Chapter 9
Managing Session State
Using Servlets in complex applications introduces some very interesting challenges to the developer. Possibly the biggest challenge to overcome is to maintain application state for the users as they make multiple trips into your application. We call the information collected and maintained during these trips “session data”. The distinction between “session data” and transaction data is that session data is temporary and only for use across a set of linked pages; whereas transaction data is placed in permanent storage. Session data is often converted into transaction data at various points within the application. For instance, when a user chooses to save profile information, or check out a shopping cart then the temporary session data becomes permanent. Correctly maintaining this type of information creates challenges in our applications. This is a constant problem in Servlet and JSP-based applications. Figure 9.1 shows where the resolution to this problem fits in our architectural roadmap.

[image: image1.emf]

Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data Source Domain Data Mapping

EJB Container

Application Services

Exception

Handling

Properties Logging

Servlet

s

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Applica

tion

XSLT

Web

Service

s

HTTP

Unit

HTML

JSP

JDBC

JMS

Mapper

Object

s

CMP

EJBs

BMP

EJBs

WAS

UTC

Sessio

n

EJBs

JUnit

Java

Beans

Figure 9.1: Architectural Roadmap Position of Session Management

The first challenge comes from the HTTP protocol used for communication between the web browser and the web server. As discussed in Chapter 6, this protocol is based upon a request / response model and is stateless. That is, once a request is submitted from the client browser to a web server, and the server acts upon the request and sends a response back to the browser the server forgets about the request and the requestor. There is no intrinsic method in the protocol for holding state information about the transaction itself. After a transaction is complete, data not explicitly stored during the interaction is lost.

The second part to this problem comes from the way servlets live in the application server. On a particular application server, a single instance of each servlet class handles all GET and POST requests for its particular URL. In this environment, each HTTP request is handled on a unique thread running the service() method of that instance. Since each servlet instance is a shared resource, you can’t effectively store the client session data in the instance variables of the servlet itself because data stored by one thread could be overwritten by another. Remember that a servlet is an object shared by multiple simultaneous threads. You could attempt to use synchronization and an in-memory hashtable to manage instance data for each user, but only at a significant cost in effort and performance. The implication to the developer in this case is that there should be no maintenance of state information in the servlet itself, or more directly, no instance variables – only local variables and parameters! If instance variables are used then there is no guarantee that the state will be reliable at any given time. In this chapter, we will explore the most common approaches to storing session data, and look at the configuration options that are available within the WebSphere Application Server.

Some client-side Session Approaches

Before we begin to look at the specific support for Session management that WebSphere and the Servlet API provide, we will need to review some of the existing solutions that web sites use to convey and maintain session information. As we will see later, this discussion is very germane to understanding both how WebSphere’s session management works, and in understanding alternatives to the WebSphere solution.

Using Cookies to Maintain State
Probably the most common way to store session information in the CGI world is through the use of a cookie. Cookies can be used to send information gathered on the server to the client for storage. The server accomplishes this by attaching information to the HTTP response headers. The browser will then automatically return the cookie on the next request by placing the information in the request header sent to the server. The browser maintains a collection of cookies and scoped by domain and path. In other words, a browser will only return cookies to those servers within the domain that created it.

It is important that you use cookies appropriately. It is not a good idea to store passwords, credit card numbers, date of birth, etc. in cookies since this information is sent back and forth to the browser on every request and thus may be “sniffed” or (even worse) altered or spoofed.. This information, if provided by a user, is best kept on the server. As a result of abuse of customer privacy by websites using cookies inappropriately, many users now routinely configure their browsers to disallow any cookies at all. Thus, you should be careful about relying on cookies as your only session state storage mechanism.

Hidden Fields

Another option for maintaining session data is through the use of hidden fields. This option is very simple to implement and involves the use of standard HTML hidden fields. This solution allows for session sharing between servlets that are linked through the use of HTML forms. To use this, each servlet response that results in an HTML form output writes additional input fields into the form. These additional fields should be defined with the type=”hidden” parameter. The net result of this is that the user will not see the field as a visible item on the form, but the resulting “GET” or “POST” will send the value along as a request parameter. The servlet that processes the form information can then obtain the session data through the use of the passed parameters. A major drawback of hidden fields is that as the number of hidden fields grows, the size of the page increases, thus increasing page download times. Also, hidden fields suffer from the same security issues as cookies, since sensitive data could be passed back and forth “in the clear”.
URL parameters

Similar to the idea of Hidden fields, information can also be transmitted from the browser to the server in the HTTP header by placing this information in parameters that are passed in as part of the URL that invokes a CGI or servlet. For instance, if we wanted to pass a user name as part of a URL request, the URL passed to a servlet could look like the following:

http://myhost/servlet/TestServlet?userid=”Bob Smith”

If this URL was sent from the browser, then the target servlet (TestServlet) could obtain the HTTP parameter named “userid” by using the HttpRequest.getParameter(name) method. While URL parameters are useful for passing small pieces of information, they are not appropriate for passing larger sets of information, since there is a limit to the size of the URL.

