Chapter 1

Introduction

Welcome to Enterprise Java Programming with IBM WebSphere, Second Edition. This book was designed to deliver the information necessary to understand how to architect, build, and deploy applications based on the Java 2 Enterprise Edition (J2EE) using the IBM WebSphere family of tools and runtime. This book was written for technical managers looking for guidance in understanding J2EE and WebSphere, architects who wish to design scaleable, secure enterprise applications, and for the day-to-day developer who wishes to create more robust, consistent code.

However, you’ll find our approach to be a bit different than other books. Rather than simply focusing on the bits and bytes of each technology component that makes up WebSphere, we take a slightly broader view. We will show you how J2EE and WebSphere combine to form an architecture and runtime suitable for large, mission critical applications.

If you have already invested in the award winning WebSphere Studio family of tools, or you are considering doing so, this book will assure that you get the maximum productivity benefits WebSphere has to offer. Through ‘hands-on’ examples, we will illustrate how IBM’s WebSphere Studio family of tools helps you master Enterprise application development. These examples will also demonstrate some of the J2EE best practices that are intended to make your development tasks easier, your code more maintainable, and your enterprise projects successful. Along the way, we will also provide rationale for our approaches to building enterprise applications. In order to do so, we will start by discussing the importance of enterprise development, explaining the development process, and presenting the topology of properly layered enterprise applications.

Why Software Development must consider the Whole Enterprise

The explosive growth of the Internet has created a truly global marketplace. Because this marketplace is accessible by any customer, anywhere in the world, even small companies have the potential to compete against multi-national conglomerates. However, this “irrational exuberance” for web based Business-to-Business (B2B) and Business-to-Consumer (B2C) opportunities in the late 1990’s is being tempered by the reality that enterprise applications require a sound architecture in order to provide the necessary reliability, scalability, performance, and security. In order to ensure viability in this network economy, companies are using technology to fundamentally change the way they do business. For example, technology is being used to

· Enhance communications through a distributed, connectionless network; providing access to information anywhere, anytime. Mobile computing solutions expand the reach of information by providing wireless solutions that utilize the same technologies and network

· Leverage existing technologies, making existing resources more productive and useful to an increased number of users. It remains true that it is expensive to produce information—consider the time and effort involved in building a stock transfer or insurance processing system. Yet, providing an access wrapper into this these proven systems is, relative to their total cost, fairly inexpensive. Thus re-using information in new contexts, rather than re-implementing, is a sound business decision. In fact, the wrapping of existing technology is proving to be a significant driver for the success of Web services.

· Improve the visibility of information and data by opening up new and existing sources of information to a larger population of customers, vendors, employees and others. Static information can be quickly and easily updated while dynamic solutions can be delivered with minimal effort and programming resources.

· Fulfill the promises of distributed computing with flexible, and easy to implement programming languages, tools, components and interfaces. The complexity of building distributed systems, combined with compatibility issues between distributed models such as CORBA and DCOM created high barriers to entry. Previous attempts at distributed computing tended to break down in heterogeneous environments. To address these issues, the industry has adopted Web services and, in the larger sense, a Service Oriented Architecture as the base distributed computing model. Combined with the power of the J2EE architecture, this distributed computing technology can be utilized to deliver flexible, high performance and standard solutions that can be easily changed to reflect new requirements and design needs.

· Streamline and re-engineer business processes to do business in ways never imagined before. Self-service applications have moved information closer to the end user and reduced administrative personnel. Electronic-commerce (e-commerce) transaction based applications have increased marketplace competition and changed the way many companies present and sell goods and services. Internet technologies have lowered the barrier of entry for many start-up ventures and entrepreneurs; allowing them to compete with larger companies. The web has equalized the playing field for many businesses making many small businesses to appear larger and many larger companies to move like smaller businesses.

In this chapter, we will take a look at the motivations for enterprise application architectures. We will look at Information Technology (IT) issues, focusing on the process requirements of building enterprise solutions. We will conclude this chapter with what is needed overall to respond to competition, business pressures and new requirements.

