
Chapter 21
Testing and Debugging EJBs in WSAD
In Chapters 7 and 8 we explored how to develop and test servlets using a simple example that updates employees in a relational database. In chapter 13, we modified the example using JSPs to simplify dynamic page generation. In chapter 16 we extended the example domain model and implemented the data mapping layer using Martin Fowler’s Data Mapper pattern. Recall that in the summary section of chapter 16 we discussed a number of issues that weren’t covered by the data mapper [Fowler] pattern including domain specific transaction management and security. Data mapper relies on the underlying database management system to provide transaction management and access control through JDBC. Migrating capabilities that are equivalent to these database mechanisms into domain model policies can be a difficult task. In Chapter 18 we discussed how EJBs help by providing a framework for managing the various systematic concerns that must be addressed in building scaleable distributed business applications. In Chapter 20 we covered how to build EJBs in WSAD. In this chapter, we’ll be taking a look at the rest of the development lifecycle, in particular deploying and testing EJBs. We’ll modify the example from Chapters 13 and 16 by introducing a Service Layer between the servlets and JSPs that handle HTTP requests and responses, and the employee domain model. This Service Layer will be implemented by a simple J2EE Session Bean that provides an API for use cases involving typical employee management functions. By using a session bean, we can introduce transaction management and access control at the method level in the bean. This simplifies application development by exploiting the J2EE container to do a lot of the work that would ordinarily have to be built in your own application logic.
Developing the Service Layer

We’ll start by changing the example developed in Chapters 13 and 16 to use a session bean to mediate between the server-based presentation logic and the domain model.

Creating and Configuring the Example Projects

Create a new J2EE 1.3 Enterprise Application project called EmployeeManagement containing an EJB module and a Web module. The Enterprise Application Project Creation wizard will create three projects in the WSAD workspace called EmployeeManagement for the Enterprise Application (EAR project), EmployeeManagementEJB for the EJBs (EJB project), and EmployeeManagementWeb for the Web resources including the HTML and servlets that access the EJBs (Web project). The EJB and Web projects are also automatically deployed to the EmployeeManagement EAR. If you want to avoid developing the example from scratch, these WSAD projects are available on the CD. You’ll also need the Data Mapper Example project for the domain model and the database mapping using JDBC. See Appendix A for instructions on loading the examples from the CD.

Follow these steps to configure the projects:

1. Edit the EmployeeManagement EAR Deployment Descriptor and add the Data Mapper Example package as a Project Utility JAR as described in Chapter 20, section “Java Utility JARs”. The EmployeeManagementEJB project needs to be able to access domain model classes in this project. By including the Data Mapper Example project as a Project Utility JAR, these classes will be available to the modules within the enterprise application when the EmployeeManagement enterprise application is deployed and run.

2. Open the properties for the EmployeeManagementEJB project. Select the Java Build Path, and add a source folder called src to the project source folders. Leave the build output folder to EmployeeManagementEJB/ejbModule. We’ll be putting all the EJBs we create in packages in the src folder instead of the ejbModule folder so we can keep our code separate from the code generated during deployment as described in Chapter 20.

3. While the EmployeeManagementEJB project properties are open, select the Java JAR Dependencies tab. From the available dependent JARs, select the Data_Mapper_Example.jar from the Data Mapper Example project that was added as a project utility jar to the EmployeeManagement EAR in step 1. See Chapter 20 for more details about setting classpaths and the use of project utility JARs within WSAD. This will allow the EmployeeManagementEJB project to reference classes in the Data Mapper Example project during development and runtime.
4. Edit the References page of the EJB Deployment Descriptor editor opened on the EmployeeManagementEJB EJB module and add a Resource Reference to the EmployeeManagement EJB called jdbc/EJPBook, to a javax.sql.DataSource resource with Application Authentication, Shareable scope, and JNDI name: jdbc/EJPBOOK. This will allow the project to use the EJPBook database required to persist the domain model in the Data Mapper Example project.

Creating the session bean

Next we’ll create the EmployeeManagement session bean in the EmployeeManagementEJB project. Select File>New>Other…>EJB>EnterpriseBean to open the EJB Creation wizard (see Chapter 20 for more details). Create a stateless session bean named EmployeeManagement in the src folder, and in the package com.wsbook.acme.management with both a local and remote client view. We’ll be using the local client view (interface) to invoke the bean functions from servlets running on the server. The remote interface can be used by other Java client applications. It is of course possible to use the remote client view from the server too, but it is much more efficient to use the local client view.

