
Chapter 13
Developing and Testing JSPs in WSAD

In Chapters 6 and7, you saw how to develop servlets to add dynamic behavior to your Web application. Servlets work well, but at the end of Chapter 7, we explored some things that were difficult about using servlets. Developing good dynamic HTML is hard. Getting the content right, making it look good, and getting HTML to do what you want can be quite difficult. It’s even harder when the HTML is buried in Java print statements. There’s no WYSIWYG design view, no HTML content assist, no preview, quotes on attribute values have to be escaped, etc. When servlets are being used primarily to create user interface components consisting of dynamic HTML pages, it’s the HTML that is the primary focus not Java. JSPs allow you to edit using the dominant language, HTML, making the development process much simpler. Another problem we discussed was mixing control logic and user interface look-and-feel. By separating these concerns, we can develop JSPs that focus on just control or just UI making them simpler to develop, easier to test, and more reusable. We also discussed error handling. This is really just a special case of separating control logic from user interface page design. In the servlet implementation, we had to catch exceptions and output different HTML based on the exception. JSPs offer a different solution by allowing us to specify error pages directly avoiding all the extra code.
In this chapter, we’ll look at the example we developed in Chapter 7 re-implementing some of the servlets as JSPs. In doing so, we’ll be using the indirect development model based on MVC to provide better separation of UI, controller, error handling, and model code as shown in Figure 13.1. We’ll also be introducing the components of WSAD that support JSP development, deployment, and testing. As in Chapter 7, we’ll do this by introducing the tools in the context of developing the example JSP based application.

[image: image1.emf]Presentation

Controller /

Mediator

Domain

Data

Mapping

Data Source

Java

Application

HTML

JSP

XML/

XSL

Servlets

Struts

Java

Beans

MsgDriven

Beans

Java

Beans

Session

EJBs

Mapper

Objects

Entity

EJBs

JDBC

CICS

JMS

Web

Services

Figure 13.1 Architectural Roadmap
Another look at MVC

Before jumping too far into the discussion of development tools for JSP, we should revisit the developer roles that may participate in the development and maintenance of JSPs. Many early JSP developers were Java programmers who needed a way to purge their servlets of String literals representing HTML text. For these individuals any scripting tool or text editor that permits directly editing the HTML/JSP tags is sufficient.

When the Java programmers within an organization build JSPs, the development process typically observed has the static content of the JSPs developed by the “web page developers”. These pages, developed to have consistent look and feel with the rest of the web site, are then handed off to the Java developers to add in the scripting code that is responsible for providing the dynamic content. The final JSPs are usually returned to the Web page development team for maintenance under the assumption that the added scripting code will rarely if ever need to change. In general, the web page development team only modifies the static HTML portions of the JSP source as necessary in order to account for new images, links, text updates, and similar visual updates.

The MVC programming style, particularly the wrapping of dynamic content in one or more JavaBeans, provides the opportunity for a different development model. When page developers are building JSP pages, the more burdensome task is placing dynamic content within the page. This difficulty stems from the lack of accessibility to the Java (JSP) syntax.

JavaBeans, Introspection, and Contracts

The key problem of building JSP pages in an MVC environment is communication. When a team is divided into a set of individuals that develop Web pages and a second set of individuals that are server-side Java developers, lack of communication can create challenges.

Web developers are aware of what content should appear on the page. They must communicate to the server-side developers that certain dynamic content should be displayed on that page. This dynamic content is generally data that results from a client request (whether successful or unsuccessful). It is also possible for the server-side developer to communicate to the web developer what dynamic content is available for display at a given point based on the information that has been collected from the user and retrieved from the server.

Formalizing the packaging of the dynamic content represents the contract between the JSP developer and the bean providers. Defining one or more types that expose the dynamic content as properties specifies most of this contract. These types are implemented as JavaBeans. JavaBeans have the advantage of being very tool friendly. It is very easy for a tool to introspect on a JavaBean class (and/or an accompanying BeanInfo class) and present to the developer the available Properties, Events, and Methods. For our Display Page JSPs, these JavaBeans only need to deliver dynamic content as bean Properties.

The rest of the contract involves the location of the JavaBeans at runtime. In other words, what information must be supplied in the useBean Action, to make it possible to locate the JavaBeans (i.e., in what scope and under what id will the bean be found).

A typical JSP page development tool feature permits browsing a set of JavaBeans to select a property for display on the page. Complexities arise in dealing with Indexed Properties – primarily with specifying the context for indexing, and nested properties. Nested properties arise when the structure of the dynamic data is complex. For example, consider our TimeSheet object. This object represents a collection of TimeSheetEntries. A TimeSheetEntry contains properties for Date and Project, neither of which are primitive data. If one wants to display the Project name for a particular TimeSheetEntry, the JSP Expression would look like:

<%= TimeSheet.getEntry(index).getProject().getName() %>

This could also be specified by walking the Beans and their Properties and selecting the leaf Property name (TimeSheet, entry(index), project, name). For a tool to facilitate walking nested JavaBean properties, each property must be available in a non-type hiding manner. For instance, in the scenario above, it is possible to get at the collection of TimeSheetEntries via the method getEntries() on the TimeSheet object. This returns a Vector of TimeSheetEntry objects. A Vector, however, hides the type information of its contents. All accessors to the contents of the Vector only guarantee that they return an instance of the Object class. A tool will not be able to expose the properties of the actual Java type stored in the Collection, only the limited properties of java.lang.Object. By supplying the indexed property entry in the TimeSheet Bean, it is possible to perform recursive introspection and make the project name visible to a developer.

