Chapter 6

Introduction to Servlets

Now that we’ve examined some of the architectural issues surrounding the use of server side programming and J2EE, we can look in-depth at the first of the API’s that make up the programming model. In this chapter, we will introduce you to the concept of a servlet and discuss what servlet programming entails. We will discuss the following topics:

· HyperText Transfer Protocol (HTTP) basics

· Servlet concepts

· Servlet lifecycle

· Example servlet

· web.xml deployment descriptor file

· Filters

· Servlet API

· Arguments for using servlets

[image: image1.png]
Figure 6.1 Where Servlet Technology Fits in Road Map

The purpose of this chapter is to advance your knowledge of these fundamental concepts about the servlet API. This chapter will focus entirely on the servlet container as shown in figure 6.1. In the next chapter we will examine how to take the examples and principles that we will review in this chapter and apply them within the WebSphere Studio environment.

HTTP Technology Primer

Hypertext Transfer Protocol (HTTP) is the basis for web browsing. HTTP is built upon TCP/IP and is considered an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP is a request/response-oriented protocol where an HTTP client makes a request, and then an HTTP server services that request and subsequently responds.

When looking at HTTP from an application-programming point of view, the first thing to understand is that HTTP is a connection-less and state-less protocol. HTTP is based upon a web server (sometimes referred to as HTTPD for HTTP daemon) receiving a request and then formulating a response back to a client. It is connection-less because neither the client nor the server retains any state information regarding the application data. It is up to the application programmer to maintain any state information necessary to the application
. In most cases, the client is a web browser but could be an application, a Java Applet, or another web server. While this request/response protocol is not as sophisticated as the newer connection-oriented protocols such as Internet Inter-ORB (Object Request Broker) Protocol (IIOP), it has proved very flexible in allowing a wide variety of vendors to create web servers, web browsers, and other HTTP based systems.

Uniform Resource Identifiers

URIs have been called many different names: Universal Resource Identifiers, Universal Resource Locators, WWW addresses, and finally Uniform Resource Locators (URL) and Names (URN). URLs and URNs are kinds of URIs. URL is specific to the HTTP scheme while URN is not. As far as HTTP is concerned, Uniform Resource Identifiers are simply formatted strings that identify – via name, location, or any other characteristic – a resource. URIs in HTTP can be represented in absolute form or relative to some known base, depending upon the context of their use. The two forms are different in that an absolute URI always begins with a protocol name followed by a colon.

HTTP does not place any limits on the length of a URI. Therefore, HTTP servers should support this requirement. However, programmers formulating a URI ought to be cautious about depending on URI lengths above 255 bytes, because some older client or proxy implementations might not properly support these lengths.

HTTP URL

Each web resource (an HTML page, a JSP page, a Servlet, etc.) that can be requested from a web server must have a unique name associated with it. That unique name is called a URL or Uniform Resource Locator. For discussion purposes, let’s consider a URL as a way to uniquely identify a web page, which exists on a particular web server. For example, to access the index.html page on the www.abc.com web server, the absolute and explicit URL would be http://www.abc.com/index.html. The format of a URL is as follows:

protocol://hostname<:port>/identifiers

What is the difference between a URI and URL?

According to the specification [RFC 2396] all URLs are URIs. However, URIs allow web services to be defined in a way that they are not bound to a specific server. This has many advantages.

1. A URL explicitly locates a service to a specific web server and port. If it becomes necessary to create services and pages that can be hosted on various web servers, there arises a need to have a way to identify those pages without locating them. The URI provides the unique name for a service, hosted on any web server.

2. In addition to being able to relocate a service or set of pages to another web server, many times it is desirable to replicate these services or pages to several servers to avoid the single-point-of-failure problem. If one of these servers terminates, then other mechanisms such as a network dispatcher can safely send requests to another web server, which has replicas of those services or pages. The use of a non-located URI helps the developer to avoid making code changes to the service or page when deploying to different machines.

Sidebar: an Example of URL’s and URI’s

A fully specified URL is always of the form:

http://www.mycompany.com/mydirectory/mypage.html

However, a URI may be fragmentary like:

/mydirectory/mypage.html

This difference will become important when we get to the point of specifying URI’s that refer to HTML and JSP pages. By only referring to a partial address (e.g. URI) , you keep your HTML tags (and JSP and Servlet code) from being tied to a single machine name.

