Chapter 16
Developing and Testing the Domain Model

In chapter 1 we introduced the concept of layers that can be used to partition the overall enterprise application architecture into separate concerns in order to simplify development and maintenance. Recall that the presentation layer provides the application user interface, the domain layer the business semantics, and the data source layer persistence and integration with existing applications. Additional layers map between the core layers: the controller/mediator layer that maps the presentation to the domain, and the data mapping layer maps the domain layer to the data sources. In this chapter, we’ll take a closer look at the domain layer to see what role it plays in the enterprise application, how it is created, how it is integrated with the data source layer, and how it is tested. Getting the domain model right is often critical to the success of the enterprise application as it captures the semantics of the problem to be solved in a manner that greatly effects the ability to modify the application to meet changing business needs. Developing and validating the domain model early in the development life-cycle of an application provides a good foundation for all other aspects of development. Figure 16.1 shows what we’re covering the in the layered architectures.

[image: image1.emf]Presentation

Controller /

Mediator

Domain

Data

Mapping

Data Source

Java

Application

HTML

JSP

XML/

XSL

Servlets

Struts

Java

Beans

Msg Driven

Beans

Java

Beans

Session

EJBs

Mapper

Objects

Entity

EJBs

JDBC

CICS

JMS

Web

Services

Figure 16.1 Layered Architecture Road Map
The Domain Model Layer

The domain model layer represents an abstraction of the business application problem space. It formalizes the knowledge discovered about a particular subject area of interest to the business, and provides the foundation for the business applications. A powerful domain model focuses attention on the problem being solved and improves communication among developers and users of the system. Establishing a solid domain model provides a foundation for incremental development and evolution of software systems that more closely support customer needs. Eric Evans defines the domain model layer as that which "…serves to capture knowledge, enhance communication, and provide a direct path to implementation and maintenance of functional software." [Evans]. A domain model structures knowledge about a particular subject area while abstracting away extraneous detail. The business value of your application is derived from this layer.

In a seminal paper [Brooks] Fred Brooks once made a distinction between “essence” and “accidents” in Software Engineering. The “essence” of a problem is what makes it intrinsically interesting or hard. This may be finding the right formula for calculating a value, or developing an algorithm to solve a complex problem efficiently. This is different from the “accidents” of implementation that stem from inadequate languages, tools, or from a limited understanding of the capabilities of the tools and languages you have.

 We want to handle domain complexity separate from Information Technology (IT) complexity in order to focus on the problem domain and not the implementation domain. In other words, you want to be able to concentrate on the “essence” of your business problem, and not overly concern yourself with the “accidents” of a particular implementation technology. The specific purposes of the domain model are:
· To rigorously and unambiguously capture, maintain, and evolve knowledge about the business problem domain.

· To provide a common, shared language to enhance communication about the problems being solved.

· To provide a solid foundation for the implementation and maintenance of software that provides the intended business value.

Business applications are often subject to many different dimensions of change. There are changes in how the application should be viewed to support different stakeholder roles and client devices. There are changes in how the data is accessed from data sources. There are changes in the run-time deployment architectures to support different non-functional characteristics, or to enable integration with other applications. But most importantly, there are changes in the market forces that drive the business processes the applications are intended to support. Since the domain model represents that portion of the business domain that is automated and therefore the business value of the application, and since it is often subject to rapid change, it is important to build the application in a way that minimizes coupling with other application layers. The domain model separates business logic from views or persistence mechanisms so they can all vary more independently. You need to be able to modify, build, and test quickly to enable change. Separation of concerns is the primary mechanism for managing complexity, facilitating reuse, and enabling change.

Service Layer

The controller/mediator layer separates application and business domain logic and is useful for implementing coordinated application logic involving multiple, loosely coupled, transactional domain model objects. The controller/mediator layer is especially useful when the application must accomplish some task or use case accessed by multiple clients. It provides a layer for abstracting common user interface and application controller logic that can be shared across many user interface implementations.

The domain model provides the foundation for developing the rest of the enterprise application. However, it is possible that the same domain model may be used for many different purposes in an application, or reused in different applications. Each use satisfies some aspect of the business problem. Often these different purposes will want a different perspective on the domain model. This could be as simple as different names for the same information or behavior, or abstraction of lower-level functions into some other behavior more focused on a particular domain. You can try to incorporate these different functional views into the domain model directly, but sometimes it is better to factor them out into separate packages and classes. The Service Layer pattern [Fowler] is a means of providing multiple interfaces to the same domain model to better suit particular needs, views, or use cases. Use this pattern to provide APIs for particular purposes so that the domain model does not become over complicated with different functional views. Service layer methods often model specific use cases or business processes and can represent transactional boundaries. Contrast this with the controller/mediator layer, which serves a similar purpose as the service layer, except from the perspective of the presentation layer instead of the domain layer. Service layers aren’t always necessary, but they can be very useful when the same domain model is used for many different purposes.
Approaches to domain modeling

There are many approaches to organizing domain logic including process modeling, functional decomposition, data centered design, and object modeling. All are useful in different circumstances, but using an object model for the domain model has many advantages even for simple problems.

Functional decomposition does a good job capturing anticipated functions, but does not capture the overall domain in a manner that facilitates changing functions or adding unanticipated functions. This is because each function focuses attention on one particular activity that must be accomplished. Indeed, one of the measures of software quality is high functional cohesion and low coupling. However, it’s often hard to see how all the functions fit together. As we said earlier, enabling rapid change is one of the primary results of a good domain model. Functional decomposition often results in duplicated code, high coupling in calls/called relationships, spreads state and logic throughout the application, and only handles one dimension of complexity (function).

Data centered designs are useful for simple CRUD (Create, Read, Update Delete) applications since they often allow record sets obtained from relational databases to be displayed and manipulated directly by user interface components. However, this tightly couples the presentation, domain, and data store layers making it difficult to change any of them. This may be fine for simple CRUD applications that are data centered, stable, and/or short lived. However it doesn't scale well to complex domains because the increased complexity of handling UI, domain, and relational database are all managed together. In addition, a number of useful OO techniques such as inheritance, strategies, and other patterns that can simplify application development and maintenance are not directly supported.

