Chapter 28
Transactions in WebSphere 5.0

Transactions are one of those things that most Java programmers would just rather ignore than try to understand. And, in fact, in most cases you can ignore them – the default settings of WAS and WSAD work well enough in most situations that many programmers can build large and complex applications without having to know the details about how transactions work. However, at some point all of this blissful ignorance hits a wall. Then you have to hunker down and learn how transactions operate in order to solve some hairy problems that have ramifications all the way up and down your architecture. We show all of the architectural layers that EJB Transactions touch in Figure 28.1

[image: image1.emf]

Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data Source Domain Data Mapping

EJB Container

Application Services

Exception

Handling

Properties Logging

Servlet

s

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Applica

tion

XSLT

Web

Service

s

HTTP

Unit

HTML

JSP

JDBC

JMS

Mappe

r

Object

s

CMP

EJBs

BMP

EJBs

WAS

UTC

Sessio

n

EJBs

JUnit

Java

Beans

Figure 28.1 Architectural Roadmap

In this chapter, we’ll examine how transactions operate in WebSphere Application Server. We’ll begin by taking a quick look at a type of transaction that most Java programmers are familiar with; the transactions that are available through JDBC. After that review, we’ll move on to examining how EJB transactions are defined in the EJB specification, and how the specification is implemented in WebSphere Application Server and WebSphere Studio Application Developer. Finally, we’ll examine some of the more complex transactional issues that occur in real-world applications, and examine some of the WebSphere-specific mechanisms for handling concurrency and other “grey” areas of the EJB specification.
JDBC Transactions

In JDBC each javax.sql.Connection object has two ways of starting and ending a transaction. In the default mode (called autocommit) each individual JDBC Statement is executed in its own transaction. So, if you created two separate INSERT statements, one for an Employee and one for the Employee’s Address within a method, it would be possible to create an Address that refers to an Employee that does not exist if the INSERT for the Address succeeds while the INSERT for the Employee fails.

To get around this problem there is a second mode in JDBC whereby the transaction associated with a connection can encompass the execution of several javax.sql.Statement objects created from the connection. Therefore, you can have code like the following fragment:

// Begin the transaction by setting autocommit to false

connection.setAutocommit(false);

// First insert the new Employee’s address

PreparedStatement insert = connection.createPreparedStatement(“INSERT INTO ADDRESS (id, street, city, state, zip) VALUES (? ? ? ? ?)”);

insert.setString(1, “22333”);

insert.setString(2, “101 Hummingbird Ln”);

insert.setString(3, “Cary”);

insert.setString(4, “NC”);

insert.setString(5, “27502”);

insert.executeUpdate();

// Now insert his information, including a foreign-key reference to

// the address inserted in the previous block

insert = connection.createPreparedStatement(“INSERT INTO Employee (id, name, salary, address) VALUES (? ? ?)”);

insert.setString(1, “12345”);

insert.setString(2, “Karl Johnson”);

insert.setInteger(3, 23450);

insert.setString(4, “22333”);

insert.executeUpdate();

// finally, commit the transaction

connection.commit();

As you see, it’s possible to join multiple SQL statements in a single transaction using the features of the javax.sql.Connection, but there are some problems with using this feature. The first is that you must pass the physical connection object between all of the different mappers (Data Access Objects) that will operate on it. This can be tricky, and tends to mean that you have to expose the details of the persistence layer to the layers above it. Overall, it’s not a pretty situation.

Another issue to consider concerning JDBC transactions is how concurrent transactions affect each other. The problem is this – if you run two transactions at the same time, how do you keep data updated in one transaction from being read in another transaction before it completes? JDBC solves this problem (as does the ANSI SQL-92 standard) using what are called Isolation levels. You can set the isolation level of a JDBC connection by using the setTransactionIsolation() method. The isolation levels defined by the JDBC specification (as static fields in java.sql.Connection) are as follows:

TRANSACTION_NONE – This means that transactions are not supported.

