
Chapter 25

Advanced CMP Mapping

In previous chapters we covered the basics of the WebSphere Studio Application Developer J2EE tooling development environment. Chapter 24 showed you how to use the basic mapping approaches in WSAD to map container-managed entity beans to relational database tables in a simple one-to-one way. However, most object oriented application model designs are more complex than the examples used in Chapter 24. For example, many OO model designs incorporate relationships and inheritance.

This chapter describes how to incorporate these complexities within an object model composed of container-managed entity beans. The chapter provides and overview of the EJB 2.0 specification for relationships and it shows how to create relationships between two container-managed entities and then map the beans and relationships to relationship database tables. Then the chapter explains how the EJB tooling in WSAD has extended the EJB 2.0 specification to include EJB inheritance. Then the different approaches available to map an inheritance structure among container-managed entity beans to a set of relational database tables are explained. Lastly, the chapter provides a more in-depth look at EJB QL and how relationships can be used within the EJB QL statements.
Simple Mapping Rules

You have seen that WSAD and WebSphere provide a simple mechanism for mapping container-managed entity beans to database tables. This simplicity arises from the assumption that each attribute in an EJB maps to a single column in a single table in a database. This mapping is done by type – String in Java maps to VARCHAR in SQL, int maps to INTEGER, etc.

However, out of the entire set of mapping rules, one sticks out like a sore thumb. All objects that are not convertible to standard SQL types are instead mapped to a BLOB (Binary Large Object) of a maximum size of 1M. This rule would apply to any type derived from Object in Java – in other words, every class you might create.

This provides a simple solution for storing objects in a relational database. Objects are serialized into a binary form and then stored into a single column in a table. However, this approach has the following drawbacks:

· BLOBs are not readable from other applications (e.g., reporting tools)

· BLOBs cannot be queried from SQL, making data mining and table maintenance difficult to do.

· BLOBs may not be readable from later versions of the application that created them. This is a tough problem that requires a deep knowledge of how Java serialization works and careful planning to avoid.

These drawbacks have led developers to instead prefer an alternative approach where objects are mapped to relational databases in such a way that object relationships are preserved in the relational database schema. This approach has been well documented in several places, such as [Fowler]. Let’s quickly review this approach to see how it applies to container-managed entity beans in WSAD.

Object-Relational Basics

In the most common mapping approach, object relationships are represented by foreign-key relationships in the database. To understand how this works, consider the following relationships, drawn from our case study (Figure 25.1):

[image: image1.emf]TimeSheetEJBEmployeeEJB

0..10..n

0..1

0..n

0..n0..1

0..n

0..1

submitter

approver

Figure 25.1 Object associations

There is a relationship between TimeSheet and Employee representing the approving relationship, and another relationship between TimeSheet and Employee representing the submitting relationship. As you look deeper at our example, you find another kind of relationship that must be represented. A Timesheet contains a collection of TimeSheetEntries, as shown in the following diagram (Figure 25.2), which illustrates a multi-valued relationship.

[image: image2.emf]TimeSheetEJB

TimeSheetEntryEJB

0..n

1

entries

0..n

1

Figure 25.2 One-to-many association

Normally the approver and submitter associations are represented by having a TimeSheet have two instance variables of the Employee type. Likewise, you might have each Timesheet hold an array of TimeSheetEntries, or a Collection containing TimeSheetEntry objects. However, this simple solution won’t quite work for Entity EJBs. It also doesn’t quite map directly to a relational database. Before you see how the former problem is solved, you first need to understand a little about the latter problem.

As [Fowler] discusses, relationships like we have in the first case (Timesheet to Employee) are represented in a Relational database by foreign keys that point from the “owning” table to the “owned” table. The following tables (Table 25.1, Table 25.2) illustrate this method. In the tables “PK” indicates that the column is a part of the primary key constraint for that table.
Timesheet Table
	TimeSheetId (PK)
	State
	Approver_EmpId
	Submitter_EmpId

	1000
	NC
	3015
	2013

Foreign Key Constraints

	Name
	

Columns
	Owned Table

	ApproverFK
	Approver_EmpId
	Employee

	SubmitterFK
	Submitter_EmpId
	Employee

Table 25.1 -- Timesheet Table

Employee Table
	EmpId (PK)
	Name
	Job Title

	2013
	Bob Smith
	Programmer

	3015
	Sue Wong
	Manager

Table 25.2 -- Employee Table

The ApproverFK and SubmitterFK foreign key constraints of the Timesheet table have one column that is equal in type to the primary key column in the Employee Table. Thus, each Timesheet row will contain what are in effect pointers to the two Employee rows. Using foreign keys that point the other way, you can also store 1-N (multi-valued) relationships. Each “contained” row has a foreign key pointer to the row that “contains” it. The following table illustrates this procedure:

TimesheetEntry Table
	EntryId (PK)
	Timesheet_ TimesheetId
	Hours
	Date

	1011
	1000
	8.0
	2/13/99

	1012
	1000
	8.0
	2/14/99

Foreign Key Constraints

	Name
	

Columns
	Owned Table

	TimesheetFK
	Timesheet_ TimesheetId
	TimeSheet

Table 25.3 Foreign key in one-to-many relationship

In our example the two TimesheetEntry rows we have shown both have a foreign key back into the Timesheet table that provides the link from the two entries (1011 and 1012) back to the previously seen Timesheet with the primary key 1000. You can now see the basic outlines of our solution. If we want to map from our object model in Java to a relational database, we must have some way of creating and reconstituting these foreign key relationships. In a nutshell that is what WSAD’s relational mapping does.

Concepts in EJB 2.0 Relationships

So what you want is the best of both worlds. You want to be able to represent object relationships like you do in standard Java classes, but you also want to take advantage of the automatic persistence, distribution and transaction features that you get from Enterprise Java Beans. The EJB 2.0 specification provides a solution by defining Entity EJB relationships within the specification. This section explains how relationships are defined between Entity Beans within the deployment descriptor.

The EJB 2.0 specification allows for relationships to be defined between two entity beans with container-managed persistence. This is accomplished with the definition of a new type called an ejb-relation in the EJB deployment descriptor that contains two ejb-relationship-roles where each role has a reference to an entity bean by name within the ejb-role-source element. These ejb-relation elements are all defined within the relationships tag of the deployment descriptor. These relationships can have multiplicities of one-to-one, one-to-many, and many-to-many. Note that the multiplicity of a relationship role is defined in terms of the number of instances of the source entity with respect to the relationship.

Entity bean relationships can be either bidirectional or unidirectional. This means that a relationship can be navigated from both entities if it is bidirectional and navigability can be restricted to only one entity if it is unidirectional. Navigability between entities defined in a relationship is controlled by defining a container-managed relation field (cmr-field) on the relationship role that you would like to traverse. Thus this cmr-field will be implemented on the source entity bean for the relationship role.

A cmr-field is very similar to a cmp-field in that they both have to be valid Java identifiers and they obey the same generation rules for the entity. This basically means that there must be get and set accessor methods defined for each cmr-field which will be used for traversal and update of relationships. Also the cmr-field type must either be the local interface of the other relationship role’s source entity within the relationship or a collection (i.e., java.util.Collection or java.util.Set). If the cmr-field type is a local interface, then it represents a cardinality of “0..1” within a relationship. If it is of a collection type, then it represents a cardinality of “0..N” in a relationship.
Container-managed relationships are defined in terms of local client views of the related beans. This means that accessor and setter methods for the cmr-fields can only appear on the local interface and it has just been explained that the type of a cmr-field must be a local interface, java.util.Collection, or java.util.Set. Therefore, an entity bean that does not have a local client view can only have unidirectional relationships from itself to other entity beans. The lack of a local client view restricts navigation to the entity bean from another related entity.

Chapter 16 touched on what it would take to add relationships by hand to your application but it did not go into detail about maintaining referential integrity. There are two types of referential integrity: relational database constraints and container-managed entity bean integrity. The strict definition of referential integrity within a relational database is that each foreign key value must have a corresponding primary key value. This is accomplished by creating foreign key constraints which define a set of columns within the “owning” table that match in order, size, and type of the columns in the primary key of the “owned” table. Defining foreign key constraints on a database can slow performance and it forces the application to insert and delete rows into database tables in the proper order so that the foreign key constraints are not violated (i.e., the row in the “owned” table must exist before the row in the “owning” table).

Among container-managed entity beans, maintaining referential integrity means maintaining references between two objects that have been related. For example, we could have an Employee who is the submitter of a collection of TimeSheets as shown in Figure 25.1. If a TimeSheet were added to the collection of timesheets for an Employee, referential integrity mechanisms would ensure that the TimeSheet also refers to the Employee to which it was just added. The container-managed relationship support handles referential integrity among container-managed entities for you. It should be noted that EJB modules running in WebSphere cannot run with foreign key constraints defined since the insert and delete queries within a transaction are not ordered in such a way that ensures that the foreign key constraints are not violated.

This was just a quick overview of the relationship support within the EJB 2.0 specification. We will go into more detail about container-managed relationships when we discuss relationship support in WSAD.

Associations in UML

Before we embark upon our investigation of the Relationship support in WSAD 5.0, let’s take a moment to review associations in UML. This may seem like a sidetrack, but it really does help in understanding some of the decisions behind the Relationship support in WSAD 5.0.

