Chapter 5

Presentation Layer Patterns

The user interface of an application provides the basis in which the end user, who in many cases is your paying customer, judges its value. If you doubt this, reflect on the experiences and emotions you have whenever you are exposed to a new development tool interface. More than likely your initial impression comes from cosmetic appearances like color schemes, widget layout, etc.. A bad initial impression can influence your perception of the actual effectiveness of the tool. Getting past the cosmetic features, users place weight on the intuitiveness of the application’s features. In short, can the user do what he wants to do without instruction or documentation?

From a developer’s perspective, constructing an effective and intuitive interface is an endeavor that can satisfy the hidden artist in all of us, but the under appreciated value of a given application is in the elegance of the design applied to its construction. Developers value applications that have been consistently constructed and are therefore easily maintained and enhanced. A balance between providing a user with an elegant user interface experience and allowing developers to modify and even replace implementations is the rational behind the application layers discussed in earlier chapters.

Consistently separating business logic from the user interface allows the modification of the user interface to occur with minimal affect on the business or domain implementation. Decoupling the user interface from the domain also means that graphical user interface (GUI) technologies can change without affecting the rest of the application. This may not have been a reality in the early client-server days where client side graphical user interfaces were the norm, but interface technologies delivered via the Internet make it likely if not probable that user interface technologies will continue to evolve. This evolution is even more reason to decouple the user interface from business function and data.

Decoupling is a key feature of the layered application architecture presented in the previous chapters. This chapter introduces the user interface technologies and frameworks that will be discussed in upcoming chapters and occupy the “presentation controller/mediator” layers of the application architecture. The roadmap diagram for the book is shown in Figure 5.1 and highlighting the relevant layers

[image: image1.png]
Figure 5.1 Presentation Layer elements of the Road Map

 In addition, we’ll cover why and how capturing application logic in a separate layer benefits decoupling. Finally, we’ll discuss how the well-known Model View Controller (MVC) design pattern fits into the decoupling equation.

Java User Interface Technologies

Java’s original intent was to allow an application to be deployed to a client from a web server. User interfaces were constructed with graphical widgets in the same way that windows based user interfaces were. The novelty was that the application could be accessed with a web browser; applets would provide the same functionality that a standard client-server based user interface would. Browsers only required the presence of a Java Virtual machine. Initially, these VM implementations were built into the browser executable.

The problem arose when the Java virtual machine specification changed, adding new features and thus making older browser software unable to execute new Java applets. Making the virtual machine a plug-in feature solved this problem, but created another problem. The original user interface framework in Java (AWT, or the Abstract Windowing Toolkit) relied upon a peer based design. User interface widgets were actually rendered as platform specific user interface widgets. The design utilized a toolkit pattern that associated Java class widgets with the appropriate platform user interface widget. Each virtual machine knows what type of platform it has been deployed on, so it can access the appropriate operation systems resources.

While the toolkit’s may seem clever, it limited the family of available widgets to the operating system with the smallest number of widgets. This caused many initial Java applications to rely upon third party user interface frameworks that violated the platform independence and standardization of Java. This problem was ultimately solved with the introduction of the Java Swing user interface framework that rendered user interfaces entirely in Java, eliminating the reliance on available operating system widgets. However, by then, Servlet/JSP technology had appeared and provided an easy way to deliver thin dynamic web-based applications with plain old HTML.

At this point, development momentum quickly shifted to this new cost effective way to deliver applications, commonly referred to as server side Java development; implying that all of the Java based application is resident on the server side. Even though this allowed easy deployment and ubiquitous access for the user, HTML based user interfaces did not provide the rich navigability features that were common in client side graphical user interfaces. Even interface technologies such as JavaScript cannot satisfy all user interface requirements. Designing an application in a decoupled way minimizes the reliance on a specific user interface technology. Upcoming sections will discuss how this decoupling takes place. First, a brief discussion of some popular user interface technologies follows. Upcoming chapters will describe each of these technologies in detail along with how they are engaged within the WebSphere Studio Application Developer toolset.

Servlet/JSP

Using servlet and JSP J2EE components, developers can generate HTML in response to individual user requests. This offers the thinnest of client workstation profiles. All that is required is a browser and connectivity using the HTTP protocol. HTML interfaces provide a colorful and visually aesthetic user interface; with it’s ability to layout and integrate graphics and text.

