Chapter 14
Apache Struts as an MVC Framework

One of the hardest parts of developing a web-based application is making sense out of all of the various choices that a Servlet and JSP (JavaServer Pages) developer is faced with. Ever since J2EE has exploded onto the programming scene, we have been given a plethora of different API choices, but precious little guidance on how to best make use of these different options.

Luckily, some order is beginning to emerge from the chaos, mostly thanks to the dedicated work of a few individuals pooling their knowledge and efforts through the Apache Software Foundation. In particular, we want to introduce you to one of the simpler and more useful frameworks to emerge from the Apache effort, the Struts framework for developing web-based applications using the MVC architecture. In this chapter we’ll briefly cover how Struts implements the MVC architecture, what benefits it conveys to a servlet developer above and beyond the standard J2EE APIs, and how the tooling for Apache Struts can be used in WebSphere Studio Application Developer.

Roadmap

This chapter concentrates on the Controller/Mediator layer and the use of the Struts framework to implement this layer. The simple example is built using only web container services. Figure 14.1 shows the technologies used within the example presented in this Chapter. However the entire focus is on the Presentation and Controller/Mediator layers. It is only in the full code sample that the other three layers are represented.

[image: image13.png]
Figure 14.1 Technologies used in this Chapter’s example.

Why do you need a framework?

The question that may be arising in your mind is “Isn’t J2EE already a framework to solve these problems?” Well, in a way it is. Lots of development organizations have successfully applied the following mapping of J2EE APIs to the three roles in the MVC pattern as we’ve shown in the preceding chapters:

· Model – JavaBeans and Enterprise JavaBeans

· View -- JavaServer Pages

· Controller -- Servlets

In this approach, Servlets act as controllers and are the recipients of HTTP POST requests, and are responsible for passing POSTed data to the model and selecting which JSP page will be invoked to display results. This is often called the “Model II” JSP architecture and we’ve already discussed it at length. However, even though these J2EE APIs make it possible to develop web-based applications that implement the MVC pattern, there are a number of common problems that must be solved in every servlet project. These include:

· Mapping HTTP Parameters to Java Beans – one of the most common tasks that servlet programmers have to do is to map a set of HTTP parameters (coming in from the command line or from the POST of an HTML form) to a Java Bean for manipulation. This can be done using the jsp:usebean and jsp:setProperty tags, but this arrangement is cumbersome as it requires directly invoking the JSP to handle the HTTP request, something that is not encouraged in a Model-II (MVC) architecture.

· Validation – There is no standard way in Servlet/JSP programming to validate that an HTML form is filled in correctly. This leaves every servlet programmer to develop his own validation procedures, or not, as is far too often the case. Far too often, the servlet programmer neglects to handle it at all.
· Error display – There is no standard way to handle the display of error messages in a JSP page or the generation of error messages in a servlet.

· Message Internationalization – Even when developers strive to keep as much of the HTML as possible in JSP’s, there are often “hidden” obstacles to internationalization spread throughout Servlet and model code in the form of short error or informative text messages. While it is possible to introduce internationalization with the use of Java ResourceManagers, this is rarely done due to the complexity of adding these references.

· Hard coded JSP URI’s – one of the more insidious problems in a servlet architecture is that the URI‘s of the JSP pages are usually coded directly into the code of the calling Servlet in the form of a static string reference used in the ServletContext.getRequestDispatcher() method. This means that it is impossible to reorganize the JSP’s in a web site (or even change their names) without updating Java code in the servlets.

The problem is that programmers are too often faced with “reinventing the wheel” each time they begin building a new web-based application. Having a framework to do this kind of work for them would make developers more productive and allow them to focus more on the “essence” of the business problems they are trying to solve, rather than on the “accidents” of programming caused by the limitations of the technology
. Solutions to this problem are often captured in “best practice” patterns that specify how to use a collection of enabling technologies like J2EE in the context of a particular architecture. What’s needed is a way to codify these best practices so they can be easily used by developers.

What is Struts?

