Chapter 22
EJB Client Development

You’ve now seen many of the parts of building a system with J2EE and WebSphere, and some of the pieces may be starting to come together in your mind. You’ve seen how Servlets and JSP’s work, and you’ve even seen how EJBs can be used to provide remote access to business logic. What we haven’t really talked about yet is the different ways to access that remote business logic, and under what conditions each would be used. While we’ve shown an example of using a Servlet as an EJB client, we have not yet examined any of the other options that exist for building EJB clients. In this chapter we’ll explore those other options and show you an example of building an additional type of J2EE module, a J2EE Client Application, and show you one way of deploying that client to use WebSphere Application Server. We show the parts of the Architectural Roadmap we touch on in this Chapter in Figure 22.1.

[image: image12.png]
Figure 22.1 Architectural Roadmap

However, before we delve into the details of building EJB clients, we’ll need to backtrack a bit and re-examine some basic J2EE concepts in order to set the stage for explaining when you want to use the different J2EE client options. Remember that one of the key organizing principles of J2EE is that it is composed of two fundamental types of objects: containers and components. The following diagram (Figure 22.2), adapted from the J2EE Specification, shows the kinds of containers present in a J2EE application environment, and the components that are deployed in those containers:

[image: image2.wmf]

Applet

Container

Web

Container

EJB

Container

Application

Client

Container

EJB

JSP

Servlet

Application

Client

Applet

Database

Figure 22.2 Containers and Components

One of the major choices you’ll have to make in designing your applications is deciding what kind of client GUI you will be providing for your users. Making the right choice in this decision is the key to avoiding headaches later. The three basic choices you have for WebSphere are the same as in any J2EE application server; Servlets, Java client applications and Applets. You’ll notice from Figure 20.1 that all three types of clients may access shared logic implemented as an EJB. We’ll look at each of these in turn, and discuss the situations where they provide the most appropriate choice for a user interface to your back-end EJB logic.
Using Servlets as EJB Clients

While all three EJB client types are supported within WebSphere, probably the most common application architecture is when you use both Servlets and EJBs together to bring the full power of J2EE to bear on your business problem. As a result, WebSphere is highly optimized to take maximum advantage of Servlets as EJB clients. While any of the three client types may work, developers usually choose Servlets for one or more of the following reasons:
(1) Most computer-literate users now expect applications to run in a browser. It is often true that many user requirement documents are now written to the effect that it is assumed that the client presentation will be through a web page. It is usually an uphill fight to convince users and business analysts that other client choices may, in fact, be better for a particular application.

(2) Browsers are ubiquitous, and nearly all of them will work with a standard, servlet-based web application, although different browsers may have problems with Applets, or Application distribution mechanisms like WebStart due to different levels of support of Java or the Java plugin.

(3) Servlets communicate to end-client browsers through HTTP. More firewalls support HTTP than any other protocol, making it easier to configure your corporate network to use a servlet client than an IIOP client like a Java Application.

(4) In order to make a Java Application Client work with WebSphere, you must distribute a large set of WebSphere JAR files along with the files that make up your application. The mechanism for distributing these files differs based on the deployment method you choose (described later) but the size and difficulty of distributing them remains an issue.

So, as you can see, it is often easiest to build your clients as Java Servlets. This is the approach we have taken in our case study, and it should be encouraged whenever possible. Nonetheless, there are some good reasons for building Java Application clients, as you will see in the next section.

Now, a final question you may be asking here is “what about JSPs”? In truth, we do not recommend ever using JSPs as EJB clients. There are two basic reasons for this:

(1) Remember from our earlier discussions on MVC that JSPs are best thought of as view components only. If you try connecting to an EJB from a JSP then it is taking on Model or Controller-like behavior. This kind of mixture of roles leads to maintenance difficulties later.

(2) A key problem with calling any type of back-end logic from a JSP is how to handle exceptions correctly. Basically, if you try to call an EJB remote method from a JSP scriptlet (or even from a tag library) you will find you will have to wrap that call in a try…catch block in order to catch the RemoteException that all remote methods must be able to throw. Likewise, you would have to catch exceptions from the EJB Home, and any application-specific exceptions the EJB may throw – adding greatly to the complexity of the scripting code.
So, for these basic reasons we recommend that only Servlets (and helper classes called from Servlets) call EJB methods. Handle any possible exceptions before calling the JSP so that you can know ahead of time exactly which page to display; either a results page or an error page.

Building Java Application Clients

So, if Servlets make such a good clients, why would you ever want to build a Java Application? Well, there are some situations under which a desktop Java Application is the best option:

Regardless of how sophisticated you make your HTML and JavaScript, there are some styles of user interface that are simply impossible (or at least extremely difficult) to build using Servlets and JSP’s. In particular, applications that require drag-and-drop, direct-manipulation interfaces, or applications that require significant graphic display are not suited for HTML-based interfaces.
Application clients can take advantage of some sophisticated performance features like pre-fetching and caching data that has not yet been displayed, but that will be displayed in the future. Also, application clients can take advantage of multithreading, and can be displaying one set of data while simultaneously fetching another.
Applications that must be run in a “disconnected” mode when a network is not available are not well-suited for an HTML UI based on Servlets or JSP’s. Examples of this kind of application include field data-entry applications (such as one an insurance agent might use when selling a new customer an insurance policy) and applications that allow users to look up data from a local database (such as a knowledge-base of auto repair information).

