Chapter 4

WebSphere Overview and Architecture: What is WebSphere?

One of the more confusing things about starting to use IBM’s implementation of the J2EE technology is understanding exactly what people mean by “WebSphere”. Very often in speaking with developers new to IBM’s products, you may hear them refer to “WebSphere” only to find that they are, in fact, speaking about WebSphere Portal Server, or WebSphere Commerce Server, or even WebSphere MQ! So what is the cause of this? Well, there are a few common confusions that lead to this – to answer them, we will first have to establish what “WebSphere” means, and so lead on to understanding how everything named “WebSphere” fits into the picture.

Simply put, WebSphere is not a product. That’s the first misconception that most people have. In fact, there’s never been an IBM product simply named “WebSphere”. From its inception, WebSphere has been an IBM brand. One of the first products
 introduced under the WebSphere brand was the IBM WebSphere Application Server, which is what most people simply call “WebSphere”. However, the use is so common that you may even find references to WebSphere (meaning the application server) in this book.

After the introduction of WebSphere Application Server, several more products were added to the WebSphere product family. By the time WebSphere Application Server version 5.0 was released, the WebSphere product line had settled into a consistent set of offerings divided into three categories; foundation and tools, Business Portals and Business Integration (Figure 4.1).

[image: image1.emf]

Foundation and Tools

Business Portals

Business Integration

Figure 4.1—WebSphere family of products

· Foundation and Tools represents the heart of the WebSphere product line; the WebSphere Application Server, the WebSphere Studio product line, and the WebSphere tools for host integration. In this book we will focus nearly exclusively on the first two elements of WebSphere Foundation and Tools.

· Business Portals include WebSphere Portal Server (a set of products for building both internal and customer –facing portals), WebSphere Commerce Solutions (including WebSphere Commerce Portal, an extensive set of tools and frameworks for building large-scale internet commerce websites), and the WebSphere Everyplace family (including tools and frameworks for communicating with Cell phones, PDA’s, and pervasive computing devices).

· Business Integration includes the WebSphere MQ family of products for enterprise messaging, workflow, systems integration, and the WebSphere Business Integrator family of products for application integration.

IBM also offers other strategic product families that work with the WebSphere product line.

· The Tivoli family of products for systems management and security provide additional capabilities for WebSphere. For instance, Tivoli Access Manager can provide integrated security management for products like Web Servers and CRM Applications that lie outside of the bounds of the WebSphere Application Server. Likewise you can use products like IBM Secureway Firewall to secure your network resources, and IBM Directory Server to provide a Lightweight Directory Access Protocol (LDAP) repository for maintaining the identities of the users on your network.
· The Rational Family of products for Application Development like Rational Rose and Rational XDE allow you to integrate the J2EE development you perform in WebSphere Studio into the Rational Unified Development Process.
· The DB2 family of Information Management products like DB2 Universal Database provides superior performance and scalability for your database needs.
In this book we will not touch on the capabilities provided by these tools, with the exception of IBM DB2 Universal Database, which we will use in our examples. Of course, at the heart of the WebSphere product strategy is the interoperability that adhering to the J2EE standards provides you. Therefore, while you can achieve easy interoperability and excellent results by using IBM’s tools like DB2 and IBM Directory Server, WebSphere will interoperate fully with other relational database providers like Oracle and Sybase, or with other LDAP tools like Microsoft Active Directory or Sun ONE Directory Server.
WebSphere Foundation and Tools

The WebSphere Foundation and Tools product family is made up of the products that are necessary to quickly build and deploy J2EE-compliant applications on the most scaleable, fastest J2EE application server on the market. There are two primary product groups within this family: The WebSphere Studio family of development tools and the WebSphere Application Server family of deployment platforms.

