Chapter 10
JavaServer Pages Concepts

Most of the content presented to the user as part of a web application is HTML. These web pages are easily created and managed using HTML page editors. HTML page editors allow the developer to concentrate on the presentation and content through the use of a WYSIWYG user interface. In previous chapters we have concentrated on the mechanics of the implementation of server-side logic using servlets. In one of the examples, servlets directly delivered HTML content to the HTTP output stream with String literals in Java. While this gets the job done, few people would consider this a Best Practice.

As an alternative to creating all output on the servlet, one could use the RequestDispatcher object, available from the ServletRequest, to include static HTML from files. This frees the servlet developer from having to deal too much with HTML directly – but fails to allow a page designer to be able to see a complete page’s layout at design time. This is because the page must be maintained and managed as smaller page segments rather than as a complete document. A second disadvantage of this approach is mixing both Controller logic and Presentation within the same asset, the servlet. It is best to keep the presentation (view) completely separate from the Controller logic (model). This way the view can be created and maintained by an individual or team focused only on the presentational concerns of the site or application.

A better solution to this problem exists in the form of JavaServer Pages (JSP). A JSP is a file that contains extended HTML like tags that allow embedding dynamic content (e.g. Java code and special server-side HTML tags) along with standard HTML. In this way, we can develop the presentation of information using any standard HTML editor (like Microsoft FrontPage or the HTML editor that is included in IBM WebSphere Studio). Dynamic content is obtained by the model layer of the application and placed in JavaBeans which are accessible by the JSP in the view layer. This approach not only allows the flexibility to more cleanly separate the back-end generation of dynamic content from the presentation in HTML, but also permits the two development roles, writing HTML and writing Java, to be split among different team members, each with complementary skill sets. It also makes the process of developing dynamic content simpler, since it is easier to edit and deploy an HTML page than to change HTML within the Java source code of a servlet, and then recompile and redeploy it.

 EMBED Word.Picture.8 [image: image1.emf]

Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data SourceDomainData Mapping

EJB Container

Application Services

Exception

Handling

PropertiesLogging

Servlets

Struts

Java

Beans

MsgDriven

Beans

Cactus

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

Servlets

Struts

Java

Beans

MsgDriven

Beans

Cactus

Servlets

Struts

Java

Beans

MsgDriven

Beans

Cactus

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

JDBC

JMS

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Session

EJBs

JUnit

Java

Beans

JDBC

JMS

JDBC

JMS

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Session

EJBs

JUnit

Java

Beans

Session

EJBs

JUnit

Java

Beans

Figure 10.1: Architectural Roadmap showing position of JSPs
We show the position of JSP within our overall Architectural roadmap in Figure 10.1. If you are already familiar with JSP basics, JSP Syntax elements and how JSPs are processed by the Web container then you can safely skip this chapter. Chapter 13 provides detailed coverage on how to create, test and debug JSPs using WebSphere Studio. Otherwise, you should read on to understand how JSPs are built, compiled and executed, and what benefits JSPs can give you.

Page Templates and Server-side Scripting

A facility that provides page content and can be customized on a per request basis is often called a page template. The created page template does not completely represent a page delivered to the client, but instead represents the form (layout, style) of the page. It is representative of many instances of the actual page. One such template technology is implemented with JSPs.
To generate an actual page from a page template requires processing. The processing step executes instructions to insert dynamically obtained content within the otherwise static HTML stream. For example consider three different views of an extremely trivial JSP shown in Figures 9.1 – 9.3.

[image: image6.png]Figure 10.2 shows a WYSIWYG page editor view of the JSP. For the most part this looks like a simple HTML file. A place-holder (seen as a box with part of the code) is provided as a hint that there is JSP specific content that has been defined as part of the page.

Figure 10.3 shows the Source view for the page. Here it is possible to see the HTML code representing the page and the specific content that is behind the place holder in the form of the JSP tag:

<%= new java.util.Date() %>

[image: image2.png]
Figure 10.3 HTML Source view of JSP

This JSP tag appears as if it were an extended HTML tag, similar in formatting to other HTML tags. Figure 10.4 shows the rendered page as viewed by a browser. The page is made up static content, like the color, title, headings; etc that will displayed the same way every time the page is requested. The dynamic content, the time on the server when the request is made, will be dynamically generated on each request and is inserted seamlessly in the resulting page.

