
Chapter 24

CMP Mapping Strategies and Mapping in WSAD

In chapter 14, we described several different mapping patterns demonstrating how to write your own JDBC code to persist a domain model to a relational database. The problem with roll-your-own persistence is the large amount of code that you must update whenever the domain model or the relational database changes. This can become a maintenance nightmare and it discourages refactoring of the domain model. Chapter 23 then introduced container-managed entities which have the benefit of using container-managed transaction demarcation, built in security support, and automatic JDBC code generation for finding and persisting container-managed entities. This provides more efficiency developing the application because there is no need to develop JDBC code, a transaction framework, and to build in security into your domain layer.

In this chapter you will learn how to map your domain model, in the form of container-managed entities, to a relational database using the mapping tools provided in WebSphere Studio Application Developer. Figure 24.1 shows how mapping of container-managed entities fits into the entire application architecture. We will describe the major mapping strategies the tools use, and we will show how easily you can change the mapping to suit refactoring of either the domain model or the relational database. You will see the mappings the tools in WSAD use to automatically generate and update relational database access code of the type that was touched upon in chapter 14. This chapter will also show some simple examples to illustrate the solutions to situations when a domain attribute type does not map directly to a relational column type and how to map dependent values that are embedded in a domain object. Finally, we will provide a brief introduction to generating finders for container-managed entities.

It should be noted that the mapping files and supporting mapping code (e.g., converter and composer classes which will be described later) are outside the scope of the EJB specification and is specific to WebSphere. You should be aware that this code will not work outside of a WebSphere application server. This mapping code is not intended to be portable to other application servers.

[image: image31.png]
Figure 24.1 Container-Managed Entity Mapping within the Roadmap

Databases, CMPs, and Maps

Now that you’ve discovered what the basic object model of our case study looks like, you’re ready to look at how that object model relates to the objects in a relational database. Before we begin diving into that, however, we need to take a step back and review some basic relational technology terminology.

In a relational database, data is stored in tables as rows and columns. A table is a single entity that represents a particular “record layout”. You define a table by stating the names, data types and (optionally) sizes of the columns that comprise the table. The database has groupings of schematas which are used to provide qualification to the table names. For example, a table named “TEST.FOO” has “TEST” as the schema name. Each schema has a set of tables that are defined as members of that particular schema. Note that a table can belong to only one schema. Each schema belongs to one database. So a database is the root object that contains a complete set of schematas and their associated tables.

In short, what we need to do is define how our objects (container-managed entity beans) map to a set of database tables. Thus we have to define a mapping between our container-managed entities within the EJB JAR and the tables within a database. To do this, you need to be able to view, and perhaps manipulate both sides of the coin -- the database tables and the object model. WSAD contains a set of tools that allow you to do precisely this. In WSAD, you can define a database mapping to an EJB module in one of three ways:

1. A “top-down” mapping will automatically create a new database and tables from a set of container-managed entity beans by following some simple mapping rules.
2. A “bottom-up” mapping will create a new set of container-managed entity beans to a matching set of database tables.
3. A “meet-in-the-middle” mapping allows you to create a set of container-managed entity beans and database tables separately and then define the mapping between the two using some simple name and type matching rules.

[image: image2.png]
Figure 24.2 EJB to RDB Mapping Action
Top-Down Mapping Example

To demonstrate a “top-down” mapping, we will use the TimeSheetGroup EJB module from the case study. To begin, launch the EJB to RDB Mapping wizard by selecting the TimeSheetGroup EJB module from the J2EE Hierarchy view within the J2EE Perspective and select Generate>EJB to RDB Mapping from the context menu (shown in Figure 24.2) opened by selecting the right mouse button.
The first page of the EJB to RDB Mapping wizard, shown in Figure 24.3, requires you to either Create a new backend folder or Use an existing backend folder. In WSAD version 5.0, there is support for multiple EJB to RDB mappings for the same set of container-managed entities within a 2.0 EJB module. The metadata files associated with the database and its tables are all stored in sub-folders of the folder named backend.
Each of these sub-folders is an existing backend folder that is displayed in the wizard. Later in this chapter we will discuss multiple backend support in WSAD. In our example, no database or mapping exists for our EJB module, so only the Create a new backend folder option is available at this time.

[image: image3.png]
Figure 24.3 Select backend folder wizard page

[image: image1.png]The second page of the mapping wizard, shown in Figure 24.4, provides options for each of the three mapping approaches: Bottom Up, Top Down, Meet In The Middle. For our “top–down” mapping example, we will keep the default Top Down selection. This option will create a new database and schema, and tables for each container-managed entity bean within our EJB module. The tables will be named with the same name as that of the container-managed entity and each column will be named based on the corresponding cmp-field within the container-managed entity. Any cmp-fields that have been added to the key of the container-managed entity will have its associated column added to the primary key of the new table. A mapping will be defined for each of the container-managed entity beans to the table that was created on its behalf.

Click the Next button to move the the Top-Down mapping options page shown in Figure 24.5. The first and most important option is the Target Database. Table 24.1 shows the list of databases currently supported by WSAD version 5.0. We will be using DB2 version 8.1 for our example. Database name will be the name of the target database. The Schema name is the name of the schema that you want all new tables to be a member of. This schema name will be used as the qualifier for the generated SQL. So, a table named EMPLOYEE that had the schema name set to TEST would appear in the generated SQL as fully qualified, (i.e., TEST.EMPLOYEE). Note, if you want to control the qualification of the queries based upon the login ID (this is the common case with DB2 that the default schema name used within a query will be the user’s login name if one is not supplied) you should enter NULLID for the Schema name. This name is treated special by the SQL generator so it will not add the schema qualification to the tables within the SQL queries. Therefore if the query being executed is being done using a DB userid of “bob” then the fully qualified table name would become “bob.EMPLOYEE”.

The Generate DDL option will create a table.ddl file for the newly generated database which can be used to export the contents to the actual database. The WebSphere 3.x Compatible option should only be used if you plan to target a 3.x version of WebSphere. This option will adjust the type mappings employed during the mapping so that they will be compatible for this version of WebSphere.

