Chapter 21

Simple Container Managed Persistence Entity Beans

In chapter 19 you read how there are three types of Enterprise Java Beans supported by WebSphere – Message Driven Beans, Session beans and Entity Beans. You have already learned a lot about how session beans work, and how they are developed in WebSphere Studio for deployment into WebSphere Application Server. Now it is time to discover another part of the puzzle – how Container Managed Persistence Entity Beans work, and how they provide access to persistent data stored in a relational database.

[image: image1.png]
Figure 23.1 Container Managed Entity Beans within roadmap.

Some Entity Bean Basics

Earlier, in the chapter on EJB architecture, you learned a little about Entity EJBs. We discussed how they could provide access to data sources like a relational database such as DB2,, or a transaction processing system like CICS or IMS. Remember that there are two basic types of Entity EJBs

· Bean Managed Persistence Entity Beans (sometimes called self-managed persistence EJBs)

· Container-Managed Persistence Entity Beans

Container-Managed Persistence (CMP) Entity Beans handle the details of the mapping between the object representation of your data (the EJB attributes) and the way in which your persistent data are stored (for example, as columns in a relational database table) themselves. They can accomplish this feat because they are generated by a tool set that has knowledge of both the data source that you want to use, and the structure of the data in that data source (like a table schema). Because they handle this mapping themselves, they are easier to build, since most of the work is done by code generated by the EJB container. The tradeoff for this ease of use comes in the fact that each EJB container (like WebSphere) supports only predetermined data sources. For instance, in WebSphere 5, Container Managed Persistence beans support: Cloudscape, IBM DB2, Informix, Oracle, MS SQL Server, and Sybase database types.

Bean-Managed Persistence (BMP) Entity Beans make handling the details of mapping to a particular datasource the responsibility of the bean developer. The BMP specification provides a set of “hooks” that user-defined code can tie into. These hooks are implemented as a set of “callback” methods in the bean class. The developer of a BMP bean is guaranteed that these methods will be called at particular points in the EJB lifecycle, but is responsible for providing the implementation of these methods, which will store and retrieve data from the persistent store. As a result, BMP beans can be written to retrieve data from and store data to any data source that is available through Java, but at the cost of more effort spent in programming by the bean developer.

As EJBs more mature, tools will become available to support a wider variety of data sources through Container-Managed Persistence. So, a valid design decision is to employ a mix of the two approaches in an application. As time goes on, beans that must today be implemented as BMP beans can be later implemented as CMP beans. For example, CMP beans developed today in WebSphere Studio can be made to connect to a much wider variety of data sources and perform much better than those EJBs created with earlier versions of the tools.

Container-Managed Persistence in WebSphere and WebSphere Studio

As you’ve seen above, part of the “magic” of Container-Managed Persistence comes from the fact that code generation tools can take advantage of knowledge of both the structure of the persistent data and the structure of the objects that map to that data to generate mapping code. However, with that sophistication come some hard choices in tool implementation. Defining a sophisticated object-relational mapping is not something that everyone is capable of. It requires a high level of knowledge in both relational database technology and object design to make the mapping work in the best way.

The EJB specification defines three roles that are applicable to the development of an EJB. They are:

1. The Enterprise Bean Provider, who designs the EJB interfaces and writes the business logic in the EJB.

2. The Application Assembler, who combines EJBs together into applications and subsystems to meet specific user requirements

3. The Deployer, who deploys the enterprise beans in a specific operational environment.

IBM has developed a suite of tools that provides considerable flexibility to developers acting in each of these three roles. You have to understand each of these roles in order to understand how IBM’s tool strategy for CMP EJBs works.

For instance, an EJB deployer is expected to have knowledge of a particular operational environment, including what relational databases are available to store EJB data. On the other hand, an Enterprise Bean Provider or Application Assembler is expected to have much more detailed information on what database schemas exist that may need to be mapped to EJBs.

To address these two roles and their different goals and expectations, IBM has provided two ways of developing CMP EJBs:

1. WebSphere Application Server provides a simple CMP implementation that maps an Entity EJB to a single relational database table with a straightforward column to attribute mapping (“top-down” mapping which is described in detail in chapter 24)
2. WebSphere Studio provides tools that allow more complex CMP mappings from columns in multiple relational database tables to a single Entity EJB. It also supports EJB inheritance.

Both WebSphere Studio and WebSphere Application Server support association relationships between Entity EJBs using Container Managed Relationships (CMR) as defined in the J2EE 1.3 specification. More details on CMRs later in this, and in the following chapters.

In an environment where all that is needed is a very simple Entity Bean mapping, WebSphere’s basic CMP Entity Bean support is adequate. An Enterprise Bean Provider can deliver an ejb-jar file containing only the basics parts of the Entity Bean (the remote and home interface, the bean implementation class, the key class and the deployment descriptor). The Deployer can then take this jar file and use WebSphere’s built-in deployment tools to automatically generate the necessary persistence code and also automatically create a database table to contain the bean information.

In a more complex environment where multiple-table mappings, associations, relationships or inheritance is needed, the Enterprise Bean Provider or the Application Assembler will have to work within the WebSphere Studio tool suite to provide a mapping between the EJBs and the relational database tables in which the EJB’s data is stored. The developer will then deliver a jar file, which contains the code for the EJBs already generated for the Deployer, who will then simply “install” the jar file, without having to generate the deployment code. It should be noted that the deployment tool within WebSphere Application Server is identical to the deployment mechanism in WebSphere Studio. Therefore, any complex mapping that is generated in WebSphere Studio V5.0 can be deployed within WebSphere Application Server V5.0. You also have the option of generating the deployment code in WebSphere Studio and then you can just install the enterprise application in WebSphere Application Server without any further assembly.

