Chapter 30
Building Layered Architectures for EJB systems

In the previous chapter we laid out the requirements and design of our case study and showed you how the web-based portion of the system was developed. In the chapters previous to that you’ve learned a great deal about how to develop Enterprise JavaBeans of the various flavors. Now it’s time to put everything you’ve seen together into a single perspective. In this section of the Case Study we’ll walk through the following patterns and how they are applied, and show the benefits that they convey. Some of the patterns we’ll use in this chapter are new, but many of them you’ve seen before in other chapters. In short, you’ll see the following layers in our example:

· Business Delegates – The Business Delegate pattern ([Alur]) allows you to isolate your controller logic from the details of how domain logic is distributed. The basic approach is to give the appearance of local-remote transparency where it doesn’t exist.

· Session Facades – Session Facades allow you to present a single point of contact to a logical subsystem. At the same time, they provide distributed access to that subsystem. This allows you to use large-grained distributed objects and to avoid the problems that fine-grained distribution causes.

· Mappers - Mappers allow you to hide persistence details from your application and allow you to develop to a logical interface that does not depend on the particular details of a persistence solution such as CMP EJB’s or JDBC. In addition, you can take advantage of the Simulated Mapper approach to test the layers above your persistence layer in the absence of a functioning persistence layer
.

This chapter will show how to connect the code that we developed in the previous chapters on Servlets and JSPs (which operate in terms of Java Beans) together with the Enterprise JavaBeans that we’ve developed in the chapters immediately preceding this one. In the process, we’ll explore some of the issues that can arise and how the patterns above can be used to minimize them.

Problems with an all-Entity EJB solution

To understand why you why the patterns discussed in this chapter are important, let’s first review a few of the basic points about Enterprise JavaBean programming that you’ve learned in the last few chapters.

· Clients (Servlets or Application Clients) should only obtain information from an Enterprise JavaBean by sending messages defined in the Remote Interface to the EJB. While it is possible for a Servlet client to use a Local Interface to an EJB, that will only work if the EJB container and Servlet container are co-deployed in the same JVM; something that may not always be possible.

· Remote methods invocations on an Enterprise JavaBean use RMI over IIOP as the communication mechanism between Java Virtual Machines (JVMs). This means that parameters and return values will be serialized into binary format for transmission over the network.

· All reads, changes and updates of an Enterprise JavaBean should occur within the context of an EJB transaction.

These three points taken together can lead to great inefficiencies in a system design that does not take them into account. The basic problem is that the overhead of the number of network calls required to manipulate complex data entirely by EJB remote methods (e.g., using the Proxy pattern from [Gamma]) is restrictive. Proxy is powerful mechanism, but it’s not the right solution in all situations. Proxy has the unfortunate side effect that every call to a proxy crosses the network. In many situations, this is not only too expensive, but it is also unnecessary.

Consider what would happen if we simply replaced the domain model Java Beans we used in the earlier chapters with CMP Enterprise JavaBeans in a one-for-one replacement. In many cases, this would work fine – the Enterprise JavaBeans that you have seen are in many ways identical to the JavaBeans that you saw in the earlier chapters. However, the fact remains that each call to the Enterprise JavaBeans has the potential of being a network call – meaning if you want to write a Servlet to display a TimeSheet and all of its component TimeSheetEntries, a potentially large number of network calls could be made. For instance, consider the following scenario.Our hypothetical TimeSheetDisplayServlet obtains a reference to a TimeSheet and sends it messages to obtain the state, weekend, and approving Employee. However, the Employee is also an EJB.So obtaining the approver’s name results in another network call. Finally, the servlet obtains the collection of TimeSheetEntries. It dereferences each TimeSheetEntry and sends the TimeSheetEntry messages to obtain the date, hours, and Project. Again, Project is another EJB, so obtaining the project name is yet another network call. So, what we’ve seen is that displaying even this small amount of data has resulted in (N*4) + 4 calls that can cross the network (where N is the number of entries attached to the Timesheet). If each RMI over IIOP call had even a small overhead due to marshalling and unmarshalling of parameters of say, 50 msec, then if a timesheet has 10 entries, we have added (2000 msec = 2 SECONDS) of extra execution time just in crossing the network.

The Session Facade and Data Transfer Object Solution

The first approach to reducing network traffic is to use EJB 2.0 local interfaces for entity EJBs. Then it is only necessary to use remote calls in cases where client and server are in different processes. Using local interfaces wherever possible will reduce the overhead of the network calls by keeping as many calls within the same JVM as possible.

The next approach to minimizing network traffic is to use data transfer objects to collocate data on the client instead of accessing it a piece at a time from the server. Remember that any Serializable object can be passed as a method argument to an EJB remote method call, or returned as a method result from an EJB remote method call. This one fact allows us to develop an architecture that can help us reduce the number of network-crossing calls needed by our clients drastically
.

This solution uses a pass-by-value approach to obtain information from Enterprise JavaBeans rather than a pass-by-reference (proxy) approach. Instead of making requests to an Entity bean from a client for each individual piece of business data, ask a Session EJB (which is then called a Session Facade) for a Serializable java object, called a data transfer object, that contains all the information necessary to display an entire business result or perform a business operation
. The data transfer object can serve as the repository for “business data”, and can be useful for performing validation and calculations
that do not need to be persistent, and whose results are unique to each instance. Likewise, when we need to update information contained in an EJB you can send that information as a data transfer object to the Session Facade, which will determine which EJBs to update, so that all updates can happen within the context of a single EJB transaction
.

The following interaction diagram (Figure 29.2) can illustrate the process just described:

[image: image1.wmf]Servlet

SessionEJB

Entity EJB

Serializable

Object

Serializable

Object

ask for data bean

get information from EJB

create

set copy of information

obtain individual data for display

Figure 29.2 Interaction Diagram using Session Facade

In the interaction diagram above, you see a Servlet asking a Session EJB for a data transfer object. The Session EJB is responsible for obtaining the information that will make up the data bean from one or more Entity EJBs. It is then responsible for creating a Serializable object (i.e., a data transfer object) and copying the information into the data bean. Finally, the data transfer object is returned as the result of the message sent to the Session EJB. On the client side, the Servlet will then obtain the individual data items from the data bean and display them to the user by either embedding the bean directly in a JSP, or by some other mechanism. The point is that all of the calls made from the Servlet to the data bean are local calls – only the single call made from the Servlet to the Session Façade EJB is a network call. This avoids the additional overhead of the all-EJB solution, and usually results in a faster overall system, even though the total number of Java methods invoked is greater.

The Argument for Session Facades

Since the publication of the first edition of this book, the Session Façade pattern has become almost ubiquitous. It has been quite well described in both [Alur] and [Fowler]. What has been discovered through practice is that in an EJB design, EJB clients (e.g. Servlets, Java applications, etc.) should not directly access Entity beans because:

· As described above, there is a significant runtime performance penalty that can be incurred when crossing the network on an RMI-IIOP call. A potential solution to this involves what [Monson-Haefel] describes as “bulk accessors”, which are methods on an Entity bean that create and return value objects to represent the data in the Entity bean. This
is, in fact the solution employed by the CopyHelper Access Beans in WebSphere Studio. However, this has the unfortunate downside that it assumes that all requests will need ALL of the data in the EJB – resulting in returning unnecessary data to the user, and incurring additional overhead for marshalling and unmarshalling the larger data transfer objects
.

· Second, and more importantly, if you allow EJB clients to directly access an Entity bean, then it requires knowledge of the Entity implementation that goes beyond what clients should have. For instance, manipulating an Entity bean will requires knowledge of the Entity relationships (associations, inheritance) that are involved – inappropriately exposing the client to all of the details of the business model
.

· Also, manipulating more than one Entity bean will require the use of client-side transactions – another complication that EJBs are meant to remove from a client design, not add to it.

 [Gamma] describes the Façade pattern as: “Provide a unified interface to a set of interfaces in a subsystem. Façade defines a higher-level interface that makes the subsystem easier to use
.” The application of this idea to EJBs has been generally construed to mean that you should create a Session EJB that acts as a Façade and then “wraps” a set of Entity beans that make up a subsystem. In this way the clients are isolated from the details of the Entity bean implementation, and do not have to manage the details of transaction management themselves
.

However, this overly simple approach is often not sufficient. In the following sections we’ll take a closer look at the Façade pattern in order to understand its ramifications in EJB design and to see a number of other beneficial design possibilities inherent in the pattern.

Key points of the Façade Pattern

There are a number of key points made about the Façade pattern in [Gamma] that we need to understand. The first two are found in the Applicability section of the Façade pattern, which describes when you will want to apply the Façade pattern. They are: “Use the Façade pattern when…you want to provide a simple interface to a complex subsystem” and “Use the Façade pattern when… you want to layer your subsystems. Use a Façade to define an entry point to each subsystem level.”

There are a couple of ideas we can extract out of that discussion of the Façade Pattern. The first is that a Façade should provide an abstract view of the subsystem, rather than simply directly wrapping the API of the whole subsystem itself. Taken to an extreme, a session façade could be created for every entity bean and provide direct access to each of its properties. However this would introduce additional interfaces in the application without providing any additional abstraction. The idea of the pattern is to reduce complexity, not simply to shift it to another part of the application.
The second, subtler point involves layering. The idea here is that you may employ multiple Facades to hide the details of successive subsystems. So here you can imagine that a Session Façade might be layered on top of other Facades that further abstract away the details of the underlying business logic. This is a crucial point. It becomes clearer when you look at the following two statements from the Collaborations Section and the “Related Patterns” section of the Façade pattern in [Gamma] respectively
:

· “Clients communicate with the subsystem by sending requests to the Façade, which forwards them to the appropriate subsystem object(s).”

· “A façade merely abstracts the interface to subsystem objects to make them easier to use; it doesn’t define new functionality.”