Add the Service Layer Methods

The employee management use cases we want to implement in the session bean include creating new employees, accessing a collection of existing employees, updating employee data, and removing employees. These are pretty simple use cases that are also directly supported by the domain model and mapping layer. But by using a session bean, we can create methods supporting the client’s view of the domain model, and provide the proper transaction management and access control. Different client applications accessing the same domain model may have different views on that model, or use different interfaces to it. These different interfaces can be both a convenience to client developers, providing a interface specific to their needs, and enable more flexible access control through different session bean methods that access the domain model.

Add the methods shown in listing 21.1 to the EmployeeManagementBean. Note that the extra set of curly braces enclosing the begin and end of the unit of work appear to be superfluous, but the server the purpose of ensuring the instance variables used inside the unit of work are not visible after the unit of work has been committed, and will be garbage collected appropriately. This convention helps ensure the application does not access stale data outside a unit of work. UnitOfWork is discussed in Chapter 16. Later on we’ll see how to use J2EE to handle this important aspect of application development.
Listing 21.1 EmployeeManagementBean

public Collection findAll() {

Collection employees = null;

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

employees = mapper.findAll();

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace(); [[please don’t do this. Even in an example. Just throw an exception.]]

}

return employees;
}
public Employee getEmployee(String id) {

Employee employee = null;

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

employee = (Employee)mapper.findByPrimaryKey(id);

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace();

}

return employee;
}
public void update(Map args) {

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

Employee emp = (Employee)mapper.findByPrimaryKey(getParameter(args, "id"));

emp.setName(getParameter(args, "name"));

emp.setAge(Integer.parseInt(getParameter(args, "age")));

emp.getAddress().setStreet(getParameter(args, "street"));

emp.getAddress().setCity(getParameter(args, "city"));

emp.getAddress().setState(getParameter(args, "state"));

emp.getAddress().setZip(getParameter(args, "zip"));

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace();

}
}
public void createNewEmployee(Map args) {

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

Employee emp = new Employee(getParameter(args, "id"));

emp.setName(getParameter(args, "name"));

emp.setAge(Integer.parseInt(getParameter(args, "age")));

new Address(emp);

emp.getAddress().setStreet(getParameter(args, "street"));

emp.getAddress().setCity(getParameter(args, "city"));

emp.getAddress().setState(getParameter(args, "state"));

emp.getAddress().setZip(getParameter(args, "zip"));

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace();

}
}
public void deleteAnEmployee(String id) {

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

Employee emp = (Employee)mapper.findByPrimaryKey(id);

emp.delete();

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace();

}
}
public String getParameter(Map map, String id) {

String value = null;

String[] values = (String[])map.get(id);

if (values != null && values.length > 0) {

value = values[0];

}

return value;
}
Each of the methods dealing with employees creates a new unit of work, gets the EmployeeMapper from the MapperRegistry, and creates, reads, updates, and/or deletes the employee data. The map that is passed in for arguments comes from the servlet request. Each key is a request parameter name while the value is a list of strings. The getParameter method is a convenience method for accessing a parameter value from the map. Note that there will be some information messages in the Tasks view indicating that java.util.Collection and java.util.Map must be serializable at runtime in order to be passed as arguments to the distributed methods in the remote client view. The Collection returned by the findAll method returns an ArrayList which is Serializable as is the Hashmap used for the parameters, so these errors can be ignored. A better solution would be to encapsulate these parameters in a class in order to have simpler and more reliable access. Struts form beans play this role. But we won’t bother with that refinement in this simple example. We also didn’t address data validation, or appropriate exception handling in the above code in order to simplify the example.
Promoting the Service Layer Methods to the Local and Remote Interfaces

So far we’ve implemented the session bean methods, but they aren’t visible to the client. To make them available for invocation by clients, we have to promote the methods to the local and/or remote client views. While the EmployeeManagementBean.java class is open, select the findAll, getEmployee, update, createNewEmployee, and deleteAnEmployee methods in the outline view. Right click and select EnterpriseBean>Promote to Local Interface context menu action and the EnterpriseBean>Promote to Remote Interface context menu action. Now the methods are available in both the local and remote client views. You might want to edit the EmployeeManagement.java interface (the remote interface), and EmployeeManagementLocal.java add JavaDoc for the new methods since these interfaces are the client views. That’s it for the session bean.