In UML, a solid line between the two classes represents an association between two classes. An association in UML simply represents instances of “links” between objects, but it does not imply anything about the implementation of that link – in fact it is intentionally vague in order to allow for multiple implementation strategies. An association can carry along with it information about the relationship between the objects that are linked. In our case, we are only concerned with binary associations (links between two classes) so we can limit our discussion to those relationships.

Each end of an association can have certain information associated with it. The first kind of information associated with an end of an association is navigability. Navigability is represented in UML by an open ended arrow on an association end. Navigability simply means that you can traverse the link in the direction of an arrow. An association with no arrows is navigable from either end.

Each association end has a rolename associated with it that is the “view” of the object from the other end. It is the name by which each object is known to the other object in the relationship. Finally, each association end has a multiplicity associated with it. A multiplicity specifies how many values an association end may have. This can be a number (1, 2…) or a range (0..1), or it may be the unbound expression (*) which means zero or more. Figure 25.3 shows these basic decorations used in UML. In this figure A is related to many instances of B through the theB association end. Inversely, B is related to zero or one instance of A through the theA association end.
[image: image3.png]
Figure 25.3 UML notation for associations

Relationships in WSAD V5.0

Now that you have seen how relationships are represented in the 2.0 EJB specification and how they are represented within UML, you are ready to dive into the relationship support in WSAD 5.0. Before we talk about how relationships are created we should first explain how relationships are presented within WSAD. As discussed earlier, the place to look for relationships is within the EJB Deployment Descriptor editor. This editor displays all EJB 2.0 relationships defined in a deployment descriptor within the Relationships 2.0 section of the Overview page. This is not the only location to view relationships however. On the Beans page, you can select a container-managed entity and scroll down to the Relationships section to see a list of relationships in which the entity bean participates as shown in Figure 25.4 for the EmployeeEJB bean. Also, the Outline view of the editor displays a tree view of all of the Enterprise Java Beans. Under each container-managed bean, there may be zero or more relationship roles. These are the relationship roles that have the selected bean defined as a source EJB. In other words, the relationship roles that are displayed here are owned by the selected entity. A similar tree view is also shown in the J2EE Hierarchy view under each EJB module.

[image: image4.png]
Figure 25.4 Relationships defined for a bean
All relationships created in WSAD are done so using the Relationship wizard. This wizard can be launched from each location described above either by using the New >> Relationship context menu action for a selected container-managed entity in one of the tree views (i.e., EJB editor Outline or J2EE Hierarchy view) or the Add button from the sections within the EJB Deployment Descriptor editor. The Relationship wizard has two pages. The first page, shown in Figure 25.5, requires you to select the two container-managed entities that you would like to relate as well as an optional name and description for the new relationship. When you open the wizard from any of the actions described above, except for the action associated with the Relationships 2.0 section on the Overview page of the EJB Deployment Descriptor editor, the first container-managed entity is already selected based on the current selection in the view.

[image: image5.png]
Figure 25.5 EJB Relationship wizard page 1

The second page of the Relationship wizard, shown in Figure 25.6, is where the specific relationship role information is set for the relationship. We will look at a case study relationship example between EmployeeEJB and AddressEJB to help us explain the structure of the second page of the wizard. The first thing you will notice on this page is that it is divided into a UML view and an EJB specification view. Only the EJB specification view is updatable and it describes the relationship roles for the relationship in terms of the EJB specification. Changes made to the EJB specification view will update the UML view. The UML view illustrates the EJB relationship in terms of UML semantics. When editing a relationship role, blue dotted lines will surround the elements in the UML view that will be updated based on the role you are changing. This is helpful since EJB 2.0 relationships are not defined in terms of UML.

[image: image6.png]
Figure 25.6 EJB Relationship wizard page 2

Let’s take a closer look at the first relationship role which has EmployeeEJB defined as the Source EJB. Notice that the Source EJB cannot be changed since it was first selected on the previous page and changing one of the container-managed entity beans defined in a relationship changes the entire meaning of the relationship. The next field, Role name, is an optional name for the relationship role. Next we have the Multiplicity field which can be either One or Many. One thing that you should be aware is that the multiplicity, as defined by the EJB 2.0 specification, is described in terms of the relationship and not the source EJB. So, in this simple example, the One multiplicity for the homeAddress relationship role indicates that there is one instance of the EmployeeEJB source EJB within the relationship. Notice that in the UML view, the blue dotted line appears around the multiplicity for the homeAddress relationship role. This is because multiplicity within UML is in terms of the bean itself. So, in the example, this multiplicity indicates that the EmployeeEJB has one instance of an AddressEJB.

The Navigable check box is not a direct setting in the EJB specification but it does affect the next set of fields. If this check box is selected, the CMR field text field will be enabled and it will be required to have a value which defaults to the role name. Remember from our earlier discussion that a relationship role is navigable if a cmr-field is defined. Next we have the CMR field type drop down list. This list is disabled unless the role is navigable and the other relationships role has a multiplicity of Many. When the drop down list is enabled, you are required to select either java.util.Collection or java.util.Set as one of the types for the cmr-field. The Cascade delete check box when selected will set the cascade-delete option for the relationship role. Cascade delete indicates that when the other relationship role’s source EJB is removed, the instances of the current source EJB within the relationship will also be removed. This check box is only enabled if the other relationship’s role multiplicity is set to One and is not already checked (only one relationship role can have cascade delete defined).

Finally we have the Foreign key check box. This option will require a bit more explanation since it is not explicitly defined in the EJB 2.0 specification. When selected, this option indicates that if the source EJB were mapped to a simple table (e.g., Timesheet in Table 25.1) then that table would own the foreign key used in the relationship between the two tables. This option is disabled if any multiplicity is defined as Many since the foreign key must be defined on the relationship role with the Many multiplicity because the mapped table to the source EJB must contain the foreign key when there are multiple rows returned in the relationship (see Table 25.3). This option is used by the mapping wizard when creating tables used in a “top-down” mapping strategy.

Next we will walk through two common relationship examples, single-valued and multi-valued relationships. Within these examples, we will show how the relationship wizard is used to generate real world EJB relationships.

Creating a Single-Valued Relationship

For the single-valued relationship example we are going to examine the relationship between EmployeeEJB and AddressEJB from the case study. In this scenario, each Employee has a home address that is being modeled with this relationship. To create this relationship, first open the EJB Relationship wizard using any method described earlier in this chapter. Next, ensure that the EmployeeEJB and AddressEJB are selected in the left and right EJB lists shown in Figure 25.5. Also set the Relationship name to Employee-Address.

The second page, shown in Figure 25.6, contains the details of our relationship roles. For the relationship role with the Source EJB defined as EmployeeEJB, set the Role name to homeAddress and the Multiplicity to One. We want the AddressEJB to be accessible from the EmployeeEJB so we keep the Navigable check box selected. This automatically keeps the CMR field enabled and it is defaulted to the same name as the Role name. We will keep homeAddress as the CMR field. Finally, select the Foreign key option to indicate that the table mapped to EmployeeEJB will contain the foreign key reference to the table mapped to AddressEJB.

For the relationship role with the Source EJB defined as AddressEJB, set the Role name to employee, leave the Multiplicity as One, and leave the default CMR field name as employee. Also select the Cascade delete option since it is desirable to have the AddressEJB instance removed when the EmployeeEJB instance in the relationship is removed. After clicking on the Finish button, you will see the following relationship defined in the deployment descriptor.

<ejb-relation>

 <description></description>

 <ejb-relation-name>Employee-Address</ejb-relation-name>

 <ejb-relationship-role id="EJBRelationshipRole_1034826147916">

 <ejb-relationship-role-name>homeAddress</ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>EmployeeEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>homeAddress</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role id="EJBRelationshipRole_1034826301797">

 <ejb-relationship-role-name>employee</ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <cascade-delete />

 <relationship-role-source>

 <ejb-name>AddressEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>employee</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

</ejb-relation>

Also, the following methods have been created on the local interfaces and the bean classes to support the cmr-fields defined in this relationship.

EmployeeEJB

public com.wsbook.casestudy.ejb.AddressEJB getHomeAddress();
public void setHomeAddress(com.wsbook.casestudy.ejb.AddressEJB aHomeAddress);
EmployeeEJBBean

public abstract com.wsbook.casestudy.ejb.AddressEJB getHomeAddress();
public abstract void setHomeAddress(com.wsbook.casestudy.ejb.AddressEJB aHomeAddress);
AddressEJB

public com.wsbook.casestudy.ejb.EmployeeEJB getEmployee();
public void setEmployee(com.wsbook.casestudy.ejb.EmployeeEJB anEmployee);
AddressEJBBean

public abstract com.wsbook.casestudy.ejb.EmployeeEJB getEmployee();
public abstract void setEmployee(com.wsbook.casestudy.ejb.EmployeeEJB anEmployee);
Creating a Multi-Valued Relationship

For the multi-valued relationship example we are going to examine the relationship between TimeSheetEJB and TimeSheetEntryEJB from the case study. In this scenario, each TimeSheet has a collection of TimeSheetEntries. To create the relationship, first open the EJB Relationship wizard using any method described earlier in this chapter. Next, ensure that the TimeSheetEJB and TimeSheetEntryEJB are selected in the left and right EJB lists similarly shown in Figure 25.5. Also set the Relationship name to TimeSheetEntries.

