Chapter 27

Introduction to Message Driven Beans

So far we have taken a fairly extensive look at Entity and Session Beans. A common thread running through the design of all the EJBs that we have examined so far is that they all respond synchronously to local Java or RMI-IIOP calls. With the EJB 2.0 specification, a new EJB bean was introduced that allows business logic to be invoked asynchronously. Message-Driven Beans (MDBs) are EJBs, which listen for Java Message Service (JMS) messages. In this chapter, we will introduce you to some core JMS and MDB concepts. We will begin by examining an overview of JMS, then introduce why MDBs are required, and finally examine two examples and how to execute them in the WSAD environment.

[image: image1.png]
Figure 27.1 Where MDBs fit into the Road Map

Java Messaging Service

As discussed in Chapter 3, JMS is a J2EE standard that provides a vendor neutral way of sending and receiving asynchronous messages in a distributed environment. JMS provides an Application Programmer Interface (API) over message-oriented middleware (MOM) systems such as IBM WebSphere MQ. J2EE 1.3 requires that an application server must provide a Java Messaging Service (JMS) provider. In compliance with this, WebSphere application Server provides a simple messaging provider (WebSphere Embedded Messaging) that is derived from WebSphere MQ, but does not provide all of the features of WebSphere MQ, such as clustering or advanced queue management facilities.

In addition to supporting development on both WebSphere Embedded messaging and WebSphere MQ, WSAD provides the MQ Simulator for Java (MQ Simulator). MQ Simulator supports point-to-point (P2P) and publish-and-subscribe (Pub/Sub) with persistent and non-persistent messages, but only within a single Test Environment Server instance. MQ Simulator is a useful addition to WSAD that will allow us to test our MDB and JMS clients within WSAD.

Java applications that use JMS are called JMS clients. Just as WebSphere requires a Java database driver for connection to a database, WebSphere also requires a Java connection to an underlying MOM that is called the JMS provider. A JMS client that sends a message is called a producer and a JMS client that receives a message is called a JMS consumer. It is possible for a single JMS client to be both the producer and the consumer of a message.

JMS Is Asynchronous

At the heart of JMS is the fact that it allows for asynchronous messaging. This means that a JMS client can send a message without having to wait for a reply. This is quite different from the synchronous messaging of Java RMI and similar technologies. RMI is an excellent choice for creating transactional components. Each time a client invokes a bean’s method; the current thread on the client is blocked until the method is finished. However this creates a time-based dependency on the EJB server. If the EJB server is unavailable, the method will not complete successfully. Further, if the traffic to your EJB is “bursty” (meaning that it has very high peaks and long periods of quiescence) then your server will be underutilized at times and perhaps overwhelmed at times. These two factors lead to a tight coupling between the client and server. This coupling is relaxed because JMS is asynchronous. In JMS, a client can “fire and forget”. A JMS client can put a message on a Queue or publish a message to a Topic and go on to other important work. Topics and Queues are referred to as destinations. The basic difference between a Topic and a Queue is that a Topic can have many subscribers and messages are pushed to the subscriber. Whereas, a Queue can only have one receiver and the messages must be pulled from the Queue. Another JMS client can then obtain the message from the destination at some time in the future as it has time and capacity. In this way, clients sending messages are decoupled from clients receiving them.

When using a JMS destination, the JMS client can be assured that the message will be delivered even if downtime occurs. This “durability” of messages can be optionally specified on both Queues and Topics. The durability feature of JMS is probably the second most attractive aspect of using JMS for solving certain enterprise situations.

JMS Messaging Models

Two messaging models are available in JMS: publish-and-subscribe (Pub/Sub) and point-to-point (P2P). Pub/Sub is intended for a one-to-many broadcast of messages, while P2P is intended for one-to-one delivery of messages. In talking about messaging, the creator or sender of the message is referred to as the producer and the receiver of the message is called the consumer.

Publish-and-Subscribe

In Pub/Sub, a single producer sends a message to many consumers through a virtual channel called a topic. The producer is unaware of how many consumers might receive the message if any. Consumers can only receive the message if they have subscribed.

Point-to-Point

P2P messaging allows JMS clients to send and receive messages both synchronously and asynchronously via virtual channels known as queues. A queue may have multiple receivers but only one can receive the message.