Servlets and Session State

A framework for saving session state is provided in the Java Servlet API. The API provides an interface designed specifically for the purpose of maintaining state information in our servlet-based applications. This interface is the javax.servlet.http.HttpSession. The HttpSession interface provides a way to store and manipulate state information that is available to all servlets of the web application while the session remains valid. In practice, one session is maintained for each user that is interacting with the web application. The application chooses to establish this session at a point where some state information needs to be maintained, which is typically very early on in the process, such as at login or authentication time. As each session is created it is assigned a unique identifier. This identifier is then associated with the user and becomes the key that can be used to locate the appropriate session for subsequent requests. Later, we will discuss the different configurations by which the session identifier can be maintained. After the session is established, it will remain valid until it expires from inactivity, the browser is closed, or is invalidated programmatically. The period of inactivity can be configured through the WebSphere Application Server administrative console or set programmatically.

The HttpSession interface provides the basic mechanisms for storing and retrieving application state information. The first thing that needs to be done is to obtain an instance of an HttpSession. This can be done through the HttpServletRequest interface. The interface method that needs to be used here is HttpSession getSession(boolean). The Servlet specification defines a standard cookie (which must be named JSESSIONID) that acts as a unique key to the user’s session data. The boolean argument, if true, creates a new session if one is not already present for the JSESSIONID that is associated with the request. Conversely, if the boolean argument is false, a null will be returned if there is not a session already established.

When obtaining a session by using HttpSession getSession(true), it is sometimes desirable to know if the HttpSession that was returned was a newly created session or was one that had been established by a previous call. This can be done by using the HttpSession interface method boolean isNew(). This method simply returns a boolean indicating if the session id was delivered in the current HttpServletRequest object.

It may also be desirable to discard a session. The HttpSession interface provides the method invalidate() for this purpose. This method simply discards the session, and gives the assurance that the next call to getSession(true) will yield a session that is “new”.

The definition of the HTTPSession interface is very simple and provides a structure that can be used to store state data in key/value pairs. We can place objects in a session instance by using the setAttribute(String, Object) method, and retrieve objects from the session by using getAttribute(String). Note that more than one value can be placed in the session object. The HttpSession structure is similar to that of java.util.Hashtable in that any number of elements can be stored by unique identifier and value pairs.

One thing you should note is that (even though the specification doesn’t require it) is that the objects that you place in an HTTPSession attribute should all implement the java.io.Serializable interface. As you will see later in our discussion of WebSphere Application Server’s session scalability features, these objects will usually be persisted in a database or transmitted across a network connection. Thus if the object placed in the session attribute is not Serializable, then it will not be available for access by other servers. Also, you should be careful of the size of the objects you place in the session attributes. Remember that there is a finite amount of heap space available to a JVM. If your objects are very large (a large fraction of a megabyte or more) then you have placed an upper limit on the number of users that a single server can support. However, as we will see later, even before this limit is reached you may encounter performance problems related to making this session information available to other servers. Thus, you should probably restrict your session attributes to small objects, or to “keys” used to fetch back larger objects from permanent storage.

In review, the methods of API we have discussed thus far:

In HTTPRequest:

public HTTPSession getSession(boolean param1);

In HTTPSession:

public boolean isNew();

public void invalidate();

public java.lang.Object getAttribute(java.lang.String param1);

public void setAttribute(java.lang.String param1, java.lang.Object param2);

The following example demonstrates the use of some of these methods. We will construct a hypothetical example from our timesheet domain (introduced in Chapter 2). We want to build a set of servlets comprising an “EmployeeEditor” that will allow a user to change the attributes of an Employee. The user must first enter an employee ID number on an HTML page followed by an HTML page that shows the current values of the Employee’s attributes in editable text fields. After editing, the user can submit the new values. The first servlet invoked is the “DisplayEmployeeValues” servlet, the code of doPost()looks like the following:

// First servlet will retrieve employee values and place them in
// in the session

 public void doPost (HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

String id = request.getParameter (“id”);

Employee emp = Employee.getEmployeeFor(id)

// Create a new session

HttpSession session = request.getSession(true);

if(session.isNew() == false){

session.invalidate();

session = request.getSession(true);

 }

 session.setAttribute(“employee”, emp);

// send a response back with a JSP page

. . .

