
Chapter 8

Testing Servlets Using IBM WebSphere Studio Application Developer

In Chapter 7, you learned how to develop a simple servlet-based Web application. In this chapter, we’ll finish the example by deploying it to an application server, running the application, and doing some simple debugging. Specifically we’ll:

1. Edit the Web deployment descriptor

2. Deploy to an Enterprise Application

3. Configure the WSAD Test Environment and publish the application

4. Start the WSAD Test Environment

5. Run the application on the test server

6. Edit HMTL and servlet code and retest

7. Debug a servlet

The following sections cover each step in detail. Refer to Chapter 7 for a description of the sample application, the architecture used, and the implementation code.
Edit the Web deployment descriptor

The Web application in Chapter 7 contains a business model, a list-detail view of the model, and a controller servlet that updates the model. In order to execute this Web application, we must first describe it to the Web application server so it knows what’s in the application, what resources it uses, and how to invoke it. That’s the role of the J2EE Web application deployment descriptor. The Web application deployment descriptor is an XML file called web.xml in the WEB-INF folder of a Web application. Either double-click on the web.xml file directly or double-click on the Web Deployment Descriptor (which appears right under the Web project name) from the J2EE Navigator view to open the Web deployment descriptor editor as shown in Figure 8.1.

[image: image1.png]
Figure 8.1 Web Deployment Descriptor Editor for Servlet Example

This editor displays information in the web.xml file combined with information in WebSphere bindings file (ibm-web-bnd.xmi) and WebSphere extensions file (ibm-web-ext.xmi). These XML files contain extensions to the deployment descriptor supported by IBM WebSphere Application Server version 5. You can edit all three files as a single logical unit with the deployment descriptor editor. The editor organizes the information in the deployment descriptor into a number of tabbed pages. The following paragraphs provide a brief overview of the editor tabs including further information on settings required for the sample application. For a complete description of the editor, see the WSAD help.

The Overview tab provides the information that is most commonly updated giving at a glance the web application name, description, the servlets contained in the application, the welcome and error pages, etc. It also shows the Enterprise Applications that use this web application. See the next section for details on how to add a Web application to an enterprise application so a J2EE Web application server can execute it. The Servlets tab provides additional details about the servlets in the Web application. Figure 8.2 shows the servlets page with the BrowseEmployees servlet selected. Notice that the details for the servlet are the same information that we entered in the New Servlet wizard. You can edit that information here if needed. Note that you can expand and contract the various subsections of the form to display or hide information as needed. Use this feature to hide deployment information that you don’t need to change. The editor remembers the expansion state of each section so they are displayed the same way the next time the editor is opened.

[image: image2.png]
Figure 8.2 Web Deployment Descriptor Editor

Use the Filters tab to attach a filter to a servlet. You’ll remember from Chapter 6 that you can attach filters to servlets in order to provide further processing on their input or output. The Listeners tab is for adding servlet context or HTTP session listeners that are notified when the servlet context or HTTP session is initialized, changed, or destroyed. You can use listeners to handle change events in the servlet context or HTTP session instead of having to distribute or duplicate change event management code in many different servlets. The Security tab is for managing access control to Web application resources. Use the Security Roles sub-tab to define roles played by users of your application. Then switch to the Security Constraints sub-tab to create specific access control or security constraints. Each security constraint can have a number of Web resource collections that specify the permitted HTTP methods and URL patterns for identifying the resources in the collection. The security constraint also specifies which security roles are able to access the resources identified by the Web resource collection.
The Environment tab defines environment variables that are available to all servlets in the Web application. Use this tab to define constants used in your servlets, but may need to be customized by users or administrators instead of being fixed in the code itself.

The References tab specifies other resources referenced by this Web application including Enterprise Java Beans, JDBC data sources, and JSP tag libraries. We’ll be looking at the references tab in more detail in subsequent chapters, but in this chapter, we do need to configure the JDBC data source that is used to access the employees database. Figure 6.16 shows the Resource sub-tab. Create a new resource reference by pressing the Add button at the bottom of the Resource References list. Name the new reference as shown in Figure 8.3, or use the name you specified for the datasource name in the application.properties file:

com.wsbook.servletexample.mapping.datasource.name=java:comp/env/jdbc/EJPBOOK

[image: image3.png]
Figure 8.3 Configuring the JDBC Resource

Resources specified in this way are placed in the java:comp/env/ namespace. That is, they are looked up in the application using names like java:comp/env/jdbc/EJPBOOK instead of their specific, global JNDI names. The global JNDI name that the reference refers to is specified under the WebSphere Bindings in the JNDI Name field on the References page. For our database access, specify the name used by the Web application server to lookup the data source. Figure 8.3 uses jdbc/EJPBOOK as the non-local JNDI name to indicate the resource is a JDBC data source, and the rest of the name corresponds to the sample employee database. You can use any JNDI name you want as long as it doesn’t conflict with some other reference name for the servlet; however, it is useful to use names that easily identify the accessed resource. Note that you can use the non-local JNDI name directly in the application eliminating the need to specify a resource reference in the Web application deployment descriptor. However, this can create problems when the same application is deployed on more than one Web application server. It may be necessary for the application to access its resources from a different JNDI server with a different name. By defining resource references in the Web deployment descriptor, the resource java:comp/env/ reference can be mapped to a different JDBC URI without having to change the servlet source code. In addition, by creating a local resource reference, the application is informing the application server that it uses this resource. The application server will alter the classpath as well as take other steps to support this usage.

The Pages tab specifies welcome and error pages. Welcome pages specify the default pages used when a URL refers to a folder containing a collection of resources. The default is selected based on the order given in the list with the resources listed at the top selected first if more than one welcome page exists in the folder. Use Error pages to specify a URL for a page that is to be displayed instead of a default page when a particular HTTP error occurs. For example, you could specify pageNotFound.html on error code 404 to specify an HTML page to display when a resource does not exist. Use the Parameters tab to add default parameter values into the Web application context. These parameters are available through the application context. Use the MIME tab to specify custom MIME types for file extensions. These MIME types will be automatically included in HTTP headers when the Web application server accesses a resource with the custom extension. Browsers typically use the MIME type header information to know how to display the resource. The Extensions tab specifies the various Web application extensions supported by the WebSphere Application Server. One useful extension is the Default error page. Use this parameter to enter or select the default error page displayed on any HTTP error other than those overridden in the Pages tab. The MIME Filters group is an alternative to servlet filters. MIME filters either transform the contents of an HTTP request or response or modify HTTP headers. MIME filters forward HTTP responses with a specified MIME type to one or more servlets where the response can be translated to some other MIME type. Other extensions are covered throughout the book as needed.

Finally, you can edit the deployment descriptor XML source directly using the Source page. Note that the Source page only displays the contents of the web.xml file, which contains the J2EE 1.3 standard deployment description information. To see or edit the source for the WebSphere bindings and extensions, open the ibm-web-bnd.xmi or ibm-web-ext.xmi in the WEB-INF folder using the XML or default text editor. Changes to the Source page are immediately reflected in the other design pages and vice versa.

Deploying to an Enterprise Application

Now that the Web application is described in its deployment descriptor, we are ready to deploy it to a Web application server and start testing. J2EE 1.3 Web application servers run enterprise applications described by enterprise application deployment descriptors. In order to deploy a J2EE 1.3 Web application, it must first be added to an Enterprise Application, which is then deployed to a Web application server. The same Web application can be deployed in more than one enterprise application, and on more than one application server.

The easiest way to deploy a Web application using WSAD is to simply run on a server; it will be automatically deployed, if necessary. Select the Servlet Example project, right click, and select Run on Server…. The first time you run the project, the Server selection wizard shown in Figure 8.4 is displayed to select a server to run the Web application.

[image: image4.png]
Figure 8.4 Server Selection Wizard

Select the Create a new server radio button, and select the WebSphere version 5.0 Test Environment server. This server is built into WSAD and simplifies development by running the Web application inside WSAD and directly from the files located in the Workbench’s projects. Check the toggle Do not show this dialog next time to set this server as the preferred server for the Sample Servlet project. You can create as many servers as you want, and select the preferred server in the Server Preference properties of the Web project. To see the Web project properties, select the project, right click, and select Properties. The properties you set when you created the Web project are available in the properties dialog and can be updated as needed. In particular, see the Server Preference, and Web properties pages.