The second page, shown in Figure 25.7, contains the details of our relationship roles. For the relationship role with the Source EJB defined as TimeSheetEntryEJB, set the Role name to timesheet and the Multiplicity to Many. Remember that Many for this multiplicity means that there are many instances of the TimeSheetEntryEJB within the relationship. We want the TimeSheetEntryEJB to be accessible from the TimeSheetEJB so keep the Navigable check box selected. This automatically keeps the CMR field enabled and it is defaulted to the same name as the Role name, thus the CMR field will be timesheet.

[image: image7.png]
Figure 25.7 Multi-Valued Relationship settings

For the relationship role with the Source EJB defined as TimeSheetEJB, set the Role name to entries, leave the Multiplicity as One, and leave the default CMR field name as entries. Also select java.util.Collection for the CMR field type since the timesheet role has a multiplicity of Many. This makes sense since the TimeSheetEJB has a reference to many TimeSheetEntryEJBs. You do not have the option of changing the Foreign key setting since one of the roles has a multiplicity of Many. Remember that the EJB 2.0 specification allows for Many-to-Many relationships. This would appear exactly the same as this relationship except that both roles would have a Many multiplicity and they would both define a CMR field type if they are navigable.

After clicking on the Finish button, you will see the following relationship defined in the deployment descriptor. Notice that there are no methods generated on TimeSheetEJBBean for adding or removing from the multi-valued relationship. Adding and removing from the relationship should be done directly with the Collection returned from the getEntries method.
<ejb-relation>

 <ejb-relation-name>TimeSheetEntries</ejb-relation-name>

 <ejb-relationship-role id="EJBRelationshipRole_1034826269180">

 <ejb-relationship-role-name>timesheet</ejb-relationship-role-name>

 <multiplicity>Many</multiplicity>

 <relationship-role-source>

 <ejb-name>TimeSheetEntryEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>timesheet</cmr-field-name>

 </cmr-field>

 </ejb-relationship-role>

 <ejb-relationship-role id="EJBRelationshipRole_1034826301787">

 <ejb-relationship-role-name>entries</ejb-relationship-role-name>

 <multiplicity>One</multiplicity>

 <relationship-role-source>

 <ejb-name>TimeSheetEJB</ejb-name>

 </relationship-role-source>

 <cmr-field>

 <cmr-field-name>entries</cmr-field-name>

 <cmr-field-type>java.util.Collection</cmr-field-type>

 </cmr-field>

 </ejb-relationship-role>

</ejb-relation>

The following methods have also been created on the local interfaces and the bean classes to support the cmr-fields defined in this relationship.

TimeSheetEntryEJB

public com.wsbook.casestudy.ejb.TimeSheetEJB getTimesheet();

public void setTimesheet(com.wsbook.casestudy.ejb.TimeSheetEJB aTimesheet);
TimeSheetEntryEJBBean

public abstract com.wsbook.casestudy.ejb.TimeSheetEJB getTimesheet();

public abstract void setTimesheet(com.wsbook.casestudy.ejb.TimeSheetEJB aTimesheet);
TimeSheetEJB

public java.util.Collection getEntries();
public void setEntries(java.util.Collection anEntries);
TimeSheetEJBBean

public abstract java.util.Collection getEntries();

public abstract void setEntries(java.util.Collection anEntries);
Read Ahead Hints

WebSphere 5.0 extends the EJB 2.0 relationship description with additional information that can be used to optimize navigation. The concept is known as Read Ahead Hints. The basic idea of read ahead hints is to perform a single SQL query, a relational join, to load an entity bean and a number of related entity beans that would have normally taken several distinct SQL query statements to perform. For single valued relationships, you could get the same performance benefit by defining the related entity bean as a dependent object and use a composer as defined in Chapter 24 to map it to the database table columns. The problem with dependent objects is that you cannot traverse their values in an EJB QL statement. With the advent of Read Ahead hints, it is arguable that it is better to define the dependent object as another container-managed entity with a relationship and define a read ahead hint for optimization in query reads. Then this related container-managed entity could have its values used in an EJB QL statement. See the end of the chapter for more information regarding EJB QL statements.
Let’s take a simple example from the case study to explain how this is a benefit. We have already defined a TimeSheetEJB and a TimeSheetEntryEJB with a one-to-many relationship between them. This relationship added an entries relationship role to the TimeSheetEJB and a timesheet relationship role to the TimeSheetEntryEJB. Typically, when we read a TimeSheetEJB we almost always want to get all of its entries. This means that we will have to execute a findByPrimaryKey(…) method to retrieve the TimeSheetEJB instance and then call getEntries() to return the collection of TimeSheetEntryEJBs Without any optimization this executes two individual SQL statements. Since this is the typical case, it would be ideal to execute just one SQL statement to find both the TimeSheetEJB instance and all of the related TimeSheetEntryEJBs.

This can be accomplished within WebSphere 5.0 by defining a new Access Intent that supports read ahead hints. To do so, you will need to open the EJB Deployment Descriptor editor by selecting the TimeSheetGroup EJB module from the J2EE Hierarchy view and selecting the Open With >> Deployment Descriptor Editor context menu action. You will need to flip to the Access page to define the new Access Intent.

To add a new Access Intent, click on the Add button from the Access Intent for Entities 2.x section. Note the Access Intent for Entities 1.x just supports the old style of Access Intent that WebSphere supports for 1.1 entity beans. The 1.1 Enterprise Java Beans Access Intent support only allows you to specify which methods are used only for READ purposes. The 2.x Access Intent support has evolved to have access and isolation support. The add action opens the Access Intent wizard shown in Figure 25.8. From this wizard, first enter TimeSheetEntries intent for the Name of our new Access Intent. Next it is necessary to select one of the seven predefined WebSphere Access intent names. For more information on these predefined Access Intents see chapter 23. In order to define a read ahead hint, you must select one of the two optimistic Access intent names (i.e., wsOptimisticRead or wsOptimisticUpdate) since these are currently the only Access Intent types within WebSphere that supports read ahead hints. Note, WSAD V5.1 and WebSphere Application Server V5.0.2 will support read ahead hints for some pessimistic Access Intents as well. You can also enter an optional Description for this Access Intent. Finally, select the Read Ahead Hint option to indicate that you would like to define a read ahead hint within this new Access Intent.

[image: image8.png]
Figure 25.8 Access Intent wizard page 1

On the next page, you must select an Entity Bean from the EJB module for which this Access Intent will be defined (Figure 25.9). When the Read Ahead Hint option is selected from the first page, you can only select one container-managed entity on this page because a read ahead hint can only be defined for one container-managed entity at a time.

[image: image9.png]
Figure 25.9 Access Intent wizard page 2

On the third page of the wizard (Figure 25.10), you must select the method element that describes the methods from the selected container-managed entity from the previous page for which this Access Intent applies. Since the Read Ahead Hint option was selected from the first page, you will only see the possible method elements for the remote and local home interfaces. In reality, however, only the findByPrimaryKey(…) method supports read aheads. In the future, this restriction may be lifted. So, for now, select the findByPrimaryKey(…) method element from the list.

[image: image10.png]
Figure 25.10 Access Intent wizard page 3

The last page shown in Figure 25.11 is where the preload path used in the read ahead hint is actually defined. This path is a path built using the cmr-fields of the selected container-managed entity. This path can have both breadth and depth. This means that you can select multiple cmr-fields for the entity (breadth) and then you can also traverse into each cmr-field’s type (depth). For this example, we will only select the entities cmr-field so that all related TimeSheetEntryEJBs will also be loaded during the find. This creates the simple preload path: entries. We could have defined a more complex preload path. Figure 25.12 shows the related container-managed enities for the TimeSheetEJB. Notice that the relationship role directly owned by TimeSheetEJB (entries and submitter) would constitute the breadth of the path and any relationship roles off of related types would constitute the depth. In Figure 25.12, the breadths paths from TimeSheetEJB would include entries and submitter since these relationship roles are directly associated with the TimeSheetEJB itself. The project relationship role would indicate depth in the read ahead path since it is a relationship role from TimeSheetEntryEJB which is a related entity bean to the TimeSheetEJB entity bean. So, if we wanted to load all related objects shown in Figure 25.12 when a TimeSheetEJB is loaded, we would have to define the following preload path: entries.project submitter. Notice that depth is indicated with a period and breadth is indicated with a space. So this preload path will execute one SQL statement that would normally take four SQL statements.

[image: image11.png]
Figure 25.11 Access Intent wizard page 4

[image: image12.emf]EmployeeEJB

TimeSheetEJB

submitter

0..n

0..1

0..n

0..1

TimeSheetEntryEJB

10..n1

entries

0..n

ProjectEJB

0..1

0..n

project0..1

0..n

Figure 25.12 TimeSheetEJB related objects
You are probably now asking your self why don’t we just specify a read ahead hint for all related beans and as deep as we can go? The reason you would not want to do this is that the single SQL query statement, even though it is only one access to the database, can be extremely large and complex. Plus, if you do not use the related entities each time you do a find, you are preloading too much information and wasting time and space. So, there comes a point when the defined preload path is so large that you actually start to loose any optimization gains. There is no hard rule when this point is reached because it depends on the complexity of your EJB and database designs (i.e., EJB inheritance defined later in this chapter) and the number of cmp-fields for the entities in the preload path. The gains, however, can be substantial for well defined preload paths where you almost always use the preloaded entity instances.