 }

 In the previous example you see how to:

· Create a session. The “true” parameter in the getSession() method specifies to create a new session if one is not found in the request object.

· Check to make sure that the session is new (useful, for instance, if the possibility that a servlet can be used from a shared terminal exists)
· Add an object to the session, using a key/value pair

Let’s suppose now that the user has finished editing the Employee and now wishes to submit his changes. When the “Submit” button is pressed, it invokes another servlet, which will process the changes. Following is the code to do this:

// Subsequent servlet being called to process changes to the Employee

public void doPost (

HttpServletRequest
request,

HttpServletResponse
response

) throws ServletException, IOException {

// Look for an existing session

HttpSession session = request.getSession(false);

// check to see if session exists, if does not exist handle error

if(session == null)

 handleError();

else {

Employee emp = (Employee) session.getAttribute(“employee”);

if(emp != null) {

// Retrieve the values from the Http Parameters

// and set them into the Employee instance.

// Next update the employee in the database.

// Finally invalidate the user session

session.invalidate();

}

}

// send a response

. . .

}

Here we see how to:

· Retrieve an existing session from the request object. The “false” parameter in the getSession() method specifies not to create a new session if one is not found in the request object. In that case null is returned.

· Handle the error if the session does not exist

· Retrieve an object from the session. The getAttribute() method return type is java.lang.Object, so the value must be cast to the correct type before using it.

This example also shows invalidating the session. When you are finished using a Session (e.g., no more servlets will need the session) then you should send invalidate() to the session to release the objects held in it. There is a session timeout value that is set in the WebSphere Administration Console – when the timeout is reached the session will be invalidated and all objects within it will be garbage collected. However, invalidating the session manually is more efficient, because relying on session timeouts will result in objects remaining in memory unnecessarily long.

In addition to the methods used in the previous snippets, the HttpSession interface defines methods to remove a particular name/value pair and to obtain all the names of the values stored in the session. These methods are removeAttribute(String), and String[] getAttributeNames() respectively.

HttpSession Binding

Sometimes objects stored in the session may need to be notified when they are stored or removed from the session. This may be to get an opportunity to do some initialization, cleanup or another function. Objects requiring this function should implement the HttpSessionBindingListener interface found in the javax.servlet.http package. This interface defines the valueBound() and valueUnbound() methods. These methods, when implemented, will be called when an object of this type is set and removed from the session respectively. Implementing the interface in this way allows for fine grain control over what happens as a result of storing and removing objects from a session.

A common use for this listener interface is to provide a trigger that can be used to remove information from a “temporary” database table when the user either logs out of a web site, or after the session timeout value expires (if they move away from the web page and forget to explicitly log out).
How the Session is found

So, now that you’ve seen how the HttpSession API is used, the next question to ask is “how does this work?” What happens is that when the HttpServletRequest.getSession() method is called, the Application Server determines which HttpSession instance belongs to a particular user by assigning a session identifier, which is stored by default in a special cookie in the user’s browser. For sessions to work with the default settings, cookies must be enabled in the browser. Session cookies are not stored persistently and expire when the browser is closed. The HttpSession instances themselves are initially held in-memory within an Application Server’s JVM. Only the identifier is stored in the client browser. This is shown Figure 9.2.

[image: image2.wmf]

Browser

Cookie Name

Value

JSESSIONID

12345

id

Value

JSESSIONID

12345

Key

Value

ShoppingCart

aShoppingCart

name

“Bob Stephens”

Application Server

Session Table

Figure 9.2 HttpSession Lookup Architecture

Choosing the right approach

As mentioned above, the use of cookies provides the simplest approach for maintaining session identifiers. However, while it may be the easiest solution, it is not always the most reliable solution. You cannot always depend on the cookies being available. This forces the consideration of alternative methods for session management. In order to truly provide the most flexible solutions possible, you must look at providing multiple mechanisms for the users to obtain unique sessions.