[image: image3.png]
Figure 10.4 Display sent to the browser when the JSP executes

A Short History of Java Server Pages

 JavaServer Pages is one of a family of technologies known as server-side scripting
. A competing member of this family is Active Server Pages (ASP) from Microsoft. Each of these technologies shares a similar structure, namely a source file that is a mixture of HTML and script code and runtime processing that occurs on the server. ASP is actually the elder technology.

JSP was initially developed by a working group under the supervision of Sun Microsystems. Work began on the technology (under its current name) in late 1997. It was announced to the public at the JavaOne conference in March 1998. The first public specification and reference implementation, the 0.91 Version, was available in June 1998. One year later, the first true JSP Specification (Version 1.0) was made public. The most current level of the JSP Specification (Version 1.2) became available in August of 2001. With each release of the specification, Sun Microsystems also released a reference implementation.

At the writing of this book, the Java Servlet and JavaServer Page specifications are developed by the Sun Corporation under the Java Community Process. Reference implementations have been turned over to the Apache group, under the umbrella of the Jakarta Project (for more information see http://jakarta.apache.org). The Jakarta project’s reference implementation effort (for both Servlets and JSPs) is called Tomcat.

IBM WebSphere Application Server Version 5.0 provides runtime for the J2EE 1.3 specification which includes support for JSP version 1.2. For backward compatibility, J2EE 1.2 is also supported and therefore JSP 1.1 is also supported.

Page Compilation – Runtime View

At the heart of JavaServer Pages technology is the process used to take the JSP source and convert it to a runtime object that executes within a web container. The specification states that a Java class is to be generated which implements the javax.servlet.jsp.HttpJspPage interface. In most cases, this Java class will be a servlet. This Java class, defines a _jspService() method which will be called by the web container to provide the runtime service.
In addition to the _jspService() method the HttpJspPage class also implements the other lifecycle methods of a servlet. Table 1 shows the mapping between the servlet and JSP methods.
Table 1: Servlet to JSP method mapping

	Servlet method name
	JSP method name

	service()
	_jspService()

	init()
	_jspInit()

	destroy()
	_jspDestroy()

The process of parsing the JSP source, producing the Java class and compiling it (to make it ready to be loaded into the servlet engine), is known as page compilation. For most web containers, this Page Compilation service is provided by a servlet. The level of support is determined by the J2EE level of an installed web module.

Each page compilation servlet has a number of initialization parameters that you can set, which affect the behavior of the page compilation. One of the most important of these is the keepgenerated=true. Setting this parameter ensures that the generated class’ source code is saved to the file system (not just the compiled byte code file). This is useful for the developer to gain a general understanding of how the JSP works and can also be referenced while debugging.

Setting the keepgenerated parameter is done using the Web Deployment Descriptor editor’s Extension page in WebSphere Studio. An optional parameter is scratchdir, which indicates the location of where the source files will be kept.

[image: image4.png]Figure 10.5: Generating Java source form JSPs.
It should be noted that this page compiler option should only be used during development. It is not a good idea to keep the generated source for the JSPs during production. You could end up with a lot of unnecessary files and delay page compilation too.

To learn more aspects of the class that gets generated from the JSP source, consider the Java source code file shown in Listing 10.1 whose _jspService() method created the output for the JSP presented in Figure 10.2 and 10.3.. . .

 public void _jspService(HttpServletRequest request, HttpServletResponse response)

 throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;

 PageContext pageContext = null;

 HttpSession session = null;

 ServletContext application = null;

 ServletConfig config = null;

 JspWriter out = null;

 Object page = this;

 String _value = null;

 java.util.Stack _jspxTagObjects = new java.util.Stack();

 try {

 if (_jspx_inited == false) {

 synchronized (this) {

 if (_jspx_inited == false) {

 _jspx_init();

 _jspx_inited = true;