TRANSACTION_READ_UNCOMMITTED – This means that the transaction can read uncommitted data (data changed by a different transaction still in progress).

 TRANSACTION_READ_COMMITTED – This means that the transaction is not able to read uncommitted data from other transactions. However nonrepeatable reads (e.g. the first read within a transaction gets one result, while the second gets a different result due to the data being updated by another transaction or program) can occur. Likewise, phantom records can occur – records can be inserted while the transaction is in progress of which this transaction may be unaware.

TRANSACTION_REPEATABLE_READ – This means that the transaction is guaranteed to always read back the same data on each successive read. Phantom records can still occur.
TRANSACTION_SERIALIZABLE – This means that all transactions are serialized (e.g. fully isolated from one another). All rows touched during the transaction are locked for the duration of the transaction.

So, why is this an issue? Why not just use TRANSACTION_SERIALIZABLE and always assume you are safe from phantom records and non-repeatable reads? Well, the answer lies in the performance of your transactions. In order to keep transactions fully isolated from each other, even reads have to wait in line at the highest isolation level. We’ll return to the subject of isolation levels and associated locking later in the chapter.

Finally, there’s a yet more troublesome problem that JDBC transactions do not address. That is that there is no easy way to join together resources that are not part of JDBC together with JDBC statements within a single transaction. For instance, a common problem in many applications is the following: Let’s say that you have an application that takes Orders for Widgets over the internet. The Widget order-processing application is a legacy system that is accessed over WebSphere MQ– it’s based on a batch system and what it does is to take in Orders from a Queue and (eventually) process them so that Widgets will be delivered to the customer.

However, this model doesn’t fit well with the expectations of an Internet order-entry application. In that case, users will expect to check the status of their order at any time. However, that may not lend itself to a model where an order may sit on a Queue for a long time while in-between processing steps – it would be cumbersome to have to check on several Queues to determine where in the order-processing sequence the Order resides. Therefore, what is often done is to have two different representations of the Order – when the Order is first received from the Customer, a record is created in a relational database to represent the Order, and the Order information is then placed in the first Queue for the Order-processing system to be processed. As the Orders move from one state to another, the information in the database is updated accordingly.

So, we have the following problem in our Order Entry application – we’d like to create the database record for the Order and place it on the Queue for processing at the same time and in the same transaction. It’s not acceptable if the database record creation fails and the Order processing enqueuing succeeds – that would result in a user having Widgets delivered (and billed!) to them, but they would not be able to find out any information about their orders in the meantime. Therefore, what we need is to join the two resources – the WebSphere MQ Queue and the JDBC Connection that the statement executes on, in the same transaction. That is the domain of the two-phase commit transaction model, as you’ll see in the next section.

Transactions and 2-Phase Commit

One of the key implementation features of database systems and transaction processing systems like WebSphere is a special feature called two-phase commit (2-PC). This feature allows multiple resources to be updated in a single transaction or to be returned to their pre-transaction state if an error occurs. To understand how 2PC works, we need to provide a few more definitions. They are:

Transactional Object – A Transactional Object is an object whose behavior is affected by being invoked within the scope of a transaction. Transactional objects update Resource Managers through changing attributes managed by the resource managers.

Resource Manager – A Resource Manager manages the transaction for a single data source. An example of a Resource manager in our case is a single relational database, or database driver.

Transaction Manager – The Transaction Manager takes care of managing the details of transactions behind the scenes – determining when to instruct individual resource managers to commit their transaction to permanent storage, or to roll back to the previous state. The WebSphere application server acts as a Transaction Manager.

Some of the interactions between these object types are illustrated in the following diagram (Figure 28.2).

[image: image2.wmf]

Resource

Manager

Transactional

Object

Transaction

Manager

Resource

Manager

updates

coordinates

Txn start,

commit,

rollback

Figure 28.2: Transaction interactions

These objects are tied together through the Two-Phase Commit protocol. It involves two sets of messages from the Transaction Manager to the Resource Managers. Each Resource Manager initially and temporarily stores resource changes. The Transaction Manager then issues a “prepare” or “are you ready” message to each of the Resource Managers. If each of the Resource Managers responds back with an acknowledgement saying that they can commit, then the Transaction manager sends the final “commit” message to the Resource Managers.