WebSphere Studio

WebSphere Studio is a unique family of development tools based on the open-source Eclipse architecture. The Eclipse architecture is a plug-in-based approach to IDE development that allows users and third parties to freely extend the base IDE with their own plugins. Eclipse provides the common code base in all of the WebSphere Studio family products for the basic Java IDE capabilities (Java code editing, incremental compilation, debugging and source code control). Each of the products in the WebSphere Studio Family extends these capabilities with additional functions and features. The primary members of the WebSphere Studio family are:

· WebSphere Studio Site Developer – WebSphere Studio Site Developer is an environment that allows developers to build and test dynamic web sites using Java Server Pages and Java Servlets. It includes the HTML and DHTML authoring and editing capabilities of the WebSphere Studio Homepage Builder product, combined with additional wizards and features for developing JSP and Servlet applications and Web Services. The applications we build in chapters 1-16 can be developed using these features.

· WebSphere Studio Application Developer – WebSphere Studio Application Developer extends WebSphere Studio Site Developer with additional capabilities for developing applications using EJBs. WebSphere Studio Application Developer also contains features for working with relational database schemas and for performance profiling your applications. In Chapters 17 and those that follow we will examine applications that can be built using these features.

· WebSphere Studio Application Developer Integration Edition – WebSphere Studio Application Developer Integration Edition (WSAD-IE) provides features that extend WebSphere Studio Application Developer with the ability to develop for many of the special features of WebSphere Application Server Enterprise Edition (such as process choreography). In addition, WSAD-IE provides support for developing applications that use the J2C specification for access to Enterprise Information Systems such as CICS. The tools provided in WSAD-IE supports technology that is complimentary to the core J2EE platform such as workflow management and business rules, and will not be covered in detail by this book.

· WebSphere Studio Enterprise Developer – WSED is designed to integrate traditional transaction based systems with the WebSphere e-business platform and supports traditional z/OS development with COBOL and PL/1. The test and debugging support allows developers to interactively debug Web, CICS, and IMS transaction environments.
WebSphere Application Server Family

Once you have developed and tested an application using WebSphere Studio, you are ready for the next step, deployment. There are three members of the WebSphere Application Server family. They provide different capabilities for scalability and manageability, and provide other programming model possibilities through extensions to the J2EE programming model.

· WebSphere Application Server is the cornerstone of the WebSphere product family. WebSphere Application Server, version 5.0 is a J2EE 1.3 compliant application server that provides complete support for all aspects of the J2EE programming model. WebSphere Application server (the base edition, sometimes called the “core” server) is targeted for small, departmental applications that do not require deployment on more than one machine
.

· WebSphere Application Server, Network Deployment Edition (otherwise known as WAS ND) provides the ability to deploy applications that support failover and load balancing across multiple machines. WAS ND combines the cloning features that were previously part of the WebSphere Application Server Version 4, Advanced Edition, together with features from what was previously marketed as Tivoli’s WebSphere Edge Server. We will discuss some of the key features of WAS ND in this book, especially as they apply to writing scaleable, reliable applications using the J2EE programming model.

· WebSphere Application Server, Enterprise Edition (WAS EE), provides programming model extensions that go above and beyond the J2EE specification. Some of the capabilities address common problems faced by enterprise-scale application developers that have not yet been incorporated into the J2EE specification, while others are truly unique to IBM’s vision of Enterprise development. WAS EE includes enhancements to the basic Container-Managed Persistence (CMP) EJB model, features that are in anticipation of later versions of the J2EE specification (like Async Beans), and features that support development of very-large scale applications like WebSphere Business Choreographer. We will occasionally point out some features of WAS EE in the context of the problems that they solve (for instance, in the chapter on EJB transactions (Chapter 28) we will discuss how some WAS EE features address shortcomings in the current EJB specification) but this book will not cover all of the features of WAS-EE in detail.

There are two other members of the WebSphere product family that should be mentioned, even though they fall outside of the continuum of products just discussed. They are:

· WebSphere Application Server - Express edition– WebSphere Application Server - Express is a combination of WebSphere Studio Site Developer, and a version of WebSphere Application Server that only supports a J2EE Web container. This would be appropriate for developers of small-scale applications that do not need to use the power of EJB’s.

