DLC measure
finds the most weakly connected relation.

2) The correlation between the DFC and DLC measures
for the programs with small interfaces is stronger
than that of the programs with larger interfaces. This
result is consistent with the analytical study—DFC
measures are sensitive to the number of interface
components and the number of connections between
them, while DLC is not. Thus, as the number of inter-
face components increase, the difference between
DEFC values and DLC values will increase.

3) DLC is closest to TC among the three DFC measures
(MC, LC, and TC). Again, this result matches our
analytical study. Both DLC and TC are calculated us-
ing the most extreme cases: DLC finds the weakest
connection between interface components and TC
captures only essential interface components.

5.4 Relationship Between FC and DLC Measures

We also have performed the correlation test between FC
and DLC measures. From the test, we find that the relation-
ship between FC and DLC is very similar to that between
DFC and DLC except that the correlation between FC and
DLC is weaker than that between DFC and DLC meas-
ures. For 264 C functions with more than one output, the
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TABLE 4
CORRELATION COEFFICIENTS OF DLC AND LC, DLC AND MC, AND DLC AND TC
FOR EACH PARTITION OF COLLECTED PROGRAMS

Correlation Coefficient
No. of Mean and Median

Site/Size functions data tokens DLC-LC | DLC-MC | DLC-TC
Student Programs 141 8.18 6 0.6122 0.7593 0.8635
System Programs 123 9.89 8 0.6753 0.8289 0.8715
1<1/Ocnt<5h 67 4.31 4 0.8751 0.9325 0.9259
5<1/0cnt<9 112 7.11 7 0.5597 0.7385 0.8814
9< /0O cnt 85 15.12 13 0.4845 0.6926 0.7852
Total 264 8.98 7 0.6345 0.7884 0.8760

correlation coefficients of WFC-DLC, ADH-DLC, and SFC-
DLC are 0.6007, 0.7035, 0.8202, respectively, with a signifi-
cance value of 0.0001 for every case.

We can expect this result from the definitions of FC, DFC,
and DLC measures: DFC measures have been derived from
FC measures, and the comparison between DFC and DLC is
one between design measures while the comparison between
FC and DLC is one between design and code measures.

6 DiIsScusSsION

The results from our empirical study support the analyti-
cally developed relations between measures. We find a
general correspondence between the design-level functional
cohesion (DFC) measures and the code-level functional co-
hesion (FC) measures. Each code-level measure tends to
exhibit lower cohesion values than the corresponding de-
sign-level measure. However, each design-level measure
correlates with the corresponding code-level measure at the
0.0001 significance level.

The strongest correlations were between DFC and FC of
the sample of systems programs. Each of the corresponding
design/code-level pairs of measures exhibit correlations of
more than 0.92. The correlation of DFC to FC for student
programs are less than that of systems programmers. How-
ever, all of these correlations are at least 0.84.

Our results support the use of design-level cohesion
measures as surrogates for code-level measures. The de-
sign-level measures can be obtained before code is written,
and thus can be used to predict code-level cohesion values.

All of the cohesion measures can be used to help identify
poorly designed modules. These modules may perform mul-
tiple functions that are disjoint or only weakly connected.
Such poorly designed modules are candidates for redesign
and restructuring. The design-level DLC measure and the
code-level FC-TC measure can identify modules that are easy
to decompose. They indicate the modules whose components
exhibit the greatest independence. The measurement of
structural attributes such as cohesion provides a mechanism
for quantifying design improvements, and are, thus, a
mechanism for use in restructuring designs and implemen-
tations.

Restructuring can be accomplished through a series of
functional restructuring (decomposition and composition)
operations based on the IODG model and a set of objective
criteria [7], [8]. In addition to cohesion measures, restructur-
ing criteria can include coupling and other information.

Modules with low DLC/DEFC values are located. The optimal
DLC/DFC value will depend on the application, the required
reusability, readability, and maintainability of the software.

When displayed as a diagram, the IODG model provides
a visual representation that complements the quantitative
information provided by the measures. The measures can
help select candidate modules for restructuring. Then, an
engineer can view an IODG diagram to determine if and
how a candidate module should be restructured.

7 CONCLUSIONS

We have formalized the concept of design cohesion based on
a graph model of a procedure interface, the input/output
dependence graph (IODG). We derived a design-level cohe-
sion (DLC) measure using an association-based approach
similar to that used by Stevens et al. [15], and design-level
functional cohesion (DFC) measures using the slice-based
approach used to derive code-level functional cohesion (FC)
measures [2]. All of these measures have been implemented.
We compared the cohesion measures both analytically and
empirically and evaluated potential applications of the IODG
model and cohesion measures.

We find that:

1) Cohesion can be objectively defined and measured in
terms of design-level entities. Our cohesion measures
are consistent with intuitive notions to satisfy the rep-
resentation theorem of measurement [6].

2) Design-level cohesion measures correspond closely
with code-level cohesion measures. Thus, design-level
cohesion measures can be used to predict cohesion at
the code-level. Also design-level measures can be
used as surrogates for code level measures.

3) The design-level measures can be used to help locate
poorly-designed modules, especially modules that
need to be restructured. The DLC measure always
finds the weakest connection among module interface
components while the DFC measures detect the the de-
gree to which input/output components are connected.

4) The IODG model provides a flexible tool for a quan-
titative and qualitative characterization of a software
design. The IODG is the basis for all of the design-
level measures. IODG models can also be readily dis-
played as diagrams to provide a form of program
visualization showing the functional structure of a
system. IODG can be generated from design informa-
tion, or, during maintenance, they can be generated
directly from program code.
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Design-level measures can be used to improve software
quality by providing quantitative criteria for comparing de-
sign alternatives. We plan to further evaluate the effective-
ness of design measures for use in software restructuring.

The generation of design information, such as IODGs,
from code is a form of reverse engineering. A long term
objective is to learn how to generate software architectural
structures from program code. Generating IODGs from
program code is a first step. Our focus now is on generating
higher-level design structures from IODGs. The software
maintenance and software evolution community can clearly
benefit from such reverse engineering technology.
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