Servlets and JSPs are essentially synonymous, at least when speaking of the mechanics of how Java models the HTTP protocol allows server side Java logic to be exercised and HTML tags returned for rendering (JSP’s are translated into Servlets) at runtime. This implies that defining a JSP is really a programming endeavor, however, through the use of tag libraries and well placed scriplet tags, it’s conceivable that JSP construction can be performed by more graphically inclined personnel that are properly conditioned to ignore Java based tags and scriplets. This is because JSP’s are documents like HTML, and indeed, they are often constructed much like HTML documents often using the same HTML editor. The door is open for tool support and the robust knowledge of putting together HTML based interfaces.

The down side of the technology is attempting to implement interfaces that require robust viewing and editing capabilities against large amounts of data. Users accustom to robust user interface controls such as fully editable tables and menu options activated using keystroke combinations, can find JSP/Servlet interfaces limiting. Intensely interactive GUI based interfaces are appreciated an application is utilized for long durations of time and require the viewing and quick editing of large amounts of data. HTML based user interfaces don’t naturally support this type of user interaction.

XML/XSLT

An alternative way to generate dynamic HTML is through XSL (eXtensible Stylesheet Language). This technology allows the transformation of XML documents into other XML documents. HTML is XML based, so it provides a convenient way to transform presentation-neutral XML into dynamic HTML documents that can then be presented to the user. Chapter 15 provides a detailed discussion of how XSLT can be used to generated dynamic HTML within a Java application, so this discussion will only contrast this user interface approach against the JSP/Servlet way of HTML generation.

The primary benefit of representing user interfaces in XML is the ability to use XML technology and tools to separate business data from user interface rendering in order to re-purpose or process the XML into any format for various devices. Rendering a user interface in a pervasive device, kiosk, or web browser is only a matter of processing the XML with different XSL templates. From the Java standpoint, the application only has to worry about the logical elements that appear in the XML document tree. An XML based interface not only decouples the presentation from underlying business and application logic, but also decouples the user interface from platform and interface technologies.

Another advantage of this technology is the ease of change or re-branding efforts. XSLT is a powerful scripting language that is applied during runtime and is
interpreted, and does not have to be compiled and deployed in the same manner as JSP/Servlet elements. This interpreted feature and lack of ability to execute Java programming instructions defined other layers of the architecture, allows for safer modifications and re-branding efforts. The only logic they contain is responsible for transforming XML into HTML tags. While one could say JSPs provide the same level of modification, JSP implementations combine HTML tags and Java expressions. Developers are free to import and define complex and lengthy Java expressions intertwined within HTML tags, and often delivery timelines can influence developers to overload JSP implementation with Java logic, even if a formal design approach exists. XSL based interfaces are feed XML generated with Java, which at least keep long ugly methods that produce the XML separate from presentation logic. Moreover, the re-deployment and compilation of modified JSPs requires special access visibility and may have side affects.

Performance is the most obvious tradeoff when comparing JSP/Servlet based interfaces against pure XML based user interfaces. The parsing and styling of XML produced for the interface is often done dynamically, and parsing can consume many machine cycles. In addition, XSLT is not a language that is universally understood presenting a moderate learning curve. Likewise, tools support for XSLT is limited. However, by using XSL caching and XSLT compilation technology many performance issues can be easily overcome. Also, as we will see in Chapter 15, WSAD contains numerous tools and development aids in its XML perspective for XML and XSL web interface development.

Swing based GUI

It would be naive to think that client-server based applications have been completely superseded by web delivered applications. Applet technology and/or distributed technology support still accommodate the traditional client based GUI in a J2EE based application.

As the beginning of this chapter indicated, Java Swing technology provides a way for workstation resident and operating system independent graphical user interfaces to be constructed. This requires the presence of a Java virtual machine for the platform to be resident. These user interfaces are constructed using Java Swing technology that provides a robust set of interface widgets that can be constructed in an infinite number of ways. Standard features include things such as menus, tables, and robust list elements that support integrated graphics allowing the delivery of elaborate and responsive user interfaces.

Responsiveness is probably the most common reason users demand a client side user interface. Applications that carry out frequent lookup and modification of data can benefit from the navigation control and robust set of interface widgets available with the Swing based user interfaces.

Swing based applications can, and should, utilize server based J2EE technologies. EJB technology, JMS, and SOAP, can be exploited to diminish the impact on the client resident user interface. Likewise, the layered architecture approach proposed by this book supports the ability to engage both web and client based user interfaces using the same business domain implementation. Essentially, web based clients access the system via the web container, while java based clients access the system via the EJB layer. Since the web container uses the EJB container to gain access to business logic, this provides consistency and reuse.

