
Chapter 18
Supporting Scaleable Applications

So far in this book we’ve demonstrated how you can effectively use Java Servlets and JavaServer Pages together with JavaBeans to build a server-side MVC architecture that can solve a variety of real-world programming problems. Now we want to take a broader look at some of the systematic information technology (IT) concerns that application developers have to face, and look at some of the challenges to scaleable application development. We’ll do this by summarizing briefly where we are so far in using J2EE to develop distributed applications. Then we will take a more detailed look at systematic concerns like transaction management, distribution, security, and persistence, and explore how the technologies we’ve discussed so far address them. In the process, we’ll see a number of concerns that are either unaddressed, or insufficiently addressed to support enterprise scaleable applications for many users distributed over wide geographic regions. In the process we’ll set the stage for the last of the major J2EE technologies that make up the heart of the WebSphere Application Server – Enterprise JavaBeans.

But first, let’s take another look at what we’ve covered so far, and provide a context in which to discuss application scalability.

Another Look at the n-Tier Architecture

Previous chapters introduced you to layered architectures and how they help separate concerns to facilitate application development and maintenance. We also looked at how these layers are typically deployed to n-tiered architectures to support application performance and availability requirements. This section looks at the n-tier architecture from the perspective of available technologies you can use to address application scalability. Figure 18.1 shows the overall interaction between the logical (and often physical) roles of the typical 4-tier distributed enterprise application.

[image: image1]Figure 18.1 Interactions in a 4-tier Architecture

The typical application scenario starts with the client, often a Web browser, initiating a request for some service. The request is communicated through a communication channel using an agreed upon protocol to the application server. The server attempts to fulfill the request executing any necessary business logic. The implementation of the service will often require delegation to backend or legacy systems which provide services required to complete the business logic or access and update persistent data. The backend system returns its results to the requesting application server which finishes any remaining business logic and then transmits the response, again through the communication channel, back to the requesting client where it is processed and/or displayed.

Figure 18.2 shows some of the typical technologies that can be used to implement each one of the roles involved in an n-tier distributed application. This is not an exhaustive list, but it should provide enough to indicate that there is a lot you have to know in order to build scalable distributed applications.

[image: image2]
Figure 18.2 Technologies for each Architectural Role

As you can see, there are a lot of technology choices available to build the same Web application. Horizontal slices through the technologies in each role define various application architectures. Different slices provide different functional capabilities and nonfunctional characteristics that affect how the application is developed, and how it performs. Figure 18.2 shows such a slice that includes the J2EE technologies we have discussed so far.

Another thing that makes application development more difficult is that as you add new function points to an application, or scale up the number of users, performance requirements, database size, etc., you may be forced to use a more powerful set of technology choices. Unfortunately, these technologies do not always seamlessly derive from integrated, layered architectures. Instead, the technologies often represent quite different programming models. This can result in significant technology changes for a relatively modest change in application requirements. As a result, applications often cannot easily include capabilities from higher-level technologies without making significant design changes. This can also result in the need for additional development tools and training, all of which can slow down development, and discourage evolving applications to meet changing business needs. Having an extensible integrated development environment, such as WSAD, helps because the tools for all the technologies are integrated into the same IDE. Model Driven Development (see sidebar) may also help by allowing application developers to specify platform independent models of their business applications, and then translate them to a platform specific model for deployment. As the application outgrows one choice of deployment technologies, the same platform independent model can be translated to a different platform specific model that provides the necessary capabilities. However, J2EE also provides a solution because it consists of a complete, standard programming model that supports a wide range of application needs. In the following sections, we’ll look at some of the systematic IT concerns that applications have to address and how they are supported by the J2EE technologies we have looked at so far. In subsequent chapters we’ll see how Enterprise Java Beans provide even more capabilities to help develop scalable, integrated applications.