Click Next on the Server selection wizard and answer yes to the prompt for creating a new server project. Server projects contain server configurations that you can use to deploy and test your J2EE applications. On the next page, you have an opportunity to set an HTTP port number for the server. If you have created many servers, make sure each one is listening on a different HTTP port if you intend to run them at the same time. Otherwise, the server won’t be able to startup if its port is already in use. Click Finish to create and startup the server. You’ll see a Web browser open up in WSAD on http://localhost:9080/servletExample/index.html as shown in Figure 7.4. Click on the Browse Employees link and see what happens.

Don’t be alarmed about all those errors that appeared in the console window from the Web server! One of the challenges of Web application development is that errors that occur in components of your application are often reported through the application server rather than directly by your application, or they appear as errors returned to the client Web browser, long after the error occurred. However, it’s generally easier to find the error than it at first appears. Usually the first error is the one you want to look at and resolve. The others are just cascading errors caused by the first one. So let’s look at the console output and see what caused the problem.

[10/28/02 9:57:06:123 EST] 726cdc0b Helpers W NMSV0605E: A Reference object looked up from the context "java:" with the name "comp/env/jdbc/EJPBOOK" was sent to the JNDI Naming Manager and an exception resulted. Reference data follows:
Reference Factory Class Name: com.ibm.ws.util.ResRefJndiLookupObjectFactory
Reference Factory Class Location URLs: <null>
Reference Class Name: java.lang.Object
Type: ResRefJndiLookupInfo
Content: com.ibm.ws.util.ResRefJndiLookupInfo@9851c11 ResRefJndiLookupInfo: Look up Name="jdbc/EJPBOOK";JndiLookupInfo: jndiName="jdbc/EJPBOOK"; providerURL=""; initialContextFactory=""
Exception data follows:
javax.naming.NameNotFoundException: jdbc/EJPBOOK

at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1502)

at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1456)
…
From the console output we can see that a javax.naming.NameNotFoundException was raised when the Employee getDataSource method attempted to lookup the data source named java:comp/env/jdbc/EJPBOOK. That’s because we haven’t yet created a data source for the server configuration to tell it where the data source is and how to access it. Recall that we created a reference in the Web deployment descriptor to a javax.sql.DataSource resource called jdbc/EJPBOOK that also used jdbc/EJPBOOK as the JNDI name. However, we never actually created the resource in the JNDI server. The next two sections cover the remaining configuration operations we need to perform including configuring the enterprise application used to host the Web application and the WebSphere application server and creating data sources and associating them with JNDI names that can be used to look them up.

Configure the Enterprise Application to deploy the Web Application

Now that the Web application has been deployed, let’s look at what has actually happened. First, referring to Figure 6.7, recall that when you created the Servlet Example Web application, you had to specify an Enterprise Application used to deploy the Web application to a J2EE Web application. Second, when you ran the Web application on a server, the servlet selection wizard shown in Figure 6.17 was invoked because there were no defined servers, and therefore, the Web application has no server preference. Selecting the Web application and invoking Run on Server uses the enterprise application specified when the Web application was created and invokes the server selection wizard to create a new server instance, or reuse an existing server instance, and publish the enterprise application to that server. Each of these activities can be done manually enabling more configuration control.

To edit the enterprise application, expand the project corresponding to the enterprise application you entered when creating the Web application as shown in Figure 7.8. If you took the default, the enterprise application would be DefaultEAR. Double click on the EAR Deployment Descriptor in the DefaultEAR project (right under the project name), or edit the application.xml file in the META-INF folder. This invokes the Application Deployment Descriptor editor as shown in Figure 6.18.

[image: image5.png]
Figure 8.5 Application Deployment Descriptor, Module Page

The Overview tab provides an overview of the enterprise application giving its name, description, a list of Web and EJB archive modules that are included in the application, and other details as specified in the J2EE 1.3 specification. Use the Modules tab to add or remove Web or EJB modules to/from the enterprise application. An enterprise application can host any number of Web Application Archive (.war) files, Enterprise JavaBean Archive (.jar) files, and other project utility JARs that contain Java classes used by other modules in the enterprise application. Notice that the Create Web Application wizard shown in Figure 7.8 added the Sample Servlet application to the DefaultEAR file since we selected that option. You can also add and remove modules from the enterprise application using the buttons at the bottom of the module list. Each module has a URI to the WAR or JAR file that provide the module implementation, and the context root that specifies the URL prefix used to access resources in that module. The context root must match the value given in the Web properties of the Web application project. The Security tab allows you to define security roles for the enterprise application, and assign particular users or groups to those roles. Finally, the Source tab allows you to edit the contents of the XML application.xml document directly, again with full content assist.