Sometimes you need to run a business process on a schedule. For instance, you may have an account reconciliation process that needs to run every night at midnight. While it is possible to build this kind of application into the Web Container (perhaps by starting a thread in a Servlet.init() method and then using Thread.sleep() to force the thread to sleep until time to run the reconciliation) that is usually not the best way to schedule a timed process. Unix-based systems have the ability to start timed processes using the cron utility. Likewise under Windows-based systems you can use the System Scheduler. In either case, it is often easiest to build a Java application client that has no user interface, and then invoke that client from the appropriate system utility.

So, if you are in any of these situations, then you may want to use an Application client. Building an application client would be substantially easier than trying to make a Servlet/JSP based solution work in these instances.

Applet clients in WebSphere

Few parts of Java emerged with as much hype, or disappeared with as little fanfare, as the Java Applet. Once considered to be a crucial part of Java technology, movement in the Java technology space has lately delegated it to the status of an “also-ran” among Java programming models. While initially heralded for its ability to provide easily accessible client code that was “write once run anywhere” and for innovative features like the built-in security sandbox that still sets it apart from competing browser-based component technologies, in fact, the Java Applet has become a seldom-used part of the J2EE developer’s toolbox. There are a few basic reasons for this, most of which actually derive from the difference between the perceived needs of the web community, and the actual needs of corporate developers. In short, they are:

· First, Applets were initially envisioned as being a way to provide rich client interfaces of the sort that HTML alone could not provide. However, in the intervening years since the release of Java 1.0, it has become clear to most developers that very rich user interfaces can be developed using HTML and JavaScript. As a result, often the same results can be achieved with less overhead (and at a lower cost) using these technologies than can be achieved using Java applets.

· Second, the promise of “Write Once, Run Anywhere” was torpedoed by Microsoft’s abandonment of Java on the browser and its subsequent refusal to upgrade its JVM beyond the antiquated 1.1.3 level. While the Java language has continued to evolve and improve its standard class libraries, the reality of having to work with a back-level environment has made it difficult for developers to conceive of writing Applets that will run on Internet Explorer, which is by far the most popular web browser. While this can be mitigated through the use of the Java Plugin
, which provides an improved JVM to the browser, the perceived benefits of Applet code downloading become faint when compared to the real worry of having to periodically upgrade the Java Plugin across thousands of client desktops.

· Third, the very abilities that business customers most want from their rich-client desktop applications, such as the ability to print to local printers, to save temporary data files to a disk, or to connect to more than one back-end machine for obtaining corporate data are the very abilities that are most difficult to provide in an Applet environment. While you can relax the security sandbox restrictions through signed applets, this remains an annoyance that many developers simply don’t want to deal with.

So, as a result of these drawbacks, most corporate users have abandoned Applets in favor of Application Clients. However, if you believe you can live within the limitations of an Applet, and you are convinced that it is your best client programming option, then how can you connect to back-end EJB resources in WebSphere from an Applet? WebSphere supports Applets that connect to EJBs only through a special version of the Java Plugin, referred to as the WebSphere Applet client. The WebSphere Applet Client provides the special environment necessary to allow Applet clients to communicate to WebSphere servers via RMI-IIOP. No other Java plugin version can provide the necessary environment. The WebSphere plugin must be installed on a client browser either from the WebSphere installation CD or from a remote network location. Even once you have installed the WebSphere Applet client, there are some further restrictions that you must live within:

· The WebSphere Applet Client only works on some levels of browsers (Internet Explorer 5.0 and above, and Netscape Navigator 4.7 and above), and only in Windows NT and Windows 2000
.

· The WebSphere Applet Client is limited in that it does not support SSL, which means that authentication information must pass in clear text.

· There are a number of run-time parameters that may need to be set up in the WebSphere Applet Client control panel before you can use the applet (see the InfoCenter for more details).

· As with all other Applets developed using the Java Plugin, you have to use the Object embed tag to load your applet (instead of the standard <applet> tag) and set up the properties file correctly.

In the end, this turns out to be a lot of work for the developer and probably not worthwhile unless you’re primarily developing Intranet applications where you completely control the client desktop. So, since Application clients don’t solve the client update problem, and since Applets are so limited in what they can do, what is a developer of Internet or Extranet applications supposed to do? Well, there is another option which may work. Instead of using RMI-IIOP to connect from your Applet or Application to your EJBs, consider communicating over HTTP using SOAP. In many respects this is probably an easier choice, since there are fewer restrictions, and it will work with nearly any JDK/browser combination. We will cover this option in more depth in Chapters 30 and 31.

If you do choose to write an Application client that uses SOAP over HTTP, you can solve the download and update problem in a simple way by using one of a number of new technologies like Sun’s Java WebStart that implement the Java Network Launch Protocol (JNLP) standard. Java WebStart provides you with the ability to dynamically download and update a standard Application Client program that does not suffer from the restrictions of an Applet. Java WebStart is a feature of Sun’s JDK 1.4; since WebSphere Application Server 5.0 is currently based on Java 1.3.1 it’s not supported yet by IBM as an official WebSphere client technology. However, there is nothing to prevent you from using Sun’s JDK 1.4 to develop your client applications (even inside WebSphere Studio, which allows you to configure the JDK for each Java project) and then simply package the applications with the necessary SOAP jar files.

