Chapter 2

Introduction to the Case Study

Learning a new technology is often complicated by the fact that most sources of information tend just to dump a lot of acronyms and new terms on your head without providing any context. It’s just as important to understand where and why to use a new technology as it is to understand how to use the technology. In this book we’ll present most of the examples of how you use each technology in the context of a case study about a company developing a simple J2EE application for tracking time worked on projects.
This sort of time tracking is common in many different kinds of companies; for instance consulting companies and legal firms track time spent on projects so that they can bill their clients for their time. Many other companies have in-house service groups (such as IT organizations) that must track time for internal billing purposes. What’s more important, though, is that the example is complicated enough, both from a UI perspective and a domain object perspective to provide a backdrop complex enough to show you how to apply the different J2EE technologies in a real-world environment.

Case Study Analysis and Design Artifacts

While a book of this nature is not an appropriate place to discuss all of the ramifications of performing a detailed analysis and design of a web-based application, we hope to at least convey a sense of the kind of process that is followed, and some of the artifacts that can be produced. In designing our application, we took a simple “Use Case Driven” approach, similar with that described in [Fowler]. We will show the analysis and design artifacts using UML
 notation, again as described in [Fowler].

Sidebar – What type of A&D Process is appropriate for Web Applications?

One of the questions that we are commonly asked in our consulting practice is what advice we can give about how to go about setting up a Development Process for Web Applications. The problem is that Enterprise Java applications can be approached from two sides – we call these two sides web-up and enterprise-down.

The web-up approach is where a web site built using very ad-hoc, seat-of-the-pants development methods must suddenly be re-architected to scale up to thousands, or millions of users to meet new demands. In this case, we see that there is often no development process in place, as it has not been necessary in the small-team environment that most web shops employ. The other approach is where a traditional IT organization finds it must reinvent itself to address the needs of customers and partners on the global Internet. In this case, there is often a set of development practices in place, but they do not necessarily apply to the development tools, techniques, and timescales that web development necessitates.

We have found there is a “happy medium” between the two where most groups doing Enterprise Java development can reside. We often recommend that our clients begin by looking carefully at two particular books – Extreme Programming Explained, by Kent Beck [Beck] and UML Distilled, Third Edition, by Martin Fowler [Fowler].

Extreme Programming (XP), the subject of the former book, is a radical revisiting of some old theories about software development. It proposes a very rapid, highly productive development cycle that is characterized by constant testing, minimal up-front design, and tight control of software iterations. We have seen several cases where small teams (in the range of 3 to 10 programmers, which is about the limit of what XP can handle) can produce very high-quality software in a very short time using this process. On the other hand, there is often a need for some slight formalism in analysis and design artifacts, specifically where developers are learning new technologies, and need to be able to see, at a glance, where the new technologies fit into an overall picture of a software system. For this purpose we often recommend that an XP-like process be combined with some (but not all) elements of UML. Since many web programmers (coming from both sides) are very visual people, we have seen that they may prefer a more diagrammatic approach to rapid design than the text-based CRC-card approach suggested by [Beck]. We often take this “XP plus UML” approach ourselves, and it is what we recommend for most small teams beginning to learn Enterprise Java technologies.

However, there is a need for a more large-scale approach in some cases. If a team is large (over about 15 people total) or must produce specific requirements and design documentation to fit an existing corporate or governmental process, then a more elaborate technique like the Rational Unified Process (or RUP, described in [Jacobson]) may apply. While RUP is a well-understood and complete process, we feel that it may be overkill in many cases, as it does not accommodate itself well to either web timescales or web team sizes. However, there are those cases for which it must be chosen.

Another approach that is just emerging, and is particularly well suited for developing enterprise applications, is Model-Driven Development (MDD). MDD separates concerns by developing a platform-independent model (PIM) of the business application. This model focuses on the business domain simplifying the domain discovery process by separating out the complexities introduced by architecture and implementation domains. The PIM is then translated by automated tools to a platform-specific model (PSM), using translation patterns that are developed for a particular deployment architecture and implementation language, like J2EE. These transformation patterns can be developed by platform experts and provide an excellent way of formalizing and codifying the architectural rules and best practices. See www.omg.org for further details.