We can summarize these points in the following statement – Façade’s don’t do the real work of a system – they instead delegate to other objects that in turn do the work. The ramification of that is that you must have these objects in place in order to make the pattern work as intended.

This
point is very important. One thing you don’t want is for your designs to be unnecessarily EJB-centric. You should certainly not assume that the only objects in your system are EJBs. We have seen that this can result in bloated Session objects that are not reusable at all across projects, and can pose problems when there are slightly different requirements within the same project. The approach we will describe below will avoid this problem.

Rules for Session Facades

So how do you apply these rules about Facades to Sessions and what does this mean for your EJB designs? There are three basic principles that you should apply when designing Session Facades:

1. Session Facades should delegate to other objects to do the real work of the system. This means that each method in a session façade should be small (five lines of code or less not counting exception handling logic).

2. Session Facades should provide a simple interface. This means that the number of façade methods should be relatively small (no more than a two dozen or so in each Session bean).

3. Session Facades act as the client interface to the underlying system. They should encapsulate the subsystem-specific knowledge and not unnecessarily expose it.

So how does this work? What other types of objects can you delegate work to, and what advantage does that confer in your designs? In general, there are four kinds of objects that you find in most EJB designs:

1. Data Transfer Objects (DTOs). As described above DTOs are Serializable Java beans that contain data requested by a client. They contain a subset of the data contained the Entity Beans and other data sources. They are the return types for Session EJB methods. (Note, Data Transfer Objects are called Value in both [Sun 2001] and [EJB 2.0] but [Fowler] uses the more descriptive term Data Transfer Object, which is the terminology we have chosen to follow).

2. Mappers [Fowler]. Mappers are responsible for building value objects. In that sense, they act as Factories, and are often called Factories in recognition of this. Mappers know about the different data sources an object’s data is drawn from, create instances of the value objects, fill in the instances of the value objects, and so on. There should be a mapper for every "root" object in your object model. (Root objects are those that "contain" other objects). In a way, a Mapper is also acting as a Façade onto the JDBC or Entity Bean persistence subsystem, implementing the layering principle from [Gamma].
3. Entity EJBs should be standard "data sources" that can be globally useful across the enterprise. Entity beans should not contain application-specific domain logic, nor should they be constrained to only work within a single application. Note that Entity beans are optional and are not a required part of this architecture – a Mapper could just as simply obtain data directly from a data source like a JMS queue or a JDBC Connection as we will demonstrate later.

4. Action objects. An Action object represents a unique business process that a session bean may invoke. Action objects are required to handle business processes that are not related to simply creating, reading, updating or deleting data. Like Mappers, Action objects also act as inner-layer Facades.

Reasons for EJB Objects

So
why do we need this second layer of objects? After all, didn’t we move to Enterprise JavaBeans from CORBA and RMI to make things simpler? Why not just put all of the logic in your EJBs? There are several reasons for this. First and foremost, this is simply an application of layering. It is never a good idea to place too much behavior in a single object. If you layer the objects called by your EJBs in this way, you can gain the following benefits:

· Placing the behavior in a set of objects one level in from the session makes it easier to test them in isolation, perhaps even outside of the context of a J2EE application server.

· Multiple Session Façade objects can use the same inner-layer objects without fear of inappropriate transaction semantics and without the potential network and marshalling/unmarshalling overhead of cross-Session bean calls.

· A second layer of objects allows you to vary the implementation of those objects (by using the Strategy Pattern from [Gamma]) in order to take advantage of particular features of an application server, while still allowing the entire design to remain portable across Application Servers. For instance, [Brown 2000a] describes some particular caching strategies for speeding up EJB performance that work under the WebSphere Application Server, Advanced Edition, but that would not work under the IBM CICS EJB support. By providing two implementations of the same Mapper class or Action class, you can keep the overall design portable, while taking maximum advantage of the peculiarities of each server.

· In cases where you do not need a JTA transaction context (e.g., you are only working against a single data source) this pattern allows you to choose to deploy and build your applications either with or without EJB’s. For instance, in some simple query cases it may be significantly more efficient to call a Factory directly from a Servlet in order to avoid the overhead of the EJB calls.

Also, we have found through review of several projects that reuse only rarely occurs at the Session level. This is because each Session will have a specific combination of transactional settings and method signatures for a specific application. Having a second layer of objects can instead result in reuse at the inner-layer level, where we have seen reuse in many projects, both within projects (across different Session beans) and across projects in the enterprise.

We have seen that if you employ this design strategy then your designs can often use Stateless session beans as your Façade objects. Since each Stateless Session bean is not unique to a single user, this allows you to gain the additional scalability that stateless beans provide.

Now that we’ve seen the kinds of objects that sit behind the façade, we can start to look at what kind of methods the façade will present to the outside world. We have seen that Façade methods will usually fall into the following types:

· Collectors. Collector methods often begin with “get” and return a single object or a collection of objects (represented as an Enumeration in EJB 1.0 or a Java Collection in EJB 1.1 and 2.0). The collector method will defer its implementation to a Mapper object (possibly through the intermediary of a helper object) as shown below.

· Updaters. An Updater method will locate and update an Entity bean or a set of Entity beans based on information held in Value objects passed in as the arguments. The method name will often begins with “update” or “set”. An updater method’s implementation can be either deferred to a mapper, or it may be enclosed a separate class.

· Actions. An Action method (e.g., AccountBean.transfer(String fromAcctNum, String toAcctNum, BigDecimal amount) will defer its implementation to an Action object.

A Simple Example from the Case Study

Now that you have seen the basic outline of the session façade/data transfer object solution, you are ready to start stepping through the code of one of the simplest examples of how this solution is put to use in our case study. In this example, you will see how to obtain a set of data beans that correspond to the list of Projects available for selection. This will be used a few times in our case study code – for example, the EmployeeTimeSheetAction asks for a list of projects to display in a drop-down so that someone entering a new TimeSheetEntry can assign that entry to a project. This is an example of the “Collector” method type that we discussed earlier.

Figure 29.3 presents a high-level object interaction diagram of how the list of project is accessed. After exploring the diagram, we’ll take an in-depth look at the example code to see how each class plays its role.

[image: image2.emf]

getPrimaryKey

TimesheetAction

ProcessorImpl

TimeSheetAction

ProcessorFacade

ProjectModel

Helper

ProjectMapper ProjectEJB

Home

ProjectEJB Project

getTSFacade

findAllProjects

findAllProjects

findAll

findAllEJBs

findAll

map

getName

setNumber

setName

Figure 29.3 Interaction Diagram to get list of Projects

The interaction begins with an instance of TimeSheetActionProcessorImpl, which acts as a Business Delegate ([Alur]) and wraps our Session Façade
.All of the interactions that we will examine take place with a single Session Bean, the TimeSheetActionProcessorFacade.Each Domain object class has a Mapper class that is responsible for retrieving instances of the class from the persistent store
. Now let’s take a look at the findAllProjects() method in the TimeSheetActionProcessorImpl class:

/**

 * @see TimeSheetActionProcessor#findAllProjects()

 */

public ArrayList findAllProjects() {

TimeSheetActionProcessorFacade modelFacade = null;

try {

modelFacade = getTSFacade();

if (modelFacade != null)

return modelFacade.findAllProjects();

return null;

} catch (RemoteException re) {

return null;

} catch (ModelException me) {

return null;

} finally {

try {

modelFacade.remove();

} catch (Exception e) {

}

}

}
As you can see, there’s not much to this method. All of the real work is done on the server side. To see this, take a look inside the implementation of findAllProjects() in the TimesheetActionProcessorFacadeBean class:

/**

 * @see TimeSheetActionProcessor#findAllProjects()

 */

public ArrayList findAllProjects() throws ModelException {

return new ProjectModelHelper().findAllProjects();

}
Again, this method is simply “passing the buck” on to a helper class. The ProjectModelHelper
simply groups together related methods that all act on instances of the Project domain object. The implementation of that method is shown below:

/**

 * @see TimeSheetActionProcessor#findAllProjects()

 */

public ArrayList findAllProjects() throws ModelException {

ArrayList list = null;

try {

Mapper mapper =

MapperFactory.getSystemMapperFactory().getMapper(Project.class);

list = mapper.findAll();

} catch (MappingException e) {

throw new ModelException(

"Mapping Exception caught in + findAllProjects() " + e);

}

return list;

}
The TimesheetActionProcessorFacade is a facade. That means that it shouldn’t do much on its own, but instead should provide an interesting and useful abstraction of an underlying subsystem. In this case, the Entity beans and the Mappers that we will examine next make up the subsystem hidden by this facade.

Take a look at the following class diagram (Figure 29.4), which illustrates some of the features of the mapper hierarchy.

[image: image3.emf]

DomainEJBMapper

Mapper

ProjectMapper

Figure 29.4 ProjectMapper hierarchy

ProjectMapper inherits a number of template methods from its superclass, DomainEJBMapper. One of these methods is the findAll() method that is shown below:

/**
 * Return a ArrayList of all Domain objects of the type created by this factory.
 * Creation date: (3/19/00 7:59:51 PM)
 * @return java.util.ArrayList
 */
public ArrayList findAll() throws MappingException {

Iterator allEJBs = findAllEJBs().iterator();

ArrayList list = new ArrayList();

while (allEJBs.hasNext()) {

Object next = allEJBs.next();

Object mapped = map((EJBLocalObject) next);

list.add(mapped);

}

return list;
}
This method relies on three abstract hook methods that are redefined in each of the subclasses of DomainEJBMapper. The first, findAllEJBs(), returns an ArrayList of all of the Entity EJBs that correspond to the domain object type. To see what is meant, take a look at the implementation of findAllEJBs() in ProjectFactory:

/**
 * This method retrieves all ProjectEJB's from the store
 * Creation date: (2/19/00 3:02:08 PM)
 */
protected Collection findAllEJBs() throws MappingException {

try {

return projectHome.findAll();

} catch (Exception e) {

throw new MappingException("Wrapped exception : " + e);

}
}
At this point we’ve almost unwound all the way to the bottom. ProjectHome’s findAll() method is a custom finder method. As with all custom finders in WebSphere, this is implemented with EJB-QL that is found in the EJB Deployment Descriptor. In our case, the following section of the EJB Deployment Descriptor defines this EJB-QL:

<query>
<query-method>
<method-name>findAll</method-name>
<method-params></method-params>
</query-method>
<ejb-ql>select object(o) from ProjectEJB o</ejb-ql>

</query>
Note that as is common with “findAll” methods, that there is no “WHERE” clause in this EJB-QL.

