Chapter 17

Unit and Functional Testing Applications in WSAD

Testing is fundamental to software development. The problem is that most development organizations still perform their tests in the same way that tests were run on the first generation of computers – by hand. Luckily, the situation has improved and tests can now be run in a repeatable and automated way. By providing automated regression tests you can ensure that your application will continue to work while it is being continuously refined. This allows the implementation of your classes and components to change dramatically during application development.. Automated test cases validate that your system fulfills class and component public interface contracts and that the application will continue to work in spite of change.

Many software developers dismiss the idea of automated testing because they believe they do not have time in the development process to write formal tests for their code. However, not taking the time to write automated test cases can lead to application instability, late system delivery and a higher number of defects delivered to end users and customers. This is because the last step to be performed in a development cycle is testing, and in the press of time, this is the step most often shortened or left out.

Overall Testing Approaches

Testing does not happen in a vacuum. As with all software engineering endeavors, you must first start with a plan. Testing therefore begins with a test plan. The first step in development of a test plan is to identify the types of testing that will be carried out. There are some standard definitions for test phases that most development organizations adopt. They are:

Unit testing – A Unit is usually defined as the smallest piece of software that can be compiled and put under test in a particular language. In Java, a “Unit” is usually equivalent to public class. Therefore unit tests are normally those that test individual classes. However, this isn’t always the best definition, since Java (and J2EE in particular) provide several mechanisms to aggregate classes into larger functional units like EJBs. So, for our purposes we’ll consider unit testing to encompass component testing as well.

Functional testing (which includes Integration Testing) - The testing of aggregated functions or whole use cases. Functional tests look for different problems than Unit tests do – they aim to show that the combination of components function as expected. Functional tests look for things like consistent data representations, consistent data validation, and proper sequencing of calls.

System testing - The testing of complete scenarios that span multiple components of the application to complete a full story. System tests are tests that can be only run on a complete system; this includes tests for the non-functional requirements of a system, or the “-ities” (Security, Reliability, Accountability, Recovery, etc.)

Performance Testing - A special case of System Testing that has to be considered separately is performance testing, which is aimed at determining if performance requirements are met. This deserves special consideration for two reasons; first of all, performance testing requires special testing techniques (such as repeated, concurrent test runs to determine the behavior of a system under load) and testing tools to measure the performance of the system. Second, performance is one of the “-ities” that has the most obvious effect on a system (people may ignore parts of a system that are complex or difficult to use, but everyone notices when a system is slow) but at the same time usually receives the least amount of attention until far too late in the development cycle to do anything about it.

In this book, we will only concern ourselves with the first two types of testing. In particular, we’ll consider some ways of making Unit Testing and Functional Testing easier. In this chapter we’ll take a look at some simple strategies for automated testing suitable for applications that will run on WebSphere. We will discuss the JUnit testing framework as well as provide a simple example of how to use JUnit to write automated unit test cases. Later on, in the case study we will revisit JUnit and show some advanced techniques for using Junit with J2EE applications.

Before we move on to these detailed considerations, we’ll first need to examine some more large-scale issues. It’s not enough to simply know what you want to do; a test plan is not enough for success. A test plan must be supported by the selection of appropriate test tools, coding standards, and overall testing strategies.

Tool Selection

Tool and framework selection for testing is important. There are many commercial packages and open source tools to select from. Tools and frameworks should be selected for:

· Unit Test – The tool selected for Unit Test should be capable of testing public interfaces without polluting domain or application classes. The code written to support the unit test should generally not be deployed with the application to avoid “polluting” the application with test code and unnecessarily increasing the code bulk of your system. Also, test code deployed into production can create security holes, or have an adverse effect on performance if left in place. So, your unit test tool should allow you to keep test code separate from application code, and also to easily avoid deploying test code into production.

· Functional Test – Tools selected for Functional Test should be able to test component public interfaces as well as component user interfaces. The code written to support Functional Testing should not be deployed with the application for the same reasons described above.

· Systems Test – The tool selected for System Test should be able to simulate user functions that fulfill use cases tasks. This could be the same tool selected for Function Test, but may need to include extensions to support other styles of testing as well.

· Performance Test – The tool selected for Performance Test should be able to simulate a population of users to gain an understanding of the application load limitations. There are a number of commercial options to choose from. Some of the tools have scripting languages to build test scripts and simulate system load and reporting.

Coding Standards

Establishing and enforcing coding standards can enhance application development team communications, reduce coding efforts and simplify testing. Establishing coding standards should include:

· Setting naming standards – Following common naming standards for classes, interfaces, members and methods can lead to a better understanding of the code by developers and testers alike. This better understanding will result in less repeated code and more reusable classes. This will reduce the number of identical or nearly identical tests that are necessary in the overall system. Common naming standards will also make refactoring easier and public interfaces more predictable.