In this chapter and the succeeding chapters, you will learn about both types of mappings – simple and complex, and how WebSphere Application Server and WebSphere Studio interoperate to make CMP beans work.

Creating a CMP EJB using WebSphere Studio

As you saw in chapter 20, WebSphere Studio Application Developer has a first class EJB development environment. The mechanics of creating a CMP EJB are not really much different than those for creating a Session bean, with the exception, of course, of the need to identify CMP fields and how the key for the bean will be constructed.
In this section we will go through the steps for creating the DepartmentEJB CMP bean that is discussed later in the chapter.

Since you are just beginning to experiment with EJBs, we suggest that you start with an empty workspace and follow along these steps to create and test the DepartmentEJB bean. This bean is already included as part of the case study implementation application in the CD.
We will assume that you have WebSphere Studio Application Developer started on an empty workspace and can follow along. If you don’t, you can still read along and follow the process.

Some of the directions to create the EJB will be somewhat terse, as you have already read about the basics; if you get stuck you can refer to chapter 20 for detailed instructions.

As you saw in chapter 20, EJBs are created in EJB Projects and EJB Projects are part of an Enterprise Application Project. This is part of the J2EE module containment hierarchy and WebSphere Studio will enforce it.

The first thing that needs to be done is to create a new EJB project named LearningEJB. This project should be under an EAR project named LearningEAR.

To create the new EAR project and new EJB project select: File (New (Enterprise Application Project from the main menu. On the first page of the wizard make sure you click Create J2EE 1.3 Enterprise Application Project, and then click Next.
Name the EAR project LearningEAR and the EJB Module LearningEJB. Uncheck the Application client module and Web module checkboxes, see Figure 23.2. Click Finish

[image: image2.png]
Figure 23.2 Creating the EAR and EJB projects.

Switch to the J2EE perspective. The J2EE Hierarchy view should now show the new Enterprise Application and EJB Module you just created (Figure 23.3).

[image: image3.png]
Figure 23.3 J2EE Hierarchy view with new projects

Under EJB Modules select the LearningEJB module, from its context menu click: New (Enterprise Bean. This is the same wizard you used before when you created the Session bean. The first and second pages of the wizard are exactly the same. However, on the second page select the last radio button, Entity Bean with container-managed persistence (CMP) fields. Also select CMP 2.0 Bean. Name the bean DepartmentEJB.
In order to keep the generated EJB code separate from the developer’s code, the source folder should be different than ejbModule. Enter source for Source folder. Finally enter com.wsbook.casestudy.ejb for the package name. Click Next (Figure 23.4).
[image: image4.png]
Figure 23.4 Defining the DepartmentEJB

From this point on the wizard is different than that of the Session bean. The main difference on this page is at the bottom where the CMP fields, or attributes, are defined and displayed. See Figure 23.5.
[image: image5.png]
Figure 23.5 Adding CMP attributes

The DepartmentEJB has two CMP fields:

int deptNumber
String name

The key of the EJB is deptNumber. Let’s define these CMP fields. Click Add. The Create CMP Attribute wizard opens, Figure 23.5.
[image: image6.png]
Figure 23.6 Defining the key for DepartmentEJB

CMP attributes are defined one at the time; you select a name and a type for each one. If this particular attribute is part of the key for the EJB, you also check the Key field checkbox. Define the deptNumber attribute as a key field as seen in Figure 23.6. Click Apply.

Clicking Apply leaves the wizard open to facilitate entering more attributes. Create a new CMP attribute of type String with a Name of name, which is not part of the key. When defining a non key attribute you are given a chance to Promote the getter and setters for the attribute to the remote or local interfaces, this can save you doing this later in the development process. Only the checkboxes for the interfaces you chose in the previous page of the wizard will be enabled here (Figure 23.7).
[image: image7.png]
Figure 23.7 Defining non-key attributes for DepartmentEJB

Since this is the last attribute we need, click Apply then Close. On Figure 23.8 you can see the attributes on the Create an Enterprise Bean wizard.

[image: image8.png]
Figure 23.8 Wizard ready for code generation

Notice that we are following the best practice to only have a local client view of the EJB by only generating local and a local home interfaces. Click Finish.

At this point the generation of the code for the bean takes place. When generation completes the classes shown on Figure 23.9 are available to us.
[image: image9.png]
Figure 23.9 Generated files after wizard completion

We will look at the generated code for each of these classes later in the chapter.

A few things to take notice of on Figure 23.8:

On the J2EE Hierarchy view notice how the DepartmentEJB is shown as a logical entity, with the components (classes) that make it up shown below it. Also the CMP fields are shown here. The key icon, to the left of deptNumber, makes it clear that this field is the key of the EJB.
A separate class to represent the key was created, DepartmentEJBKey, having a separate class to represent the key gives you additional flexibility should the requirements for the key change later on, for example adding another field to it.

