Chapter 31
Implementing the Case Study User Interface
Back in chapter 2 we described the basic requirements of our complete case study, and also outlined some of the objects that are found in the case study design. In chapter 30 we examined the detailed design of the EJB portion of the case study. In this chapter we will examine the user interface design of our case study and its implementation using the Struts framework. We’ll see how you can use the EJBs defined in chapter 30 and examine how the design principles we’ve discussed so far are used in the case study.
User’s Guide

Our time sheet application allows the user to create, modify and report on time sheets entries. From the primary entry point into the web-based application the user can take any of three navigation paths. We will explain each of these paths by showing the generated HTML as it is rendered in a browser.

Initial Screen

This screen presents the user with a description of the Time Sheet application with links to time sheet creation, modification, display and reporting functions (Figure 31.1).

[image: image1.png]
Figure 31.1 Case study Initial screen

Create, Display, Modify Time Sheet for an Employee

This action searches for and displays a time sheet based upon an employee name and week-ending date. If the exact date is not found then a list of all currently defined time sheets for the selected employee is displayed; a particular time sheet can then be selected. Also, the entered date is displayed and can be selected to create a new time sheet (Figure 31.2).

[image: image2.png]
Figure 31.2 – Time sheet search

If a time sheet for a week-ending date exists for the named employee, then the time sheet is displayed, if not, then the employee can choose to create a new time sheet. Only pending, not approved, time sheets can be edited. Time sheet entries can be marked for deletion, and new entries can be added. (Figure 31.3).

[image: image3.png]

Figure 31.3 – Pending time sheet

Once an Employee is finished entering time for his time sheet, then his manager can approve the Time sheet by using the approve link. That brings up the following page that allows the manager to select his name from the list, perform a final review of the time sheet, and approve the time sheet. (Figure 31.4).
[image: image4.png]
Figure 31.4: Approve Time Sheets
Display Pending and Approved Time Sheets

In this screen, pending and approved time sheets for all time sheets are displayed respectively, depending upon which link is accessed (Figure 31.5).

[image: image5.png]
Figure 31.5 – Approved time sheets

Back in Chapter 12 we discussed how you can start out in understanding the flow of a web application by first drawing a diagram that indicates how the different pages are connected through the different “go buttons” on the pages. The diagrams for the timesheet portion of our case study are more complicated than any of the diagrams we have seen in previous chapters, with more pages and more links. In fact, the case study flow is large enough and complicated enough that it doesn’t fit on a single diagram; we will show it to you in pieces as a result. Also, the case study is not fully implemented even in the code that comes on the CD; we’ve left some parts (for instance some parts of report generation) that are similar to existing parts as an exercise for the reader to fill in if they wish. Nonetheless, here is the diagram (Figure 31.6) of the first part of the implemented portions of our case study.

[image: image6.emf]

Index.html

Week_search

.jsp

Display_pending.

jsp

Display_approved.

jsp

Select_report.

html

View_report.

jsp

Figure 31.6: Flow diagram for timesheet reporting and display
This first section shows the flow from the Index page to the pages that are linked from that page. The Link that results in the week_search page is grayed out since we will examine it in another diagram. The remainder of the pages that make up the case study are shown in this diagram. First, there are the two links that display the pages listing all pending and approved time sheets. In the former case, the pages are shown with the Display_pending.jsp. However, since this is a strict MVC implementation using struts, the link on the index.html page first refers to the ListAllPending Action. The code for this Action is shown below:
public class ListPendingTimeSheetsAction extends Action {

/**

 * Constructor for ListPendingTimeSheetsAction

 */

public ListPendingTimeSheetsAction() {

super();

}

/**

 * @see Action#perform(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)

 */

public ActionForward perform(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// There is no precondition

// Get actionprocess (model) and delegate

ActionForward forward = null;

try {

TimeSheetActionProcessor processor =

(

TimeSheetActionProcessor) ActionProcessorFactory

.getActionProcessor(

"TimeSheet");

TimeSheets sheets = processor.getPendingTimeSheets();

if (sheets != null) {

// Add ValueBean to request context and forward response

request.setAttribute(BeanKeys.PENDING, sheets);

forward = mapping.findForward("success");

if (forward == null) {

forward = mapping.findForward("error");

}

} else

forward = mapping.findForward("error");

} catch (MappingException e) {

forward = mapping.findForward("error");

}

return forward;

}
}
There’s not much to discuss here, but it does set the stage for a number of common struts mechanisms that are repeated throughout the code of our case study. First, the Action obtains a reference to a TimeSheetActionProcessor. Then, it asks the ActionProcessor to invoke a business method and obtains the result. If no exceptions were thrown and if the result is a good result, then the result is placed on the Request and the Action looks up the forward for the “success” page. If any errors resulted, then instead it looks up the forward for the “error” page. Finally, the Action returns the ActionForward.