· WebSphere Application Server for zOS – This product is a version of WebSphere Application Server specifically targeted at the zOS (OS/390) platform. It is fully compliant with the J2EE 1.3 specification, and code written for WebSphere Application Server will deploy and run without change on this platform. Likewise, it shares the same web-based administrative console feature as WebSphere application server. However, some of the advanced capabilities of the zOS platform allow the product to take advantage of that platform’s unique scalability in ways that differ from the scalability mechanisms used in WebSphere Application Server, Network Deployment.

In the next section we will look at each of the three major products in the WebSphere Application Server family in more detail, and discuss the major features and capabilities of each.

WebSphere Application Server (WAS)

The WebSphere Application Server family of products is scalable. It provides a fully compliant platform for Java™ 2 Platform, Enterprise Edition (J2EE) and key Web services open standards, making WebSphere Application Server production-ready for the deployment of enterprise Web services solutions. Product packaging is based on the core product, IBM WebSphere Application Server, Version 5, which provides the base administrative console; an updated Application Assembly Tool for creating, editing, and viewing J2EE applications; the Application Client Resource Configuration Tool (ACRCT); and the Tivoli Performance Viewer on a single node configuration.

WebSphere Application Server 5.0 includes:

· Support for J2EE 1.3 (including built-in JMS, and full J2C support)

· New Web Services Integration (including support for JAX-RPC and JSR109
)

· An XML-based administrative repository (No database required as in previous versions)

· A web-browser based administrative console
· Support for JMX

At runtime, WebSphere Application Server consists of a server process (which is a single JVM instance) that can run several J2EE applications (each packaged and deployed as separate EAR files). One of the applications running on each standalone WebSphere Application Server instance is the administrative application, which allows you to manage and configure the server from a web-based administrative console.
WAS Network Deployment (ND)

WebSphere Application Server, Network Deployment Edition is unique in that it does not require you to install any additional software on most server machines; all you need on most machines in your network is the base WebSphere Application Server. The WAS-ND installation is simple because you are only required to install the additional software that makes up ND on a machine in the network to create a deployment manager node. A node is the term in WAS-ND for a collection of managed processes (usually corresponding to one physical system with a single IP address, although this can get complicated if you consider SMP configuration). Nodes are grouped together into a higher-level grouping called a cell. The servers and applications in a cell are administered using the management tools located on the network deployment manager node. A cluster in WAS-ND is a collection of server processes all running the same Enterprise application(s). HTTP and RMI-IIOP traffic is load balanced across the different servers in the cluster according to the settings configured in the administrative console. You can create as many clusters within a cell as you choose, depending upon the scalability and failover needs of your applications. Just like servers and applications, clusters are created using the tools available on the network deployment manager as well.
WAS Enterprise Edition

WebSphere Application Server Enterprise Edition provides both WebSphere Application Server and WebSphere Application Server Network Deployment. Enterprise Extensions extend the J2EE programming model through custom APIs. These extensions work on both a single server with WebSphere Application Server, or in a multi-server environment with both WebSphere Application Server and WebSphere Application Server Network Deployment Edition.

Each enterprise extension stands alone as a component feature. You probably would not need to use all of the extensions on any one system. In a large network of heterogeneous networks and applications, WebSphere Application Server Enterprise Edition provides extensions for legacy systems to improve throughput, resource utilization, and Systems Management.

Enterprise extensions provide a greatly enhanced programming model. These extensions support features such as process automation services and dynamic business policy management. WAS Enterprise Edition also has EJB Container Managed Persistence (CMP) Extensions, Container-Managed Messaging, Business Rule Beans, Last-participant Transaction support and Dynamic EJB-QL queries, (the last two are covered in later chapters).