· Institute message protocol standards – Chaining messages together in a long cascading list can produce code that is difficult to understand, debug and test. Individual methods can be reduced in size, simplified and made clearer by establishing rules that limit the number of messages that can be chained together.

· Setting application layer guidelines – As we’ve discussed earlier, establishing application layers and determining layer interfaces can place behavior in appropriate layers, strengthen component public interfaces and simplify testing.

Establish common services – Defining common services such as exception handling, tracing and logging can increase reuse and simplify testing. It is much easier to look for log messages in one location, and to read a common format, than it is to have to search over several different files and understand multiple formats.

Testing Strategies

Establishing the right coding standards and picking the right tools are necessary but not sufficient conditions for making testing successful. If a company doesn’t train its people or organize its testing appropriately, then the best tools will remain “shelfware” that adds no value to the development process. With this in mind, here are some strategies for adopting test practices to make your testing more successful.

· Identify class public interfaces to test early – Make sure that the development team has 100% coverage of public interfaces; class public interfaces should be identified and plans put in place to exercise the public interfaces as soon as they are identified.

· Put the right people on the job. Developers should be responsible for testing their own classes ,while the team as a whole should review the unit test plan.
 Experience has shown us that attempts to create special “test teams” to develop and execute tests of component-level software will result in spotty tests and conflict between developers and testers due to lack of communication or incomplete communication.

Why Unit Test?

Unit testing is one of the most important contributors in preventing software defects. Unit testing is also an excellent way to determine if there is sufficient understanding of the domain model and its behavior. In fact, many developers prefer to develop the test cases first, essentially as the implementation of application use cases, and then develop the domain model sufficiently to execute the tests. This is sometimes called “needs-based programming” or “test driven development”.

As stated above, unit testing tests the public interfaces of classes and components. Unit tests do not typically validate user interface functions or verify system level features, although you can expand the definition of unit tests to include these concepts. They are instead most often concerned with validating that the application’s domain and infrastructure classes function as expected. Use cases are often a good source of test cases as they focus on the functionality that has value to the customer. However, such tests wouldn’t necessarily have to include UI considerations.

Probably the best reason to include Unit tests, though, is to allow you to comfortably refactor your software. With a set of unit tests in place, you can be confident that adding a new function or changing the implementation of a function will not wreak havoc on the function you already have implemented. What is necessary to achieve this level of comfort is a tool that allows you to easily create tests for new functions, and also easily re-run tests on existing functions. Luckily, we have that in WebSphere Studio in the JUnit framework, as we will see in the next section.

What is JUnit?

The JUnit Test Framework is an open source unit test framework for Java available from junit.org. The idea behind Junit (expressed in [Beck]) is that if regression testing is made simple enough, then developers will find that creating automated test cases is no harder than running test cases manually. This framework supports:

· The creation of unit test cases with no change in application code. Unit test cases can be created with no impact on the application.

· The ability to automate regression unit testing

· The ability to create reusable test fixtures (sample data)

· The ability to create test cases without modifying the application

You should not write JUnit tests to test trivial code like getters and setters but instead you should write tests to validate your public interface methods. JUnit test cases are best suited to decide questions such as whether domain objects can be created and traversed properly, if exceptions are thrown and handled correctly, or if persistent data retrieval and update is handled in the right way.

The JUnit test cases and executable test suites are not embedded into the application. The executable test suite can be modified to regression test portions of the application. The JUnit Test Framework is shipped with IBM WebSphere Studio Application Developer and contains the necessary support for test assertions, test cases, test suite development, and test reporting.

[image: image16.emf]First NameLast NameID

GregHester100

RussStinehour115

JoeSmith123

Figure 17.1 JUnit Test Framework and application

The JUnit Framework Application Programming Interface (API) is fairly easy to use. The three primary packages that you will use are:

· junit.framework – contains classes and interfaces to support test assertions and test cases

· junit.extensions – provides additional support for test setup and exception handling

· junit.textui – supports an executable suite of test cases

The junit.framework package contains most of the classes and interfaces you will use to unit test your application.

· Assert – class that contains a set of test assertion methods

· Test – interface to run test cases and collect results

· TestCase – class fixture to run one or more tests

· TestResult – class that collects results of executed test case

· TestSuite – class that collects test cases

· AssertionFailedError – exception thrown when test assertion fails

· TestListener – class that listens for test progress

The Assert class is particularly helpful as it provides assertion methods that your test cases can use to test your application.