There is one more hook method that findAll() uses that you should examine. That method, map(EJBLocalObject obj), returns a domain object that contains the information contained in the EJBObject passed into it as an argument. The following implementation of map() in ProjectMapper shows a simple example of this:

/**
 * Return an instance of Project created from the ProjectEJB passed in as an argument
 * Creation date: (2/20/00 9:41:44 PM)
 */
public TsObject map(EJBLocalObject input) throws MappingException {

ProjectEJB ejb;

try {

ejb = (ProjectEJB) input;

} catch (ClassCastException e) {

throw new MappingException("Attempt to map a non ProjectEJB in ProjectFactory:" + e);

}

Project proj = null;

try {

proj = new Project();

proj.setNumber((String) ejb.getPrimaryKey());

proj.setName(ejb.getName());

} catch (Exception e) {

AppService.log(TraceCapable.ERROR_LEVEL,"Exception " + e + " caught in ProjectFactory.map()");

throw new MappingException("Wrapped Exception " + e+ " caught in ProjectFactory.map()");

}

return proj;
}
The first try...catch block in the method is meant to catch runtime problems that would result from trying to map something that is not a ProjectEJB. The second try…catch block does the bulk of the work of this method. As you can see, the method first creates a new instance of Project then sets its number and name variables to the values obtained from the ProjectEJB passed in as an argument. Presuming that this all works correctly, the result returned from this method is an instance of Project. This project instance works its way back to the previous method and is finally added to the ArrayList that is returned by the TimesheetProcessorActionFacade.

A more complex example
Now that you understand the basic way in which facades, mappers, data transfer objects and Entity beans interact, you are ready to move on to understanding a more complex interaction – the way in which Timesheets, including all of their component objects, are fetched for display.

In order to understand how this works, you will need to revisit the hierarchy of Mappers that we have employed in our solution (Figure 29.5):

[image: image4.emf]DomainEJBMapper

Mapper

ProjectMapper

TimeSheetEntry

Mapper

TimeSheetMapper

EmployeeMapper

employeeMapper

projectMapper

timesheetEntryMapper

Figure 29.5: Factory relationships for underlying object relationships

As you can see from the above diagram, most of the complexity in this solution is in the TimesheetMapper and TimeSheetEntryMapper classes. A TimesheetMapper contains references to both an EmployeeMapper and a TimeSheetEntryMapper – in fact, TimeSheetEntryMappers only exist in the context of a TimesheetMapper – you never map TimeSheetEntries to their corresponding EJBs outside of the context of a Timesheet. Likewise, a TimeSheetEntryMapper contains a reference to a ProjectMapper. These relationships exactly parallel those of the Java Beans these factories create and the Entity EJBs from which they store and retrieve their data
.

The Timesheet creation process matches that of the Project creation process because they share most of the same classes and methods. Since the business delegate methods upstream of the TimesheetProcessorActionFacade are very nearly the same, you can start learning about the differences by examining the creation of Timesheets at TimesheetProcessorActionFacade’s findPendingForEmployee() method:

/**

 * @see TimeSheetActionProcessor#findPendingForEmployee(String)

 */

public ArrayList findPendingForEmployee(String empId)

throws NoSuchEmployeeException, MappingException {

return new TimeSheetModelHelper().findPendingForEmployee(empId);

}
As in the previous example, the implementation of this method is deferred to a helper object. The implementation of findPendingForEmployee() in TimeSheetModelHelper
is shown below:

/**

 * @see TimeSheetActionProcessor#findPendingForEmployee(String)

 */

public ArrayList findPendingForEmployee(String empId)

throws NoSuchEmployeeException, MappingException {

TimeSheetMapper mapper =

(TimeSheetMapper) MapperFactory.getSystemMapperFactory().getMapper(

TimeSheet.class);

return mapper.findPendingForEmployee(empId);

}
Remember that in the previous example, the implementation of findAll() in DomainFactory relies on the findAllEJBs() and map() hook methods. The implementation of findPendingForEmployee() in the TimeSheetMapper class is similar, but different enough to point out some unique aspects in building Mappers for Entity EJBs. Take a look at the implementation of this method shown below:

public ArrayList findPendingForEmployee(String empId) throws MappingException {

Collection selectedTS = null;

try {

selectedTS = timesheetHome.findPendingByEmployee(empId);

} catch (FinderException fe) {

throw new MappingException("Wrapped Exception " + fe + " caught in findPendingForEmployee()");

}

ArrayList list = new ArrayList();

Iterator it = selectedTS.iterator();

EJBLocalObject local;

while (it.hasNext()) {

local = (EJBLocalObject) it.next();

Object mapped = map(local);

list.add(mapped);

}

return list;

}
This method doesn’t use the findAllEJBs() method, but instead goes directly to the Entity bean to execute a custom finder method (findPendingByEmployee()) that returns all of the pending timesheets for this Employee. It does so through the following EJB-QL:

select object(o) from TimeSheetEJB o where (o.state = 'PENDING') AND (o.submitter.empId = ?1)

What this EJB-QL does is to request back only those TimeSheets for which the state is “PENDING” (which is the constant string that a PendingState returns for its state name) and whose submitter’s Employee ID matches the argument passed in. Note that EJB-QL is an object query language – it may resemble SQL, but it is defined in terms of the EJB model, and not a database model. Therefore the domain model is not compromised by putting domain behavior in the EJB-QL.

The major benefit of performing queries to populate data used in facades using EJB-QL is speed. Since the EJB-QL will be translated (at deployment time) into a SQL query, then the filtering of the Pending from the Approved timesheets will occur at the database, rather than within the application server.
 By way of comparison, let’s look at the corresponding implementation of findApprovedByEmployee(), in which we chose to implement the filtering in the mapper method:

public ArrayList findApprovedForEmployee(String empId) throws MappingException {

ArrayList allSheets = findForEmployee(empId);

// remove Pending timesheets

ListIterator iterator = allSheets.listIterator();

while (iterator.hasNext()) {

TimeSheet currentTS = (TimeSheet) iterator.next();

if (currentTS.isPending())

iterator.remove();

}

return allSheets;
}
In this implementation, the data must be transferred from the database to instantiated EJBs, and then filtered using the test in the iterator above. Doing the selection directly in the database eliminates all this unnecessary data transfer and object creation. Now, while query implementation is an interesting and useful diversion, you will find that the real differences between this collector method implementation and that of the previous example is in the implementation of map(). Examine the following code and then take a look at the explanation that follows:

/**
* Return the domain object this EJB object maps to.
* Creation date: (2/26/00 3:53:49 PM)
* @return com.wsbook.casestudy.domain.TimeSheet
* @param ejb com.wsbook.casestudy.ejb.TimeSheetEJB
*/
public TsObject map(EJBLocalObject input) throws MappingException {

TimeSheetEJB ejb;

TimeSheet timeSheet;

try {

ejb = (TimeSheetEJB) input;

} catch (ClassCastException e) {

throw new MappingException("Attempt to map a non TimeSheetEJB in TimeSheetMapper:" + e);

}

try {

timeSheet = new TimeSheet();

shallowMap(timeSheet, ejb);

Iterator entries = ejb.getEntries().iterator();

TimeSheetEntryEJB entryEJB;

ArrayList newEntries = new ArrayList();

while (entries.hasNext()) {

entryEJB = (TimeSheetEntryEJB) entries.next();

TimeSheetEntry entry = (TimeSheetEntry)getEntryFactory().map(entryEJB);

entry.setTimeSheet(timeSheet);

newEntries.add(entry);

}

timeSheet.setEntries(newEntries);

} catch (Exception e) {

AppService.log(TraceCapable.ERROR_LEVEL,"Exception " + e + " caught in TimeSheetMapper.map()");

throw new MappingException("Wrapped Exception " + e + " caught in TimeSheetMapper.map()");

}

return timeSheet;
}
private void shallowMap(TimeSheet timeSheet, TimeSheetEJB ejb) throws java.rmi.RemoteException, javax.ejb.FinderException, MappingException {

timeSheet.setTimesheetID(((TimeSheetEJBKey) ejb.getPrimaryKey()).timeSheetId);

EmployeeEJB employee = ejb.getApprover();

if (employee != null) {

Employee approver = (Employee) getEmployeeFactory().map(employee);

timeSheet.setApprovedBy(approver);

}

employee = ejb.getSubmitter();

if (employee != null) {

Employee submitter = (Employee) getEmployeeFactory().map(ejb.getSubmitter());

timeSheet.setEmployee(submitter);

}

timeSheet.setWeekendFromFormattedString(ejb.getWeekend());

String stateName = ejb.getState();

TimeSheetState state = null;

if (stateName.equals("APPROVED"))

state = TimeSheetState.getApprovedState();

else

state = TimeSheetState.getPendingState();

timeSheet.setState(state);
}
If you dissect these methods you can learn how the different pieces work and understand the concept as a whole. First, note that we’ve chosen to split this into two methods; map() represents the mapping of the entire TimeSheet object, including its dependent parts. However, the details of mapping the submitter, approver, weekend and state are taken care of in the method shallowMap(). So, shallowMap() is roughly equivalent to the entire map() method we examined previously for Projects. However, the first real difference occurs when the method begins to handle the relationships between the Timesheet and the Employees that submit and approve the Timesheet. Take a look at the following code snippet taken from the beginning of the shallowMap() method:

EmployeeEJB employee = ejb.getApprover();
if (employee != null) {

Employee approver = (Employee) getEmployeeMapper().map(employee);

timeSheet.setApprovedBy(approver);
}
What this snippet of code does is turn over the problem of creating a new instance of Employee from an EmployeeEJB to the EmployeeMapper class. It uses the EJB relationship getter method getApprover() to obtain an EJB object (an EmployeeEJB) and then asks the EmployeeMapper to return an Employee that is created from that information. Finally, it sets the timesheet domain object’s approving employee to be that Employee. The same solution is repeated for the submitting employee a few lines later.