Object modeling addresses many of these issues by providing a rich language for capturing broad domain knowledge. The primary advantage of object modeling results from encapsulation of knowledge through clustering behavior close to the state it needs. This reduces complexity by keeping closely related state and behavioral knowledge together, avoids duplication, and reduces data coupling between objects. There are also many approaches to domain object modeling from simple intuitive approaches such as CRC (Class, Responsibility, and Collaborator) cards all the way up to the RUP (Rational Unified Process). We won’t cover them all here as this would fill another complete book. However, we will take a look at one simple approach to domain modeling based on the notion that domain models are more often discovered than designed. Iterative development based on exploration with your customer, implementing, mapping to the data source layer, and testing prove particularly useful for developing complex domain models. The whole process is oriented around change from the beginning. What follows is an extreme oversimplification of what can be a very complex topic. However, we have found it useful for capturing a wide variety of domain models. For a more complete treatment of domain modeling, see [Evans].

The Mini-Max Approach to Domain Modeling

Start by having your customers tell you a story about their business or your end users about how they want to use your application. Focus on observable, existing, or anticipated business processes or functions, scenarios, and use cases. Don’t worry too much about data at this point, there’s more knowledge and value in the business processes. Data comes later as you determine what’s required to implement the functions that support the business’ processes. Also spend time thinking “out of the box” in order to discover new business opportunities and processes that support them. You don’t want to just develop something the customer already has. The business processes can be captured in text, use-case scripts, pseudo code, or UML interaction or collaboration diagrams. At this stage, it isn’t necessary to be too formal. You want to focus on discovering knowledge about the domain, not requirements or modeling tools. A white board is often the best CASE tool at this stage. Avoid using tools that focus the attention on the computer or tool, not the business. You also want to be able to easily interact with the participants in the business. This can be hard to do when the view port is a 1024x768 screen.
Try to identify logical subsets of the business domain that are more or less independent and use this as a guide when you partition the domain into separate packages in order to manage complexity. These packages can be UML or Java packages, folders in the file system, or sections in a document. The implementation doesn’t matter at this point. The goal is to identify different functional areas in the domain that can be handled more or less independently.

For each distinct business process that you have discovered, identify participating objects and assign responsibilities. The objects are often identified by nouns in the descriptions while the functions are verbs describing the processing, but consider this only a guideline and not a rule. Some verbs may ultimately become service or domain controller objects. One good place to find domain objects is in the customer’s organization charts. Departments and employees often have well defined roles and responsibilities supporting business objectives. This is a rich source of domain information that focuses on the customer’s core value proposition and the responsibilities of the key stakeholders. Moreover, the players and processes that make up a business domain rarely change independent of evolutions in technology. Today every business has customers, accounts, suppliers, and so on; years from now that will still be true. It is likely that the means to access them and their abilities to interact with each other more fluidly will evolve in time, however the basic business rules that underlie this interaction will remain principally unchanged. All the more reason to focus on these “immutable facts of doing business” than the tools and technologies that support their implementation.

Examine each responsibility and determine what other information and operations are required to support it. As you discover new information and behavior, examine each existing domain object starting from concrete examples; avoid worrying too much about abstraction or generalizations at this early stage and instead focus where the new knowledge best fits. If it doesn’t fit anywhere, create a new domain object and put it there. Name the objects based on the role they play in the business, not how they are implemented in the application or database. Once you identify an object that should own the new information or behavior, try to push the information or behavior up the class hierarchy to the highest point possible by asking the same question about each superclass. We call this the Mini-Max approach to class hierarchy design. It pushes information and behavior up the class hierarchy as high as it can go without compromising cohesion. This results in a shallow class hierarchy that minimizes coupling between objects and maximizes the behavior of each participating object.

Next, map the domain objects to their underlying data store layer in order to support persistence. This is the subject of the rest of this chapter. Doing this early ensures the domain model is consistent with the (often existing) data sources layer early in the development cycle avoiding potential big surprises later. Don’t let existing databases over-dictate the domain model. They may be out of date, or designed to solve a different problem. Get the database administrators involved in discovering the domain model, they will often know the data very well. You can try to get them to update the schema to better fit with the domain model, but this may be very difficult to do. Instead, you can use the data mapping layer to allow the domain model and relational schema to evolve more independently.

Finally, take the business functions you started with and that were used to define the domain layer, and turn them into test cases to run against the newly implemented subset of the domain model. This validates the domain model based on the original requirements.

After you’ve completed these steps, iterate. Do incremental development driven by test cases that match anticipated functions, scenarios, and use cases that were used to develop the model. During each development iteration, try to implement specific functions that were identified as system requirements. Refactor as needed to incorporate new knowledge. Implement the domain model first and then map it to a persistent store. The original functional requirements are implemented as test cases that can be used to ensure the domain model actually solves the intended problems. This provides complete feedback between requirements, domain model, and testing early and often in the development life-cycle ensuring the extended team understands the business problem as it is discovered and evolves. Keep in mind a customer often doesn’t know precisely what they want until you show them something that isn’t it. Continuous and iterative refinement of the domain model through the full life-cycle can avoid more unpleasant surprises, missed expectations, and unsatisfied customers.

Issues with domain modeling

There are some issues with domain modeling that should be taken into consideration. One of the most significant is that stakeholders often can't discern their original business process or use cases; they're hidden in a web of collaborating objects. This is a hard issue to address completely, but there are some things that can help. First, presenting more abstract views of the domain model using such as UML use case diagrams, interaction diagrams, and collaboration diagrams can be used to focus attention on the essence of the domain model. If you’re already working at the programming level, using a good program development environment can make navigating the domain model implementation simple and easy, making it easier to figure out how things relate and how well the implementation matches your initial design thoughts. The Java development tools in WSAD are stellar in this regard. You can pretty much put the cursor over anything and get hover help showing its specification or JavaDoc if available. Press F3 to immediately open its definition. You can select interfaces and methods and ask for where they are referenced to see how they are used or where they are implemented to see how to implement or customize them. Search is based on Java semantics, not just strings, and is extremely fast. Another technique is to put breakpoints at various interesting points in the application and then run it under control of the debugger. When the breakpoint is reached, the stack trace in the debug perspective will tell you how you got there and is effectively a view of a process instance. Just double-click on any entry in the stack trace to view the Java source at that point. Then single step to see where you might go next. Finally, it is possible to write applications that introspect the information collected by the application profiling tools that could even re-create the original process models.