Requests, Responses, and Headers

HTTP is a simple protocol based on a client sending a request to a web server and then getting a response. When the client sends a request, the request contains all of the information that the web server needs to process the request. Both the request and the response contain a start-line, zero or more header fields (also known as “headers”), an empty line (i.e., a line with nothing preceding the CRLF) indicating the end of the header fields, and possibly a message-body.

Headers

The headers section of a message contains a general-header section (headers that are applicable to both the request and the response and specific headers), an entity-header section, and then either a request-header section or response-header section depending upon the type of message. The general-header section contains items such as “Cache-Control”, “Date”, and “Transfer-Encoding”. The “Transfer-Encoding” header can impact the message length as the encoding type may increase the size of the body of the message. The request-header section contains headers such as “Host”, “Accept-Charset”, and “Referer”. The “Referer” header specifies the URL of the page from which the request came from while the “Host” header contains the name of the target host specified in the request (the host which is processing the request). The response-header section contains headers such as “Age”, “Location”, and “Server”. The “Server” header specifies the name of the server that generated the response. Lastly, entity-headers define Meta information about the entity-body or, if no body is present, about the resource identified by the request. Some entity-headers include “Allow”, “Content-Encoding” and “Last-Modified”.

Requests

In the case of a request message, the start-line is the request itself. An HTTP request is characterized by a method token, followed by a Request-URI and a protocol version, ending with a CRLF. The method token is one of “GET”, “POST”, “OPTIONS”, “HEAD”, “PUT”, “DELETE”, “TRACE”, “CONNECT”, or some extension method as defined by the implementation. As a note, when using HTTP methods to create a request, the application programmer should understand that the writers of the HTTP protocol consider some methods as “safe” and others as “un-safe”. This definition of a safe method was noted in the HTTP specification so that user agents can be written to make a user aware of the fact that a possibly unsafe action is being requested. It is thought that the “safe” methods will not generate side effects as a result of calling them. The protocol does not enforce this idea of “safe” methods nor can it, as implementers are free to create servers that handle these requests in any way that they see fit. Two key HTTP request methods are particularly important to the programmer (GET and POST). GET is a “safe” method while POST is an “un-safe” method since it is expected that POST will cause side effects by posting some new data.

· GET – an HTTP GET request is what happens when you type in a URL at a browser. It literally means, “GET a file and return its contents”. In the context of a servlet, this means “return some dynamic content to the user as HTML”.

· POST – an HTTP POST request is what happens (usually) when you type information into an HTML form and press the SUBMIT button. It is called “post” because it was originally intended to represent POSTing a message to an Internet newsgroup.

Responses

After receiving and interpreting a request, the server must respond. The response message contains a start-line, which is the status of the request. This status-line contains the HTTP protocol version followed by a numeric status code and its associated textual phrase, with each element separated by spaces. The status code is a 3-digit integer result code of the attempt to understand and satisfy the request. The textual phrase is for debugging purposes. The first digit in the 3-digit code defines the class of the response. The last two digits do not have any categorization role but instead help to uniquely identify the response. There are 5 values for the first digit:

· 1xx: Informational – Request received, continuing process

· 2xx: Success – The action was successfully received, understood, and accepted

· 3xx: Redirection – Further action must be taken in order to complete the request

· 4xx: Client Error – The request contains bad syntax or cannot be fulfilled

· 5xx: Server Error – The server failed to fulfill an apparently valid request

As with any HTTP message, after the start-line (status-line in the response case), the message headers are given followed by the message-body. The message-body contains the actual data, which will be displayed in the web browser.

Pulling it all Together

When using HTTP, there are many scenarios that can be described. In an effort to pull together the ideas presented here about URIs and messages over HTTP, we need to take a look at the GET and POST requests and how the interaction between the client and server occurs.

We show a GET request round-trip in figure 6.2. The request is for the URL of http://webserver/index.html. You should take note that when using a web browser and HTML to make HTTP requests, a GET request could be made in several ways. Listed here are the well-known ways:

1. By typing the URL into the URL line of the web browser and pressing Enter.

2. By clicking on a link, which appears inside an HTML page. The link is coded using the tag.

3. By clicking a button on a FORM, which appears inside of an HTML, page. The FORM would need to specify a method of GET as in the tag <FORM method=”GET” action=“url…”>.
The web server, upon receiving this request, maps the request to a file located on the web server file system (e.g., C:\www\html\index.html) and then responds with the contents of that file to the browser. The entire transaction involves one connection to the web server and an almost immediate response.