Next, the shallowMap() method performs some Date manipulation to take the String that is returned from the EJB and convert it into a Calendar so that it can be set into the TimeSheet. Only the last part of this method, which creates the State, deserves more inspection. Take another look at the following code snippet:

String stateName = ejb.getState();

TimeSheetState state = null;

if (stateName.equals("APPROVED"))

state = new ApprovedState(timeSheet);

else

state = new PendingState(timeSheet);

timeSheet.setState(state);

This method creates a brand new state object whose type is based upon the information stored in the state attribute of the EJB. This kind of object creation based on static information is common in cases where the object that is created has no internal state, or whose internal state can be entirely recreated (as it can here). When storing objects like this (which are often Flyweights, as in [Gamma]) you are often better off storing a simple String that can be interpreted at run time than storing a more complex representation of the object.

Going back to the map() method, the last problem addressed is creating the TimeSheetEntry instances that a Timesheet holds. The following code snippet taken from the map() method illustrates how this is done:

Iterator entries = ejb.getEntries().iterator();
TimeSheetEntryEJB entryEJB;
ArrayList newEntries = new ArrayList();
while (entries.hasNext()) {

entryEJB = (TimeSheetEntryEJB) entries.next();

TimeSheetEntry entry = (TimeSheetEntry)getEntryMapper().map(entryEJB);

entry.setTimeSheet(timeSheet);

newEntries.add(entry);
}
timeSheet.setEntries(newEntries);
First, the method obtains the list of entries (which, remember are TimeSheetEntryEJBs) from the TimesheetEJB. It then iterates over this list of entries. Once the method has obtained the EJB reference returned from the Iterator, it then calls the map() method in TimeSheetEntryMapper to map this EJB to a TimeSheetEntry data transfer object. Having done this, it adds the new TimeSheetEntry to the ArrayList and loops around again. Finally, the method sets the list of entries in the Timesheet to the ArrayList of TimeSheetEntries that is has just created.

Mappers Revisited

Now, let’s take a short break from the case study to review a couple of fine design points. Remember that the intent of the Mapper pattern is to provide a single, common “point of contact” to a particular data source. The Mapper pattern provides a separation of concerns in your designs – keeping your business logic independent from your database persistence code
. Mappers are responsible for operating on data access objects, as we have seen. As a result, these Mapper classes will contain methods that are collectively known as “CRUD” (for Create, Read, Update, Delete) that operate on these DTO’s. What you may not have noticed in our design is that all of our Mapper classes have implemented interfaces that define these methods. For instance, our ProjectMapper class implements the following interface (in the package com.wsbook.casestudy.mapping).

public interface ProjectMapper extends Mapper {

public Project findByName(String projectName) throws MappingException;

public Project findById(String projectId) throws MappingException;
}
As you can see, in our example, ProjectMapper extends the Mapper interface, which is shown below:

/**
 * Mapping API implemented by data source access mechanisms that access specific
 * data sources, such as JDBC or EJB, and "maps" results to objects.

 * This interface specifies a set of persistent operations in order to

 * retrieve and store Objects to and from specific data sources.
 * */
public interface Mapper {

/**

 * Delete a TsObject from its store

 */

public void remove(TsObject anObject) throws NoSuchObjectException, MappingException;

/**

 * Insert a new TsObject into the store

 */

public void insert(TsObject anObject) throws DuplicateKeyException, MappingException;

/**

 * Return a ArrayList of all TsObjects (use carefully in practice!)

 * We use this in our example, but in fact more "wise" enumerators

 * That would directly query the datasource (e.g. through EJB finders)

 * @return ArrayList

 */

public ArrayList findAll() throws MappingException;

/**

 * Retrieve a single object matching this object.

 * @return TsObject

 */

public TsObject findByPrimaryKey(TsObject anObject) throws NoSuchObjectException, MappingException;

/**

 * Update this object (e.g. change its state in the store)

 */

public void update(TsObject anObject) throws NoSuchObjectException, MappingException;
}
Declaring this interface is a standard part of implementing the Mapper pattern. For example, [Alur] shows the use of such an interface in nearly all of the design diagrams that illustrate the implementation of the Data Access Object pattern (which, you’ll remember, is the same as Fowler’s Mapper pattern
). So, each of our concrete Mapper implementations implement a specific mapper interface, as shown below:

[image: image5.emf]

ProjectMapper <<interface>> (from com.wsbook.casestudy.mapping)

ProjectMapper (from com.wsbook.casestudy.mapping.ejb)

Mapper <<interface>> (from com.wsbook.casestudy.mapping)

Figure 29.6 ProjectMapper hierarchy

Simulated Mappers

Now, at this point we can show why the declaration of this (seemingly redundant) interface is important. In [Alur] the DAO Interface is declared in order to allow for the creation of additional Data Access Objects that sit on top of other data sources. For instance, [Alur] refers to the possibility of having DAO’s for both an XML file format and a relational database in the case where your application has two different data feeds. However, there is another possibility that I want to discuss here. What we can also do is to create a Mapper that in fact sits on NO external datasource. This may seem like insanity of the first order, but there are a number of benefits that you can derive from the implementation of this idea (which is similar in form to the idea of Mock Objects, described in [Mackinnon]). In particular:

· Building a Simulated Mapper allows you to test your code without having to have a database in place with the application server. This means (for instance) that you don’t have to have an instance of DB2 on every developer’s desktop if you don’t want it.

· When building an application using Servlets, JSP’s and EJB’s you have enough to worry about without having to deal with database errors too. This idea of “layered testing” allows you to work out the problems with your presentation and business logic without simultaneously dealing with database issues.

· Being able to separate out a layer allows you to more easily isolate problems that occur in testing – for instance, let’s assume that you have an error that’s difficult to locate – you see a generic exception (like “TransactionRollbackException”) but you can’t pinpoint the source of the error. The ability to remove the database layer from the equation entirely allows you to more closely identify where the problem is occurring in your code.

· This approach can come in handy for performance profiling and testing as well. By replacing the database layer you can isolate many performance and multi-threading problems. While some classes of performance problems (database deadlock, etc.) still require the database to resolve, you can obtain useful measurements of domain and GUI performance, and more easily resolve problems in those layers, by using this technique.

To show you what these “simulated” mappers look like; let’s examine part of the In-Memory version of the Project Mapper (some methods have been left out for brevity).

/**
 * This class is the "in-memory" Mapper for Projects.
 * It creates the default collection of Projects.
 */
public class ProjectMapper extends ObjectMapper implements com.wsbook.casestudy.mapping.ProjectMapper {

protected static ArrayList cache = null;

/**

 * ProjectMapper constructor.

 */

public ProjectMapper() {

super();

}

/**

 * Return the singleton cache of Project objects.

 */

protected ArrayList getCache() {

if (cache == null) {

cache = initialLoad();

}

return cache;

}

/**

 * Create and return a ArrayList of Project Objects.

 */

ArrayList initialLoad() {

ArrayList v = new ArrayList();

Project p = new Project();

p.setNumber("P1");

p.setName("Development at ABC Corp.");

v.add(p);

p = new Project();

p.setNumber("P2");

p.setName("Project work at XYZ Corp.");

v.add(p);

return v;

}

/**

 * Return a specific Project object matching the input id

 */

public Project findById(String id) throws NoSuchProjectException{

ArrayList projects = getCache();

ListIterator iter = projects.listIterator();

Project currentProj = null;

while (iter.hasNext()) {

currentProj = (Project)iter.next();

if (currentProj.getNumber().equals(id))

return currentProj;

}

throw new NoSuchProjectException("No project matching " + id + " found");

}

/**

 * Implement the findByPrimaryKey method defined in the Mapper interface

 * by returning the Project matching the id of the Project passed in.

 */

public TsObject findByPrimaryKey(TsObject input) throws NoSuchProjectException {

Project proj = (Project) input;

return findById(proj.getNumber());

}

/**

 * Clear the cache. This is only used in testing.

 */

public void clearCache() {

cache = new ArrayList();

}
}
All this class does is to store an instance of ArrayList in the static variable “cache”, and allow access to that cache. When the first instance is initialized, it will load the cache with a set of “starter” Projects. Users of this class can then locate Attendee Projects by using the findById() and findByPrimaryKey() methods that search the collection for the appropriate elements. To understand how elements are added and removed from this cache, take a look at the implementation of the ObjectMapper class:

/**
 * This class represents a simple, "in-memory" mapper for TsObjects.
 * It stores the objects in a ArrayList.
*/
public abstract class ObjectMapper implements Mapper, Serializable {

/**

 * ObjectMapper constructor.

 */

public ObjectMapper() {

super();

}

protected abstract ArrayList getCache();

/**

 * Remove all entries from the cache.

 * Required for the JUnit Test Cases.