[image: image2.emf]

Figure 17.2 Assert class assertion methods

A closer look at the API shows that the TestCase class uses the Assert class to provide you with the assertions to test your application. In your test cases you extend TestCase, which is an abstract class, (for example, MyTest). You will also create a class that identifies and runs the test suite, (for example AllTests).

[image: image3.emf]

Application AllTests MyTest

TestCase

Tes

t

TestRunner

run())))

BaseTestRunne

r

Assert

TestSuite

TestListener

Figure 17.3 Class hierarchy and implementation

A Simple Example

A simple example illustrates the process required to write JUnit test cases. The first step is selecting a class or classes to write test cases for. Figure 17.4 depicts a simple Department class that holds a collection of Employee objects.

[image: image4.png]
Figure 17.4 Application classes

The Department and Employee domain classes follows:

package com.ibm.junit.domain;
import java.util.Enumeration;
import java.util.TreeSet;
import java.util.Vector;
public class Department {

static int noEmployees = 0;

private String departmentName = null;

private String departmentType = null;

private Vector employees = null;

// Constructor

public Department() {

super();

employees = new Vector();

}

/**

 * Gets the departmentName

 * @return Returns a String

 */

public String getDepartmentName() {

return departmentName;

}

/**

 * Sets the departmentName

 * @param departmentName The departmentName to set

 */

public void setDepartmentName(String vehicleName) {

this.departmentName = vehicleName;

}

/**

 * Gets the departmentType

 * @return Returns a String

 */

public String getDepartmentType() {

return departmentType;

}

/**

 * Sets the departmentType

 * @param departmentType The departmentType to set

 */

public void setDepartmentType(String vehicleLine) {

this.departmentType = vehicleLine;

}

/**

 * Gets the employees

 * @return Returns a Vector

 */

public Vector getEmployees() {

return employees;

}

/**

 * Sets the employees

 * @param employees The employees to set

 */

public void setEmployees(Vector emps) {

this.employees = emps;

}

/**

 * Gets the noEmployees

 * @return Returns a int

 */

public static int getNoEmployees() {

return noEmployees;

}

/**

 * Sets the noEmployees

 * @param noEmployees The noEmployees to set

 */

public static void setNoEmployees(int noEmp) {

noEmployees = noEmp;

}

/**

 * Adds a omponent

 * @param Employee The Employee to add

 */

public void addEmployee(Employee anEmp) {

getEmployees().add(anEmp);

incrementEmployees();

}

/**

 * Removes a omponent

 * @param Employee The Employee to remove

 */

public void removeEmployee(Employee anEmp) {

if (getEmployees().removeElement(anEmp))

decrementEmployees();

}

/**

 * Increments the noEmployees counter

 * @param none

 */

public static void incrementEmployees() {

setNoEmployees(getNoEmployees() + 1);

}

/**

 * Decrements the noEmployees counter

 * @param none

 */

public static void decrementEmployees() {

setNoEmployees(getNoEmployees() - 1);

}

/**

 * Does the vehicle have the component based on a componentName

 * @param Vehicke veh, String componentName

 */

public boolean hasEmployee(String empName) {

Vector emps = this.getEmployees();

Employee emp = null;

if (emps.isEmpty())

return false;

Enumeration e = emps.elements();

while (e.hasMoreElements()) {

emp = (Employee) e.nextElement();

if (emp.getEmpName().equals(empName)) {

return true;

}

}

return false;

}

/**

 * Does the vehicle have the component based on a componentName

 * @param Vehicke veh, String componentName

 */

public boolean hasAllEmployees(Vector emps) {

Employee emp = null;

Enumeration e = emps.elements();

while (e.hasMoreElements()) {

emp = (Employee) e.nextElement();

if (!this.hasEmployee(emp.getEmpName())) {

return false;

}

}

return true;

}

public String toString() {
return "(" + this.getDepartmentName() + "/" + this.getDepartmentType() + ")";

}

/**

 * Is the departmentthe seme, i.e. does it have the same:

 * - departmentName

 * - departmentType

 * - employees

 * @param Department dep

 * @returns boolean - true if the same

 */

public boolean equals(Object o) {

Department dep = (Department) o;

Vector emps = dep.getEmployees();

if (this == dep){

return true;}

else {
if ((this.getDepartmentName().equals(dep.getDepartmentName()))
&& (this.getDepartmentType().equals(dep.getDepartmentType()))

&& this.hasAllEmployees(emps))

return true;

}

return false;

}
}
Listing 17.1 Department class

package com.ibm.junit.domain;
public class Employee {

private String empName = null;

/**

 * Constructor for Employee

 */

public Employee() {

super();

}

/**

 * Gets the empName

 * @return Returns a String

 */

public String getEmpName() {

return empName;

}

/**

 * Sets the empName

 * @param empName The empName to set

 */

public void setEmpName(String compName) {

this.empName = compName;

}
}
Listing 17.2 Employee class

After selecting the classes to be tested, you should:

1. Implement a subclass of TestCase to define the test case assertions

2. Define application class instances that store the application state

3. Initialize the test case fixture by overriding the setup() method

4. Implement the test case methods

WSAD comes with tools to help you create JUnit test cases and suites.