[image: image2.png]
Figure 6.2 HTTP GET request In Action.

In figure 6.3, we show a POST request round-trip. This request is for the URL http://webserver/servlet/Register. You should note that when using a web browser and HTML to make HTTP requests, a POST request can only be made by clicking a button on a FORM which appears inside of an HTML page. The FORM would need to specify a method of POST as in the tag <FORM method=”POST” action= “url…”>.
The web server, upon receiving this request, transfers the request to the servlet engine, which then loads the requested servlet by searching the classpath, and then runs the servlet. Next, the web server (or web container) reads the posted data and performs the requested post operation. Lastly, the web server (or servlet engine) responds with a message that is displayed in the browser. The entire transaction involves at least one connection to the web server with an almost immediate response.

[image: image3.emf]
Figure 6.3 HTTP POST request In Action.

Servlet Concepts

A Servlet is a Java class that runs within a Java Virtual Machine (JVM) that is associated with a web container. While Java is well suited for client use, it is equally well suited for server use.

A servlet, as a standard server-side Java program, extends the functionality of a web server. When a web container receives a request for a servlet (through a URL), it loads the servlet into the Java Virtual Machine (JVM) associated with the web server (if not already loaded) and executes the servlet. When the servlet completes its task, it sends any generated output (the response) back to the web browser. You can write servlets for administrative purposes, such as managing web server log files or for sending alert E-mails to administrators. However, what is more interesting and more pervasive is the use of servlets in information technology (IT) applications that run on the web.

We have already seen how the MVC design pattern can help break a system down into layers. In this scenario, the servlets will cooperate with a set of POJOs or Enterprise Java Beans (EJBs) to perform the “real” work of an application. When following this principle, servlets act as a part of the “controller” layer for applications that run on the web. Servlets become “glue” between ordinary HTML (the view) and the POJOs or EJBs (the model). Servlets can then add additional functionality to the overall web application by providing session management, user authentication, and user authorization.

Support for Servlets

Sun Microsystems provides the Java 2 SDK Enterprise Edition (J2SDKEE), which contains classes in support of servlets, Java Server Pages (JSP), and a basic web server for testing servlets, HTML, and JSP. The J2SDKEE also contains basic tools for testing EJBs and other J2EE APIs, which will be discussed later. You can download the J2SDKEE from http://java.sun.com/j2ee/1.4/download.html#sdk. At the writing of this book, IBM WebSphere Application Server Version 5.0.1 implements the Servlet 2.3 specification, which is also implemented in the J2SDKEE version 1.3. As a result, all references to the servlet API in this book are for the Servlet 2.3 specification.

Since WebSphere Studio has an open design, you could use the J2SDKEE web server from within WebSphere Studio to develop and test your servlets. However, WebSphere Studio contains the built-in WebSphere Test Environment (WTE), a servlet development and test environment that is based on IBM WebSphere Application Server. The integrated WTE can be used in WebSphere Studio instead of the J2SDKEE to develop and test servlets more effectively.

Servlet Engines

There are several servlet engines available today which are implemented in a variety of ways. If we survey the ones available, we can conclude that there are three basics types of servlet engines available; standalone, add-on, and embedded. Each has its advantages and disadvantages.

Standalone Servlet engines

A standalone engine includes the normal HTTP server functions and also has built-in support for servlets. This is a desirable solution in that installation and configuration concerns are greatly minimized in the beginning as the web server and servlet engine are integrated in a single installation. This is the approach taken, for instance, by the Apache Tomcat web container. It can be a drawback, however, in that standalone servlet engines cannot take full advantage of advanced web server features like caching or the ability to co-exist with other languages like Perl. Also, standalone engines are usually not as well integrated with other parts of the J2EE specification like Enterprise Java Beans or JMS as more comprehensive solutions may be.