Another problem is that developers can find it hard to realize known and anticipated functions in an object model. This requires a kind of abstract thinking and a semantic shift that some people find difficult. You start out following a specific sequence of steps in a function, but then have to abstract domain knowledge about not only that function, but all the other parts of the domain it interacts with. Abstracting meaning out of simple steps in a particular function out of many can be quite difficult and requires a thorough knowledge of the domain, something many programmers don’t have. One approach to addressing this problem is through pair-programming where team members who have a functional world view are paired with someone else who can deal effectively with OO abstractions. Both perspectives can then be complimentary resulting in a better domain model than either could have created by themselves.

Rich domain models can take longer to build and cost more in their initial development. However, they can reduce overall cost when applications are changed or extended. Sometimes its hard to achieve a balance between these conflicting goals, especially when your customer doesn’t even know what unanticipated functions they are going to come up with, and therefore aren’t willing to pay for the increased development costs. You can always start out with a simple, limited domain model with lots of function calls implementing the system behavior. Then as the application gets more complicated, use the knowledge obtained so far to help develop a better domain model for subsequent releases. This can result in a lot of refactoring and re-development, but it might be better than other alternatives.

There is also increased risk if the development team is not experienced in OO development. In this case it may be useful to hire consultants to participate in pair-programming teams to help mentor the development team. This is often cheaper and faster than sending the developers off to a number of classes since they learn the techniques while working with an expert to solve the problem in the context of their own business instead of general programming exercises. It may seem costly in the short term, however one good mentor can boost the productivity of a larger group more than enough to offset the additional cost (if not, they are not a good mentor, in the authors’ shared opinion).
The Data Mapping Layer

The data source layer provides the persistent data from a technology-specific data store for the domain layer, which in turn provides this data in a more natural and accessible format for other domain objects. These data sources could be anything including existing applications, façades encapsulating existing applications, object databases, or even real-time sensors. But very often the data source layer is a relational database. The data mapping layer is the gateway that maps between the domain layer and the data sources layer. In Chapter 7 we developed a very simple model and persisted the domain objects in a relational database using the active record pattern. This works well for simple object models that closely match tables in the database. But active record doesn’t scale well for more complex domain layers primarily because the domain model is responsible for the mapping which results in tighter coupling between the domain and data source layer. This coupling limits data mining flexibility and inhibits change in both the domain model and database schema. Larger domain models will be permeated with mapping code throughout its many domain objects, making it harder to maintain as domain model and relational schemas change due to refactoring and schema migration. Also this coupling makes it difficult to test the domain model without a database.

Two important principles of software development are encapsulation and separation of concerns. This typically means factoring out the things that change so they can be implemented independently, and clients don’t need to be aware of, or dependent on, implementation details. This facilitates (actually enables) reuse, and isolates change to minimize maintenance overhead. The encapsulation of persisting data is a common example of managing variability. There are many different object models to persist and many ways to persist them using many different database technologies or even the same technology. So when mapping between the domain and data source layers, we want to define interfaces that are independent of the actual domain model as well as the data store technology choices. This means that the interfaces can be implemented using many different techniques, each having different nonfunctional or quality-of-service characteristics.

There are two points of variability we need to manage: the data source architecture and the actual data to be managed as specified by the domain model. The mapping layer manages variability in both of these dimensions while keeping the domain and data source layers decoupled. The following sections explore aspects of the mapping between an object model and a relational database in more detail. See [Fowler] for an excellent treatment of object/relational mapping and implementation details on each of the patterns used.
You may be wondering why we’re covering this much detail in the mapping layer. Experience has shown that POJOs and JDBC are very effective for implementing and persisting domain models. However, sometimes developers start out with simple domain models and simple mappings that work very well, and don’t have deal with all the concerns below. Then as the application grows, and has more concurrent users, new problems crop up that can’t be easily handled without a more complete persistence framework. Then, without ever intending to, development shops can end up building their own persistent framework! This can result in lots of additional unplanned work, missed schedules, and cost overruns. We highly recommend that you avoid this trap by using a commercial object-to-relational mapping tool to generate as much of this code as possible. Or better yet, skip ahead and see how you can use Entity EJBs to do the work for you. If your still intent on building the mapping layer yourself, the following sections will introduce concerns you may want to address.
Object to Relational Mapping

Object to relational mappings can be quite complex due to a number of factors:

· There is an “impedance mismatch” resulting from different programming models. For example, procedural Java vs. declarative SQL.

· Identity is generally handled transparently in domain object models through references maintained by the underlying programming language runtime. In relational schemas, identity must be implemented explicitly in the schema often using business data for primary and secondary keys.

· Objects can have one-to-many and many-to-many associations with other objects through collections while relational schema normalization prevents a column from having multiple values.

· The object and relational programming models have different type systems often requiring transformations from one to the other.

· Relational schemas do not directly support inheritance.

· The domain model and schema definition often evolve independently.

· There can be many domain models on the same data sources through data mining techniques.

· The transformation from the domain model layer to and from the data source layer results in data redundancy between in-memory representations being manipulated by applications, and data stored in a potentially shared repository. Unless carefully managed, this data redundancy can result in stale data or lost updates, especially when dealing with concurrent applications.

· Object models do not have native support for transaction semantics.

· Object models present a natural programming interface to the domain model, but they can introduce performance overhead depending on how the mappings to the data sources are implemented, and how close the data source schemas correspond to the typical uses cases supported by the domain model. Sometimes is easier to create an optimized query that returns exactly what is needed for a function without requiring an object model to provide further abstraction.

As a result there are many issues involved in object to relational mapping schemes. We’ll introduce the issues and discuss possible solutions, in particular, one similar to that used for the case study discussed in Chapters 2 and 31. This solution is based on patterns taken from [Fowler] which provides a more detailed treatment and explores other mapping alternatives that may be appropriate for other situations. The patterns we’re going to focus on are Data Mapper and its associated patterns. To facilitate the discussion, we’ll refer to an example taken from the case study model described in Chapter 2 as shown in Figure 16.2. This simple example provides most of the modeling issues we need to cover. There is a one-to-many, bi-directional association between Department and Employee. We’ve shown the employee address as a one-to-one association navigable in only one direction. There are two subtypes of Department, Personnel and Purchasing to show simple inheritance. There are other modeling issues, but these are the basics that are in every domain model.

[image: image2.emf]Employee

- id : String = ""

- name : String = ""

- age : int = 0

Address

- street : String

- city : String

- state : String

- zip : String

- address

1

Department

- id : int

- name : String

- description : String

- department

1

0..*

Personnel

- code : String

Purchasing

- externalBudget : float

Figure 16.2 Example model taken from the Case Study

Mapping Architecture Overview

Figure 16.3 gives an overview of the primary classes used in a typical mapping. The complete implementations of these classes, and the example domain model given in Figure 16.2, are provided in the Data Mapper Example project on the CD. See Appendix A for instructions on how to load projects from the CD.