Model Driven Architecture (MDA) is a set of standards managed by OMG for defining the scope, contents, creation, and usage of models in a development process. MDA raises the level of abstraction of application development by capturing the domain and application information in high-level models instead of low-level code. This allows a broader community of people to participate in the development process, in particular business analysts who are domain experts and the primary stakeholders (and purchasers) of the deployed applications. The MDA process specifies the creation of Platform Independent Analysis Models (PIMs) which are translated into Platform Specific Design Models (PSMs) applicable for some Platform Model (PM). A PM is a model of a particular platform, such as J2EE. This translation process is similar to high-level language compilers and the mediators and mapper patterns that map the presentation, domain, and data source layers as described in this book. MDA supports separation of concerns by allowing the PIM and PM models to be developed and evolve separately, and then a PIM to PSM translator is used to map the PIM to something suitable for a particular platform. This minimizes the coupling between the business and the IT systems making it easier to update the business application to a new version of the platform model, or perhaps even and entirely different platform model. For further information, see http://www.omg.org/mda

Why aren’t HTML, Servlets, and JSPs Enough?

The first question you have to ask is “why do I need yet another Java API”? After all, you’ve already seen that standard Java classes and JavaBeans can be effective in acting as the domain model layer in the MVC architecture, and you’ve also discovered how you can write persistence and other application services for Java in a layered architecture.

The answer is that while we can write classes that can do these things for us, there are ways in which they can be done better. Java is wonderful in that it is a general-purpose language – you can use it to build just about anything. However, when you start facing the problems of building a robust, distributed, persistent application you start to notice that some problems are harder than others. To understand why we need Enterprise Java Beans (EJBs) let’s focus on the following four problems:

· Distribution
· Application Integration

· Persistence

· Transactions

· Security

In this chapter, you will learn that the goal of J2EE is to manage these problems in a standard way, and to do so without requiring the developer to spend his time explicitly programming these aspects of Enterprise-level programming.

Object Distribution

The first of the problems addressed by Enterprise Java Beans is that objects in an enterprise-scaleable system need to be distributed. In short, this means that the parts of your program should be able to be deployed to as many different physical machines and in as many separate operating system processes as appropriate to achieve the performance, scalability, availability, and reliability goals of your system. Another reason to distribute objects is to take a system that is logically layered and implement the layering as physical tiers – in this way a set of distributed objects can be accessed from multiple, independently developed systems so long as those objects provide a single, common, networked API for the new systems to build on.

In the previous chapters, applications handle distribution by either HTTP, or a remote connection to a database management system. HTTP provides a very simple, stateless means of accessing course-grained distributed resources. This works well for HTML pages and other document-centered resources, but it does not support the rich semantics that are often required for distributed business applications.
HTTP is one of a number of distribution technologies today, but in the Java world, two technologies stand out as especially widespread and important. Not coincidentally, they are the two that form the core of the distribution solution for EJBs. They are the Object Management Group (OMG) CORBA object distribution model, and Sun’s Java Remote Method Invocation (RMI) protocol. Since this book is not about either CORBA or RMI, we refer the reader to other works like [Orfali] that provide a more detailed overview of these technologies.

We do need to look at a couple of the pros and cons of each technology to understand why the EJB model has evolved in the way that it has. Along the way, we will point out areas that we will cover more in-depth as we begin to examine the EJB distribution model.

A Quick overview of CORBA

CORBA was developed by a consortium of companies (The Object Management Group) during the early 1990’s to provide a common, language and vendor-neutral standard for object distribution. CORBA has been well accepted since its inception, with a number of products and vendors supporting the CORBA standard, and a long history of successful projects developed using it.

The heart of CORBA is the idea of a special-purpose piece of software, an Object Request Broker (ORB) that facilitates communication between object spaces. The CORBA model requires an ORB on both ends of the distributed system. The ORB is responsible for handling the marshaling of parameters from outgoing method invocations to a CORBA proxy, and responsible for receiving messages on the other end of a conversation and turning them into local messages to a CORBA “stub” that can then act on the received message and return a response to the calling object.