Building Applications using JSPs with WSAD

So let’s get started with the JSP example. What we’re going to do is take the Servlet Example project we created in Chapter 7 and change it to use JSPs where appropriate. If you don’t want to develop the example from scratch, you can use the JSP Example project from the CD-ROM. See Appendix A for instructions on how to load the workspace containing the examples. If you’re not familiar with the Servlet Example, take a quick look at section “Building an Example Servlet with WSAD” in Chapter 7 before proceeding. This chapter also assumes you are familiar with the WSAD basics covered in Chapter 7. If not, you might want to read Chapter 7 before continuing.

Create a new J2EE Web project called JSP Example. In the Web Project features list, select any features you want. We’ll be working with the JSP Standard Tag library later in the chapter, so you can select it now. Remember you can always add new Web project features by editing the Web project’s properties or importing tag libraries. Select Next when you are ready. On the next page of the Create a Web Project wizard, select an enterprise application for deploying the JSP Example (DefaultEAR is fine), set the context root for the Web application to jspExample, and make sure to select J2EE level 1.3. Press Finish to create the JSP Example project. The layout of the project will be identical to the Servlet Example project in chapter 7, except you might notice a number of Java .jar files were added to the WEB-INF/lib folder if you selected additional Web project features.

The domain model for the JSP example is the same as for the Servlet Example. Ideally this domain model would be in its own project so it could be shared by many other projects. But for this simple example, we’ll just copy it from the Servlet Example project. Copy and paste are a very effective means of instantiating patterns, so we’ll be using it a lot. Go to the Servlet Example project and select all the contents of the Java Source folder, copy, and then paste into the Java Source folder of the JSP Example project.
Be sure to copy the application.properties file too since it defines the data source information required to access the database. Edit the Web Deployment Descriptor (web.xml file) and add the CreateEmployee and UpdateEmployee servlets the same as you did in Chapter 7. Select each servlet and add the default URL mapping. You can delete the BrowseEmployees.java and EmployeeDetails.java servlet files in the com.wsbook.servletexample package, as we will be replacing those servlets with JSPs. You can also copy the images folder, banner.html, browseEmployees.html, and index.html files from the Servlet Example project Web Content folder since we’ll need very similar files for this example.

Edit the index.html file to indicate the purpose of the Web application. Make sure there is a link on the page to browseEmployees.html. Refer to Chapter 7 if you need any help creating or editing the page. You should have something that looks like Figure 13.2 for file index.html.

[image: image2.png]
Figure 13.2 index.html

Now create or edit the browseEmployees.html file and set the src attribute of the list frame to browseEmployees.jsp as shown in Listing 12.1. Recall that this link was to the BrowseEmployees servlet in Chapter 7. Since this servlet was primarily used to display a list of employees, a JSP provides a better solution.

Listing 13.1 browseEmployees.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Servlet Example</title>
</head>
<frameset rows="50,*, 240">

<frame name="banner" scrolling="no" noresize src="banner.html"

 marginwidth="0" marginheight="0" frameborder="0"/>

<frame name="list" scrolling="auto" src="browseEmployees.jsp"

 marginwidth="50" marginheight="20"frameborder="1"/>

<frame name="detail" marginwidth="0" marginheight="20"

 frameborder="0"/>

<noframes>

<body>

<p>This page uses frames, but your browser doesn't support them.</p>

</body>

</noframes>
</frameset>
</html>
Now create the browseEmployees.jsp file. Select the Web Content folder, right-click, and select New>JSP File. The New JSP File wizard has a number of pages that can be used to customize the creation of the JSP page and make any necessary updates to the Web application deployment descriptor. Press F1 to get a detailed description of all the things you can set. This information is primarily used to initialize information in the JSP file. We’ll either be taking the defaults for most entries, or changing them using Page Designer. Just enter the JSP file name, select HTML for the markup language, and press Finish to create the file. This first version of browseEmployees.jsp will be a traditional JSP using Java in scriptlets and expressions. Later on we’ll see how to use JSP tag libraries as another option for entering dynamic content. Listing 13.2 shows the browseEmployees.jsp file source. Doesn’t this look a lot better than the Java source code we created in Listing 7.5?

Listing 13.2 browseEmployees.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<HTML>
<HEAD>
<%@ page

language="java"

contentType="text/html; charset=WINDOWS-1252"

import="com.wsbook.servletexample.domain.Employee,

java.sql.SQLException,java.util.Iterator"%>
<META http-equiv="Content-Type"

content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>Browse Employees (JSP version)</TITLE>
</HEAD>
<BODY>
<h3 align="center">All Employees</h3>
<TABLE align="center" BORDER="yes" CELLSPACING="2" CELLPADDING="0"

WIDTH="70%">

<TR>

<TD>

<center>Id</center>

</TD>

<TD>

<center>Name</center>

</TD>

<TD width="40">

<center>Age</center>

</TD>

</TR>

<%try {

Iterator employees = Employee.findAll().iterator();

while (employees.hasNext()) {

Employee employee = (Employee) employees.next();%>

<TR>

<TD><A HREF="employeeDetails.jsp?id=<%=employee.getId()%>"

target="detail"> <%=employee.getId()%></TD>

<TD><%=employee.getName()%></TD>

<TD width="40"><%=employee.getAge()%></TD>

</TR>

<%}

} catch (SQLException e) {

}%>

<TR>

<TD colspan="3">

Create Employee...