On the J2EE navigator view you see the generated classes organized by package name. Notice that, in addition to the com.wsbook.casestudy.ejb package under the source project, another package under the ejbModule project was also created. This and other packages under ejbModule will hold the classes generated as a result of mapping the EJB to the backend store and generating the deployed classes.
Default ejbCreate(int) and ejbPostCreate(int) methods where generated by the wizard. These are required to create new departments using a department number. We would also like to be able to create fully populated departments using not only the department number, but also the department name. To do this we need to manually create methods ejbCreate(int, String) and ejbPostCreate(int, String). You can create as many pairs of ejbCreate() and ejbPostCreate() methods as necessary for a particulart EJB. In the case of DepartmentEJB, no other create methods are necessary.
The completed new pair of methods would look like the code in Listing 23.1:

public com.wsbook.casestudy.ejb.DepartmentEJBKey ejbCreate(

 int deptNumber, String deptName)throws javax.ejb.CreateException {
 setDeptNumber(deptNumber);
 setName(deptName);
 return null;
}
public void ejbPostCreate(int deptNumber, String deptName)
 throws javax.ejb.CreateException {
}
Listing 23.1 ejbCreate() methods

The ejbCreate() method in CMP beans need to initialize the CMP fields.
Because we want the new ejbCreate(0 method to be part of the client view of the EJB, we need to promote it to the local home interface. To accomplish this task you select the method on the Outline view, and from its context menu you select: Enterprise Bean (Promote to local home interface. On this context menu, the choices available depend on the selections you made in the original wizard. In this case we only selected local interfaces, so that is the only choice enabled (Figure 23.10).
[image: image10.png]
Figure 23.10 Promoting method to local home interface
After promoting the method, a decoration is added to the method name in the Outline view to indicate that the method is now part of the local home interface, such a decoration can be seen in Figure 23.10 on the ejbCreate(int) method. Promoting a method to the local home interface, actually creates a corresponding create(int, String) on that interface. From the EJB client’s point of view, only methods exposed on the home and remote interfaces are available to be used. For each ejbCreate() method on the bean class of the EJB there is a corresponding create() method with the same number and type of parameters (in the same order). It is the create() method that is called by the client using the home of the EJB. This call later percolates to the bean class’ ejbCreate() method. In the case of an Entity Bean, at the end of the call to ejbCreate() is when the actual record on the persistent store is created by the container.
What’s left to do

The next steps to complete the EJB so it can be used in an application are as follows:

1. A CMP Entity Bean needs to have a mapping between the CMP attributes and the column on the database table where the EJB will be persisted to. To create the mapping select the EJB Module and from its context menu select Generate (EJB to RDB Mapping, see Figure 23.10
[image: image11.png]
Figure 23.11 Mapping the DepartmentEJB to a database

Since you have not imported a database (you’ll use a new one for this example), you are asked whether to Create a new backend folder, see Figure 23.12. Backend folders contain database related information. If you had imported any database connections you would see them listed under the existing backend folders list. Click Next.
[image: image12.png]
Figure 23.12 Creating a new backend folder

Since this is a very simple example to show the mechanics of mapping the CMP Entity Bean, you will map the EJB to the database using the Top-Down approach. In this case each attribute of the EJB is mapped to a column, of the same name in the database table. See Figure 23.13. Ensure that Top Down is selected. Click Next.

[image: image13.png]
Figure 23.13 Generating database schema based on EJB attributes

The last step is to select the database type. To keep this example simple you will use a Cloudscape database. Name the database DEPARTMENT. Take the rest settings defaults. See Figure 23.14. Click Finish.
[image: image14.png]
Figure 23.14 Selecting Target Database and Database Name

At this point WebSphere Studio does some work and generates the mapping. The Mapping editor opens. From this editor you can manipulate and fine tune the mappings, you will not do this in this chapter, but we’ll defer that to chapter24. At this time take a look around the Mapping editor, but do not change anything. Pay special attention at Figure 23.15 where you can see how the EJB attributes align to the database table columns.
[image: image15.png]
Figure 23.15 DepartmentEJB’s mappings

Close the Mapping editor. Switch to the J2EE Navigator view and see the files that were generated as the result of the mapping operation, see Figure 23.16.

[image: image16.png]
Figure 23.16 Generated files resulting from mapping the DepartmentEJB

2. Before you generate the deployed code, you need to setup the deployment descriptor to indicate which datasource the DepartmentEJB will use.

Double click LearningEJB in the J2EE Hierarchy view. This will open the deployment descriptor for the module. Select the Beans tab and select DepartmentEJB. Under WebSphere Bindings enter jdbc/testds for the CMP Container Factory JNDI Name. Save the file.
[image: image17.png]
Figure 23.17 Defining the JNDI name for the data source used by the CMP

If all Entity Beans on the module used the same datasource, you could save yourself some work and define the default datasource for all the beans. These can be overridden on and bean by bean basic if required. This is done on the Overview tab under WebSphere Bindings.
3. Generate the deployed code. This creates the rest of the classes needed for the EJB. This step is similar to generating the deployed code already covered in the chapter dealing with Session beans. The mechanism is the same, the generated classes are different. From the J2EE Hierarchy view, select the Learning EJB module and from its context menu select Deploy and RMIC Code. See Figure 23.18. Ensure DepartmentEJB is selected and click Finish.
[image: image18.png]
Figure 23.18 Generating deploy code for DepartmentEJB

On the J2EE Navicator view you can see the generated code in packages com.ibm.wsbook.casestudy.ejb, com.ibm.wsbook.casestudy.ejb.websphere_deploy and com.ibm.wsbook.casestudy.ejb.websphere_deploy.CLOUDSCAPE_V50_1. You normally do not pay too much attention to these generated classes, however, studying the generated code can provide an insight into how EJBs are truly implemented. Sometimes during debugging it might be useful to step into these classes to inspect intermediate results.
4. Switch to the Server perspective and create a new Server and Configuration. Take all the defaults. You have already done this when testing the Session Bean, refer to that chapter if you require more details. Add the LearningEAR project to the server configuration.