A popular technique for achieving this is to combine techniques in order to obtain the most reliable coverage. If you want to provide the most reliable site possible you should use cookies in conjunction with URL Rewriting. The good news in this scenario is that as long as cookies are enabled in the client browser, cookies will be the vehicle for transporting the session identifier between the browser and server. This is good news because this technique is very efficient and easy to implement. The bad news is, however, that the application must be prepared for the case where cookies are not available. That is the place where URL rewriting becomes a useful option.

URL Rewriting

An alternative to using cookies to store the session id is to use a mechanism called URL encoding or URL rewriting. In order to use URL encoding you need to use the encodeURL() or encodeRedirectURL() method of the HttpResponse interface. Basically, encodeURL() is used to append the unique session id to the URL in any links that your servlet generates. The encodeRedirectURL() method does the same and is used in conjunction with the callRedirect() method. When a user invokes a servlet using this altered URL, the server strips the extra information from the URL and uses it as the session id to get the session data. The application server must support URL rewriting and you must also enable that option when appropriate. For more information on using the Servlet API for URL Rewriting, refer to the Servlet specification.
 There is a perception among some developers that URL Rewriting techniques degrades the performance of the web site across the board. While this may be a valid argument if you are simply comparing it to the use of cookies, it certainly lacks credibility when thinking about the possibility of storing large amounts of data in a back end data source. Furthermore, WebSphere Application Server provides some help in this area. However, one factor that you must take into account is that all URLs that you use in the application that refer back to the application must be encoded. This means that some pages that could otherwise be left as HTML pages must instead be made into JSP pages – with a resulting increase in processing requirements.

The implementation of session management in WebSphere allows for both options to be configured. In addition, when cookies are enabled in the browser, all subsequent calls to encodeURL(String) return immediately with no effect. The method itself results in no operation therefore removing the performance degradation. As application developers, this really gives us the best of both worlds, the ability to plan for the worst-case scenario while not adversely affecting our performance when the best-case scenario is available.

However, this flexibility comes at a cost. It is quite challenging to add the appropriate encodeURL() methods at every required point in an application. If you miss a single URL, then the session is lost, and will not be recovered. Because of this, you need to determine if there is a business need to make the investment for adding URL Rewriting to your applications. If the cost of a few lost customers who have disabled cookies is worth it to you, then by all means pursue that option. However, for most cases, making the use of cookies mandatory for your site is an option that is good enough.

Whether you decide to use cookies or URL rewriting is configured on the Session Management configuration page of WebSphere Application Server. These settings are also configurable in the Server Configuration editor of WebSphere Studio.
Session Persistence

Up to this point our discussions of session management have focused mostly on an “in memory” storage solution. When sessions are stored in memory, it is very quick and efficient to find an individual HttpSession instance when needed. However, this mechanism becomes a major complication when we need to scale our application to handle more users and we begin using more than one server running the same web application. To understand the problems, look at the following diagram, which illustrates a common setup for a high-traffic website of the type we examined in Chapter 4 (Figure 9.3: Load Balancing Configuration).

[image: image3.emf]

Load

Balancer

Web

Server

Web

Server

Web

Server

Web

Container

Web

Container

Web

Container

Figure 9.3: Load Balancing Configuration

In most high-traffic websites, the total volume of incoming HTTP requests is too great for a single web server or a single application server to handle. So, a load balancer (either a hardware router, or a software router, like IBM’s Load Balancer) is used to divide the incoming HTTP requests among a number of web servers. A routing algorithm such as round robin routing or random routing chooses which server will handle each request. This routing among web servers affects how our application needs to manage session data.

If HttpSessions are only stored in memory on the server where the HttpSession is created, that server must receive all future requests from that client. This requirement is called server affinity. This session information will not be available to the servlets running in the other application servers. For some websites server affinity may not pose a problem. However, the way in which routers determine server affinity can pose problems in higher-volume websites.

In many load balancers, a client is assigned to a particular web server by examining the IP addresses on the incoming request and always assigning requests from a particular client address to a particular server. This is commonly called “sticky” routing. However, the reality of today’s Internet is that many ISPs have proxy configurations that make it appear to the router that all packets from that ISP are coming from the same IP address. In the worst case, this means that all packets from a single ISP may all end up at the same application server. This defeats the purpose of load balancing, since one server will still end up with the lion’s share of the processing. Also, many corporations now assign outgoing IP addresses randomly, so that two requests from the same client are not guaranteed to have the same IP address. In this case, server affinity cannot be guaranteed.