Naming and the WebSphere Namespace
The EJB architecture formalizes how EJB clients obtain and affect remote references and local objects (non-remote) instances from the server. Client access to EJB objects consists of the following steps:
· Obtain an Initial Naming Context

· Look up an EJB Home from the Initial Context using an EJB reference
· Use the Home Interface (creating, finding, or removing EJBs)

· Use the EJB.

Now, before we move on to showing you how to write an EJB application client and how to deploy it in WebSphere, let’s take a quick look at the first two steps (obtaining an Initial Naming context from JNDI and performing a name lookup) and discuss some issues on how to refer to JNDI in your applications.

Side Bar - JNDI (Java Naming Directory Interface)

Directory services have proven to be a convenient way to organize and partition information about user, resources, networks, machines, security information, and in the case of Java, objects. In an attempt to make access to specific directory services independent of a specific service implementation. Sun along with other leading industry vendors defined the JNDI specification and reference implementation. Currently version 1.2 of the specification is available for download at the Java Software web site.

The JNDI implementation provides a standardized access API to directory service into a JNDI Naming Manager. This “naming manager” controls access to specific directory service implementations such as RMI, COS (CORBA Object Services) naming, or LDAP (Figure 22.3).

[image: image3.wmf]

Java Application

JNDI

Naming

Manager

JNDI API

LDAP

SPI

WebSphere

SPI

Other SPI

Figure 22.3 – JNDI API

The JNDI service provider interface (SPI) allows directory/naming implementations supplied by different providers to be installed and accessed from Java in a neutral fashion. Java developers commonly access directory services through the interfaces defined in the javax.naming package. Context is a core interface in this package; it provides operations to maintain name-to-object bindings. The javax.naming.directory package supplies the ability to create Directory Objects and Attributes objects that can be examined through the use of the DirectoryContext interface.

For more information regarding the JNDI specification, visit the http://java.sun.com/jndi site.

J2EE product providers are responsible for supplying an interface to their particular distribution solution through JNDI. WebSphere has provided a particular implementation (SPI) that stores references to Home objects in a potentially distributed naming service. The naming service exists within each managed server within a WebSphere Application Server deployment. In WebSphere ND, this includes each application server, each node agent, and the deployment manager.
These remote reference/name pairs are even shared across servers in a cluster through WebSphere’s clustering in WebSphere ND. This is related closely to WebSphere’s EJB load-balancing scheme. If an application server fails, WebSphere’s Node Agent process will automatically restart the server and allow it to pick up the values of the registered Home objects from the XML files when it comes back up.
When writing an EJB client the developer is responsible for obtaining a JNDI InitialContext , which will be used to perform the lookup operation.
The recommended syntax for obtaining an InitialContext within J2EE application code is:
InitialContext initialContext = new InitialContext();

In previous versions of WebSphere Application Server, one would provide two properties to the InitialContext constructor (via a Properties object), URL_PROVIDER and INITIAL_CONTEXT_FACTORY. The URL_PROVIDER supplied a hostname and port to a particular naming server. In WebSphere V5.0, developers are discouraged from “hardcoding” a particular URL_PROVIDER. When an InitialContext is created with no parameters, WebSphere will automatically connect the application code to an appropriate name service. For applications running on WebSphere core, the naming service listens on port 2809
 within the application server. On WebSphere ND, the node agent listens on 2809 while the individual application servers listen on sequential ports starting with 9810.

[image: image4.png]Figure 22.4 WebSphere ND Namespace Topology
Programmers with experience in other application servers, sometimes worry that client code needs to know a “magic” name server host to hook into WebSphere. In fact, any name server in the WebSphere cell will suffice. Within WebSphere, the naming service within an application server upon which an EJB is deployed is where the actual name/object reference is bound
. One thing that you should be aware of, however, is that when you are running in a clustered environment, your client code should be resilient enough to withstand the failure of a naming server. If your EJB client code runs within a the application server, then the naming service you will connect to will always be the one running in the same application server JVM as the Servlet or JSP. Thus, you don’t have to worry about naming server failure, since if the naming service has failed, then so has your client code! However, when you are writing a J2EE client application, then you must provide some additional information. With a J2EE client application, there must be a bootstrap server that the client will use as the initial naming service. This can be provided at the command line, or it can be provided using the URL_PROVIDER property to the InitialContext discussed above. However, what if the bootstrap server is itself not available? WebSphere provides a mechanism to deal with this. You can provide a set of application server hostnames and ports in the standard “corbaloc” format in the URL_PROVIDER property. So, in a J2EE application client designed to access EJBs running in a clustered environment, the recommended way to obtain an InitialContext is to use the following code:
import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL, "corbaloc::host1:9810,:host2:9810");

 Context initialContext = new InitialContext(env);

You should note that all of the servers for which you provide host name and naming port numbers must be members of the same cluster. Otherwise, unexpected results may occur. What will happen in the case above is that the client will attempt to use the first host in the list as its bootstrap server. If it cannot be contacted, it will then try to use the second entry in the list.
Names and name resolution
So what JNDI names are supplied by the developer within a ejb-jar.xml file and what are the runtime qualified names within WebSphere name service? Also what name or reference should a developer use in their EJB client code to lookup an EJB Home?

EJB clients should lookup EJB Homes via locally managed EJB References. EJB and Resource references are component-local names for resources and are populated in the component local namespace which is prefixed with “java:comp/env”.