Decoupling the User Interface

 The early JSP specifications (prior to JSP 1.0) identified two types of architectural models. Model 1 type architectures don’t formalize how the presentation-based elements interacted with the rest of the application, which can include everything from business logic defined in Java objects and data base calls. In a sense they “rolled everything together” into a single element. Model 2 based architectures do formalize the way in which the presentation interacts with the underlying objects that carry and define business function and data. This separation of concerns, which the model 2 approach dictates, supports the ability to change the user interfaced with minimal impact on the business layer implementation. In addition, model 2 offers greater opportunity to scale predictability, which is necessary for maintenance, and change requirements that are typical during the lifetime of an application’s user interface. Figure 5.2 illustrates the separation of elements in the model 2 architecture.

[image: image2.emf]

User

Interface

Object

Domain

Object

request

response

Controller

Object

database

Figure 5.2 – Model II architecture

MVC Pattern

The Model-2 approach is really an implementation of an older design pattern originally developed for Smalltalk user interfaces called the Model-View-Controller (MVC) pattern.

MVC like other design patterns provides a blueprint for re-occurring design problems. In other words, design patterns are abstract designs that help identify the structure and elements involved in a specific design solution. From this, a concrete implementation can be produced. Originally, the MVC pattern was applied to GUI based user interfaces. In this implementation, view elements were identified as GUI components or widgets and controllers were elements that joined these elements along with the underlying data structures or objects that supplied the data of a specific user interface. Today, the pattern is commonly related to the web based Java world by referring to JSPs as the view element, Servlets are controllers, and Java objects constitute the model. Figure 5.3 shows the MVC pattern applied to both GUI and Servlet/JSPs.

[image: image3.png]
Figure 5.3 - MVC pattern applied to GUI and Servlet/JSP technologies

All too often lip service is paid to an MVC based implementation. Just because a JSP submits to a Servlet that then interacts with a Java class, does not mean you will gain the benefits proposed by the MVC pattern. Formality and consistency is the key to applying the MVC pattern successfully, so that the benefits of maintainability and scalability can be achieved. Successful architectures utilize the MVC design, put go a step further and generalize and prescribe the way the MVC sequence is applied in developer code.

Single Servlet vs. Multiple Servlet

Two models are commonly encountered when applying the MVC pattern to the JSP/Servlet model. The single servlet approach utilizes a single gate keeping servlet that funnels all JSP (view) requests and then engages and/or creates another controller instance. In contrast, the multiple servlet models each controller implementation as a separate servlet. Which approach to take is debatable; however, the single servlet model ensures a common entry point and thus may provide more opportunities to generalize. The popular Struts open source framework that has gained industry acceptance backs this up. Chapter 12 provides an in depth discussion of servlet based design considerations. Figure 5.4 provides a simple example comparing these two approaches.

[image: image4.png]
Figure 5.4 – Single versus Multiple Servlet Designs

The Struts Framework

Struts is a robust MVC based implementation that follows the single servlet approach in its implementation. Entire books have been devoted to the Struts framework, and that alone indicates the robustness of the framework. WebSphere Studio has integrated tools supporting the framework. An introduction to Struts and how it is utilized within WebSphere Studio can be found in chapter 14.

While the MVC pattern effectively separates view logic from business logic, it does not decouple an application from a specific user interface technology. This notion might not be obvious; the next section will discuss how another architectural layer can help decouple user interfaces even further.

Logical View Logic

MVC architectures assume that an applications business function and data is captured and defined as Java Beans. Java Beans have become somewhat passé, and the “bean” terminology can actually confuse developers into thinking they are a part of Enterprise Java Beans. Many developers are not familiar with Java Bean technology. Those that are consider it a GUI based technology, and therefore have a hard time seeing why a design would use them to define business logic. In fact, Java Beans can exist in non-visual implementations. And any Java class that implements the java.io.Serializable interface, has getter/setters methods and a zero-argument constructor can be considered a Java Bean. This confusion can be alleviated by not using the JavaBean reference and simply referring to them using the moniker as “Plain old Java Objects”, or POJOs. Yet, another acronym has been added to the Java technology stew, but this one has to be the most fun to say.

Another opportunity for decoupling can be had if another layer of objects are placed between the presentation objects (view/controller) and the POJOs defined for the application domain logic. This new layer captures view specific behavior in a logical way, logical in the sense of behavior specific to a particular user interface’s demands on the business object POJOs. Figure 5.5 depicts this relationship.

[image: image5.png]
Figure 5.5 – Logical View Layer

The layered application described by this book defines this layer of objects as the mediator layer. It is responsible for defining and referencing state that services a specific application view, but interestingly it is not coupled to a specific user interface technology. Thus, the logical presentation or mediator layer can be utilized by web, client, XSL, or any user interface technology. The next sections attempt to clarify their existence in more detail.