However, discounting “sticky” server affinity at the web-server level leaves us back where we started with in-memory sessions; how do we guarantee that a user will always return to the same web container instance for each request? In WebSphere Application Server this is done through a second layer of routing that happens at the Web Server plugin-level
. What happens is that WebSphere encodes a unique identifier for the creating Web Container in the session identifier encoded in the JSESSIONID cookie. Whenever a request arrives at any plugin, it examines the cookie value and then routes the HTTP request back to the web container identified in the session id value.

The problem with this solution is that it does not provide for failover. If session data is held only in memory, and that server fails, those users being supported by that application server will no longer be able to access their sessions. There are two basic solutions to this problem; either you persist the session data in a database that a “backup” server can obtain it from, or you replicate the session data to one or more backup servers over a network as changes are made to the session. That leads us to WebSphere Application Server’s mechanisms for session persistence and replication that we discuss in the next section.

WebSphere Persistent Session Management

Let’s start by making clear that the majority of the session management issues and techniques described in this section only apply to a WebSphere Application Server V5 Network Deployment edition, where more than one server is part of a cluster of servers. This is the situation where server and session affinity come into play. If you are only running your applications on a single server the issues of session management becomes much simpler to deal with. In that case, you only have two things to consider; how to make sure that the data in the sessions is stored and retrieved in the most efficient manner, and whether you use cookies or URL re-writing to store session ID information.

Once you install WebSphere Application Server Network Deployment and start to build clusters of servers to share the load between multiple servers, you also have to start considering your options for session persistence.

In versions of WebSphere Application Server prior to version 5 there was only one option to persist and share session information; that is to use a back end data store, such as a DB2 database, to store and share session data. This approach is still available in version 5 of the server. However, new configuration options have been added to database persisted session to make them more efficient depending on a variety of running environments.

In addition to the database session persistence approach, a memory-to-memory (M2M) replication architecture is also offered. The basic premise of the memory-to-memory approach is that it would not require the additional expense and headache of maintaining a session database, and that it would eliminate the single point of failure that a session database would introduce.

Let’s take a look at these two different ways to handle session persistence and how to configure the various options for each method.

Database Session Persistence

Storing session data in version 5 of WebSphere Application Server is implemented in a very similar way to the WebSphere Application Server version 3.5 and 4.0 implementation.

The first thing you need to do to start using database session persistence is designate a database for storing the sessions. This should be a new database used only for this purpose. If you are using IBM DB2, it is very easy to create a new database.

1. Open a DB2 Command Window.

a. Start->Programs ->IBM DB2 -> Command Window

2. At the DB2 Command Window enter:

DB2 create database SESSDB (or any other name you like)
3. After the database is created close the window.

A database created with default values will perform well, however, if large objects are placed in the session regularly you may want to increase the row size parameter from 4KB to 32KB.

Note that for the following steps we assume some level of familiarity with the WebSphere Application Server V5 administrative console. You also need the Network Deployment version of the product to be able to actually make these configuration choices on your machine.

After the database is created you will need to either define a new JDBC provider, or use an existing one and create a data source under it. The data source will point to the database that holds your session data, in the case of this example, the SESSDB database.

Once the database and the data source are defined you can proceed to associate the datasource with the Session Management settings.

Note the link trail on top of Figure 9.4 that shows you how to get the Database Settings configuration page. As you can see on this page you enter the JNDI name of the data source you just created. You also provide a userid and password for the application server to use when connecting to the database.

This page is also where you can adjust the DB row size. As mentioned before you might want to go to a larger row size if you expect the sessions to contain large amounts of data.

There are two other settings on this page. Table space name lets you specify the name of the table to be used for the session data. Multi row schema is discussed in the next section.

[image: image4.png]
Figure 9.4: Setting the Distributed Environment Settings for Sessions

Single vs Multi-row schema

By default, Session Management uses a single row schema to store session data in the database. Using the Single row schema means that all the data for each session is stored in one row of the database. This has benefits because all the data for the session can be read or written with a single access to the database, this translates into a bit of a performance advantage. It also saves space on the database. The main problem encountered when using the single row schema is that the amount of data that can be stored per session is limited to a maximum of 2MB.