 */

public abstract void clearCache();

/**

 * Remove this TsObject from the cache.

 */

public void remove(TsObject anObject) {

ArrayList cache = getCache();

synchronized(this.getClass()) {

cache.remove(anObject);

}

}

/**

 * Return a ArrayList of TsObjects for a Mapper.

 * This should be overriden for each Mapper that requires

 * an initial population of objects

 * @return java.util.ArrayList

 */

abstract ArrayList initialLoad();

/**

 * Insert TsObject into cache.

 */

public void insert(TsObject anObject) {

synchronized(this.getClass()) {

ArrayList cache = getCache();

cache.add(anObject);

}

}

/**

 * Retrieve all objects in this mapper.

 */

public java.util.ArrayList findAll() {

ArrayList cache = getCache();

return (ArrayList) cache.clone();

}

/**

 * Retrieve a single object matching the input object.

 */

public abstract TsObject findByPrimaryKey(TsObject anObject) throws NoSuchObjectException;

/**

 * The default update() method does a remove and an insert

 */

public void update(TsObject anObject) {

remove(anObject);

insert(anObject);

}
}
Now, to make this work in our case study, we must have an easy way to replace the “real” Mapper class with our new “simulated” Mapper class that polymophically substitutes for the original class. The answer we need is even provided for us by [Alur] in the discussion of the use of object factories in the implementation of the Mapper pattern.

What we wanted to do was to make our client code avoid references to either the concrete com.wsbook.casestudy.mapping.ejb.ProjectMapper class or the new com.wsbook.casestudy.mapping.memory.ProjectMapper class; using an object factory allows us to provide the client code with instances of the concrete class when one is necessary.

A key concept here is that our object factory uses a software “switch” that allows it to return an instance of either the “real” Mapper class, or the “simulated” Mapper class as necessary. In our case, the switch itself is held in a properties file named wasBookConfig.properties, stored in the TimeApp-AppLogic project and dependent JAR file. You’ve already seen the invocation of the object factory back in the ProjectModelHelper.findAllProjects() method. In that method, the mapper was obtained by using the code:

Mapper mapper = MapperFactory.getSystemMapperFactory().getMapper(Project.class);
The MapperFactory class implements this switch – what it does is to return an appropriate instance of a MapperFactory subtype from getSystemMapperFactory() as shown in the following diagram (Figure 29.7):

[image: image6.emf]MapperFactory

systemMapperFactory : MapperFactory

EJBMapperFactory

MemoryMapperFactory

Figure 29.7 Mapper Factories

As you run your tests you will often begin by setting this switch to return the simulated class so that you can test the remainder of the system in isolation from the database. Only in later tests will you ever set the switch to return the “real” EJB-based Mapper. So, including the factory class, the final design arrived at this looks something like the following diagram:

<< Insert Full Mappers Diagram
>>

Note that there are several ways in which we could have implemented our simulated Mapper class. What we’ve done in the case study is the simplest implementation where results are simply fetched from an in-memory collection that must be populated during the test. Another common extension of this idea is to “prefill” the collection with default values in the constructor of the class. The major disadvantage of using a Singleton as we have done above is that you must “clear” the singleton between each test – if you miss it in one test, then it can cause a failure in a later test. Luckily most unit test frameworks (like JUnit [Beck]) provides facilities to make this easy. For instance, in JUnit, you can put code to “clear” the Singleton in the “teardown()” method of your test class, and put any “prefill” code in the “setUp()” method of the test class. We will show that in the JUnit tests for the case study.

A second approach, which is slightly more complicated, but also provides for more realistic tests, is to use Java Serialization to read a set of objects from a file or to use XML for the same purpose. The advantage of this is that it is possible to use several files to represent different initial conditions for the test.

In general, we would often recommend that the first Mapper that you should build is the “default” Mapper going to an in-memory collection of DTO’s. You can then pass this version off to the team building the upper layers of your application (Servlets and JSP’s, for instance) while then working with another team to build the Mappers that will actually work with the database. This allows you to keep both teams working simultaneously, with the interaction between the teams being defined by a shared contract (the Mapper interface).

An updating example

Now that you’ve mastered the complexity of creating a Timesheet from the corresponding EJB, you should be ready for the inverse operation – updating the state of a TimesheetEJB from information held in a Timesheet object. Before we dive into the implementation of how updating is done in the case study, however, we need to talk a little bit about the theory of updating with Session beans.

You may recall that in Chapter 21 in our simple example of using a Session bean that we included an update method that took as its argument a Map that contained the constituent elements of our Employee class. That approach could be extended to actually include sending an entire domain object as the argument to an updater method. So, if we wanted to update a simple domain object, like a Project, we would simply have a method called update() on the Business delegate, Façade and Mapper that takes the information in the domain object and replaces the information in the database by updating the corresponding EJB. We use that approach for Employees and Projects in our case study. Let’s take a look at the Mapper implementation of update() for ProjectMappers to see how this works.

/**
 * Update the EJB corresponding to this domain object.
 * Creation date: (2/20/00 9:41:44 PM)
 */
public void update(TsObject obj) throws MappingException{

try {

Project proj = (Project) obj;

ProjectEJB projectEJB = projectHome.findByPrimaryKey(proj.getNumber());

projectEJB.setName(proj.getName());

} catch (Exception e) {

AppService.log(TraceCapable.ERROR_LEVEL,"Exception " + e + " caught in ProjectFactory.update()");

throw new MappingException("Wrapped Exception " + e + " caught in ProjectFactory.update()");

}
}
Again, there’s nothing unexpected here – the Mapper simply locates the right ProjectEJB using findByPrimaryKey() and then sends the setName() method to that EJB to update the name of the project if it has changed. Note that you can’t change a project number in this method – that’s because project number is the primary key. Changing it would mean that you aren’t updating a project, you’re creating a new project.

While this works approach fine for simple objects like Projects, what would happen if we tried this with more complex objects like Timesheets? Since a Timesheet contains several other objects inside it (TimeSheetEntries, Employees, and even Projects) this could present a problem. For instance, if the change was to remove a TimeSheetEntry, how would you detect that? If you sent in the entire timesheet, then the only mechanism for doing that would be to laboriously compare all of the TimeSheetEntries in the TimeSheet to the list of TimeSheetEntryEJBs returned for the corresponding TimeSheetEJB and then determine if one had been added, removed, or changed. In that case, it might even be easier to simply delete all of the existing TimeSheetEntryEJBs and then insert all new ones – which could work for our simple TimeSheet example, but as you could imagine would cause problems if the number of contained objects were much larger than the few TimeSheetEntries that we’re dealing with.

So, we need a different approach. The preferred mechanism for dealing with changes to deeply contained objects like the TimeSheetEntries is to instead capture the changes as they occur. Instead of saying “figure out what changed in this object” we need to somehow tell our Session Façade “This is EXACTLY what changed in this object”. The way out of our quandary is to use the Command pattern from [Gamma] to represent each change as an object in itself that is communicated with the Façade. So, we in effect would send “delete this particular timesheet entry” to the Façade instead of sending the timesheet and making it the job of the Façade and the Mappers to determine how to accomplish that task.

Now, you may be thinking that this is somehow cheating; that you’re moving the complexity to the GUI instead of putting the burden on the back-end. In fact, we’re making the GUI simpler as a result. When you’re building a GUI element like a Struts Action, you are already representing a particular user interface action like adding or deleting a TimeSheetEntry. So, it’s often easier to simply build a Command object from the information you have in the GUI than it would be to find and update the corresponding domain object.

To show you how this is done, let’s again start at the TimesheetActionProcessorImpl class, this time in the updateTimesheet() method.

/**

 * @see TimeSheetActionProcessor#updateTimeSheet(UpdateTimesheetFormCommand)

 */

public TimeSheet updateTimesheet(UpdateTimesheetFormCommand command)

throws NoSuchTimeSheetException {

TimeSheetActionProcessorFacade modelFacade = null;

try {

modelFacade = getTSFacade();

if (modelFacade != null)

return modelFacade.updateTimesheet(command);

else

throw new NoSuchTimeSheetException();

} catch (RemoteException re) {

throw new NoSuchTimeSheetException();

} finally {

try {

modelFacade.remove();

} catch (Exception e) {

}

}

}
Moving into the TimesheetFactory class, you see the following code, which is a major change from what we’ve seen previously.

/**

 * @see TimeSheetActionProcessor#updateTimeSheet(UpdateTimesheetFormCommand)

 */

public TimeSheet updateTimesheet(UpdateTimesheetFormCommand command)

throws NoSuchTimeSheetException {

return command.updateTimesheet();

}
Note that all this does is turn the problem around and tell the command object to render the update to the TimeSheet. That is basically the essence of the Command pattern; to treat an action as an object that can be passed around. So, to see how the job is accomplished, we need to look inside the UpdateTimesheetFormCommand. We’ll start by examining its class definition and instance variables:

public class UpdateTimesheetFormCommand implements Serializable {

// ------------------ Instance Variables

private String employeeId;

private String weekending;

private int[] removeEntryId;

private String addDate;

private String addProjectId;

private String addHours;
…
}

First of all, you’ll note that the class implements Serializable. It has to be since it will be passed in its entirety as an argument to the Session Façade. The instance variables that the command class contains are tailored to the needs of the user interface that will generate this class. The user interface (which we will examine in the next chapter
) allows a user to either select one ore more existing TimeSheetEntries within a TimeSheet for deletion or to add a new TimeSheetEntry. It doesn’t allow changing an existing entry, but that can be accomplished in two steps by deleting the old entry and then replacing it with a new one.