Simply put, Struts is an open-source framework for solving the kind of problems described above. Information on Struts, a set of installable .jar files, and the full Struts source code is available at http://jakarta.apache.org/struts. Struts has been designed from the ground up to be easy to use, modular (so that you can choose to use one part of Struts without having to use all the others), and efficient. It has also been designed so that tool builders can easily write their tools to generate code that sits on top of the Struts framework.

A Simple MVC Struts Example

To illustrate how MVC and Struts can help solve some of the problems mentioned above, let’s revisit the simple JSP example presented in Chapter 13. During this process we will refactor the design and explore a number of different aspects of designing and developing a Struts-based web application.

We will begin by creating a new web project, one which we target for building Struts-based code.

[image: image2.png]
Figure 14.2 Web project with Struts support
As you can see in Figure 14.2, we have checked the web project feature, Add Struts support. This will include a number of Struts jar files and tag library descriptor files into the project.

Remember from Chapter 12 that our Employee management example has the following JSPs:

1. allEmployees.jsp – the page displays all employees. For each employee there is a hyperlink to select in order to show complete details on that particular employee. It also provides a link to allow for the creation of a new employee.

2. employeeDetails.jsp – this page shows the complete employee data in a form that can be updated. There are two separate operations that are selectable: 1) update employee data to reflect changes made on the form and 2) delete the employee from the database.

3. newEmployee.jsp – this page supplies the entry form to create a new employee.

There is also the initial index.jsp page. You will also recall that we identified the following actions associated with transitions between the pages in the example:
	Source Page
	Action Required
	Destination Page

	index.jsp
	AllEmployees
	allEmployees.jsp

	allEmployees.jsp
	FindEmployee

None (create link clicked)
	employeeDetails.jsp

newEmployee.jsp

	employeeDetails.jsp
	AlterEmployee followed by AllEmployees
	allEmployees.jsp

	newEmployee.jsp
	CreateEmployee followed by AllEmployees
	allEmployees.jsp

Building the model (Form Beans)

Looking at our application, we can easily determine that we can start with one Model class, the Employee class. In the Struts environment, we will create an associated JavaBean that gets populated from the form found on the newEmployees.jsp page. We will let Struts automatically handle the association between this bean and the HTML form. To accomplish that, our new EmployeeForm class will extend ActionForm.

Listing 14.1 EmployeeForm ActionForm Bean

public class EmployeeForm extends ActionForm {

private String id = "";

private String name = "";

private int age = 0;

private String street = "";

private String city = "";

private String state = "";

private String zip = "";
In most respects, this is a standard JavaBean that extends the ActionForm class. This class (among other things) implements the Serializable interface, allowing our class to meet the requirements of being a JavaBean, so long as it implements the appropriate no-argument constructor and implements setter and getter methods for the attributes shown above. Our class would implement these methods, but we will not show the implementation here.

Building the Actions

Building a controller layer in Struts is a little different than building a controller layer with the standard Model-II JSP architecture. The biggest difference is that each Struts web application will contain only a single Servlet (an ActionServlet). The Struts framework delegates the work of mediation (picking the next JSP) and adapting model objects to the JSP (View) protocol to a lower layer of objects, the Action objects.

You can quickly build a skeleton for an Action by choosing one of the Struts creation wizards in Studio (Figure 14.3). (Note that we could have also used the wizard to create the ActionForm class, EmployeeForm.)

[image: image3.png]
Figure 14.3 WebSphere Studio New wizards for Struts-based application development

Let’s look at the following definition of an Action object:

Listing 14.2 CreateEmployeeAction class definition

/** This class adds new Employees */

public class CreateEmployeeAction extends Action {
}

Notice that this class extends the Action class from the Struts framework. Action classes normally override a single method defined in the Action class, the perform() method. An example of this method, which is analogous to the service() method in a Servlet, is shown below.
Listing 14.3 Action class' perform() method

public ActionForward perform(
ActionMapping mapping,

ActionForm form, HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

ActionErrors errors = new ActionErrors();

ActionForward forward = new ActionForward();

EmployeeForm employeeForm = (EmployeeForm) form;