1. Create a project for the JUnit TestCase and TestSuite classes. Name it MySimpleHRTestProject.

2. Make sure this project contains the MySimpleHRProject project in the classpath. You will want to set the junit.jar as a variable in the classpath as well. Select the project and select the Properties menu item. Select the Java Build property and select the Vairables tab. Click the Add Variable button

[image: image5.png]
Figure 17.5 junit.jar Java Build properties variable

3. Select the JUNIT variable and click OK. You will be prompted to rebuild the projects, click Yes.

4. If the junit.jar variable does not exist in the variables list, select Edit to add it to the list. Name the variable and click the File button to find the junit.jar file where you installed WSAD. Click OK and go back to step 3.

[image: image6.png]
Figure 17.6 Obtain new variable

To build the DepartmentTest class, you can use the JUnit TestCase wizard:

1. Open the new wizard dialog by either pressing Ctrl+N or selecting File > New > Other from the menu bar or pressing the Open the New Wizard toolbar button.

[image: image7.png]
Figure 17.7 JUnit TestCase Wizzard

2. Select Java > Junit in the left pane and TestCase in the right pane

5. Click the Next button. Next you will specify the TestCase class.

[image: image8.png]
Figure 17.8 Specify TestCase class

6. Name the TestCase class DepartmentTest and subclass the junit.framework.TestCase class. Name the Test class (the class to be tested), Department.

7. Click the main(), setup() and teardown() methods to let the wizard to generate them for you.

8. Click the Next button. You will now specify the methods you want to test in Department.

[image: image9.png]
Figure 17.9 Specify Test class methods to test

9. Check the getDepartmentName(), setDepartmentName(), getEmployees() and setEmployees() checkboxes to generate test method stubs for these Test class methods. The wizard will generate testGetDepartmentName(), testSetDepartmentName(), testGetEmployees() and testSetEmployees() TestClass method stubs. Click the Finish button.

The DepartmentTest class follows:

package com.ibm.junit.test;
import java.util.Vector;
import com.ibm.junit.domain.Department;
import com.ibm.junit.domain.Employee;
import junit.framework.TestCase;
/**
 * @author Administrator
 *
 * To change this generated comment edit the template variable "typecomment":
 * Window>Preferences>Java>Templates.
 * To enable and disable the creation of type comments go to
 * Window>Preferences>Java>Code Generation.
 */
public class DepartmentTest extends TestCase {

Department dept = new Department();

/**

 * Constructor for DepartmentTest.

 * @param arg0

 */

public DepartmentTest(String arg0) {

super(arg0);

}

public static void main(String[] args) {

}

/**

 * @see TestCase#setUp()

 */

protected void setUp() throws Exception {

super.setUp();

dept = new Department();

dept.setDepartmentName("Quality");

dept.setDepartmentType("Management");

Vector emps = new Vector();

Employee emp1 = new Employee();

emp1.setEmpName("David Pitt");

emps.add(emp1);

Employee emp2 = new Employee();

emp2.setEmpName("Greg Hester");

emps.add(emp2);

Employee emp3 = new Employee();

emp3.setEmpName("Russ Stinehour");

emps.add(emp3);

dept.setEmployees(emps);

}

/**

 * @see TestCase#tearDown()

 */

protected void tearDown() throws Exception {

super.tearDown();

}

public void testGetDepartmentName() {

String dName = "Quality";

assertEquals(dName, dept.getDepartmentName());

}

public void testSetDepartmentName() {

String dName = "Engineering";

dept.setDepartmentName(dName);

assertEquals(dName, dept.getDepartmentName());

}

public void testGetEmployees() {

Department d1 = new Department();

d1.setDepartmentName("Sales");

d1.setDepartmentType("Overhead");

Vector emps = new Vector();

d1.setEmployees(emps);

assertEquals(d1.getEmployees().size(), 0);

}

public void testAssertDepartmentHasEmpp() {

String empStr = "Kyle Brown";