How Iterative Development Addresses Key IT Management Issues

To effectively build, deploy, and maintain an Enterprise Application, the project team should follow a proven process that supports an iterative development process. An example of an iterative development process is the Rational Unified Process.

Regardless if the development team follows a widely recognized process, or creates their own, it should :

· Focus on feasibility issues early in the development cycle - the project can be built incrementally by providing tangible value at each iteration in the cycle. The most difficult feasibility issues are addressed early in the process.

· Build on early success - breaking the project up into smaller "chunks" allows the development team to deliver iterations early in the development cycle instead of waiting for the "big bang" delivery of the project as in the more traditional waterfall development process.

· Ensure early participation and commitment by end users - while facilitating early discovery of requirements.
· Reduce risk to the overall project - while increasing concrete deliverables risk can be reduced with each iteration.

[image: image1.wmf]

 Layer 1

 Layer 2

 Layer 3

Figure 1.1-Iterative development process

Today’s Enterprise Applications Have New Requirements

With increased competition, lower projected e-commerce profit margins, increased legal issues and new IT management requirements; what is expected in today’s enterprise applications is:

· Solution value – solutions that rely on a layered architecture that leverages reuse and dynamic, scalable, solutions that can be easily changed to meet new business needs.

· Speed to market - a focus on the business domain and not the application infrastructure can help meet the ever-growing strategic application backlog. By using a repeatable standard development process that reuses legacy information and systems. A development team can begin to bring solutions to the marketplace sooner.

· Secure solutions - by protecting assets, legally and technically; an IT organization can not only produce flexible solutions, but it can also give the enterprise a strategic advantage in the marketplace.
What is the Application Development Starting Point?

So how do you achieve solution value, and how do you begin to organize your thoughts on where to start in application development. If we had to identify the single architectural principle that is the foundation of J2EE and at the heart of the WebSphere product family, we would have to declare layering is that principle. Commonly, application development is accomplished in a vertical fashion or at least the division and estimation of work is determined by defining the application’s primary user interfaces.

Underneath user interfaces, business rules, behavior and data is obtained and manipulated based upon activity via the user interface. It is the responsibility of the architecture to provide a blueprint that guides developers on when and how objects are defined during the development process. The importance of establishing this blueprint is realized in support of the iterative development process, where vertical slices of application functionality are delivered in iterations made up of planning, development, and assessment activities. The architecture must support vertical and horizontal dimensions of an application. Horizontal development activities consist of applying logging, exception handling, and start up/shut down mechanisms. Basically, this is behavior that must be provided by all applications. Vertical activities involve implementing slices of application functionality from presentation to data source access. Having the infrastructure in place to allow development to occur in these two dimensions is the responsibility of the architecture.

 Most experienced IT professionals will agree that developing and adhering to a standard architecture is key to the success of large-scale software development. The computer science pioneer, Edsger Dijkstra, validated this notion when he developed the THE operating system in 1968. Since then, layered architectures have proven their viability in technological domains such as hardware and networking.

Layering has proven itself in the operating system domain; however, the same benefits are available when applied to e-commerce or thin client oriented applications. Layered architecture’s have also proven themselves beyond the original centralized computing environments and have become essential in supporting the iterative development process by promoting reusability, scalability, and maintainability. In the following sections we will define and justify a layered architecture for J2EE and WebSphere that we will treat as the groundwork for the remainder of this book.

What is a Layered Architecture

So, what is a layered architecture and what does layering mean? Application layering is the separation of architectural concerns whose boundaries are supported by interface contracts. Typically, these layers are ‘stacked’ vertically so that each layer only interacts with the layer directly underneath it (Figure 1.2: Layers).

[image: image7.png]
Figure 1.2: Layers

Because there exists an interface contract between each layer, changes can be affected on layer 3 with minimal side effects on layer 1. Moreover, layer 3 can be totally replaced, as long as it meets Layer 2’s contract, without affecting Layer 1. This property is known as strict layering.