[image: image5.png]
Figure 22.5 Creating an EJB Reference for Servlet Client

Figure 22.5 show the Web Deployment Descriptor editor in WebSphere Studio. The References tab has been selected and a new EJB Reference has been added. The name given is ejb/TimeSheetFacade and a link was selected to the TimeSheetFacade session bean. This selection pre-fills the entries for Home, Remote and WebSphere Bindings. A servlet Client in the TimeSheetWeb.war file would look up and use a reference to this Session bean, using the following code:

InitialContext context = new InitialContext();

Object tsObj = context.lookup(“java:comp/env/ejb/TimeSheetFacade”);

TimeSheetFacadeHome tsHome = (TimeSheetFacadeHome)

 PortableRemoteObject.narrow(tsObj, TimeSheetFacadeHome.class);

TimeSheetFacade façade = tsHome.create();

So what happens during the lookup? The lookup operation is performed by the local application server’s name service which then resolves the local reference to the JNDI name, in this case, ejb/com/wsbook/casestudy/TimeSheetFacadeHome.
EJB References can be created for each EJB client type. Figure 22.6 shows the reference tab in the WebSphere Studio’s Client Deployment Descriptor editor.
[image: image6.png]
Figure 22.6 Creating EJB reference for Application Client

Within WebSphere Studio when EJB References are created, the JDNI binding is set. This can later be changed using WebSphere Studio, the WebSphere Application Assembly Tool (AAT), or from the WebSphere Administration clients during deployment.

Then the real namespace name resolution will start to take place. For that discussion we will need to talk about names within the WebSphere naming service.

In the previous example, the TimeSheetFacade bean’s Home is bound into the JNDI namespace with a relative name, ejb/com/wsbook/casestudy/TimeSheetFacadeHome. This name is relative to the naming context associated with the Application Server(s) that the EJB is deployed to. The qualified name contains topological information as a naming prefix. For example, in a core installation, with the EJB installed on server1, running on a node called WSNode, the qualified name will be cell/nodes/WSNode/servers/server1/ejb/com/wsbook/casestudy/TimeSheetFacadeHome.
 (Quite a mouthful, eh?)
Qualified names become important in an WebSphere ND deployment where the namespace is distributed. Consider a view on the WebSphere namespace shown in Figure 20.6. This shows the federated, distributed namespace rooted at cell. A cell, as described earlier, is a grouping of nodes and corresponding managed servers for common Administration.
[image: image7.png]
Figure 22.7 WebSphere Distributed and Federated namespace

Figure 22.7 is complex. The lower right hand segment, labeled Server Roots, is where all of the application objects are bound. These transient bindings are initialized when the corresponding servers are started. The upper left hand segment, is a set of static bindings or links that represent the cell’s topology and the atypical link(s) to foreign cells. These static bindings are available to ALL name servers in the cell.
Consider a deployment topology with an Application Client being launched on node Y connecting to an EJB deployed to ServerA running on Node Z. The Application Client container will have its BootstrapHost set to node Z
 and the BootStrap port set to the naming service port (P) of ServerA. The EJB Reference will typically be bound to the qualified JNDI name for the EJB, e.g., cell/nodes/Z/servers/ServerA/ejb/com/wsbook/casestudy/TimeSheetFacadeHome.. Here the JNDI name is resolved and the corresponding object is returned to the Application Client. Note that in the WebSphere ND environment, the lookup will not resolve unless the EJB reference is bound to the qualified name.

Creating a Test Client

Now that you’ve seen the different types of EJB clients that are available, and you understand the situations in each can be used, you’re ready to start building your first application client in WebSphere Studio. Remember from the earlier description that each Application Client will be packaged into its own special Application Client J2EE module. The benefit of an Application Client module is that you can setup references scoped to the Application using the capabilities of the Application client deployment descriptor. A special requirement of an Application Client is that it requires that there be a Main class defined within the MANIFEST.MF file. That means there is a Java class with a static void main(String[]) method that will be invoked when the Application Client is executed.

For this example, you’ll build a simple Application Client for the RandomIDGenerator EJB you built in Chapter 20. To begin you need to create a new Application Client project. Do so by selecting New (J2EE (Application Client Project. On the first page of the Application Client project wizard, choose to create a J2EE 1.3 Application Client project. The creation wizard is very similar to the one shown in figure 18.7. On the second page, enter the new project name, IDGeneratorClient, and select the existing Enterprise Application project UtilityEAR. You could press finish at this point but your example will be referencing the UtilitiesGroup EJB project so you need to setup dependencies on the next page. On the next page, click on the UtilitiesGroup.jar check box option as shown in Figure 22.8. This will cause the Java Build path for the newly created IDGeneratorClient project to include the UtilitiesGroup project and it will update the MANIFEST.MF class-path entry for this new project to include the UtilitiesGroup.jar. This JAR is the module definition for the UtilitiesGroup project within the Enterprise Application. Thus, both the development time and runtime classpaths will be updated. After selecting Finish, the IDGeneratorClient project is created and it is added as a module to the UtilitiesEAR application.