Developing the Client View

Next we’ll update the HTML pages and servlets from the JSP Example project described in Chapter 13. First edit the properties of the EmployeeManagementWeb project, select the Java JAR Dependencies tab, and add the EmployeeManagementEJB as a dependent JAR. This will make the EJBs in the EmployeeManagementEJB project visible both during development time for compiling servlets and JSPs, and at runtime when the classes need to be loaded. Recall that using JAR dependencies ensures that both the development time classpath, and the deployment classpath information is kept in sync and only has to be specified in one place.
Next edit the Web Deployment Descriptor and add the CreateEmployee, BrowseEmployees, ShowEmployeeDetail, and UpdateEmployee servlets along with their default URL mappings. Without this, the servlets will appear as broken links when referenced in other HTML or JSP pages.

Listing 21.2 gives the changes to the BrowseEmployees.java servlet.
Listing 21.2 BrowseEmployees.java

package com.wsbook.acme.management;
import java.io.IOException;
…
public class BrowseEmployees extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

try {

InitialContext context = new InitialContext();

EmployeeManagementLocalHome emh =

(EmployeeManagementLocalHome) context.lookup(

"java:comp/env/ejb/EmployeeManagementLocal");

EmployeeManagementLocal em = emh.create();

Collection employees = em.findAll();

req.setAttribute("employees", employees);

RequestDispatcher rd =

getServletContext().getRequestDispatcher(

"/browseEmployees.jsp");

rd.forward(req, resp);

} catch (Exception e) {

RequestDispatcher rd =

getServletContext().getRequestDispatcher(

"/remoteAccessError.html");

rd.forward(req, resp);

}

}
}
This is only slightly different than the implementation in Chapter 13 that went directly to the domain model. The servlet looks up the EmployeeManagementLocalHome and uses it to create an instance of the EmployeeManagementLocal interface which it then uses to add the collection of employees to the servlet request session data. The JSPs from Chapter 13 hardly have to change at all other than of course to use the new com.wsbook.acme.Employee domain model. The other servlets and JSPs have similar changes.

Now that the coding is done for our enterprise application, the next thing to do is to test.

Overview of the Testing Process

To proceed with testing EJBs we’ll need to cover some of the built-in testing tools in WebSphere Studio Application Developer (WSAD). Just as we developed EJBs by following a step-by-step approach in the previous section, we’ll use a similar approach to deploy, test, and debug EJBs. In short, the necessary steps are:

1. Generate the EJB Deployment classes in the EJB projects used in the EAR

2. Create and configure a Server instance and add the EAR project

3. Publish and start the Server Instance

4. Test an EJB with the Universal Test Client and the client Web module

5. Debug the EJB code (if necessary) using the WSAD debugger

6. Publish the enterprise application to an external WebSphere server

7. Debug the published application using the distributed debugger

So let’s startup WSAD and work through each of these steps.

Step 1: Generate the EJB Deployment classes for an EJB project

Before we begin this step, we’ll need to review some basic EJB concepts in order to understand what’s happening. Remember that an EJB is a software component. In the previous sections, we’ve been concentrating on developing the user-developed part of entity and session EJBs (the Home, Local, and Remote Interfaces, and the bean implementation class). However, these classes are not the entire EJB. An EJB will also consist of classes that are provided by the container that handle the distribution, transaction, thread safety and (optionally) persistence aspects of the EJB component. Obviously, different EJB types will support different aspects of these features (for example, only the CMP Entity bean container handles persistence). We can call these classes deployment classes, since generating them is part of the EJB deployment process that is outlined in the EJB specification. In addition, the remote interfaces require proxy stubs to be generated that implement the remote interfaces on the client through remote procedure calls to the enterprise beans on the server. These interfaces are generated by the Java rmic (Remote Method Invocation Compiler) utility as part of the deployment code.