Mapping Relationships

You have seen how to create relationships between two entity beans so now you are ready to map these relationships to a relational database. Remember back in Tables 25.1 – 25.3 where we showed how relationships are depicted between database tables? These tables indicated that a foreign key, which contains a reference to one or more of the table columns, is used to represent a relationship to another table. So, it would make sense that the relationship would map some way to the foreign key reference within the table. Let’s step through the mapping of our single valued relationship example above.

Begin by opening the EJB to RDB Mapping editor by double clicking on the wsbook: DB2UDBNT_V81_1 map under the Maps section for the TimeSheetGroup EJB module. A one-to-one relationship between EmployeeEJB and AddressEJB needs to be mapped to the EMPLOYEEEJB and ADDRESSEJB tables. First let’s take a look at our tables. The EMPLOYEEEJB table has one primary key column, EMPID and the ADDRESSEJB table also has one primary key column, ADDRESSKEY. There is a foreign key defined on the EMPLOYEEEJB table, C3233081, that contains the HOMEADDRESS_ADDRESSKEY column and its target table is the ADDRESSEJB table. Now, to map the relationship you will need to map the homeAddress relationship role to the C3233081 foreign key. This is done by selecting the homeAddress role from the Enterprise Beans list and dragging it to the C3233081 foreign key in the Tables list. You will now see that the homeAddress relationship role is mapped, see Figure 25.13, and you should also notice that the other relationship role, employee on the AddressEJB, is mapped as well. This is due to the fact that only the forward relationship role needs to be mapped within the relationship and the opposite role is done automatically.

[image: image13.png]
Figure 25.13 Mapped Relationship

A common mistake is to map foreign key columns to cmp-fields on the entity bean. The problem is that it is error prone since there could be multiple columns within a foreign key and if they were each mapped to a cmp-field then you would need to ensure that the values of these fields always mapped to a valid foreign key. This can be quite difficult depending on how complex your database model may be. Another problem with this solution is that you are forcing knowledge of your database design into your object model. For example, if a column was added to a foreign key, this means that another cmp-field would need to be added to the entity bean. The solution used in WSAD does not have this problem since you are mapping relationship roles to foreign keys. As a result, the object model will not need to change at all when you add or remove columns from the foreign key.

This simple example shows how to map a one-to-one relationship but what about a one-to-many relationship? The nice thing is that the mapping is identical in both cases because all that is required to map either a one-to-one or a one-to-many relationship is that the forward relationship role gets mapped to the foreign key. What about a many-to-many relationship? This is a bit different due to the way that a many-to-many relationship is defined in the database. Tables 25.4 – 25.6 depict a many-to-many relationship implementation within a database for students and courses. A student can take many courses and a course can have many students. From these tables you can see that student 111-11-1111 has three courses, PHY101, CALC101, and ENG101. Also, course CALC101 has two students, 111-11-1111 and 222-22-2222.
STUDENT Table
	SSN (PK)
	NAME
	AGE
	GPA

	111-11-1111
	Bob Smith
	19
	3.00

	222-22-2222
	Sue Wong
	20
	3.75

Table 25.4 -- STUDENT Table

COURSE Table
	COURSE_NUMBER (PK)
	NAME
	DESCRIPTION

	PHY101
	Physics 101
	

	CALC101
	Calculus 101
	

	ENG101
	English 101
	

	MHIST202
	Modern History 202
	

Table 25.5 -- COURSE Table

STUDENTS_COURSES Table
	COURSES_NUMBER (PK)
	STUDENTS_SSN (PK)

	PHY101
	111-11-1111

	CALC101
	111-11-1111

	ENG101
	111-11-1111

	MHIST202
	222-22-2222

	CALC101
	222-22-2222

	PHY101
	222-22-2222

Foreign Key Constraints

	Name
	

Columns
	Owned Table

	COURSE_FK
	COURSES_NUMBER
	COURSE

	STUDENT_FK
	STUDENTS_SSN
	STUDENT

Table 25.6 – STUDENTS_COURSES Intermediate Table

A many-to-many relationship between database tables is accomplished by creating two relationships to a third intermediate, or correlation table. This intermediate table, STUDENTS_COURSES, is typically small, only consisting of primary key columns for both tables. The intermediate table contains two foreign key references to each table involved in the relationship and all of the columns are part of the primary key for the intermediate table. If this intermediate table has other columns that are not part of the primary key, you don’t have a true many-to-many relationship. Instead, the intermediate table is actually another domain object and you have two one-to-many relationships to this intermediate object. So, if there are non key columns on your intermediate table, you should model this table as a domain object.
Let’s take a very simple example where we have a many-to-many relationship between Student and Course and we have the same database structure as in Tables 25.4 – 25.6. Figure 25.14 shows the structure in the EJB to RDB Mapping editor (the primary key columns have already been mapped to the key cmp-fields). The same rules will apply in this case for mapping the relationship roles. We must map the forward relationship role in the relationship. For many-to-many relationships, both roles will be forward from the point of view of the intermediate table. So, both relationship roles will need to be mapped to the appropriate foreign key on the intermediate table. Figure 25.14 displays red arrows which indicate the foreign key that each relationship role in the relationship needs to be mapped. Drag the courses relationship role to the COURSE_FK foreign key and drag the students relationship role to the STUDENT_FK foreign key. It is hard to get this wrong since the mapping editor will not allow you to map the relationship role to the wrong foreign key.

[image: image14.png]
Figure 25.14 Mapping a Many-to-Many Relationship

Now is a good time to take a moment to explain how the other mapping strategies, “top-down” and “bottom-up”, handle relationships. The “top-down” mapping strategy will automatically create the appropriate foreign key columns and foreign key that is necessary to map both one-to-one and one-to-many relationships. It will then use these foreign keys when creating the maps with the relationship roles. For many-to-many relationships, the “top-down” mapping strategy will automatically create the intermediate table and map the foreign keys within this table to the relationship roles defined in the relationship. The “bottom-up” mapping strategy will always create a one-to-many relationship for every foreign key defined within the database. Since every relationship in the database is defined exactly the same way, it is impossible to determine the true multiplicity of any relationship by examining only the database schema. The multiplicity is determined by its use within the application.

Weak vs Strong Entities
We have already shown that two container-managed entities can be related to one another using a relationship. We have also indicated that relationship roles are mapped within the EJB to RDB Mapping editor to foreign keys defined on a database table. We stressed that it is not a good choice to map the individual foreign key columns to cmp-fields since this can cause referential integrity issues and the fields are redundant with the defined relationship roles. An issue we have yet to address, however, is that the situation becomes much more complex when the foreign key columns are also members of the primary key.
The issue is one of weak entity types. This is when you include as a foreign key the primary key attributes of the defining relation and then compose a primary key from the foreign key plus partial attributes of the weak entity relationship. On the other side of this problem is the strong entity (i.e., Owner or Parent entity) which is an entity that exists on its own, independent of other entities. The weak entity (i.e., Dependent or Child entity), on the other hand, has an existence which depends on another entity. This situation is most common with one to many relationships where the cardinality is a reguired one for the weak entity. In this situation, the primary key of the owner entity is used as part of the primary key of the dependent child entity.
For instance, consider the common concept of an order comprised of a set of order line items. You would not want to have an OrderLineItem exist outside an Order. In that case, Order is a strong entity, but OrderLineItem is a weak entity. You would probably never construct a query for a set of OrderLineItems except in those cases where you were searching for line items belonging to a particular order, so it makes sense to include the primary key of the Order in the primary key of the OrderLineItem. Weak entities are typically the best choices for using the cascade delete option for the relationship role (Figure 25.6). In this situation, you want the weak entity instances to be deleted when the entity that it depends on is removed.
WSAD supports the concept of strong and weak entities and this can be seen best by walking throug an example. In the AdvancedMappingEJB EJB project we defined two container-managed entities Employee and Address. These beans are similar to the ones defined in the case study, but they are less complex to keep this example simple so that you can easily see what is generated by the WSAD tools. For this example a bidirectional one-to-one relationship between Employee and Address where the Address source EJB holds the Foreign key option has been defined. The Employee entity has a ssn cmp-field in the key and the Address entity has an id key field defined. So both entities are strong entities since they can exist on their own. The “top-down” mapping option is used to generate the tables and maps associated with this example (shown in Figure 25.15).

[image: image15.png]
Figure 25.15 Employee to Address mapping

Now, our DBA has decided that the ADDRESS table should have its ID column removed and the EMPLOYEE_SSN column should be added to the primary key. In other words, he decided that Address is a weak Entity, and that Employee is a strong Entity. This removes some unneeded columns, eliminates the need to generate a unique primary key value for each Address, and makes it clearer which address corresponds to which Employee. Figure 25.16 shows the structure of the ADDRESS table after the modification.