Remember that we stated that an Application Client requires the definition of a Main class within the MANIFEST.MF file. This is actually quite easy to do and you can create the Java class and set it in the MANIFEST.MF file at the same time. To do so you need to open the JAR Dependency editor by selecting the IDGeneratorClient Application Client [image: image1.emf]

Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data Source Domain Data Mapping

EJB Container

Application Services

Exception

Handling

Properties Logging

Servlet

s

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Applic

ation

XSLT

Web

Service

s

HTTP

Unit

HTML

JSP

JDBC

JMS

Mapper

Object

s

CMP

EJBs

BMP

EJBs

WAS

UTC

Sessio

n

EJBs

JUnit

Java

Beans

module from the J2EE Hierarchy view and select Open With (JAR Dependency Editor from the context menu. In the Main Class section at the bottom of the editor, click on the Create… button. This will launch a new Java Class wizard to create the Main class. The default Source Folder will be the source folder of the Application Client project (e.g., IDGeneratorClient/appClientModule) and we will enter the Package as com.wsbook.casestudy.test and the Name for the class will be IDGenerator. After pressing finish, the IDGeneratorTest class is created and the Main-Class field has com.wsbook.casestudy.test.IDGeneratorTest entered. Now you can save the JAR Dependency editor.

To test the RandomIDGenerator Session bean from our new Application Client, your client will need to do a lookup of the Home for the Session bean. We could use the JNDI name defined for the RandomIDGenerator but that would require that we hard code the name in our main class. This is usually not a good idea since Java code would need to be updated whenever the JNDI name of the bean was changed. A better practice is to define an EJB reference to the Session bean from the Application Client. Then the EJB reference name is unique to the Application Client and we can use this name for the lookup of the Session bean’s home. Then, if the JNDI name of the Session bean changes, we only need to update our EJB reference and not Java source code. To define the EJB reference you need to open the Application Client Deployment Descriptor editor by selecting the IDGeneratorClient Application Client module from the J2EE Hierarchy view and select

[image: image8.emf]

Figure 22.9 Create References Page

Open With (Deployment Descriptor Editor. Turn to the References page of the editor that is opened. Click on the Add… button to open the References wizard shown in Figure 22.9. We will select the EJB reference option to create a new EJB reference. On the next page shown in Figure 22.10, enter the Name for the reference as ejb/IDGenerator. We would recommend you start the name with ejb because this is suggested by the EJB specification. Next you will set the Link. This is optional but if you know the exact EJB that you want to reference it is a good idea to set it as it eliminates the need to fill in the rest of the fields on the wizard page. To do so, click on the Browse button to open the Link Selection dialog shown in Figure 22.11. From this dialog you will select the RandomIDGenerator Session bean from the UtilitiesGroup module within the UtilityEAR. You can only select an EJB to reference from within an EJB module for the same Enterprise Application that the Application Client belongs.

[image: image9.png]Figure 22.10 EJB Reference wizard page

[image: image10.png]Figure 22.11 Link Selection dialog

You should notice that once a link is specified, the Type, Home, and Remote are automatically entered based on the selected EJB. These fields are also disabled since you cannot change them unless you remove the Link. After pressing the Finish button, the following EJB reference entry is added the deployment descriptor of the Application Client. Now you can save the editor to commit your changes.

<ejb-ref id=”EjbRef_1045965714288”>

<description></description>

<ejb-ref-name>ejb/IDGenerator</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorHome</home>

<remote>com.wsbook.casestudy.ejb.utilities.RandomIDGenerator</remote>

<ejb-link>UtilitiesGroup.jar#RandomIDGenerator</ejb-link>

</ejb-ref>

Now you are ready to update your main class to add behavior necessary to test the Session bean. You now need to update the main method of the IDGeneratorTest class to the following.

public static void main(String[] args) {
try {
InitialContext ctx = new InitialContext();
//Lookup the home using ejb reference name
RandomIDGeneratorHome home;
Object ref = ctx.lookup(“java:comp/env/ejb/IDGenerator”);

home = (RandomIDGeneratorHome) PortableRemoteObject.narrow(
RandomIDGeneratorHome.class);
//Create a RandomIDGenerator.
RandomIDGenerator generator = home.create();
//Print out 10 random IDs.
for (int i = 0; i < 10; i++)
System.out.println(generator.calculateID());
} catch (NamingException e) {
e.printStackTrace();
} catch (RemoteException e) {
e.printStackTrace();
} catch (CreateException e) {
e.printStackTrace();

}
}
Before we move on, let’s take a breather and examine some of the salient points of this example. Remember from our earlier discussions that there are four steps to using an EJB:

· Obtain an Initial Naming Context

· Look up an EJB Home from the Initial Context using an EJB reference

· Use the Home Interface (creating, finding, or removing EJBs)

· Use the EJB.

In our example, we’re using the simplest form of the first step; obtaining the initial context with its default, no-argument constructor. When we run this client inside WebSphere Studio, this will point the bootstrap host and port to the WebSphere Test Environment so the naming server used will be the one inside the application server running in the WTE.
In the second step, we’re looking up the EJB remote reference we declared in the client deployment descriptor by using the name java:comp/env/ejb/IDGenerator. The JNDI prefix “java:comp/” indicates that you are referring to a reference declared in the deployment descriptor as opposed to a JNDI name that comes from the naming service.