The WAS core Architecture
Now that you’ve seen what the different levels of WebSphere Application Server provide you, it’s time to dive a little deeper into the process architecture of WAS. We will first examine the components of a base WAS installation, and then examine how an installation of WAS-ND differs from an installation of base WAS. Let’s begin by talking about how the J2EE specification describes a standard for packaging applications. An Enterprise Application contains the hierarchy of resources for your J2EE application to function. It can contain any combination of the following:
· Web modules (called Web ARchive, or WAR files) – These files contain Servlets and JavaServer Page (JSP) components as well as other classes and resources (like property files and static web content) used by those components.
· EJB modules (packaged into EJB jar files) – These files contain Enterprise Java Beans and their associated classes.
· Application client modules – These files contain the code for application clients that use EJBs and other J2EE services. This code actually never runs on the server, but instead runs on the client. We will cover this oddity in detail in Chapter 22.
· J2C Connector modules (called Resource ARchive or RAR files) – These files contain J2C connectors and their definitions. If, for instance, you needed to connect to a mainframe CICS (Customer Information Control System) transaction, you would need to include an appropriate J2C connector enabling this inside your EAR file.
· Utility JAR files – If you have Java code that is used by more than one module within your EAR, it is a best practice to separate it into its own JAR file and package that file in the EAR file as well.
Each of the different J2EE module files has a similar structure. They are all packaged as Java ARchive (JAR) files, which combine Java .class files for a logical set of packages together and any necessary configuration property files together with a JAR manifest. In addition to Java class files, a J2EE module will also contain deployment descriptors (which are specific to each module type) and IBM(R) extension and binding documents (again, specific to each module type).
Enterprise Applications are packaged together as EAR (Enterprise ARchive) files. A typical example of how an EAR file is laid out is shown in Figure 4.2.

[image: image2.emf]

EAR file

WAR file

EJB - JAR file

Utility JAR file

Figure 4.2 Typical EAR file Structure

WebSphere is different from some other applications in the respect that it adheres strictly to the J2EE specification and does not allow deployment of applications in any way other than through the standard EAR format (e.g. there is no special directory in WebSphere in which you can place JSP or Servlet .class files in order to make them run).

We will revisit EAR files (and their constituent parts) in later chapters. However, for now, you need to have a basic understanding of EAR files to understand how Applications are deployed into WebSphere Application Server, and how this fits with the WebSphere Application Server process model. The following diagram (Figure 4.3) shows the parts of a base WebSphere Application Server installation.

[image: image3.emf]

Web Server

WebSphere Plugin

Application Server

Enterprise Application

Enterprise Application

Enterprise Application

Application Database

Web Browser

Java Application Client

HTTP

HTTP

RMI/IIOP

Figure 4.3 WebSphere Application Server process architecture
By far the two most common means for a user to access a WebSphere application is either by requesting HTML (web) pages from a Servlet or a JSP, or by using a desktop application client written in Java that connects to services provided by Enterprise JavaBeans (EJBs) running inside a WebSphere server. Let’s consider the Servlet or JSP path first. The URL that the user connects to will not, in fact, be hosted by a WebSphere application server instance itself, but will instead refer to a Web Server. This may be an open-source Web Server like Apache, or a commercial Web Server like Microsoft IIS, or the IBM HTTP Server (powered by Apache) which ships as part of the WebSphere base installation. The critical piece is that this Web Server must have installed within it a piece of extension code provided as part of WebSphere Application server, and which is installed as part of the WebSphere installation process. This piece of code is called the WebSphere plugin, and it is responsible for identifying those URL’s that represent services (Servlets, JSP’s and other files) provided by a WebSphere application server and passing the requests on to an appropriate WebSphere Application Server instance.
At this point, you may be thinking, “Why does WebSphere requires this level of indirection?” There are a couple of reasons for this; first, in most real-life situations, you would want to combine an application written in WebSphere together with other web content. This could be static HTML, Jpeg or GIF files, animations written using Macromedia Flash, or even entire applications written in technologies like perl or Microsoft ASP.NET. WebSphere Application Server’s plugin approach allows you to accomplish this with a minimum of additional setup. The WebSphere plugin uses a simple XML configuration file that identifies the URLs (and virtual hosts) that correspond to WebSphere applications, and identifies the server name to which it should route requests for those URL-vhost combinations. The web server and whatever other plugins it may host handle all other content not identified in this file.
However, that’s not the most compelling reason why WebSphere uses a Web Server plugin. The other reason is that in WebSphere Network Deployment Edition the plugin can also spread work among several different WebSphere application server instances. We will discuss more about this behavior of the plugin in the next section.

