Chapter 3

J2EE Overview

Over the years, the Java technology platform has grown out of its original Applet client-server origins into a robust server-side development platform. Initial platform packages introduced built-in threading support and provided abstractions to I/O and networking protocols; newer versions of the Java Software Development Kit (SDK) continued to enhance and introduce newer framework offerings.  

The momentum of producing technology frameworks supporting enterprise server-based development has continued, and has been formalized into the J2EE (Java 2 Enterprise Edition) platform offering.  The motivation of this offering is to provide developers with a set of technologies that support the delivery of robust enterprise-scale software systems.  Information technology professionals are presented with an ever changing business and technology landscape. Technology professionals must balance the demands for new automation requirements against the existence of existing line of business applications; simply using the technology de-jour perpetuates the problem of integrating existing legacy systems. The goal of the J2EE platform is to offer a consistent and reliable ways in which these demands can be met with applications that possess the following characteristics. 

· High Availability – Applications support and exist in a global business environment.

· Secure – Ensure user privacy and confidence in business function and transactions.

· Reliable and Scalable – Ability to support high volumes of business transactions accurately and in timely manner.

This chapter will provide an overview of the J2EE architecture, provide a brief discussion of the specifications component design and the solutions they provide, and lastly describe which J2EE technologies this book will focus on. Components and where they fall in the layered application.  First, some orientation through the various development kits and technology platforms from Sun is necessary. 

  The foundation that all J2EE technologies are built upon is the Java 2 Standard Edition (J2SE). It includes basic platform classes, such as the Collections framework along with more specific packages such as JDBC and other technologies that support client-server oriented applications that users interact with through a GUI interfaces, for example, through the Drag and Drop and Assistive Technologies. Also, note that platform technologies are not limited to framework implementations.  They also include development and runtime support tools such as the Java Platform Debugger Architecture (JPDA).  

Technologies specific to developing robust, scalable, multi-tiered server-based enterprise applications are provided within the Java 2 Enterprise Edition (J2EE) platform offering. While still supporting client-server based architectures, J2EE platform technologies provide support for distributed computing, message oriented middleware, and dynamic web page development. This chapter and most of this book will deal specifically with some of these technologies.  In particular, WebSphere version 5.0 (the focus of this book) implements the J2EE 1.3 platform specification.  A list of the technologies from J2EE 1.3 (along with the supported levels) is shown in Table 3.1.

	Supported Technology
	Level required by J2EE 1.3

	Java IDL (Interface Definition Language) API
	(Provided by J2SE 1.3)

	JDBC Core API
	2.0 (Provided by J2SE 1.3)

	RMI-IIOP API
	(Provided by J2SE 1.3)

	JNDI API
	(Provided by J2SE 1.3)

	JDBC Extensions
	2.0

	EJB (Enterprise Java Beans)
	2.0

	Servlet API
	2.3

	JSP (JavaServer Pages)
	1.3

	JMS (Java Message Service)
	1.0

	JTA (Java Transaction API)
	1.0

	JavaMail
	1.3

	Java Activation Framework (JAF)
	1.0

	JAXP (Java API for XML Parsing)
	1.1

	Java 2 Connector Architecture (J2C)
	1.0

	JAAS (Java Authentication and Authorization Service)
	1.0


   Table 3.1 – J2EE technologies

In addition to the required technologies for J2EE 1.3, WebSphere Application Server 5.0 also implements a number of J2EE-compatible technologies in advance of support for the J2EE 1.4 specification.  In particular, WebSphere also supports the following technologies which will be required in J2EE 1.4 (Table 3.3):

Table 3.3 J2EE 1.4 Technologies implemented by WebSphere 5.0

	J2EE 1.4 Technology

	JAX-RPC (Java API for XML-based RPC)

	SAAJ (SOAP with Attachments API for Java)

	JMX (Java Management Extensions)


 J2EE Component Design

 One of the most appealing features of object technology is its ability to combine function and data into a single element, also referred to as an object. Arguably, a single object implementation could be classified as a component, but components offer more functionality than just providing access to data and performing functions against this data. Flexibility is achieved with designs that can consist of multiple classes related through composition and inheritance.  The word “component” implies that they are a part something whole, indicating that components require some kind of target problem space to exist. The J2EE specification provides this frame of reference for components that can be used, extended and combined by developers to deliver robust enterprise applications.