There are two more major pieces of the CORBA model, IDL (Interface Definition Language), which is the language in which CORBA interfaces are defined, and CORBA Services, which provide standard ways for CORBA objects to interact. CORBA Services include things like Naming, Transactions, etc., which we will see are major parts of building a distributed system. By default, CORBA uses the Internet-Inter ORB Protocol (IIOP) for low-level communication between ORB’s.

CORBA is a robust and complete set of technologies that are both mature and well understood. Some of the advantages of CORBA include:

· CORBA is a standard interface. This makes it possible for multiple vendors to implement their own products based on the standard, and makes it possible for these products to interoperate.

· CORBA is computer language neutral. CORBA clients and servers can be written in a variety of computer languages, including Java, C++, C, Smalltalk and Ada. The only requirement is that the remote interfaces for CORBA distributed objects be written in CORBA IDL, which is translated into classes in the target implementation language through a postprocessor (a CORBA compiler).

· CORBA provides a specification of common services that are required by most distributed applications simplifying application development by eliminating the need for each program to recreate its own implementation.

However, the technology cannot be all things to all people. Some of the disadvantages to using CORBA to build distributed systems in Java include:

· Developers must use two languages; IDL & Java

· Very few vendors implement all of the “optional” services like Security and Transactions, making it difficult to buy a complete infrastructure.

As a result, CORBA has not made the great inroads into corporate IS departments that its originators had hoped. Instead, developers started to look for simpler solutions, but solutions that perhaps were not as flexible and powerful. Out of that search grew the interest in Java RMI (Remote Message Invocation).

A Brief Overview and History of RMI

Java RMI is a standard part of the Sun JDK 1.1 and the Java 2 platform. RMI is an all-Java distribution solution. Its primary advantages are that it features a very simple programming model that does not require programming in two languages (Java and IDL) like you do in CORBA, and that it does not require you to purchase an additional ORB and CORBA tools.

RMI’s programming model is very simple. It has the notions of a Remote object and a Remote Interface as its two primary constituents. A remote object is an object whose methods can be invoked from another Java Virtual Machine, potentially on a different host. A Remote Object is described by one or more remote interfaces, which are Java interfaces that declare the methods of the remote object. Remote method invocation (RMI) is the action of invoking a method of a remote interface on a remote object. Remote Interfaces are standard Java interfaces that extend java.rmi.Remote. Remote Objects can be any class of objects that implement a Remote interface, although more often than not Remote Objects extend java.rmi.server.UnicastRemoteObject.

An advanced feature in RMI that is not in CORBA is distributed garbage collection. Another feature that is not directly supported in CORBA is the notion of pass-by-value objects. In RMI, any Java object that implements java.io.Serializable can be passed as a method parameter to a remote object, and it will be serialized on the client end, and deserialized on the server end, allowing the server to operate on a local copy of the parameter
.

While RMI is very powerful, it doesn't support multiple languages, and does not support all of the services that CORBA supports. For instance, RMI includes a naming service, but not other CORBA services like transactions or persistence.

Also, there is a perceived lack of security in systems using RMI. While RMI includes a security manager that allows applets to use RMI, its lack of authentication and other security protocols, and the lack of support for RMI in corporate firewall systems have made its introduction more problematic than that of CORBA, which does not have these perceived problems. These reasons lead to the combination of the two technologies (RMI over IIOP).

RMI over IIOP combines the best features of RMI with those of CORBA. Like RMI, RMI over IIOP allows developers to develop purely in Java. Developers do not have do develop in both Java and IDL. Like RMI, RMI over IIOP allows developers to write classes that pass any serializable Java object as remote method arguments or return values. However, RMI over IIOP uses IIOP as its communication protocol, so it is interoperable with other CORBA applications. The combination of these two technologies forms an unbeatable combination of power and ease of use.