 }

 }

 }

 _jspxFactory = JspFactory.getDefaultFactory();

 response.setContentType("text/html; charset=ISO-8859-1");

 pageContext = _jspxFactory.getPageContext(this, request, response,

"", true, 8192, true);

 application = pageContext.getServletContext();

 config = pageContext.getServletConfig();

 session = pageContext.getSession();

 out = pageContext.getOut();

 // begin [file="/book_simple.jsp";from=(0,0);to=(3,0)]

 out.write("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01

 transitional//EN\">\r\n<HTML>\r\n<HEAD>\r\n");

 // end

 // begin [file="/book_simple.jsp";from=(7,2);to=(16,0)]

 out.write("\r\n<META http-equiv=\"Content-Type\" content=\"text/html;

 charset=ISO-8859-1\">\r\n<META name=\"GENERATOR\" content=\"IBM

 WebSphere Studio\">\r\n<TITLE>Simple

 JSP</TITLE>\r\n</HEAD>\r\n<BODY bgcolor=\"teal\"

 text=\"yellow\">\r\n<H1 align=\"center\">Thank you for visiting our

 site</H1>\r\n<H2>You had contact with our server at:</H2>\r\n<center>

 <H2>\r\n");

 // end

 // begin [file="/book_simple.jsp";from=(16,3);to=(16,25)]

 out.print(new java.util.Date());

 // end

 // begin [file="/book_simple.jsp";from=(16,27);to=(19,0)]

 out.write("</H2>\r\n</BODY>\r\n</HTML>\r\n");

 // end

 } catch (Throwable t) {

 if (out != null && out.getBufferSize() != 0)

 out.clearBuffer();

 if (pageContext != null) pageContext.handlePageException(t);

 } finally {

 while (_jspxTagObjects.empty() == false){

 ((javax.servlet.jsp.tagext.Tag)_jspxTagObjects.pop()).release();

 }

 if (_jspxFactory != null) _jspxFactory.releasePageContext(pageContext);

 /* Service Finally Phase */

 }

 }

}

Listing 10.1 Generated servlet source

The package statement and several import statements were dropped from the file listing, as where the generated _jspInit() and _jspDestroy() methods. For this simple JSP, everything of interest appears in the _jspService() method. The initial part of this method defines a number of local variables that are later initialized from utility methods on the class, PageContext. Immediately after defining the local variables, one time behavior (calling _jspx_init()) is invoked.

Right after the initialization of the JSP the service method proceeds to output both the static and dynamic parts of the page interleaving between them as necessary to maintain the structure of the page. The static elements are represented by strings and sent to the output stream using simple out.write() methods, where out is an object of type PrintWriter. The dynamic part of the page is converted into the appropriate Java code from the original JSP expression or scriptlet
. In the case of our example the JSP expression:

<%= new java.util.Date() %>

was converted to:

out.print(new java.util.Date());

There are also a number of comments inserted by the page compiler. These comments document the source of the static content for the page, such as the file containing the HTML, including starting and ending row and column position.
The HttpJspPage interface also defines two methods jspInit() and jspDestroy(). These methods can be overridden if the JSP needs to perform any one-time initialization or termination behavior. When the generated class is a servlet, the superclass (provided by the page compilation service) will override the HttpServlet’s service() method so that its behavior is to call the _jspService() method. Similarly, the HttpServlet’s init() method will call the jspInit() method and the destroy() method will call the jspDestroy() method. In this way, the servlet engine’s control model gets mapped to the JSP runtime model (as specified in the HttpJspPage interface).

Page Compilation occurs if no servlet class has yet been generated for the target JSP or if the currently available servlet class’ creation date (timestamp) is older than the JSP source file. Otherwise, if the servlet class exists it is invoked if it is already loaded or it is loaded and then invoked if it is not currently loaded.

Errors can occur during page compilation at two different levels. First, the JSP tags can themselves be malformed. When using WebSphere Studio, the JSP validator will catch these errors and list them in the Tasks view when the JSP file is saved. Second, the Java class generated during page compilation may produce Java compilation errors and will be reported as such, again the JSP validator in Ws will catch most of the conditions that can lead up to these type of errors. Lastly the JSP can get runtime errors, just like any regular Java code. These errors are the most harmful in the user’s eyes. If not handled properly ugly and cryptic stack dumps are displayed on the user’s browser. These types of errors are best handled in an error page, which can clean up the original exception and display a meaningful error message to the user.
JSP Syntax

There are three categories of elements that make up the JSP syntax:

1. Scripting Elements

2. Directives

3. Action Tags

We will look at the first two groups of elements in this chapter while considering Actions in the next chapter.