5. Create the database, table and datasource. From the Server perspective, select the server you just created (under the Servers tab). From it’s context menu, select Create tables and data sources, see Figure 23.19. All the information required to perform this step has already been defined, the JNDI name of the datasource and the Backend folder contain this information.

[image: image19.png]
Figure 23.19 Creating the tables and data sources for the bean

6. The last step, before integrating the the EJB into the rest of the application, is to perform unit testing using the Universal test Client (UTC). From the J2EE perspective, select DepartmentEJB under LearningEJB and from its context menu select Run on Server. Click Finish to use the existing server you created in step 4.
7. The UTC starts and automatically does a lookup on the DepartmentEJB bean. Expand DepartmentEJBLocalHome and click the create(int, String) method. Enter a numer for the key and a department name, click Invoke to insert a record on the database. See Figure 23.20.

[image: image20.png]
Figure 23.20 Invoking the create method on the home interface.
8. The method executes and makes available the object just created. Click Work with Object, Figure 23.21. This add the DepartmentEJBLocal entry to the References panel. From there you can exercise the methods on the local interface.
[image: image21.png]
Figure 23.21 Results of invoking the create method.
9. From the References pane of the UTC, select and expand the DepartmentEJBLocal entry. Select the getName() method and click Invoke. You should now see the value of the cmp-field, Consulting, displayed on the Parameters pane. See Figure 23.22.

[image: image22.png]
Figure 23.22 Results of invoking the getName() method on the local interface.

10. Change the department’s name invoking the setName() method, and then verify that the change took place.

This concludes unit testing the DepartmentEJB Entity Bean.
Now let’s take a detailed look the different parts that make up a CMP bean.
The parts of an Entity Bean

To understand how Entity Beans work, you need to take a few moments to review what the EJB specification says about Entity Beans. There are some significant differences between Entity Beans and Session beans, so first examining some of the differences can help in understanding the examples that follow. To set the stage for examining these differences, consider the following example.

Local interfaces
The case study (the Time Entry System) needs a way to store information for the different departments in a company. A Department consists of an integer departmentNumber (which is unique) and a department name (like “Engineering” or “Consulting”). As we discussed in chapter19, best practices recommend that Entity Beans only use local interface methods to expose their function. So, if you are implementing Entity EJBs using the EJB 2.0 specification (as part of J2EE 1.3) you should not use remote interfaces, opting instead to access Entity Beans through their local interfaces as part of a Session Façade idiom implementation. Therefore DepartmentEJB has been defined to have only a local public view, there are no remote or home interfaces generated. Instead you find local and a local home interface generated by WebSphere Studio.

package com.wsbook.casestudy.ejb;
public interface DepartmentEJBlocal extends javax.ejb.EJBlocalObject {

public java.lang.String getName();

public void setName(java.lang.String newName);
}
Listing 23.2 Getter and setter methods in local interface
This local interface defines two types of methods (Listing 23.2). “Getter” methods return the value of an attribute of the Entity Bean “Setter” methods allow clients to change the value of an EJB attribute. Attributes that have both getter and setter methods are referred to as Entity Bean properties. Entity Bean properties can be either cmp-fields or cmr-fields which will be described in more detail later and in chapters 24 and 25. The only thing even slightly unusual about this local interface is the fact that there are no methods to access deptNumber. This is because deptNumber is treated as a special key field, as you will see later.

Local home interfaces
Even though in this section we talk specifically about the local home interface of the DepartmentEJB, all of the concepts covered also apply to remote home methods we used to implement using the EJB 1.x specification. The main difference is that life-cycle methods on the remote home interface must also be declared to throw java.rmi.remoteException.

Like Session beans, Entity Beans also must define a local home interface that describes the “factory” responsible for creating them. However, there are some additional features that Entity home interfaces must define that Session beans do not define. To understand the differences, take a look at the following home interface (Listing 23.3), defining a DepartmentEJBlocalhome interface.

package com.wsbook.casestudy.ejb;
public interface DepartmentEJBlocalhome extends javax.ejb.EJBlocalhome {

public DepartmentEJBlocal
 create(int deptNumber) throws javax.ejb.CreateException;
public DepartmentEJBlocal create(int deptNumber, String name)

 throws javax.ejb.CreateException;

public DepartmentEJBlocal findByPrimaryKey(DepartmentEJBKey primaryKey)

 throws javax.ejb.FinderException;

public java.util.Collection findAll() throws javax.ejb.FinderException;
}
Listing 23.3 DepartmentEJB local home interface
This simple EJBlocalhome defines two create() methods, which differ in two ways from the create() methods you have seen in the example stateless session EJB that was covered earlier. First, create() methods for Entity EJBs (and stateful session EJBs, by the way) can take arguments. These arguments will be used by the EJB’s ejbCreate() methods to set the values of the EJB’s attributes when it is created. Second, notice that we have defined two create() methods, each with a different number of arguments. In this respect, create() methods are like class constructors in Java – you can have as many as you like, so long as they differ in parameter type and/or order. This allows you to create your Entity Beans in different ways depending upon the situation. You will learn more about why you would want different create() methods later as we work through the details of this example.