We use the Separated Interface [Fowler] pattern to create a Mapper interface that captures the common mapping behavior that is independent of both the domain model and the persistence technology. JDBCMapper is an abstract implementation of this interface for JDBC. This class provides an implementation of mapping behavior specific to JDBC but independent of any particular domain object being mapped. Other abstract implementations could be created for other data source layers, including different mappers in the same application for different domain objects. For example, in the section on testing the domain layer, we’ll explore using a simple in-memory mapper to verify the domain model before going to all the trouble of implementing an object/relational mapping. Finally, there is a concrete instance of the JDBCMapper for each domain model object that maps that object to its relational data source. For example, EmployeeMapper maps an Employee domain object to the EMPLOYEE table in a relational database.

[image: image3.emf]«JavaInterface»

Mapper

+ create ()

+ findAll ()

+ findByPrimaryKey ()

+ update ()

+ delete ()

JDBCMapper

+ JDBCMapper ()

+ create ()

create ()

createImpl ()

+ findAllObjects ()

+ findByPrimaryKey ()

findByPrimaryKey ()

findByPrimaryKeyImpl ()

+ update ()

update ()

updateImpl ()

+ delete ()

+ delete ()

deleteImpl ()

activate ()

+ getConnection ()

+ commitConnection ()

+ getDataSource ()

close ()

EmployeeMapper

+ EmployeeMapper ()

createImpl ()

+ findAll ()

findByPrimaryKeyImpl ()

+ findByDepartment ()

updateImpl ()

deleteImpl ()

activate ()

doActivate ()

passivate ()

MapperRegistry

+ getMapper ()

UnitOfWork

+ begin ()

+ setCurrent ()

+ getCurrent ()

+ registerCreated ()

+ registerUpdated ()

+ registerDeleted ()

+ registerUnchanged ()

+ containsID ()

+ getLoaded ()

+ commit ()

- insertCreated ()

- updateUpdated ()

- deleteDeleted ()

DomainObject

+ getID ()

+ equals ()

+ delete ()

+ isGhost ()

+ setIsGhost ()

markCreated ()

+ markUnchanged ()

+ markUpdated ()

markDeleted ()

Employee

- id : String = ""

- name : String = ""

- age : int = 0

- Employee ()

+ Emplyee ()

+ getID ()

+ getId ()

+ getName ()

+ getAge ()

+ setName ()

+ setAge ()

+ getAddress ()

+ getDepartment ()

+ setAddress ()

+ setDepartment ()

Figure 16.3 Object-to-Relational Mapping Overview

The Mapper interface shown in Figure 16.3 specifies the methods that a particular mapper must have for any domain model object and data source. These methods correspond to the typical CRUD (Create, Read, Update, and Delete) operations that are required to persist and update objects instances in their data source. The two find methods are used to find all instances of a domain object, or to find a particular instance given its object identifier. You’ll see a similar pattern later on when we introduce EJB Home interfaces.
JDBCMapper provides an abstract implementation of the Mapper interface that is specific to JDBC. The implementation of each Mapper method is broken into two methods. The first method, the one with the same name as the method in the Mapper interface, implements the JDBC specific behavior, primarily connection management and JDBC exception handling. This method then calls an abstract method of the same name but with an Impl suffix that represents the domain model object specific behavior. It is these abstract Impl methods that the domain object-specific mapper must implement to create, read, update, and delete instances of that object in the relational database.

public void update(DomainObject domainObject) throws NoSuchObjectException {

Connection conn = null;

try {

// get a connection

conn = getConnection();

updateImpl(conn, domainObject);

} catch (Exception e) {

System.out.println("Exception " + e + " caught in update()");

throw new NoSuchObjectException("Wrapped Exception " + e + " caught in update()");

} finally {

close(conn);

}

}

protected abstract void updateImpl(Connection conn, DomainObject anObject)

throws SQLException, MappingException;
The abstract activate method is implemented by domain object-specific subclasses to actually move data from the data source layer to the attributes of the domain object. We’ll cover this in more detail later. JDBCMapper also manages connections to the underlying database. A Java .properties file is used to externalize the specific data source and schema information, as was done in Chapter 7.
Finally we have a concrete implementation of the JDBCMapper for each domain model object. Each abstract data source mapper requires a concrete implementation for each domain model object. For example, the EmployeeMapper contains the SQL statements required to do the CRUD operations. These statements are prepared and used in the implementations of the abstract Impl methods specified in the JDBCMapper super-class. The createImpl method creates a new row in the database and maps the attributes of the Department instance to columns in the row. The findByPrimaryKeyImpl method executes a query having a where clause specifying an expression that matches the primary key of the table to the value of the identifier for the domain object. The updateImpl method updates an existing row in the database with values from a modified Employee instance. And the deleteImpl method deletes and existing row in the EMPLOYEE table whose primary key matches the employee’s identifier. Except for the actual SQL statements, and the assignment to and from domain object attributes and statement parameters, this code follows a similar pattern for all domain objects.

Accessing Object-Specific Mappers

Clients often need to interact with the data source layer, either directly or indirectly, through existing domain objects. This means there must be some well-known way to find the mapper class for any given domain object. An easy way to do this is to use the Registry pattern [Fowler] to provide a well-known object that can be used to locate objects and services. The MapperRegistry class shown in Figure 16.3 provides access to the mappers to be used for each object in the domain model class. The MapperRegistry can use an entry in the Java .properties file for the application that specifies what data source layer to use. It then fills in a table of the correct mapper to use for each domain model object keyed by its class. This can be useful for switching between development with an in-memory null mapper (one that doesn’t use any data source layer) and a deployment time data source layer to facilitate testing. The getMapper method looks up the mapper instance to use for the given domain object class. Note that the mapper instances are all singletons. A single instance of a mapper class handles the mapping for all instances of that class.