As mentioned above, the principle of layering is core to both the J2EE and WebSphere. From the J2EE perspective, this concept has been the driving force behind much of the standards work that defines the platform and can be seen in how presentation and data access are designed. The WebSphere Application Server fully leverages this architecture by allowing individual layers to be scaled and distributed independently.

Critics of strictly layered architectures argue that performance and sometimes extensibility are sacrificed since more activity is required to propagate down through the layers. Extensibility can suffer if contracts defined between the layers are not robust enough to handle future requirements. However, being able to strategically distribute the application layers, use the domain layer across multiple applications, and easily configure different data sources and user interfaces overcomes these criticisms.

Non-Strict layering (Figure 1.3: Non-strict Layering) allows higher layers to access any layer defined below it and answers the critics arguments against performance and extendibility; however, it nullifies the benefits of strict layering.

[image: image2.wmf]

Layer 1

Layer 2

Layer 3

Figure 1.3: Non-strict Layering

Common layering schemes

Traditional two-tier client/server based applications can be partitioned into two layers, presentation and data access. A GUI application would simply query a data source, compute and display the information to the user. A consequence of this simple architecture is that knowledge about the business domain appears scattered throughout the user interface, or it is forced into complex database schemas. Object technology encouraged not only the abstraction and reuse of presentation logic, but also business processes and data. Therefore, de-coupling application logic from application presentation resulted in scalable three tier distributed systems allowing objects defined to model business data and processes to be used across application boundaries. With the explosion of the Internet and related technologies, enterprise application requirements have made the existence of layered application architecture imperative.

The most obvious layers of an application can be partitioned into presentation, domain, and data source sections (Figure 1.4: Client-Server Layers). Arguably, the most important layer is the domain. This is where business process and state is captured. Presentation layer objects simply consume or exercise domain objects. Data source objects defined in the data source layer simply access specific data sources on behalf of domain objects requesting or saving state.

It is not enough to merely stipulate the layers in a graphic and expect developers to properly partition application elements into a layered architecture. Developers must implement functionality within each layer in a consistent fashion; moreover, message interaction between layers must be formalized.

[image: image3.wmf] Domain

 Presentation

 Data source

Figure 1.4: Client-Server Layers

Formalizing layer interaction should involve a de-coupled design that includes the proper indirection in support of layer substitution. Additionally, behavior prescribed across all applications, namely exception handling, logging, start up and shut down operations should be formalized and applied consistently.

Layered Architecture Definition

The primary motivation for layering is to create and preserve an enterprise reusable domain model that spans application boundaries. Another advantage to this architecture is that it helps organize the project and allows construction and validation of each layer to vary independently. Of course this can be accomplished with three layers, however, introducing two additional layers between presentation and data source layers further de-couples the domain from application presentation and data source requirements (Figure 1.5: Five-layer Architecture). An example of layer substitution would be enabling the domain layer for pervasive devices or a voice response unit. In example 1.5, this would imply creating only the new presentation layer constructs and the necessary mediators to interact with the existing domain model.

[image: image4.wmf]

Presentation

(

 Swing

GUI,HTML,JSP, XSLT)

Controller/Mediator

(Servlets,

Struts,

Java Beans

,

Message Driven Bean

s

)

Domain

(

Session

EJBs

,

 and

Java Bean

s)

Data Mapping

(Entity EJB,

Mapper objects

)

Data Source

(JDBC,CICS,

JMS

, etc…)

Figure 1.5: Five-layer Architecture

Let’s now take a closer look at each of the roles and responsibilities of the layers in this five-layer architecture.