[image: image16.png]
Figure 25.16 Modified ADDRESS table

Now we need to modify the Address entity bean to remove the id cmp-field since it is no longer needed. Also we need to define key cmp-fields for our Address entity. You could simply define an employee_ssn cmp-field, which would map to the foreign key column EMPLOYEE_SSN, on the Address entity and set it as a key field. This would work to make Address a weak entity but it would create redundant information because the employee cmr-field maps to the foreign key which has the EMPLOYEE_SSN column as its member, and this new employee_ssn cmp-field would also be mapped to the EMPLOYEE_SSN column. So, both persistent fields would be mapped to the same column. This is a simple example but you can imagine how complex this situation would be if the foreign key had multiple member columns. Also, each time you add a column to the foreign key, you would be required to add a new cmp-field to the entity and map it to the new column.
Instead, there is a better solution to this problem for container-managed entity beans. In WSAD you can add the weak entity’s relationship role to the strong entity to its just like you can add cmp-fields. In this example, instead of creating an employee_ssn cmp-field and mapping it to the foreign key EMPLOYEE_SSN column, you should simply add the employee relationship role to the key of the Address entity. Doing so basically means that Address container-managed entity requires an Employee instance for its identity which is the definition of a weak entity. Also, this in turn indicates that the foreign key columns that are used to map to the employee relationship role should belong to the primary key of the ADDRESS table. This eliviates you from having to model and map the foreign key columns as cmp-fields.

Using relationship roles (i.e., cmr-fields) in the key of a container-managed entity also means that no additional mapping changes are necessary. This can be accomplished anywhere that a relationship is displayed within the J2EE perspective or the EJB Deployment Descriptor editor. For example, you can expand the Address entity in the Outline of the EJB Deployment Descriptor editor for the AdvancedMappingEJB module, select the employee relationship role, and select the Add to Key context menu action (Figure 25.17). Note, this action is only enabled if the opposite relationship role in the relationship has a multiplicity of One and the selected relationship role has the Foreign key option selected because a weak entity must map to a table with the foreign key columnn and its UML multiplicity must be one (i.e., the other relationship role in the EJB 2.0 specification must be One). This means that the Add to Key action is only available for a relationship role that returns a single valued object and the table that the source container-managed entity maps to contains the foreign key constraint.
[image: image17.png]
Figure 25.17 Add to Key action

After selecting this action, you will notice a key icon now appears on the relationship role. This change also updates the home, bean, and key classes as well as the deployment descriptor for the Address entity.

Now is a good time to take a small side track to describe some issues with the EJB 2.0 specification. Since the specification is not very clear on the use of cmr-fields on the key class, it is agreed that only cmp-fields can exist on the key class. So what does that mean when you add a relationship role to the key of an entity bean? This means that cmp-fields are derived from the relationship role (employee) and the key fields of the role’s source entity (i.e., ssn). This is necessary to support the fact that the specification does not spell out that cmr-fields can appear in the key class of the entity. This helps to explain the change in the deployment descriptor of the Address entity to include the following cmp-field.

<cmp-field>
 <description>Generated to support relationships. Do NOT delete.</description>
 <field-name>employee_ssn</field-name>
</cmp-field>
This will now help to explain the structure of the AddressKey class shown below
.

/**
 * Key class for Entity Bean: Address
 */
public class AddressKey implements java.io.Serializable {

static final long serialVersionUID = 3206093459760846163L;

/**

 * Implementation field for persistent attribute: employee_ssn

 */

public java.lang.String employee_ssn;

/**

 * Creates a key for Entity Bean: Address

 */

public AddressKey(advanced.mapping.example.EmployeeKey argEmployee) {

privateSetEmployeeKey(argEmployee);

}

/**

 * This method was generated for supporting the relationship role named employee.

 * It will be deleted/edited when the relationship is deleted/edited.

 */

public advanced.mapping.example.EmployeeKey getEmployeeKey() {

advanced.mapping.example.EmployeeKey temp =

new advanced.mapping.example.EmployeeKey();

boolean employee_NULLTEST = true;

employee_NULLTEST &= (employee_ssn == null);

temp.ssn = employee_ssn;

if (employee_NULLTEST)

temp = null;

return temp;

}

/**

 * This method was generated for supporting the relationship role named employee.

 * It will be deleted/edited when the relationship is deleted/edited.

 */

public void privateSetEmployeeKey(

advanced.mapping.example.EmployeeKey inKey) {

boolean employee_NULLTEST = (inKey == null);

employee_ssn = (employee_NULLTEST) ? null : inKey.ssn;

}

}
Notice that the constructor takes another EmployeeKey as an argument. This is true since the Address entity’s key shape is described by its owner key (i.e., Employee). There is one field in the AddressKey class for each field within the EmployeeKey class. Each corresponds to a cmp-field that was added to the deployment descriptor to support relationships (i.e., employee_ssn). Next, let’s examine the create methods that is added to the AddressLocalHome class.

public advanced.mapping.example.AddressLocal create(

advanced.mapping.example.EmployeeLocal argEmployee)

throws javax.ejb.CreateException;
public advanced.mapping.example.AddressLocal create(

java.lang.String employee_ssn)

throws javax.ejb.CreateException;
The first create method above should be the most widely used method for creating a new Address entity. This method takes one argument which is the local interface of the Employee entity (i.e., its parent entity). This method is generated since it was indicated that the employee relationship role is to be part of the key for the Address entity so an Address instance must have a reference to an Employee bean to be created. Notice that a second create method was generated which has the derived fields for the employee relationship role (namely employee_ssn). The second create method is generated for those that are reluctant to use the parent entity instance to create the weak entity and would rather pass all of the required field values.
Now we are ready to examine the changes to the AddressBean class to support the employee relationship role in the key. The following methods were either added or updated after adding the employee relationship role to the key.

/**
 * Get accessor for persistent attribute: employee_ssn
 */
public abstract java.lang.String getEmployee_ssn();
/**
 * Set accessor for persistent attribute: employee_ssn
 */
public abstract void setEmployee_ssn(java.lang.String newEmployee_ssn);
These two methods were generated to support the new cmp-field employee_ssn that was added to support the employee relationship role being added to the key of the entity. This is required by the EJB 2.0 specification for all cmp-fields; however, these two methods are not exposed on the local interface since we do not want clients to have access to them. The clients should use the getEmployee() and setEmployee(EmployeeLocal) methods instead.

public advanced.mapping.example.AddressKey ejbCreate(

advanced.mapping.example.EmployeeLocal argEmployee)

throws javax.ejb.CreateException {

advanced.mapping.example.EmployeeKey argEmployeePK =

(advanced.mapping.example.EmployeeKey) argEmployee.getPrimaryKey();

setEmployee_ssn(argEmployeePK.ssn);

return null;
}
/**
 * ejbPostCreate
 */
public void ejbPostCreate(

advanced.mapping.example.EmployeeLocal argEmployee)

throws javax.ejb.CreateException {

setEmployee(argEmployee);
}
These two methods above have to be created to support the first create method form the home interface shown above. These methods obviously have to accept the EmployeeLocal interface since it appears in the create method on the home interface. There are a couple aspects from the EJB 2.0 specification which must be explained. First, the specification indicates that the key shape for the entity bean should be fully defined within the ejbCreate method. Second, it mentions that cmr-fields can only be set within an ejbPostCreate method. So, in this ejbCreate method, it is ensured that the key shape is fully defined by extracting the ssn field from the EmployeeKey which is obtained from the EmployeeLocal instance passed as an argument. This value is set using the setter method for the new cmp-field shown above. Note that if there were multiple fields in the EmployeeKey class, the signature of this method would not change but the implementation would now have to set multiple fields that it obtained from the key class. You will notice in the ejbPostCreate method that the employee reference is finally set as described by the specification.

/**
 * ejbCreate
 */
public advanced.mapping.example.AddressKey ejbCreate(

java.lang.String employee_ssn)

throws javax.ejb.CreateException {

setEmployee_ssn(employee_ssn);

return null;
}
/**
 * ejbPostCreate
 */
public void ejbPostCreate(java.lang.String employee_ssn)

throws javax.ejb.CreateException {
}
The methods above are generated in support of the second create method on the local home interface but it is also generated to support remote client interface. This is necessary if the weak entity has a remote client interface because the first ejbCreate cannot be promoted to a remote home interface because there is a reference to a local client interface. This ejbCreate method will set the private cmp-field values that are necessary for the key shape of the Address entity. The problem with this method is that is will change as the key shape of the Employee entity changes.

Hopefully this section has provided some insight as to why you would want to add relationship roles to the key of an entity as opposed to mapping individual cmp-fields directly to the columns within the primary key and foreign key. The main benefits are that it makes the object dependency more apparent between the entities, it eliminates referential integrity issues, and it simplifies the code since you do not have to be aware of the shape of the underlying fields that support the relationship role when using the local client view.

EJB Inheritance in WSAD

So far, you have seen a lengthy discussion about one of the two types of relationship (association) defined in UML, and how associations between Enterprise Java Beans can be implemented in WDAD. The second type of relationship is the generalization relationship. There are two types of generalizations that we can discuss – the inheritance relationship, which corresponds to the notion of implementation inheritance (“extends” in Java) and the realization relationship, which corresponds to the notion of interface inheritance (“implements” in Java). We will need to keep these two notions clear as we navigate the sea of what generalization means to Enterprise Java Beans.