String dataSource = ApplicationProperties.getProperty("com.wsbook.mapping.datasource");
if (dataSource.equals("jdbc")) {

registry.put(Employee.class, new EmployeeMapper());

registry.put(Department.class, new DepartmentMapper());
} else { // assume "memory"

registry.put(Employee.class, new TransientObjectMapper());

registry.put(Department.class, new TransientObjectMapper());
}
Mapping Objects to Relational Tables

The first step in modeling an object-oriented domain model to a relational database is to map each domain model object to one or more relational tables. There are three possible strategies for mapping an object-oriented domain model to a relational database: top-down, bottom-up, and meet-in-the middle. In the top-down strategy, the object model is used to completely derive the schema for the database. No existing schema elements are used. In the bottom-up strategy, the opposite occurs. The domain object model is completely derived from the relational schema. Meet-in-the-middle is used when, for some reason, the domain model and relational schema don’t match well. This is often the case when there is an existing domain model and an existing database schema, both of which need to be reused. Meet-in-the-middle is a more realistic strategy since there is often an existing, at least partial, relational schema, and a domain model needs to mine that data and extend it to support some new functions. Top-down strategies often result in databases that are not well normalized or are difficult to optimize. A good object model is not necessarily a good database schema. Conversely, the bottom-up strategy often does not result in the best object model. Relational schemas are often influenced by normalization and performance requirements or similar technology-related needs of a database and thus may not represent ideal object models, so the bottom-up strategy might only be useful for creating an initial domain model from an existing schema. The classes created from the schema could then be refactored to provide a domain model that better captures the semantics of the domain.
We’ll focus on meet-in-the-middle since it is the most general approach and it provides additional flexibility by allowing the domain model and schema to evolve more independently. This strategy can use the Mapper [Fowler] pattern to bridge between the domain and data source layers.
Handling Object Identity

Object identity is a critical concept in object-technology. It must be possible to uniquely identify an instance of something that encapsulates state and behavior. Generally object identity is handled by the underlying programming language through a memory reference or pointer and the application developer does not need to deal with its implementation details. However, this is not the case for relational database schemas which have to provide information about columns that make up primary (or secondary candidate) keys, and foreign keys that are used to link rows together in the database. These keys often consist of data that is meaningful in the business domain, such as Social Security numbers for identifying individuals. Therefore the domain model needs to provide some way of mapping object identity to identity in the data source layer. Since all domain objects must have an identifier, an implementation could introduce a Layer Supertype [Fowler] called DomainObject that is the supertype of all domain model objects, and implement identity management there. Then the other domain model objects can inherit identity management behavior from the layer supertype.
The identifier for an object can often be a single primitive value like an integer or string, or it could be a combination of many attributes that make up a composite candidate identifier. An Identity Field [Fowler] can be used to simplify identity management so that the identifier is always an instance of an object. This way the same identity handling code can be used regardless of the actual implementation of the identifier for any particular domain model object. The DomainObject layer supertype can provide an abstract method getID that returns the identifier for a domain model object. Concrete subclasses implement this method by returning an object that contains their key. DomanObject can also implements the equals method by checking to see if the referenced values compared are of the same type and have the same identifier. Two references are considered identical if they reference the same domain object. For domain objects having identity, this means the referenced domain objects are of the same type and have the same identifier. Other aspects of DomainObject will be covered below.
It is generally a good idea to avoid using business data for identifiers because this data is often subject to change making it difficult to update all references from other objects. For similar reasons, try to avoid identifiers that contain foreign key components (id dependency) as this causes the identifier of one object to depend on an association with other object, resulting in increased coupling. Changing the association would result in an unintended change in the identity of the participating objects.

Object identifiers, and database primary keys need to be Globally Unique Identifiers (GUIDs) that once assigned to an object instance are never changed or reused on any other object instance. Otherwise they wouldn’t uniquely and unambiguously identify a specific object instance. Identifiers should also be simple primitive values in order to make them easy to compare resulting in faster queries. Other candidate identifiers that have more specific business meaning can be used as arguments to finder methods as described below. Identifier values can be provided by a GUID generator or by using sequenced attributes supported by the underlying database management system (DBMS). Sequenced attributes are convenient, but they are not standard SQL types and can introduce undesirable DBMS dependences. Another option is to create a key table in the database indexed by key domains, and whose values are simple integers that are incremented every time a new GUID is needed.

Mapping Object Attributes

The attributes (properties or fields) of a class can be partitioned into a number of categories that determine how they should be mapped. The simplest category consists of attributes that have primitive types like int or java.lang.String. Examples of such attributes are the employee name and the department description. These fields can be mapped directly to columns of the table of the corresponding domain object. The column name is often similar to the name of the attribute while its type is the corresponding SQL type. Any differences between the Java and SQL type systems are handled in the domain object-specific mapper. Identity attributes that are primitive types also fall into this category.

The second attribute category consists of Value Object [Fowler] attributes that are non-primitive types, but are objects that contain primitive types and are treated as a single value. That is, these objects have no identity of their own (they are referentially transparent – references to different instances of the same value cannot be distinguished) and it is not necessary to distinguish one instance from another other than by values. Common examples are Integer, Money, Date, Time, etc. These types generally should not have a corresponding table of their own, but instead, should use an Embedded Value [Fowler] to map the object to fields of the table corresponding to the object that contains the attribute. Domain object identifiers that are composite objects are value objects and should be mapped using an embedded value so the identifier can be treated as a single object as described above. You can also use an embedded value for simple, one-to-one containment associations. Using an embedded value simplifies the relational schema and eliminates joins that might be required to access an instance of the containing object. A final reason for using an embedded value is when you have to map to an existing database schema that embeds more than one object into a single table, and the embedded objects don’t have a separate identity. The domain model might want to separate the embedded objects out to provide a better object model.

The EmployeeMapper doActivate and passivate methods actually perform the mapping to and from the results or reading or updating the database. We’ll cover setting the employee’s department below when we cover associations and lazy load.

protected void doActivate(DomainObject domainObject, ResultSet rs)

throws SQLException, MappingException {

Employee emp = (Employee)domainObject;

emp.setName(rs.getString(2));

emp.setAge(rs.getInt(3));

emp.setAddress(new Address(emp));

emp.getAddress().setStreet(rs.getString(4));

emp.getAddress().setCity(rs.getString(5));
…

}

protected void passivate(DomainObject domainObject, PreparedStatement ps)

throws SQLException, MappingException {

Employee emp = (Employee)domainObject;

ps.setString(1, emp.getId());

ps.setString(2, emp.getName());

ps.setInt(3, emp.getAge());

if (emp.getAddress() != null) {

ps.setString(4, emp.getAddress().getStreet());

ps.setString(5, emp.getAddress().getCity());
…

}
}

Finding Objects

Obviously application code needs to be able to access object instances in order to manipulate them. However, there are often only a few, top-level objects that the application needs to access directly. The rest are accessed through navigable associations from these few root objects. Finder methods are used to access these root object instances. The application would have a different root-level object for each independent portion of the domain layer that it needs to manipulate. An application would use finder methods to locate root-level objects given some query criteria, often the identifiers of the objects. But other search criteria can be supported too.