Presentation

The presentation layer consists of objects defined to accept user input and display application outputs. The most common presentation technologies that can be used with J2EE include:

· HTML/JSP (with Servlets acting as controllers as we see in the next section)

· XML and XSLT (again with Servlets acting as controllers)

· Applets (using AWT or Swing)

· Applications (using AWT or Swing)

We will discuss the relative merits and proper uses of these technologies in Chapter 5 and revisit them with regard to deployment issues in Chapter 22. Chapters 5-15 are concerned with describing the technologies used in developing presentation and control layers in J2EE.

Controllers and Mediators

Because a primary goal of layered applications is to enable domain logic to be reused in different presentations, how the user interacts with the business model needs to be isolated. This is the role of the controller. Whatever the presentation technology happens to be, requests for domain state and behavior will be done via a Controller object defined for the particular presentation requirements, e.g. HTML, Swing, or pervasive devices. This controller object implements the mediator design pattern from [Gamma]. An important design requisite involves making sure that domain specific logic is not defined in presentation object methods, but rather, is obtained from a mediator referenced domain object. Additionally, application navigation topology is defined within this layer.

Application presentation objects interact with a domain model in generalized ways, regardless of the presentation technology. For instance, a GUI will present a list of choices, which are composed of a collection of domain model objects; the same collection can be used to populate a HTML list. For that matter, the same collection could be used to provide a list of choices in a voice response unit interface (Figure 1.6 – Mediator used by different presentation technologies).

[image: image5.emf]

Figure 1.6 Mediators used by multiple presentation technologies

Mediators capture and de-couple application specific functionality from presentation technology, by performing domain model requests for presentation or controller objects that drive a specific application use case. Mediator classes are defined to satisfy a specific application user interface function or use case; therefore, they are less granular than controllers. For example, a single mediator can be used to implement a user registration function with a wizard-like interface. Mediators implement behavior that would usually end up in presentation classes as methods/scripts. Moreover, consistently applying mediator objects offers more than just loose coupling between a domain model and presentation technologies. Mediators provide a convenient and consistent way to transfer application state between user interfaces, eliminating the typical highly parameterized approach. Additionally, transaction behavior finds an appropriate location in mediator objects since navigation and units of work constraints are tied to application specific functionality.

The key to Mediator’s presentation independence is the enforcement of strict layering, meaning that mediators should not contain any references to presentation objects. However, they are free to reference domain-object public state and behavior. Care must also be taken not to define domain-logic in mediators. This pitfall can be avoided by applying a simple thought experiment. Ask yourself, "Can I still perform or obtain the requested domain operation using only existing domain objects?" If the answer is “No, I need a mediator object", then the mediator is implementing behavior that belongs in the domain.

Domain

The domain layer is possibly both the hardest part of a layered system to understand, and the most challenging to implement. To understand what a domain object is, you have to go back to the basic roots of object-oriented programming. When we learn Java programming or OO design the first examples seen are usually in terms of concrete objects. This might be an example of a control system like in [Booch] where the objects modeled are physical like TemperatureSensors and AirConditioners, or it might be through a simple game where objects like playing cards are modeled.

Unfortunately, when many programmers start looking at their own day-to-day problems they instead see more abstract things like Windows and Database Tables, not the nice, concrete things seen in the books and tutorials. This is unfortunate, since modeling the aspects of a business in software can be one of the most powerful tools that a programmer can bring to bear on solving the hardest problems in software development. Capturing business abstractions in objects can make a system much more powerful by making it more flexible and also create a critical distinction between the parts of a system that represent the business problem being solved (its essence) and the “accidents” of implementation resulting from choices in technology that might be transitory.

Domain objects are usually implemented as standard Java classes or “Plain old Java objects (POJOs)”. J2EE provides another option for implementing domain objects that we will examine more closely in later chapters. A programmer can choose to implement his domain objects as Enterprise JavaBeans, which conveys some benefits in terms of distribution, transaction capabilities, and persistence. Even when EJB’s are used, a mix of standard Java classes and EJB’s should be employed, as we will examine in greater detail in the chapters on EJB architecture (Chapters 19 and 30).