Switching to a multi row schema, as the name implies, means that session data can occupy more than one row per user. Each row can have a maximum capacity of 2MB. Session size is only limited by the total capacity of the system hosting the database. Of course the larger the amount of data, the bigger the performance hit on the overall system and application. It is good practice to limit the amount of data stored in sessions to a reasonable size (on the order of a few tens of kilobytes at the most). If the amount of session data is generally small it is better to stick to the single data schema.

Memory-to-memory Session replication

We just covered how to use a relational database to share session information between cluster members. Another method to achieve the same goal is the use of memory-to-memory (M2M) session replication. This method does not involve a session data database.

Instead of using a database, M2M replication involves two or more WebSphere Application Servers in the same cluster. You can think of this type of replication as a buddy system. Session affinity ensures that once a session has been created in a server, subsequent requests will be routed to the same server. When the HTTP plug-in routes a request to the server that created the session and that server is not available, the plug-in has information, which identifies the session originator’s buddies(s) and re-routs the request to the next available buddy. The buddies contain replicas of the sessions created on the original server. Using this buddy system, another server in the cluster can service a request destined to the originator of the session if it is not available.

Which servers back each other up is configured through the administrative console. In clusters where there are not a large number of servers involved, the default configuration where every server backs every other server works well. This method of replication is called N-way peer-to-peer. However, as you can imagine, in clusters with a large number of servers the overhead of every server backing up every other server’s sessions can become very expensive, both in the number of replication operations, as well as the amount on memory required to store session data.

Internally, the replication of sessions is handled by a messaging system similar to JMS. M2M session data is stored within the application server’s JVM.
To reduce overhead in large clusters the Session Management facility has the ability to partition the servers into groups. The default number of partitions is 10, but this number can be changed. Then each server is configured to listen to one or more partitions. This reduces the number of overall replications. Servers listening on the same partitions back each other up.

[image: image5.png]
Figure 9.5: Setting Memory-to-memory replication for sessions

The runtime mode should be set to Both client and server, for all variations of the N-way peer-to-peer configurations. If you have determined that neither N-way peer-to-peer, nor Single Replica (see below) configurations are appropriate, you can configure a client-server environment for session persistence. In this configuration a single, or multiple, machine(s) are configured so that their sole mission is to be session replication servers. The other machines in the server cluster are configured as Client only. If session fail-over is an absolute requirement you should configure more than one machine in the replication domain as Server only.

Other values concerning the Replication Domain are set in the following configuration page:

Environment->Internal Replication Domain

[image: image6.png]
Figure 9.6: Internal Replicator setting

There are two of options on this page that merit special attention:

· The DRS partition size entry defines the number of partitions in the replication domain, as you recall this number is set to ten by default. This number can be changed depending on the size of the cluster.

· Selecting the Single Replica checkbox creates a special case of the N-way peer-to-peer configuration, where only one other server is configured as the buddy for each server. This greatly reduces the number of replication cycles and memory usage, and can increase performance significantly. One disadvantage is that if both the main server and the single buddy are both down accessing the session data will fail.
Comparing Database persistence to Memory-to-memory replication
As we noted earlier, managing M2M session replication can be easier to manage than WebSphere Application Server V5 session persistence to a DB because M2M doesn’t require a database at all.

Also note that the M2M solution eliminates a single point of failure, without any configuration changes, whereas the database session persistence solution typically entail more expense and complexity beyond simply installing a database. Also, in many customer sites, different teams manage the application servers and the database servers, making coordination difficult.

On the other hand, what becomes a factor with M2M is the fact that memory utilization increases as the session data that would otherwise be in a database is now spread across the application server JVM heaps. Also, M2M replication is not recommended across geographically distributed server farms; this is because the communication required to synchronize the session caches requires a high-speed LAN connection.
Controlling when session data is persisted

Whether you use the database or the memory-to-memory replication schema in your server cluster, still other factors can affect the performance and reliability of storing session data.

The point in time when the session data is stored plays an important role. In WebSphere Application Server there are several session update options which can be defined.

You can define when a session is persisted, what information is persisted and when to clean up old session data which is no longer in use.

All of these tuning parameters can be updated from the Distributed Environment -> Tuning Parameters page.

[image: image7.png]
Figure 9,7: Session Management Tuning Parameters

There are four pre-configured settings, each of these settings determines:

· Write frequency, how often session data is persisted

· Write contents, whether all data in the session is written, or only changed elements

· Session cleanup, whether to schedule removal of invalid session data

These pre-configured settings are rated from Very high to Low performance. Low performance is not necessarily a bad thing, these settings represent a trade-off between speed and failover protection.