In order for applications to use finder methods, they must be able to, well, find them. Since the finder methods eventually have to query the data sources and return domain model objects, they can be implemented in the mappers, and can therefore be located through the MapperRegistry as described in the section “Accessing Object-Specific Mappers”.

The domain object specific mapper should have at least one finder method. Finder methods should be static since they do not require an instance of the mapper to function. Each domain object should have a method that finds that object by its identifier. The abstract method findByPrimaryKeyImpl does this for all JDBCMappers. Domain object specific mappers implements this method by executing an SQL query that searches their corresponding table for a row whose key column matches the object’s identifier. Other finder methods can be provided as needed by the application. For example, a mapper for the department can be used to find all employees in that department. These methods can also be used by the mapper layers themselves to load objects referenced through associations as described below.

Since finders are usually implemented by querying the database, they may not return object instances the application has added to the in-memory domain model as part of a transaction until after the transaction is committed. So it’s a good idea to call finder methods early in the transaction in order to ensure a more consistent state across the whole domain model in the transaction.
Database queries can be expensive. Therefore, it is often best to error on the side of accessing too much data and filtering in the finder methods or mapping layer instead of doing lots of little queries in multiple finder methods.
Different use cases may benefit from using finder methods that return more than one object type. These finders can fill in certain associations in the domain model because you know you'll need them in a particular situation. These finder methods can use a join instead of multiple queries to reduce database accesses. They can be coordinated with data clustering and indexes in the data source layer for efficient access.

The findByPrimaryKey method for the EmployeeMapper is quite simple. It prepares the SQL statement for looking up an employee by its primary key, executes the statement, and calls the activate methods to put the data into the Employee domain object.

protected static final String _readString =

"SELECT ID, NAME, AGE, STREET, CITY, STATE, ZIP, DEPTID FROM "+ authId+ ".EMPLOYEE " +

"WHERE ID = ?";
protected DomainObject findByPrimaryKeyImpl(Connection conn, Object id) throws SQLException, MappingException {

PreparedStatement ps = conn.prepareStatement(_readString);

ps.setString(1, (String)id);

ResultSet rs = ps.executeQuery();

rs.next();

return activate(rs);
}
Maintaining Consistent State

In any application, it is important that the domain model is always in some known, consistent, state. Transactions can be used to ensure the domain model is in a consistent state when it is persisted in the data source layer, but it is also important to maintain consistent state in the in-memory version of the domain model while a transaction is executing.

One way to avoid consistency problems is to ensure that there are no duplicate instances of domain model objects. Otherwise the application may make partial updates in more than one instance where they in fact derive from the same data, resulting in an inconsistent state. A mapping layer can use the Unit of Work pattern [Fowler] to mark the beginning and ending of transactions, and an Identity Map [Fowler] in the unit of work to ensure any object is only loaded once. Abstract class JDBCMapper findByPrimaryKey method shown in Figure 16.3 gets the current unit of work, and check to see if it already contains an object identified by the given identifier. If so, it returns that object and there is no further access to the database.
public DomainObject findByPrimaryKey(Object id) {

UnitOfWork current = UnitOfWork.getCurrent();

if (current.containsID(id)) return current.getLoaded(id);

Connection conn = null;

DomainObject object = null;

try {

conn = getConnection();

object = findByPrimaryKeyImpl(conn, id);

} catch (Exception e) {

…

} finally {

close(conn);

}

return object;
}
When a new instance is activated and filled in from the data source, it is marked as unchanged and added to the unit of work so that other accesses to an object with the same identifier return the same instance. The identity map in the unit of work also provides a cache for all objects read regardless of how or when they were accessed by the application. This can simplify application development and result in much better performance because the client does not need to worry about avoiding extra, unnecessary, or redundant database reads.

protected DomainObject activate(ResultSet rs) {

try {

String id = rs.getString(1);

UnitOfWork current = UnitOfWork.getCurrent();

if (current.containsID(id)) return current.getLoaded(id);

Employee emp = new Employee(id);

doActivate(emp, rs);

emp.markUnchanged();

return emp;

} catch (SQLException se) {

…

}
}
Mapping Associations

Mapping associations between objects to a relational database is one of the more complex aspects of object-to-relational mapping. There are a number of issues that must be considered.

· Creating object references in the data sources

· Association multiplicity

· Navigability

· Composition

· Type-safe collections

· Referential integrity

· Deletion semantics

Even the simple example in Figure 16.2 requires an implementation addressing many of the issues above.

Associations between objects in the domain model are supported through object references in the underlying programming language. These object references have to be mapped to the mechanism supported by the data source layer. For relational database systems, that’s foreign keys. Our example used an identity field for every domain object. These identity fields are mapped to the domain object’s primary key in their corresponding tables. These identity fields can also be used to provide values for the foreign keys necessary to map the associations between domain objects.

Different mapping options are required for one-to-one, one-to-many, and many-to-many associations. For one-to-one associations, you can use an embedded. But if the domain objects participating in the association also participate in associations with other domain objects, or can stand alone, Foreign Key Mapping [Fowler] supports more flexible mappings.

A foreign key mapping is also very good for one-to-many associations. Take a look at the association between Employee and Department shown in Figure 16.2. A department has many employees, and an employee knows their department. Since the association is navigable in both directions, the Employee class has a method called getDepartment that returns the employee’s department, and the Department class has a method called getEmployees that returns a Java Collection containing employee references. Relational databases require tables to be normalized meaning the department table cannot have a repeating group, in this case a list of employees. As a result, the implementation of associations in relational database is reversed from what it is in a domain object model. The employee table has a department column containing a department id that is a foreign key reference to a row in the department table. The department table has no reference to any employee. Instead, a query is required to determine the employees that belong to a particular department. This query is implemented in the Employee findByDepartment finder method. This method is used by the Department class when the getEmployees method is invoked. Lazy Load [Fowler] is used to avoid executing the query unless the getEmployees method is actually called. We’ll cover the details in the section called “Lazy Load” below.