To generate the deployment code, select the EmployeeManagementEJB project, right click, and select Generate>Deploy and RMIC Code…. The Generate Deploy and RMIC Code dialog is displayed as shown in figure 21.1. Select the enterprise beans you want to deploy and click Finish. By default, only the enterprise beans that have changed and require new deployment code are selected. But you can select any other beans you want to refresh the generated code.

Figure 21.1: Generate Deployed Code Menu

The deploy process that is executed after choosing this menu item can last anywhere from a few seconds to take several minutes, depending upon the speed of your processor and the number of EJBs selected.

The classes generated for deployment are placed in the ejbModule folder in the EJB project as specified by the J2EE specification. This is why we recommend creating a separate src folder (also discussed in Chapter 20) for user contributed code in order to keep user code and deployment code separate. Another good reason to keep the code separate is that you often don’t need to maintain versions of the generated deployment code in the repository since it can be easily generated from the enterprise beans. To keep deployment code out of a CVS repository, select the root packages (often com and org) in the ejbModule folder, right click, and select Team>Add to .cvsignore. Don’t add the META-INF or databases folders to the .cvsignore file as you will probably want to version the deployment descriptors and database configuration information contained in these folders.
Step 2: Create and configure a Server instance and add the EAR project

In order to run the deployed code, we must first deploy the EmployeeManagement EAR to a server instance. The easiest server instance to use is the WebSphere version 5.0 Test Environment server that’s built into WSAD. So create a WebSphere version 5.0 Test Environment for the server and configuration, giving the server a name you can easily recognize as a server for testing purposes. Server instances and configurations are usually automatically created in a project called Servers. Each server has a <server name>.wsi XML file that contains the information about the WebSphere Server Instance. Each server configuration is contained in a <server name>.wsc folder that contains a number of XML files that describe the server configuration including enterprise applications that have been deployed to that server, available data source resources, ports, etc. Generally you never need to look at these files as the server configuration editor provides an integrated editor for all the information. However, knowing the files involved can simplify sharing servers and server configurations with your team members by committing them to your shared team repository. These resources can be versioned in the repository and shared across projects like any other. In particular, definitions of environment variables, MIME type mappings, data sources, EJB references, JAAS authentication entries, etc. are captured separately from the server instance. This allows the same configuration to be used by many different servers. To change the configuration for a server, select the server in the J2EE Hierarchy view, right click, and select Switch Configuration. The configurations that are compatible with that server are displayed in a submenu with the current configuration checked. Select some other configuration to change the server configuration.
In order to test our enterprise application, we need to add it to the server configuration, and then edit the configuration to specify all the resource needed by the application. You can add the EmployeeManagement EAR to the test server configuration by selecting the configuration, right click, and select Add. A submenu is displayed that shows all the available enterprise applications in your workspace that are not already added to this server. Alternatively, you can double click on the server instance in the J2EE Hierarchy view to open the server configuration editor, and select the Applications tab to add the application. You can open the server configuration editor from either the server or its configuration. The only difference is that opening the editor from the server instance causes the editor to include an extra Server tab for editing the server instance information. For a summary of the server configuration editor, see Chapter 8.

Note: If you’re using more than one server instance, and want to run them at the same time, you’ll have to edit the server configuration and select the Ports tab to select different ports. Multiple servers cannot run on the same ports at the same time.

The only other thing we need to edit in the server configuration is to add a data source for the database used to persist the domain model. This is the same data source that was used in Chapter 16. Open the Server Configuration editor on the server instance and select the Data source tab. Add a DB2 JDBC Provider if there isn’t one already in the server configuration. Select the DB2 JDBC provider and add a data source called EJPBook with JNDI name jdbc/EJPBOOK. This creates a JNDI binding to the database using the same name we used for configuring the EJB resource reference above. Select the data source, and edit its properties to set the databaseName to EJPBOOK, the DB2 database we’ve been using for the employee management examples in Chapter 7, 8, 13, and 16. Save the server configuration and close the editor.

Step 3: Publishing and starting the Server Instance

Now that the server instance has been created and configured with the desired applications and resources, we’re now ready to start the server. But first, the applications that are to be run on the server must be published to the server. This step copies files from the application into the locations required by the server in order for the application to run. For the WebSphere built in test environment, this does not do much because the application files are directly referenced from your WSAD workspace by the test environment. But for remote servers, this results in any changes that have been made to the application to be published or re-published to the server. Generally the server instance knows that data it depends on has changed in the workspace and needs to be re-published. In these cases, the server will automatically publish its configured applications when it is started or restarted.