   J2EE Components defined for the platforms exploit the object-oriented nature of the Java language by applying design patterns that provide both white and black box extensibility and configuration options.  The platform components extensively use inheritance and composition throughout their design, providing a way for custom configuration by developers. Component designs that are completely abstract is also a technique found in component designs, allowing components to cross vendor boundaries.   

Studying these design techniques employed in the platform implementations can help make your own designs more elegant.  These object design techniques are nothing new and have been applied throughout the years in other object-oriented languages.    Two design themes that take different approaches in supporting component configuration are discussed in the following sections

Configurable Implementations

A specific design technique that is often used in the J2EE platform is the notion of describing completely abstract designs (through the use of interfaces) that allow the entire implementation to be configurable. This means that developers are aware of, and have visibility to, a set of interface types without regard to how they are implemented; implementation is the vendors responsibility. This allows developers to choose the best from any number of available solutions. Figure 3.4 shows the dual relationship interfaces create between developers and vendors.

[image: image1.png]rcferences >

Technology
Interfaces

-

mplements






Figure 3.4 Relationship between developers and vendors

Configurable Algorithms

Not all technology implementations are exclusively interfaces. Most of them have a combination of generalized class definitions that interact with interface types. Consider the servlet package; it provides a javax.servlet.GenericServlet implementation that is defined abstractly along with providing a Servlet interface type. While this may seem redundant, designers of the servlet API have provided a way for developers to take advantage of an abstract configurable algorithm, and have provided a completely abstract configurable implementation that can serve as the basis of a concrete implementation. (For more on this dual nature, see the side bar for a discussion comparing abstract classes against interfaces.)

Abstract Classes or Interfaces? 

Inheritance is arguably a feature of the object-oriented paradigm that captures the imagination of developers when they first encounter this technology. The ability to define and classify hierarchies of data structures and create state and behavior that is extended for specific functionalities provides an excellent way to deliver solutions that can be extended in a white box manner.  

White box based designs utilize inheritance by implementing a base class that is extended by developers, and the appropriate elements are overridden with the desired functionality. Java provides language constructs that help communicate what can and cannot be overridden at construction time. Methods and class definitions can be defined as abstract, requiring developers to implement concrete implementations. Access modifiers such as final and private can be utilized to prohibit methods from being overridden. Combining these elements effectively can yield what is referred to as a configurable algorithm.  The base class implements generalized methods that perform a set of algorithmic steps. Within this scope of base methods calls, abstract methods appear that are overridden, fulfilling a given method’s implementation.  

Using inheritance exclusively can result in deep hierarchies that may lead to coupled implementations, usually, the result of an abstract design that requires a large number of abstract methods to be implemented. Java interfaces provide an alternative abstract mechanism that allows for a more independent implementation without regard to an existing hierarchy.

Inheritance is useful for designs that have algorithms or behavior that can be generalized and utilized by extending classes. Designs that require most or all of its implementation to be defined by extending classes can be communicated using interface definitions. Implementers are given complete freedom in how the interface methods carry out their operations. However, interfaces enforce a more rigid contract, and as such changing an interface design can make a larger impact on existing implementations. Therefore, an effective way to evolve a design, in lieu of booking a lot of initial design time, is to initially utilize inheritances and let an abstract design evolve. Once the required signatures have been discovered, and it turns out that a configurable implementation is necessary, interface(s) can be produced.  

Configurable implementations utilizing interfaces are the underpinnings of providing Vendor independent J2EE technology designs.  