Now that all of the “top-down” mapping options have been set, the last thing to do is to click the Finish button. This will automatically generate a “top-down” mapping based on the selected options and the rules for “top-down” mapping that were described earlier. The mappings will be stored in the META-INF/backends/DB2UDBNT_V81_1/Map.mapxmi file. Figure 24.6 is the resulting Overview from the map editor which shows the new tables and their associated mappings to container-managed entities.
[image: image4.png]
Figure 24.5 Top Down Mapping Options

	Cloudscape, V5.0

	DB2 Universal Database V6.1

	DB2 Universal Database V7.1

	DB2 Universal Database V7.2

	DB2 Universal Database V8.1

	DB2 Universal Database for OS/390, V6

	DB2 Universal Database for OS/390, V7

	DB2 Universal Database for iSeries, V4R5

	DB2 Universal Database for iSeries, V5R1

	Informix Dynamic Server, V7.3

	Informix Dynamic Server, V9.3

	Informix Dynamic Server.2000, V9.2

	Microsoft SQL Server 2000

	Microsoft SQL Server, V7.0

	Oracle8i, V8.1.7

	Oracle9i

	SQL-92

	SQL-99

	Sybase Adaptive Server Enterprise, V11.9.2

	Sybase Adaptive Server Enterprise, V12

	Sybase Adaptive Server Enterprise, V12.5

Table 24.1 Supported WSAD V5 Databases

[image: image5.png]
Figure 24.6 Top Down mapping results
Bottom Up Mapping Example

A “bottom-up” mapping is used when there is a new EJB project without any Enterprise Java beans defined within it and you have a set of database tables that you would like to access with container-managed entity beans. In this case, WSAD creates a container-managed entity bean for each table within the database for the backend selected on the previous page. Also, WSAD adds a cmp-field to the key of the newly created container-managed entity for each column within the primary key of the table.

For this example, we will be using the DEPARTMENT table shown in the DDL in Listing 24.1. If you wish to follow along with this example, you will need to execute the following DDL against your database (i.e., DB2). Refer to your database documentation for instructions to execute the DDL.

Listing 24.1 EMPLOYEE DDL

CREATE TABLE BOTTOMUP.EMPLOYEE
 (EMP_NO INTEGER NOT NULL,
 FIRSTNME VARCHAR(50),
 MIDINIT CHARACTER(1),
 LASTNME VARCHAR(50),
 PHONE VARCHAR(25),
 HIREDATE DATE);
ALTER TABLE BOTTOMUP.EMPLOYEE
 ADD CONSTRAINT EMPLOYEE_PK PRIMARY KEY (EMP_NO);
Start by creating a new EJB project will need to be created. Create an EJB project named BottomUpExample and set the Enterprise Application to a new application named BottomUpExampleEAR. Refer to Chapter 20 for instructions to create an EJB project. Now follow the steps from the “top-down” example to open the EJB to RDB Mapping wizard on the new BottomUpExample EJB module. Select the new backend folder option as in the “top-down” mapping example. Click Next to go to the mapping options page shown in Figure 24.4 and this time only the Bottom Up option is available and it is selected.

Click on the Next button to continue to a page that is dynamic based upon whether you already have a logical database defined within your EJB project. In this example, the logical database does not exist. This means it is not necessary to already have a logical database defined within the EJB project in order to use the Bottom Up mapping option. So, you can immediately use this wizard to create container-managed entity beans based upon an existing set of database tables with just the EJB project created.

The next “bottom-up” mapping page, assuming no existing database within the EJB project, allows you to specify information to create a new database connection as shown in Figure 24.7. This is required because “bottom-up” mapping requires that logical database to exist within the EJB project. We will not go into details for every field on the connection page. If you need help, refer to the online documentation or the help for this page by clicking on F1. One other thing that should be pointed out on this page is the last option, Use existing connection. When this option is selected, you can select from database connections that have already been created either by using the Data perspective or the DB Servers view of the J2EE perspective (shown in Figure 20.6). Click on the Next button to proceed to the next page where the database tables can be selected.
The next page shows a tree view of all tables defined within the specified database. They are grouped based on the schema for which they were defined as shown in Figure 24.8. For example, in our case study, you would scroll to the USERID schema name and select it if the database tables already existed,. This would automatically select all of the tables associated with this schema. You are not required to select tables from the same schema grouping. Also, you should notice that you are not required to import all of the tables from a given database. Doing so would create an EJB module that would be unmanageable due to its large size. It should be noted that some tables may be imported even though you did not select it because the mapping tool requires target tables of foreign key relationships be imported as well.

[image: image6.png]
Figure 24.7 Database Connection wizard page

[image: image7.png]
Figure 24.8 Selective Database Import wizard page

Click Next to move to the next page which provides details for the generated container-managed entities as shown in Figure 24.9. The first option, Select a specification level, allows you to choose the level of EJB you would like to create, either 1.1 or 2.0. Note, with the 2.0 specification option, only local client view interfaces will be created. This is in accordance with our best practice of only using local interfaces for container-managed entities. The Package for generated EJB classes option provides you with the ability to determine the package for which the newly generated Java files will be defined. The Prefix for generated EJB classes provides you with the ability to define a prefix to be added to front of each EJB Java class name that is used to create a new Java class. If you enter a string it will be prefixed to the database table name to form the name of the associated Java class. If no prefix is specified this value is ignored. Note that this page would appear instead of the previous two if a database had already existed within the EJB project.

Now that all of the “bottom-up” mapping options have been set, the last thing to do is to click the Finish button. This will automatically import the selected table BOTTOMUP.EMPLOYEE table into the BottomUpExample EJB project , an Employee container-managed entity will be generated for the table, and new mappings will be generated between the imported table and the generated container-managed entity. The mappings will be stored in the META-INF/backends/DB2UDBNT_V81_1/Map.mapxmi file in the BottomUpExample EJB project. Figure 24.10 shows the Overview section of the mapping editor for this example. You can clearly see the naming of the container-managed entity and its fields reflects the table name and column names.
[image: image8.png]
Figure 24.9 Bottom Up Mapping Generation Options wizard page

[image: image9.png]
Figure 24.10 Bottom Up mapping results
Meet In The Middle Mapping Example