</TD>

</TR>
</TABLE>
</BODY>
</HTML>
The previous example shows how you can easily mix Java and HTML within a JSP page, and how you can use Java iterators to generate table rows in a JSP; a very common practice we’ll revisit later. However, there’s one thing that’s not quite right about this example. Notice the scriptlet near the end:

<%> }

 } catch (SQLException e) {

} %>

That scriptlet presents a problem, or rather solves a problem in a brute-force way. The issue is that Employee.findAll() can throw a SQLException. If the database is not available for some reason (say the database was not created, or the DataSource is misconfigured) then findAll() will fail and an exception will be thrown. However, in this version of the JSP, the user would not know at all! So, if “eating” the exception isn’t the right approach what else could you try? Well, you could try to forward to another page that would display the error, but unfortunately, that won’t work. You see, you can’t use RequestDispatcher.forward() or RequestDispatcher.include() if you’ve already sent any output to the client. Doing so would raise an IllegalStateException. Instead, you could change the output that follows to show that an error occurred, but that’s not a great solution either – what if the exception occurred ¾ of the way down a page? The user might not notice that the information they were viewing was incomplete (and thus wrong). Another option would be to move all of the code that can throw an exception to the very beginning of the JSP, but that’s not the best solution either. Then you end up with a bunch of initialization Java code laced with if statements and catch blocks before you ever get to the meat of the JSP (the HTML).

Given that none of these solutions works, we have to conclude we should try something else. In fact, the right solution is to apply MVC in the way we’ve already discussed. We’ll perform the database lookup in a Servlet class that will then forwards to our browseEmployees JSP in the case where the database lookup succeeds, or forwards to an error page in the case where it doesn’t. So, we’ll need to change our browseEmployees.jsp to get the employees from the session context that is filled in by the controller servlet instead of invoking the Employee.findAll method directly.
Listing 13.3 browseEmployees.jsp

!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<HTML>
<HEAD>
<%@ page

language="java"

contentType="text/html; charset=WINDOWS-1252"

import="com.wsbook.servletexample.domain.Employee,

java.util.Iterator"%>
<META http-equiv="Content-Type"

content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>Browse Employees (JSP version)</TITLE>
</HEAD>
<BODY>
<jsp:useBean id="employees"

type="java.util.Iterator" scope="request"></jsp:useBean>
<h3 align="center">All Employees</h3>
<TABLE align="center" BORDER="yes" CELLSPACING="2" CELLPADDING="0"

WIDTH="70%">

<TR>

<TD>

<center>Id</center>

</TD>

<TD>

<center>Name</center>

</TD>

<TD width="40">

<center>Age</center>

</TD>

</TR>

<% while (employees.hasNext()) {

Employee employee = (Employee) employees.next();%>

<TR>

<TD><A HREF="ShowEmployeeDetail?id=<%=employee.getId()%>"

target="detail"> <%=employee.getId()%></TD>

<TD><%=employee.getName()%></TD>

<TD width="40"><%=employee.getAge()%></TD>

</TR>

<% } %>

<TR>

<TD colspan="3"> Create

Employee... </TD>

</TR>
</TABLE>
</BODY>

</HTML>
If you compare this version to the previous version, you’ll quickly see what changed. The major difference is that we no longer need the try…catch block because we are no longer calling the findAll() method. Instead, the collection of Employees is being passed in to the JSP through the HttpRequest, which the JSP picks up through using the useBean tag. This is a typical way of using session context to pass information between components in an application. Since the set of Employees are no longer fetched in the JSP, the mechanism by which a user requests that the list be displayed is slightly different also. We need to create a controller servlet that access the employees and forwards them to the servlet for display.
From the Web perspective, select the Java Source folder in the JSP Example project and use the New>Servlet menu option from the Context menu to create a new Servlet. The servlet class will be named com.wsbook.servletexample.BrowseEmployees, and will only implement the doGet() method. The source code for this servlet is shown below:

package com.wsbook.servletexample;
…
public class BrowseEmployees extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

try {

Collection employees = Employee.findAll();

req.setAttribute("employees", employees);

RequestDispatcher rd = getServletContext().getRequestDispatcher("/browseEmployees.jsp");

rd.forward(req,resp);

} catch (SQLException e) {

RequestDispatcher rd = getServletContext().getRequestDispatcher("/databaseError.html");

rd.forward(req,resp);

}

}
}
This is the elegant solution to our exception problem that we were looking for. This servlet attempts the lookup of the list of Employees from the database, and if all goes well, it places the Collection in the HttpRequest and forwards the request on to the browseEmployees JSP. If a database exception occurs, it instead forwards the request on to an HTML page that informs the user that an error has occurred.

Changing the application flow like this, though, means we’ll have to undo a change we made earlier. Edit the browseEmployees.html file and set the src attribute of the list frame to BrowseEmployeees. This will set the file back to its previous value, which will invoke the Servlet first, which will then delegate display of the page to our new JSP.

Editing JavaServer Pages

The default editor for JSP pages is Page Designer. As with HTML pages, Page Designer supports three views of a JSP page: Design, Source, and Preview. Most JSP editing is done in the Page Designer Source view, which has many features designed to simplify JSP editing.

You can insert, delete, or edit tags in the source pane in a number of ways:
· Type tags in directly
· Use content assist to prompt for valid tags and tag attributes

· Use the JSP menu items

· Select toolbar buttons

· Select a tag and edit its attributes in the Properties or Attributes view

· Add and remove tags using the Outline view

As with any other HTML tag, you can use content assist to help enter JSP tags. As a convenience, you can also use the JSP menu items on the menu bar to insert common JSP tags into your file. Many of these menu items provide dialogs that assist in setting the attributes and content of the tags. Since they are dialogs, they have F1 help that you can use to get detailed information about permissible values for the tag attributes. You’ll also find many common HTML editing functions are available on toolbar buttons. Another great editing convenience is the ability to navigate around in the JSP, and add tags and attributes from the outline view. You can select a tag in the outline view to position the source and design views at that tag. Use the context menu on the selected item to remove the tag, or add valid children tags either before or after the selected tag. The available attributes for the tag are also available from the context menu. Selecting an attribute adds it to the tag with a default value in many cases. Remember you can always use undo and redo actions to remove or re-apply edits no matter how many were made to the document.