However, the real work of the class happens in the updateTimeSheet() method, which is shown below:

/**
* Command execution
* Given the encoded add and remove TimeSheetEntry commands, update the
* corresponding TimeSheet.
*/
public TimeSheet updateTimesheet() {

TimeSheet tsheet = null;

TimeSheetMapper tsMapper =

(TimeSheetMapper) MapperFactory.getSystemMapperFactory().getMapper(

TimeSheet.class);

TimeSheetEntryMapper entryMapper =

(TimeSheetEntryMapper) MapperFactory.getSystemMapperFactory().getMapper(TimeSheetEntry.class);

try {

// get the owning TimeSheet

tsheet = tsMapper.findByKey(getEmployeeId(), getWeekending());

// process command

// first check if there are any Entries to be removed

int[] removeIds = getRemoveEntryId();

if (removeIds != null) {

for (int i = 0; i < removeIds.length; i++) {

tsheet = entryMapper.removeByKey(tsheet.getTimesheetID(), removeIds[i]);

}

}

TimeSheetEntry entry = getEntry();

// check if there is an Entry to be added

if (entry != null) {

// Persist

tsheet = tsMapper.addEntry(tsheet.getTimesheetID(), entry);

}

return tsheet;

} catch (Exception e) {

return null;

}
}
Again, take a look at the method as a whole, and then dissect it into its component parts. The first few lines are quite simple – the method locates a TimeSheetMapper and a TimeSheetEntryMapper which it will need to handle the rest of the steps. Next, it locates the owning TimeSheet using the TimeSheetMapper.findByKey() method. From then on it uses the information in the Command to decide what to do about the TimeSheetEntries for this TimeSheet. First, it iterates through its list of removeId’s (which are the second part of the primary key of the TimeSheetEntries) and deletes all of the TimeSheetEntries that were supposed to be removed using the TimeSheetEntryMapper.removeByKey() method. Finally, if there is an Entry to be added, it determines that by calling the getEntry() method. That method is shown below:

public TimeSheetEntry getEntry() {
 if (validateAddEntryData())
 return new TimeSheetEntry(getAddDate(), getAddProjectId(), getAddHours());
 else
 return null;
}
What this method does is run some validation checks (which make sure that all the required fields are filled in) and if the validation passes, creates a TimeSheetEntry and returns it. Otherwise, it returns null. If a TimeSheetEntry is returned from this method, the updateTimeSheet() method will then insert that TimeSheetEntry using the TimeSheetMapper.addEntry() method. We’ll wrap up our examination of updates by looking at this method and its follow-on methods. We’ll begin at TimeSheetMapper.addEntry():

public TimeSheet addEntry(int tsId, TimeSheetEntry entry) throws MappingException {

TimeSheetEJB ejb = (TimeSheetEJB) findEJBObjectMatching(

new TimeSheet(tsId));

if (ejb == null) {

 throw new MappingException("No TimeSheet with id = " + tsId);

 }

 // create new Entry

 entryMapper.addEntry(entry, ejb);

 return (TimeSheet) map(ejb);
}
The method begins by locating the TimeSheetEJB matching the id for the TimeSheet that is passed in. If there is no corresponding TimeSheetEJB, it throws a MappingException, else it then calls addEntry() in TimeSheetEntryMapper, as shown below:

public void addEntry(TimeSheetEntry entry, TimeSheetEJB parent)

throws MappingException {

// This is the official way to add a TimeSheetEntry

ProjectEJB projEJB = (ProjectEJB) projectFactory.findEJBObjectMatching(entry.getProject());

try {
timesheetEntryHome.create(entry.getHours(),

 entry.getFormattedDate(), projEJB, parent);

} catch (Exception e) {

throw new MappingException("excaption caught in create: " + e);

}
}
This method locates a ProjectEJB matching the project ID, and then invokes a create() method on the TimeSheetEntryEJBHome passing in the hours, a String representation of the date, and the references to the ProjectEJB and TimeSheetEJB required.

You’ve now made it all the way to the end. The createEjb() method called by this create() method is implemented in the TimeSheetEntryEJB, which you have seen in an earlier chapter. There’s nothing much else to note in this method, other than the ever-present date to String format conversion already covered by the Converters discussed in the earlier chapter.

Testing the Session Façade Example with JUnit

So now that you understand how the Case Study EJBs function, you’re ready to see them in action. However, before we start looking into using the Web front-end to our case study, you should first become familiar with the operation of the JUnit Test Cases that we’ve set up to demonstrate the operation of the case study. As we described earlier in the book, you should always plan on writing Unit Tests for your applications; the Test Cases make it possible for you to perform regression tests when you add any functions to your application or when you refactor your application. It’s also usually easier to understand the functioning of a system by reading the JUnit Testcases than it is to puzzle out the implementation of a complex GUI front-end consisting of several Servlets and JSP’s.

In our particular situation, we’re going to demonstrate a common way of testing EJB applications, which is to build JUnit test cases in an application client JAR file and then use the JUnit test runner as the application client itself. The reason you want to build your test cases into an application client is to allow the test cases to run against the EJBs – There’s no way to run the JUnit TestRunner in the EJB container itself, so running it in an application client allow you to test your EJBs externally. You can use either the Java Swing GUI as your application client, or the JUnit text UI – in our example we’ll use the text UI.

So, open WSAD and switch to the J2EE perspective, then open the TimeAppTestClient project. Begin by double-clicking on the Client Deployemnt Descriptor for the project (from either the J2EE Hierarchy or Navigator views), and click on the Edit button next to the Main-Class field on the Overview page to open the JAR Dependency Editor. You can also open the JAR Dependency Editor by opening the Manifest.MF file in the META-INF directory. You’ll remember that the manifest file includes a reference to the “main class” of an Application client. If you look at the Source page for this file (below) you’ll see that the main-class of our application client is junit.textui.TestRunner.

Manifest-Version: 1.0
Main-Class: junit.textui.TestRunner
Class-Path: TimeSheet-AppLogic.jar
 TimeSheetGroup.jar
 junit.jar
The application client manifest also declares that this J2EE module depends on two other modules; the TimeSheet-Applogic dependent JAR (which contains the domain logic of our case study) and the TimeSheetGroup.jar, which is the EJB JAR file that contains our EJBs. Finally, it also depends on the junit.jar dependent JAR, which contains the JUnit classes.

[image: image7.png]clent Deployment Descriptor

JAR Dependencies

Updates the mrifest Class-Path for a utity JAR or modue n an enterpriss applcation. The Java buld path s
Updated accordingly for the containing project
Classpath Scope
Select the enterprie applicaton to use for class-path editing:

Enerprise plcation: [Erleyeebanagement Sl[een

348 or moduls LR n €4 [Employeeansgemert et ar]

Dependencies
Select other JARS or moduls contained by the EAR that are required by this R or modue. Only vald or
existing dependencies are shown.
3R o Module projact

D Data_Mapper_Example.jar Data Mapper Example
[——— Enployeeanagenente o

Main Class

The folowing maifest attribute specifies the Java class of the appication entry point:

il || e |)|

e o

Next, go back to the Client Deployment Descriptor (or open the application-client.xml file), and switch to the source pane of the application client deployment descriptor editor. You’ll find that this file declares the following EJB references:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/application-client_1_3.dtd">
<application-client id="Application-client_ID">

<display-name>TimeAppTestClient</display-name>

<ejb-ref id="EjbRef_1051066552052">

<description></description>

<ejb-ref-name>ejb/TimeSheetActionProcessor</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wsbook.casestudy.ejb.TimeSheetActionProcessorFacadeHome</home>

<remote>com.wsbook.casestudy.ejb.TimeSheetActionProcessorFacade</remote>

<ejb-link>TimeSheetGroup.jar#TimeSheetActionProcessorFacade</ejb-link>

</ejb-ref>

<ejb-ref id="EjbRef_1051666731161">

<description></description>

<ejb-ref-name>ejb/ReportActionProcessorFacade</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wsbook.casestudy.ejb.ReportActionProcessorFacadeHome</home>

<remote>com.wsbook.casestudy.ejb.ReportActionProcessorFacade</remote>

<ejb-link>TimeSheetGroup.jar#ReportActionProcessorFacade</ejb-link>

</ejb-ref>
</application-client>
In our test cases we’ll be able to refer to the TimeSheetActionProcessor Façade through its reference of java:comp/env/ejb/TimeSheetActionProcessor façade instead of having to use the full JNDI name (which is shown in the deployment descriptor editor and is (as described earlier) defined in the bindings file.

Now let’s look at the actual test cases you’ll run. We’ll begin by examining the AllEJBTests class in com.wsbook.casestudy.tests.junit.ejb.

/**
 * This is an AllTests class that runs all of the tests in the
 * com.wsbook.casestudy.tests.junit.ejb package. The use of an AllTests
 * class in each package is a common practice for regression testing.
 */
public class AllEJBTests extends TestCase {

/**

 * Constructor for AllEJBTests.

 * @param arg0

 */

public AllEJBTests(String arg0) {

super(arg0);

}

public static Test suite() {

TestSuite suite = new TestSuite();

suite.addTest(new TestSuite(TimesheetActionProcessorTests.class));

suite.addTest(new TestSuite(ReportActionProcessorTests.class));

return suite;

}
}
This AllEJBTests class will be the class that we run the JUnit Test runner against. But we still haven’t gotten to the actual tests yet. To see those, begin by opening the TimesheetActionProcessorTests class. You can read the entire set of code on your own, but let’s look at an example of the type of JUnit tests we’ve written, the testAddFindDeleteProject() method:

public void testAddFindDeleteProject() {

// test adding, finding and removing a Project from the model

TimeSheetActionProcessor processor =

(TimeSheetActionProcessor) ActionProcessorFactory

.getActionProcessor("TimeSheet");

try {

Project purple = new Project();

purple.setNumber("99");

purple.setName("Project Purple");

processor.addProject(purple);

Project clone = processor.findProjectByKey("99");

assertEquals("Names don't Match for Project",

purple.getName(),

clone.getName());

processor.removeProject("99");

try {

processor.findProjectByKey("99");

fail("Should have raised NoSuchProjectException");

} catch (Exception e) {

// Eat it -- it should fail

}

} catch (MappingException e) {

fail("MappingException caught " + e);

}
}
We won’t go through this code line by line – but you can see that it does exactly what its method name describes; it adds, finds, and removes a Project. Since there’s not much to a Project, there aren’t many assertions to verify – only the name need be compared when the project is retrieved. Likewise, the only negative test we need to make is to ensure that a NoSuchProjectException is raised when you try to retrieve a Project by a key that is not present. Instead, you may want to investigate some of the more complex Test cases that are in this class for testing TimeSheets. In particular, you will want to investigate the different checkForDeepEquality() methods that compare TimeSheets, TimeSheetEntries, Employees and Addresses.