Scripting Elements

When writing JSPs, your first interest is in adding code that executes at runtime and can perform server-side functionality. The most direct way to specify the Java code that appears in the generated class is through the use of JSP Scripting elements. There are three distinct scripting elements specified for JSP. These are:

1. Scriptlets

2. Expressions

3. Declarations

We will proceed to look at each of these in turn.

Scriptlets

Scriptlets are Java code fragments that are placed as they are directly to the _jspService() method. This is the most direct way to write Java code within a JSP. The syntax for a scriptlet is:

<% Java code fragment %>
At initial glance, allowing any Java code fragment rather than a statement, collection of statements or expression probably seems odd. But, it should be noted that scriptlets will be intermixed with HTML and Java “blocks” will frequently need to be split. For example, consider part of a JSP file that will produce a variable sized HTML Table:

<Table><Tbody>

 <% PrintWriter out = request.getWriter();

 for (int i=0; i<a.size; i++) { %>

 <tr>

 <td><% out.print(i); %></td>

 <td><% out.print(a[i].getAProperty()); %></td>

 </tr>

<% } %>

</Tbody></Table>

As you can see the for loop is split across a number of scriptlets. It is quite clear that the above JSP code is difficult to read, both for HTML page developers and Java programmers. Because of this fact, we will work hard to minimize scriptlets when developing JSPs. We put forth this goal despite the fact that scriptlets are the most general-purpose scripting element in JSP.

Expressions

A scripting element is frequently required to supply a runtime value (expression) to the page template. In other words, most of the time we are trying to place dynamic (displayable) data to the HTTP output stream. JSP expressions are a short form of scriptlet to be utilized in these circumstances. The syntax for a JSP expression is:

<%= a_Java_expression %>
The semantics of this tag is to:

1. evaluate the expression

2. convert the result to a String (if non-primitive)

3. output the String (or primitive) to the current output stream

As you will see, JSP expressions are likely to be the most common JSP tag type seen throughout the JSP source file. They are self-contained and rarely split across HTML, so there are easier for both the JSP developer and web designer to recognize and maintain, unlike general scriptlet expressions that can contain any legal Java code.
Declarations

While scriptlets and expressions permit writing code that appears in the _jspService() method, Declarations are used to write direct Java code at the class level. The syntax for a JSP declaration is:

<%! Java member definitions %>
Declarations can be used to define instance variables and static variables as well as define methods. Defining new methods is useful when complex scripts are repeated. This repeated script can be encapsulated in a method body, and the repeated script can be replaced by repeated method call.

More likely however, Declarations will be used to override the jspInit() and jspDestroy() methods when needed. An example declaration is:

<%!

private static PropertyResourceBundle environment = null;

public void jspInit() {

 try {

 inputStream stream = getServletConfig().getServletContext().

 getResourceAsStream(“/props.txt”);

 environment = new PropertyResourceBundle.(stream);

 } catch (IOException ex) {}

}

%>

Directives

While scripting elements map directly to code within the class that is generated, directives represent direction to the page compiler. These requests include specifying certain properties the class that is created is to have, for how translation occurs, or for how the class will operate during runtime. There are currently three different directives:

1. Page directive

2. Include directive

3. Taglib directive

These directives are very different in what they let the JSP developer specify. We will look at both the page directive and include directive here. The taglib directive is part of the custom tag support that is required in JSP V1.1. We address JSP V1.1 issues at the end of Chapter 11.

The Page directive

The page directive is a way to configure a number of operational attributes of the generated JSP. The page directive syntax is:

<%@ page page_directive_attr_list %> where page_directive_attr_list may include any of the items shown in Table 10.2.