The next thing to notice about this local home interface is the presence of a new type of method. This is called a finder method, and you can identify them in a local home interface because they always begin with the lowercase letters “find”. In this example, there is a single finder method, findByPrimaryKey().

DepartmentEJB findByPrimaryKey(DepartmentEJBKey key)

 throws javax.ejb.FinderException;

Clients use finder methods to locate an existing instance of an Entity EJB, or a set of existing instances. Correspondingly, finder methods can return either a single instance of the Entity Bean (as the findByPrimaryKey() method above does) or they can return an Collection of Entity Beans which can be iterated over by the client, to obtain the set of instances.

The findByPrimaryKey() method is special. Every home interface for an Entity Bean must define a findByPrimaryKey() method. The argument to this method is always an instance of another class that must be specially defined for this Entity Bean – a primary key class. Understanding why this method (and this class) must be defined requires a little explanation. Remember that an Entity Bean represents persistent data. This means that there must be some way of matching a particular Entity Bean instance with the corresponding data in the data source. There are two ways to specify a primary key:

· A primary key that maps to a single cmp-field in the container-managed entity.

· A primary key that maps to multiple cmp-fields in the container-managed entity.
A primary key that maps to a single cmp-field can use the primkey-field deployment descriptor tag to indicate a cmp-field that contains the primary key. This means that the field’s type must be the primary key type. The type of the primary key must be a java.lang.Object type that is Serializable. This means that Java primitive types cannot be directly used as the primary key. Therefore, cmp-fields with Java primitive types cannot be used in the primkey-field element.

In the case study, we use java.lang.String as the primary key of the EmployeeEJB. Below is an excerpt from the deployment descriptor for the EmployeeEJB (Listing 23.4). You should notice that the primkey-field is set to empId which is typed to java.lang.String which is the same as the prim-key-class.

<entity id="EmployeeEJB">

<ejb-name>EmployeeEJB</ejb-name>

<local-home>com.wsbook.casestudy.ejb.EmployeeEJBhome</local-home>

<local>com.wsbook.casestudy.ejb.EmployeeEJB</local>

<ejb-class>com.wsbook.casestudy.ejb.EmployeeEJBBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>EmployeeEJB</abstract-schema-name>

<cmp-field id="CMPAttribute_6">

<field-name>empId</field-name>

</cmp-field>

<cmp-field id="CMPAttribute_14">

<field-name>name</field-name>

</cmp-field>

<cmp-field id="CMPAttribute_1044593764765">

<field-name>office</field-name>

</cmp-field>

<primkey-field>empId</primkey-field>

…
</entity>
Listing 23.4 EmployeeEJB Deployment Descriptor segment

When a primary key maps to multiple cmp-fields, or if the key is represented by a Java primitive type, you must define a custom key class. This class has public fields with the same name and type as the key cmp-fields in the bean. In this situation, the primkey-field tag is not used since the primary key class is used to define the key cmp-fields by name. The next section will walk through one of the case study CMP beans that define a custom key class.
In WebSphere Studio, the Enterprise Bean Creation wizard’s logic for deciding whether to create a new key class or use the the cmp-field as the key class itself depends on the two factors:
1. Is the type of the cmp-field designated as the key, a Java primitive type? If so, generation of a key class that wraps the primitive type is automatic and the developer has no options to consider.
2. If the type of the cmp-field designated as the key, is a Java class, then the developer has a choice to make. Use the cmp-field’s class as the key directly, as we did with the String empId in Listing 23.4. Or let WebSphere Studio create a key class which will wrap the cmp-field. This decision is controlled by the selection of the Use the single key attribute type for the key class checkbox on the wizard, see Figure 23.7. This checkbox is enabled and disabled depending on the make up, and type, of the cmp-field(s) designated as being part of the key. If the checkbox is selected a key class will not be generated and the type of the cmp-field will be used instead.
Note that compound keys, regardless of the types which make them up, will always have a key class created by the wizard.
Key Classes

Now that you understand why you must define a key class for an Entity Bean, you are ready to examine the key class for our DepartmentEJB, see Listing 23.5:

package com.wsbook.casestudy.ejb;
public class DepartmentEJBKey implements java.io.Serializable {

static final long serialVersionUID = 3206093459760846163L;

public int deptNumber;

public DepartmentEJBKey() {

}

public DepartmentEJBKey(int deptNumber) {

this.deptNumber = deptNumber;

}

public boolean equals(java.lang.Object otherKey) {

if (otherKey
instanceof

 com.wsbook.casestudy.ejb.DepartmentEJBKey) {

 com.wsbook.casestudy.ejb.DepartmentEJBKey o =

 (com.wsbook.casestudy.ejb.DepartmentEJBKey)

 otherKey;

return ((this.deptNumber == o.deptNumber));

}

return false;

}

public int hashCode() {

return ((new java.lang.Integer(deptNumber).hashCode()));

}

public int getDeptNumber() {

return deptNumber;

}

public void setDeptNumber(int newDeptNumber) {

deptNumber = newDeptNumber;

}
}
Listing 23.5 DepartmenEJBKey class implementation
The only requirement that is placed on a key class by the EJB specification is that it must be Serializable. However, the container used by WebSphere Application Server and WebSphere Studio put a few more restrictions on the key class – the class must implement the methods equals() and hashCode() so that instances of the class can be compared with each other.