JMS API Basics

We certainly can’t cover all of the ins and outs of using the JMS API in this chapter; that subject has filled entire books. Instead, we’d refer the interested reader to [Monson-Haefel] or [IBM-JMS] for the details of the API. Luckily, though, the API is based upon only a few simple concepts, which we can flesh out in the context of a very simple example. Once you understand this basic example you’ll be in better stead to understand the more complete example presented later in the chapter.

As mentioned previously, the fundamental action of sending a message in JMS involves using a Message Producer to place a message on a destination. Let’s first look at how these concepts are implemented in JMS and how you can use them in your programs.

The first concept we need to introduce is how to find a destination. Destinations are held in the JNDI name space, just as EJBs are. The following syntax can be used (Note that it is nearly identical to locating an EJB Home interface).

InitialContext ctx = new InitialContext();

Object o = ctx.lookup("jms/QOrTopicName");

javax.jms.Queue aQueue = (javax.jms.Queue) java.rmi.PortableRemoteObject.narrow(o,javax.jms.Queue.class);

However, unlike an EJB, you can’t just start using a Queue to send messages. Remember that you must have a Message producer to send messages – to create a message producer, you must first obtain a connection. In that respect, JMS is much more like JDBC. The syntax for obtaining a Connection is shown below:

//Look up the QueueConnectionFactory in JNDI

Object o = ctx.lookup("jms/ivtQCF");

javax.jms.QueueConnectionFactory qcf = (javax.jms.QueueConnectionFactory)

 java.rmi.PortableRemoteObject.narrow(o,javax.jms.QueueConnectionFactory.class);

//Create a QueueConnection

javax.jms.QueueConnection conn = qcf.createQueueConnection();

Again like in JDBC, you then need to obtain an object from a connection that you can work with. The JMS Session object is the transactional object that you use to create Message Producers. While the objects we’ve seen previously (Queues, Connection Factories and Connections) are all threadsafe and can be shared across several threads of execution (and therefore cached), the Session must be created for each individual thread, and should always be closed at the end of its use.

//Create a QueueSession

javax.jms.QueueSession session =

conn.createQueueSession(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

Now that you’ve created a Session, you’re finally ready to create a Message Producer on the Queue that we obtained in the first step:

javax.jms.QueueSender sender = session.createSender(aQueue);

Now our example is nearly finished. We can now create a Message and place it on a Queue. In JMS, messages come in several “flavors”. TextMessages are messages whose body (or payload) is a text string. There are also ObjectMessages that carry serialized Java objects, MapMessages that carry name/value pairs, ByteMessages and StreamMessages. In our example, we’ll use a TextMessage, which is probably the most commonly used message type:

// Create the Text Message

Message message = session.createTextMessage();

message.setJMSType("LogMessage");

message.setText("Hello World");

//Send the message

sender.send(message);

In this quick introduction to using JMS to send messages, we’ve omitted all of the Exception processing that is necessary in a full example – we’ll show that later in the chapter. We’ve also not covered receiving messages, which we’ll cover later as well. However, this should serve as a good enough introduction to the concepts that you can understand the more complete examples presented later.

Message-Driven Beans

Message-Driven Beans (MDBs) are a direct out growth of the JMS technology. MDBs are stateless, server-side, transaction-aware components for handling asynchronous JMS messages. MDBs are new to the EJB 2.0 specification.

An MDB is a very lightweight EJB, which simply processes messages, delivered by JMS. The container handles transactions, security, resources, concurrency and message acknowledgement. A very nice feature of MDBs is that an MDB can consume and process messages concurrently. Previously in JMS if you needed to process messages concurrently, you would have had to develop a custom framework to instantiate, manage and synchronize resources across threads. MDBs allow the bean developer to focus on what has to happen when a message is delivered. But more importantly, MDBs allow JMS message consumption to be included in a transaction.

MDBs are indeed Enterprise Beans complete with XML deployment descriptor elements. However, an MDB does not have the familiar component interfaces (Home, LocalHome, etc.). MDBs have no need for component interfaces because the only way an MDB can process a message is for the subject destination (queue or topic) to have been given a message. MDBs only respond to asynchronous messages, not to client requests.