Another issue worth pointing out is found in this line of code:

home = (RandomIDGeneratorHome) PortableRemoteObject.narrow(
RandomIDGeneratorHome.class);
You may recall that in Chapter 20 we used a Local Home Interface to access our EmployeeManagementHome from within our Servlet. As we’ve stated several times, Local Homes and Local Interfaces should be the preferred way to access EJBs from Servlets due to the performance improvements provided by local EJBs. However, here we are building a J2EE client. We cannot use a local interface since the client code will not be running within the same JVM as the EJB. Instead, we must use a Remote home and a Remote interface. Remote Homes require an additional step (mandated by the EJB specification) to clarify how to treat the reference obtained from JNDI. Since the reference is a remote object, the PortableRemoteObject.narrow() method is required to obtain a true proxy that implements the Home interface. Thus, in addition to casting the result to RandomIDGeneratorHome, we must also narrow the result to that type using PortableRemoteObject.narrow(). This is required in every instance where you obtain a remote EJB reference from JNDI. Avoiding this is yet another advantage of using local interfaces where that is possible.
After casting and narrowing the Home, it is a simple matter of creating the EJB with the create() method and then using the EJB reference. The only thing to note is that (as we showed in the previous chapter) you must remember to catch all of the checked exceptions that can be thrown by the different methods used.

Now that you are done creating all of the classes that are necessary for the Enterprise Application, you must generate the deploy code before running on the server. The deploy code generation will create all required EJB deploy code as well as the necessary RMIC code for accessing from a remote client. To do this, select the UtlityEAR Enterprise Application from the J2EE Hierarchy view and select Generate Deploy Code. This will generate deploy code for all contained EJB modules. You can also generate deploy code for individual EJB modules or even individual EJBs.

It’s now time to run your UtilityEAR within a WebSphere v5.0 server. To do so, select the UtilityEAR Enterprise Application from the J2EE Hierarchy view and select Run on Server.

To test your Application Client, you will need to use an Application Client launcher to run it. Now, you may be wondering why you can’t just select the “Run on Server” item from the context menu as you have done in the past to test Servlets, JSPs and EJBs. The simple answer to that is that the client does not run on the server; it runs in a separate JVM and must be invoked separately. The next question you may ask is then why can’t I simply run my new class as a standard Java application? That is because we need to run our application as a J2EE application client within the WebSphere client container. Properly setting up the client container is what the Application client launcher does.

To setup an Application Client launcher select Run (Run… from the menu bar. This launches the Launch Configurations wizard shown in Figure 22.12. Select WebSphere v5 Application Client from the list and click on the New button. Then set the Name of your launcher to IDGeneratorTest and specify the UtilityEAR as your Enterprise Application. If you would like to pass arguments to the main class, you can set them on

[image: image11.png]Figure 22.12 Launch Configuration wizard

the Arguments tab of the launcher. Now click on the Run button to launch the Application Client for the UtilityEAR Enterprise Application.
 Below is the sample output from our run. The first portion is the startup information output by the Application Client environment. The last ten integers are the results of the actual test as it printed out ten IDs that were calculated from the RandomIDGenerator Session bean. Compare your output to this and make sure that this is what you see.

IBM WebSphere Application Server, Release 5.0
J2EE Application Client Tool
Copyright IBM Corp., 1997-2002
WSCL0012I: Processing command line arguments.
WSCL0001I: Command line, property file, and system property arguments resolved to:
 File to launch = D:/dcb/WAS_book/current/data/UtilityEAR
 CC Property File = null
 Client Jar File = <default>
 Alternate DD = null
 BootstrapHost = BERGT30
 BootstrapPort = <default>
 Trace enabled = false
 Tracefile = null
 Init only = false
 Classpath Parameter = null
 Security Manager = disable
Security Manager Class = Not used. -CCsecurityManager=disable
Security Manager Policy = Not used. -CCsecurityManager=disable
 Exit VM = false
 Soap Connector Port = null
Application Parameters =
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0025I: Binding EJB reference object:
JNDI name: ejb/IDGenerator ==> ejb/com/wsbook/casestudy/ejb/utilities/RandomIDGeneratorHome @ corbaloc:iiop:BERGT30
Description:
WSCL0031I: The object was bound successfully.
WSCL0600I: Binding HandleDelegate object.
WSCL0031I: The object was bound successfully.
WSCL0900I: Initializing and starting components.
WSCL0910I: Initializing component: com.ibm.ws.activity.ActivityServiceComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0901I: Component initialization completed successfully.
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class com.wsbook.casestudy.test.IDGeneratorTest
1102768142
2146514068
263242487
1850530316
856817741
76407504
1979926623
1080449668
304490551
1460207340
Deploying Application Clients in WebSphere

Now that you’ve built and tested an application client inside WSAD, you’re ready to learn how to deploy and invoke an application client outside of WSAD. WebSphere actually provides three different ways of deploying application clients. These are the J2EE client container, the pluggable application client, and the thin application client.

The J2EE client container is a full-featured client container that is (as the name suggests) fully compatible with the J2EE 1.3 specification for application clients. You install it on a client machine through an installation option on the WebSphere Application Client CD. J2EE compliance means that your Application Client program must be packaged within an Application Client JAR file with the appropriate application client deployment descriptor, and that that JAR file must be located within an EAR file. WebSphere’s J2EE client container is invoked through the launchClient command. launchClient is simply a .bat file that invokes a Java program that can in turn start J2EE application clients placed in deployed .ear files . One of the key features of the J2EE client container is that it includes IBM’s JRE – which (as mentioned earlier) contains all of the classes necessary to communicate with an EJB deployed in WebSphere Application Server over RMI-IIOP.
The pluggable application client is more lightweight than the Application Client Container and also downloadable (which is not true of the Application Client container). It is comprised of a set of JAR files you can copy to the client (To obtain these JAR files you must install them initially off of the WebSphere installation CD, however). The pluggable Application client is meant to install on top of Sun’s JRE. The assumption is that if a client machine already has Sun’s JRE installed on it, then this will be a smaller installation than that of the full J2EE application client container. What it allows you to do in your application client is to connect to EJBs directly through the use of RMI-IIOP. It does not, however support the use of local references in the application since it is not a full J2EE client container and thus does not contain an application client deployment descriptor. Likewise when developing for the Pluggable Application client, your application client code must provide the InitialContext factory classname and location directly– there are no defaults. Thus you have to fully specify paths to JNDI-named objects like EJB Homes.