String failMsg =
"\n\tThe Department " + dept + " does not have the Component (" + empStr + ")";

assertTrue(failMsg, dept.hasEmployee(empStr));

}

public void testSetEmployees() {

Department d1 = new Department();

d1.setDepartmentName("Sales");

d1.setDepartmentType("Overhead");

Vector emps = new Vector();

Employee e1 = new Employee();

e1.setEmpName("Russ Stinehour");

emps.add(e1);

d1.setEmployees(emps);

assertEquals(d1.getEmployees().size(), 1);

}
}
Linsting 17.3 DepartmentTest class

Next you will need to write an executable class to run the test suite. This class will send the run() message to the TestRunner class. The run() method will be passed the test suite object to execute the testXXX() public methods. You can specify test methods using the addTest(…) method. This allows you to specify the specific test methods and their order. You can use the TestSuite wizard to generate the Test suite class for you.

1. Open the new wizard dialog by selecting File > New > Other from the menu bar.

[image: image10.png]
Figure 17.10 TestSuite wizard

2. Select Java > Junit in the left pane and TestSuite in the right pane

10. Click the Next button. Next you will specify the TestSuite class.

[image: image11.png]
Figure 17.11 Specify the TestSuite

11. Specify the MySimpleHRTestProject project and com.ibm.junit.test package. Specify the Test suite class name s AllTests. Check the main() checkbo and click the Finish button. The wizard generates the Alltests class.

package com.ibm.junit.test;
import junit.framework.Test;
import junit.framework.TestSuite;
/**
 * @author Administrator
 *
 * To change this generated comment edit the template variable "typecomment":
 * Window>Preferences>Java>Templates.
 * To enable and disable the creation of type comments go to
 * Window>Preferences>Java>Code Generation.
 */
public class AllTests {

public static void main(String[] args) {

}

public static Test suite() {
TestSuite suite = new TestSuite("Test for com.ibm.junit.test");

//$JUnit-BEGIN$

suite.addTest(new TestSuite(DepartmentTest.class));

//$JUnit-END$

return suite;

}
}
Listing 17.3 AllTests suite class

To execute the test cases simply:

1. Select the MySimpleHRTestProject project.

2. Click the Run as>JUnit Test toolbar button options.

3. WSAD will execute the AllTest suite and DepartmentTest classes and generate a report.

[image: image12.png]
Figure 17.12 Test results

The generated report lists the failures and failure trace.

Unit Testing Containers with Cactus

Unit testing of domain objects is not complete if container integration is not taken into consideration. Test cases need to access the inter-workings of J2EE containers in order to be able to test environmental concerns and complexities of the web application. A factory pattern can be used to generate objects to simulate container environment objects. This can help imitate impossible situations and test web application scenarios that could not be produced naturally. Unfortunately, simulation objects cannot completely unit test domain objects. Another method of unit testing domain objects within J2EE containers is to write test case code within the container objects themselves. This test methodology could test domain and container interaction; however, the domain and container objects would include test code. This “pollution” of the domain and container objects is, in many cases, unacceptable.

The Apache Foundation Jakarta project has created the Cactus framework, (http://jakarta.apache.org/commons/cactus/index.html). Cactus is an open source testing framework that provides container testing services for servlets, JSP custom tag libraries, Filters and EJBs. Cactus provides “redirector” objects that serve as points of entry to container services and access to container objects. Cactus uses the JUnit testing framework to make test assertions and report results. Cactus differs from HttpUnit in that Cactus tests behavior between domain and container objects while HttpUnit tests responses from specific containers. HttpUnit contains support for examining the Document Object Model (DOM) and is probably better used for functional testing.

Cactus contains both client and server side testing components. The container test case classes exist on both the client and server. Care must be taken to keep these classes in synch and that the classpaths include JUnit and Cactus jar files.

[image: image13.png]
Figure 17.13 Client and Server Cactus
Cactus API

The org.apache.cactus package contains the classes the test case developer will use to test container integration:

· AbstractTestCase – is the base class from which server side test case classes are derived

· ServletTestCase – subclasses AbstractTestCase and has methods to test servlets.

· JspTestCase – subclasses AbstractTestCase and has methods to test JSP custom tags.

· FilterTestCase – subclasses AbstractTestCase and has methods to test filters.

· ServletURL –supports URL.

· ServiceDefinition – supports communications between client and server redirector.

· Cookie – supports cookie objects.

· WebRequest – encapsulates all the HTTP request data sent from the client to the server TestCase

· WebResponse – represents a client side view of the TestCase server’s response.