When creating an MDB, the only method which must be implemented is the onMessage(Message aMsg) method. This method is called when an asynchronous message is received. Inside the onMessage() method, the Message object can be examined to obtain the complete message delivered. The Message object may be a simple text message, a serializable object, or a MapMessage. A MapMessage is essentially a Hashtable containing keys and values.

While the primary purpose of an MDB is to consume messages, it is possible and many times it will be necessary to send messages from the MDB. Hence, MDBs can contact other EJBs using standard J2EE constructs or enqueue messages using JMS. Imagine a simple workflow situation where a chain of asynchronous events needs to occur. Once the MDB has handled its message, it can send an asynchronous message to the same or another destination.

Example MDB in WSAD

Now that you understand the basics, it’s time to build a sample MDB and test client in WSAD. Since most clients of an MDB will be a servlet or session bean, we will use a test servlet to exercise the MDB. We could have used an application test client but using a servlet will allow us to show how to set up resource references in WSAD for the JMS resources.

We will perform the following steps in creating our example:

1. Create the Enterprise Project

2. Create the MDB

3. Create a Test Servlet

4. Configure the JNDI names

5. Test and Debug

Each of the sections that follow will describe the steps.

Create the Enterprise Project

Go to the J2EE Perspective and create and enterprise project by selecting the File>New>Enterprise Application Project. The dialog in Figure 27.2 will be displayed.

[image: image2.png]
Figure 27.2 Create J2EE 1.3 Enterprise Project

Select the radio button for a “J2EE 1.3 Enterprise Application project” and then press the Next button to display Figure 27.3.

[image: image3.png]
Figure 27.3 Specify EAR modules

Name the project MDBSample and specify that an EJB and Web project also be created for this EAR. Name the EJB module MDBSampleEJB and name the Web module MDBSampleWeb. Since we will be using a servlet for our JMS message sender, we do not need an application client project. Press the Finish button to actually create the three projects. The Navigator view in the J2EE perspective should now resemble Figure 27.4.

[image: image4.png]
Figure 27.4 Navigation View in J2EE Perspective

Notice that the MDBSample enterprise application contains 2 modules, MDBSampleEJB.jar and MDBSampleWeb.jar.

Create the MDB

The MDB is very simple to create. The only method that we have to implement is the onMessage(Message aMsg) method. In this sample, all of the logic is performed in the onMessage() method. This is generally a bad practice. In a real application, you should always delegate to a mediator, domain object, or call a command. The MDB is a handler, which should route to other re-usable components. To create the MDB, select the MDBSampleEJB module and then from the right-click, select the New>Enterprise Bean menu selection. An enterprise bean creation dialog will be displayed as in Figure 27.5.

[image: image5.png]
Figure 27.5 Select the EJB Project

Select the EJB Project named MDBSampleEJB and the click the Next button to display the Create an Enterprise Bean dialog as shown in Figure 27.6.

[image: image6.png]
Figure 27.6 Creating an MDB

Select the Message-driven bean radio button. Enter a bean name of SampleMDB, a source folder of ejbModule and a default package of com.wsbook.mdbsample. Click the Next button to move on to the bean details dialog as shown in Figure 27.7.

[image: image7.png]
Figure 27.7 Enterprise Bean Details

Select a transaction type of Container, a destination type of Queue, a bean class of com.wsbook.mdbsample.SampleMDBBean, and a ListenerPort name of SampleMDBListenerPort. Click the Finish button to create the MDB. Double click on SampleMDB under the EJB Modules to open the deployment descriptor. Select the Beans tab to show the beans in this module. We only have one bean, the SampleMDBBean. Select the SampleMDBBean and you will see the values that we specified in the wizard as shown in Figure 27.7.