Employee employee = new Employee(

employeeForm.getId(), employeeForm.getName(),

employeeForm.getAge(), employeeForm.getStreet(),

employeeForm.getCity(), employeeForm.getState(),

employeeForm.getZip());

try {

employee.create();

} catch (Exception e) {

// Report the error using the appropriate name and ID.

errors.add("id", new ActionError("error.id.duplicateid"));

}

if (!errors.empty()) {

saveErrors(request, errors);

// Forward control back to the entry form

forward = mapping.findForward("error");

} else {

// Forward control to the appropriate 'success' URI
//(change name as desired)

forward = mapping.findForward("displayAll");

}

// Finish with

return forward;

}
This method deserves a lot of attention, as it introduces several key concepts in Struts. The first is the notion of an ActionForward. Returning an ActionForward object is the way in which a Struts Action class’ perform() method indicates which JSP page will be invoked as a result of the logic being performed. Here we see that only a single ActionForward can be returned. We will look at the findForward mechanism a bit later; however, this will set the corresponding page or action to forward to upon completion (success or failure) of the Employee creation. The actual URI to forward to is externalized into the struts configuration file. In this way, your code does not have to hardcode the specific URI(s).

The second concept to introduce is the idea of an ActionForm. Struts will automatically perform the mapping of HTTP parameters to fields in an ActionForm. You do not need to code this mapping yourself. As you can see, this makes it easy to obtain and manipulate the objects corresponding to the HTTP parameters – in most cases all you need to do is perform a cast and begin using the object as we have done here.

ActionForm validation

One thing that probably will strike most experienced servlet programmers as odd about this method is how short it is. As we have noted, there is no code necessary to extract out the HTTP parameters from the HttpServletRequest, so that is missing, but you may also have noticed that there is no code to perform any validation on the resulting form. This is not that the code is not needed, but rather that the Struts framework has already handled it. To enable this validation, the programmer must do two things: 1) add a validate() method to your ActionForm class (EmployeeForm) and 2) indicate which HTTP requests are to result in validation taking place. Let’s start with looking at the validate method for EmployeeForm.

Listing 14.4 EmployeeForm's validate() method

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
// Validate the fields in your form,
// adding each error to this.errors as found, e.g.
if ((id == null) || (id.length() == 0)) {
errors.add("id", new ActionError("error.id.required"));
}
try {
int checkage =

Integer.parseInt(request.getParameter("age"));
} catch (NumberFormatException e) {
errors.add("age", new ActionError("error.age.integerval"));
}
return errors;
}
The first thing to note about this method is the ActionErrors object. This object, which is returned from the validate method, serves a couple of purposes. If the returned object does not contain any ActionError objects – then validation is assumed to have succeeded. If one or more ActionError objects are added to the ActionErrors collection – then validation failed. The Collection of errors can be displayed using the Struts Form tag library. If validation fails, control will not be passed to our Action. This implies that in the perform() method of the CreateEmployeeAction class where we access the EmployeeForm (ActionForm) object – we know that it has been populated from the input HTML form and has passed validation (a very powerful model.).

The rest of the validate() method contains simple checks on the values of EmployeeForm’s Properties, and/or looking at the source form parameters. If a check fails, a new ActionError object is created. The first argument to the ActionErrors add() method is the name of the Property for which validation failed. The second argument to the add() method is an ActionError. The argument to the ActionError constructor is a String that matches a property value in the ApplicationResources.properties file. This will correspond to an error message. By moving the actual message out to a property file, internationalization is easily supported. To connect the dots, a subset of our ApplicationResources.properties file is listed below.

Listing 14.5 Entries in ApplicationResources.properties

error.id.required=The id field is required!
error.age.integerval=Age must be an integer value.
The last piece of the validation puzzle opens up the discussion of the struts-config.xml configuration file.

Putting it all together in the struts-config.xml file

The Action servlet needs to be able to instantiate the appropriate Action to handle an incoming request. In addition, the framework needs to know about which ActionForm objects to populate for an incoming request. These and other configuration properties are established in the struts-config.xml file. The configuration file is located in the WEB-INF folder of your web project (i.e., WAR module). The struts configuration file editor has a number of “views” or tabs which to view and update the data.