Once the plugin identifies the correct final endpoint for an HTTP request, it forwards it to a WebSphere Application Server instance. An Application server instance is a JVM that can host any number of Enterprise Applications, each representing different logical applications. Once the server identifies the URI for the request it can then find the appropriate enterprise application that contains that URI and invoke the Web component (Servlet or JSP) that will handle the request. That component may make requests of other J2EE components (other servlets or JSPs, Enterprise JavaBeans, etc.) or it may obtain information from an external data source like a relational database. In the end, though, it returns an HTTP response back to the browser, usually in the form of a Web page.
The other path is much simpler, but less common. In it, an application written in Java makes a request of an Enterprise JavaBean running in a WebSphere Application Server using the RMI/IIOP protocol. We’ll cover that architecture in detail in Chapter 22. There are other ways to make requests of components running inside WebSphere, such as through Web Services or CORBA, which we will cover in later chapters, but these are the two basic approaches; the other mechanisms are all variations of these two.
Now that you understand how a request is handled by a WebSphere installation, you’re ready to understand how Enterprise Applications are placed into a WebSphere Application Server instance and what other administration steps can be done to make the application server instance ready to run the Enterprise Application.
Administering a local WAS Server

In WebSphere (both base and ND) you use a web-based WebSphere Administrative Console
 to administer applications. The WebSphere Administrative Console is a WebSphere application much the same as any other WebSphere application. If you haven’t enabled security, you will only be prompted for a username for change control. Otherwise, you will need to login with a valid user id and password, which has been granted administrative access. Once you login, you are able to:

· Manage Enterprise Applications (including installing, starting, stopping, updating and uninstalling Enterprise Applications)

· Manage Users, Groups, and other security configuration information

· Manage your WebSphere Environment (managing Virtual Hosts, updating the plugin configuration, setup shared libraries)

· Manage Servers (create new servers)

· Manage Resources (JMS, JDBC, JCA, URL, and JavaMail)

· Perform Problem Determination (view logs, turn tracing on or off)

An example of a page from the WebSphere Administrative Console is shown in Figure 4.4, where we show the Administrative console open to the page used for administering Enterprise Applications.

[image: image4.png]WebSphere. Application

Version 5

Home | Save |

Proferences |

Server Administrative Console

Logout | Help |

User ID: krown

BaseApplicationserverCell
Securty Certer

Envionment
Servers

& Applcations

Manate Appicstions

Install New Appliation
Resaurces

Protiem Determination

Applications

Represents an instance of an appiication deployment nfo 3 websphers environmert. & single
applcation binary (ear) can be derlayed mulile fimes. fthe archiveLIRL of tw app ceployment
instances is the same, they are "sharing’ binaris. [

Totel Appications: 8
Fiter
Preferences
Start | [Stop | | tnstall | | uninstall | | update | | Export | [Export DDL] 6o
Hame Server ¢ Status ©
I [oetautappication servert Started {
I [MoEsampes servert Started
I |RertsBvnebsphere servert Started
I | Semplescatery servert Started
[TechnologySamples servert Started
=] [
WebSphere Status [] <Previous tiext> dune 22,2003 102833 PMEDT & | [

Websphere Runtime Messages.
(©:0new.0 |4y Onew.d | :Onew.0

Total Al
Messages:0

fotal

fotal

ftotal

Figure 4.4 WebSphere Administrative Console
Upon reflection, you might notice that there seems to be a chicken-and-egg problem here. If the administration application is a WebSphere application, and (as you’ve just seen) you need to use the administration application to create, start and stop web applications, then where did the Administrative Application come from? In fact, the base WebSphere solves this bootstrapping problem by configuring a default server with a pre-installed Administration Application that allows you to perform these tasks. To perform administration you have to start the default server (which you can do by using the “startServer” script, or by using the “Start Server” Windows Start menu option available within the WebSphere program group.

In order to deploy an Enterprise Application you would use the WebSphere Application Server Administrative Console to:

1. Create Virtual Host Aliases for the Enterprise Application so clients can access the Enterprise Application.

2. (Optional) Create a new Application Server
3. Create an Enterprise Applications and associate them to Application Servers.