To publish and start the server, we need to go to the Servers view in the J2EE perspective. Select the test server and right click to display the menu shown in figure 21.2.

[image: image1]
Figure 21.2 Server Menu

Before we publish and start the server, let’s take a quick look at some of the other things you can do with a server instance. The Debug menu item starts the server up in debug mode so you can debug servlets, JSPs, and EJBs that are running on the server. Start starts the server without debug capability. Profile starts the server and collects profile information for evaluating performance. Restart restarts an already running server. Use this menu item if the server configuration changed as this requires restarting the server. Stop stops the running server. Disconnect terminates a remote debug session and disconnects WSAD from a remote server. Publish publishes the applications configured for this server by copying any necessary files to locations required by the server. Restart Project displays a submenu of the projects belonging to the applications that are running on this server. You’ll need to restart a project whenever any of its configuration information changes. Run universal test client starts up the UTC which can be used to test your EJBs. The UTC is discussed in the next step and in Chapter 20. Run administrative console starts the WebSphere admin console which can be used to configure a WebSphere server. Note that to enable Run administrative console, you have to enable the administration console on the Configuration page of the server configuration editor. Running the admin console is sometimes useful because the WSAD server configuration editor dosn’t handle every possible configuration; while the full admin console lets you control every aspect of the server.
Select the Start menu item to start the server. The server is automatically published if necessary. Take a look at the Console tab to view the server logs. Make sure there were no problems starting up the server applications, or accessing any of the data sources. When the server says it is “open for e-business” in the Console log, you’re ready to start testing.

Step 4: Test your EJB with the Universal Test Client and client Web module

At this point we’re ready to try the application using a couple of options. You can go ahead and just run the Web application by selecting the EmployeeManagementWeb project, right click, and select Run on server…. This will display the welcome page configured for the application as specified on the Pages tab of the Web deployment descriptor editor. In this case, index.html will be displayed. Click on the Browse Employees link to display the employees in the database. Click on an employee id to see the employee details as shown in figure 21.3.

[image: image2]
Figure 21.3 Employee list and details using a Session EJB

However, if the application doesn’t work the first time, it may be useful to break the testing down into smaller pieces in order to figure out what is wrong. The best place to start testing is the domain model because if it’s wrong, then nothing in the application is going to work. Since we already developed the domain model in the Data Mapper Example, we can assume it’s correct and focus testing on what we changed or added in this example. That would be the session EJB used to provide a distributed service layer to client applications.

The easiest way to test EJBs is to use the Universal Test Client (UTC). There are a number of ways to start the UTC including selecting the server in the Servers view and invoking Run universal test client as described in the previous section. You can also open a Web browser on URL http://localhost:9080/UTC/ to run the UTC outside WSAD. The port is whatever port you set in the server configuration. But the easiest way is to simply select an EJB within an EJB Module in the J2EE Hierarchy view which is in the J2EE perspective, right click, and select Run on Server….

The UTC details were covered in Chapter 20 so we’ll go quickly through using it to for initial testing of our EmployeeManagement bean. The JNDI Explorer allows you to navigate and explore the elements in you JNDI server. Note that there is also an entry [Local EJB beans] that allows you to also explore EJBs with local interfaces that do not have an EJB Local Ref in the WebSphere Application Server. Go ahead and use the JNDI Explorer to lookup an the EmployeeManagementHome EJB, or navigate the JNDI ejb namespace to the bean, or, even easier, select the EmployeeManagement EJB in the J2EE Hierarchy view and select Run on server…. Expand the EJB References and then the EmployeeManagement bean to see the home interface and it’s create method. If the method isn’t visible, click on Method Visibility under EmployeeManagementHome and make sure the methods for the bean are selected to be visible. Select the create method and press Invoke to create an instance of an EmployeeManagement session bean. Press Work with Object to add an instance of the EmployeeManagement bean to the EJB References. Then expand the EmployeeManagement reference to see the session bean methods. Select the getEmployee method and fill in a parameter for an employee. The value you enter will be the ID of any employee you created when running the examples in Chapter 16. If there are no employees in the database, use the EmployeeManagementWeb application to create some. Then press Invoke to invoke the getEmployee method followed by Work with Object to add the Employee to the Object References. Then select the Employee object in the object references and try invoking any of its methods. The returned results are displayed in the UTC (using their toString methods), and you can use Work with Object to see the details. Note the Employee is a simple JavaBean from the Data Mapper Example. If you don’t remember any of the employee ids, try invoking the EmployeeManagementHome.findAll method first. This will return a java.util.Collection. Press Work with Contained Objects to add the employees to the Object References. In this cause you use the contained objects instead of the container because you want to work with the employees, not the Java collection. You can then invoke the getId method on any of the employee references to get its id.