Configure the WSAD Test Environment and publish the application

Returning to the run-time error, we saw when we tried to display the employee list, recall that the problem was that the data source for accessing the database using the jdbc/EJPBOOK URL was not defined in the server. We’re now ready to fix this problem. First, select the Server Configuration tab, the one right next to the J2EE Navigator, to display the server configuration view. You can also open the Server perspective, but the Web perspective provides everything you need. The Server Configuration view lists all the configured servers in the Servers project. You can create as many server projects as you want, and each server project can contain any number of application servers and server configurations. You can use different application servers to test your application in various ways including WebSphere V4 and V5 servers running on the localhost machine, a remote server, the Test Environment server built into WSAD, or the Apache Tomcat server. We’ll be using the Test Environment because it is the easiest to use during Web application development and testing since the Web application is published “in-place”. That is, the test environment server accesses the Web application components directly from the project resources instead of having to publish them to a server every time a resource changes.

You can also create a number of different server configurations for different testing scenarios, and associate a server configuration with a server before starting it up. To change the server configuration, select the server in the list, right click, and expand the Switch Configuration submenu to select from the server configurations that are compatible with the selected server.

[image: image6.png]
Figure 8.6 WebSphere v5.0 Test Environment Server Configuration Editor

You can edit the server configuration by double clicking on its entry, or you can edit the server and its current configuration at the same time by double clicking on the server. The only difference is the addition of the Server tab when editing the server. Referring to Figure 8.6, the Server tab shows the server name and a toggle for enabling JavaScript debugging. The rest of the pages are for the current server configuration. The Configuration tab specifies some overall configuration information such as the configuration name, whether the server uses single or multiple class loading policy, and if the administration console and universal test client (UTC) applications are enabled in this configuration. We’ll be seeing more about the UTC when we test Enterprise Java Beans (see Chapter 20). The Paths tab specifies the classpath for the server. You shouldn’t generally need to add any additional classpath entries when deploying Web applications as WAR files in an enterprise application since the J2EE deployment descriptors provide the information required by the application server to load classes. The Environment tab specifies any additional Java virtual machine arguments and environment variables required by the Web application server. The Web tab allows you to edit the MIME type to file extension mapping. Put any custom MIME types used by your application here. You can enable URL rewriting and cookies for the Web application server on this page.

The Data source tab is where you configure data sources referenced by your Web application. There are two sets of entries, Node Settings, and Server Settings. Node settings apply to all servers running on a particular computer. Server settings are for a particular server running on a node. Note that the Test Environment will only support a single server, so configure the data source in the server settings. The JDBC Provider list lists the JDBC data sources that are available on the node. These are generally filled in automatically, but you can add, remove, or edit entries in the provider list. Select the Default DB2 JDBC Provider and click the Add button next to the Data source defined in the JDBC provider selected above: list. The Modify Data Source wizard shown in figure 8.7 is displayed.

[image: image7.png]
Figure 8.7 Modify Data Source

Enter a name for the data source, something that distinguishes it from other data sources provided by the same JDBC provider. Be certain to enter the same JNDI name that you used for the javax.sql.DataSource resource reference in the Web application. The defaults are probably fine for the rest of the settings. The values shown in figure 8.7 are specific to DB2. Other servers require similar information, but the dialog may look different. Click Finish to update the settings for the data source. Now the data source is defined in the server configuration, and when the server starts up, there will be an entry in the JNDI server called jdbc/EJPBOOK that will provide access to the data source resource required by our sample application.
Remember that a server configuration can be used to configure more than one application server. So the configuration information you have provided to configure the Test Environment can be reused to configure the production server.