The EJB specification is a little vague on the subject of inheritance. There are only two clear indications in the EJB specification about what inheritance means in the context of EJBs:

First, the EJB 2.0 specification states “The remote interface is allowed to have super interfaces. Use of interface inheritance is subject to the RMI-IIOP rules for the definition of remote interfaces.”
 It also states “The remote home interface is allowed to have super interfaces. Use of interface inheritance is subject to the RMI-IIOP rules for the definition of remote interfaces”.
 The specification only indicates requirements of the remote interfaces, it does not state any inheritance requirements for the local interface or the local home interface.

There are only two other places in the 2.0 specification that refer to inheritance. In both the Session Bean and Entity Bean scenarios, all three of home and remote interfaces and bean implementations are shown in a “generalization” relationship to other respective interfaces and implementations. However the spec is vague on how this can be accomplished. For instance, in the Entity Bean scenario on page 292, it states “…tools can use inheritance, delegation, and code generation to achieve mix-in of the two classes [participating in the generalization relationship]”.

The EJB 2.0 Specification clarifies this situation in its FAQ. It specifically states that Component Inheritance (i.e., how an entire Enterprise Java Bean descends from another Enterprise Java Bean) is beyond the scope of the specification due to the complexities involved in component inheritance. However, it goes on to discuss how developers can take advantage of the Java language support for inheritance as follows:
“Interface inheritance. It is possible to use the Java language interface inheritance mechanism for inheritance of the home and remote interfaces. A component may derive its home and remote interfaces from some “parent” home and remote interfaces; the component then can be used anywhere where a component with the parent interfaces is expected. This is a Java language feature, and its use is transparent to the EJB Container.
Implementation class inheritance. It is possible to take advantage of the Java class implementation inheritance mechanism for the enterprise bean class. For example, the class CheckingAccountBean class can extend the AccountBean class to inherit the implementation of the business methods.”

So the specification seems to give quite a bit of latitude to tools and container implementers when it comes to how to implement “component inheritance” between Enterprise Java Beans. It is good to keep this in mind when we look at the implementation of EJB inheritance in WebSphere Application Server, Advanced Edition, Version 5.0 and WebSphere Studio Application Developer, Version 5.0. The development teams of these products have sought to create a sensible, consistent implementation of both “interface inheritance” and “implementation class inheritance”, while still staying within the context of the specification. They have taken upon themselves to defining some aspects of “component inheritance”. This has proven to be challenging, but as we will see, it has been possible.

Interface inheritance for Sessions and Entities

Perhaps the easiest inheritance feature to understand is the direct support for inheritance of methods defined in local interfaces. For instance, consider the following scenario: What if in our Timekeeping example system we need to add some additional subclasses of our EmployeeEJB as shown in the following UML diagram (Figure 25.18):

[image: image18.png]
Figure 25.18 Interface Inheritance between EJB Local Interfaces

Our goal here is to have two subclasses of EmployeeEJB – SalariedEmployee and HourlyEmployee, with each type of Employee being paid differently. The first task is to define how the local interfaces (which specify the externally available methods of the entity) are related. This turns out to be just as simple as you might think, as the following two code snippets show (from now on, we’ll only deal with one of the subclasses for the sake of space):

public interface EmployeeEJB extends javax.ejb.EJBLocalObject {

…

}

public interface SalariedEmployee extends EmployeeEJB {

…

}

In WSAD and WebSphere, any local interface can inherit from any other local interface, so long as the entire tree is rooted in javax.ejb.EJBLocalObject. The part that is more interesting than inheriting Local Interfaces (which, as we saw, were clearly defined in the specification) is in the inheritance of Bean implementations that realize those interfaces.

The following diagram (Figure 25.19) shows how inheritance is used in WebSphere and WSAD. While the example is that of an Entity EJB, the principles discussed apply just as well to Session beans. This figure is showing inheritance of just the local interfaces but the same is also true for the remote interfaces.
[image: image19.png]
Figure 25.19 EJB Inheritance

As you can see, there is a parallel hierarchy of EJB implementation classes to match that of the local interfaces. The following two code snippets show how this is done:

public class EmployeeEJBBean implements EntityBean {

…

}

public class SalariedEmployeeBean extends EmployeeEJBBean {

…

}

The implementation of the subclass entity bean within WSAD will contain only the methods to support the cmp-fields defined for the bean plus the bean life cycle methods (e.g., ejbRemove(), ejbStore(), etc.). It will not contain any ejbCreate(…) or ejbPostCreate(…) methods since these methods are defined in one of the superclasses.

There are a few rules that govern EJB inheritance in both WSAD and WebSphere. First, Entity Bean implementations cannot inherit from Session Bean implementations and vice versa. Second, with Session Bean implementations, you cannot mix and match stateless and stateful session beans – the type of the parent must match the type of all of its descendants. Third, the child entity bean must have the same client views as the parent entity bean. This means that you cannot have a child entity with both a remote and local client view that extends another entity bean with only a local client view.

Building Inherited Beans in WSAD

Now that we’ve seen what inheritance of local interfaces and bean implementations look like in Enterprise Java Beans, we can understand the support that WSAD provides developers in building Enterprise Java Beans with these relationships. To create an entity bean that inherits from another entity bean, you need to first open the EJB Creation wizard by selecting the EJB module from the J2EE Hierarchy view and then select New >> Enterprise Bean from the context menu. This first page is pre-filled with the selected EJB project (i.e., TimeSheetGroup). The second page is shown below in Figure 25.20.

[image: image20.png]
Figure 25.20 Definition of SalariedEmployee CMP Bean

The third page, Figure 25.21, is where you define the client view, the bean class name, cmp-fields, and the Bean supertype. Notice that the Key class defaults to that of the selected Bean supertype and it cannot be changed. This is due to the fact that all beans within the inheritance structure must share the same key class definition. Also, on the last page of the wizard you can define the Bean superclass. This entry field is also pre-selected to the bean class of the selected Bean supertype and you cannot change this value.

[image: image21.png]
Figure 25.21 Defining the bean supertype

After selecting Finish, the following entry is added to the deployment descriptor.

<entity id="SalariedEmployee">

 <ejb-name>SalariedEmployee</ejb-name>

 <local-home>com.wsbook.casestudy.ejb.SalariedEmployeeLocalHome</local-home>

 <local>com.wsbook.casestudy.ejb.SalariedEmployeeLocal</local>

 <ejb-class>com.wsbook.casestudy.ejb.SalariedEmployeeBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.String</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>SalariedEmployee</abstract-schema-name>

 <cmp-field>

 <field-name>empId</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>office</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>yearlySalary</field-name>

 </cmp-field>

 <primkey-field>empId</primkey-field>

 <ejb-local-ref id="EJBLocalRef_1047267616925">

 <ejb-ref-name>ejb/AddressEJB</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.wsbook.casestudy.ejb.AddressEJBHome</local-home>

 <local>com.wsbook.casestudy.ejb.AddressEJB</local>

 <ejb-link>AddressEJB</ejb-link>

 </ejb-local-ref>

 <ejb-local-ref id="EJBLocalRef_1047267616935">

 <ejb-ref-name>ejb/TimeSheetEJB</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

 <local-home>com.wsbook.casestudy.ejb.TimeSheetEJBHome</local-home>

 <local>com.wsbook.casestudy.ejb.TimeSheetEJB</local>

 <ejb-link>TimeSheetEJB</ejb-link>

 </ejb-local-ref>

</entity>

Notice there is more in this entry than you defined in the wizard. All of the entries in bold face have been copied from the bean supertype. This is done to satisfy the specification plus it allows for the deployment descriptor to remain portable.

After an Enterprise Java Bean is created, you can change its EJB inheritance structure at anytime. You can do this by using the EJB Deployment Descriptor editor. On the Overview page of the editor, there is an Inheritance section which is a part of the larger WebSphere Extensions section since this is not supported by the EJB specification. To change the EJB inheritance, select the desired EJB from the list and click on the Edit button. This will open an Edit Inheritance Hierarchy wizard that will allow you to select the Inherits from supertype option which allows you to select another valid Enterprise Java Bean from the module to inherit or you can select the Does not inherit (make root) option that will remove the selected EJB from the current inheritance structure. If you select the second option, you will need to define a new key class for container-managed entities. This wizard will not only change the inheritance of your Enterprise Java Bean but it will also refactor the Java classes so that the proper Java inheritance is in place after the edit. Also, the proper key class and create methods will be propagated appropriately.

Inheritance of Home Interfaces

At this point, inheritance of home interfaces cannot be supported while maintaining compliance with the EJB specification. As the EJB 2.0 FAQ suggests, this is mostly due to the required method signatures for “find by primary key” methods. Each home interface must include a method findByPrimaryKey(Key inKey) which returns an instance of its EJB class. If a parent class and subclass tried to define these methods, a signature conflict would be created in the subclass. For example:

public interface EmployeeEJBHome extends javax.ejb.EJBLocalHome {

EmployeeEJB findByPrimaryKey(String primaryKey)…;

}

public interface SalariedEmployeeHome extends EmployeeEJBHome {

SalariedEmployee findByPrimaryKey(String primaryKey);

}

Method SalariedEmployeeHome.findByPrimaryKey cannot override the superclass method based on return type only since this would result in ambiguous method invocations in Java. Even though the home interfaces and implementations do not have a formal inheritance relationship, they do participate in the implementation of the inheritance of their EJB classes. When a user defines a generalization relationship, the expectation is that the members of that relationship may be instances of the root class or any of its subclasses. In order to satisfy this requirement, the finders on homes in inheritance hierarchies will answer a mixed collection containing instances of the root EJB class and its subclasses.