	Attribute name
	Attribute value

range
	Description

	language
	Compliant JSP scripting language
	Default value is “java”

	extends
	A Java class which implements HttpJspPage interface
	This should not be used without consideration as it prevents the JSP container from providing specialized super classes which provide enhanced quality of service.

	import
	A comma separated list of fully qualified Java package or type names
	The default import list is java.lang.*, javax.servlet.*, javax.servlet.jsp.*, and javax.servlet.http.*. This is the only attribute that may appear in more than on page directive within the page. Multiple import attributes are interpreted as the set union of all listed types and packages.

	session
	“true” | “false”
	Indicates whether the JSP is session aware or not. The default value is “true”.

	buffer
	“none” | size

size is something like “12kb”
	Specifies the buffering model for the JspWriter opened to handle content output form the page. A specific buffer size guarantees that the output is buffered with a buffer size not less than that specified.

	autoFlush
	“true” | “false”
	Default is “true”. If false, and the stream is buffered and exception is thrown when the buffer overflows. If true, the stream is flushed.

	isThreadSafe
	“true” | “false”
	Default is true. If “false” the typical implication is the generated class implements SingleThreadModel.

	info
	Arbitrary String
	This can be retrieved using the Servlet.getServletInfo() method.

	isErrorPage
	“true” | “false”
	Indicates if the page is used to handle errors. If “true”, the implicit script variable exception is defined and bound to the offending Throwable from the source JSP page in error.

	errorPage
	A URL
	The JSP will catch all exceptions and forward processing to the names target resource.

	contentType
	“Type” | “Type; charset=CHARSET”
	The default value for type is “text/html”; the default value for the character encoding is ISO-8859-1.

Table 10.2 JSP Page Directive Attributes

An example page directive is:

<%@ page errorPage=”TSErrorHandler.jsp” isErrorPage=”true” import=”com.workbook.casestudy.domain, com.workbook.casestudy.mediator” %>

It should be noted; a page can contain several page directives. With the exception of the import attribute; no other attribute may be specified more than once. Two of the attributes, session and isErrorPage affect the availability of the associated implicit objects for use by scriptlets and expressions.

The Include directive

The include directive allows for the translation time composition of multiple files into a single JSP source file. The syntax for the include directive is:

<%@ include file=”relativeURLspec” %>
Execution of the include tag at translation time, results in the insertion of the text of the specified resource into the JSP source file. Since this is a translation time “include”, you will not want to use this directive to include resources that change. If you wish to include volatile content, this should be done with a runtime include mechanism like the <jsp:include> action.

Implicit Objects

Both scriptlets and expressions result in code being placed in the _jspService() method. Several local variables (implicit, or predefined, objects) are guaranteed to be available to these scripting elements by the JSP Specification. The implicit objects are shown in the table below.

	Implicit Object

(local variable name)
	Java Type
	Object represented by reference

	request
	javax.servlet.http.HttpServletRequest
	The request associated with this invocation

	response
	javax.servlet.http.HttpServletResponse
	The current response object

	out
	javax.servlet.jsp.JspWriter
	A writer connected to the output stream

	session
	javax.servlet.http.HttpSession
	The current session object for the requesting client

	pageContext
	javax.servlet.jsp.PageContext
	The pageContext (a utility object) for this JSP

	application
	javax.servlet.ServletContext
	The servlet context for this JSP

	config
	javax.servlet.ServletConfig
	The ServletConfig for this JSP servlet

	page
	java.lang.Object
	Usually corresponds to this

	exception
	java.lang.Throwable
	The Throwable that resulted in the error page being invoked.

Both exception and session are only present in particular circumstances depending on the how the page directive is defined. The exception object is present if the JSP is configured as an error page (isErrorPage=”true”). The session object is present if the JSP is configured to be session aware, which is the default. If the page is configured to be session aware and a session object does not exist when the page is displayed a new session object is created.

JSP Documents

JSP documents are JSP pages created using XML style syntax instead of JSP syntax. In this section we cover the different XML elements which can be used for constructing a JSP document.

The JSP 1.2 specification describes several reasons of why you would want to use XML style syntax in your JSPs:

· JSP documents can be passed directly to the JSP container; this will become more important as more and more content is authored as XML.

· The XML view of a JSP page can be used for validating the JSP page against some description of the set of valid pages.

· XML-aware tools can manipulate JSP documents.