[image: image8.png]
Figure 27.8 Bean Details

The next task is to write the code for the onMessage(Message aMsg) method. Double click on the SampleMDB in Figure 27.7 to open the java editor on our MDB bean class. Replace the contents with the code that follows.

package com.wsbook.mdbsample;
import javax.jms.TextMessage;
public class SampleMDBBean

implements javax.ejb.MessageDrivenBean, javax.jms.MessageListener {

private javax.ejb.MessageDrivenContext fMessageDrivenCtx;

public javax.ejb.MessageDrivenContext getMessageDrivenContext() {

return fMessageDrivenCtx;

}

public void setMessageDrivenContext(javax.ejb.MessageDrivenContext ctx) {

fMessageDrivenCtx = ctx;

}

public void ejbCreate() {

}

public void onMessage(javax.jms.Message msg) {

try {

System.out.println("Handling MDB onMessage() now.");

System.out.println("Message Object is: " + msg);

System.out.println("Text message is: " +

((TextMessage) msg).getText());

} catch (Exception e) {

System.out.println("Exception occured: " + e);

e.printStackTrace();

}

}

public void ejbRemove() {

}
}
The onMessage(Message msg) method is the only method of consequence in this class. In order to get the contents of the actual message, we need to cast the Message to a specific kind of Message called a TextMessage and then we can call the getText() method to obtain the String contents of the message. The TextMessage messages are just one of several different types of messages that can be sent. As we said earlier, there is no coupling between the producer and the consumer. However, we must now say that the message type however does have to be in agreement in order for the consumer (the MDB) to be able to understand the message. Having said that, it is possible to use the java instanceof operator to determine which type of message has been sent and to then act accordingly. While this is possible, it is usually unnecessary. Most consumers and producers agree on the message type to be sent and code as such. This is very loose coupling.

Create a Test Servlet

For simplicity, we have decided to create a servlet as our message producer. In this servlet, we will find the queue connection factory from JNDI, find the queue from JNDI, create a message, and finally send it. The code follows and it needs to be placed in the JavaSource folder of the MDBSampleWeb project.

package com.wsbook.mdbsample.servlet;
import java.io.IOException;
import javax.jms.*;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class MDBSampleServlet extends HttpServlet {

public static final String CONN_FACTORY_NAME =

"java:comp/env/Sample/jms/SampleQCF";

public static String QUEUE_NAME =

"java:comp/env/Sample/jms/SampleQ";

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

try {

ServletOutputStream out = resp.getOutputStream();

out.println("<HTML><BODY>");

out.println("<P>Getting Initial Context</P>");

InitialContext context = new InitialContext();

out.println("<P>Getting Connection Factory</P>");

QueueConnectionFactory qConnectionFactory =

 (QueueConnectionFactory)context.lookup(CONN_FACTORY_NAME);

out.println(qConnectionFactory.toString());

out.println("<P>Getting Queue</P>");

Queue queue = (Queue)context.lookup(QUEUE_NAME);

out.println("<P>Creating connection");

QueueConnection qConnection =

qConnectionFactory.createQueueConnection();

out.println("<P>Creating Session</P>");

QueueSession qSession =

qConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

out.println("<P>Creating Sender</P>");

QueueSender sender = qSession.createSender(queue);

out.println("<P>Creating Text</P>");

TextMessage message = qSession.createTextMessage();

out.println("<P>Appending command Line</P>");

String messageToSend = req.getParameter("message");

if(messageToSend == null) {

messageToSend = "Default Message";

}

out.println("<P>Setting Text</P>");

message.setText(messageToSend);

out.println("<P>Sending message</P>");

sender.send(message);

out.println("<P>Closing sender</P>");

sender.close();

out.println("<P>Closing session</P>");

qSession.close();

out.println("<P>Closing connection</P>");

qConnection.close();

out.println("<P>Connection closed</P>");

out.println("</HTML></BODY>");

}

catch (NamingException ne) {

ne.printStackTrace(out);

}

catch(JMSException e) {

e.printStackTrace(out);

Exception linked = e.getLinkedException();

linked.printStackTrace(out);

}

}
}
The servlet is very straightforward. The servlet honors one HTTP request parameter named message. The message parameter will be placed into the message that is sent to the destination. Notice that the QueueConnectionFactory and the Queue are both obtained from JNDI.

Configure the JNDI names

In order for the servlet to be able to find the QueueConnectionFactory and Queue from JNDI, we must add resource references to the deployment descriptor of the web module. To do this, open the deployment descriptor of the web module by selecting the web module, MDBSampleWeb, right-click, and select Open With>Deployment Descriptor Editor. Select the References tab as shown in Figure 27.8.

[image: image9.png]
Figure 27.9 Select References, then Resources

Select the Add button to add a new reference to the list. Change the name to Sample/jms/SampleQCF for the QueueConnectionFactory. The type should be javax.jms.QueueConnectionFactory, the Authentication should be set to Application, and the JNDI name should be set to jms/SampleQCF as shown in Figure 27.10.