If you examine the code for the ListApprovedTimeSheetsAction you will find that the flow in it is virtually identical to the flow in this action – the only difference being the business method that is invoked on the Action processor. Since there is nothing additional to be learned by examining the code of that Action, we’ll move on to the other portion of the diagram, report generation. If you look at the code of the select_report HTML page, you’ll see that the only report that has been implemented is the Employee by Month Report. In that case, the URI that used to invoke the Action is /TimeApp/GenerateReport.do?primary=employee&secondary=month. The code for the Generate Report Action is shown below.
public class GenerateReportAction extends Action {

/**

 * Constructor for ListPendingTimeSheetsAction

 */

public GenerateReportAction() {

super();

}

public ActionForward perform(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Look at the ActionForm object

ReportForm dForm = (ReportForm) form;

Report report = null;

// Get actionprocess (model) and delegate

ReportActionProcessor processor =

(ReportActionProcessor) ActionProcessorFactory.getActionProcessor(

"Report");

try {

if (dForm.isByEmployeeFirst() && dForm.isByMonthSecond())

report = processor.generateEmployeeByMonthReport();

} catch (ModelException e) {

ActionForward forward = mapping.findForward("error");

return forward;

}

request.setAttribute(BeanKeys.REPORT, report);

ActionForward forward = mapping.findForward("success");

if (forward == null) {

forward = mapping.findForward("error");

}

return forward;

}
}
Again, notice the similarities to the previous example in that the Action obtains a reference to an Action processor, invokes a business method, and then sets the result on the request prior to obtaining a forward to return. The only difference in this example is that the Action uses the information in the ReportForm to determine which business method to invoke (currently only the generateEmployeeByMonthReport is implemented, but it would be easy to add the other reports as needed).

TimeSheet Processing
This section of the case study is the most interactive and complicated of the entire case study. We will cover how to create, update, and approve time sheets by reviewing the implementations of the actions and JSPs. The following flow diagram (Figure 31.7) is connected to the previous diagram through the week_search.jsp page. The darker lines on the flow diagram represent the path through the case study classes that we will examine. We’ll begin with week_search.jsp and discuss the different design decisions that went into developing this part of the case study.

[image: image7.emf]

Week_Search.jsp

Select_timesheet.jsp

Pending_view.jsp

Display_for_approval.jsp

Approved_view.jsp

Enter well-formed,

new week date

Enter

unparseable

week date

Add new

dates

Select approved

timesheet

Select new or

unapproved timesheet

approve

approve

Enter date

matching

approved week

Enter date

matching

pending

week

Figure 31.7: Timesheet Entry and Approval Flow
The first thing to consider is the design of the week_search JSP. If you refer back to the picture of the week_search JSP (Figure 312) you’ll see that it contains a form with two fields, a drop-down containing a list of Employees, and a text field for entering a week. Using a text field is a user interface decision that we need to examine for a moment. There are several ways to enter a date into an HTML form – but most of them are more complex than we want to consider for our case study. For instance, you could include a drop down of available dates, but the problem with that is that the number of elements in the drop-down would have to be quite large – if we wanted to enable entering time for any time within a year, it would contain 52 different week-ending dates. Another possibility would be to display a calendar, but since HTML does not have a calendar control, this could be a complicated feature requiring significant JavaScript development
. Instead, we’ll stick with a simple text field, and then rely on Strut’s validation logic to ensure that the date entered is a valid date in the right format. , The form is submitted through the following section from week_search.jsp:

<html:form action="EmployeeTimeSheet.do">
<TABLE WIDTH="75%" BORDER="0" BGCOLOR="#777999" CELLSPACING="0"

CELLPADDING="1">

<TBODY>

 <TR>

 <TD>

<TABLE width="100%" border="0" bgcolor="#FFFFFF" cellspacing="0"

cellpadding="3">

<TBODY>

<TR>

 <TD colspan="3" bgcolor="#009900" align="center">

<H1>Employee TimeSheet Search</H1>

 </TD>

</TR>

<TR>

<TD ALIGN="right">Employee:</TD>

<TD><html:select property="submitterId">

 <html:options collection="employees" property="id"