[image: image1.emf]

Application

• Controllers

• Mediators

• Domain

• Brokers

Test Cases

• Assertions

• Unit test scripts

Executable Test Suite

Junit test framework

• Test Assertions

• Test Case support

• Test Suite support

• Test Result reporting

Figure 17.14 Client and Server TestCase instances

The testXXX() method, where XXX is the name of the test, executes the test logic. The beginXXX() method initializes variables and passes control to the redirector servlet. The redirector servlet instantiates the TestCase object and uses reflection to execute the testXXX() method. After the testXXX() method has executed, a WebResponse is passed back to the client where the endXXX() method is executed. The endXXX() method can make test assertions against the WebResponse and report the results.

As the open source community adds new support to Cactus for different containers, the ability to enhance unit test will be greater. Cactus, along with HttpUnit will offer more flexibility to unit test. Both should be used together in order to gain an in depth unit test.

Function Testing Applications in WSAD

Providing automated regression testing of end user interaction ensures that the web application continues to work while the view layer and components of the system are refined. End user interfaces can change dramatically during the application development process. Automated test cases validate that the system fulfills functional and system level requirements in spite of change. Not taking the time to write automated functional test cases leaves the door open for hard to find bugs derived from user experience issues, subcomponent interaction and server configurations. Function level testing is difficult because of the number of permutations associated with end user interaction with the application. In this section we’ll take a look at function level testing strategies. We will also discuss the HttpUnit testing framework as well as provide a simple example of how to use HttpUnit to write automated functional test cases.

Function Testing

As stated above, function testing tests end user interaction and system functionality of web applications. Function testing does not typically test or verify individual class public interfaces. Function testing begins with a test plan. Application development teams must document web application navigation, dynamic content possibilities and error handling situations. Naming standards for frames, tables and form content should be established. View, controller and mediator layer interaction should be standardized to help simplify functions and make web application interaction more predictable. Tool and framework selection for function testing is important. There are many commercial packages and open source tools to select from. Tools and frameworks selected for function test should be able to simulate user functions that fulfill use cases tasks.

What is HttpUnit?

The HttpUnit Test Framework is an open source functional test framework from SourceForge. This open framework supports:

· Sending requests to the web application

· Receiving responses from the web application

· Maintaining web client state

The HttpUnit test cases and executable test suite are not imbedded into the application. The executable test suite can be modified to regression test portions of the application. The HttpUnit Test Framework is shipped with IBM WebSphere Studio Application Developer. HttpUnit uses JUnit to hold the individual test cases.

[image: image14.png]
Figure 17.15 Class hierarchy and implementation

The HttpUnit API

HttpUnit provides two primary packages for simulating web application functions. These include:

· com.meterware.httpunit – contains classes for testing http server systems

· com.meterware.servletunit – contains classes for unit testing servlets and providing internal access to running servlets using a standard servlet container

WebClient is an abstract class with a concrete class implemented for your use. The WebClient maintains context for a series of requests, manages cookies, computes relative URLs and presents a single object interface for sending requests and receiving responses from/to a server. The WebConversation class takes the place of a web browser talking to a web site. The concrete class, WebConversation provides a number of convenience methods to help with web application functional testing:

· addCookie() – adds a name/value pair to the list of application cookies

· getCookieNames() – returns an Array of cookie names

· getCookieValue() – returns cookie value for a given name

· getFrameContents() – returns WebResponse for a specified frame

· getFrameNames() – returns an Array of Strings of frame names

· getHeaderFields() – returns a Dictionary of active headers

· getRequest() – returns a WebResponse from a URL or WebRequest

The WebConversation is responsible for maintaining session context. To use the WebConversation, you must create a WebRequest and ask for a WebResponse.

WebConversation wc = new WebConversation();

WebRequest req = new GetMethodWebRequest(

“http://www.meterware.com/testpage.html”);

WebResponse resp = wc.getResponse(req);
A convenience method is provided to help simplify the process:

WebConversation wc = new WebConversation();

WebResponse resp = wc.getResponse(“http://www.meterware.com/testpage.html”);
The WebResponse has many methods to access information about a page and its contents.