The “meet-in-the-middle” mapping approach only applies if container-managed entity beans and a logical database and its tables already exist within an EJB project. With this approach, only mappings are created and nothing more (i.e., no container-managed entity beans are created nor are database tables created). The mappings created will use simple name and type matching rules for matching tables to container-managed entities and columns to cmp-fields. With WSAD, there are independent type mapping rules for each supported database vendor (see Table 24.1). These type mappings are not made accessible for modifications and they are mostly derived from common sense.
For this example, you will need to start by creating another EJB project named MeetInTheMiddleExample using the same steps as in the Bottom Up mapping example. Next a container-managed entity needs to be created within this project. Refer to Chapter 23 for details on creating a container-managed entity. Set the following information for the container-managed entity using the EJB Creation wizard and use all other default values to create the container-managed entity.
Bean name: Employee
Default package: meet.in.the.middle.example
CMP attributes:

ssn : java.lang.Integer (Key)

firstName : java.lang.String

middleInit : char

lastName : java.lang.String

phone : java.lang.String

hireDate : java.sql.Date
Now follow the steps from the “top-down” example to open the EJB to RDB Mapping wizard on the new MeetInTheMiddleExample EJB module. Select the new backend folder option as in the “top-down” mapping example. Click Next to go to the mapping options page shown in Figure 24.4. Again both the Top Down and Meet In The Middle options are available. Select the Meet In The Middle option and click on the Next button. You are now presented with the same connection page as in the “bottom-up” example shown in Figure 24.7. At this point you can use the same connection that you used in the previous mapping example. This page appears since a logical database does not exist in the EJB project. If one had existed, you would not see this or the next page. Click the Next button to select the tables to import. The select Database Import page, shown in Figure 24.8, appears. Select the BOTTOMUP.EMPLOYEE table and click the Next button.
The next page, shown in Figure 24.11, has three simple mapping rules that are available: None, Match by Name, and Match By Name and Type. Selecting None creates a new (empty) mapping between the database and the EJB JAR within the EJB project but it does not map any of the container-managed entities. The Match by Name option will do the same as the None option except it will attempt to create a mapping for each container-managed entity. It creates a new entity mapping if the name of the container-managed entity matches one of the simple names of a database table (ignoring case). For example, if you have an EJB named Address, it will create a new mapping if a database table is found with the name Address or ADDRESS or any other case combination. This option also applies when creating mappings for cmp-fields which are mapped to database table columns with the same name. The last option, Match By Name, and Type, is nearly the same as the previous option except that when mapping cmp-fields to columns, both the name and type are used to determine if a mapping should be created. The name must match as in the previous option and the types must be compatible according to the type mapping rules for the selected database.

[image: image10.png]
Figure 24.11 Meet In The Middle Mapping Options wizard page

Select the Match By Name and Type option and click on the Finish button. This will import the BOTTOMUP.EMPLOYEE table to a new backend folder within the MeetInTheMiddleExample EJB project and it will create mappings between the Employee container-managed entity and the imported table. Also all cmp-fields are mapped to the correct columns in the EMPLOYEE table even though the names did not match exactly. The mapping rules were applied and the best matches were found. The mapping editor opens to reveal the resulting mappings shown in the Overview section of the mapping editor in Figure 24.12.
[image: image11.png]
Figure 24.12 Meet in the Middle mapping results
Existing Backend Folder Options

Now that you have seen an explanation of the different mapping options within the EJB to RDB Mapping wizard, we can return to Figure 24.2 to provide descriptions of the remaining two mapping options. These options should now be enabled since you have created at least one backend folder by using this wizard. With at least one backend folder available, the Use an existing backend folder is enabled. If you select this option, the backend folder list in Figure 24.2 is enabled. When you select one of the existing backend folders from the list, the two radio buttons under the list are enabled.

The first option, Re-execute mapping commands to react to model changes, is used to re-execute the mapping commands that were used to create the map file. For example, if you created the map file using the ”top-down” mapping option, this option will re-execute a “top-down” mapping command to pick up any changes that were made to the EJB module and reflect them in the database tables. You should be aware that this option will delete and recreate the mapped database tables in this scenario. Also note in this example, if you made changes to one of the database tables or the database in any way, this option will not have any effect since the mapping was created using the ”top-down” mapping option. The same is true if you first created the map file using the ”bottom-up” mapping option. This option will re-execute the ”bottom-up” commands to react to changes made to the database and reflect them in the EJB module. Note this will delete all cmp-fields and relationships as well as the methods that support them. The action will then re-create the cmp-fields and relationships and their associated methods in the container-managed entities based on the database tables.

One fact that should now be apparent is that you cannot mix mapping approaches. Once you have decided upon one, you must continue to use that approach or switch to using the “meet-in-the–middle” mapping approach if you want to make changes to both the container-managed entities and the database tables.

The second option, Open mapping editor on selected backend map, opens the mapping editor for the selected backend folder without running any commands or making any modifications to the file at all. This is just a convenience option for opening the mapping editor for multiple backend folders. You can do the same by double clicking on the desired backend mapping under the Maps section within an EJB Module from the J2EE Hierarchy view (see Figure 20.3).

EJB Mapping Editor

Now that we have described how to use the EJB to RDB Mapping wizard to create a new mapping for your EJB module, you are now ready to learn the basics of using the EJB Mapping editor. This is opened after running the EJB to RDB Mapping wizard. Figure 24.13 shows the contents of the EJB Mapping editor that was opened after creating a “top-down” mapping for the TimeSheetGroup EJB project used within the case study. You would use this editor if you are required to make manual changes to a “top-down” or ”bottom-up” mapping or if you simply use the “meet-in-the-middle” mapping approach.

[image: image12.png]
Figure 24.13 EJB Mapping Editor

The EJB Mapping editor is divided into three major areas: the Enterprise Beans list, the Tables list, and the Overview as shown in Figure 24.13. The Enterprise Beans list is a tree view of the EJB JAR, its contained container-managed entities, and their CMP and CMR fields. The Tables list is a tree view of the Database, its contained tables, and their columns and foreign keys. These two lists work together to create the desired mappings. In order for the map to be free of validation errors, you must map each element in the Enterprise Beans list to an element in the Tables list.

	Action Name
	Button Icon

	Create a new mapping
	[image: image13.png]

	Create mappings for children with matching names
	[image: image14.png]

	Create mappings for children with matching types
	[image: image15.png]

	Re-execute Mapping Commands
	[image: image16.png]

	Overview filter mapped objects
	[image: image17.png]

	Overview flip orientation
	[image: image18.png]

Table 24.2 EJB to RDB Mapping Editor Action Buttons

To create a mapping between a container-managed entity bean and a database table, select the desired container-managed entity bean from the Enterprise Beans list and the database table that you would like to map to from the Tables list. Next, click on one of the mapping toolbar buttons in order to create the mapping. The Create a new mapping button shown in Table 24.2 creates a mapping between the CMP bean and the selected table and nothing more. The Create mappings for children with matching names button shown in Table 24.2 does the same as the simple mapping button as well as creating mappings for each cmp-field to a table column where there is a column with the same name, ignoring case, within the selected table. The Create mappings for children with matching types button shown in Table 24.2 will also do the same as the simple mapping button and also create mappings for each cmp-field to a table column where there is an unmapped column with a type that can be mapped to the cmp-field type. The last two actions may be used even after a simple mapping has been applied as long as there is an unmapped cmp-field and there is an available column that can be mapped by the action. Note that any simple mapping can also be accomplished by simply dragging and dropping a member from the Enterprise Beans list to the Tables list and vice versa.