The best thing about the Page Designer source editor for JSPs is that content assist works seamlessly across both HTML and Java. The editor understands the syntax of both languages so it always knows what’s possible to include at any point in the source. Content assist eliminates the need for a lot of tedious and error prone typing. You can use content assist to add HTML tags, JSP tags, and tags from tag libraries, attributes of tags, values of some attributes, scriptlets, expressions, access variables available at the current scope, methods and properties of variables, code macros, etc. It’s hard to imagine how we got along without content assist. Invoke content assist anywhere in the source pane by pressing Control-Space. Then scroll down the list to see what’s available at that point in the code or type prefix characters to automatically search down the list for matching contents. Press the Enter key on a selection to have it added to the source. You can also add your own JSP macros to the source editor that can be invoked using content assist. Select Window>Properties and navigate to Web and XML Files>JSP Files> JSP Macros. You can enter a new macro that will show up in content assist at the enabled location and with the given content. Use the macros provided by WSAD as examples or copy, paste, and update their contents to make your own.

[image: image3.png]
Figure 13.3 JSP page directive attributes

JSP tags, scriptlets, and expressions are also shown in the Attributes view. For example, select the jsp:page element in browseEmployees.jsp. You can either edit the properties directly in the jsp:page tag using content assist, or use the dialog in the Attributes view as shown in Figure 13.3. Each has its advantages. We’ve already discussed the benefits of content assist in the source pane. The Attributes view presents the attributes of the selected tag organized in a dialog. Edit any field and the updated attribute appears in the tag in the source pane. The corresponding attribute will be removed for fields without values. The field labels are often more descriptive than the tag attribute names alone. If you use the Attributes view, you don’t have to worry about the appropriate XML syntax for a parameter or quoting attributes since the dialog adds them to the source document for you. And you can always press F1 to get context sensitive help on the dialog.

[image: image4.png]
Figure 13.4 Page Designer Design view

The Attributes view also shows the contents of JSP scriptlets or expressions when selected in either the design or the source pane of the Page Designer. Figure 13.4 shows the Page Designer Design view opened on browseEmployees.jsp. The cell under the Name column heading is selected and the expression code is shown in the Attributes view. You can edit the expression directly in the attributes view without having to switch to the source view and locate the containing tag. However, content assist is not supported in the Attributes view. Unless the edit is very simple, or you know exactly what to enter, you might want to edit in the source pane instead.
Now, let’s return to the example. Referring to Listing 13.3, the JSP contains a page directive that indicate the language is Java, the content type is text/html, and lists the referenced classes that must be imported into the page in order for it to compile and run. The page directive is followed by HTML for defining the table to display the employees. After outputting the header table row, a scriptlet is used to iterate over all the employees in the database and create a table row containing the employee id, name, and age, the summary information we wanted to display to help select an employee. The employee id entry is output in an anchor tag whose href attribute references the employeeDetails.jsp file with the id as an argument. We’ll be developing that JSP next. Finally the last row in the table provides an anchor tag with href linking to a JSP for creating new employees.

Next we’ll create a new servlet and JSP for viewing the employee details. You may remember that in the first version of our browseEmployees JSP we referenced the employeeDetails.jsp in the anchor tag that displayed the employee id in the table. However, in the second version, we changed from referencing the employeeDetails JSP to instead referencing a URL that represents the ShowEmployeeDetail servlet. As in the prior example, start by creating the employeeDetails.jsp file as shown in Listing 13.4.

Listing 11.4 employeeDetails.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<html>
<head>
<%@ page
 language="java"
 contentType="text/html; charset=ISO-8859-1"
 import="com.wsbook.servletexample.domain.Employee,

 java.util.Iterator,

 javax.servlet.jsp.JspException"%>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR" content="IBM WebSphere Studio">
<title>Employee Details</title>
</head>
<body>

<jsp:useBean id="employee"

class="com.wsbook.servletexample.domain.Employee"

scope="session">

</jsp:useBean>

<h3 align="center">Employee Details</h3>

<div align="center">
<form name="updateEmployee" target="_top" method="post"

action="UpdateEmployee">
<table align="center" border="1" cellpadding="0" cellspacing="0"

width="70%">

<tr>

<td width="60">

<div align="right">Name:</div>

</td>

<td><input type="text" name="name" size="70"

value="<%=employee.getName()%>" /></td>

</tr>

<tr>

<td width="60">

<div align="right">Age:</div>

</td>

<td><input type="text" name="age" size="70"

value="<%=employee.getAge()%>" /></td>

</tr>

<tr>

<td width="60">

<div align="right">Street:</div>

</td>

<td><input type="text" name="street" size="70"

value="<%=employee.getStreet()%>" /></td>

</tr>

<tr>

<td colspan="2">

<table border="0" cellpadding="0" cellspacing="0">

<tr>

<td width="60">

<div align="right">City:</div>

</td>

<td><input type="text" name="city" size="27"

value="<%=employee.getCity()%>" /></td>

<td width="30">

<div align="right">State:</div>

</td>

<td><input type="text" name="state" size="6"

value="<%=employee.getState()%>" /></td>

<td width="30">

<div align="right">Zip:</div>

</td>

<td><input type="text" name="zip" size="10"

value="<%=employee.getZip()%>" /></td>

</tr>

</table>

</td>

</tr>

<td colspan="2">

<div align="center">

<input type="submit" name="submit"

value="Update"

align="center"/>

<input type="submit" name="submit"

value="Delete"

align="center"/>

</div>

</td>

</tr>
</table>
</form>
</div>
</body>
</html>
The body of the page has a jsp:useBean tag that looks for a JavaBean in the session scope that is the selected Employee. This bean will be used later to communicate the selected employee to the UpdateEmployee servlet that actually performs the updates. In Chapter 7 we used a hidden field in the HTML form containing the employee id, and used the id in the UpdateEmployee servlet to lookup the employee to be updated. This may less efficient because the employee may have to be fetched from the database twice After retrieving the Employee from the session, the rest of the JSP creates an HTML form containing fields for all the employee information. We use JSP expressions to initialize the fields with data from the selected employee. The form action invokes the UpdateEmployee servlet when the submit button is pressed.