You must consider carefully your timescales and the size of your team before you select a development process. The same process may not be appropriate for different projects.
Problem Statement

All analysis and design must start with some statement of the problem to be solved. This can be as simple as the “User Stories” defined in [Beck] or as complex as a traditional functional specification. Ours is simple, and is closer to a “User Story” than a functional specification. It is described below:

Corporate personnel perform various activities throughout a given business day. These activities are most often dictated by assigned projects. As such, time spent on project specific activities are tracked and reported on a specified basis. Summary information can then be compiled and reported on project and personnel and applied against project and budgetary plans.

Ensuring that time is appropriately entered for projects is accomplished through a time sheet approval process. Authorized employees will have the ability to preview pending time sheets and mark them as being approved. Additionally, employee time sheets can be automatically approved.

The system will be used frequently for short periods of time on a daily basis from a variety of locations. Therefore, quick and convenient access to the time entry portion of the system is required.

Another part of design is to specify the tasks that a user must perform in order to use the system. These can be in the form of "User Stories" as described above. [Beck] describes how to enter these on "task cards" that can be used to partition development and prioritize the order in which functions will be developed and delivered. [Fowler] describes these tasks as “scenarios” that can be used to build use cases. Our system tasks are specified below.

System Tasks

1. Employees can enter half hour time increments against any available project.

2. Employees can enter time sheet information on a weekly basis.

3. Managers can ask for summary reports including the details of actual hours charged against any given project or employee.
4. Managers can ask for summary reports including the details of actual hours charged for any given Employee.

5. Both employees and managers should be able to access the system from any corporate standard web browser with Intranet access.

6. Employees can modify entered time sheets before they are approved.
7. Authorized personnel can view and approve time sheets on a department or Project basis.

8. Authorized personnel can define Projects, Employees, and Departments.

Use Case List

Use Cases can provide more formal process than the eXtreme Programming (XP) process described in [Beck]. Use Cases can be used to specify user interactions with a system, or system-to-system interactions (which can be useful in specifying Business to Business (B2B) applications). In the following section we will list the use cases that we have derived from our user tasks and then show the UML diagrams and use case write-ups for these use cases.

1. Employee enters daily time entries against project(s)

2. Employee creates a new time sheet for a weekending date

3. Employee updates a time sheet that is not yet approved

4. Manager approves employee time sheets

5. Manager Un-Approves employee time sheet

6. Manager requests a report of pending time sheets

7. Manager requests a report of approved time sheets

Use Case Diagrams

By examining our list of use cases, we have discovered two actors that participate in our use cases. They are:

Employee – Enters daily time associated with projects

Manager – Authorizes employee time sheets.

We show the Use cases and relationships with our defined actors in the Use Case Diagram (Figure 2.1) below:

[image: image1.wmf]

Enter daily time entries for project

Create new time sheet for weekend

Report approved time sheets

Approve Employee time sheet

Employee

Report pending time sheets

Manager

Un

-

Approve time sheet

Figure 2.1 – Use Case Diagram

Use Case Definitions

In this section we show the Use cases that we have defined for the case study. We are using the simplified Use Case format described in [Fowler].

	Use Case: Employee enters daily time entries for a project(s)

Description:

Primary Course:

1) Employee requests time sheet for a weekending date and Employee name
2) System checks for existence of timesheet

a) if it exists, present to Employee

b) if does not exist, see Create employee time sheet use case and present to Employee

3) Employee sets day of week

4) Employee selects project and enters hours worked on project

5) Employee requests system to save changes and system confirms

Alternative Course:

Line 5: Employee aborts time sheet entry

	Use Case: Approve Employee Time Sheets

Primary Course:

1) Manager selects Employee from Employee list

2) System finds and displays pending time sheets for selected employee

3) Manager selects and marks displayed time sheets and request system to mark as authorized

	Use Case: Create Employee Timesheet

Pre Condition: Employee and week end date is known

Primary Course:

1) System creates time sheet and associates Employee and weekending

2) System puts new time sheet in pending state and commits

	

	Use Case: Un-Approve employee time sheet

Primary Course:

1) Manager selects time sheet for employee and week end

2) System searches for and displays pending time sheet

3) Employee toggles time sheet state to pending

Alternative Course:

Line 2: If not found display available time sheets

	Use Case: Approve employee time sheet

Primary Course:

1) Authorized Employee selects time sheet for employee and week end

2) System searches for and displays pending time sheet

3) Employee toggles time sheet state to approved

Alternative Course:

Line 2: If not found display available time sheets

	Use Case: Display pending time sheets

Primary Course:

1) System displays list of pending employee, weekend, and totals for pending time sheets

	Use Case: Display approved time sheets

Pre Condition:

Approved time sheet for employee exists

Primary Course:

1) System displays list of approved time sheets by employee, weekend, and summarizes total hours

Designing the Case Study Domain Model

Now that you understand the requirements, the next question is, how will we implement the requirements? As you read in the previous chapter, a key design point in the development of any system is understanding the domain model, or the business classes that make up the system. In our simple problem domain, there are only a few basic concepts that we need to consider: Employee, TimeSheet, TimeSheetEntry and Project.
 The most basic object in our Timesheet System is an Employee. We have to identify an Employee in order to create a time sheet for them, so this is an obvious part of our model. However, this is in itself an interesting small subsystem. In addition to simple attributes like a name, an Employee may have a home address as well. Likewise, Employees may belong to Departments. Employees may be salaried or hourly. In later chapters, we’ll revisit the theme of creating and managing Employees to show you some of the different choices you can make in designing applications with the WebSphere product family.

TimeSheets are then the next most critical part of our model. TimeSheets have a date associated with them that indicates the ending date for this timesheet. Likewise, they have two different Employees associated with them; the Employee who submits the timesheet, and the Employee who approves it (the Employee’s manager). However, it’s not enough to simply have a TimeSheet object – we also have to track how time is entered by project for each particular date against that TimeSheet. We’ve chosen to model that with a collection of TimeSheetEntries, each of which stands for a particular combination of date, project, and hours.

A simple UML diagram showing the different relationships in our model is shown in Figure 2.2.

[image: image2.emf]

Timesheet

+ weekEnding : Date

TimesheetEntry

+ date : Date

+ hours : Float

Employee

+ name : String

- TimesheetEntries *

Project

+ name : String

1

- employee

1

- approver

0..1

Figure 2.2 – TimeSheet design
Using the Case Study in our Book

As we discussed at the beginning of this chapter, this simple case study is just complex enough that we can demonstrate the different choices you can make when designing J2EE applications using it. It’s not a one-object “Toy” application, but it’s not overly complicated either. We’ll use it in several ways as we proceed through the chapters.

Employee Management (creating, removing, and updating Employees in a relational database) is a topic that we’ll revisit several times so that you can learn how to understand the tradeoffs that the various parts of WebSphere and J2EE give you. We’ll examine a simple Employee Management System in Chapter 7, and discuss different design aspects of implementing the database access and user interface portions in Chapters 12, 13, 14 and 21. We’ll also examine how to secure that part of the application in Chapter 29.
The TimeSheet entry and display portion of the case study is another rich area that we’ll explore repeatedly. In Chapters 11 and 15, we’ll talk about two different choices for implementing part of the web-based user interface of the application. In Chapters 23, 24, 25 and 30 we’ll introduce how to implement database persistence in that part of the application using some of WebSphere’s built-in persistence capabilities. Finally, in Chapter 31 we’ll examine how to put all of the technologies together into a single whole that uses all the different pieces you’ve examined in the previous chapters. Other chapters will also often refer back to smaller portions of the case study presented in previous chapters to illustrate the differences between alternative technologies where you have a choice between two or more options.
Later on, as you learn more about building user interfaces with J2EE and the WebSphere product family we will show you what the user interface of our case study system will look like.

Summary

In this basic overview of our case study, you’ve gained an understanding of the basic problem that our examples will solve, and of the business object design that we will use to solve it. In the chapters that follow, you’ll gain a better understanding of how to use WebSphere and J2EE to implement this business model and what the choices are for providing a user interface for manipulating this business model and for persisting the model objects to a relational database.
� Unified Modeling Language as defined by the Object Management Group standard

1

_1116855073.doc

Enter daily time entries for project

Create new time sheet for weekend

Report approved time sheets

Approve Employee time sheet

Employee

Report pending time sheets

Manager

Un-Approve time sheet

_1118042271.doc

[image: image1]

Timesheet

+ weekEnding : Date

TimesheetEntry

+ date : Date

+ hours : Float

Employee

+ name : String

- TimesheetEntries

*

Project

+ name : String

1

- employee

1

- approver

0..1