Add-on Servlet Engines

Add-on servlet engines function as a plug-in to an existing web server – it adds servlet support to a server that was not originally designed with servlets in mind. This solution is desirable in that it solves the problem mentioned in the standalone solution of allowing the user to keep up with the latest servlet APIs apart from the web server. However, the trade-off is that initial configuration may be difficult, as integration problems may have to be solved by the user instead of the vendor. IBM WebSphere Application Server falls into this category. IBM WebSphere provides a small plug-in, which installs into an HTTP server. The HTTP server will then detect which URLs refer to applications deployed in WebSphere and forward the servlet requests to a stand-alone application server through HTTP.

Embeddable Servlet Engines

An embeddable engine is generally a lightweight servlet deployment platform that can be embedded in another application. That application becomes the true server. An example of this kind of servlet engine can be found in Sun’s JavaServer Engine, which can be embedded into other servlet engines where the other engines compliment or add on to the basic functionality of the embedded servlet engine. The IBM WebSphere Test Environment (WTE) included within WebSphere Studio is such a servlet engine; actually, it’s the complete WebSphere Application Server packaged slightly differently. Since the WTE uses the same code as used by the production product, you can be sure that applications developed in the WTE will work as-is in the deployed environment.

The overall architecture of a servlet appears in figure 6.4.

[image: image4.emf]
Figure 6.4 Servlet architecture.

Servlet Lifecycle

The servlet lifecycle defines the process used to load the servlet into memory, execute the servlet, and then unload the servlet from memory. A web browser requests a servlet through a URL. The URL can be on the location line of the web browser or it can be a link embedded in the HTML document being viewed. A typical servlet URL appears as http://localhost/helloctx/HelloServlet. The word helloctx in the URI path represents the context root for the web module and lets the web server know that the request is for more than just an HTML page. HelloServlet, in the URL, is the name (as defined in web.xml – more on this later) of the desired servlet. figure 6.5 shows the servlet lifecycle.

[image: image5.png]
Figure 6.5 Servlet lifecycle.

To create a servlet, you must create a subclass of the GenericServlet class or one of its subclasses. Typically, you will subclass the class javax.servlet.http.HttpServlet, which means that your servlet will be invoked through the HTTP protocol. You are not required to add any additional code to your servlet at this point. However, if you issue an HTTP request to your new servlet in this state, it will respond with the default error that says that a GET or POST request is not supported. Thus, from a compile-time perspective, there are no required methods. However, as you will see, you will want to code at the very least a doGet() or doPost() method to make your servlet useful.

When your servlet is first requested, the web server requests that the servlet engine load the requested servlet class and all of its required classes into memory on the servlet engine node. Control then passes to the init() method in the servlet. GenericServlet provides an empty init() method. If you wish to perform initialization tasks, such as reading external customization files, you need to provide an init() method in your subclass. The init() method receives only one call, and that is immediately after your servlet is loaded into memory. It is a good idea to always call the super classes init() method if you provide your own init() method. This ensures that any setup required by the servlet engine or other super classes is done.

The init() method is the perfect place to perform operations that are only done once for the life of a servlet. Examples of items that may be done in the init() method include reading a properties file that contains configuration information for the application. Other items that can be accomplished in the init() method include caching reference data for quick access, clearing log files or notifying other services that this service is now available.

Each time the servlet is requested (including the first time after the init() method is called) the service() method is dispatched on a separate thread for each request. GenericServlet provides an empty service() method. You must override this method if you want to do any real work. Since the service() method is called in its own thread, the servlet engine is free to take additional requests for the same servlet or another servlet that it executes in another thread. The service() method is where the work of the servlet is accomplished. Note that in the HttpServlet the service() method has been specialized into the doGet(), doPost(), doDelete(), etc. methods. You should note that since the service() method is always executed inside a new thread, you must be careful to ensure that everything done in the service() method is thread-safe (re-entrant).

At some later time, when the web container deems it necessary, the destroy() method of the servlet is called and then the servlet is unloaded from the server’s memory. If you provide a destroy() method in your servlet, it is called. Common tasks performed by the destroy() method include closing all files and other administrative items.

An Example Servlet

Now that we have defined what a servlet is and discussed its lifecycle, let’s examine the code for a complete servlet. As we mentioned, a single URL presents a servlet to the outside world, exactly as a CGI script is represented to the web browser. However, unlike a CGI script, information about the request made of the servlet is not passed as environment variables that must be parsed. It is instead given to the servlet as a set of well-defined Java objects. To illustrate this point, let’s examine the simplest possible servlet, the “Hello World” example.