As in the previous example, you will also need to add the ShowEmployeeDetails servlet. The source code for this servlet is shown below:

package com.wsbook.servletexample;
…
public class ShowEmployeeDetail extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

try {

String employeeId = req.getParameter("id");

Employee employee = Employee.findByPrimaryKey(employeeId);

HttpSession session = req.getSession(true);

session.setAttribute("employee", employee);

RequestDispatcher rd =

getServletContext().getRequestDispatcher(

"/employeeDetails.jsp");

rd.forward(req, resp);

} catch (NoSuchObjectException e) {

RequestDispatcher rd =

getServletContext().getRequestDispatcher("/noSuchEmployee.jsp");

rd.forward(req, resp);

} catch (SQLException e) {

log("***Error attempting to find employee", e);

RequestDispatcher rd =

getServletContext().getRequestDispatcher("/databaseError.html");

rd.forward(req, resp);

}

}
This servlet is similar to the BrowseEmployees servlet shown above. One difference is that when a database exception occurs, it is logged to the Servlet log using Servlet.log(). These messages are printed to the Console view when using the Web application server within the WebSphere Test Environment. This makes it easier to debug your Web application. In a production application server, the messages are logged to the server’s log files.
The UpdateEmployee servlet is almost the same as the one we used in Chapter 7. The primary difference is we’re now getting the selected employee from the session rather than looking it up again by id. Notice that the UpdateEmployee servlet also removes the selected employee from the session context once it is done updating. This keeps the memory footprint down by removing context variables that are no longer needed. Listing 13.5 has the details for the UpdateEmployee servlet.

Listing 13.5 UpdateEmployee.java

package com.wsbook.servletexample;
…
public class UpdateEmployee extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

// Update the employee and address information and

Employee employee = (Employee)req.getSession().getAttribute("employee");

// see what button the user pressed

String action = req.getParameter("submit");

if (action.equals("Delete")) {

try {

employee.delete();

} catch (SQLException e) {

log("***Error deleting an employee: "+e);

} catch (MappingException e) {

}

} else {

employee.setName(req.getParameter("name"));

try {

employee.setAge(Integer.parseInt(req.getParameter("age")));

} catch (NumberFormatException exc) {

log("***Error, employee id must be a number");

}

employee.setStreet(req.getParameter("street"));

employee.setCity(req.getParameter("city"));

employee.setState(req.getParameter("state"));

employee.setZip(req.getParameter("zip"));

try {

employee.update();

} catch (MappingException e) {

log("***Error, couldn't save employee or address");

} catch (SQLException e) {

log("***Error updating employee: ", e);

}

}

req.getSession().removeAttribute("employee");

// refresh the employee's list so it shows the updates

resp.sendRedirect("BrowseEmployees");

}
}
Validating the JSP page

In WSAD version 5, all you need to do to check a JSP page is save it. The J2EE validator runs and finds any HTML or JSP tag errors, and any Java errors in scriptlets or expressions. Custom tags can also specify their own validators, which are also run. You can control what gets validated in all projects by editing the workspace preferences. Select Window> Preferences and then select Validation. Figure 13.5 shows the available preferences. You can also override workspace validation preferences by setting the Validation preferences for the properties of an individual project.

[image: image5.png]
Figure 13.5 Validation Preferences

JSP validation actually runs the page compiler and then the Java compiler. Therefore, the only errors that could remain are actual runtime errors, that is, logic errors. Errors that occur at runtime, they appear as exceptions in the Console view or Web application server logs, but the line number where the error occurred is that of the JSP file. There is little reason to ever look at the generated Java code, although it is possible to do so if you want.

Running on the Server

We’re now almost ready to test the JSP. If you haven’t done so already, edit the JSP Example project Web Deployment Descriptor and add the BrowseEmployees, ShowEmployeeDetail, UpdateEmployee and CreateEmployee servlets. You’ll also need to add the jdbc/EJPBOOK data source reference as described in Chapter 7, sections “Persist the model using JDBC and the Active Record Pattern” and “Edit the Web deployment descriptor”. Then, if you didn’t select an EAR for your sample application when you created it, do so now by selecting an EAR project and adding a your application as a module to its deployment descriptor. You’ll also need to deploy the EAR to a server configuration, and configure the server to support the EJPBOOK data source as described in Chapter 7, section “Configure the WSAD Test Environment and publish the application”. And you’ll also want to create the noSuchEmployee.jsp error page to display a message indicating the employee could not be found in the database. Check the task view for broken links or any other problems and fix them as needed.

Now select the JSP Example project, or the Web Content/index.html file, and select the Run on server choice from its context menu. You’ll see the index.html file displayed in a Web browser in a Workbench editor pane. Then navigate to the link you added to invoke browseEmployees.html. You should see the same output you saw when running the Servlet Example in Chapter 7. If you have any trouble, review the sections on editing the Web application and Enterprise Application deployment descriptors and setting up the server configuration covered in Chapter 7. Everything should be the same except for using both JSPs and servlets to split the work of display.