JTA and Transaction Demarcation

JTA is the Java Transactions API – it’s a high-level API that provides for transactional management. Most of JTA is for internal use by Transaction Managers. However, a few API’s are intended for use by applications. These allow you to start, commit and rollback transactions in an underlying Java transaction manager. The major benefit of JTA is that it controls a Transaction manager that can span multiple data sources – so if you access both a JDBC DataSource and update a JMS Queue within a single JTA transaction they will both be either committed or rolled back together.

To understand how this works, look at the following methods defined in the interface javax.jts.UserTransaction
:
begin() -- This method creates a new transaction and associates it with the current thread.

commit() -- This method completes the transaction associated with the current thread. When this method completes, the thread is no longer associated with a transaction.

rollback() -- This method rolls back the transaction associated with the current thread. When this method completes, the thread is no longer associated with a transaction.

setRollbackOnly() -- This method modifies the transaction associated with the current thread such that the only possible outcome of the transaction is to roll back the transaction.

So, how does a client (meaning a Servlet or JSP, or code inside an EJB declared to use “Bean Managed” transactions) obtain an object that implements this interface? Clients should be able to obtain this by looking it up through JNDI
. The following code fragment illustrates this:

UserTransaction tranContext = (UserTransaction) initContext.lookup("java:comp/UserTransaction");

tranContext.begin();

// get and manipulate data sources or EJB’s

tranContext.commit();

So exactly, where and how would you use JTA in this way? One of the little-known features of the WebSphere Web container is that it allows the use of JTA inside methods executing within the context of the Web container. This is important in that it allows you to gain some of the benefits of two-phase commit transactions even without having to use the EJB container. So, if you need to perform one of the more common tasks for which JTA is applicable (like placing a message to a JMS Queue and also updating a database in the same transaction) you can do it entirely within the context of the Web container without even having to involve the EJB container at all. You simply need to enclose the appropriate JMS and JDBC code between the begin() and commit() statements and the 2PC transaction will take place (note that you should also provide for rolling back the transaction in case an error occurs between the two statements). This same kind of transactional control is also available within the EJB container as Bean-Managed Transactions (BMT). In BMT, you can place the kind of code shown above within a Session bean method that has been appropriately configured to use BMT.

So, as you can see, there are several advantages with using JTA over using the facilities of the JDBC connection for your transactions. In particular, moving the control external from the connection makes commitment independent of each particular connection. This makes it much easier to implement the mapper pattern – each mapper can use the get Connection…use Connection…release Connection idiom; you are not required to pass the connection between mappers, making the control flow of your system simpler.

However, JTA isn’t perfect. In fact, compared to the type of control we’ll see next with Container Managed Transactions in EJBs, JTA is a blunt instrument. The first problem is that if you are using JTA then there is no individual control over data sources and other resources – if you obtain a connection from a data source within a transaction, then that connection will be enlisted within the transaction – you can’t make it “not enlisted” or force it to commit otherwise. Another basic problem is that you can’t suspend a JTA transaction; once the transaction is started it must be either committed or rolled back – if you try to start another JTA transaction on the same thread as an existing JTA transaction it will cause an error.

Enabling 2-PC in WebSphere 5.0

Now that you’ve seen how the 2-PC protocol works, and how the JTA API is structured, the next question you may be asking yourself is; how do I make this work within WebSphere. To understand the answer to that question, we have to go back and look at some of the definitions of the actors in the 2-PC protocol. Do you remember how the WebSphere Application Server itself acts as the Transaction Manager? Well, the Resource Managers that it coordinates are implemented in J2EE by three different types of objects:

JDBC Database Drivers may act as Resource Managers with either one-phase commit or two-phase commit semantics. In order to support 2-PC transactions, a JDBC driver vendor must provide a Database Driver that provides implementations of the javax.sql.XADataSource and javax.sql.XAConnection interfaces.