/**

 * This class is a simple sample servlet

 */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

/**

 * This method handles an HTTP GET request and outputs

 * HTML to print "Hello IBM WebSphere World" to a browser.

 */

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException{

PrintWriter out = null;

res.setContentType("text/html");

out = res.getWriter ();

out.println("<html>");

out.println("<head><title>Sample</title></head>");

out.println("<body>");

out.println("Hello IBM WebSphere World!");

out.println("</body>");

out.println("</html>");

}

}

To run this servlet, assuming the host localhost is defined, the web and application server are appropriately configured to have a context root of helloctx, and that the HelloServlet.class file is placed in the appropriate location. You would enter the URL http://localhost/helloctx/HelloServlet on the URL line of a web browser. The words “Hello IBM WebSphere World” would then be shown in your web browser.

Our simple Servlet class extends the class javax.servlet.http.HttpServlet. Think about HttpServlet and its descendents as being servlets that speak the HTTP protocol as their native language. The key thing to understand about HTTPServlets is that they typically handle GET and POST requests. HttpServlet subclasses handle one or both of these methods by overriding either the method doGet() or doPost() methods respectively. In our case we’re overriding doGet(), so the information sent back will be displayed on a client browser if they type in the URL corresponding to our servlet (e.g., send a GET request).

Sidebar: Which Servlet Methods do I override?

The HttpServlet class defines a special do [Request Type] method (or a “service handler”) for each of the HTTP Request types that were previously discussed. These methods are simply defined as protected void methods – they are not declared abstract. The service() method defined in HttpServlet is written to automatically call the appropriate service handler based on the type of request that is received. In your servlets, you will generally choose to override only a small subset of these methods – generally either doGet() or doPost().

Sometimes, the same servlet will need to handle both GET and POST requests. If the code in each of these methods is different (e.g. you want to do something different for each request type) then you should override both doGet() and doPost(). On the other hand, if you need to implement the same logic for both request types, then you should probably override service() instead.

Now, exactly how is the reply “Hello IBM WebSphere World” sent back to the browser? As you can see from the example, the route we use is an object that implements the interface HttpServletResponse. HttpServletResponse allows you to do several things:

· Set the MIME type (or content-type) of the HTTP response header. This can be any valid MIME type (like “image/jpeg” or “audio/wav”. Most of the time the response type will be “text/html”, which means you are sending back HTML to be interpreted and displayed by the browser. The method setContentType(String) sets the content type.

· Set the HTTP header values with setHeader(String, String). This is useful if you want to disable browser and server page caching for a response page. Note that all headers must be sent before any output is written to the servlet output stream. This is because the HTTP protocol specifies headers appear before the message body in the response. The headers are implicitly written to the servlet output stream the first time the servlet explicitly writes to the stream.

· Obtain a PrintWriter for output with getWriter(). When you are sending HTML as your content type you want to make it human-readable. PrintWriter facilitates this by adding CR/LF on the end of your text lines with the println() method . Additionally, other “writers” allow for National Language support and translation of Unicode characters to UTF. In all other respects, PrintWriter acts like an output stream. You can also obtain an OutputStream with getOutputStream().

· Redirect the browser to a different page with sendRedirect(String)
In our example we’re simply setting the content type of the response, opening a PrintWriter for output and then sending several lines of HTML text back to the browser. This is what most servlets end up doing for output. They may obtain part of the information they display from an outside source (say, from a socket to another server, or a JDBC query). However, the mechanics of sending HTML to the client is the same regardless of the source.

Those of you with keen attention to detail will have noticed that the doGet() method also takes a second parameter, an HTTPServletRequest, which we did not use. Servlets that need to process input from the browser use this Interface. The code in a doGet() or doPost() method typically use the HttpServletRequest methods getParameterNames(), getParameter() and getParameterValues() to read in the HTTP parameters sent as part of a POST request, or as part of a query string. We’ll explain what a query string is in a few paragraphs. The servlet then makes decisions based on those parameters, or record them to persistent storage. If we make a small modification to the HelloServlet servlet, we can send a message parameter to the servlet and have it display that message instead of the common “Hello IBM WebSphere World” message. Examine the new code and note the lines in bold type.

/**

 * This class is a simple sample servlet, which takes a message parameter

 */

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

/**

 * This method handles an HTTP GET request and outputs

 * HTML to print "Hello IBM WebSphere World" to a browser.