Uniqueness of primary keys

Since each Entity Bean represents a row in persistent storage, such as a database, and each row must be unique, the primary keys in the Entity Bean must also be unique. Generation of unique primary keys has to be dealt with at some level. Some databases, such as IBM DB2, implement a special type of numeric column of type Identity, whose value if filled by the database manager each time a row is created, thus ensuring unique values; this column can be used to contain the primary key for the table. Unfortunately WebSphere Studio does not, at this time, take advantage of Identity columns, mainly because not all supported database types implement this feature.
In the case study we propose a simple solution to this problem. The implementation of this solution can be found in its own module called OIDGenerator. Basically in the ejbCreate() method(s) for the Entity Bean you are working with, you make a call similar to the code below:
public com.wsbook.casestudy.ejb.DepartmentEJBKey
 ejbCreate(String deptName)throws javax.ejb.CreateException {
 int id = OIGeneratorHelper.getNextId(“DEPT_JB”);

setDeptNumber(id);
 setName(deptName);

return null;

}
OIDGeneratorHelper is a POJO which interfaces with the rest of the module. The string passed to the getNextId() method must be unique for each type of Entity Bean. The OIDGenerator is implemented using the Session and Entity Beans accessing a locked table schema.
For a complete example of how to use this auto key generation feature, please see the TimeSheetEntityEJBBean example implemented for the case study of the book.
Bean Implementation Classes

In order to understand the code that follows for the DepartmentEJBBean implementation class of the DepartmentEJB, you will need to review a few concepts that are true about all Entity Beans. See Figure 23.23 for a diagram showing the Entity Bean life cycle.
· All Entity Beans must implement ejbActivate() and ejbPassivate(), which are hooks (methods called by the container at predetermined times) for special behavior that needs to happen when a bean is swapped to secondary storage or retrieved from secondary storage.

· All Entity Beans must implement the ejbRemove() hook method, which is called before the EJB is destroyed, so that you can execute any necessary cleanup code

· All Entity Beans must implement a set of ejbCreate() methods that correspond to the create() methods on the home interface of the EJB. For each create() method defined in the home interface, there will be a corresponding ejbCreate() method that matches it in number, type and order of parameters.

· All Entity Beans must implement a set of ejbPostCreate() methods that correspond to the ejbCreate() methods. For each ejbCreate() method defined, there will be a corresponding ejbPostCreate() method that matches it in number, type and order of parameters. This method is a hook that is called after any ejbCreate() method is called. You can use it to do any additional generic setup that must be done before a bean instance is ready for use. The EJB Object itself (e.g. the object that controls transaction and thread safety) is not available until after the ejbPostCreate() method is invoked, so you do not want to invoke remote business methods as part of EJB creation until that point.

There are a few new lifecycle methods that are specific to Entity EJBs that you haven’t seen before. They are:

· The methods getEntityContext(), setEntityContext(EntityContext e) and unsetEntityContext(). These methods are meant to handle the management of the EntityContext. The EntityContext is an object that provides access to some of the underlying EJB framework features – like the transaction framework, and the EJBObject that manages much of the transaction, threading and distribution for the bean’s implementation. There was a corresponding setSessionContext() method in the previous stateless session bean.
· The methods ejbStore() and ejbLoad(). These two methods are hooks that will be called before the data in the Entity Bean is written to a persistent store by the container, and after new data has been read in respectively. They are useful if you need to do any conversion from data types that cannot be stored in a relational database to those that can. You will learn more about how these two methods are used in BMP beans in the chapter on BMP as well.

[image: image23.png]
Figure 23.23 Entity Bean lifecycle

The final methods that are needed to complete the EJB are the methods that implement the local, or remote, interfaces. Now that you’ve been introduced to the different methods that are necessary to implement a CMP Entity Bean class, you are ready to examine the implementation of the Bean class as a whole (Listing 23.6). Afterwards, we will revisit some of the methods in more depth to point out some noteworthy features of the implementation.

package com.wsbook.casestudy.ejb;
public abstract class DepartmentEJBBean implements javax.ejb.EntityBean {

private javax.ejb.EntityContext myEntityCtx;

public void setEntityContext(javax.ejb.EntityContext ctx) {

myEntityCtx = ctx;

}

public javax.ejb.EntityContext getEntityContext() {

return myEntityCtx;

}

public void unsetEntityContext() {

myEntityCtx = null;

}

public com.wsbook.casestudy.ejb.DepartmentEJBKey
 ejbCreate(
int deptNumber)throws javax.ejb.CreateException {

setDeptNumber(deptNumber);

return null;

}

public com.wsbook.casestudy.ejb.DepartmentEJBKey
 ejbCreate(
int deptNumber, String name)

throws javax.ejb.CreateException {

setDeptNumber(deptNumber);

setName(name);

return null;

}

public void ejbPostCreate(int deptNumber)throws javax.ejb.CreateException

 { } //nothing to implement on this EJB

public void ejbPostCreate(int deptNumber, String name)

throws javax.ejb.CreateException {

}

public void ejbActivate() {

}//nothing to implement on this EJB

public void ejbLoad() {

}//nothing to implement on this EJB

public void ejbPassivate() {

}//nothing to implement on this EJB

public void ejbRemove() throws javax.ejb.RemoveException {

}//nothing to implement on this EJB

public void ejbStore() {

}//nothing to implement on this EJB

public abstract java.lang.String getName();

public abstract void setName(java.lang.String newName);

public abstract int getDeptNumber();

public abstract void setDeptNumber(int newDeptNumber);
}
Listing 23.6 DepartmentEJBBean class implementation
Now that you’ve seen the class as a whole, you are ready to take a closer look at some of the individual features of this class.