Interfaces and effective abstractions are the means by which J2EE components achieve vendor neutrality. The J2EE specifications simply define the API’s, types, lifecycles, and interactions of objects within the technology frameworks. Vendors can then apply their efforts towards these agreed upon contracts and specifications, developers simply write to these specifications. You may ask; “Won’t that create a dependency on these contracts, and if they change. Won’t my code be affected”? The short answer is yes, you are dependent upon versions of these contracts, but engaging these contracts in a consistent way and knowing that they are community supported should help minimize this concern. Moreover, in addition to describing WebSphere Application Servers as a J2EE implementation product, this book will provide patterns and approaches for neutralizing this dependency.  

Who Defines these Specifications?

Another key advantage of Java and the J2EE standard is the way in which component solutions are identified and defined. Early on, Sun promoted the openness of the Java language, initially by giving it away free. While not an open source initiative, but under a community license that still allows Sun to be steward of the language, but at the same time encourages community participation. 

       Advancement of Java technology and the formulation of the J2EE specification have been carried out by the JCP (Java Community Process). Community is the operative word; besides Sun, any interested individual or organization can participate. For individuals participation it is free while organizations pay nominal dues. Delegates from the membership propose, review and accept technology specification proposals. While not an open source initiative, but under a community license that still allows Sun to be steward of the language, the JCP still encourages community participation.

     Ideas are proposed through the creation of a Java Specification Request (JSR). Members evaluate and vote on the JSR for merit. Once accepted the JSR becomes an official technology component and a goes through the design and development process by a committee made up JCP members. Usually this includes a cross section of well-known vendor members. 

     The advantage of community participation is the proliferation of new frameworks/components that are derived and designed from a wide point of view, arguably larger than proprietary based technology that may be more influenced by market pressures. These market pressures still exist in the JCP environment, but the checks and balances of the membership can make them have less influence over the manner in which the problem is solved. Of course, there is always a down side. Nimbleness of getting a solution out the door using custom built designs is traded off for JCP standardized solutions that may require additional understanding and greater impact when design contracts changeudunde.
Why J2EE?

Reuse is an adjective that can beckon the attention of developers, managers, and bean counters. It promises savings in the form of shorter development efforts and higher quality. Unfortunately, this adjective has been overused, oversimplified, and over-hyped, resulting in a minimized impact. For instance, some reuse (of the base class libraries) occurs just through using Java as a programming environment.  Likewise, if you add J2EE components then more reuse occurs. Of course, this is not the business domain type of reusability that would allow us to snap together applications as in the proverbial IC chip analogy made by Brad Cox. Nevertheless, Java’s object-oriented nature and the standards of J2EE are a progression towards achieving high degrees of reuse.  

The type of reuse J2EE based technologies provide can be classified as horizontal technology reuse. Contracts primarily in the form of Java interfaces allow developers to use vendor supplied technology solutions with a high degree of transparency. Imagine if the JDBC specification did not exist and developers had to write directly to vendor supplied APIs; of course then good object oriented developers would build designs that would decouple and wrapper vendor specific API’s with a neutralized access API. Even though SQL is also a standard, each new target SQL based data source would require a modification to this neutral API. Fortunately, the JDBC specification allows the burden of access API’s to be moved to vendors. Developers simply acknowledge the specified contracts and generalized implementations and use them in applications to execute SQL against any vendor honoring the JDBC specification, which most if not all do. 

[image: image2.png]Account
Receivable Framework
Vertical

Invoicing Framework)
Vertical





Figure 2.2  Horizontal Technologies

Other horizontal technologies are vendor neutralized in a similar approach, allowing developers to concentrate on application specific logic by simply using standards-compliant solutions.  This frees developers from worrying about having to produce or re-factor a horizontal implementation. Instead, best of breed vendor-supplied solutions can be engaged, ultimately resulting in shorter delivery times of applications that are robust and scalable.

J2EE Architecture

Planes, trains, and automobiles are all put together using well-accepted blueprints; Parts for these vehicles are supplied by countless number of vendors. One way that this is carried out is through industry-accepted blueprints that define specifications for construction and how they are to be used. Under this same premise, the J2EE specification defines these interfaces, their lifecycles, and interactions they must carry out. The specification even goes further in describing roles that can be held by resources involved in the development and deployment of server based applications.