Some of the remaining holes

So, RMI makes distributed programming a much simpler proposition for Java programmers, and RMI over IIOP gives programmers the ease of use of RMI combined with the interoperability of CORBA. However, there are still many hard problems left in building distributed systems. In particular, RMI did not include direct support for a common distribution idiom that had initially emerged to circumvent a drawback for CORBA. One of the CORBA Services that had been proposed, partially to deal with the fact that CORBA had no facilities like distributed garbage collection, was the CORBA Lifecycle Service. At the heart of this Service specification was the idea of a Factory
 object that served as a source of other distributed objects. The Factory created new objects, and retrieved existing instances where appropriate. Most CORBA systems had evolved into using this idiom, even where the Lifecycle Service was not fully implemented. In J2EE, the EJB Home interfaces play the role of defining these factory objects.
Integration Styles and Messaging

So far, we’ve considered the issue of object distribution, and have shown how the most common mechanisms in Java have solved this problem. However, as we discussed at the beginning of the chapter, there are many different ways to handle program-to-program communication in Java. The general problem of program-to-program communication has been a constant and ongoing source of research, development and heartache almost since the dawn of the computer age. In particular, five different ways of program integration have risen to the forefront as the most commonly implemented solutions to this problem. Let’s quickly examine them so that we can understand the most common, and attractive, alternatives to object distribution in particular situations.

File Transfer – This was the original means of program-to-program communication, and is still the basis of many mainframe systems today. In it each program works on a physical file (stored perhaps on a hard disk, a tape drive, or a stack of punched cards) and then another program will take that file as its input and produce a new file, or modify the file if the storage medium allows it. While this has proven effective for solving many problems, issues of latency and resource contention have usually made it unattractive for today’s high-speed, high-volume applications.

Shared Database – Another popular mechanism derived from the File transfer mechanism is the shared database system. In this solution database software handles some of the resource contention issues by providing mechanisms for locking and unlocking the data appropriately, and also provides standard mechanisms for creating, deleting, searching and updating information. However, the latency issue remains even in this solution – before one program can use information it must be written to a database (a physical file) by the other program. Shared databases are still a key part of the J2EE standard – it is only through shared databases that we can achieve the scalability of J2EE by allowing Entity beans in different JVMs (perhaps in a cloned environment such as is possible in WebSphere Network Deployment) to handle transactions against the same tables simultaneously.

Raw Data Transfer – In this scheme different programs use a mechanism like a network data transfer protocol (like TCP/IP sockets) or a physical transfer mechanism like Shared Memory to communicate information between different programs. The drawback of this solution (which is again still used in millions of programs) is that it requires synchronous communication – each program must wait on the other to complete its request before processing a response. While it is possible to temporally disconnect the systems, this involves adding significant complexity to the overall system, and involves programming issues that few programmers are competent to deal with – for instance, it is up to the programmer to decide how to guarantee that a message is properly sent and received; the developer must provide retry logic to handle all the cases where the network link is severed, or the request or response was lost in transmission. You might think that Raw Data Transfer is not a part of the J2EE standard, especially since the EJB specification specifically restricts the use of Java sockets within EJBs. However, if you consider the fact that the HTTP protocol fits this definition, you can see that this approach is still a key part of J2EE.

RPC – The RPC (Remote Procedure Call) mechanism is a way of reducing the complexity of the Raw Data Transfer approach by wrapping the network protocols within a layer of code libraries such that it appears to the calling and called programs that a normal procedure call had taken place. Again, RPC is extremely popular, and is the basis of modern systems like CORBA, RMI and EJB. However, the basic issues of synchronicity and guaranteed delivery still remain, which lead us to the need for yet another data transfer mechanism.

Messaging – Messaging is a means of providing high-speed, asynchronous, program-to-program communication with guaranteed delivery. This particular solution is often implemented as a layer of software called Message Oriented Middleware (MOM).