Finally, the thin application client is much like the pluggable client but includes the IBM JDK – you do not have to have Sun’s JRE already installed on the client machine. The same programming model restrictions apply, however.

For more information on using the Pluggable Application Client or the Thin application client, refer to the WebSphere InfoCenter. We will discuss the J2EE client container more in depth in the following section.

Deploying and Running the EJB Client to the WebSphere Client Container

In order to run your EJB client outside of WSAD you’ll need to first install the WebSphere Client container. This is actually shipped as a separate part of the WebSphere installation; it’s not installed unless you explicitly choose to install it.

In a development system, you will normally install the Application Client to the same root directory where WebSphere is installed. That is it will be installed to <Install Root>/WebSphere/AppClient if WebSphere is installed to <Install Root>/WebSphere/AppServer. Likewise if you’re installing the Application client on a client system, then it would install to the same directory, although there would be no corresponding AppServer directory.

Now, earlier we described how the J2EE Application Client Module can be packaged inside of an EAR file. You’ve also seen how when we created the IDGeneratorClient Application Client project in WSAD that we associated it with the UtilityEAR Enterprise project, which was also the Enterprise project with which the UtilitiesGroup EJB project was associated. Well, as you can surmise from your experience with J2EE packaging, this association defines a containment structure for an EAR file that can be exported to disk for deployment in WebSphere Application Server. Now, what confuses some people is the fact that the very same EAR file (containing both the Application Client Jar file and the EJB-JAR file) is what is used by the WebSphere Application client container to run the application client itself. The issue is that this strikes people as overkill – why deploy the entire EJB-JAR file to a client machine? Well, the fact is that WebSphere does this because the J2EE specification doesn’t leave any other options. For instance, in VisualAge for Java, IBM used to provide a menu option to generate an “EJB Client” jar, which contained only the remote stubs and the home and remote interfaces from an EJB-JAR file, and did not include the implementation classes. However, this function was provided outside of the EJB specification. When Application Clients were officially introduced in J2EE 1.2, then the IBM tooling moved to what was the only J2EE-supported configuration, which was packaging an application client Jar together with the entire EJB-JAR inside of an EAR. Since that is a rather heavyweight solution (although specification-compliant), that is why the other two client deployment options (thin clients and pluggable clients) were developed; however you should be warned that those are WebSphere-specific and provide features outside the J2EE specification.
This problem of delivering client-side EJB code was addressed in EJB 2.0. However, WSAD currently does not support the creation of EJB client JARs. It does, however, support defining and EJB project as a Java project utility JAR within the EAR containing the App client. This is a “poor man’s” support of an EJB client JAR. The issue with this approach (as with placing the entire, standard EJB-JAR in the EAR with the client) is that it contains more than just the client JARs.
So, now that you understand what it is you’ll be using to run the application client, you’re ready to export the UtilityEAR Project and run its contained application client using the WebSphere Client container. Before we do that, however, we need to decide where to export our EAR file to. Unlike installing an EAR file into WebSphere application server, where there is a standard “installedApps” directory to hold your applications, there is no such standard directory for clients. So, for our purposes, we will create a directory called “WebSphereClients” from the root of your hard drive to hold the EAR file containing your application client.
So, begin by selecting the UtilityEAR project in the J2EE perspective and then select File (Export
. In the Export selection dialog, select EAR file and press Next. This will bring up the EAR Export page. In the drop-down under the title “What resources do you want to export?” select UtilityEAR. Finally, in the combo box under “Where do you want to export resources to?” type “<Install Root>/WebSphereClients/Utility.ear” (substituting your root drive (e.g. C:) or root directory for <Install Root>). Then press Finish. WebSphere will both create the “WebSphereClients” directory and create the Utility.ear file and place it in that directory.

Now, you’re almost ready to launch your application client. First, however, we need to make sure that the EJB container that you will connect to is actually running. So, first select the Servers Tab at the bottom-right corner of the J2EE perspective. Examine the status of the WebSphere v5.0 Test Environment that you created in chapter 20. If it is not running, then press the Run button (with the running-man icon) to start the server. Make sure that the “open for e-business” message appears before you move on to launching your client.

Launching an application client with LaunchClient is easy to do. You simply change your directory to the <Install Root>/WebSphere/AppClient/bin directory and type launchClient at the command prompt, followed by the name of a deployed .ear file. Other command-line options allow you to specify (for instance) which of multiple application client .jar files contained in an .ear file to use. If you invoke the .bat without any parameters it will display the list of options.

Note that launchClient is case-sensitive. If you see an error message stating it can’t find the client .jar file, unzip your deployed application .ear file and verify that the capitalization of the client .jar file name on the command line is the same as it is in the .ear file.