[image: image19.png]
Figure 24.14 Mapping List Button Bar

Both the Enterprise Beans list and the Tables list have the same button bar (shown in Figure 24.14). The actions associated with these buttons are merely convenience actions to make traversal through the lists simpler. We will briefly explain the actions from left to right. The first two actions change the current selection to the next mapped object and the previous mapped object correspondingly. The third and fourth buttons are similar to the first two buttons except that they change the current selection to the next unmapped object and the previous unmapped object. The fifth button, which looks like a window shade, is used to filter the list so that only unmapped objects are displayed when the button is pressed. The last button has the same action for both lists but it points in the opposite direction for each list. This button will select the mapped object(s) from the other list for the currently mapped selection. For example, if the city cmp-field was selected for the AddressEJB from the Enterprise Beans list and this button was selected, the CITY column for the ADDRESSEJB table in the Tables list will be selected.

The Overview section of the Mapping editor provides a view of the current mappings from the point of view of either the Enterprise Beans or the Tables. By default the view is with respect to the Enterprise Beans and it shows only mapped members. To see the unmapped objects as well, you can click on the Overview filter mapped objects button shown in Table 24.2. The view is divided into two lists Enterprise Beans and Tables similar to the lists above. The way to read this view is to look at an object from the left list like the AddressEJB and then look directly at the object to the right to see which object(s) it maps to (i.e., ADDRESSEJB table). If the Overview filter mapped objects button is selected, the object to the right will be empty if the object to the left is not currently mapped. You can change or create a mapping by selecting the element in the right list and selecting from the available unmapped elements (tables or columns in this case) drop down tree list.

The mapping actions described above, Remove Mapping, Match by Name, and Match by Type are all available from the Overview context menu for the element selected in the right list. You might have noticed by now that we continue to refer to the lists as right and left as opposed to Enterprise Beans list and Tables list. The reason for this is that the Enterprise Beans list is not necessarily always on the left. Remember that the right list is the master showing the mappings for these elements. The default is to show the container-managed entity beans but you can switch the lists such that the Tables are on the right and Enterprise Beans are on the left. This is accomplished with the Overview flip orientation button shown in Table 24.2. This is useful if you like to create or view mappings based on the database definition.

The Mapping editor also has an outline view, shown in Figure 24.15, which is used to navigate between existing mapped objects. The outline shows all of the mappings that have been created between container-managed entity beans and database tables. Notice that the selections are all linked within each view. So, if you select a mapping from the outline, the corresponding EJB object is selected from the Enterprise Beans list, the corresponding database object is selected from the Tables list, and the mapping is also selected within the Overview. The outline contains the same context menu actions as the Overview where a mapping exists.

[image: image20.png]
Figure 24.15 Mapping Editor Outline

There is one additional mapping action that we have yet to mention which appears in virtually all of the context menus and the workbench toolbar. This is the Re-execute Mapping Commands action which has an associated toolbar button shown in Table 24.2. This action is equivalent to using the Re-execute mapping commands to react to model changes from the first page of the EJB to RDB Mapping wizard as shown in Figure 24.2. This action is real nice if you make a change to the EJB module and you first performed a ”top-down” mapping. This action will cause the ”top-down” mapping command to be re-executed which would cause a new database artifact to be created and mapped to the new features in the EJB module. The same is true if you did a “bottom-up” mapping and you changed the database tables or if you did a “meet-in-the-middle” mapping and you changed either the EJB module or database tables or both.

Re-executing Mapping Commands

The Re-execute Mapping Commands action accomplishes its task by re-executing the persistent commands that were serialized within the Map.mapxmi file. This is the same action that would be executed if you had selected the Re-execute mapping commands to react to model changes option from the EJB to RDB Mapping wizard shown in Figure 24.2. Whenever a mapping command is performed, it is tracked and added to the persistent commands list that is saved with the file. So you can perform a “meet-in-the-middle” mapping initially and then map a cmp-field that was not automatically mapped by the command to a database column. If you later select the Re-execute Mapping Commands action, this last mapping command is also executed since it was tracked and added to the persistent command stack. It should be noted that only commands that create new mappings are tracked. Delete mapping commands are not tracked.

We would like to re-emphasize a point that was made earlier when describing this option in the EJB to RDB Mapping wizard. If you select the Re-execute Mapping Commands either from the toolbar or the context menu, and the Top Down mapping option was used to create the map, all database tables will be deleted and recreated based on the container-managed entities in the EJB module. Also, if you had used the Bottom Up mapping option to create the map, the Re-execute Mapping Commands option will delete all of the cmp-fields and relationships in the mapped container-managed entities. This will also cause all of the methods that were initially created on the entity to be removed. Then new cmp-fields and relationships will be created based on the table that the container-managed entity is mapped. All methods that were added by the user will be maintained and not deleted. Any table that is removed will cause the corresponding container-managed entity to be deleted from the EJB module.

Re-execute Mapping Commands Alternative

We have just seen how you can use the Re-execute Mapping Commands option to create new mappings to pick up either changes to the database or changes to the EJB module but not both. So you have a problem if you used the Bottom Up mapping option to create the new map and later you update one or more of the container-managed entities that were generated and possibly add a new database table. The problem is that you want to use the Re-execute Mapping Commands action to pick up the changes to the database (i.e., the new table) but that will delete all of the container-managed entity generated methods, cmp-fields, and relationships and re-create only the ones based on the table. This is not the desired effect because you want to preserve your changes to the container-managed entities.

This can be solved by two different methods. First, you could create a new container-managed entity for the new table and then use the “meet-in-the-middle” mapping approach to map the new container-managed entity and its cmp-fields to the new database table and its columns. This seems like a lot of work just because you want to keep your modifications to the container-managed entities. The good news is that there is a much simpler solution. Let’s use a very simple example to show how this would work.

We start by creating a database and one table, TABLEA, or you could simply import a table from an existing database. Next we use the EJB to RDB Mapping wizard to generate a new “bottom-up” map which would create a Tablea container-managed entity. So far we have done nothing new that we have not already described earlier in the chapter. Now, let’s assume that you wanted to add additional business logic to the ejbCreate method generated on the Tablea container-managed entity. Now the Tablea container-managed entity has been modified beyond the point of its generation using the mapping wizard.

Next, you might update the database by adding a new table, TABLEB. You would like to have a new container-managed entity created for TABLEB and have a new mapping defined for this table and bean. At first guess you think about using the Re-execute Mapping Commands action to pick up the database changes. Remember when re executing a “bottom-up” mapping command, the cmp-fields and relationships of the container-managed enties are deleted (this also updates the ejbCreate method) and new ones are created to reflect the current shape of the database and its tables (the ejbCreate method is re-created at this point). This is not the desired effect because you have modified the Tablea bean.