Step 5: Debugging EJBs using the WSAD Debugger

One of the greatest advantages of WSAD is that debugging a J2EE application, like any other Java application, can be done in-place using in the Java debugger and the built-in WebSphere Test Environment. There is no need to create all the application JAR files and deploy before debugging. Debugging EJBs can be done using the standard WSAD debugger to:

· Set and clear breakpoints in EJB code and client code

· Step over code, step into code, or jump to the next breakpoint

· Examine values of variables in EJB code and client code and change the values while the code is running

· Make changes to the code and save them. The enterprise application is automatically restarted in order to pick up the code changes.

You never need to leave WSAD to do any of these things. There is no separate deployment or compilation required, or debug step you have to perform to run the debugger. If you set a breakpoint and run the application server in debug mode, then the debugger will halt the currently running thread at the breakpoint you set, and wait for your intervention to continue.

Covering all of the features of the WSAD debugger is something that is beyond the scope of this book. However, you can get a feel for how easy it can be to debug your EJBs through the following example debug scenario. Additional information is also available in Chapter 8.

Imagine that we’re having trouble updating the employee information. The City field on the form is always coming up null. The EmployeeManagementBean update method is shown in listing 21.1, but let’s change it as shown in listing 21.3 in order to create the error. We’ve simply misspelled city (shown in bold) when getting the parameter value from the form data resulting in the employee city always being set to null. This is actually a common error because the parameters are accessed by string names which are not checked by the compiler. Of course constants can be used to define these strings in one place, but we didn’t do that for our simple example. Now let’s say that no matter how much we studied the code study, we couldn’t find the error. Let’s use the debugger to see if we can figure out what’s causing the problem.

Listing 21.3 EmployeeManagementBean update method with error

public void update(Map args) {

try {

UnitOfWork.begin(); {

EmployeeMapper mapper = (EmployeeMapper)MapperRegistry.getMapper(Employee.class);

Employee emp = (Employee)mapper.findByPrimaryKey(getParameter(args, "id"));

emp.setName(getParameter(args, "name"));

emp.setAge(Integer.parseInt(getParameter(args, "age")));

emp.getAddress().setStreet(getParameter(args, "street"));

emp.getAddress().setCity(getParameter(args, "cith"));

emp.getAddress().setState(getParameter(args, "state"));

emp.getAddress().setZip(getParameter(args, "zip"));

} UnitOfWork.getCurrent().commit();

} catch (MappingException e) {

e.printStackTrace(); [[don’t do this even in an example. Never surpress errors. Bad!]]

}
}
In order to debug anything running on the server, the server must first be started in debug mode. If the server is already running, stop it and start it back up in debug mode as described in step 3. WSAD automatically switches to the debug perspective.

Open the EmployeeManagementBean.java file, and scroll down to the update method. Set a breakpoint on the line that creates the EmployeeMapper. Now to run the EmployeeManagementWeb project, select an employee by clicking on the employee id link, and attempt to update the employee details. If the Step-by-Step Debug dialog is displayed, select Disable step-by-step mode and press OK. Then go to the Debug view, select the currently suspended thread in the Test Environment server process, and press the resume button, press F8, or right click and select Resume. Step-by-step mode is on by default. You can change this default by turning off Use step-by-step debug mode on the WAS Debug preferences.

Now, single-step (press F6) through the code until you reach the line that sets the city field of the employee’s address. You can examine the emp variable in the debugger Variables view. Expand the emp variable and its address field as shown in figure 21.4 to see the city is currently null.