Debugging the JSP

Debugging JSPs is just as easy as debugging servlets. The debugger supports source level debugging directly in the JSP. There is no need to save the generated Java from the JSP page compiler and debug using the generated Java source. To debug a JSP using the Test Environment server, first make sure the server is started in debug mode. From the Web perspective, select the Servers view. Locate the server instance that is configured to run the EAR project for your Web application module. You should see that it is started in debug mode as shown in Figure 13.6.

[image: image6.png]
Figure 13.6 Starting the Test Environment in Debug Mode

If the server is not started in debug mode, select it, right-click, and select Stop. After the server completely stops, right-click again and select Debug. The server will be started in debug mode and you will be able to debug JSPs and servlets.

Next, open the JSP you want to debug with the Page Designer editor, and go to the Source view. You can set a breakpoint on any line that contains Java source. This includes scriptlets, expressions, JSP tags, and custom tags. Open the browseEmployee.jsp file, and set a breakpoint on the line that gets an Iterator over all the employees in the database as shown in Figure 13.7. Set the breakpoint by double-clicking in the margin to the left of the line of code. A breakpoint will be set, and you’ll see the breakpoint marker in the left margin. Now select index.html, right-click, and select either Run on Server… or Debug on Server…. You can select either because we already started the server in debug mode. If the server wasn’t already running, and you wanted to debug a JSP, you could simply select Debug on Server…, and the server would be started in debug mode automatically. You should see the browser open in the Workbench with index.html displayed. Select the link that invokes the browseEmployee.html file. This file will invoke the browseEmployees.jsp in order to fill in the table in the list frame. If the step-by-step debugging dialog is displayed, disable step-by-step debugging and go to the debugger view and press F8 to continue. We don’t want to use step-by-step debugging because we have specifically set a breakpoint at the point we want to debug the application. Recall that you can turn off step-by-step mode for all Web projects by setting the preference in the WAS Debug preferences.
Once the application has halted at the breakpoint, press the step button or F6 three times. You should see something like Figure 13.7 showing the JSP stopped at the line that is putting the employee id as an argument to the employeeDetails.jsp link. Notice that debugger stopped at a line containing HTML that contained a JSP expression. If the HTML does not contain any Java, it is skipped when you step to the next executable line. At this point, you can examine variables in the JSP such as the employee variable shown in the Variables view.

[image: image7.png]
Figure 13.7 Debugging a JSP BrowseEmployees, ShowEmployeeDetail,

Clear the breakpoint by removing it from the Breakpoints list or by double-clicking on the marker in the browseEmployees.jsp file and press Run or F8 to allow the JSP to finish displaying the employee list. See the WSAD help for further information on debugging Web applications including how to debug using a remote WebSphere Application Server. Open the help contents, and browse to Web developer information>Debugging applications. You can also develop and debug J2EE application using a remote WebSphere Application Server. However, developing and debugging J2EE applications is easiest using the built-in Test Environment server. The Test Environment uses a WAS 5.0 server, so your applications will behave just as they would when running inside an external WebSphere Application Server.

Simplifying JSPs
Earlier in the chapter, we discussed the separation of Web and Java developer roles, and how MVC helps separate business logic and user interface concerns. This enables the Web developer to concentrate on HTML and a consistent user interface. Recall that the Web content developer is concerned with the best presentation and flow for the web application, not the implementation issues that are required when programming in Java. When the two languages, HTML and Java, are combined, content developers are drawn into evolution and maintenance issues that they would really prefer to avoid. JSPs help solve these problems by allowing the focus to shift from Java to HTML. But the JSPs we’ve developed so far still have Java code in the expressions and scriptlets. In this section, we’ll explore using custom JSP tags, and the Java Standard Tag Library (JSTL) to completely eliminate the use of Java in JSPs. This may sound like a reasonable ideal to achieve, but it isn’t without cost. We’ll explore the issues that arise, and a hybrid approach may provide a reasonable compromise.

WSAD version 5.0 also supports JSPs written using either Java or JavaScript. If you have Web content developers that are familiar with JavaScript, creating JSPs using JavaScript may be another option.

Java Standard Tag Library

The Java Standard Tag Library (JSTL) provides a number of custom JSP tags to eliminate the need to use Java for most common operations in a JSP. JSTL supports the following custom tags:

· out – output expressions to the output stream

· set – set variable properties in storage scopes (page, request, session, application)

· remove – remove variables from storage scopes

· if – conditional execution tag

· choose, when, otherwise – choose between many options when test conditions are met

· forEach, forTokens – iterate over collections of objects or tokens in a string

· url – support for parsing URL strings

· import – importing text from other files

· redirect – redirecting output to another page.

In addition, JSTL supports two modes of operation. You can either use Java expressions to specify tag attribute values, or the JSTL Expression Language (EL). The expression language provides easy access to variables in the storage scopes and a simple grammar for arithmetic and logical expressions. For details, see the JSR-52, “JavaServer Pages Standard Tag Library” available form www.jcp.org. The tag library comes in two versions, run-time (RT) and expression language (EL). The RT version supports Java expressions while the EL version supports the JSTL expression language. Each version is stored in a different tag library with a different XML namespace prefix. You can also use both versions in the same JSP by using the proper namespace prefix. However, it is not possible to mix Java and EL syntax in the same tag. Use EL syntax in EL tags, and Java syntax in RT tags.

To use custom tags in a JSP, you must first add the tag library to your Web project. The easiest way to do this for JSTL is to edit the Web project’s properties, and add JSTL as a Web project feature. Select the JSP Example project, right-click and select Properties. Then select the Web properties page. Under Available Web Project features: select Include the JSP Standard Tag library as shown in Figure 13.8. This will include all the tag library definitions and .jar files needed by your application to use JSTL. You should now see files jstl.jar and standard.jar in the WEB-INF/lib folder of the Web project.