· A JSP document can be generated from a textual representation by applying an XML transformation, like XSLT.

· A JSP document can be generated automatically, say by serializing some objects.

A JSP written using XML style syntax can include another document, which uses JSP syntax, with the include directive, and vice versa. However, JSP syntax cannot be intermixed with XML syntax on the same page.

JSP pages using XML style syntax use the same file extension as pages using JSP syntax - “.jsp”. The container can distinguish between JSP and XML syntax pages because the XML syntax page is an XML document with a jsp:root element. JSP syntax pages cannot use the jsp:root element.

Similar to JSP syntax, pages written using XML syntax can use the following elements:

· jsp:root is the first element on the page an introduces the namespace for the custom tags on the rest of the page

· JSP Directives

· JSP Scripting

· JSP Actions

· JSP Custom Actions

· jsp:text for static text (template) data

From the semantic perspective, a JSP document is the same as a JSP page. There are static or template elements and elements that produce dynamic context. The document is processed, like any other XML document where the nodes of the document are identified. Nodes containing template information are passed unchanged to the output stream. The remaining nodes are interpreted and their resulting output is passed to the stream.

Examining an XML style syntax JSP document

Let’s take a minute to examine the source for a JSP document. In fact, the output from this JSP is exactly the same as the example you saw in Figures 10.2 and 10.3. The major difference is that in this case we have used XML style syntax.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">
 <jsp:directive.page language="java"
 contentType="text/html; charset=ISO-8859-1" pageEncoding="ISO-8859-1" />
 <jsp:text>
 <![CDATA[<?xml version="1.0" encoding="ISO-8859-1" ?>]]>
 </jsp:text>
 <jsp:text>
 <![CDATA[<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">]]>
 </jsp:text>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>SimpleXMLJSP.jsp</title>
 </head>
 <jsp:text>
 <body bgcolor="teal" text="yellow">
 <h1 align="center">Thank you for visiting our site</h1>

<h2>You had contact with our server at:</h2>

<center>

 <jsp:expression>new java.util.Date()</jsp:expression>

 </center>

</body>
 </jsp:text>
 </html>
</jsp:root>
On the JSP above, note the jsp:root element at the very top of the page. As mentioned before it defines the root of the document and defines the name space. Also note the use of the jsp:text element to enclose static template text. Other differences you may notice are the use of XML style syntax for the page directive and also the expression which gets the current date.

XML Syntax elements

The table below shows the mapping between the JSP syntax tags and XML syntax elements.

	JSP Syntax
	XML Element

	N/A
	<jsp:root>

	<% page directive %>
	<jsp:directive.page directive/>

	<%@ include file=”relativeURLspec” %>
	<jsp:directive.include file=”relativeURLspec”/>

	<%! Some declaration %>
	<jsp:declaration> Some declaration </jsp:declaration>

	<% Java code fragment %>
	<jsp:scriptlet> Java code fragment </jsp:scriptlet>

	<%= Java expression %>
	<jsp:expression> Java expression </jsp:expression>

	<%@taglib uri=”uriVaue” prefix=”prefix” %>
	Expressed at jsp:root as a xmlns:prefix=”uriValue”

JSP standard and custom actions can be used in both JSP and XML syntax pages as they are already expressed in XML terms.

Creating an XML syntax JSP in WebSphere Studio

Creating a JSP, which uses XML syntax, with WebSphere Studio, is very similar to creating a regular JSP file. There are, however, a couple of choices that need to be selected for the JSP to be created properly.

Start in the Web perspective. Select the Web Content folder of the Web project where you want to create the new JSP. From its context menu, select New -> JSP file.

[image: image5.png]
Figure 10.6: Creating an XML Style Syntax JSP

In order for the Use XML Style Syntax check box to be enabled, the Markup Language selected has to be either XHTML
 or XHTML Frameset. From then on, you can continue to define the many other parameters on the wizard. Usage of the New JSP File wizard will be fully covered in Chapter 13.

Roles for JSP

JSP is a broad enough specification to support many different programming models and common uses. This potentially broad appeal is both a strength and a weakness of JSPs.