Start the WSAD Test Environment

Now we’re ready to try running the application again. You could just select the Servlet Example Web project or index.html and invoke Run on Server…, but let’s start the server manually this time to see what’s going on. Before starting the server, you need to make sure the enterprise application that contains your Web application module has been deployed to that server. We did this through the Server Selection wizard shown in Figure 8.4 when we attempted to run the index.html file from a Web application that was not yet associated with a server. There are a couple of other ways to set the server for an application. You can see what server your web application is configured to run on by opening the Web application project properties and selecting the Server Preference page. This will allow you to select a server from the list of servers available in your workspace, or allow you to prompt for a server selection whenever you run the Web application. This will bring up the Server Selection wizard as shown in Figure 8.4 every time you run the Web application. Another approach is to select the Server Configuration view in the Web perspective, or Server perspective, and expand the Server Configurations item. You’ll see a list of server configurations, one of which we created and edited in the previous section. Expand the server configuration to see the enterprise applications that have been deployed in it. You should see the DefaultEAR enterprise application in the list since we deployed it to this server in the previous section. You can select the server configuration, right-click and add or delete enterprise applications to/from the configuration.

The next thing to do is start the application server that is hosting your enterprise/web application. From the Web or Server perspective, select the Servers View. You’ll see a list of the servers available in your workspace as defined in server projects. Select the server that is hosting your application, right-click, and select Start. This starts the server after publishing any enterprise applications deployed to that server that need to be republished. Publishing an application will copy necessary files from the application project folders to locations required by the particular Web application server. The Test Environment copies very little since the application runs directly from the project folders. You will see a number of messages appearing in the Console view. This view shows the content of the application server log, standard output, and standard error for the application server. You’ll be making more use of the console output when debugging your web applications. There should be a number of lines similar to those below indicating that the DefaultEAR application and servlet example Web module started successfully. You should also see the last line indicating the “server is open for e-business.” This indicates the server started successfully and is ready to process requests.

[10/30/02 20:24:08:078 EST] 170ab85d ApplicationMg A WSVR0200I: Starting application: DefaultEAR
[10/30/02 20:24:08:218 EST] 170ab85d WebContainer A SRVE0169I: Loading Web Module: servletExample.
[10/30/02 20:24:08:448 EST] 170ab85d WebGroup I SRVE0180I: [servletExample] [/servletExample] [Servlet.LOG]: JSP 1.2 Processor: init
[10/30/02 20:24:08:949 EST] 170ab85d WebGroup I SRVE0180I: [servletExample] [/servletExample] [Servlet.LOG]: SimpleFileServlet: init
[10/30/02 20:24:09:099 EST] 170ab85d WebGroup I SRVE0180I: [servletExample] [/servletExample] [Servlet.LOG]: InvokerServlet: init
[10/30/02 20:24:09:149 EST] 170ab85d ApplicationMg A WSVR0221I: Application started: DefaultEAR
[10/30/02 20:24:13:045 EST] 170ab85d HttpTransport A SRVE0171I: Transport http is listening on port 9,080.
[10/30/02 20:24:15:609 EST] 170ab85d HttpTransport A SRVE0171I: Transport https is listening on port 9,443.
[10/30/02 20:24:15:859 EST] 170ab85d JMXSoapAdapte A ADMC0013I: SOAP connector available at port 8880
[10/30/02 20:24:16:139 EST] 170ab85d RMIConnectorC A ADMC0026I: RMI Connector available at port 2809
[10/30/02 20:24:16:279 EST] 170ab85d WsServer A WSVR0001I: Server server1 open for e-business
If necessary, go back to the Web perspective, select index.html in the Web Content folder of the Servlet Example, right-click, and select Run on Server…, or open a Web Browser of your choice and enter and browse URL http://localhost:9080/servletExample/index.html. The port specified in the URL is the port specified for the application server on the Ports page of the server configuration editor as shown in Figure 8.6. Click on the Browse Employees link and you should see an empty list of employees. Test the application by creating, displaying, and updating some employees.

Edit HMTL and servlet code and retest

This is where WSAD really shines. You can change almost anything in your project including servlet code, go back to the Web browser, refresh, and immediately see the effect of your changes. Well, it’s almost that easy. More accurately, what you have to do to effect a change depends on what kind of resource you change, and the Web application server used to run the application. We’ll look at the more common scenarios used during development here. If you encounter a different server configuration, consult the server documentation for details. When in doubt, you can always restart the server. That’s the sure way to know your changes have been deployed. Here are the general rules for using the WebSphere Test Environment:

1. If you change any resource in the Web application including the Web deployment descriptor, HTML pages, Servlets, or Java code used by servlets, you can see the changes by simply refreshing the view in the browser.

2. If you change any resource in the Enterprise application project hosting your Web application, including its deployment descriptor, you must restart the EAR project. Select the EAR project in the J2EE Navigator view, right-click, and select Restart Project.