[image: image10.png]
Figure 27.10 JNDI Reference for QueueConnectionFactory

Select the Add button again and add a reference named Sample/jms/SampleQ for the Queue. The type should be javax.jms.Queue, the Authentication should be set to Application, and the JNDI name should be set to jms/SampleQ as shown in Figure 27.11.

[image: image11.png]
Figure 27.11 JNDI Reference for the Queue

Notice that the servlet uses the JNDI references that we just set up in its final static variables:

public static final String CONN_FACTORY_NAME =

"java:comp/env/Sample/jms/SampleQCF";

public static String QUEUE_NAME =

"java:comp/env/Sample/jms/SampleQ";
Using references like this allows the name used in the java code to be different from the JNDI name defined for the Queue and QueueConnectionFactory which decouples the java code from the actual JNDI name.

Set up the Server

Before we can test and debug our MDB sample, we need to setup a WebSphere V5 test server with the QueueConnectionFactory and Queue. From the J2EE perspective, select the “Servers” project from the tree and then use the right-click menu to select New>Server and Server Configuration. In the dialog that displays as in Figure 27.12 name the server SampleServer and specify that this is the WebSphere version 5, test environment. Select the Finish button to create the server.

[image: image12.png]
Figure 27.12 Server Configurations

Now, select the SampleServer from the J2EE perspective and double-click it so that the WebSphere Server editor displays. Select the JMS tab as shown in Figure 27.13 so that we can setup the Queue and QueueConnectionFactory. Notice that there are no queues named and that the initial state is STOP.

[image: image13.png]
Figure 27.13 Server Configuration JMS Tab

Select the Add button next to Queue Names: under JMS Server Properties, and enter the name SampleQ in the dialog box. Select Ok to save. The JMS tab should now resemble Figure 27.14.

[image: image14.png]
Figure 27.14 Server Configuration - Initially Start with SampleQ

Click the Add button under JMS Connection Factories, and then add a new WASQueueConnectionFactory by entering the values as shown in Figure 27.15.

[image: image15.png]
Figure 27.15 Create QueueConnectionFactory

Select the Add button by the queues under JMS Destinations, and create a new WASQueue with the values shown in Figure 27.16.

[image: image16.png]
Figure 27.16 Create Queue

Now the JMS tab should resemble Figure 27.17.

[image: image17.png]
Figure 27.17 JMS Configuration

Now we need to add the ListenerPort to the server configuration. The Listener Port should have a JNDI name that matches the JNDI name set for the MDB in the EJB Deployment Descriptor editor. Select the EJB tab and then select the Add button to add the information as shown in Figure 27.18.

[image: image18.png]
Figure 27.18 Adding a Listener Port

The EJB tab should now resemble Figure 27.19.

[image: image19.png]
Figure 27.19 Listener Port

Now the QueueConnectionFactory and Queue are set up in the WebSphere version 5 test environment. Save the server configuration.

Test and Debug

In order to test the MDBSample, simply start the SampleServer. Once it has started, open a web browser and enter the URL: http://locahost:9080/MDBSampleWeb/MDBSampleServlet. The Browser will show the log messages that the servlet is generating and the console will show the log messages from the MDB, proving that the MDB is getting the message.

Summary

In this chapter we have covered the basics concepts of JMS and MDBs. Asynchronous messaging can add a new dimension to your existing and new enterprise solutions. We will examine more about asynchronous messaging in Chapter 28, when we’ll see how transactions apply to JMS and EJBs.

�PAGE \# "'Page: '#'�'" ��Chapter is basically stright-forward and ok. Could use copy and style editing. I have a couple of suggestions.

First, an early example to motivate message is needed. You describe it functionally (e.g., asynchronous communication, broadcasting, transaction context, etc.), but a paragraph example tht describes a typical application would help a lot. For example, some sort of order system that includes email notification implements as a message component.

Second, an architectural diagram is needed that shows actual flow of messages. Since the terminology is not obvious to a novice, label the parts of that diagram (e.g., port) accordingly. It should also show the various name mappings that are part of the WAS architecture for messaging.

30