This is where are second alternative comes in. From the Mapping editor (as shown in Figure 24.13) you can select the new database table, TABLEB, from the Tables list. Now you can drag the table to the EJB JAR (the root object in the tree view) in the Enterprise Beans list. Once you drag the table over the EJB JAR, the icon will switch to a “plus” symbol indicating that it can be dropped. This is only possible because you created the map using the ”bottom-up” mapping option so you can drag and drop tables to the EJB JAR. If you drop the new TABLEB on the EJB JAR, WSAD creates a new Tableb container-managed entity with cmp-fields for each column in the table. It also creates a new mapping for the new container-managed entity and the table as well as for each cmp-field and its associated column. This is what you want since the new table will get a new container-managed entity created for it while leaving the other container-managed entities intact. Also, if just one or more columns were added to TABLEA, you can drag and drop the column to the Tablea container-managed entity to have a new cmp-field created and mapped.

Sidebar: Importing changes from the Database

It is very common for individuals to import all tables for a specific schema within the database and then map it to a set of container-managed entities. At a later point in time, changes may be made to the physical database and you will want to import those changes back into your EJB project. You will often not be aware of the specific changes so it is safer to import the entire set of tables within the schema and/or database. This causes a problem with WSAD V5.0.1 which will manifest itself as a loss of all of your mappings.

This loss of mappings takes place because the map file has references to the logical database tables and columns. Each of these tables and columns has a generated ID to ensure that they are unique. When the tables are imported a second time, new files are created to store the meta-information and, therefore, new IDs are generated. These new IDs are different than the ones that are in the map file, thus causing the problem. A more in-depth discussion of the problem and a new feature to correct the problem can be found in the article “Importing Database Table Changes into an EJB Module in WebSphere Studio While Preserving References” at http://submit.boulder.ibm.com/wsdd/library/techarticles/0305_berg/berg.html
This example was for “bottom-up” mapping but there is a corresponding option when using ”top-down” mapping. In this case, you created the map using the Top Down mapping option and then made changes to the database tables. If you create a new container-managed entity then you will want a new table to be created for the bean but do not want to re-execute the “top-down” mapping command because that would delete the current database tables. This means that you will lose any changes that were made to the database tables. Instead, you can open the map editor and drag the new container-managed entity from the Enterprise Beans list and drop it on the database from the Tables list. This will create a new database table, create columns for each cmp-field and create new mappings for each of these, all without deleting any of the existing database tables. Also, if just one or more cmp-fields were added to Tablea, you can drag and drop the cmp-field to the TABLEA table to have a new column created and mapped.
Sidebar: Mapping Directions

Every map that is created has a “direction” associated with it. This direction indicates whether it was created using the “top-down” or “bottom-up” approach. These are the only two directions. If the “meet-in-the-middle” approach was used, the mapping will indicate the “top-down” direction by default. This direction will dictate the direction that objects can be created. For example, if “bottom-up” was used to create the mapping, you will be able to drag and drop changes to the database or tables onto the corresponding EJB JAR or container-managed entity but you will not be able to drag and drop container-managed entity changes to the database. The opposite is true for the “top-down” direction.
Defining and Using Converters

By default, complex EJB properties (i.e., subclasses of java.lang.Object which are not Java primitive type wrappers) that are Serializable are serialized and mapped to an appropriate binary database column. While this does allow for properties of arbitrary Java types, it is not an optimal solution. Since the column is binary, it is impossible to query this column using standard SQL query tools. Likewise, the performance of serializing and deserializing an object into a Binary Large Object (BLOB) can be poor. In order to improve the mapping options for these types, WSAD has the concept of Converters. These helper classes provide an open framework for converting between object types and database types used by the mapping and deploy code specific to WebSphere. If you used the EJB development environment in VisualAge for Java in the past, the converters in WSAD are very similar to the converters used in VAJ.

WSAD provides a number of common converters for use by the EJB to RDB Mapping editor within any EJB project; however, you may need other types of conversion. If this is the case, you will need to create your own converter class and define this converter so that the EJB mapping framework will be aware of it. This is done by using the Converter or Composer wizard. To help demonstrate how to define and use a converter, edit the date cmp-field of our TimeSheetEntryEJB CMP bean from the TimeSheetGroup EJB module from a java.lang.String object type to a java.util.Date using the edit action on the Beans page of the EJB Deployment Descriptor editor. Also change the DATE1 column from the TIMESHEETENTRYEJB table to be typed to DATE from VARCHAR using the Table editor.
First we begin by defining and creating a new converter class. Start by selecting New > Other > EJB > Converter or Composer from the workbench menu bar. This will open the EJB Converter or Composer wizard shown in Figure 24.16. Select the Converter radio button to create a new converter and then enter the EJB project in which the converter will be defined. Then provide a fully qualified name for the converter class (com.wsbook.casestudy.ejb.DateToStringConverter) and its supertype name. The supertype is a combo box because you must select an already defined converter class. If you do not have a need for a specific supertype, use the default com.ibm.vap.converters.VapAbstractConverter. Lastly, we must define the target type of the converter. The target type is the Java type that the database type will be converted to. In this example, we choose java.lang.String. You should note that the Generate a converter stub class option is checked by default. If the converter class name specified already exists, you should deselect this option in order to create a converter definition using the existing converter class. This option will automatically generate the new converter class for you leaving only two methods to be implemented.

[image: image21.png]
Figure 24.16 EJB Converter Wizard

When the wizard finishes, you will notice that it has created new file in the EJB project named UserDefinedConverters.xmi. This file contains the definition of converters that were defined specifically for this EJB project. If you would like to share these definitions with other EJB projects, you will need to either re-define the converter within each EJB project that you would like to use it or you can simply copy this file to the other EJB projects. You will also need to ensure that the converter class is accessible to the other EJB projects by ensuring it is on both the development time and runtime classpaths. One way to do this would be to put the converters in a separate project and treat them as utility JAR files (see chapter 18 for more details about configuring J2EE projects).