We will cover some of the facilities of the administration console in later chapters. However, it is beyond the scope of this book to describe all the features of Server administration in WebSphere Application Server. For that, we refer you to the WebSphere InfoCenter.

Now you see a little bit about how you configure WebSphere Application Server, and how you install Enterprise Applications into WebSphere Application Server., but we still haven’t explained exactly what happens when you perform these actions in the administrative console. The answer to that is simple; when you install a server, the console is simply expanding the EAR file into a specific installation directory known to the WebSphere Application Server instance and updating a set of XML configuration files. Any other configuration changes also update the XML configuration files as well. The fact that every configuration can be represented by values in these XML files is what makes it possible to replicate configurations across multiple machines in a network in WebSphere Network Deployment, as you will see next.

Leveraging the Scalability of WAS ND

We should note that describing how to administer and configure WebSphere Application Server Network Deployment Edition is beyond the scope of this book. For detailed information on configuring ND, we would refer you to the InfoCenter or [Francis]. However, understanding the terminology used in WAS-ND will help you understand how things are organized in the base WebSphere Application Server, and also will help you understand some of the programming features that take advantage of scalability that we will cover in later chapters.

 IBM WebSphere Application Server Network Deployment Version 5 provides centralized administration of multiple nodes. As we discussed earlier, in all versions of WebSphere Application Server, a node is a logical grouping of managed processes that usually corresponds to a physical system with an IP address. Node names usually are identical to the host name for the system. IBM WebSphere Application Server Version 5 (Base) resides on a single node. In the base product each installation is unaware of other installations.

In WAS-ND, a WebSphere node agent manages all WebSphere processes on a node. The node agent represents the node in the WebSphere management cell.

The network deployment manager node contains a WebSphere Application Server Network Deployment manager that communicates with the independent node agents running in each node in the cell. Nodes synchronize configuration files and installed application files. Most resources in a WebSphere cell reside on one node. Some resource types, such as virtual hosts and enterprise applications, are not associated with a specific node. For a node to be managed by the deployment manager, it must contain IBM WebSphere Application Server. It is not necessary for the deployment manager node to contain IBM WebSphere Application Server. Nodes in a cell can run while the network deployment manager node is not running. When the network deployment manager node is online, it coordinates synchronization with each node agent. You can attach the administrative console to a node, cluster, or cell to monitor nodes.

A cell is where you can find configuration information for objects in your distributed WebSphere set of nodes. A cell is comparable to a WebSphere Application Server Version 4 administrative domain. A cell contains clusters, each of which is a set of servers under workload management. A cell contains configurations pertaining to:

· Physical hosts where an application server is installed

· Application servers

· Enterprise Applications installed on application servers

· Resources providing support to applications, such as jar files and data sources for data access

WebSphere Application Server Version 5 node configuration data is stored in XML files. You can use either the admin console or the wsadmin scripting facility in interactive or batch mode to update the configuration XML files. The wsadmin scripting utility is a tool that supports many scripting languages, including JavaScript, JPython, and Jacl (derived from Tcl). You can use it to access the Java management extensions (JMX) managed beans (MBeans) that control WAS servers.

A deployment manager retains master configuration files for each server in each node. Each node and server likewise has their own local copy of the configuration files. When you make a change to the master files in the deployment manager, the changes are synchronized to the appropriate copies of those files on the affected nodes. Synchronization between local and cell configuration files occurs at events such as server startup, or on a timed basis. A diagram of this architecture is shown in Figure 4.5.

[image: image5.emf]

Node

Server

Node Agent

Server

Node

Server

Node Agent

Server

Node

D eployment Manager

Cell

Figure 4.5 Cell Architecture in WebSphere Application Server ND

Clusters are the equivalent of WebSphere Application Server Version 4 server groups. A cell can have zero or more clusters. Vertical clusters have servers on the same node under workload management. Horizontal clusters have servers on multiple nodes under workload management. An example of this kind of arrangement is shown in Figure 4.6.