[image: image8.png]
Figure 13.8 Adding the JSP Standard Tag library feature to a Web Project

JSTL Expression Language
Now let’s edit browseEmployees.jsp to use JSTL and the Expression Language. You can add custom tags to a JSP using the Insert Custom Tag dialog shown in Figure 13.9. From the menu bar, select JSP>Insert Custom…to bring up the dialog. The dialog shows the tag libraries that are currently imported into our JSP as jsp:taglib directives. If there are no tag libraries in the document, the list will be empty. To insert JSTL, click Add… to invoke the Select a Tag Library as shown in figure 13.10.

[image: image9.png]
Figure 13.9 Adding a custom tag to a JSP

The tag libraries that are available for selection are those that have been imported into the Web project. If the tag library you want isn’t available in the list, then you can press the Import… button to import it into the project as a tag library .jar file. You can also specify a URI for the tag library which will place an entry in the Web application deployment descriptor mapping the URI name to the tag library location so the Web application server can find the required classes. JSP 1.2 tag library .jar files contain the tag library definition files (.tld files) directly in the .jar file eliminating the need for additional entries in the deployment descriptor. Since we added the JSTL feature by updating the Web properties, the tag libraries we need are already in the Web application.

[image: image10.png]
Figure 13.10 Adding a Tag Library to a JSP

Select a tag library by clicking on its URI to see the tags and tag descriptions that are in that tag library, and the namespace prefix required for using them. This is very helpful in identifying the tag libraries you need. Select the tag library with URI http://java.sun.com/jstl/core by clicking on the check box to the left of the tag library URI as shown in figure 13.10. Notice the Prefix field. You’ll need to use this prefix when accessing tags from this library. Click OK on the Select a Tag Library and you’ll see the selected tag libraries in the Insert Custom Tag dialog, which also shows the tag library URI, prefix, and available tags. Notice that JSP taglib directives were inserted at the beginning of the JSP indicating the tag library URI and prefix that is now available for use in the JSP. Now you can insert custom tags into a the JSP by selecting the tag library URI in the Insert Custom Tag dialog to display the tags in that library and then select a tag to insert it into the document. Alternatively, you can use content assist. Just type the tag library prefix followed by a colon and invoke content assist to see what tags are available in the library.

Listing 13.6 shows another version of browseEmployees.jsp called browseEmployees3.jsp that uses JSTL and the expression language.

Listing 11.5 browseEmployees3.jsp – Using JSTL EL

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<%@taglib uri="http://java.sun.com/jstl/core" prefix="c"%>
<HTML>
<HEAD>
<%@ page

language="java"

contentType="text/html; charset=WINDOWS-1252"

import="com.wsbook.servletexample.domain.Employee, java.util.Collection, java.util.Iterator"%>
<META http-equiv="Content-Type"

content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>Browse Employees (JSP version)</TITLE>
</HEAD>
<BODY>
<jsp:useBean id="employees" class="java.util.ArrayList" scope="request">
</jsp:useBean>
<h3 align="center">All Employees</h3>
<TABLE align="center" BORDER="yes" CELLSPACING="2" CELLPADDING="0"

WIDTH="70%">

<TR>

<TD>

<center>Id</center>

</TD>

<TD>

<center>Name</center>

</TD>

<TD width="40">

<center>Age</center>

</TD>

</TR>

<c:forEach var="emp" items="${employees}">

<TR>

<TD><A HREF="ShowEmployeeDetail?id=<c:out value="${emp.id}"/>"

target="detail"> <c:out value="${emp.id}"/></TD>

<TD><c:out value="${emp.name}"/></TD>

<TD width="40"><c:out value="${emp.age}"/></TD>

</TR>

</c:forEach>

<TR>

<TD colspan="3">Create

Employee...</TD>

</TR>
</TABLE>
</BODY>
</HTML>
This version uses the jsp:useBean tag to declare a bean for the employees list. Remember that all variable accesses using the JSTL expression language are variables in some storage scope. It is not possible to access regular Java variables using JSTL expression language. In addition, any local variables JSTL creates, such as the one specified by the var attribute of the c:forEach tag, will be created as variables in the page scope. This will be important to remember when mixing Java and JSTL expressions in the same JSP because it determines how to access the variables.

JSP browseEmployees3.jsp shows a couple of important simplifications of the browseEmployees.jsp. The first improvement is in iterating over the employees in the database. The c:forEach tag specifies a var attribute that names a variable in the page scope that iterates over the collection obtained from the items attribute. In this case, the items obtained from the employees variable we initialized in the jsp:useBean tag. We then use the emp variable to output the employee properties in the HTML table using the c:out JSTL tag. You can’t use a JSP expression here because JSTL expression language variables are only valid in the EL version of JSTL. Using the c:out tag instead of a JSP expression also unifies the JSP editing because everything is handled as an XML tag. Notice that the employees variable is “type hiding” as it is a Collection that only knows it contains Objects. However, we didn’t have to do anything for the JSTL expression language to know the emp variable represented an Employee and had id, name, and age properties. This is because the JSTL expression language uses Java reflection to access the attributes of the bean through its getProperty methods. For example, the EL expression ${emp.name} would result in the same value as the JSP expression <jsp:getProperty name=”emp” property=”name”/>.

Using JSTL and its expression language did result in removing the JSP expression and scriptlet tags, and did simplify the JSP, especially in the area of exception handling and iterating over collections. However, it raises some issues:

· Any tag library introduces new language elements that Web developers have to learn. Those that achieve common use will be well understood, but others could create additional confusion. Good tag library documentation integrated with WSAD is helpful.