Mapping

A consequence of building a domain layer, as we have described above, is that it should not be concerned with purely implementation-specific details. For instance, one of the most common questions in enterprise programming is how to extract data from or update data in a database. Rather than making this behavior part of the domain object, a second set of objects is required to perform this function. Separating the behavior in this way conveys a number of benefits, including making it possible to change implementation details like database vendor or database schema without changing the domain implementation.

A design like this requires a separate layer, often called a Mapping or Persistence layer that can move data from domain objects to back-end data sources and vice versa. There are several open-source and commercial products, like Apache Castor, CrossLogic’s Universe and Oracle’s TOPLink that can add this behavior. However, for a programmer using J2EE, the common way that this behavior will be used is through the API’s provided by the Enterprise JavaBeans Container. As we will describe in Chapters 19 and 23, the EJB container in WebSphere provides a simple and consistent interface for data persistence using Entity beans. However, we may still need to implement some mapping functions even in designs using EJBs when we need to move data between JavaBeans and EJB’s. We will cover this topic in depth in a later chapter.

Data Source Access

At some point in your application, “the rubber meets the road” and you have to actually retrieve and store data, or communicate with external systems. Undoubtedly relational databases (DB2, Oracle, Informix, etc) are the most common way IT organizations store and query enterprise data. Recognizing this profound market share, Sun delivered the JDBC (Java Data Base Connectivity) JDBC API. JDBC allows the production and execution of vendor neutral SQL
. Developers can use standard ANSI SQL against any JDBC compliant driver. The specific API and types of available JDBC drivers are beyond the scope of this discussion, but you can refer to the JDBC Specification, available on Sun’s Java website, for more information.

However, there are other common data access mechanisms in J2EE as well. Enterprise Information Systems (EIS) like CICS, SIEBEL, SAP or J.D. Edward’s OneWorld are a common part of today’s enterprise landscape. J2EE offers two ways to connect to Enterprise Systems. Java Message Service (JMS) provides asynchronous access to corporate data, while J2C provides synchronous access to these EIS systems. Finally, you may access external systems through Web Services, which is the newest mechanism for providing open access to enterprise services. We’ll examine JMS in Chapter 27 and we’ll cover Web Services in Chapters 32 to 34. We will not cover J2C in depth in this book. However, vertical layers are not enough to build and deliver complex enterprise applications. Application layers must be complimented with application services and test facilities.

Application Services

There are application responsibilities that developers must apply to all application development efforts. Implementing these activities consistently using a design that is extendible will facilitate reuse and minimize side effects when requirements change. Moreover, standardizing these services across all applications can yield efficiencies in determining and communicating new development and maintenance activities.

Obvious application responsibilities include error handling, status tracing, application start up and shutdown, accessing externalized properties, and applying preferences. A design must be put in place that allows developers to consistently apply error handling across all applications, but support the ability to install and change these behaviors on an application basis. For example, application status is sometimes reported to a console, what happens if the application is server based and a console does not exist? A design should allow error logging and tracing to be routed to a flat file perhaps in addition to the console.

The Virtues of Test Scripts

The primary design intent of a layered architecture is decoupling a problem space domain model from presentation and data source requirements. Reuse of the domain, at least across application boundaries, can be achieved if isolation is accomplished.

Creating test scripts that exercise domain model behavior help to verify domain isolation, and provide other significant benefits as well. In fact, test scripts should be developed for all the different layers of your application. We will cover how this can be done in Chapter 17.

[image: image6.wmf]

Presentation

(

 Swing

GUI,HTML,JSP, XSLT)

Controller/Mediator

(Servlets,

Struts,

Java Beans

,

Message Driven Beans

)

Domain

(

Session

EJBs

,

 and

Java Beans

)

Data Mapping

(Entity EJB

s

,

Mapper objects

)

Data Source

(JDBC,CICS,

JMS

, etc…)

Application

S

ervices

Logging

Properties

Exception

-

Handling

Testing

Junit

HttpUnit

Cactus

WebSphere UTC

Figure 1.7 Application Layers and Supporting Frameworks

Figure 1.7 provides the high level picture of an enterprise application topology where vertical layers are supported by application services and test frameworks.