3. If you change anything in the server configuration, you must restart the server.

For further details, including special cases for using Tomcat to test Web applications, see the WSAD help at Web developer information->Application testing and publishing->Concepts->When the test server requires restarting.

Debug a servlet

Debugging distributed applications use to be really difficult because the application code ran inside a Web application server in a different operating system process, and often on a different machine. Inserting print statements and examining server logs was often the best you could do. WSAD and the WebSphere Test Environment make Web application debugging a breeze. You can set a breakpoint anywhere in your servlet code or Java code used by your servlets, and debug the server-side of your application as easily as a simple Java main program. In this section, we’ll provide a quick overview of the WSAD debugger and show you how to debug the Sample Servlet Web application.

The first thing you have to do to debug a Web application is to start the application server in debug mode. If the server isn’t running, simply select the index.html file in the Web Contents folder of the Servlet Example, right-click, and select Debug on server…. This will start the Web application server in debug mode and launch a Web browser on the selected resource. If the server is already running, you’ll need to stop and restart it in debug mode. From the Web, J2EE, or Server perspective, select the Servers view; select the server in the list that is hosting your Web application, right-click, and select Stop. Then after the server stops, right-click again and select Debug. This action starts up the server in debug mode, which means the Java virtual machine is listening for debug commands. It also opens the Debug perspective. Now switch back to the Web perspective, select the index.html file in the Web Content folder of the Servlet Example, and select Run on Server or Debug on Server. Both do the same thing once the server is running in debug mode.

You see the index.html file come up as usual. It isn’t a dynamic page, so there’s nothing to debug. Now click the Browse Employees link. Initially, the application server is in step-by-step mode. This means you’ll see the dialog in Figure 8.8 displayed every time a servlet is invoked. This dialog indicates which servlet and servlet method is being invoked, and on what server. You can choose to step into the servlet method, skip debugging this servlet, or disable step-by-step mode. You can use step-by-step mode as a convenience for debugging servlet code, but if your application has a lot of servlets, and most of them work properly, this can be a little tedious. You might instead prefer to disable step-by-step mode and set a breakpoint in the specific servlet you’re trying to debug. Note that if you disable step-by-step mode, the servlet remains suspended at the first line of code in the servlet, and the debug perspective won’t be displayed when you press OK in the Step-by-Step Debug dialog shown in Figure 6.21. To proceed, you need to switch to the debug perspective and press the resume button (see below for details).

[image: image8.png]
Figure 8.8 Step-by-Step Debug

So let’s try setting a specific breakpoint. Open the BrowseEmployess servlet (com.wsbook.servletexample/BrowseEmployees.java in the Java Source folder), and double click in the vertical ruler (left margin) at the left of the line of code where an iterator is accessed over all the employees in the database. This puts a breakpoint marker at that point in the code as shown by the blue dot in the vertical ruler of Figure 8.9. You’ve already seen some such markers indicating errors in Java code or broken links in the HTML code. Other kinds of markers can appear in this margin, each with its own icon. Markers can show the location of information, warnings, or errors in the tasks view, breakpoints as shown here, or arbitrary bookmarks you might create for your own purposes. For example, right click in the left margin to set a bookmark. Use the Bookmarks view to navigate to your bookmarks.

[image: image9.png]
Figure 8.9 Setting a Breakpoint

Now go back and run the index.html file on the server again, and click on its Browse Employees link. This time the Workbench switches to the debugger perspectives shown in Figure 8.10 and pauses execution at the line containing the breakpoint. In the figure, we’ve pressed single step a couple of times so there’s an interesting variable to look at.
[image: image10.png]
Figure 8.10 Debug Perspective

Now let’s take a closer look at the views in the debug perspective. The Debug view shows a list of the concurrent threads in the Test Environment server application with the thread suspended at the breakpoint expanded to show the stack trace. Click on any entry in the stack trace to display the application source code at that point, and to display the variables that are available at that point in the program. If the source is not available, you’ll see the Class File Editor which shows the public interfaces available in the class, and any other information that is available in the Java .class file, but you won’t be able to see any local variables if the class file was not compiled with debug attributes. There are a number of things you can do while the thread is suspended such as setting or clearing breakpoints, examining variables, or evaluating expressions. We’ll look at each of these in a moment as we examine the other views in the debug perspective. First, let’s explore how to step through the code in order to get to the point where we’d like to explore the state of the code in more detail.