Likewise a JMS vendor may provide a JMS provider that implements the javax.jms.XAConnectionFactory, javax.jms.XAConnection and javax.jms.XASession interfaces.

A provider of a J2C (J2EE Connector Architecture) Resource Adapter may choose to implement the XAResource interface.

So, whether your resource (Database driver, JMS provider, or J2C resource adapter) will participate in a 2PC transaction depends entirely upon what your vendor provides, and the particular driver software you are using. Most vendors provide both an XA-compliant
 and a non-XA compliant version of their driver or provider. If you see the need to use a 2-PC transaction, then you must make sure that all of the resource managers involved in the transaction are XA compliant. If they are not (e.g., you enlist resources from one XA-compliant resource manager and another one that is not within the same transaction) the WebSphere transaction manager will throw a java.lang.IllegalStateException and you will find error messages like the following in the log:

[1/10/03 14:07:59:510 EST] 52d374a0 TransactionIm E WTRN0064E: An illegal attempt to enlist a two phase capable resource with an existing one phase capable resource has occurred.
[1/10/03 14:08:00:041 EST] 52d374a0 XATransaction E J2CA0030E: Method enlist caught java.lang.IllegalStateException
After these exceptions are thrown your transaction will rollback. Now, this doesn’t mean that you always have to use an XA-compliant Database driver or other resource manager in all instances. If a particular transaction only goes against a single resource manager, then a standard resource manager will work fine, and in fact may be faster than using a corresponding XA resource manager. In fact, you should only use XA if you need it. The initial WebSphere 5.0 performance report [Willenborg] contains a study of the performance difference between XA and non-XA performance of basic operations on a database. The differences are relatively small; resource access is between 18-27% slower using an XA resource manager than a non-XA one. Note that this is for basic operations; in a real application the cost would be less since the database operations comprise a smaller percentage of the total. This difference is enough to be concerned about in performance-critical situations, but not large enough to prohibit the use of XA when it is necessary.

EJB’s and Container-Managed Transactions

So how do we get around the limitations of JTA with EJB’s? Well, first you need to review the three ways of controlling transactions defined in the EJB specification:

Client demarcation: In this case, the programmer of a client uses the explicit programmatic transaction management of JTA. The methods of the interface javax.jts.UserTransaction are used to begin, commit, or rollback the transaction.

Bean demarcation – Here a Session EJB with the transaction attribute set to TX_BEAN_MANAGED can explicitly control a transaction through using the methods of javax.jts.UserTransaction.

Container demarcation: In this final case, the programmer does not write code to define when the transaction begins, commits or rolls back, but the EJB Container instead defines this. The behavior of this object in a transaction is based on information in the transaction attribute fields of the Deployment Descriptor.

By far, the preferred way of managing a transaction (e.g. determining when it starts, and how it terminates) is through Container demarcation. This is called “Declarative” transaction management, since declarations in the Deployment descriptor tell the Container when to start and commit the transaction. To understand how this works, we should examine what values the transaction attribute can take on. Transaction attributes can be set on either the bean or the method level (if it is set at the Method level it overrides the setting, if any, on the bean level). The values of this attribute are:

Mandatory – Here the client of this EJB must create a transaction (either programmatically or declaratively through Container demarcation) before invocation of a method. If a Transaction Context is not present, a javax.transaction.TransactionRequiredException is thrown if the client is a remote client, or a javax.transaction.TransactionRequiredLocalException is thrown if the client is a local client. The execution of the EJB method will be associated with the client transaction (i.e., this object will participate in the Transaction Context associated with the calling thread).

NotSupported – This value means that transactions are not supported by this EJB or method. If a client provides a transaction, it is suspended. All methods marked with this value will execute within an unspecified transaction context. However, if an externally created transaction is so suspended, the transaction will be resumed and propagated to other objects called in this thread after the completion of the marked method(s).