If you feel you need additional control over how session is stored you can customize each of the components for the three aspects of the settings by clicking Custom settings.

[image: image8.png]
Figure 9.8: Custom Session persistence tuning parameters

Let’s take a minute to examine these properties. You have three choices to choose from:

· End of servlet service, session data is stored after the last statement in the service method of the servlet.

· Time based, session data is stored every so many seconds.

· Manual update, this occurs programmatically by the code in the servlet explicitly by calling the IBMSession.sync() method. IBMSession is WebSphere’s implementation of the HttpSession interface.

The first two mechanisms are under the control of the application server. The third depends on how the servlet is coded.

The reason why that the time when the session data is made persistent is important, has to do with the transaction that is started when the session is first obtained from the request object. The transaction is not committed until the criterion, specified in the write frequency parameter, is met. If a database is involved, the row containing the session data is locked until the transaction ends. In general the transaction should be committed as soon as the session has been updated and no more updates are forthcoming. Using the manual update choice could be the more reliable way of committing the transaction. The developer of the servlet knows when the session data has been updated, in this case the IBMSession.sync() method is called and the transaction is committed. However, this puts additional requirements on the developer.

Committing the transaction at the end of the service method is automatic and requires no effort. The difficulty here is that this requires WebSphere Application Server to perform a database update at the end of every service method. In our performance tests, we have seen that this has a substantial overhead.
Time-based updates have a different set of tradoffs. Performance tests have shown that writing session data at a 10 second interval provides very good performance with good session reliability. One thing to consider, when selecting the time interval, is the amount of data to be written on every cycle. If the amount of data is large, then a short interval can degrade performance considerably. The major drawback of time-based updates is that when a server goes down, then all updates to all sessions since the last interval update will be lost. So, if you set the interval too long, you have the possibility of lost data. On the other hand, if the interval is set very short, then you have the same overhead issues encountered with end of service writes.
Session Management Levels

You may be wondering, what is the scope of these settings? It would appear, at first glance, that applying these choices at the server level is the right choice. That would be true if all the applications running on a particular server shared the same requirements. However, setting the Session Management choices at the server level has the disadvantage that if you have multiple servers, in a cluster environment, you must repeat the administrative tasks to set all the servers in the cluster with the same values.

It is usually better to tune session management criteria at the application level, that way regardless of which server in the cluster the application runs on, the session will be managed the same way, without having to configure each server separately. In fact WebSphere Application Server gives you the flexibility to configure session management parameters at the Web module level for each enterprise application.

To configure session management at the Web module level in an enterprise application level select:

Applications-> AppName -> Web Module -> WarFileName -> Session Management

To configure session management at the server level select:

Servers -> Application Servers -> ServerName -> Web Container > Session management

Summary

In this chapter we have examined the basics of Servlet Session management – we’ve compared some traditional approaches from the CGI world, and seen how WebSphere Application Server implements the HttpSession Interface.

We covered the two approaches for persisting session data to a database and memory to memory. We also covered some of the performance implications of the session management configuration options.

This should prepare you to understand some of the more challenging problems that face developers in building applications that must scale across multiple-node and multiple-JVM configurations in WebSphere.

� Remember from the discussion in Chapter 4 that the plugin is a piece of code that installed in a Web Server to route HTTP requests to a set of WebSphere application server web containers.

29

_1113852211.doc

[image: image1]

Load Balancer

Web Server

Web Server

Web Server

Web Container

Web Container

Web Container

_1118087160.doc

[image: image2.bmp]

Layered J2EE Runtime Architecture

Presentation

Controller / Mediator

Servlet Container

Data Source

Domain

Data Mapping

EJB Container

Application Services

Exception�Handling

Properties

Logging

Servlets

Struts

Java�Beans

Msg Driven�Beans

Cactus

Java�Application

XSLT

Web�Services

HTTP�Unit

HTML

JSP

JDBC

JMS

Mapper�Objects

CMP�EJBs

BMP�EJBs

WAS�UTC

Session�EJBs

JUnit

Java�Beans

[image: image1]
_1112340326.doc

Browser

Cookie Name

Value

12345

JSESSIONID

12345

JSESSIONID

Value

id

aShoppingCart

ShoppingCart

Value

Key

“Bob Stephens”

name

Application Server

Session Table