Layered Architecture Benefits

With increased competition, lower projected e-commerce profit margins, increased legal issues and new IT management requirements; what is needed is an architecture that provides:

· Solution value – solutions that rely on a layered architecture that leverages reuse and dynamic, scalable, solutions that can be easily changed to meet new business needs.

· Speed to market - a focus on the business domain and not the application infrastructure can help meet the ever-growing strategic application backlog. By using a repeatable standard development process that reuses legacy information and systems. A development team can begin to bring solutions to the marketplace sooner.

· Secure solutions - by protecting assets, legally and technically; an IT organization can not only produce flexible solutions, but it can also give the enterprise a strategic advantage in the marketplace.
That architecture framework is the Java 2 Enterprise Edition platform.

Summary

Now that the architectural design and business rational for the J2EE framework have been presented, we can discuss the organization for the rest of this book. Loosely speaking, it will follow the J2EE architecture, where Web constructs are presented first, followed by business model development, then Enterprise Java Beans, and finally, security and Web Services. The list below is a high level breakdown and is intended for those readers who prefer to tackle sections in their own preferred order.

· Chapters 1 through 4 present an overview of J2EE, WebSphere Application Server 5.0, and the case study used throughout the book. These chapters present the foundation for the book and are highly recommended.

· Chapters 5 through 15 focus on building Web based applications, and presents in-depth information on topics such as using the Struts framework for proper Model-View-Control partitioning, Servlets and JSPs, and session management.

· Chapters 16 and 17 will work you through techniques on how to build and test the business model. A particularly useful section on leveraging JUnit is covered in this portion of the book.

· Chapters 18 through 31 provide extensive coverage of the Enterprise Java Bean (EJB) architecture. These chapters cover everything from basic usage of session beans to advanced object relational mapping. They also cover EJB transactions and the J2EE security model and discuss how to protect your EJBs and other J2EE components.

· Chapters 32 to 34 are about Web Services. These chapters talk about the latest support provided by WebSphere Application Server for this exciting technology. Several examples are presented of how to create and deploy business objects as Web services. This section concludes with a collection of best practices around the usage of this technology.

· Chapter 35 concludes the book and summarizes the lessons learned in this book.

If this seems like a great deal of information, that’s because it is! Building secure, well performing, transaction aware, distributed applications remains a complex and difficult task. It’s quite easy to get lost in the specifications and overwhelmed by technology. The good news is that J2EE’s layered architecture, along with a powerful set of tools, like those built by IBM, and a good reference guide packed with a healthy dose of common sense, like this book, will help you manage this complexity and deliver robust, scalable, enterprise solutions.

� The JDBC specification also applies to non-relational data sources.

1

_1113289033.doc

 Layer 1

 Layer 2

 Layer 3

_1113291165.doc
[image: image1.png]

_1114710480.doc

Presentation�(Swing GUI,HTML,JSP, XSLT)

Controller/Mediator�(Servlets, Struts, Java Beans, Message Driven Beans)

Domain�(Session EJBs, and Java Beans)

Data Mapping�(Entity EJB, Mapper objects)

Data Source�(JDBC,CICS, JMS, etc…)

_1114710405.doc

Presentation

(Swing GUI,HTML,JSP, XSLT)

Controller/Mediator�(Servlets, Struts, Java Beans, Message Driven Beans)

Domain�(Session EJBs, and Java Beans)

Data Mapping�(Entity EJBs, Mapper objects)

Data Source�(JDBC,CICS, JMS, etc…)

Application

Services

Logging

Properties

Exception- Handling

Testing

Junit

HttpUnit

Cactus

WebSphere UTC

_1113289048.doc

Layer 1

Layer 2

Layer 3

_995655528.doc
�

 Domain

 Presentation	

 Data source