Updating bidirectional associations presents additional problems. The association must be updated in both participating objects, regardless of which participant was used to set the association. For example, the Employee setDepartment method must remove the employee from the current department, set the department field, add the employee to the new department, and then mark the employee as updated. Similarly, Department addEmployee method must set the employee’s department. This way the client application can set the association between a department and employee either by setting the employee’s department, or adding an employee to a department. The semantics are the same.

Many-to-many associations present additional problems because they would require a repeating group in both participating tables which is not allowed for normalized databases. Instead mappers can use Association Table Mapping [Fowler] to introduce an additional correlation table that converts the many-to-many association into two one-to-many associations that can be handled using a foreign key mapping. This table only contains two columns made up of foreign key references to the associated tables. If the association itself requires additional information, this is generally modeled as an associative object in the domain model which can be used to formalize the association as well as contain data for the association itself. In this case the identifier for the associative object must consist of the identifiers from the domain objects participating in the association.

Bidirectional associations are navigable in both directions and have an accessor method in both participating objects. This can be implemented as a foreign key in both tables, or in one of the tables requiring a query to navigate the association in the other direction. Unfortunately one-to-many associations often result in bidirectional navigability even though it is not specified in the model. That’s because of the reference/foreign key implementation reversal noted above and the mappers need to be able to get and set the information when doing the mapping which causes the accessors to be public. If desired, a state variable can be used to protect these methods so that they can only be called while loading and unloading. All other invocations, although visible, would throw an exception.
Containment associations have additional implementation implications. If an employee was contained in its departments, then adding an employee to another department would require removing them from the current department. It may also be necessary for an employee to always belong to some department. These additional semantics can be implemented in the accessor methods that add and remove members from their containers. Containment associations also have additional deletion semantics where deleting the container also implies deleting all its members. This can be done in the domain model directly by iterating over the members of a containment association and deleting them. Alternatively, the implementation could rely on cascade deletes through foreign key constraints to let the database delete the members.

Another issue results from using Java collections to model the many side of a one-to-many association. Java collections are strongly typed, but their members are always Objects. One way to avoid this problem is for Department to be responsible for managing its employees through addEmployee and removeEmployee methods. These methods are type safe because their arguments are Employee references. However, a client application could call the Department getEmployees method and directly add and remove objects from the underlying collection. This would of course not be a good practice because any integrity maintained by the domain supporting the semantics of employees belonging to departments would not be maintained. Another option is to create type safe collections that understand containment semantics and ensure the items added to the collection are of the correct type.

Inheritance

Relational data sources do not directly support inheritance so we need to put the translation from an inheritance hierarchy to data in the database in the mapping layer.

There are three approaches to implementing persistence inheritance and three corresponding patterns. Single Table Inheritance [Fowler] represents an inheritance hierarchy as a single table whose columns contain all the fields of all the classes in the hierarchy, plus an extra column for a type indicator. Class Table Inheritance [Fowler] has a separate table for each class. Concrete Table Inheritance [Fowler] is somewhere in the middle. This pattern uses a table for each concrete subclass in the hierarchy. The patterns for persistence inheritance are not mutually exclusive. It is possible to use different patterns on different parts of the same hierarchy. This technique can be used to minimize the effect of compromises that might fit better in one part of the hierarchy than another. We cover inheritance mappings in detail in Chapter 25.

Lazy Load

A domain model is often a highly connected graph of objects. Client applications use finder methods to access distinguished objects in the domain model to initiate their work and then traverse associations in the domain model to visit other objects. It is entirely possible that accessing a single root object could end up loading the whole database in order to satisfy references between associated objects. This of course would be prohibitive due to poor performance and large memory footprint. It would also be very inconvenient for the client application to be required to invoke finder operations and realize every association in the domain model— that’s the domain model’s job. Ideally, the application would only read what it actually uses. However, we don’t want the client application to deal with this because what it needs to read may vary depending on the semantics of the domain and events that occur outside the system. Lazy Load [Fowler] provides just the solution we need. Finder methods return the requested object, but the associations that object has with other objects are not actually filled in from the database avoiding the additional queries. Instead, the associations are filled in with a proxy that doesn’t actually contain the domain object, just an identifier for how to get it. Then when the client invokes an accessor method on one of these proxies, a finder method is automatically invoked and the proxy is filled in with the real domain object. As a consequence, queries are only executed, and associations between domain objects realized, only if they are actually used. A secondary benefit is that the client application doesn’t have to be aware of how or when things are read from the data source layer.

It is possible that making use of lazy load for every association will result in too many small queries for associations that are always navigated in frequent use cases on the domain model. For these situations you might want to use lazy load on distinguished accesses, but use finder methods in other cases that realize more than one association in the domain model in anticipation of their use. These custom finder methods can use joins and other more complex queries to access data for more than one domain object in a single query.

An employee has a navigable association it their department. When the EmployeeMapper doActivate method activates a new Employee instance from information in the database, it checks to see if the department is a valid id, and if so, creates a Department instance, sets it’s id, and the sets the employee’s department.
if (deptId != 0) {

Department dept = new Department(rs.getInt(8));

dept.setIsGhost(true);

emp.setDepartment(dept);
}
The department is not actually read at this time. Instead, it is marked as a “ghost”, an object instance that knows its identifier, but nothing else. When an application actually accesses the department with the Employee getDepartment method, the department is actually read from the database. If the department is never accessed, it is never read.

public Department getDepartment() {

if (department != null && department.isGhost()) {

Mapper mapper = MapperRegistry.getMapper(Department.class);

department = (Department)mapper.findByPrimaryKey(department.getID());

}

return department;
}
Keeping Track of Changes

Client applications can make arbitrary changes to domain model objects at any time. This creates a problem when mapping to a data source layer because we don’t want to update the database every time something changes in the domain model. Making many such update requests would have a very negative effect on performance, and even if this wasn’t an issue, the data source layer should only be updated at points when the domain model is known to be in a consistent state.

To keep track of changes, mappers can use Units of Work [Fowler]. We already introduced unit of work when maintaining the domain model in a consistent state by using an identity map to avoid duplicate object instances. This section looks at the same problem from the standpoint of data source updates.