The J2EE specification introduces an architectural concept of a container. Containers are defined to house J2EE components within a layer boundary. Containers manage component relationships within tiers and resolve dependencies of components between these tiers. Figure 3.3 illustrates the J2EE containers and their associated component dependencies.

To understand where these components exist within the topology of an application consider that a given application can be partitioned as defined below. 

· Client Container – User interface implementation resident on a client workstation. 

· Web Container – Server based user-interface implementation accessed via HTTP.  

· EJB Container – Captures and defines enterprise business data and function. Provides a mechanism for distribution of business objects and for transactional support of complex business interactions.
· Information Systems Backend – A database, messaging system, or Enterprise Information System that provides data and functions to the system.
   Applications may utilize all or at a minimum the client and web tiers, and within each of these tiers J2EE technologies will be engaged to perform application function. Some technologies will occupy an obvious tier, as is the case with the JSP/Servlet technologies. Obviously, these belong in the Web tier. Other technologies play a supporting role and may appear in any or all the tiers. For instance, it’s easy to see the requirement of inter-process messaging (JMS) appearing in all of the client, web, and EJB tiers.
[image: image3.png]EJB Container





Figure 3.3 Container Diagram 

You will notice the presence of the J2SE in every container definition diagrammed above. This reflects the foundation for all containers.  Other technologies shown may or may not appear within a container definition, they are determined by application requirements. The following sections provide a brief description of components defined within container boundaries.

JDBC

Potentially the catalyst technology for Java, JDBC allows developers to interact with vendor enforced JDBC data sources using generic interfaces. Statement execution, connection resolution, and result set processing can be carried out using the specification interfaces. Although in most cases the data source is relational based, the specification interfaces does not require this
. This allows developers to execute structured query language (SQL) in a vendor neutral fashion. 

Servlet/JSP

   Servlet technology is the mechanism used to create dynamic web pages. In the same spirit, that early CGI (Common Gateway Interface) technology was used to provide a personalized interaction with a web site. Servlet technology allows browser resident clients to interact with application logic residing on the middle tier using request and response mechanisms of the HTTP protocol. 

JSP technology is built upon servlet technology. Its purpose is to help blend HTML based page definition and dynamic based Java expressions into a single HTML like document resource.

EJB

Enterprise Java Beans support the ability to create distributed components that can exist across Java application process boundaries and server topologies. More than just providing access to distributed objects; the specification supports transactions with two-phase commit support, security, and data source access. 

EJB technology is utilized to help support scalable application architecture by making enterprise business logic and data available and accessible to web container function. Enterprise Java Bean’s ability to support transactions across server boundaries in a distributed fashion is key to supporting large-scale transaction based applications. 

Connector 

     EJB technology provides a distributed transaction based environment for external resources. In many cases, but not all, these sources are relational based. The connector specification provides a mechanism for EJB technology to interact with any resource in an implementation independent manner. 
JMS

   Java messaging service provides vendor-neutral point-to-point and publish/subscribe messaging solutions. The JMS service provider will provide an implementation based upon the JMS API’s.  JMS is the primary mechanism in J2EE for allowing asynchronous communication between components.  Among other uses, it can be used to provide asynchronous update of components running in networked client containers, or it can be used to allow asynchronous communication with back-end Enterprise Information Systems.

Java Mail


This technology is a framework that implements an interface to an e-mail system. The framework is provided with the J2EE in binary form. Also included is a set of API’s that allow clients to interact with that support POP3 and SMTP mail protocols.  While we will cover the other core J2EE API’s in this book, this is the sole core API that we will not cover in any depth.  Mostly that is because that, in truth, this API is rarely used.
JTA 


Transaction support is abstracted using the JTA (Java Transaction API).  This API provides a generic API that allows applications, applications servers, and resource managers for various types of data sources to participate in defining and executing heterogeneous transaction boundaries. 