[image: image3]
Figure 21.4 Debugging the EmployeeManagementBean – Variables view

Single step again and notice that the city field didn’t change in the Variables view. Let’s see if we can figure out what’s wrong. We’ll start by seeing what value is being used in the setCity method. In the EmployeeManagementBean.java editor window, select the expression getParameter(args, “cith”), right click, and select Display. The debugger will switch to the Display view and display the selected text and the evaluated value. Notice it is still null. Maybe it was wrong in the arguments from the HTML form. You can see the arguments, but it’s a little tricky. Go back to the debugger Variables view and expand the args field. You can see it’s a Java Hashtable which makes it a little harder to see the values, but it’s still possible. Expand the table field and look through the entries, expanding each one, until you see one whose key is “city”. Then expand the value field as shown in figure 21. 5 and note that it is “Bangor” as expected, not null.

[image: image4]
Figure 21.5 The args variable

This looks right. If it wasn’t, or if you couldn’t find the entry, then we might expect that the field name was wrong on the form and there is no city argument. So what’s wrong? Go back to the debugger Display view and look at the expression. There it is! City is spelled wrong. Correct the spelling in the Display view to getParameter(args, “city”), select the text, and press the display button, or right click and select Display. You should see the result (java.lang.String) Bangor as expected. Now go back to the code for EmployeeManagementBean, and fix the spelling there too. Notice that when you saved the file, the server stopped the EmployeeManagement application, as well as its associated EJB jar and Web module. That’s because the code changed. Now go back to the Web Browser and press the Update button on the employee details form again. Now you should see that the City: field on the employee details form is updated correctly.

The WSAD debugger has a lot more features, but we’ve covered the basics that are generally useful for typical application debugging. The good news is that it’s the same debugger that’s used for any Java application. The turn-around time for finding and fixing a bug using the debugger isn’t significantly increased just because we’re debugging EJBs.

Step 6: Publish the enterprise application to an external WebSphere server

Ok, now the application has been developed and initial testing has been done to ensure it works. The next step is to publish the application to a remote production server where it can be accessed by others.

Using a remote WebSphere application server isn’t much different than using the built in Test Environment. You just need additional information when creating a server instance and configuration that is specific to the remote installation. There are also considerations for starting and stopping a production server, or one that is used by more than one person. Otherwise the deployment process is the same: create a server instance and configuration, add the enterprise application to the server, configure any server resources such as data sources, publish the server, start it up, and run the application.

Create a server instance and configuration

From the J2EE Hierarchy view, select the Servers or Server Configurations group, right click and select New>Server and server configuration. Enter a server name, expand Server type: WebSphere version 5.0 and select Remote server. Click Next, enter the host name for the remote server, and click Next again. The next wizard page, shown in Figure 21.6, is used to specify the settings for the remote server. You will need to get this information from your server administrator. All pathnames on this wizard page are relative to the remote host. You will need to know the WebSphere installation directory shown as D:\WebSphere\AppServer in Figure 21.6. You can select Use default WebSphere deployment directory, but this is generally not a good idea when more than one user is deploying applications to the same server. This is because the original server configuration will be replaced by the configuration you are creating when the server is published, causing any applications that have been published by others to be removed. Your fellow developers won’t like this very much. Instead, use a separate WebSphere deployment directory associated with either the set of applications you are deploying, or your user id. This folder must exist on the server machine at the specified path. Since our application also uses DB2, you will also need to fill in the DB2 driver location. Enter all the required information and press Next.

[image: image5]
Figure 21.6 WebSphere Remote server Settings

In order to publish the application, WSAD needs to be able to copy files from projects in your local workspace to their corresponding location on the remote machine. This publish step is also used for publishing the built in Test Environment server, but most of the files don’t need to be copied as they are accessed by the server in their original workspace locations. The next wizard page specifies a Remote File Transfer Instance that tells WSAD how to copy files from the local workspace to the server. You can either create a new file transfer instance, or use an existing one if the configuration is the same. There are two ways files can be copied, using a remote file system mount and regular file copy facilities provided by the operating system, or by using ftp. Since we’re going from a Windows client to a Windows server, we’ll select the Copy file transfer mechanism, and press Next. The next wizard page, shown in figure 21.7, is used to specify the particular settings for the file transfer mechanism. Fill in the Remote file transfer name to be a name that describes the source and target destinations and then fill in the Remote target directory. This directory is the pathname to the directory on the local machine that is mounted to the WebSphere deployment directory specified in the WebSphere remote server settings as shown in figure 21.6.