Required – This setting means that the EJB requires that methods be executed within a transaction. If a client transaction is provided it is used, and the execution of the method is associated with it. If no transaction context exists, a new transaction context is created for this thread at the start of the method, and it commits when the method has completed. If other methods are called within this method, then the transaction context is passed along with the method invocation. This is the default transaction setting if one is not explicitly defined for the bean.
RequiresNew – Here the EJB requires that a method be executed in a new transaction. If a client transaction is provided it is suspended for the method execution
. A new transaction is always created at the start of the method, and it commits when the method has completed.

Supports – This value means that the EJB supports execution of method in a transaction but does not require it. If this thread is associated with a transaction context then method execution will be associated with that transaction. If this thread is not associated with a transaction context, then the method executes in an unspecified transaction context.

Never – Never is a mixture of NotSupported and Mandatory. If a client provides a transaction context, then the method will throw a java.rmi.RemoteException if the client is a local client, or a javax.ejb.EJBException if the client is a local client. On the other hand, if the client does not provide a transaction context, then the method acts the same as in the NotSupported case.

To understand how transactions are propagated or passed by beans with different settings of this attribute, examine the following table (Table 18.1) derived from [Sun].

	Transaction Attribute
	Client Transaction
	Transaction associated with Bean method

	NotSupported
	None
	None

	
	T1
	None

	Required
	None
	T2

	
	T1
	T1

	Supports
	None
	None

	
	T1
	T1

	RequiresNew
	None
	T2

	
	T1
	T2

	Mandatory
	None
	ERROR

	
	T1
	T1

	Never
	None
	None

	
	T1
	ERROR

Table 28.1: Transaction Attribute settings

Note that in table 28.1 on the Required line, a transaction, T2, is created because the client does not have an existing transaction and the transaction attribute is Required. Also, note that in Mandatory, an error is produced because the client does not have an existing transaction when calling the method. Careful use of the transaction attributes can help to enforce application defined transactional integrity within a set of EJBs.

Participating In a Transaction

Now that you’ve seen how transactions are started and rolled back, what do you have to do to your EJB code to make this work? The answer depends on the type of EJB you are writing. For Session EJBs the answer is usually nothing. Session EJBs are functional objects whose job it is to direct the action of Entity EJBs or other data sources (like JDBC). In most cases, a Session EJB will simply originate or propagate a transaction through declarative transaction management as described above
. You are not responsible for writing any code to support this behavior; it just happens because the transaction is propagated by the container by associating it along with the thread of control. Likewise, for Container-Managed Entity beans, you do not have to explicitly write anything to participate in a transaction. In this case, the generated persistence code handles persisting changed data to a database when a transaction commits. In BMP Entity Beans, (as we discussed in Chapter 26), you have to write code within the “hook” methods ejbLoad() and ejbStore() to load data from a database or store updated data to a database respectively in response to a transaction commit or rollback
. But how does this practically work and where would you apply these settings? Consider the following scenario that can help you understand better the kind of control that container-managed transactions give you and understand why they can help you out of some troublesome situations. Let’s says that you are developing an application to record stock trades. Brokers must be only able to record stock trades for customers that they are directly responsible for, so that a broker can’t make any unauthorized trades for another broker’s customers. Therefore, you can imagine a StockSales session bean that records the sale by writing to a database, and also checks to see that the broker entering the sale is the broker that is responsible for this customer. If there is a mismatch, then the transaction is rolled back (by using SessionContext.setRollbackOnly(). However, let’s also say that if an unauthorized sale attempt occurs, that a record needs to be written to an audit log table indicating when (and by whom) the attempt took place. However, here you’re in a catch-22 situation; if the transaction rolls back, then the audit log will not be written. This is where the transaction settings can come to your rescue. If you wrap the audit log function in an AuditLog session bean then you can set the transaction setting of the AuditLog bean’s recordLogInformation() method to be RequiresNew, so that it always runs in a new transaction, regardless of whether or not there was an existing transaction in the calling method’s scope. The following simple UML diagram (Figure 28.3) illustrates the methods involved and the transaction scopes applied.