· Tag libraries use potentially verbose XML syntax in some situations where Java is actually simpler. For example, outputting the employee name using a JSP expression is <%=employee.getName()%>. The same thing using JSTL EL would be <c:out value=”${employee.name}”/>.

· JSTL EL can only access properties of a bean. It cannot use methods and events that are also defined on the bean. This significantly limits its ability to access computed attributes or simple business logic. It however does help keep business logic out of JSP pages and supports our goal of using JSPs exclusively for user interfaces.

· JSTL EL has to lookup a variable reference in a storage scope and then uses reflection to access the reference attribute. This will be slower than calling an accessor method directly on a Java variable but does eliminate the need to cast variables to the proper type in cases where the type is hidden by a container.

· JSTL potentially adds to the complexity of the Web application through the use of additional tag libraries and contributes to run-time overhead.

· Content assist is not currently supported for the JSTL expression language

· Page Designer does not currently support Attribute dialogs for JSTL tags although content assist does work for all custom tag libraries.

· Custom tags may not have a meaningful appearance in the Page Designer Design view limiting their utility in WYSIWYG editing.

· The JSP debugger does not currently allow setting breakpoints on JSTL statements. In addition, it is more difficult to examine variables during debugging because they are inside the JSP context variables instead of being simple Java local variables.
Mixing JSTL RT with JSP Expressions
Some of these issues will be addressed by future enhancements to WSAD. Others can perhaps be addressed by taking a hybrid approach using the JSTL RT tag library. Listing 13.7 shows another version of the browseEmployees.jsp called browseEmployees2.jsp. This version uses JSTL just for handling exceptions and iteration. Everything else is done using standard JSP tags or Java in JSP expressions and scriptlets. To use the RT version of JSTL use the Insert Custom Tag dialog to add a jsp:taglib directive to the JSP. From the menu bar, select JSP>Insert Custom… to display the Insert Custom Tag dialog. Press Add… to display the Select a Tag Library dialog. Scroll down the list of tag libraries available in the Web project and select the one with URI http://java.sun.com/jstl/core_rt.Core_rt. This is the RT or runtime version of the JSTL tag library. Notice that is uses prefix c_rt instead of just c for the EL version of JSTL. Using different prefixes allows you to use both Java and JSTL expression language in the same JSP, although not in the same tag.

Listing 13.7 browseEmployees2.jsp – Using JSTL RT

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<%@taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt"%>
<HTML>
<HEAD>
<%@ page

language="java"

contentType="text/html; charset=WINDOWS-1252"

import="com.wsbook.servletexample.domain.Employee,

java.sql.SQLException,java.util.Iterator"%>
<META http-equiv="Content-Type"

content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>Browse Employees (JSP version)</TITLE>
</HEAD>
<jsp:useBean id="employees" class="java.util.ArrayList" scope="request">
</jsp:useBean>
<BODY>
<h3 align="center">All Employees</h3>
<TABLE align="center" BORDER="yes" CELLSPACING="2" CELLPADDING="0"

WIDTH="70%">

<TR>

<TD>

<center>Id</center>

</TD>

<TD>

<center>Name</center>

</TD>

<TD width="40">

<center>Age</center>

</TD>

</TR>

<c_rt:forEach var="emp" items="<%=employees%>">

<%Employee emp = (Employee)pageContext.getAttribute("emp");%>

<TR>

<TD><A

HREF="ShowEmployeeDetail?id=<%=emp.getId()%>"

target="detail"> <%=emp.getId()%></TD>

<TD><%=emp.getName()%></TD>

<TD width="40"><%=emp.getAge()%></TD>

</TR>

</c_rt:forEach>

<TR>

<TD colspan="3">Create

Employee...</TD>

</TR>
</TABLE>
</BODY>
</HTML>
As we’ve done in the previous versions of this example, we begin by pulling the employees ArrayList from the request scope with a jsp:usebean tag. Remember all variables used by JSTL tags are in some storage scope. So we have to declare a local Employee variable called emp. We access the “emp” attribute from the page context, casting it to an Employee. Then we can use the emp variable in other JSP expressions and scriptlets. This approach isn’t that much more complicated than using the JSTL expression language, and it is more flexible and faster. At the same time, it retains the JSTL facilities for handling exceptions and iterating over collections.

XML compliance

A number of JSP tags have an alternative XML syntax. Web content developers may find these tags more familiar. In addition, emerging tools may be able to take advantage of XML to provide further enhancements and validation. Both the JSP directives and JSP scripting tags have an alternative form.

For the JSP directives, the XML compliant syntax is:

<jsp:directive.directivename directive_attributes />

For example <jsp:directive.page isErrorPage=”true”/>

The scripting elements are block tags. They are:

<jsp:declaration> declaration goes here </jsp:declaration>

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

<jsp:expression> expression goes here </jsp:expression>

For example, the following expressions have the same result:

<jsp:scriptlet>employee.getName()</jsp:scriptlet>

<%=employee.getName()%>

Summary

JSP offers an extremely productive tag language to develop server-side Java logic. Its greatest value-add is in the development of Web Pages that include dynamic content. JSPs make it possible to eliminate the need for Servlets to ever write content to a HTTP response stream. By using JavaBeans as mediators to factor all business logic and data translation out of both Servlets and JSPs, the resulting set of server-side assets have a very clean division of responsibility. Servlets are simple controllers, JSPs are simple page templates, and everything else is facilitated by the remaining server-side layer(s) in the application.

With JSP aware page development tools like WSAD Page Designer, it is further possible to easily develop and maintain JSPs within these tools. This allows developers in the right roles using the right tools to produce the right assets for the enterprise application.

36