As compared to the other four communication mechanisms, relatively few developers have had exposure to messaging and MOMs, and developers in general are not familiar with the idioms and peculiarities of this communication’s platform. As a result, we have seen many programmers try to use messaging in an inappropriate way, or to develop systems that do not take advantage of the capabilities and strengths of messaging.

JMS and MOMs

A simple way to understand what a messaging system does is to consider voice mail (as well as answering machines) for phone calls. Before voice mail, when someone called, if the receiver could not answer, the caller hung up and had to call back later to see if the receiver would answer at that time. With voice mail, when the receiver does not answer, the caller can leave him a message; later the receiver (at his convenience) can listen to the messages queued in his mailbox. Voice mail enables the caller to leave a message now so that the receiver can listen to it later, which is often a lot easier than trying to get the caller and the receiver on the phone at the same time. Voice mail bundles (at least part of) a phone call into a message and queues it for later; this is essentially how messaging works. In enterprise computing, messaging makes communication between processes reliable, even when the processes and the connection between them are not so reliable.

J2EE defines a standard API for messaging. This is the Java Message Service API (JMS). There are a number of products available for embedding messaging into and between applications. One of the oldest and best-known messaging products is IBM’s WebSphere MQ. WebSphere MQ implements the JMS API. WebSphere Application Server includes a limited version of MQ Series, called WebSphere Embedded Messaging, that allows WebSphere application servers to communicate with other WebSphere application servers, and also allows Java application clients to communicate with WebSphere servers. However, WebSphere Embedded Messaging does not support connection to other programs, such as legacy systems. For that, you should use the WebSphere MQ product, which is fully compatible with WebSphere Application Server.

Besides WebSphere MQ, many other products implement the JMS API, and it is possible to use these products with WebSphere Application Server, but the details of managing that integration are beyond the scope of this book.

Object Persistence

Of all of the problems of Object-Oriented programming, few have generated as much interest, or as much confusion as the problem of object persistence. When reduced to its bare essentials, object persistence is not a difficult problem to understand – making an object “persistent” means that its state (the values of its variables) can be preserved across multiple invocations of a program that references that object. This can be accomplished in any number of ways, the easiest of which for Java programmers is probably the Java Serialization mechanism that is part of the basic JDK.

It’s not persistence per se that gives programmers and architects nightmares. The problem is not that people want objects to be persistent, but that they want to store the information in the objects in a particular format and access it in a controlled manner. In most cases, this format is a relational database (RDB). Unfortunately, there is a serious “impedance mismatch” between objects and relational databases.

The relational (table) model is a simple model, built upon a sound mathematical foundation that has been its key strength. It is a technology that has been used very successfully for a number of years and is consequently well understood. Since new applications are seldom built in a vacuum, relational technology is commonly used in new applications for the following reasons:

· Information often exists in legacy databases that must be used by new systems.

· Relational databases have strong query and report-writing capabilities. Even in the brave new world of web interfaces, people still want to see paper reports.

· Relational technology provides built-in data integrity constraints in the form of database transactions and integrity rules.

· Since it is a mature technology, there are well-known procedures for backing up and restoring database after catastrophic failures. This level of safety provides a great deal of comfort and peace of mind to the customers that pay for new systems development.

The drawbacks of using a relational database with an object system are:

· Relational databases have limited modeling capabilities. Behavior, object containment, and inheritance are not easy to define in a relational database when compared to Java or an object database.

· There is no way of representing true Java object identity in an RDB. When programming in an OO language like Java, you must interact with an object that contains a copy of the persistent data. There are always two “spaces” at work in a problem, the “data” space in the relational database and the “object” space in Java. Keeping these two spaces in sync is one of the primary problems persistence implementations must address.
· There is a semantic mismatch between Java and SQL. SQL data types do not exactly match Java data types, leading to conversion problems.