 */

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException{

PrintWriter out = null;

res.setContentType("text/html");

out = res.getWriter ();

// Changed Code

String theMessage = req.getParameter("mymessage");

if (theMessage == null) {

theMessage = "Hello IBM WebSphere World!";

}

out.println("<html>");

out.println("<head><title>Sample</title></head>");

out.println("<body>");

out.println(theMessage);

out.println("</body>");

out.println("</html>");

}

}

To run this servlet you would use the same URL as before with an additional Query-String. An example URL of this type might be: http://localhost/servlet/HelloServlet?mymessage=Hello+Parameter. The words “Hello Parameter” would then be shown in your web browser. Without the “+” sign in the URL the space and “Parameter” portion of the URL would be lost. The “+” can be used for spaces to ensure that the full message will survive the network send. Also, you could use “%20” to represent the space as well.

If you examine the code changes, you can see that the difference is the use of the req.getParameter(“mymessage”) to obtain the data passed on the URL. The getParameter() method takes one argument which must be a String and is the case-sensitive identifier of the parameter in the request. The name of this parameter key must match exactly with the name used on the Query-String. If it does not match, then the getParameter() method will return a null. If null is returned, then the method will set the variable theMessage to “Hello WebSphere World”. The last thing done to the code was to change the out.println() to use the newly created variable, theMessage.

Sidebar: Some comments about the HelloServlet

One of the things that make it difficult to explain the Servlet API is that the simplest examples, like the one we have shown here, are not truly representative of the way in which servlets are used in practice. In particular, you should avoid hard-coding HTML into your servlets. Remember from our overview discussion of the J2EE API’s and the MVC design pattern that Servlets will act as mediators that will tie together domain logic and display logic in the form of JavaServer Pages. So, in general, you should avoid placing HTML in your servlet code; if you place HTML in your servlets, it becomes more difficult to change the “look” of your web sites since you must change your Java code even if all that changes is the HTML that is returned.

Web Deployment Descriptors

Deployment descriptors are text based XML files that describe how a J2EE component is deployed into an application server. Deployment descriptors also allow additional attributes such as security settings and initialization properties, which are not represented in Java code, to be associated with the component. J2EE defines several deployment descriptors; however, there are three major deployment descriptors:

· J2EE enterprise application deployment descriptor – application.xml

· EJB module deployment descriptor – ejb-jar.xml

· Web module deployment descriptor – web.xml

In this chapter, we have focused solely on servlets and as such the only descriptor we will describe at this point is the web.xml deployment descriptor. Later we will discuss the application.xml and ejb-jar.xml files. The web.xml deployment descriptor is included in the web archive file (WAR file) and describes to the web container how the various items in the war file are to be deployed and used in the web container. A simple web.xml follows, which sets up a servlet mapping for the HelloServlet created previously.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>Hello Web Module</display-name>

<servlet>

<servlet-name>SimpleHello</servlet-name>

<display-name>SimpleHello</display-name>

<servlet-class>HelloServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>SimpleHello</servlet-name>

<url-pattern>sayHello</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Notice that there are essentially three key elements in the web.xml file. The “servlet” element associates a name with a Java class name for the servlet. The “servlet-mapping” element associates a URL pattern with the named servlet. The “welcome-file-list” element gives a list of files that can be used as the home page for the war file that contains this web.xml file. By convention, the welcome files are returned by default if no specific file is requested.

Once a servlet is named in a web.xml file, initialization parameters can be specified and the servlet can be marked for initial startup. Additionally, other elements, which deal with EJB references, security and environment variables can be specified in the web.xml file.

Filters

A Filter is an object that can transform a request or alter a response. A Filter can be created and configured to intercept requests before a servlet is called, and it can also intercept responses before continuing. The Filter interface is the base interface for the Filter features and was included in the servlet API version 2.3.

One of the more powerful features of a Filter is that it can be applied at deployment time. Once a filter has been coded, it can be applied to any servlet by adding”filter” elements to the Web deployment descriptor (web.xml) file. Filters can also be chained so that several filters are applied to a single servlet. Note: at no time is it necessary to alter the servlet code. Lastly, Filters can be used to pre-empt the execution of a servlet (this might be for security or some other reason). For instance, you may want to perform some sort of input validation before a Servlet is invoked (and reject the request if validation fails) and perform logging on all responses as they are returned. An example of the type of design approach you may take with Filters can be seen in figure 6.6.