A typical client application would create a unit of work, create, read, update, and delete some domain model objects in the context of that unit of work, and at some point where the unit of work represents a consistent state of the domain model, the application commits the unit of work. This pattern is repeated throughout the client application. For example, here’s a fragment of client code that creates a new employee called “Fred Johnson”:

{

UnitOfWork.begin();

emp = new Employee("757174");

emp.setName("Fred Johnson");

emp.setAge(33);

emp.delete();

UnitOfWork.getCurrent().commit();
}
Data mappers must ensure the unit of work is never shared across multiple threads which may introduce consistency problems. The begin method creates a new instance of a UnitOfWork. As shown above, a DomainMapper activate method gets the current unit of work and checks to see if the instance being activated is already in the identity map maintained in the UnitOfWork. If it is, the instance is returned and the method is complete, the instance was already activated. If not, the row from the database is transformed into a new domain object instance, and that instance is marked as unchanged.

UnitOfWork is responsible for:

· Containing all the objects read from the data source in a unit of work.

· Seeing if a domain object is already in the unit of work and returning instances of already loaded objects.
· Registering a domain object just mapped from the data source layer as unchanged.

· Maintaining a list of object that were newly created and/or deleted in the unit of work.

· Maintaining a list of objects that were updated in the unit of work. Domain model set accessor methods update the state of their domain model object and then mark it as updated in the current unit of work.
Java does not have a method for deleting an object instance and freeing its memory, it uses automatic garbage collection instead. Although it is possible to create a custom finalizer that would mark the object as deleted in the unit of work when it is garbage collected, it would not be possible to predict when this might occur. The object might not actually get deleted until after the unit of work was committed in which case it wouldn’t be deleted from the data source layer. So DomainObject provides an explicit delete method that marks the object as deleted in the current unit of work.

After executing any desired business logic in a unit of work, the client application calls UnitOfWork.getCurrent().commit() to commit the unit of work. This method iterates through the collections in the unit of work and using the appropriate mapper instances, inserts created objects, updates changed objects, and removes deleted objects in order to update the data source layer. See the Data Mapper Example on the CD for the complete code listings.
Note that commit also has to clear the current unit of work. This means that the read cache in the previous unit of work is lost and the client application will have to re-read the domain model in the next unit of work. This is important to ensure the domain objects in memory are consistent with their corresponding data in the data source layer, especially when the database could be accessed by many concurrent applications. Otherwise, the application might be working with stale data across transaction boundaries. As a result, client applications should not hold on to references to domain object instances across unit of work boundaries as these objects have not been read in that unit of work. Implementations should raise an exception when an update is applied to a domain object that is not in the current unit of work.
Transaction Management

Unit of work is also a great place to handle transactions since it already marks the beginning and ending of some logical unit of work in the application. The transaction could be started in the begin method, and committed in the commit method. You probably noticed that these method names were in fact chosen to correspond to the usual transaction semantics.

The great thing about unit of work is that it keeps deciding when to read and write the database and transaction management out of the domain model and out of the client application. This greatly simplifies client application development and ensures the domain model and data source layers are consistent. A common practice is to begin and commit a unit of work in service layer or controller/mediator methods that support application use cases as they often correspond to transaction boundaries.

Odds and Ends

There are a number of other concerns that may be applicable to your applications:

· Scalability through load balancing
· Transactions (based on domain model semantics, not the database schema)
· Access control (based on domain model semantics, not the database schema)
· Distribution (in those cases where it is needed)
Testing the model

The domain model is the foundation of application development since it contains knowledge about the actual business problem being solved. As a result, it is important to design, implement, and test the domain model early and often in the application development lifecycle. To facilitate this development, and to focus on domain semantics, it is useful to be able to build and test the domain model without having to have a complex user interface, or dealing with other systemic concerns like performance, distribution, transactions, persistence, and security. These can come later once the domain semantics have been captured.

JUnit (www.junit.org) provides a simple framework for developing and running suites of test cases. This can be very helpful in early domain model development by formalizing the expected semantics in repeatable tests. In fact, it is often useful to develop the test cases first based on the expected domain model behavior, and then develop the domain model until the tests run. The test cases can often be based on use cases or end-user business processes since they have the most visible value to the customer. We will examine JUnit in detail in Chapter 17.

It would be useful to be able to some of the domain semantics before going to all the trouble of creating all that mapping code. One way to do this is to use a different mapper layer that doesn’t require an object-to-relational mapping. For example, TransientObjectMapper shown in Listing 16.12 is a Mapper that doesn’t do anything. The domain data is simply kept in memory during a test case and then thrown away. If the test cases require some domain objects to be persisted beyond a test suite so they can be reused, a simple Mapper that serialized the domain objects as Java objects or XML files could be used. This would take some coding, but it wouldn’t require creating the database schema or installing and connecting to a database. Having to do all this while trying to discover and validate the domain model can be difficult and moves attention away from the customer’s problem and onto the computer.

Listing 16.12 TransientObjectMapper

package com.wsbook.mapping;
import java.util.ArrayList;
public class TransientObjectMapper implements Mapper {
public void create(DomainObject anObject) throws MappingException {

}

public ArrayList findAll() {

return null;

}

public DomainObject findByPrimaryKey(Object anObject)

throws NoSuchObjectException {

return null;

}

public void update(DomainObject anObject) throws NoSuchObjectException {

}

public void delete(DomainObject anObject) throws NoSuchObjectException {

}
}
There are a number of ways to specify the mapping layer to use including factory methods, a registry, or a Plugin [Fowler] MapperRegistry could be responsible for determining which mapper to use for each domain object.
Using test suites is especially important for regression testing when both the domain model and relational schema are changing during development. Resist the temptation to avoid refactoring a domain model to keep from having to change the mapping or data source layers. The work you save may get lost many times over every time an ineffectively designed domain model is used. Since the mapping between the domain model and the data source layers is isolated in the data mapping layer, it’s easy to know what to update when things change. However, this is tedious code, and it’s easy for errors to creep in. Repeatable regression testing will make it easy to discover them before they appear in front of a customer.

Summary

This chapter covered the domain model layer and data mapper layers in the layered architecture. You saw the importance of the domain model in establishing the foundation for applications that provide business value, enabling effective communication between the customer and development team members, and providing a means of verifying application requirements. We also introduced the concerns that have to be addressed when mapping the domain model onto data sources through the data mapping layer. This represents a lot of the work involved in developing the domain model and applications that use it, work that might be better spent on the customer’s problem.
Fortunately, object-to-relational mapping follows a number of repeating patterns making it possible for commercial products to generate much of the mapping code. Using such products may reduce risks and development time on your projects.

Another possibility is to use local Entity beans and Object to relational mapping tools that are part of WSAD to automate the generation of the mapping code. J2EE covers all of the issues discussed in this chapter and more. This is the subject of chapters 24, 25 and 26.

25