JAX-RPC

Stands for Java API for XML-Based RPC, and is a technology that allows Java developers to create client and end point SOAP based web service functions. Developers can utilize Java based classes to define web services and clients that exercise web-services, effectively shielding the developer from the complexity of interacting with the SOAP protocol. As with the following two technologies, is a required part of the J2EE 1.4 platform.

SAAJ

This technology  (SOAP with Attachments API for Java) provides a Java API that allows the formatting of XML messages in conformance with the SOAP specifications. This should not be confused with the JAX-RPC, which also supports the SOAP protocol, but provides Web Services support for message composition and support for the SOAP with attachments specification, which allows the attachment of MIME-encoded binary documents to SOAP messages.  SAAJ is a required part of the JAX-RPC API, so we will not cover it by itself, but will instead discuss it only within the context of JAX-RPC.
JMX


This technology API stands for Java Management Extension and allows a generalized way that distributed and web based applications can provide monitoring and instrumentation services, independent of the vendor application server.  We won’t discuss programming to this API in WebSphere, but we will discuss how it is used in WebSphere administration.
J2EE Platform Roles

Besides defining a standard blueprint for vendor neutral enterprise computing components, the J2EE specification identifies roles that participate in producing, creating, and supporting information systems built upon the J2EE platform. These roles as defined in the J2EE 1.3 specification are described in the sections below.

J2EE Product Provider

The role is responsible for providing the J2EE containers that house the specification components. In addition, they are required to provide deployment and management tools used to manage J2EE applications deployed to the product. IBM plays the role of a product provider with its WebSphere application server product. 

Application Component Provider

This role identifies the provider of components such as enterprise bean developers, and HTML document designers, and programmers that create components used to produce J2EE applications.  This book exists primarily to educate developers who will fill this role.
Application Assembler

The act of using J2EE components to construct an application is the role defined by the specification; in other words, an application developer. Assembly implies that components are created and defined within an Enterprise Archive (.ear) file for deployment to containers.  Likewise, we will discuss issues involved with integrating J2EE components together, and issues involved in packaging them together as Enterprise Archive files for deployment.
Deployer

The Deployer is responsible for deploying Enterprise Java components into an operating environment that has a J2EE server supplied by a Product Provider.  Deployment is typically made up of three steps. The first step is Installation, which involves moving the application (.ear) to the server environment.  The second is configuration of any external dependencies required by the resource. Finally, the Deployer will execute the installed application.  While the primary focus of our book is on application development, and not deployment, we will discuss areas where the two roles meet.
System Administrator

This role is not new to the J2EE landscape. Administrators are responsible for configuring and monitoring the operating environments that J2EE servers exist. They accomplish this using monitoring and management tools provided by the J2EE Product Provider.  We will not examine this role in our book.  For more information on performing system administration with the WebSphere family of products, we would refer you to [Francis] or the WebSphere Application Server InfoCenter.
Tool Provider

Tool Providers provide tools that help with the construction, deployment, and management of J2EE components. Tools can be targeted to all platform roles defined by the specification. This book describes a tool, WebSphere Application Developer that is used to develop components, making IBM a Tool Provider.

 Currently, the specification does not require or provide a mechanism by which these tools are standardized.  However, the specification has referenced a possibility of this being so in the future.

J2EE Versions and Evolution

Java’s momentum has now moved it from a niche programming language into a mainstream language that is robust enough for a spectrum of applications from scientific to business. Java’s object based environment allows the fundamental language to remain relatively stable with extensions to the language coming in platform technologies, such as the technologies defined in the J2EE specification. Developers and vendors fulfilling these technology specifications with best of breed implementations have arguably formed a so-called critical mass. There is no reason why this momentum should not continue; therefore, new versions of current technologies along with new technologies will continue to augment the J2EE technology platform.  Already, a single J2EE version increment from V 1.3 to V1.4 has introduced Web Services technology and XML support.