There is also a new Java class defined within the TimeSheetGroup EJB project. If you open a Java editor on the com.wsbook.casestudy.ejb.DateToStringConverter Java class you will see that the converter class is stubbed in for you. The only thing left to do is to implement the dataFrom(Object) and objectFrom(Object) methods. The dataFrom(Object) method is used to convert the java.lang.String object type that is passed to a java.sql.Date type to be used when writing to the database.

 public Object dataFrom(Object anObject) {

//date in format "mm-dd-yyyy"

Date date = null;

try {

String dateString = (String) anObject;

DateFormat formatter = new SimpleDateFormat("MM/dd/yyyy");

java.util.Date parsed = formatter.parse(dateString);

return new java.sql.Date(parsed.getTime());

} catch (ParseException e) {

// can't do anything, so eat the exception

}

return date;

}

The objectFrom(Object) method is used to convert the java.sql.Date database type that is passed to a java.lang.String type to be used when reading from the database.

 public Object objectFrom(Object aField) {

//return a String in format "mm-dd-yyyy"

java.sql.Date date = (java.sql.Date) aField;

String value = null;

DateFormat formatter = new SimpleDateFormat("MM/dd/yyyy");

value = formatter.format(date);

return value;

}

Now that we have defined our converter, we are ready to use it within our map. Return to the EJB to RDB Mapping editor for the TimeSheetGroup EJB project. Select the date cmp-field from the TimeSheetEntryEJB within the Overview section. Notice that the Properties view has changed to show the properties for the current field mapping. You could achieve the same results by selecting the field mapping from the Outline view. In the Properties view, select the Transformation value field. It should change to a combo box. Scroll to the bottom of the list to see the new user defined converters. Select the new com.wsbook.casestudy.ejb.DateToStringConverter. Now this field mapping has a converter defined for it and this converter will be used when the deployed code is generated.

Defining and Using Composers

Composers, much like converters, are another mechanism for serializing a custom Java type to the database without using a BLOB column to accomplish this task. This is common with container-managed entities when using dependent values which are defined as concrete Java classes that are serializable and they can be the type of a cmp-field. The internal structure of dependent values is not defined in the deployment descriptor. Composers are unique to the mapping framework used by WSAD and the deploy code specific to WebSphere. A composer will take a single cmp-field type and map it to multiple database table columns, thus the table columns compose the object type used by the cmp-field. For example, a common composer type provided with WSAD is a composer for joining title, firstName, and lastName database columns together into a single name attribute in a container-managed entity. In order to use a composer, we must first define it using many of the same steps that we did when creating the converter.

First, open the EJB Converter or Composer wizard following the same steps used to create a converter. Now select the composer radio button. The wizard page changes to display the contents for creating a composer as shown in Figure 24.17. Several of the fields are shared with the creation of a converter. First. specify the EJB project in which the composer will be defined. Then enter the fully qualified name of the composer class, (com.wsbook.casestudy.ejb.OfficeLocationComposer). Like the converter, we must select a supertype for our composer from the list of already defined composers. If there is not a known supertype, use the default VapAttributeComposer type. Enter the qualified Java target type for the composer (com.wsbook.casestudy.ejb.OfficeLocation). The type does not need to exist and probably will not exist at this time.

The Fields section is where the composer differs from the converter. In this section, it is necessary to define the fields within the target type (i.e., com.wsbook.casestudy.ejb.OfficeLocation) that will be mapped to individual database columns. For this example we added four columns that are used to compose a person’s unique office lcation. This was done by selecting a composed field type from the combo box and clicking on the Add button. This adds the field to the table. We then can select the Name column entry and type in a new name of the field. Again the generation option, Generate a composer stub class, appears at the bottom of the wizard. With this option selected, a new composer class will be generated and the target type will be generated. Upon finish the composer class and the target type class are generated and the composer is defined in the new UserDefinedComposers.xmi file.

[image: image22.png]
Figure 24.17 EJB Composer wizard

The target type that is generated is just a data structure that is free of compile errors and is ready to be used but you may make changes to suit your needs. Just like with the converter, will need to implement the dataFrom(Object) and objectFrom(Object[]) methods. The dataFrom(Object) method takes the target type (com.wsbook.casestudy.ejb.OfficeLocation) and returns an Object array with composed fields in the order that they are defined in the getAttributeNames() method (e.g.., the order that they were defined within the wizard).

public Object[] dataFrom(Object anObject) {
 Object[] anArray = new Object[4];
 if (anObject != null) {

OfficeLocation location = (OfficeLocation) anObject;
 anArray[0] = location.getState();
 anArray[1] = location.getCity();
 anArray[2] = location.getBuilding();
 anArray[3] = location.getOffice();
 }
 return anArray;
}

The objectFrom(Object[]) method receives the database column types passed within the Object[] in the order in which they appear in the getAttributeNames() method. It must return an instance of the com.wsbook.casestudy.ejb.OfficeLocation class with its attributes appropriately set.

public Object objectFrom(Object[] anArray) {

OfficeLocation location = new OfficeLocation();

location.setState((String) anArray[0]);
 location.setCity((String) anArray[1]);
 location.setBuilding((String) anArray[2]);
 location.setOffice((String) anArray[3]);
 return location;
}

In order to use this new composer first add a new office cmp-field to the EmployeeEJB using the EJB Deployment Descriptor editor on the Beans page within the CMP Fields list of the selected bean. Set the type to be the new composer target type (com.wsbook.casestudy.ejb.OfficeLocation). Also add four new columns: STATE, CITY, BUILDING, and OFFICE which are all typed to VARCHAR to the EMPLOYEEEJB table. This was done by using the Table editor that is opened by selecting the USERID.EMPLOYEEEJB table from the TimeSheetGroup database under the Databases section in the J2EE Hierarchy view and selecting the Open action from the context menu.

Now open the EJB to RDB Mapping editor for the TimeSheetGroup EJB project so that you can map the new office cmp-field. Select the office cmp-field from the EmployeeEJB from the EnterpriseBeans list and select the STATE, CITY, BUILDING, and OFFICE columns from the EMPLOYEEEJB table from the Tables list. Then select the Create Mapping context menu option or button from the workbench toolbar. This will open the EJB Composer wizard shown in Figure 24.18 since you are mapping one cmp-field to multiple database columns. First select the new composer from the drop down list (i.e., com.wsbook.casestudy.ejb.OfficeLocationComposer). This populates the table with the attributes defined when you created the composer. For each attribute, select one of the four columns selected in the mapping to be directly mapped to the attribute. The new mapping is defined after pressing Finish. If you look in the Overview section, you will see that the office cmp-field is now mapped to four columns. If you need to change the composer, you can do so from the Properties view when the mapping is selected from the Overview or the Outline views. Clicking on the button for the Transformation class will launch the EJB Composer wizard once again.

[image: image23.png]
Figure 24.18 EJB Composer wizard

Multiple Mapping Backend Support

We first touched on the mapping backend support when we were describing the EJB to RDB Mapping wizard. The first page of this wizard (Figure 24.2) provided options for creating a new backend folder or use an existing backend folder when creating or making changes to the map file. When we created the ”top-down” mapping for our TimeSheetGroup EJB module a new backend folder was created based on the type of the database. Since we first mapped to a DB2 V8.1 database, a backend folder was created with the name DB2UDBNT_V81_1. The last number will be incremented if we create another backend mapping to the same database type. Figure 24.19 shows the TimeSheetGroup EJB project structure within the J2EE Navigator provided with WSAD. Notice that the location of all backend folders will be within the META-INF/backends folder.