Database Inheritance Strategies

Now that we’ve investigated what it means for an Enterprise Java Bean to inherit from another Enterprise Java Bean, we have to address a second question that arises in the context of an Entity EJB: How are generalization relationships preserved in the database that makes up the bean’s persistent store?

There are two different schemes by which inheritance can be represented in a relational database. These schemes and their relative advantages and disadvantages have been described at length in [Fowler], and Chapter 14. The two schemes are:

I. Single-table inheritance – by which all the attributes of all of the classes in a hierarchy are stored in a single table, with special SQL “select” statements taking out only those attributes that are appropriate for any particular class.

II. Root-leaf inheritance – in which each class in a hierarchy corresponds to a table that contains only those attributes actually defined in that class, plus the key columns that are shared by all members of the hierarchy. An n-way SQL join is required to assemble any particular instance of a class from its corresponding table and all the tables above it in the inheritance hierarchy.

Briefly, the major advantage of the first scheme is speed, while its major disadvantage is the size of the table (i.e., the number of null columns). The major advantage of the second scheme is its close correspondence to the object model, while its major disadvantage is the time it takes to do the necessary joins.

Mapping an EJB Inheritance Structure

Both of the inheritance schemes mentioned above are supported in WSAD for container-managed entities to one degree or another. Which scheme a programmer may choose depends on balancing the benefits and liabilities of each in the context of how there application actually uses the data.

In chapter 24, the EJB to RDB Mapping wizard was first introduced to produce a “top-down” mapping. The Top Down Mapping Options wizard page in Figure 24.5 indicates that there are advanced options if there is an inheritance structure but in Chapter 24 the example did not use inheritance. The Next button on this wizard page is only enabled if EJB inheritance is used among the container-managed entities. The last page, shown in Figure 25.22, will display each inheritance structure within the EJB module. By default, a single-table inheritance strategy is employed when doing a “top-down” mapping. You can override the default to root-leaf inheritance by selecting container-managed entities on this page. Each container-managed entity that is selected will have its own table generated for it, and a foreign key pointer will be added that joins to the parent table (i.e., the table that is mapped to the root container-managed entity in the inheritance). Notice that you can mix both root-leaf inheritance and single-table inheritance strategies using this page. This is done by selecting some of the entities and not others. This may be a desired outcome if you have some of the entities with very few cmp-fields so it is more efficient to have those entities mapped with a single table inheritance strategy while other entities have many cmp-fields and would require their own table.

[image: image22.png]
Figure 25.22 Advanced top down mapping options

. In a “bottom-up” mapping approach in which container-managed entities are generated from the columns and tables available in a database schema, inheritance cannot be reliably inferred from a database schema, so no inheritance mapping is applied by default. This is why you get one container-managed entity created for each database table that is defined. However, in the “meet-in-the-middle” mapping approach, where schema and EJB design are developed independently and then mapped into each other, both inheritance schemes are supported.

To map a child entity to one or more database tables, you would use the same mapping tools to create a mapping from the EJB to the database table. For example, if we use our SalariedEmployee example, we could create a mapping from the SalariedEmployee entity to the EMPLOYEEEJB table. Before we explain any further we need to take a look at how the EMPLOYEEEJB table is defined. It will contain a new discriminator column which is used to store a String value that will be inserted as a value in the database row that is unique for each entity in the inheritance structure. This is used when reading a row from the database so the correct type of entity is instantiated. Figure 25.23 shows the properties for the mapping of the EmployeeEJB to the EMPLOYEEEJB table. Notice that you must select a Discriminator Column and a Discriminator Value. Only the root entity will have the Discriminator Column but all mappings to each entity in the inheritance will require a Discriminator Value which automatically defaults to the name of the entity. The discriminator column is used to uniquely distinguish each subtype in the database.

[image: image23.png]
Figure 25.23 Properties for root entity mapping

When you add the mapping from SalariedEmployee to EMPLOYEEEJB, a single-table inheritance mapping strategy is setup. This requires a Discriminator Value to be defined for this mapping (Figure 25.24).

[image: image24.png]
Figure 25.24 Properties for a single-table inheritance mapping

Now, if you want to use a root-leaf inheritance strategy, you would need to map the SalariedEmployee to another table (e.g., SALARIEDEMPLOYEE table). Now you can map the cmp-fields from SalariedEmployee to columns on the SALARIEDEMPLOYEE table. The properties for this mapping are slightly different than that for a single-table inheritance strategy. Figure 25.25 shows the properties for a root-leaf inheritance mapping. The difference is that this mapping requires a Join Key to be defined. This is a foreign key on the SALARIEDEMPLOYEE table that joins it to the EMPLOYEEEJB table.

[image: image25.png]
Figure 25.25 Properties for a root-leaf inheritance mapping

Wrapping Up EJB Inheritance

We don’t have a good reason to employ EJB Inheritance in the TimeSheet management application. Most cases for EJB Inheritance stem from having inheritance in the Object model and wanting this directly reflected in your EJB implementation, particularly where there is benefit to the root Home interface finder methods returning heterogeneous collection of Enterprise Java Beans. The other big benefit of object inheritance in general, decoupling between client type dependence and runtime type implementation, is supplied with all Enterprise Java Beans through the two local interfaces.

Advanced EJB QL

In the previous chapter you were first introduced to EJB QL query definitions for a container-managed entity. You learned how to define both find and ejbSelect queries as well as how to generate the methods necessary to support these queries. At that time you were introduced to the EJB QL finder wizard (Figure 24.24). Now, after learning how to create relationships between container-managed entities, we are ready to explore more complex EJB QL queries. This section will concentrate on specific EJB QL statements and not necessarily the tools to create the queries or the query definitions within the deployment descriptor. We will start with more detailed information for each of the main clauses of the EJB QL query statement, SELECT clause, FROM clause, and WHERE clause. At the end of this section are a number of example find and ejbSelect query statements that could be created for the case study. You may want to refer to these examples while reading through the rest of this section to see more complex statements that can be built with EJB QL.
Before we begin talking about these clause sections of the EJB QL statement, we must first explore identifiers which span all three clauses. An EJB QL identifier must follow the same rules as Java identifiers. A start identifier will be a character for which Character.isJavaIdentifierStart returns true (e.g., ‘_’ and ‘$’) and a part character is a character for which Character.isJavaIdentifierPart returns true. Note the question mark (?) is a reserved character and cannot be used as an identifier. Below is a list of reserved identifiers in EJB QL.

SELECT, FROM, WHERE, DISTINCT, OBJECT, NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, AS, UNKNOWN
, EMPTY, MEMBER,OF and IS

The FROM Clause

We will start by explaining the FROM clause since it is where identification variables are defined and used within the other two clauses. Shown below is the syntax of the FROM clause as defined by the EJB 2.0 specification:

from_clause ::=FROM identification_variable_declaration [, identification_variable_declaration]* identification_variable_declaration ::= collection_member_declaration | range_variable_declaration collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identifier range_variable_declaration :: abstract_schema_name [AS] identifier

We will start by explaining the FROM clause since it is where identification variables are defined and used within the other two clauses. An identification variable is used to designate instances of a specific abstract schema type of an entity bean. There may be multiple identification variables within the FROM clause separated by a comma. Identification variables cannot be a reserved identifier or the abstract schema name or the bean name. Let’s look at an example of an EJB QL that could be defined for our case study.

SELECT OBJECT(o)

FROM TimeSheetEJB o, IN(o.entries) e

In this example the identification variable e will evaluate to a TimeSheetEntryEJB that is directly reachable from TimeSheetEJB. The cmr-field entries represents a collection of the abstract schema type TimeSheetEntryEJB and the variable e refers to one of the items in the collection. Note that clauses are evaluated form left to right. This is why the second variable declaration, e, in this FROM clause can utilize the first variable, o.

From this example you can see that an identification variable can refer to a single abstract schema type instance (a range variable) or one element from a collection of abstract schema type instances (a collection member identification variable). That is, an identification variable always refers to a single value.

In the example above, o is a range variable and it could optionally be defined with the AS operator (i.e., TimeSheetEJB AS o). Range variables are convenient for designating a reference point for objects which may not be reachable by navigation.

The e variable in the example is a collection member identification variable. A collection member identification variable is always declared using the reserved identifier IN within a functional expression and it takes a collection values path expression as a parameter. A path expression is a representation of the navigation of cmr-fields within the entity’s abstract schema type. A path expression is defined as an identification variable followed by the navigation operator (.) and a cmp-field or cmr-field. Path expressions can be further composed of another expression if it ends with a single-valued cmr-field. A path expression that ends with a cmp-field or a multi-valued cmr-field cannot be further composed.

For Example, if range variable t designates a TimeSheetEJB, the following paths are valid: t.state, t.entries, t.submitter.name. The following would be an invalid path expression: t.entries.date. This is an invalid path because the entries cmr-field resolves to a collection. Collection member identification variables must be used to reference a particular member of the collection. We could fix the invalid expression by declaring the variable e in the FROM clause as IN(t.entries) e and then the expression could be correctly written as e.date.