There are a number of ways you can control execution of a program being debugged. You can either:

· Step into a function and pause at the first line of code in the function (F5),

· Single step over a line at a time (F6),

· Run to return, or the first return statement encountered in the current function (F7), or

· Resume execution (F8),

· Run to the line containing the cursor (assuming its after the current line)

There are a number of ways to invoke these operations. You can use the buttons in the Debug view title bar, invoke menu items in the Run menu, or use the function keys as shown in the list above. The function keys are generally the easiest once you get used to using them. Try pressing F6 a couple of times until you’re suspended at the first println statement as shown in Figure 8.10. You’re now at a point where you can explore some of the other views in the debug perspective as shown in Figure 8.11.

[image: image11.png]
Figure 8.11 Debug Views

One of the most useful debug views is the Variables view shown in Figure 8.11. This view shows the variables that are visible at the point where the program is suspended. You can see the values of fields of the object upon which the method is invoked by expanding the this entry. Other variables in the list are the method parameters and local variables. Expand any tree entry to see the names and values of its member variables. When variables change for one single step to another, their color changes to read so you can easily see what changed. You can simplify the variable names shown in the list by toggling the Show Qualified Names button in the Variables view title bar. This toggles displaying fully qualified names for Java classes. Turning this off shortens the names, but doesn’t tell you what package the classes are in, and may show ambiguous names if different classes have the same name in different packages. You can also control the display of type names for field names by pressing Show Type Names. You can toggle displaying details of the selected field by toggling Select Detail Pane. Turning on the detail pane shows the result of invoking the toString method on the selected variable in the bottom pane of the Variables page.

The Breakpoints page shows a list of the current breakpoints that are set in the running application. You can select a breakpoint and disable or remove it from the list. Disabling a breakpoint leaves it in the list, but the application will not suspend when reaching that breakpoint. Disable breakpoints that you want to skip them for the moment, but may want to reuse later in the debug session. You can also set a breakpoint count to specify that a breakpoint must be reached a certain number of times before suspending execution. This is useful when attempting to suspend the application in a loop after a certain number of iterations have occurred. It is also possible to set breakpoints when any Java exception is thrown. Often when debugging an application, stepping over a statement will result in an exception being raised in some nested function call. You can set a breakpoint on the exception to suspend where the exception occurred rather than in handlers at other locations in the application. There are additional properties on a breakpoint that you can set as shown in Figure 8.12. We’ve already discussed enabling breakpoints and hit count. It is also possible to specify the Suspend Policy. You can suspend either a particular Java thread, or the entire Java virtual machine. Generally, you’ll only want to suspend a particular thread. However, sometimes when debugging multi-threaded applications, it is helpful to be able to suspend all threads. You can specify which threads in the application should have breakpoints enabled by selecting the threads in the Restrict to Selected Thread(s) tree view. Another very powerful feature is the ability to enable conditions on a breakpoint. The application then stops at the breakpoint if the condition is true when the statement executes in the application. The debugger evaluates the expression in the context at the location of the breakpoint and can reference the same fields that would be visible in the variables view at that breakpoint.
[image: image12.png]Figure 8.12 Debug Properties

The Expressions view is an inspector on expressions that you evaluate in the current debug context. You can select any expression in the source view, right-click, and select Inspect. The expression is evaluated and the result will be shown in the Expressions view. You can also use the Display view as a scrapbook for entering and evaluating other expressions including whole fragments of Java code. Figure 8.11 shows the result of accessing the employee name when the debugger is suspended as shown in Figure 8.10. This should be the first employee in the database. To evaluate an expression in the Display view, type the expression, select it, right-click, and select Display (or use Control+D) to display a string representation of the result (using toString), or select Inspect (or use Control+U) to inspect the result in the Expressions view. The variables that are available for use in the expression are the same ones that are visible at the selected point in the debug stack.

The other views in the debug perspective, Registers, Storage, Storage Mapping, Monitors, and Modules are for debugging complied languages such as C++ so we won’t cover them further here.

Summary

In this chapter, you learned how to deploy a simple Web application to the WSAD Test Environment, configure the server, and run the application. You also learned how to debug Web applications using the WSAD debugger. Although the sample application was very simple, other J2EE applications are deployed and debugged using similar techniques.

8