To complete your exercise, open a windows command prompt and change your current directory to <InstallRoot>/WebSphere/AppClient/bin. Then type launchClient <Install Root>\WebSphereClients\Utility.ear and watch the console output. It should be almost exactly the same as what was shown in the previous section when you ran the application client inside WSAD.

Some Design Points about EJB Clients

One of the easiest traps for a developer new to a technology like Servlets or EJBs to fall into is to assume that the way a simple example is built is the same way all programs using that technology should be built. Hopefully we’ve been able to convince you so far in this book that this is not true – you need to plan your architecture ahead of time to deal with issues of scalability, performance and maintainability. There are a few general points that we should make about the last example that you should NOT do in your own EJB client code:

(1) Don’t create a new InitialContext for every home lookup. Creating an InitialContext is a fairly slow operation. While an InitialContext cannot be shared among multiple threads of execution (at least according to the Sun specification), you should try at the very least, to limit the number of InitialContext’s you create to one per thread by passing it around as necessary through method parameters or a ThreadLocal variable. However, a better solution is to locate and cache the Home references all at once to simply avoid the issue.
(2) You don’t want to create and drop an EJB Home reference after one use. Unlike InitialContexts, Home references can be shared among multiple object types or threads of execution, so you should consider using the Singleton pattern
 to share them. Although these are cached within the container in WebSphere V5.0, it is a good practice to not repeatedly lookup (and narrow) the Home objects.
(3) Try to avoid generically catching “Exception”. Your code should usually trap and handle each potential Exception type individually – often you will want to do something different for each type of exception that may occur. Only resort to catching “Exception” when the total code bulk of trapping each exception type becomes too unwieldy, or when you really do want to do the same thing no matter what exception is thrown. If you have too many of your own exceptions, consider making your own Exceptions descend from a special root exception class for your project or company and trapping that instead. If you do that, then one thing you should consider is the idiom of “Wrapping” Exceptions, by which you write an abstract “MyException” class that can contain another exception, and that when you throw the new “Wrapped” Exception that you add the previous exception into the new exception. Your exceptions then subclass this new class. This allows you to preserve the original stack trace. Note that this feature has been added to J2EE 1.4 (which will not be supported until WAS 5.1) and that WebSphere’s internal exception classes already implement this idiom.
(4) Don’t try to do all of the client steps (obtaining the initial context, getting the home, creating the EJB, sending messages, etc.) in a single method. Use functional decomposition to split these steps into multiple methods so that each method does only a single thing. This will make maintenance and debugging simpler.

(5) Last, but certainly not least, DON’T DO EVERYTHING IN ONE CLASS. Follow the MVC architecture that we have described for you that splits the responsibility for presentation, user request handling, and model behavior into different classes. The same layering principle applies to EJB clients as well. In a later chapter we will describe how to build layered systems that hide the EJB implementation details from the objects manipulated by the Servers.

Summary

So, now you’ve seen the pros and cons of building the different types of EJB clients. You’ve also seen examples of a Servlet EJB client (back in Chapter 21) and a trivial EJB Application client in this chapter. You’ve learned about the different ways to deploy your application clients, and also seen some best practices for writing EJB clients, regardless of their type. In the next chapter you’ll move on to learning about the next major portion of EJB development, learning about how Container-Managed Persistence (CMP) works.

Figure 22.8 Module Dependencies for a new application Client project

� The Java Plugin is an installation option for most JRE’s and JDK’s, including the IBM JRE that comes as part of WebSphere

� As of the time of this writing, the Applet client was not yet certified to run on Windows XP.

� The ports numbers listed here are the default values provided by WebSphere but can be changed if desired.

� If an EJB is installed within a cluster, the binding is replicated on each cluster member application server.

� A similar qualified name structure is used to access cluster members, for example if TimeSheetFacadeHome was deployed to a cluster named ClusterE then its qualified JNDI name would be: cell/clusters/ClusterE/ejb/com/wsbook/casestudy/TimeSheetFacadeHome.

� The syntax to run a J2EE Client is: launchClient –CCBootstrapHost Z –BootstrapPort P MyClientApp.jar

� There is a second type of name that can be used that will also always resolve. These are CORBA names. See WebSphere V5.0 InfoCenter for more details on CORBA name.

� You can also select the Enterprise Application in the J2EE Hierarchy view and select the Export EAR File… context menu.

� From [Gamma]

36

_1111487805.doc

Java Application

JNDI

Naming

Manager

JNDI API

LDAP SPI

WebSphere SPI

Other SPI

_1119115935.doc

[image: image2.bmp]

Layered J2EE Runtime Architecture

Presentation

Controller / Mediator

Servlet Container

Data Source

Domain

Data Mapping

EJB Container

Application Services

Exception�Handling

Properties

Logging

Servlets

Struts

Java�Beans

Msg Driven�Beans

Cactus

Java�Application

XSLT

Web�Services

HTTP�Unit

HTML

JSP

JDBC

JMS

Mapper�Objects

CMP�EJBs

BMP�EJBs

WAS�UTC

Session�EJBs

JUnit

Java�Beans

[image: image1]
_1113255886.doc
[image: image1.png]

_1056127826.doc

Applet Container

Web Container

EJB Container

Application Client Container

EJB

JSP

Servlet

Application Client

Applet

Database