[image: image4.png]
Figure 14.4 Struts-config.xml editor

Figure 14.4 shows the four actions associated with this application. Looking at the configuration for the CreateEmployeeAction, the class is selected on the top of the right hand side. The Action is associated with an ActionForm (employee) which is selected via a drop down choice. (The ActionForm was previously configured as shown in Figure 14.4.) Further, the ActionForm is specified to be placed into the request scope. Next you can see that the validate attribute is set to yes, indicating that the framework should invoke the ActionForm’s validate() method. We noted that if validation fails, control is not passed to the Action. Control is instead forward back to the “input” page. This input page is specified here as /newEmployee.jsp.

Let’s take a look at the Form Beans tab where the EmployeeForm ActionForm is configured.

 [image: image5.png]
Figure 14.5 ActionForm (Form Beans) configuration

Not much to this. The ActionForm class is specified and a name (employee in this case) is associated with it.

HTML Form tags

Struts provides a form handling tag library to facilitate working with Form Beans and in particular dealing with validation errors. Let’s look at the JSP source code for newEmployee.jsp.

Listing 14.6 Input Form JSP source.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN">
<%@taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<html:html><head><title>Employee Details</title></head>
<body>
<P align="center"></P>
<h3 align="center">Create Employee</h3>
<html:errors />
<div align="center">
<html:form action="CreateEmployee.do">
<table align="center" border="1" cellpadding="0" cellspacing="0"

width="70%">

<tr><td width="60"><div align="right">Id:</div></td>

<td><html:text property="id" /></td>

</tr>

<tr><td width="60"><div align="right">Name:</div></td>

<td><html:text property="name" /></td>

</tr>

<tr><td width="60"><div align="right">Age:</div></td>

<td><html:text property="age" /></td>

</tr>

<tr><td width="60"><div align="right">Street:</div></td>

<td><html:text property="street"/></td>

</tr>

<tr><td colspan="2">
<table border="0" cellpadding="0" cellspacing="0">

<tr><td width="60">

<div align="right">City:</div></td>

<td><html:text property="city" /></td>

<td width="30"><div align="right">State:</div>

</td>

<td><html:text property="state"/></td>

<td width="30"><div align="right">Zip:</div>

</td>

<td><html:text property="zip"/></td>

</tr></table>
</td></tr>

<td colspan="2">

<div align="center"><input type="submit" name="submit" value="Submit"

align="center"></div></td>

</tr></table>
</html:form>
</div></body></html:html>
The second line of this Struts page is a tag library directive indicating that this page will use the tag library described in /WEB-INF/struts-html.tld.
 There are four tag libraries that are included with Struts.

1. The HTML tag library, which includes tags for describing dynamic pages, especially forms.

2. The beans tag library which provides additional tags for providing improved access to Java beans and additional support for internationalization.

3. The logic tag library which provides tags that support conditional execution (if…else…) and looping.

4. The template tag library for producing and using common JSP templates in multiple pages.

Our newEmployee.jsp file includes the HTML tag library. The tags in this library all begin with the tag library identifier html. Note the line that includes the html:errors tag. This tag will display the contents of the ActionErrors object if not empty. Next, consider the html:form tag. A normal HTML form tag could be used, but this requires the use of special input tags. For example, look at the html:text property=”id” tag. The nearly equivalent HTML tag is commented out on the previous line. This text field is associated with the Form Bean’s id property. Further, if an EmployeeValue object is available on the page at runtime, the text field will display the id property as the initial value.

It is time to consider how this all fits together at runtime. Then we will revisit some of loose ends, like the ActionForward declarations.

[image: image6.png]
Figure 14.6 newEmployee.jsp, inputting invalid data
In Figure 14.6, you can see the very normal looking HTML page displayed. The input values entered as shown will trigger both validation errors. Clicking Submit, will trigger the population of the Form Bean, followed by a call to validate(). Validation will fail and control will be returned to this input page as shown in Figure 12.6.