[image: image6.emf]

Node 1 Node 2

Application Server A

Application Server A

Node 3

Application Server B

Application Server B

Horizontal Cluster

Vertical Cluster

Figure 4.6 Clustering Arrangements
Normally, traffic is balanced among the members of a cluster using a simple algorithm like round-robin or random routing. WAS-ND’s Workload management can also route both HTTP and IIOP traffic based on server weighting, to provide better control. Also, you can define a backup cluster to mirror and provide failover for a production cluster.

A sample topology for an application deployed in a WAS-ND cluster is shown in Figure 3.7.

[image: image7.emf]

WebSphere Edge Server Network Dispatcher

IBM HTTP Server

IBM HTTP Server

WebSphere Application Server

WebSphere Application Server

All lines indicate HTTP Traffic

Figure 4.7: WAS-ND HTTP load balancing

In Figure 4.7 we show how the pieces of WAS-ND interact to provide scalability and protection from failure. Here, the Network Dispatcher component of the WebSphere Edge Server (which is part of WAS-ND) receives incoming HTTP traffic that represent requests for either Servlets or JSPs residing in WAS, or for static content residing in the IBM HTTP Server (IHS). This traffic is split (load-balanced) among two or more installations of the IHS. Static content is served directly from the IBM HTTP Server. Requests for dynamic content (meaning URLs corresponding to Servlets or JSPs) is passed on to the WebSphere Application Server instances behind the IBM HTTP Server instances by the IHS plug-in. The IHS plug-in provides a second layer of load balancing to the different members of the WAS-ND cluster. So, in this topology you are preserved from any single point of failure (presuming, of course, that a backup Network Dispatcher is in place). If an IHS Server fails, the other server will continue to handle requests, and the Network dispatcher will notice the failure and stop routing requests to the server that is offline. Similarly, if an Application Server in the cluster fails, the plug-ins in the HIS instances will notice the failure and stop forwarding requests to that instance as well.

The reason why you should care about this configuration is that there are programming model ramifications of this deployment model. For instance, in Chapter 9 you will learn about how HTTPSessions are shared across members of a cluster and what impact that has on the design of your Servlets.

Summary

IBM WebSphere Application Server Version 5 contains many new features and enhancements that simplify web application deployment and management. An enhanced admin console, configuration management and cluster and node management allow IBM WAS 5, the application server, to manage complex J2EE applications. In the following chapters we will discuss the technologies needed to implement Enterprise Applications. We will also provide a case study to demonstrate the application development tools and deployment.

� In fact the very first shipped product under the WebSphere Product family name was WebSphere Performance Pack, which is now part of WebSphere Application Server, Network Deployment Edition

� In the previous version, these capabilities were part of what was known as WebSphere Application Server, Advanced Single-Server Edition (AEs).

� Introduced as a technology preview in WAS 5.0, and fully supported in WAS 5.02

� For those of you who simply can’t wait to try this out, the URL to access the console is http://localhost:9080/admin (for standalone) and http://localhost:9090/admin� (for Network Deployment).

1

_1117817147.doc

[image: image1]

WebSphere

Plugin

Web Server

Application Server

Enterprise Application

Enterprise Application

Enterprise Application

Application Database

Web Browser

Java Application Client

HTTP

HTTP

RMI/IIOP

_1117824799.doc

[image: image1]

EAR file

WAR file

EJB-JAR file

Utility JAR file

_1117827043.doc

[image: image1]

Node 1

Node 2

Application Server A

Application Server A

Application Server B

Node 3

Application Server B

Horizontal Cluster

Vertical Cluster

_1113591381.doc

[image: image1]

WebSphere Edge Server

Network Dispatcher

IBM HTTP Server

IBM HTTP Server

WebSphere Application Server

WebSphere Application Server

All lines indicate HTTP Traffic

_1117734680.doc

[image: image1]

Node

Server

Node Agent

Server

Server

Node Agent

Server

Node

Deployment Manager

Cell

Node

_1108921928.doc

[image: image1]

Foundation and Tools

Business Portals

Business Integration