[image: image24.png]
Figure 24.19 Backend folder structure

At this point you are probably asking yourself what it means to have multiple backend folders. Whenever you generate the deploy code for an EJB project that contains multiple backend folders, deploy code is created for each backend folder. For example you might find it convenient to use DB2 UDB as a backend for unit testing, while your target production environment is DB2 zOS. You can create a backend mapping for both of these backends and have the deployed code generated for both at the same time. This means that the deploy code would be exported to the EJB JAR file during export. That means that a JAR can be deployed once and run against many different database environments.

Only one backend is used by a running application server. Determining which backend to use is accomplished by setting the current backend within the EJB Deployment Descriptor editor. When you open the EJB Deployment Descriptor editor, scroll to the bottom of the Overview page. Here you will see the Backend ID section as part of the larger WebSphere Bindings section (shown in Figure 24.20). The drop down box in this section will contain an entry for each backend that has been created for the project. The current backend will be set automatically during deploy code generation if it has not already been set.

[image: image25.png]
Figure 24.20 Current Backend section

Exporting Database Tables

Once you have created your mappings for the EJB project, you must export the logical database model to a relational database in order to do any testing of the EJB module. This is assuming that you did not first import the database model from a relational database as when doing a ”bottom-up” mapping or possibly a “meet-in-the–middle” mapping. There are two ways to export the logical database tables to a relational database: export the database directly or execute the table.ddl file. Both methods are simple to use but, depending on your needs, one method may be better than the other. Typically the production database is tightly controlled and you will not be able to export the logical database to the physical database. However, you typically have a private database that serves as a testing ground prior to making changes on the production database. This is where the following export options are useful.
The simplest approach is to export the logical database model directly to the relational database by using a wizard that generates dynamic SQL statements that are executed against the database. This is accomplished from the J2EE Hierarchy view within the J2EE Perspective (see Figure 20.2). Expand the Databases group so that you can see each of the database models that have been defined. Once you find the database that you want to export, select the Export to server... context menu action. This action opens the Data Export wizard shown in Figure 24.21. The first page of the wizard displays a tree check box view starting with the root object selected and all of its children expanded out. So in this example the wsbook database contains one USERID schemata which in turn contains several tables. Only the selected objects are exported to the relational database. Note that you can select any database component within the J2EE Hierarchy view and still select the Export to server… context menu action. If you select the USERID schemata from the J2EE Hierarchy view and select the Export to server… action, the first page of the Data Export wizard starts with the USERID schemata and includes only its child components.

[image: image26.png]
Figure 24.21 Data Export Wizard

The second page of the wizard, shown in Figure 24.22, provides options that you can choose when exporting to the database. The first three options allow you to control when the export transaction is committed. By default, the commit changes only upon success option is selected. The last three check boxes are probably the most interesting because they actually control the contents of the SQL statements that will be executed on the database. The first option, Generate fully qualified names, indicates whether you want to include the schemata name for each table (e.g., SCHEMANAME.TABLENAME). The second option, Generate delimited identifiers, will add quotation marks around the created objects within the statement (e.g., CREATE TABLE “TEST.TABLEA”). Use this option of column names that contan spaces. The last option, Generate associated DROP statements, will add DROP TABLE statements for each table being created as well as DROP SCHEMA statements for each schema. This last option is extremely useful when you already have existing databases and you want to overwrite them with a new definition.

The last wizard page is the Database Connection page which is exactly the same page that was used during the ”bottom-up” and ”meet-in-the-middle” mapping approaches earlier in the chapter (see Figure 24.5). You can go back to the previous sections to learn more detail about these sections but it is basically used to provide detailed information for making a connection to the database you wish to use as the target of this export. You can either supply the information to create a new connection, or select from an existing connection that has already been defined.

The second method to export the tables to the database is to execute the Table.ddl file. This file contains the necessary SQL statements to create the database, schema, and tables. This file was generated when running the EJB to RDB Mapping wizard if you had the Generate DDL option selected (shown in Figure 24.4). If you did not have this option selected at the time that you created the mapping, you can always select the EJB module from the J2EE Hierarchy view and then select the Generate > Schema DDL context menu option. This will produce the static Table.ddl file within the current backend folder. This file is convenient because you can make modifications to suit your needs. It should be noted that the Table.ddl that is generated does not contain foreign key statements since referential integrity sorting (the sorting of SQL statements to ensure database table constraints are not violated) is not maintained by the generated SQL or the WebSphere EJB container.

[image: image27.png]
Figure 24.22 Data Export Options wizard page

Remember that these export options are typically used to export to a private database for the purpose of testing. You can use the generated DDL file to request changes to your DBA on the production database.
To export tables to the database using the Table.ddl file, select the file from the appropriate backend folder within the J2EE Navigator view. Next, select the Run on Database Server context menu action. This will open the Run Script database wizard shown in Figure 24.23. The first page of this wizard contains a check box list of each statement within the script file. You have the option of deselecting any statement which you do not want to be executed at this time. The second page of the wizard has the same three commit options as displayed in the Data Export Options wizard page shown in Figure 24.22. The last page is the same Database Connection page used in the previous data export wizard and the EJB to RDB Mapping wizard.

[image: image28.png]
Figure 24.23 Run Script wizard

EJB Query Language

Thus far you have seen several basic mapping techniques for mapping container-managed entity beans to relational database tables. These basic mappings provide the necessary information for generating the deployment classes which have SQL statements used to access a set of database tables. The basic SQL queries that are generated support creation, read, update, and delete (CRUD queries) of the container-managed entity beans but there are many situations where you would like addition queries for one of these beans. In particular, only a findByPrimaryKey method is provided based on the EJB specification. However, you usually want to search by other criteria as well. This is accomplished using EJB queries written with the EJB Query Language (EJB QL) which is a newly defined concept in the EJB 2.0 specification.

EJB QL is used to define queries in terms of persistent properties of the container-managed entity which makes the query definitions portable. EJB QL allows for the selection of entity objects or other values based on its abstract schema types and relationships. The abstract schema of a container-managed entity bean is a persistence representation of the bean that is based on the persistent properties (cmp and cmr fields) and not on the actual database table mappings. This is what allows EJB QL queries to be portable.