[image: image6]
Figure 19.9 Remote file transfer settings

These mechanisms are stored in a project in the workspace in XML files called <remote file transfer name>.rft. By default, all server instances, configurations, and file transfer mechanisms are stored in a project called Servers, but you can put them in any project you want by creating a new Server Project or by creating a server instance and configuration in any other project.
Add the enterprise application to the server

You can add enterprise applications to the server instance by selecting the remote server’s configuration and invoking the Add menu. A submenu is displayed listing all the enterprise applications in the workspace that are not already added to the selected server instance. You can also add enterprise applications from the Applications tab in the server configuration editor.

Configure the server

For our example, we need to configure a data source for accessing the EJPBOOK data source. Create the database on the server as described in Chapter 16. Then create a data source in the remote server configuration as described in Chapter 8, section “Configure the WSAD Test Environment and publish the application”. The only thing that is different is that the classpath for the JDBC provider for DB2 needs to be specified as the location on the server, not the client machine. Make sure the classpath information is correct for your server implementation as shown in Figure 21.8. The Class path includes a path entry for db2java.zip to its location on the remote server. You can add this entry by pressing the Add Path… button and entering the correct path information as obtained from your server administrator.
[image: image7]
Figure 21.8 JDBC provider properties

Publish the server

Generally there is no need to explicitly publish the server as WSAD detects changes in the enterprise applications that have been added to a server and automatically republishes as necessary. You can control this behavior in the Server preferences. Select Window>Preferences… and select Server. The preferences shown in figure 21.9 are displayed. Make sure Automatically publish before starting servers is selected. You may also want to make sure Automatically restart servers when necessary is not checked to avoid unnecessarily restarting shared servers until all configuration changes have been completed.

[image: image8]
Figure 21.9 Server Preferences

You can also publish the server manually. Select the remote server in the Server Configuration view, or the Servers view, right click, and select Publish. WSAD will use the configured remote file transfer mechanism for that server to copy files associated with applications that have been added to that server configuration to their corresponding locations on the remote server, including any required dependent projects corresponding to utility JAR files.

Start up the server

You can start the remote server from the Servers view, just like you started the Test Environment. However, it is more likely that a production server will be managed by a server administrator in order to coordinate the activities of many developers and end users, all using the same server.
Run the application.

When using menu item Run on Server… for a Web or EJB module, you will need to edit the project’s Server Preference property and select the remote server as the default server, or select Prompt for server before running to select the server each time the project is run. Then just select the EmployeeManagementWeb project, right click, and select Run on server…. The index.html file is displayed in the integrated Web browser. Click on the Browse Employees link to see the employees in the database as shown in figure 21.3. If you just created the database, the list will be empty. Create a few employees and view their details to ensure the enterprise application works as expected.

Step 7: Debug the published application using the distributed debugger.

Sometimes it is necessary to debug an application running on a remote server. This would be the case if you were running the application on an application server that is not integrated with WSAD. You can still use the built in test environment to do most of the debugging, and then deploy to the remote server when the application appears to be working. This will save a lot of time because you can use source level debugging without needing to republish and restart the server on every change. However, there may be bugs that only show up when running on a remote server, so it’s nice to be able to debug there too.

To debug on the remote server, simply restart the remote server in debug mode as described in Step 5: “Debugging EJBs using the WSAD Debugger above”. Then debug exactly the same as you did for the built in Test Environment.

Summary

In this chapter we’ve seen how to introduce a Service Layer into the application architecture to provide a more convenient API for client applications, and to provide better transaction management and access control based on the client use cases. We’ve covered how to deploy and test Enterprise JavaBeans using the WSAD. We’ve discovered how to start and stop servers and run test clients. Finally, we’ve covered how to use the powerful debugging tools built into the WSAD for Java environment to debug your EJBs. In the next chapters, we’ll be exploring other ways we can exploit the J2EE architecture to simplify application development. In particular, we see how Container Managed Entity Beans can be used to eliminate all the tedious code we had to develop to implement the Data Mapper pattern for persisting our domain model.