The only other aspect of this TestCase class that we need to point out involves the way in which test cases are run by a JUnit Test runner. In a JUnit TestCase, the individual test methods run in a random order – there’s no assurance as to which method will run before any other method, so you can’t rely on the results of one method in the next. (This is a good thing, since if there were order dependencies it would become difficult to make changes to your test cases; with the existing JUnit design each test method is a world unto itself). What JUnit provides also is a couple of optional methods (setUp() and tearDown()) that will run before and after each test method respectively. So, you can use these methods in your test cases to ensure that all of the preconditions are met prior to each test method running, and to ensure that you fully clean up after the end of each test method. In particular, you need to be very careful as to the state of the database when testing against a database. When you are using a local database, it is often best to clear out the test data you are using between each test method so that the test methods can themselves add all of the necessary test information into the system and then be assured that they are running from a known configuration.

We do this in our TestCase subclass through the use of the deleteAllRows() method, which uses JDBC to remove all of the rows from the tables used in our example. However, this creates another issue, which is how to obtain the JDBC connections needed to delete the rows from the tables in a J2EE application client.

The problem as described in the InfoCenter is that WebSphere J2EE Application clients cannot access DataSources defined inside WebSphere “because the J2EE application client does not support Java 2 Connection Factories”. So, the upshot of this is that you have to define your own WAS4
DataSources within the Application client itself. There is a tool (the Application Client Resource configuration Tool) that allows you to do this for WebSphere, but there is no way to do the same thing within WSAD. This tool creates an XML file (called client-resource.xmi) that defines the datasources and other J2EE resources within the client container. So, the easiest thing to do in WSAD is to take the following file and edit it yourself and then place it in the meta-inf directory of your application client. You will simply need to edit the file that follows (which is in the META-INF directory of your application client project).

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:resources.mail="http://www.ibm.com/websphere/appserver/schemas/5.0/resources.mail.xmi" xmlns:resources.jms="http://www.ibm.com/websphere/appserver/schemas/5.0/resources.jms.xmi" xmlns:resources.jdbc="http://www.ibm.com/websphere/appserver/schemas/5.0/resources.jdbc.xmi" xmlns:resources="http://www.ibm.com/websphere/appserver/schemas/5.0/resources.xmi">
 <resources.mail:MailProvider xmi:id="MailProvider_1" name="Default Mail Provider" description="IBM JavaMail Implementation">
 <protocolProviders xmi:id="ProtocolProvider_1" protocol="smtp" type="TRANSPORT"/>
 <protocolProviders xmi:id="ProtocolProvider_2" protocol="pop3" type="STORE"/>
 <protocolProviders xmi:id="ProtocolProvider_3" protocol="imap" type="STORE"/>
 </resources.mail:MailProvider>
 <resources.jms:JMSProvider xmi:id="JMSProvider_1" name="MQ JMS Provider" description="Default - cannot be changed"/>
 <resources.jms:JMSProvider xmi:id="JMSProvider_2" name="WebSphere JMS Provider" description="Default - cannot be changed"/>
 <resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="Default DB2 JDBC Provider" description="" implementationClassName="COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource">
 <classpath>C:\EJBTwoExperiments\db2java.zip</classpath>
 <factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1" name="jdbc/WSBOOK" jndiName="jdbc/WSBOOK" description="" databaseName="SAMPLE">
 <propertySet xmi:id="J2EEResourcePropertySet_1">
 <resourceProperties xmi:id="J2EEResourceProperty_1" name="user" value="my_userid"/>
 <resourceProperties xmi:id="J2EEResourceProperty_2" name="password" value="my_password"/>
 </propertySet>
 </factories>
 <propertySet xmi:id="J2EEResourcePropertySet_2"/>
 </resources.jdbc:JDBCProvider>
</xmi:XMI>
First, you’ll need to edit the <classpath> element of the file to point to a copy of db2java.zip, which is the DB2 JDBC driver jar file. Also, you’ll need to edit the “value” attributes for userid and password to be a valid userid and password on your machine. Note that you are using an unencrypted password in this case; only the Application Client Resource Configuration tool can encrypt passwords. So while you can use the unencrypted ones in WSAD you should plan on running the ACRCT after you deploy your EAR if you need to run them at the command line.

Running the Test Client

Once you’ve edited the client-resource file, you’re almost ready to run the example. First, you’ll need to create an application client configuration. In WSAD, select Run>Run… from the menu bar to open the Launch Configurations editor. Select WebSphere V5 Application Client in the Launch Configurations Tree View. Press the New button at the bottom of the page to create a new configuration.

Change the name (at the top of the page) to “TimeApp Test Client”. Set the Enterprise appcliation to be “wasbook” by selecting wasbook from the pull-down. Then switch to the Arguments tag and provide a parameter to the Junit TestRunner. After “-CCverbose=true” add the line “com.wsbook.casestudy.tests.junit.ejb.AllEJBTests”. This will ensure that the AllEJBTests TestCase will run when you run the application client.

Now, there’s one more problem to resolve. The issue here is that no matter what you put in the classpath section of the client-resource file for DB2; WSAD still won’t find your driver. (Although if you want to run your application client at the command line against WebSphere or WSAD this classpath does matter!) Instead, to make this work for WSAD you will need to add the db2java.zip JAR file with the DataSource implementation to the runtime classpath of your Application Client in the Launch Configurations Editor. To do this, open the Launch Configurations Editor (with either Run>Run… or Debug>Debug…) and select the TimeApp Test Client. Turn to the classpath tab and use the Add External Jars button to add db2java.zip (wherever it is stored on your machine, usually <db2install>/SQLLIB/java/db2java.zip) where “<db2Install>” is often “C:\Program Files” in Windows.

Now that you’ve edited your client-resource file, you’re finally ready to run the Test case against our case study. First, switch to a Server perspective and make sure that the WAS v5 server you created in an earlier chapter is running. If not, start it. Then, switch to the J2EE perspective and use Run>Run… to bring up the launch configurations editor. Select the TimeApp TestClient and press the Run button. If everything goes as expected, you should see the following output at the end of the WebSphere console (your time will vary, of course):

WSCL0900I: Initializing and starting components.
WSCL0910I: Initializing component: com.ibm.ws.activity.ActivityServiceComponentImpl
WSCL0911I: Component initialized successfully.
WSCL0901I: Component initialization completed successfully.
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class junit.textui.TestRunner
........
Time: 9.363
OK (8 tests)
If you see anything at the end other than “OK (8 tests)” then you need to go back over your configuration steps and determine what went wrong.

Rules for creating Session Facades

Now that you’ve learned what Session Façade interfaces look like, and what objects sit behind the Session Facades, the question you may have in your mind about your own projects is “How many of these things will I have?” You don’t want to have too many Session Facades, otherwise you lose the benefits of the Façade pattern. However, a single Session Façade for an entire application might become a “God Object”
 and cause problems of it own. Here are some rules for designing Session Facades to achieve the right level of granularity.

· Look for functional subsystems in your application. For instance subsystems named Order Management, Billing and Shipping might be the source of three potential Façade objects in an application.

· Go back to your use cases and look for related groups of use cases. A group of related use cases (like buy a stock, sell a stock, get a price quote) might suggest a cohesive subsystem like “Stock Trading”. This single cohesive subsystem will probably share many inner-layer objects and be a good candidate for a Session Façade. [Sun 2001] discusses this approach in more depth.

· Do NOT make each individual use case into a Session Façade. This results in a system with far too large of a distribution cross-section. The clients will have to manage too many EJB references and Homes in this case.

· After an initial pass, look at the relationships between the second-layer objects in your design. If you see that there are disjoint groups of Value Objects, Factories and Actions then separate the Façade into two or more facades based around the actual groupings.

Should Session Facades Return XML?

One of the bigger questions people struggle with in regard to the previous architecture is the question of what the parameters and return types of the Façade methods should be. In particular, there’s a common “anti-pattern” that has found its way into several projects that should be squashed before it infects more projects and causes more grief. What we have been assuming in our preceding discussion is that Session Façade methods could take as arguments and return simple, Serializable Java objects (DTO’s or value objects). However, others have recommended that instead Façade methods could take as arguments and return an XML (String) representation of the data requested.

In fact, a common question that we find ourselves addressing quite often on mailing lists and bulletin boards like JavaRanch is the question “how do you pass a DOM into an EJB?” The short answer to that one is you can’t. DOM objects are not Serializable, and as you’ve learned, all EJB arguments must be declared as being Serializable. But the more insidious question is why do you want to do that? What advantage would sending a DOM (or a String representation of XML, which is all you could really send) to an EJB possibly convey
?

First, let’s begin with a consideration of Data Transfer Objects. Data Transfer Objects have the advantage that they can be very efficiently serialized. In most cases, the size of a binary Value object representation of a data set would be smaller than the corresponding XML representation of the same data. Also, since the Java serialization mechanism is a highly optimized part of the Java base classes and JVM, the serialization process is usually significantly (an order of magnitude or more) faster than generating and parsing corresponding XML. What’s more, Data Transfer Objects are particularly attractive since the JSP specification has been explicitly designed to make displaying the parts of a java bean easy and efficient. This is true even if the desired output of the JSP is XML.