labelProperty="name"></html:options>

 </html:select></TD>

<TD> </TD>

</TR>

<TR>

 <TD ALIGN="right">Week Ending:</TD>

 <TD><html:text property="weekending"/></TD>

 <TD ALIGN="left"><I>(mm/dd/yyyy)</I></TD>

</TR>

<TR>

 <TD> </TD>

 <TD><html:submit>Search</html:submit></TD>

 <TD> </TD>

</TR>

</TBODY>

</TABLE>

</TD>

</TR>

</TBODY>
</TABLE>
</html:form>
In this JSP we use the Struts html:options tag to display the drop down of Employees. The options tag iterates over a collection of Employees that has been placed in the session scope under the name “employees”. The Struts html:select tag places the selected option in the submitterId property of the TimeSheetForm ActionForm. The list of Employees was earlier placed in the session by the TimeSheetSearchAction, which retrieved the list from the TimeSheetProcessor. Likewise, the html:text tag places the date typed into the text field into the weekending field of the TimeSheetForm. Struts will then handle the validation of that form when it is submitted by creating and populating an instance of TimeSheetForm, then running the form’s validate() method shown below:

public ActionErrors validate(ActionMapping mapping, HttpServletRequest req) {

ActionErrors errors = new ActionErrors();

if ((submitterId == null) || (submitterId.length() < 1))

errors.add("submitter",new ActionError("errors.missing.submitter"));

if ((weekending == null) || (weekending.length() < 1))

errors.add("weekending", new ActionError("errors.missing.weekending"));

Formatter fmt = Formatter.getDefaultFormatter();

Calendar dt = fmt.convertToDate(weekending);

if (dt == null)

errors.add("weekendingformat", new ActionError("errors.weekending.format"));

return errors;

}
If any errors are returned, then the form will redisplay automatically, otherwise, the flow will proceed to the following method in EmployeeTimeSheetAction:
public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Look at the ActionForm object

TimesheetForm tsForm = (TimesheetForm) form;

ActionForward forward = null;

String msg = null;

if (tsForm != null) {

// See if corresponding Timesheet exists

TimeSheet timeSheet = null;

try {

TimeSheetActionProcessor processor =
(TimeSheetActionProcessor) ActionProcessorFactory.getActionProcessor(

"TimeSheet");

timeSheet =

processor.findTimeSheetByKey(

tsForm.getSubmitterId(),

tsForm.getWeekending());

if (timeSheet != null) {

request.setAttribute("timesheet", timeSheet);

addProjectsBean(request);

if (timeSheet.isPending())

forward = mapping.findForward("pending");

else

forward = mapping.findForward("approved");

} else { // setup to list weekend dates for employee

WeekEndings weekendings =

processor.getWeekEndings(tsForm.getSubmitterId());

if (weekendings.getWeekEnding().length == 0) {

ArrayList calendars = new ArrayList();

Calendar weekend = Formatter.convertToDate(tsForm.getWeekending());

calendars.add(weekend);

weekendings = new WeekEndings(calendars);

}

request.setAttribute("weekendings", weekendings);

Employee employee =

processor.findEmployeeByKey(tsForm.getSubmitterId());

request.setAttribute("employee", employee);

request.setAttribute("create", tsForm.getWeekending());

forward = mapping.findForward("select");

}

} catch (NoSuchEmployeeException e) {

// Handle this as a recoverable error (even though the display shouldn't allow this)

ActionErrors errors = new ActionErrors();

ActionError err= new ActionError("errors.no.such.employee");

errors.add("no such employee", err);

saveErrors(request,errors);

forward = mapping.findForward("tryagain");

} catch (MappingException e) {

// Handle this as an unrecoverable error

AppService.log(TraceCapable.ERROR_LEVEL,"Exception caught in EmployeeTimeSheetAction.perform:" + e);

forward = mapping.findForward("error");

}

}

return forward;
}
This is by far the most complex controller we’ve examined. However, it also has the most to do. Aside from the error path back to the week_search JSP we just considered, the user can reach three possible destinations after submitting a week date in the form:
· If the date matches an existing timesheet in the pending state, then the user is sent to the pending_view.jsp, which allows them to add or remove hours from the timesheet, or request approval.

· If the date matches an existing timesheet in the approved state, then the user is sent to the approved_view.jsp.

· If the date does not match an existing timesheet, then the user is sent to the select_timesheet.jsp, which allows them to either select an existing timesheet with a different date, or create a new timesheet.