The SELECT Clause

The SELECT clause is used to designate the query result. For a finder query, the clause can only contain a single range variable or a single valued path expression that is typed to the abstract schema type of the container-managed entity bean for which it is defined. For select queries, the SELECT clause can contain the same values as a finder query except that the single valued path expression can evaluate to any arbitrary type. These arbitrary types can be the entity beans abstract schema type or the abstract schema types of other entity beans or values of cmp-fields.

Below is the syntax of the SELECT clause as defined by the EJB 2.0 specification:

select_clause ::=

SELECT [DISTINCT] { single_valued_path_expression |OBJECT (identification_variable)}

The select clause has a number of rules. First, the OBJECT identifier must be used to select values of identification variables defined within the FROM clause. Also, any path expression used within the SELECT clause must be a single valued path expression and not a many valued expression. Finally, the DISTINCT key word is used to remove duplicates from the query result when the return type is a java.util.Collection. The DISTINCT key word is not required if the return type is java.util.Set.
Let’s take a look at some simple examples from the case study. A very common query would be one that returned all available instances of a given entity (i.e., findAll query). The following statement will return a collection of EmployeeEJB instances.

SELECT OBJECT(o) FROM EmployeeEJB o

The following statement will return a collection EmployeeEJB instances which are the submitters from the EmployeeEJB’s timesheets.

SELECT t.submitter FROM EmployeeEJB AS e, IN(e.timesheets) t

The following statement is invalid because the SELECT clause must use only single-valued expressions if expressions are used at all.

SELECT t.entries FROM EmployeeEJB AS e, IN(e.timesheets) t

The WHERE Clause

The WHERE clause provides the ability to restrict the result of the query. This is done by using a conditional expression as shown in the syntax below.

where_clause ::=WHERE conditional_expression

The WHERE clause may use any identification variable defined within the FROM clause. The conditional expression may also contain Java literals such as strings, numbers, and Boolean literals. String literals are represented by single quotes and the use of a single quote in the literal is escaped by using two single quotes. The Boolean literals are TRUE and FALSE.

Example:

WHERE o.name = ‘Bob’

WHERE o.isActive = TRUE

Path expressions are another construct that is valid with the WHERE clause. There is, however, one exception. The exception to this rule is the empty_collection_comparison_expression or the collection_member_expression. We will talk about these expressions in just a moment. Note that the path expression will be unknown if it is composed by using an identification variable that designates an unknown value.

These constructs are important features of the WHERE clause but probably the most important method to restrict the query result would be the use of input parameters within the conditional expression. Input parameters are designated with a question mark (?) and a number starting from 1 (e.g., ?1, ?2, ?3). The number of distinct input parameters cannot exceed the number of parameters specified in the query method signature. However, the query itself does not need to make use of all the parameters from the method. The type of the input parameter will evaluate to the corresponding parameter from the query method.

In the example below, the ?1 variable will have a String type as it corresponds to the aName parameter.

public EmployeeEJB findByName(String aName);

SELECT OBJECT(o) FROM EmployeeEJB o WHERE o.name = ?1

We have already shown that the WHERE clause is made up of a conditional expression but it can also be made of multiple conditional expressions that are composed of one another. For example you can use two conditional expressions where both must evaluate to True by using the AND identifier to join both expressions. You could also use two conditional expressions where only one evaluates to True by using the OR identifier to join the expressions. Any evaluation of a given conditional expression or composition of expressions can be negated with the NOT identifier preceding the expression. The ordering of the expressions within the WHERE clause can be controlled by using parenthesizes () to group expressions.

Below is a list of operators that may be used within a conditional expression in order of decreasing precedence as given in the EJB 2.0 specification.

· Navigation operator (.)

· Arithmetic operators:
+, - unary
*, / multiplication and division
+, - addition and subtraction

· Comparison operators: =, >, >=, <, <=, <> (not equal)

· Logical operators: NOT, AND, OR

The following table provides additional operators that are used within specific expressions in the WHERE clause.

	Type
	Syntax
	Description

	BETWEEN
	arithmetic_expression [NOT] BETWEEN arithmetic-expr AND arithmetic-expr

	A shortcut instead of using >= and <= tests.

	IN
	single_valued_path_expression [NOT] IN (string-literal [, string-literal]*)

	A shortcut for testing of containment or non-containment within a group of Strings instead of using multiple OR statements.

	LIKE
	single_valued_path_expression [NOT] LIKE pattern-value [ESCAPE escape-character]

	The path expression must evaluate to a String. The pattern-value can use an underscore (_) for single characters and a percent (%) for a sequence of characters. ESCAPE defines the escape character to be used when you want to escape the meaning of the underscore and percent in the pattern.

	NULL
	single_valued_path_expressionIS [NOT] NULL

	Test for a NULL value within a single valued path expression.

	EMPTY
	collection_valued_path_expression IS [NOT] EMPTY

	Test for no elements or some elements from a collection returned in a collection valued path expression.

	MEMBER
	{single_valued_navigation | identification_variable | input_parameter }

[NOT] MEMBER [OF] collection_valued_path_expression

	Tests whether a single object is or is not contained within a given collection.

Table 25.7 Specific expression operators

There are some built-in functions for both Strings and arithmetic in EJB QL. The String functions include the following:

· CONCAT(String, String) returns a String

· SUBSTRING(String, start, length) returns a String (the start and length are int positions within the String)

· LOCATE(String, String [, start]) return an int (start is an int position within the String)

· LENGTH(String) returns an int

Examples

Here are several EJB QL example statements that reference EJBs defined in the case study.

Find Query Examples

1. Return all EmployeeEJB instances.
SELECT OBJECT(o) FROM EmployeeEJB o
2. Find all states that have a TimeSheetEJB.
SELECT DISTINCT t.state FROM TimeSheetEJB t

3. Find all TimeSheetEJBs for all ‘Smith’ submitters.
SELECT OBJECT(t) FROM TimeSheetEJB t
WHERE t.submitter LIKE ‘%Smith’

4. Find all TimeSheetEJBs within one of the following states, WV, VA, NC or SC.
SELECT OBJECT(t) FROM TimeSheetEJB t
WHERE t.state IN (‘WV’, ‘VA’, ‘NC’, ‘SC’)
5. Find all ProjectEJBs with a project number between 1000 and 1100.
SELECT OBJECT(p) FROM ProjectEJB p
WHERE p.projNumber BETWEEN 1000 AND 1100

6. Find all TimeSheetEJBs that have TimeSheetEntryEJBs.
SELECT DISTINCT OBJECT(t) FROM TimeSheetEJB t
WHERE t.entries IS NOT EMPTY
7. Find all EmployeeEJBs where they have a timesheet in a state different than their home state.
SELECT DISTINCT OBJECT(e) FROM EmployeeEJB e, IN(e.timesheets) t
WHERE e.homeAddress.state <> t.state

8. Find all EmployeeEJBs that live is the given city and state
SELECT OBJECT(e) FROM EmployeeEJB e
WHERE e.city = ?1 AND e.state = ?2
9. Find all TimeSheetEJBs for a given project name.
SELECT DISTINCT OBJECT(t) FROM TimeSheetEJB t, IN(t.entries) e
WHERE e.project.name = ?1

Select Query Examples

1. Select the distinct city names of all EmployeeEJBs.
SELECT DISTINCT e.homeAddress.city FROM EmployeeEJB e
2. Select the names of all EmployeeEJB that have timesheets within a given state.
SELECT DISTINCT e.name FROM EmployeeEJB e, IN(e.timesheets) t
WHERE t.state = ?1

3. Select the AddressEJB for an EmployeeEJB with a given name.
SELECT e.homeAddress FROM EmployeeEJB e
WHERE e.name = ?1

4. Select the employee names for all employees within a particular state with a submitted timesheet entry that is greater than eight hours for a particular project.
SELECT e.name FROM EmployeeEJB e, IN(e.timesheets) t,
IN(t.entries) l
WHERE l.hours > 8.0 AND
e.homeAddress.state = ?1 AND
l.project.name = ?2

5. Select a distinct set of Project names from the employee’s approved timesheet entries where the employee’s state is the same as the TimeSheet state for a particular employee zip code.
SELECT DISTINCT l.project.name FROM EmployeeEJB e,
IN(e.approvedTimsheets) t, IN(t.entries) l
WHERE e.homeAddress.state = t.state
AND e.homeAddress.zipCode = ?1
Summary

In this chapter we covered how to take advantage of EJB 2.0 relationships and inheritance to introduce realistic dependencies among the Enterprise Java Beans within your object model. We provided you with detailed information of how EJB relationship and inheritance is created as well as how it is implemented. You have seen how the “top-down” and “bottom-up” mapping strategies support these dependencies. We also covered detailed information of how to use “meet-in-the-middle” mapping to map both EJB relationships and inheritance when the domain model and database are maintained independently.

Finally, we expanded on the introduction of EJB QL from the previous chapter with further details on the EJB QL statement constructs including the SELECT clause, FROM clause, and WHERE clause. We also provided several examples of EJB QL based on our case study which you can use as patterns for your own queries.

� Only the key portions of the AddressKey class are displayed here. This is not the fully generated class from WSAD.

2 [EJB 99], p 194

3 ibid, p. 194

� Not currently used but reserved for future use.

31