However, to be fair, data transfer objects have some drawbacks as well. The biggest is that it forces you to closely tie the releases of your business tier and presentation tier together. Since the return values form a contract between the two tiers, any change in the business tier (say to add or rename a field in a value object) will necessitate a change in the presentation tier – often the presentation tier code must change, but in any case, the new data transfer classes must always be redeployed on the presentation tier to avoid serialization problems. It is often out of a desire to avoid this tie between tiers that designers seek to use XML for inter-tier communication.

However, this is a false distinction. While you may not need to recompile anything or redistribute classes if an XML schema changes, the fact is that the code that parses and uses the resulting XML (especially if it is a SAX parser) would still have to change to deal with the update. It is only the rare (and insignificant) change to an XML schema that would not necessitate code changes on both ends of a conversation.

Summary

In this chapter, you’ve learned how to build an architecture that reduces the total number of network-crossing EJB remote method calls, while still allowing for the display and manipulation of complex data. You’ve also seen how to make Entity EJBs generic data sources for multiple projects, enterprise-wide, while still maintaining the ability to have application-specific business logic. The key to achieving this is to have the following types of objects in your architecture:

Data Transfer Objects are Serializable Java objects that contain a subset of the Information held In an Entity EJB. They should contain some of the business logic in a system like validation, dynamic calculations (e.g. things not stored in the database), etc. They can manage their own relationships to other data beans (so for instance, an Employee can contain an Address). These Java Beans are suitable to being displayed by a JSP.

Session Facades are Session EJBs that provide distributed access to common ways of creating, updating and managing data beans for client programs (like Servlets). Making the facades Session EJBs allows for flexibility in distributing the database lookup logic to other machines beyond the second-tier application servers running presentation logic and provides an excellent place to handle things like transactions and security.

Mappers are responsible for building data transfer object and updating datasources from the information passed to them as data beans that have changed. They know about the different datasources, manage connections to the datasources, create instances of the data beans, fill in the instances of the databeans, etc. They are standard Java classes. There should be a mapper for every “root” object in your object model. (Root objects are those that “contain” other objects).

Entity EJBs are standard "data sources" that can be globally useful across the enterprise. Entity beans should not contain application-specific domain logic, nor should they be constrained to work within a single application
.

You’ve learned about building these objects, and how these interact with each other to form a layered architecture that takes the best advantage of EJBs.

� Although sending a Data Transfer Object can work for most update messages, there are some situations where it is best to send a Command object, as we will discuss later.

� [Gamma] p. 185

� [Gamma] p. 186

� [Gamma] p. 187

� [Gamma] p. 193

� In fact, if you want to see the exact SQL query that this translates to, open the package “com.wsbook.casestudy.ejb.websphere_deploy.DB2UDBNT_V72_1” and locate the class whose name begins with “TimeSheetEJBBeanFunctionSet”. You will find methods that that execute SQL statements corresponding to the EJB-QL defined in the DD.

� [Brown 98] p. 73

�PAGE \# "'Page: '#'�'" ��This is describing the Data Mapper pattern used in CMPs or perhaps BMPs if you want to do it by hand. Aren’t the mappers in this chapter about creating the DTOs from the EJBs? That is, these mappers are creating data objects from the domain model for view purposes more than for persistence? They could be the same mappers if we just treat a CMP as if it were a data source like a JDBC query, but this doesn’t seem to make much use of the CMP, and there’s another data mapper layer between the EJB and the database that plays a similar role. These Remote Facades (388) (Fowler pattern) can probably be mapped to EJBs a lot simpler than the same business object would be mapped directly to the database thereby needing a different kind of mapper?

�PAGE \# "'Page: '#'�'" ��The first paragraph doesn’t seem to go with the title, and the pattern introduced above is Business Delegates. Should this be is a sction called “Reducing Network Traffic” with subsections for each of the ways to do it, starting with local interfaces?

�PAGE \# "'Page: '#'�'" ��Note here that this solution is only needed if the data actually has to go across the network to an applet, J2EE application client, or servlet/JSP running in a different JVM. DTOs aren’t needed for typical servlets and JSPs that run in the same JVM as the local EJBs they access.

�PAGE \# "'Page: '#'�'" ��Maybe note here you want to avoid doing business logic on the client using data objects. They should only be used to display results or get new values.

�PAGE \# "'Page: '#'�'" ��But again, have to be careful that this doesn’t pull business logic into the controller and presentation layers where it has to be repeated for each new view resulting in code redundancy and poor reuse.

�PAGE \# "'Page: '#'�'" ��Not showing any return values? Should the example show a J2EE Application client instead of a servlet? Might be more typical of when these DTOs are needed.

�PAGE \# "'Page: '#'�'" ��The above is a duplicate of stuff that was already said. The remainder is something new about WebSphere that needs to be introduced and developed more fully. This section needs to flow a little better.

�PAGE \# "'Page: '#'�'" ��Maybe this should move down to the DTO section as DTOs provide the preferred solution and we’re only trying to summarize the problems here.

�PAGE \# "'Page: '#'�'" ��Aren’t clients supposed to be exposed to the business model, and shouldn’t they be aware of the relationships and inheritance? This can be a disadvantage of session facades. They actually isolate clients from the domain model and either reproduce the business model in another set of interfaces, or create restrictions to its use based on implemented known and anticipated functions.

�PAGE \# "'Page: '#'�'" ��Its not isolation from the domain model that’s the advantage, but rather the ability of the session bean to provide an interface that is more applicable to the needs of the client. Its like object mining to provide abstractions for use cases, etc.

�PAGE \# "'Page: '#'�'" ��The point here is that different session facades provide different abstractions to clients for different purposes or use cases. Not abstracting away underlying business logic, but rather providing business logic applicable to the needs of the particular client.

�PAGE \# "'Page: '#'�'" ��This seems like a new point that doesn’t follow from the previous discussion.

�PAGE \# "'Page: '#'�'" ��The layers could be made clearer here, maybe a picture. There’s the data source and entity bean (whose connection and mapping is handled elsewhere and not the point here). Then there’s the DTO for providing access to all the bean’s data in a single call. There there’s a number of session beans that implement

�PAGE \# "'Page: '#'�'" ��Not clear that this class is in the client and is distributed. Explain why the session façade need to be wrapped.

�PAGE \# "'Page: '#'�'" ��Is it the persistent store, or the Entity beans? They in turn use a mapper to get to the persistent store.

�PAGE \# "'Page: '#'�'" ��Why not have the façade do this and eliminate the helper. Classes with names like that don’t seem to fit in well with the domain model. That is, they don’t sound like something that in the business domain but are rather something about implementation.

�PAGE \# "'Page: '#'�'" ��But these mappers are very different than the mappers discussed in chapter 14 because they don’t have to deal with units of work, lazy load, tracking changes, etc. since this is done by the mappers form the EJB to the data source. So these are different kinds of mappers, not mappers to data sources?.

�PAGE \# "'Page: '#'�'" ��Can this helper go too?

�PAGE \# "'Page: '#'�'" ��I’m still having trouble with this. These mappers aren’t to data stores, they’re to entity beans. This seems quite different because many of the concerns associated with mapping to SQL data sources don’t have to be repeated in these mappers because they are already done by the CMPs. An entity bean should be more than a data source shouldn’t it? Recall we said earlier that CMPs eliminated the need for developers to hand craft all those mappers between the domain model and the data sources. Now they’re being reintroduced to map value objects to the CMPs. At least these mappers should be a lot simpler.

�PAGE \# "'Page: '#'�'" ��More like the Remote Façade (388) pattern.

�PAGE \# "'Page: '#'�'" ��Diagram missing.

�PAGE \# "'Page: '#'�'" ��Did this get moved?

�PAGE \# "'Page: '#'�'" ��Is this true of WAS v5 too? Some readers might not know what WAS4 is.

�PAGE \# "'Page: '#'�'" ��The only one I can think of is if the data in the façade operation parameters can be directly displayed in some instances using XSL or directly transferred to some other non-Java or non-J2EE application as part of EAI. But Web Services would be a better solution here.

�PAGE \# "'Page: '#'�'" ��We need to clarify the role of Entity EJBs a little more. If the DTOs are really the domain model, and the mappers have to be created anyway, then why bother with CMP beans at all? Just implement the mappers directly to the database using JDBC, perhaps through some object/relational mapping tools? This seems to be what Fowler suggests.

35

_1113155862.doc

[image: image1]

getPrimaryKey

TimesheetAction

ProcessorImpl

TimeSheetAction

ProcessorFacade

ProjectModel

Helper

ProjectMapper

ProjectEJB

Home

ProjectEJB

Project

getTSFacade

findAllProjects

findAllProjects

findAll

findAllEJBs

findAll

map

getName

setNumber

setName

_1113156011.doc

[image: image1]

ProjectMapper

Mapper

DomainEJBMapper

_1113130958.doc
[image: image1.emf]DomainEJBMapper

Mapper

ProjectMapper

TimeSheetEntry

Mapper

TimeSheetMapper

EmployeeMapper

employeeMapper

projectMapper

timesheetEntryMapper

_1113131767.doc
[image: image1.emf]MapperFactory

systemMapperFactory : MapperFactory

EJBMapperFactory

MemoryMapperFactory

_1113117906.doc

[image: image1]

ProjectMapper

<<interface>>

(from com.wsbook.casestudy.mapping)

ProjectMapper

(from com.wsbook.casestudy.mapping.ejb)

Mapper

<<interface>>

(from com.wsbook.casestudy.mapping)