What does this mean to the Java developer? One point of view is that change in designs and API’s leads to a maintenance nightmare.  Another, more optimistic view says that smaller development cycles will result in more stable and robust software.  Developers can protect themselves from the API creep problem through consistency, generalization, and the application of design patterns. This book will not only describe how these technologies are used, specifically with IBM WebSphere, but will provide implementation patterns that can be used to implement these technologies in a malleable way. 

This book’s J2EE Perspective

It is not enough to just download the J2EE platform components and start writing enterprise applications with just any tool.  Choosing the right development environment and application server determines whether complexity will be shielded and managed, or be an ever present struggle during the development process. Realizing the full potential of J2EE technologies requires more than just a tool. It also requires a pattern-based approach that engages tool-produced artifacts.

 Many choices are available to the developer who wants to use J2EE technology. Some of it is free, other is vendor supported. Obviously if you are reading this book you are interested in the IBM WebSphere suite of products. The remaining chapters of this book capture and describe the complete cycle from development to deployment utilizing the WebSphere Studio Application Developer product and its integrated tooling support. Besides providing a complete tutorial on how to utilize these tools and the application server, we will describe design approaches and patterns that can help make your development and deployment process, as well as the resulting software, flexible so it can better meet changing business needs.

As we discussed in Chapter 1, we see the idea of layered application architecture as being critical to J2EE, and to understanding the architecture of the WebSphere product family.  As an aid to understanding how the different technologies we’ve just covered fit into that layered architecture, take a look at Figure 3.x.

[image: image4.png]Serviet Container

EJB Container

Controler /

Presentation

v
spplication

o0 Driven
Besns

CIOIIY

Domain

DataMapping

tispper

Data Source

‘Applicaion services.

Logging

Properties

Escention
Handling

Layered JZEE Runtime Architecture





Figure 3.X  Layered J2EE Application Architecture

The topmost layer of our architecture is the presentation layer.  In this book we’ll discuss providing presentation layers based on HTML using Java Servlets, JSP and XSLT (eXtensible Stylesheet Language Transformations, which is not a J2EE technology, but is a mechanism for transforming XML documents into HTML commonly used along with Servlets and JSP).  We will also consider Web Services in this layer, even though Web Services are not usually considered to be a program-to-human communication mechanism, but a program-to-program communication mechanism.  We’ll also examine how to test Servlet-based applications using the open-source HTTPUnit tool. 
Next comes the Controller/Mediator layer, which captures the notion of application flow and adapts the domain model layer to the presentation layer.  We’ll examine several different ways of implementing controller logic, including implementing it with Servlets, using the Struts open-source application framework, and even using Message-driven beans (which are EJBs called through JMS) as application controllers for asynchronous logic flows.  

In the domain layer, we’ll examine how to implement domain logic using Java Beans (or, more correctly, Plain Old Java Classes) and Enterprise Java Beans.  We’ll also show you how to test your domain logic using the open-source JUnit toolkit.  To support the persistence of objects in the domain layer, we’ll examine the Mapping layer in depth, discovering how to use Mapper objects, Bean-Managed Persistence and Container-Managed Persistence Entity EJBs.  In addition to showing you how to test the entire system from here on down with JUnit, we’ll also show you how to use the WebSphere Studio Universal Test Client to quickly test those functions.  Finally, we’ll examine the two most common sources of data for J2EE programs, JMS and JDBC.
While the book will proceed roughly in the order we’ve outlined, it won’t cover the layers in strict order because not every system uses every technology we’ve described.  Instead, you can rely on this roadmap graphic, which will be at the beginning of every chapter from Chapter 6 on, to help you understand where the technologies you are learning about fit into the overall J2EE architecture.  
Summary

This chapter described Java’s evolution from an initial way of delivering client server type applications via the web, to a robust object oriented language that can support large-scale multi user enterprise applications. With the addition of the J2EE based technologies, which are supported not by a single Vendor, but embraced by the software community at large, Java technology is a viable choice for developing applications of varying deployment topologies, platforms requirements and business requirements.























































�The JDBC design is slanted towards row based result sets, therefore the majority of JDBC support comes from relational data based vendors







21