[image: image7.png]
Figure 14.7 Input page with ActionErrors displayed

The details of the error message are again encoded in the ApplicationResources.properties file. Note the default of preceding each displayed error with the tag.

errors.header=You must correct the following error(s) before proceeding
errors.footer=
Local Forwards

So what happens if we succeed in validation? Back in Listing 14.32, after retrieving the EmployeeForm Form Bean, we create an Employee model bean and make a call to its create() method. This makes the JDBC call to add the new Employee record. Note that it is possible that the insert fails due to a duplicate id value. The way to handle this situation is the same as validation failing. So we create add an ActionError to the ActionErrors object. In this case, we must explicitly save this object into the request scope (the call to saveErrors). The remainder of the perform() method is to invoke the findForward() method on the ActionMapping object. If the create was successful, we will forward to the symbolic name displayAll. If we fail, we will forward to the symbolic name error.

Back in the struts-config.xml editor, if you scroll further down the page for our CreateEmployee Action, you will see the two defined “local forwards”, see Figure 14.8
[image: image8.png]
Figure 14.8 Local forwards for an Action

So displayAll, maps to one of our other actions, AllEmployees. This action retrieves all of the employees from that database and then forwards to allEmployees.jsp to show the summary of each employee. A forward can map to any URI. You can easily imagine how each Action mapping might have at least two local forwards (“success” and “failure” pages, for instance) and how the application would have a global error page, as well as perhaps a “start” page that you could always reach in a serious error condition. Entering valid data results in the following.

[image: image9.png]
Figure 14.9 Result of adding a new Employee

The complete struts-based version of this sample application can be found on the CD as SimpleStruts.ear. Figure 14.10 shows the outline of our application showing the Actions with their ActionForwards.

[image: image10.png]
Figure 14.10 Studio Outline view when editing struts-config.xml.

WebSphere Studio provides good support to build and test Struts-based applications. For those who are more graphical in their approach to web application design, there is a Web diagram editor (Figure 14.11) that lets you compose the relationship between your Actions, FormBeans and JSP. You can even kick off the specialized creation wizards from this tool, e.g adding an Action node and then double clicking on the icon within the diagram will launch the create Action wizard.
[image: image11.png]
Figure 14.11 Web diagram for our simple struts-based application

Struts Best Practices

Of all the common design principles for using Struts that have emerged over the past few years, perhaps the most widely applicable one is the idiom of separating Struts Actions into Processing and Display-specific actions. For instance, in our simple application, we have a page, allEmployees.jsp that displays the employees and provides links to enable creating, updating and removing employees. In our earlier discussion we looked at the CreateEmployee action. When this action completes (inserts a new employee record) the user should be returned to the view displaying all employees.

The AllEmployees action is a very typical Display action. It has no interaction with any input parameters. It retrieves the current list of employees from the model layer and then forwards to the allEmployees.jsp to display them. Both AlterEmployee and CreateEmployee are Processing actions, while FindEmployee is another Display action.

Figure 14.12 shows the very typical control flow with Processing and Display actions. You can see the error path that returns to the action page, e.g. our newEmployee.jsp page. On success of the processing action, we forward to the display action, e.g., AllEmployees, which in turn forwards to the display page.

[image: image12.emf]

Action

Page

Display

Page

Process

Action

Display

Action

Forward on

succcess

forward

submit

Forward

on error

Figure 14.12 Interaction between Processing and Display actions

Summary

Struts is a very powerful and yet simple open source MVC framework for building web applications. It concentrates on coordination between the Controller and Presentation layers. Struts greatly assists in processing and validating Form data, managing and displaying errors, externalizing URIs, and supporting internationalization. Combined with the tooling in WebSphere Studio, this is an attractive framework upon which to build your web applications.

� [Brooks]

� Note that since Struts uses tag libraries, that it can only be used in versions of WebSphere and WSAD that support JSP 1.1. We will describe this in greater detail later in the Chapter.

16

[image: image1]_1112419214.doc

[image: image1]

Action Page

Display Page

Process Action

Display Action

Forward on succcess

forward

submit

Forward on error