The first thing that you will notice is that a great many of the methods in the class have an empty implementation – they don’t do anything. This is true of ejbActivate(), ejbPassivate(), ejbRemove(), ejbLoad() and ejbStore(). The reason is that this class is simple enough that there is no need to take advantage of any of these hooks to perform special processing. In general, most of the lifecycle methods in your EJB implementation classes will be empty like this. The method hooks must be implemented because they are defined in the javax.ejb.EntityBean interface, which the Bean class implements. These methods don’t require any implementation unless the Bean has some special requirements. This may seem like a waste of programming effort, but it is for a good reason – you always want to have the option to implement these methods to deal with unusual circumstances when/if the time comes. In the meantime, you have two good options for implementing all of these empty method bodies:

1. WebSphere Studio will automatically generate the empty method bodies when you create an Entity Bean in the EJB development environment. This way you don’t have to worry about doing the typing yourself.

2. If you aren’t using WebSphere Studio to develop EJBs for WebSphere (as you should), then you can take advantage of an idiom defined in [Monson-Haefel] called BeanAdapters. A BeanAdapter is a class that implements javax.ejb.EntityBean or javax.ejb.SessionBean that provides default “do nothing” implementations of the EJB lifecycle methods. Your classes will extend this class, and thus inherit the method implementations. This way you will need to override a lifecycle method only when you need the additional implementation details.

There are a few lifecycle methods that must not have an empty implementation. In particular, the methods managing the EntityContext must set or return an instance variable of the type EntityContext. The container uses this instance in managing the lifecycle of the bean, so it is important that you remember to implement these methods accordingly. The implementations shown above give you all of the information you need to implement these methods in your own beans. Again, if you are using WebSphere Studio to write your beans, these methods implementations are automatically generated for you.

This leaves the declaration of the Bean class and two sets of methods to examine – the ejbCreate() methods, and the methods that implement the corresponding local, or remote interfaces methods. To understand the implementation of these methods, first take a look back at this fragment of the class definition:

public abstract class DepartmentEJBBean implements javax.ejb.EntityBean {

private javax.ejb.EntityContext myEntityCtx;
…
 public abstract java.lang.String getName();

public abstract void setName(java.lang.String newName);
…
}
One of the significant changes in EJB 2.0 is that the Bean class is declared as abstract. Along with the class definition, note that the CMP fields name and deptNumber are not declared on the class. Furthermore, the getter and setter methods for the CMP fields are also abstract. The declaration of the CMP fields and implementation of these methods will be generated by the container. This gives the container provider greater flexibility when generating the implementation classes to include improvements in performance/caching by customizing how CMP fields are really implemented by the container.
Let’s consider the ejbCreate() methods in Listing 23.7:

public package com.wsbook.casestudy.ejb ejbCreate(int deptNumber) throws javax.ejb.CreateException {

setDeptNumber(deptNumber);

return null;

}

public com.wsbook.casestudy.ejb.DepartmentEJBKey

 ejbCreate(
int deptNumber, String name)

throws javax.ejb.CreateException {

setDeptNumber(deptNumber);

setName(name);

return null;

}
Listing 23.7 Code segment of ejbCreate() methods

Both of these methods show how you initialize the values of the cmp-fields from the arguments of a create() method. Different create() methods provide different ways of initializing the fields. For instance, often you will have a create() method that does not take any arguments corresponding to the properties of a bean, and you will instead set some of them to a default, or calculated value.

One more last detail, again regarding the EJB 2.0 implementation; ejbCreate() methods are declared to return the key type for the EJB, in our case DepartmetEJBKey. They must, however return a value of null.

There is nothing more in this example that we need to examine from a code perspective. The variable setters and getters for the properties are simple, and work exactly as they would in any Java class. Instead, now is the time to examine how to create and test Entity EJBs in WebSphere Studio, and how to deploy them in WebSphere.

Deployment Descriptor

In this section we will look a several aspects of CMP Entity Beans that require little or no programming effort, yet add a tremendous amount of function to the Bean. These features are defined in the EJB Deployment Descriptor (EJB DD).

The EJB DD is an XML file, called ejb-jar.xml. It describes the features of one or more EJBs in an EJB JAR file. The EJB container uses the information in this file to correctly generate the code for the EJBs. There is one EJB DD for each EJB JAR file.