Since it is possible to write a complete general-purpose servlet using JSP scripting elements, some of you may be tempted to do so. In this role, a JSP is comprised almost entirely of one or more scriptlets and declarations. It provides an opportunity to write an HttpServlet by only specifying, through JSP elements, the content of the _jspService() method and perhaps other utility methods. For some, this may be a shortcut over using a Java development environment to create the complete class declaration. The JSP will be compiled into a servlet the first time it is requested by a client; from then on its behavior is the same as any other servlet. However, there are disadvantages in this approach as you lose the benefits that such a development environment affords the developer. This loss probably more than offsets the productivity gain from letting the page compiler build the class framework.

On the other extreme, a JSP can play the role of HTML page template only. In this mode, a secondary goal during development is to minimize the Java code that appears in the JSP. JSP-aware HTML page development tools like IBM WebSphere Page Designer support this role.

A third role is a true mix of HTML and Java code. Although more general, this is perhaps the most easily abused role for a JSP to play. To see what we mean by this, when a JSP is used in this way it plays the role of Controller and View as well as perhaps part of the Model in the MVC model. In this mode of operation the JSP is called directly by the user from the browser and the JSP determines what needs to be done and, in some cases, performs the requested action. These actions are normally the role of the controller and the model layers. After the operation is performed the JSP generates the output back to the user. In addition to not separating these programming layers (model, view and controller) , the JSP source itself becomes hard to maintain. It is difficult to sort out what the runtime behavior is when there is lots of complex Java logic, intermixed with HTML tags. Further there is likely no good development environment to assist in making sense of such a source file.

It is the authors’ strong opinion that JSPs should keep to one extreme or the other. Currently there are no noteworthy tools available to strongly support the JSP as a faster servlet development mechanism. (For instance there is no Java/JSP based, Microsoft Visual InterDev style tool on the market.) This leaves us with trying to restrict JSPs to be strictly a page template technology playing the role of the view (or view engine) in our MVC programming model. We revisit this issue while discussing the various JSP programming models in a later chapter.

Summary

In the introduction to servlets chapter we looked at the possibility of generating dynamic content directly on the servlets since they had the knowledge and access to the data which needed to be displayed. This meant generating HTML code to create the static content as well as the dynamic content in the servlet. This was later considered not a best practice as the servlet provided both the controller and view layers of the application, meaning that there could be no separation of responsibilities between roles.

In this chapter we saw how JSPs start from the opposite perspective. That is, instead of embedding HTML in Java code in a servlet, why not embed small “scriptlets” of Java code in HTML? Especially given the goal of eliminating business logic from the presentation layer, this approach resulted in just a little Java code within the HTML whereas the alternative invariably resulted in lots of HTML in the Java code.
In a later chapter we will continue this discussion by examining more JSP tags and discussing what tools exist to support JSP development for WebSphere. We will also look at how to reduce the amount of Java code in JSPs by using JavaBeans and JSP tag libraries.
Figure 10.2: Building a JSP page

� Other scripting technologies include PHP, ColdFusion and Common Gateway Interface (CGI).

� Scriptlets, along with other elements of JSP syntax, are discussed later in this chapter.

� The request variable used here is one of several implicit objects available to the JSP page. It represents the HttpServletRequest object.

� Extensible HyperText Markup Language (XHTML™) is a family of current and future document types and modules that reproduce, subset, and extend HTML, reformulated in � HYPERLINK "http://www.w3.org/XML/" �XML�. XHTML Family document types are all XML-based, and ultimately are designed to work in conjunction with XML-based user agents. XHTML is the successor of HTML. Source: W3C HTML Home page.

 1

_1118087865.doc

_1118087877.doc
[image: image1.wmf]Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data Source

Domain

Data Mapping

EJB Container

Application Services

Exception

Handling

Properties

Logging

Servlets

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

Servlets

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Servlets

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

Java

Application

XSLT

Web

Services

HTTP

Unit

HTML

JSP

JDBC

JMS

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Session

EJBs

JUnit

Java

Beans

JDBC

JMS

JDBC

JMS

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Mapper

Objects

CMP

EJBs

BMP

EJBs

WAS

UTC

Session

EJBs

JUnit

Java

Beans

Session

EJBs

JUnit

Java

Beans