In many cases, up to 50% of application code bulk is devoted to the mechanics of connecting application objects with the relational database. As we saw in Chapters 8 and 16, it requires considerable care and diligence to ensure a good design and implementation when combining the two architectures. Luckily for Java programmers, many commercial persistence frameworks have evolved to “fill the gap” and provide a mapping between an object model and a relational database that address the previous issues. The disadvantage to this is that each vendor’s API is proprietary, and there is no standardization of the capabilities of these solutions. However, as we will see, even this is not the whole story. J2EE Container Managed Entity beans can handle persistence for your applications in a standard way.
Objects and Transactions

Even die-hard Java persistence programmers begin to roll their eyes when the subject of object transaction management comes up. After all, persistence frameworks have solved the hard part of object-to-relational mapping, so what could be so hard about transactions? This attitude stems more by the experience of the majority of Java programmers than from a close examination of the details of large-scale Java systems.

Most Java systems that use a database only read or write data to databases provided by a single database vendor. While a Java program may use many database tables, usually an application will use one of Oracle, Sybase, or DB2, but not all three together, or even two of three. Even experienced Java programmers have seldom worked with multi-database systems. However, the small minority of programs that do use multiple persistence stores can cause a disproportionate number of headaches for the programmers that build them.

To illustrate this problem, let’s review the Java API that is at the heart of most persistence schemes, JDBC. In JDBC the primary point of contact between the Java program and the database lies with an interface named java.sql.Connection. Each Connection represents a “live” conversation to one database, be it an Oracle Database, a DB2 database, or whatever.

The problem here is that each Connection object represents a single database. Say that you are building a system that uses both DB2 and Oracle. This is common in enterprise systems where one group may manage a local, workstation-based departmental database, while another group may manage a global, enterprise-wide mainframe system. So how can you build a system with JDBC such that all SQL statements are either fully committed or fully rolled back to both databases at once?

The short answer is you can’t, not without adding another layer of software. Synchronizing multiple data sources like this is a complex problem. Solving this problem has historically been the role of a system called a Transaction Processing Monitor (or TP Monitor for short), like IBM’s CICS or Encina products. As Java becomes more prevalent in this kind of system, it becomes necessary to absorb some of the roles of a TP Monitor into our Enterprise programs. Understanding how this works is key to understanding some of the more complex, and powerful features of J2EE and EJBs.

Security in Enterprise Applications

Another consistent problem in building Enterprise applications in Java has been the lack of a set of common API’s that enable developers to handle the basics of application security. Simply put, the problem of application security lies in determining:

· Who should be allowed access into a system, and how is their identity verified (Authentication)?

· What access to the different parts of a system should be granted to which individuals (Authorization)?

CORBA defines a Security model, but ORB vendors rarely implement it. Neither HTTP nor Java RMI contains any provisions for application level security. As a result, most distributed object programmers have ended up creating a “roll-your-own” security model, resulting in a plethora of incompatible and incompatible implementations, with varying capabilities. As you will see in Chapter 29, J2EE provides a standard way of addressing security issues.

Summary

In this chapter, we looked at the systematic IT concerns developers of scaleable applications have to address, and summarized how the J2EE architectural components we have discussed so far support them. Although it is possible to develop fairly scaleable, distributed business applications with just HTML, Servlets, JSPs, and JDBC, as we have seen in this chapter, and previous chapters, there are a lot of concerns that are not addressed and others that limit application scalability. In the next chapter, we’ll be taking a look at another significant part of the J2EE architecture, Enterprise Java Beans (EJBs) and see how they provide much better transparent, portable, and scaleable support for these systematic IT concerns and scaleable applications that must address them.

� Java Serialization is a technology that is often poorly understood. For an explanation of Serialization, see [Horstmann]

� A Factory is simply an object whose job it is to create other objects. The “Factory Method” and “Abstract Factory” Design Patterns [Gamma] are specializations of this more general pattern.

18