<entity id="DepartmentEJB">
 <display-name>DepartmentEJB</display-name>
 <ejb-name>DepartmentEJB</ejb-name>
 <local-home>

 com.wsbook.casestudy.ejb.DepartmentEJBlocalhome
 </local-home>
 <local>

 com.wsbook.casestudy.ejb.DepartmentEJBlocal
 </local>
 <ejb-class>

 com.wsbook.casestudy.ejb.DepartmentEJBBean

 </ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>

 com.wsbook.casestudy.ejb.DepartmentEJBKey

 </prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
…
</entity>
Listing 23.8 DepartmentEJB Deployment Descriptor segment

In the portion of the EJB DD above, in Listing 23.8, you see how it defines the name of each EJB (in our case the DepartmentEJB), the names of the types representing the local, local home interfaces and Bean class, the type of persistence (Container, or Bean managed), the class implementing the key, the CMP version
, etc. There will be a group of definitions for each EJB contained in the Jar file. The acceptable elements and values for the EJB DD are defined on the Document Type Definition (DTD) file for EJBs found at:

http://java.sun.com/dtd/ejb-jar_2_0.dtd

There are three features we will introduce in this section. Later in other chapters you will get a chance to get better acquainted and to dig deeper into their details. The three features are:

· Container Managed Fields

· Container Managed Relationships

· Finders and selectors using EJB Query Language

Aside from these three features, which we will cover here, there are quite a few other definitions in the EJB DD, for example EJB Security, Transactional attributes, etc. They will be covered in other chapters of the book.

Container Managed Persistence fields

Container Managed Persistence fields are defined in the EJB DD; these are the attributes that will be persisted to the backend data source by the container. Getter and setter methods, for these fields, are defined as abstract methods in the EJB Bean class. Any getter and setter methods, which need to be exposed to the EJB client, need to appear in the local (or remote) interfaces. The implementation of getters and setters is generated by the container when deploying the EJB. Before you can generate the deployed code for a CMP EJB, you need to map the CMP fields to the corresponding database columns. The mapping process is covered in chapter 24.

In Listing 23.9 you see how CMP fields are defined in the EJB DD.

<entity id="DepartmentEJB">
…
 <abstract-schema-name>DepartmentEJB</abstract-schema-name>
 <cmp-field>
 <field-name>name</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>deptNumber</field-name>
 </cmp-field>
…
</entity>
Listing 23.9 DepartmentEJB Deployment Descriptor segment defining CMP fields
Note that there is no mapping information in the EJB DD. This is because the EJB 2.0 specifications do not yet prescribe how to define this type of information. Only elements defined by the spec, appear in the DTD and can therefore be included in the EJB DD file, ejb-jar.xml. Each tool provider (IBM, BEA, SUN, etc) is free to define attributes to extend the formal EJB DD and include specialized information required by their tools. In WebSphere there are several other files which are used to further define the EJB’s features, so that the EJB containers in IBM products can extend the function defined by the spec. Some of “EJB DD extender” files used by WebSphere are:

· ibm-ejb-jar-bnd.xmi

· ibm-ejb-jar-ext.xmi

· map.mapxmi (does not exist until mapping is done)

These files can be found, along with ejb-jar.xml, under META-INF folder of the ejbModule folder.

Container Managed Relationships (CMR)

Relationships between EJBs are very common. A relationship, or association, between EJBs is defined by several factors:

· Multiplicity

· Navigability

· Roles

Container Managed Relationships are a new feature introduced with the EJB 2.0 specification. Before EJB 2.0, IBM and other tool providers managed relationships between Entity Beans using their own proprietary approach. This resulted in EJBs that would only run on a particular server type. Entity Beans developed with VisualAge for Java, or WebSphere Studio Classic, which contained relationships, would not run on another tool provider’s server, they would only run on WebSphere Application Server.

As the specification evolves, so does interoperability. EJB 2.0 compliant Entity Bean relationships are now portable between different EJB 2.0 compliant application servers.

Using WebSphere Studio Application Developer makes defining Entity Bean relationship very easy. You will see the details about defining CMRs using WebSphere Studio in chapter25.

EJB Query Language (EJB QL)

Before the EJB 2.0 specification, different tool providers came up with their own customized support for finder methods. Finder methods are part of the home interface and are used to find one or more of Entity Beans, which match a specified criteria. One of these finder methods is special. The findByPrimaryKey() method is mandatory and is produced by WebSphere Studio for you. Other finder methods are generally required in your Entity Beans. For example on the DepartmentEJB there is a method to find all departments.

Starting with EJB 2.0, the way queries are defined in Entity Beans has changed. In the past we used SQL, a database centric query language. Now we use a new query language called EJB Query Language, or EJB QL for short. EJB QL is an EJB centric query language where queries are not expressed in terms of tables and columns in a database, but in terms of Entity Bean schemas and Entity Bean attributes. The creation of EJB QL queries will be covered in more detail in chapter 24 and chapter 25 will cover more advanced EJB QL statements that may be necessary for your application.
Summary

In this chapter we covered the basic structure of container-managed (CMP) Entity EJBs. You’ve walked through a code example showing the classes that a bean provider must write to implement a CMP EJB. You created and tested an Entity Bean and finally you started to learn about container managed relationships (CMR) and how the EJB Query Language (EJB QL) is used with finders and select methods.

� [EJB 2.0 Specification 10.5.2] The above requirement is to allow the creation of an entity bean with bean-managed persistence by subclassing an entity bean with container-managed persistence.

� Since EJB 2.0 deployment descriptors can define both EJB 1.1 and EJB 2.0 EJBs each entity element must define the version of the EJB it describes. If the EJB being described is CMP and cmp-version is 2.x, the deployment descriptor for the bean must also include the abstract-schema-name element for the bean.

25