· getForms() – returns an Array of forms

· getFormWithId() – returns a form with an id

· getFormWithName() – returns a from with a name

· getLinks() – returns an Array of links

· getLinkWith() – returns first link with user clickable text

· getLinkWithImageText() – returns first link with image alt text

· getTables() – returns an Array of top level tables

· getTableStartingWith() – returns first table starting with specified text in the first row and column

· getTableStaringWithPrefix() – returns first table starting with prefix text in the first row and column

· getTableWithSummary() - returns first table containing the summary

· getTableWithId() – returns the first table containing the id

Following Links

URL links defined in HTML documents are the simplest and most common form of navigation among web pages.. HttpUnit allows users to find links by the specifying text within them, and to use those links as new page requests.
WebConversation wc = new WebConversation();

// read the page

WebResponse resp = wc.getResponse(

 "http://httpunit.sourceforge.net/doc/Cookbook.html");

// find the link

WebLink link = resp.getLinkWith("response");

// convert it to a request

WebRequest req = link.getRequest();

// retrieve the referenced page

WebResponse jdoc = wc.getResponse(req);

Listing 17.4 Following page links

Working with Forms

A web form can be accessed with the following methods:

· getName() – returns string of name attribute of form
· getDOMSubtree() – returns DOM Node of form

· getID() – returns string of id attribute of form

· getParameterNames() – returns names of all input parameters of form

· getParameterValue() – returns default parameter value

· getRequest() – returns a request that simulates a submission (has many forms with arguments)

A dynamic Web site tends to have many HTML forms that contain various controls. The HTML for these controls varies widely. HttpUnit makes them look the same. Common functional testing activities of form definitions are bulleted below:

· Verify the control contents and their default value

· Submit the form with varied input

[image: image15.emf]

Figure 17.16 Simple form

Accessing the form above can easily be done as shown below.

// select the first form in the page

WebForm form = resp.getForms()[0];

// assert that the form has parameters

assertEquals(form.getParameterName(“userId”));

assertEquals(“MYPASSWORD”, form.getParameterName(“password”));

Listing 17.5 Accessing form controls

HttpUnit uses Jtidy
to parse html. JTidy will not parse any HTML that does not follow the HTML specifications, (even if browsers do so). More forgiving browsers will accept poorly formed HTML, but not HttpUnit. Use the static method HttpUnitOptions.setParserWarningsEnabled(true) before requesting a page and it will send warnings to System.out when poorly formed HTML is encountered

In order to test a form submission, first obtain the form from the WebResponse. Then assert that key parameters are on the form.

Next obtain the submit button from the response and then establish a WebRequest with the submit button.

//Obtain the form from the WebResponse

WebConversation wc = new WebConversation();

WebResponse wr = wc.getResponse(http://www.crosslogic.com)
;

WebForm wf = wr.getFormWithName(“myForm”);

//Assert that key parameters are on the form

assertEquals(wf.getParameterName(“userId”);

//Obtain the submit button

SubmitButton sb = wf.getSubmitButton(“submit”, “Continue”);

//Establish a WebRequest with the submit button

WebRequest wreq = wf.getRequest(sb);

wr = conversation.getResponse(wreq);

Listing 17.6 Testing a form submission

Working with Tables

A table in a page is a discrete element. Elements in a table can be accessed from the

retrieved table.
Accessing a table on a page can be done with methods to obtain text or table cells.

· asText() – returns entire table as 2 dimensional string array
· getCellAsText() – returns string of given cell

· getTableCell() – returns TableCell for position

Individual table cells can be accessed:

· getText() – returns table cell contents as a string
· getColSpan() – returns table cell colspan attribute

· getRowSpan() – returns table cell rowspan attribute

· getDOM() – returns Document Object Model of table cell

Accessing rows and columns is straightforward.

WebConversation wc = new WebConversation();

String url = “"http://httpunit.sourceforge.net/doc/Cookbook.html"

// get the 1st table

WebTable wt = wc.getResponse(url).getTables()[0];

// test for 3 rows

assertEquals(3, wt.getRowCount());

// test for 4 columns

assertEquals(4, wt.getColumnCount());

//test to see if there is a single link in the last column

//in the first row

assertEquals(1, wt.getTableCell(0, 2).getLinks().length);

Listing 17.7 Accessing Table items

In most cases, HttpUnit is used to test for text within a table cell.

Figure 17.17 Simple table

Tables can be accessed with the WebResponse getTableStartingWith() method. Table cells can be accessed with the purgeEmptyCells() method sent to a Table object. The asText() method accesses only the cells and returns the text in the cells. The JUnit assertion methods can be used to test for specific text content within cells.

WebConversation wc = new WebConversation();

String url = “"http://www.mysource.com“;

WebResponse resp = wc.getResponse(url);

//purge cells with images and graphics

// Test to see if the cells are correct

String [][] cells =

 resp.getTableStartingWith(“First Name”).

purgeEmptyCells().asText();

assertEquals(“First Name”,cells[0][0]);

assertEquals(“Last Name”, cells[0][1]);

assertEquals(“Greg”, cells[1][0]);

assertEquals(“Hester”, cells[1][1]);

Listing 17.8 Accessing Table cells

Working with Frames

If you need to access a frame or set of frames, send a message to the WebConversation to receive an array of frame names or a frame with a specific name.