The abstract schema names specified by the abstract-schema-name elements in the deployment descriptor are used to denote the abstract schema types in EJB QL. Within WSAD, the abstract schema name of a container-managed entity is defaulted to the name of the bean at creation time. The abstract schema name can be modified in the Abstract schema text field when the bean is selected on the Beans page of the EJB Deployment Descriptor editor. There are two types of EJB QL queries that can be specified within the deployment descriptor, Finder and Select queries.

1. Finder queries are used for selecting entity objects using finder methods on the home interface. Finder methods may be exposed to clients of the entity bean.

2. Select queries are used for selecting entity objects or values derived from an entity bean’s abstract schema type using select methods defined on entity bean class. Select methods defined on the entity bean class are not exposed to the clients of the entity bean.

EJB QL uses a syntax very similar to SQL which explains why each statement string must contain a SELECT clause and a FROM clause and it may contain a WHERE clause. The SELECT clause is used to determine the type of the objects or values to be selected. The FROM clause is used to designate the domain for which the expressions specified by the SELECT and WHERE clauses of the query apply. The purpose of the optional WHERE clause is to restrict the results returned by the query.

WSAD provides tooling for creating, editing, and deleting EJB QL queries, their statements, and the query methods. We will walk through a couple of examples where we will create a finder query and a select query. Along the way we will provide more details regarding the query methods and the EJB QL statements. First we will start by adding a finder method to the DepartmentEJB entity from our case study. You will need to open the EJB Deployment Descriptor editor by selecting the TimeSheetGroup EJB module from the J2EE Hierarchy view and selecting the Open With > Deployment Descriptor Editor context menu action. Turn to the Beans page and select the DepartmentEJB entity from the list of defined beans. The Queries section, about three quarters of the way down on the page, displays EJB QL queries defined for the selected entity bean.

From the Queries section, we are going to create a new finder query by clicking on the Add button to launch the Add Finder Descriptor wizard shown in Figure 24.24. The Method set of radio buttons allow you to choose whether you want to define an EJB QL query element for an existing query method or if you would like to create a new query method for the new EJB QL query element. The Method Type group provides two radio buttons to indicate which type of query element and method you would like to create. You can either create a new find method which will be defined on the home interface or an ejbSelect method that will be defined on the bean class.
For find queries only, the Type entry is enabled. It indicates whether the new finder query method is defined on the local home interface or the remote home interface. The possible return type values are limited based on the home interface type that is selected for the find query. For example, if the find query is defined on the local home interface, the resulting return value or values must be of the local interface type.
For ejbSelect queries, the return value type can be any Java type but if a Collection of client interfaces is returned you may need to select the Return remote entities check box. This check box is only enabled for ejbSelect queries and it maps directly to the result-type-mapping element in the deployment descriptor. If the check box is selected, then it is assumed that the returning objects in the Collection will be the remote interfaces of the selected container-managed entity. If the check box is not selected, then local interface types are assumed.

[image: image29.png]
Figure 24.24 EJB QL Query Method wizard page

The remaining field values on this wizard directly affect the new method that is about to be generated. If the Existing method option was selected, a list of methods based on the Method Type would appear for selection with the EJB QL deployment descriptor element. The Name field is the name of the method. As defined by the specification, the method name must begin with find if the find method type is selected and ejbSelect if the ejbSelect method type is selected. You may add Java parameters to the Parameters list by clicking on the Add button to the right of the list. There must be a parameter for each input parameter within the query statement in the same order that they are defined in the statement. The Return type is the resulting return type of the method. See the previous paragraphs for restrictions on this field’s value.
[image: image30.png]
Figure 24.25 EJB QL Statement wizard page

Now that enough information has been gathered to create the method, it is now necessary to enter the actual query statement written in terms of EJB QL. The second wizard page, shown in Figure 24.25, has several read only text fields that are to be used for informational purposes only. This includes the Bean name for which the query is being defined, the Abstract schema name as defined within the deployment descriptor, and the Query method name which is the actual signature of the query method. You can then enter a Description for this query element which will appear in the deployment descriptor. The most important field is the Query statement because this is where the query statement is defined. To help with creating this statement, WSAD provides a Select a sample query drop down box. This drop down box contains a number of predefined query statement patterns. When a sample query statement is selected, a valid EJB QL statement is entered in the Query statement field for the specified bean. For example, a Single Where Predicate sample query would enter the following statement for our DepartmentEJB.

select object(o) from DepartmentEJB o where o.name is null

The statement uses the abstract schema name, DepartmentEJB, to select instances of the bean. The WHERE clause uses the cmp-field name for comparison purposes. In most situations it will be necessary to modify the sample query to suite your needs. In this example, we will modify the statement to take an input parameter which will be compared with the name cmp-field. Below is the modified statement.

select object(o) from DepartmentEJB o where o.name = ?1

Input parameters are designated by a question mark (?) followed by an integer indicating the parameter position in the method definition we created earlier. The conditional expression may also contain literals such as strings or integers. The statement that we have defined will return the instance of the DepartmentEJB bean that has its name cmp-field equal to the String parameter value passed to the query method. After clicking on the Finish button, the following query element is defined in the EJB deployment descriptor.

 <query>

<description></description>

<query-method>

<method-name>findByName</method-name>

method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>select object(o) from DepartmentEJB o where o.name = ?1</ejb-ql>
</query>
The findByName(java.lang.String) method shown below is also generated on the DepartmentEJBHome interface.

public java.util.Collection findByName(java.lang.String aName) throws javax.ejb.FinderException;
EJB QL queries are powerful since they can be written in terms of the schema types so that it is portable. This portability does come with a price however. EJB QL statements are not as flexible as typical SQL statements since EJB QL statements are written in terms of bean properties that must be translated into SQL statements. This means that not all SQL statements are supported in EJB QL. Chapter 11 of the Enterprise Java Bean 2.0 specification provides more detailed information for defining EJB QL query statements.

Summary

In this chapter we have shown you the basics techniques for mapping container-managed entity beans to a set of database tables. We described the three main techniques used by the WSAD EJB to RDB Mapping wizard.

· Top Down mapping

· Bottom Up mapping

· Meet In The Middle mapping

We have provided a general overview of the functions provided by the EJB Mapping editor so you can create, update, and delete mappings for container-managed entity beans to database tables. When a direct mapping is not possible, we demonstrated how to create converters and composers and how to use them within the EJB Mapping editor. Once a mapping is created to a logical database model, we described steps to export this logical database model to an actual relational database. Finally, we introduced the query concept of EJB QL as a means to add additional query statements that are beyond the CRUD query statements generated for all container-managed entities. Chapter 25 continues by providing more advanced EJB structures and how to map them using the tools described in this chapter.

Figure 24.4 Select mapping option page

54