Mediating Logical View Logic

Capturing and extracting logical view logic might initially seem like just an extra hurdle to perform at the cost of providing more indirection and bolstering the object oriented critic’s accusation of lasagna
type coding designs. Lasagna coding comes with object-oriented programming; it is managed through generic implementations that promote a consistent implementation by all developers.

As earlier sections indicated, decoupling the user interface from the underlying domain implementation is accomplished by applying the MVC pattern, however, formalizing how controllers and view implementations interact with the domain provides further decoupling and supports the ability to interchange user interface technologies along with some other benefits.

The formalization of view and controller interactions is accomplished through capturing requests and behavior made to domain objects in a separate layer. This layer provides a barrier between the presentation layer and the domain. Within the mediator layer, mediator objects are created for each specific application view. Mediator implementations define state and function used by view and controller implementations for a specific user interface. Figure 5.6 illustrates the mediator and its place in the layered application architecture.

[image: image6.png]
 Figure 5.6 – Mediator Layer

Mediators capture what can be considered interaction logic that is gleaned from user interface functionality. To help capture the spirit of mediator design, the following sections describe some examples of mediator-bound behavior.

List Support

All user interface technologies support some kind of mechanism to display lists of data. Table definitions and form lists are utilized to display dynamic HTML with JSP/Servlet technology. List and table controls are available in all operating systems as widget controls. List behavior is even used to support menu selections in a voice response unit.

Mediators define methods that reference and retrieve lists of domain objects. Mediators can also define convenience methods that extract and format properties of domain instances into collections that are accessed by the user interface. Figure 5.7 illustrates this type of support.

[image: image7.png]
Figure 5.7 – Mediator Supporting Lists.

Selected Object

User interfaces are in most cases providing a user the ability to display or modify a domain instance. Mediators can define references to specific objects that have been navigated to through some kind of finding method or from a selection from a list of domain objects.

Communicating Validation Messages

Mediators also provide a convenient way to capture and format validation messages generated from the domain layer object. View resident logic, such as Javascript, can validate formatting of data types and simple checks for the presence or absence of required fields. This is collectively referred to as “Syntactic” validation. However, other, more complex types of validation rules such as range value checks are best defined in domain layer code. This placement allows these checks to be reused across application boundaries. Mediators can exercise these validation rules and capture their results, formatting them into to ready to consume structures that view layer implementations can access consistently.

View Transition Support

Navigation between user interfaces often requires transferring values between them. Mediators provide a convenient and common object to carry out this transition. JSP/Servlet based user interfaces can place object references in either session or request attribute objects that are available between interface transitions. Instead of allowing developers to put arbitrary objects in the session or requests, a generalized mechanism can be provided that supports mediator types. GUI based interface transitions can apply a similar generalized mechanisms that passes mediator references between panels, frames, etc.

This type of consistency eases maintenance by allowing developers to rely upon this pattern and structure. It also provides a place were other types of generalizations can be applied.

Collapsing Object Graphs

A common activity that Java developers perform when developing a user interface is to take Java object graphs and pull selected properties into some kind of user interface form for editing or viewing. In many cases, especially HTML based interfaces; this means that Java data types are converted into Strings for display. The same process is performed in reverse when values input into the user interface must be reconstructed into an object graph.

This type of logic is not necessarily coupled to a specific user interface technology; therefore, defining this logic within a mediator allows it to be reused across disparate interface technologies. Mediators essentially provide a façade interface between a user interface form and a domain object graph. Logic in the mediator can provide methods that perform the previously described pulling and pushing mechanism. Figure 5.8 illustrates the role the mediator plays in collapsing an object graph for a user interface form.

[image: image8.png]
Figure 5.8 – Collapsing a User Interface.

Mediators can act as a façade on business object graphs that are deep and require a lot of transformation prior to display. Defining this type of logic at the mediator layer allows other technologies to gain access to object graphs in an easier to use linear structure.

Summary

Decoupling the user interface technology is an obvious goal of the MVC architecture. Upcoming chapters of this book, specifically Chapters 7,8, 13 and 14, will describe how tools integrated within WSAD can be engaged to create dynamic HTML based user interfaces with JSP/Servlet and the Struts framework. The result is a rapid application development environment that produces implementations compliant with the MVC approach.

This chapter also introduced another layer of objects, the mediator layer that captures logical application user interface state. Not only does this additional layer provide further decoupling, but is supports the ability to replace user interface technologies and provides a consistent mechanism to capture technology neutral requests of domain objects with a consistent implementation.

� Lasagna coding is a metaphor referring to the nature of object-oriented designs that include many coupled methods and layers of object message execution sequences.

1

_1118086318.doc

[image: image1]

Controller Object

Domain Object

User Interface Object

request

response

database