String [] frameNames = conversation.getFrameNames();

List fList = Arrays.asList(frameNames);

//get the body frame with the link

response = conversation.getFrameContents("_parent:Help Body");
String s

 = response.getText();

//assert that the frame has the text

// “EmployeeInputForm.html - input employee id"

assertTrue("Contents not found",

 s.indexOf("EmployeeInputForm.html - input employee id")>-1);

Listing 17.9 Accessing frames

Working with a Document Object Model (DOM)

HttpUnit provides the ability to inspect an HTML DOM (Document Object Model). DOM is a World Wide Web consortium standard (www.www3.org/DOM). DOM allows programmatic access to HTML. HttpUnit uses Jtidy (an HTML parser and beautifier) to create an HTTP response into an in-memory DOM. DOM programming can be difficult; however, DOM programming can access information that HttpUnit cannot provide directly (e.g. table captions). DOM programming should be used only if there is no other way of obtaining information about a WebResponse. As an example of using DOM, we’ll look at two ways to test for the src image attribute:

· Use the DOM to find and evaluate the src image attribute

· Search the WebResponse for the src image attribute

//1. Use the DOM to find and evaluate the image src

// attribute

//Get the top level table

WebTable firstTable = response.getTables() [0];
//Get the first cell - which should be the image

TableCell pictureCell = firstTable.getTableCell(0,0);
//Get the DOM for the cell <td>

Node node = pictureCell.getDOM();
//Get the first child node

node = node.getFirstChild();
//Get the attributes of the tag

NamedNodeMap nnm = node.getAttributes();
//Get the node for the src attribute

Node na = nnm.getNamedItem("src");
//Get the src sttribute value

s = na.getNodeValue();
assertEquals("Incorrect image",

 s,"./Images/Cl-TroyTolle.jpg");

//2. Search the response for a String of

// the image source

String s = response.getText();
assertTrue("Image incorrect",

 s.indexOf("./Images/Cl-TroyTolle.jpg") >-1);
Listing 17.10 Two ways of accessing table information

Functional Test Design Considerations

The HttpUnit framework can be complicated at times. Keep in mind:

· Keep the tests simple – checking for text rather than searching DOM nodes

· HTML must be well formed as HttpUnit does not work with poorly formed HTML

· Give forms names and id to simplify testing and access of items

· Keep the context of the test context known by passing a WebConversation from page to page to simplify navigation testing

Test classes are subclassed from junit.framework.TestCase. Each test case can be executed standalone or executed from a min test case class. Tests should be written to test for:

· Navigation

· Broken links

· Dynamic content

· Form default parameter values

· Error handling

· Authentication for login

Summary

Testing is critical to any application development effort. Selecting the appropriate tools and test methodology is important to any testing effort. JUnit to test domains, controllers and mediators is the best choice for generating reusable test cases that do not pollute application classes. Cactus is the tool of choice for testing web and EJB containers. HttpUnit can be used to test detailed user interfaces. Automating test cases to regression test web modules is key if application quality is to be achieved. JUnit and HttpUnit have become Java standards and are supported by IBM WebSphere Studio Application Developer.

Server

Client

Cactus Test Cases

testtXXX()

Response

http

Request

Cactus Test Cases

beginXXX()

endXXX()

� For a full description of the performance testing process, and a comparison of performance testing tools for WebSphere, see [Jones]

�We cover the factory pattern for testing in excruciating detail later. Don’t even mention it here.

�What is run())))?

�This doesn’t really help here. Maybe show this later as a wrap-up?

�PAGE \# "'Page: '#'�'" ��First use of this term – what’s the difference between a test case (a subclass of TestCase) and a test fixture?

BTW – if you’re not clear, a TestCase is a class that runs the test. A “Fixture” is an attribute in that class that is used to hold an object under test, or an object a tested object can be compared to.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�PAGE \# "'Page: '#'�'" ��So should this.

�Explain?

�Should probably not use this URL. Use something more generic or made up. Or an URL from our case study.

1

_1113254638.doc
[image: image1.png]

_1113254727.doc
[image: image1.png]

TestListener

TestSuite

Assert

BaseTestRunner

run())))

TestRunner

Test

TestCase

MyTest

AllTests

Application

[image: image2.png]
_1113254947.doc
[image: image1.png]

_1113254514.doc
[image: image1.png]

Junit test framework

 Test Assertions

 Test Case support

 Test Suite support

 Test Result reporting

Executable Test Suite

Test Cases

 Assertions

 Unit test scripts

Application

 Controllers

 Mediators

 Domain

 Brokers