The logic in this Action class has to handle all three cases, which, you will notice rely not just on the input data, but on information retrieved from the domain model (the state of the time sheet) as well. That is the reason for the fact that this method has not just one, but three separate ActionForwards that it can return, not even counting the two error cases. It is worth studying this method well, since this is actually the kind of complexity that is typical of many Struts Action classes. Luckily, for our example, this is the high-water mark. None of the remaining paths is as complex as this.
In the most common case, what would happen next is that the date entered into week_search.jsp would be a week that doesn’t correspond to an existing timesheet, and that the user would select the create link on the select_timesheet.jsp to create a new timesheet. This leads the user to pending_view.jsp (Figure 31.3) where they can enter new hours against a project. Pressing the Add button on this form leads to the following perform method being executed in the UpdateTimesheet action.

public ActionForward perform(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Look at the ActionForm object

UpdateTimesheetForm tsForm = (UpdateTimesheetForm) form;

// Build the command object

UpdateTimesheetFormCommand updateCommand = buildCommand(tsForm);

TimeSheet timeSheet = null;

try {

TimeSheetActionProcessor processor =

TimeSheetActionProcessor) ActionProcessorFactory.getActionProcessor(

"TimeSheet");

timeSheet =

processor.updateTimesheet(updateCommand);

} catch (Exception e) {

AppService.log(TraceCapable.ERROR_LEVEL,"Exception caught in TimeSheetSelectAction.perform:" + e);

ActionForward forward = mapping.findForward("error");

return forward;

}

addProjectsBean(request);

request.setAttribute("timesheet", timeSheet);

ActionForward forward = mapping.findForward("pending");

return forward;
}
This action is similar to the ones we’ve seen before in that it processes a form, by reading information from the input data, but the slight difference here is in how the data is passed to the TimesheetProcessor. As we covered in Chapter 30, the updateTimesheet() method uses the Command pattern to avoid the expense of constructing and passing an entire timesheet to the TimesheetProcessor. The buildCommand method, shown below, constructs this object.

protected UpdateTimesheetFormCommand buildCommand(

UpdateTimesheetForm tsForm) {
UpdateTimesheetFormCommand updateCommand = new UpdateTimesheetFormCommand();

updateCommand.setAddDate(tsForm.getAddDate());

updateCommand.setAddHours(tsForm.getAddHours());

updateCommand.setAddProjectId(tsForm.getAddProjectId());

updateCommand.setEmployeeId(tsForm.getSubmitterId());

updateCommand.setWeekending(tsForm.getWeekending());

updateCommand.setRemoveEntryId(tsForm.getRemoveEntryId());

return updateCommand;
}
Since it uses a command, the action does not need to use any special logic to handle adding and removing a timesheet differently. In both cases, if the processing was successful, it simply returns the user to pending_view.jsp. Finally, if the user clicks on the approve link, then the display_for_approval.jsp (Figure 31.4) page is shown. If the user selects the approving employee (presumably not the same person as the employee submitting the timesheet) from the list then presses the approve button, the following code is executed in the ApproveTimeSheet action:
public ActionForward perform(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

ApprovingTimesheetForm tsForm = (ApprovingTimesheetForm) form;

TimeSheet timeSheet = null;

// invoke approve behavior on Model

TimeSheetActionProcessor processor =

(TimeSheetActionProcessor) ActionProcessorFactory.getActionProcessor(

"TimeSheet");

try {

timeSheet =

processor.approveTimeSheetByKey(tsForm.getSubmitterId(), tsForm.getWeekending(), tsForm.getApproverId());

} catch (Exception e) {

AppService.log(TraceCapable.ERROR_LEVEL,"Exception caught in ApproveTimeSheetAction.perform:" + e);

ActionForward forward = mapping.findForward("error");

return forward;

}

request.setAttribute("timesheet", timeSheet);

ActionForward forward = mapping.findForward("approved");

return forward;
}
As you can see, there’s nothing new here. This action simply invokes the approveTimeSheetByKey method in the TimesheetProcessor and then forwards the user to approved_view.jsp if the method execution is successful. At this point, we’ve completed our set of use cases and finished our look at the case study Struts implementation.

Summary

In this chapter you’ve examined the struts implementation of the Timesheet case study application and examined how it uses the mechanisms provided by struts (the html tag library, Action Forms and Actions) and also how it uses the methods provided by the TimesheetProcessor business delegate we discussed in Chapter 30. We are now finished with our examination of the different parts of J2EE 1.3 and how they are implemented in WebSphere. In the next two chapters, we’ll begin looking forward past the current implementation of the J2EE standard and examine how WebSphere Application Server, provides support for Web Services, which will be a key part of the J2EE 1.4 specification.
� Alternatively, you could buy a commercial JavaScript calendar control, but let’s not consider that for the moment.

24

_1118688651.doc

[image: image2.bmp]

Index.html

Week_search.jsp

Display_pending.jsp

Display_approved.jsp

Select_report.html

View_report.jsp

[image: image1]
_1118754570.doc

[image: image1]

Week_Search.jsp

Select_timesheet.jsp

Pending_view.jsp

Display_for_approval.jsp

Approved_view.jsp

Enter well-formed, new week date

Enter

unparseable

week date

Add new

dates

Select approved timesheet

Select new or unapproved timesheet

approve

approve

Enter date matching approved week

Enter date matching pending

week