[image: image6.emf]

Validation

Filter

Logging

Filter

Servlet

Figure 6.6 Filters applied to Servlets

A Filter has an API similar to that for a servlet. A Filter has an init() method which is executed the first time the Filter is accessed. A destroy() method is provided so that the Filter writer can gain control before the web container unloads the filter. The doFilter() method is the method where the actual work of the filter is accomplished.

An example Filter that can be applied to the HelloServlet is one that will add the current date and time to the response. This Filter, named the DateTimeFilter, will contain only the doFilter() method. The doFilter() method accepts a parameter of type FilterChain which provides the filter with the means to request that processing continue down the chain. In the doFilter() method, the chain.doFilter() method is called which will cause the servlet and all other filters down stream to be called. After the call to chain.doFilter(), the HttpServletResponse is used to obtain the PrintWriter object. Then the date and time are added to the response by using the PrintWriter. Following is the code for the filter:

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
public class DateTimeFilter implements Filter {

public void doFilter(

ServletRequest req,

ServletResponse resp,

FilterChain chain)

throws ServletException, IOException {

chain.doFilter(req, resp);

// Get the output writer from the response

PrintWriter out = resp.getWriter();

// Add the Date/Time String to the response

out.println("" + new Date() + "");

}
}
In order to use the filter, the web.xml file must be updated so that the filter is applied to the HelloServlet. Or, instead of specifying a particular servlet, it is possible to apply the filter to all servlets. By adding the elements below to the web.xml file as sub elements of the “web-app” element, the filter will be called each time the any servlet in this web application is called.

<filter>

<filter-name>DateTimeFilter</filter-name>

<display-name>DateTimeFilter</display-name>

<filter-class>DateTimeFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>DateTimeFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>
Now, when the HelloServlet is called, the output will resemble the following:

Hello IBM WebSphere World! Sat Nov 5 22:50:24 EDT 2003

Filters are very powerful. If you wanted to create a Filter which skips calling the servlet and other Filters in the chain, then your Filter simply omits the invocation of chain.doFilter() in its doFilter() method.

In this section we have only touched on Filters and how they can be used. There are many other uses that you can explore on your own.

Servlet API Classes and Interfaces

The J2SDKEE 1.3 API contains a rich set of classes and methods that enable the servlet developer to code complex web applications in a well-implemented manner. The API is contained in three packages:

· javax.servlet

· javax.servlet.http

· javax.servlet.jsp

Each of the above packages contains several interfaces and classes that define the API. In this section we will only briefly cover the javax.servlet and javax.servlet.http packages. The classes in the javax.servlet.jsp package will be discussed later. As we look at the interfaces defined in these packages, you should understand that the servlet engine provider would supply implementations for these interfaces. However, you will want to write code which only uses the API as it appears in an interface where supplied and not any vendor specific class.

javax.servlet package

The javax.servlet package contains the basic API for servlets but is not tied to a particular scheme or protocol for how servlets may be used. See figure 6.7 for a list of the classes and interfaces in the javax.servlet package.

[image: image7.png]
Figure 6.7 javax.servlet package interfaces/classes

javax.servlet.http package

The javax.servlet.http package contains the API for servlets that will be used as HTTP servlets. See figure 6.8 for a list of the classes and interfaces in the javax.servlet.http package.

[image: image8.png]
Figure 6.8 javax.servlet.http package interfaces/classes

For a more details on the Servlet API you should refer to the Servlet API Javadocs – these are available from the help menu in WebSphere Studio, and also for download from http://java.sun.com.
Summary

In this chapter we have covered the basics of HTTP, servlet concepts and the basics of servlet programming. Anytime you begin to code in a client-server or distributed environment, the complexity of the task is going to increase. However, with the robust HTTP protocol as an underlying mechanism for servlets and the highly useable JSDK 2.1 servlet API, a programmer of moderate skill can be very productive with servlets in a very short amount of time.

� We will see later that the Servlet API provides ways of maintaining application state information, but this is not part of HTTP.

1

_1014744016.doc
[image: image1.png]

_1113644805.doc

[image: image1]

Validation Filter

Logging Filter

Servlet