[image: image3.emf]

Stock Sales EJB Session Context Audit Log EJB

Write stock sale to database

Check for Access to Account

setRollbackOnly()

Write to Audit Log database

T1

T2

Record stock sale

Figure 28.3 Stock Sales Example

In this diagram, the Stock Sales EJB begins a new container-managed transaction (shown as T1) when the recordStockSale() message is received. It performs a database write within the context of that transaction. However, that transaction is paused (shown by the shaded area) when the recordLogInformation() method is called on the AuditLog EJB, which has its transaction attribute set to RequiresNew. This creates a second transaction (shown as T2) which will commit at the end of the recordLogInformation() method, ensuring that the log will be written to the database. When that method finishes, the original transaction is resumed, and at some point later, the business logic determines that this broker cannot actually perform this trade, and rolls back the transaction – preventing the sale from being recorded, but not preventing the audit log from being updated.

An Example of using XA Resources with 2-PC in WebSphere

So, now that you’ve seen where you might want to use transaction attributes, in what circumstances would you want to use two-phase commit? There are many reasons to use two phase commit, ranging from needing to update two separate databases (requiring two different data source definitions, since a data source is uniquely bound to a single database), to needing to make a request of an EJB running in another EJB server (since there would be no way to manage this as a local transaction if it’s running in another server). However, one particular pattern occurs so often that it nearly defines the need for two-phase commit. That is, that many applications need to be able to write to both a database and place a message on a JMS queue within the same transaction.

An exceptionally common situation for this is when you need to both update a local cache of information and also notify another application of the update. For instance, consider the following scenario; let’s say that you are building an application that takes product orders from the internet. There is an existing mainframe application that can process the incoming orders. The application is naturally asynchronous – since it was developed as a batch application, it does not process newly submitted orders immediately, but works continuously through the queue of submitted orders from the web and also from those received from other routes (such as retail store POS systems). So how do you make this work in a web environment, where fast response is everything, and where impatient shoppers will demand to know the status of their orders at any hour of the day? Well, the answer is to combine writing to a local Order cache (which can be later queried from a Servlet to show our erstwhile shopper how their order is doing) with placing a request for processing on a queue shared with the mainframe application. A simple design for this is shown in Figure 28.4.

[image: image4.emf]

<<Session Façade>>

OrderPlacementBean

OrderProcessor

Connection

Queue

Figure 28.4: Order Placement Bean Design

This is a standard design (explained in more detail later in chapter 30) that uses a Stateless Session bean (the OrderPlacementBean) as a Session Façade onto a business object (the OrderProcessor). The code to accomplish this can begin quite simply. First, let’s examine the method in the OrderProcessor that executes the database insert and the enqueuing of the message.

public void processOrder(Order anOrder) throws OrderException {

storeOrderInOrderDatabase(anOrder);

String xmlString = buildXML(anOrder);

writeOrderToOutputQueue(xmlString);

}
Here we just see the sequencing of the instructions. Next look inside the storeOrderInOrderDatabase() message to see how the insert into the database table is done:

void storeOrderInOrderDatabase(Order anOrder) throws OrderException {

Connection con = null;

PreparedStatement stmt = null;

try {

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource) ctx.lookup("java:comp/env/jdbc/Db2XADataSource");

con = ds.getConnection();

stmt = con.prepareStatement(insertStatement);

stmt.setString(1, anOrder.orderNumber);

stmt.setString(2, anOrder.customerNumber);

stmt.setDate(3, anOrder.placementDate);

stmt.setString(4, anOrder.status);

boolean updated = stmt.execute();

} catch (Exception e) {

System.out.println("Exception caught in StoreOrderinDatabase");

throw new OrderException(e.toString());

} finally {

try {

if (stmt != null)

stmt.close();

if (con != null)

con.close();

} catch (Exception e2) {

System.out.println("Exception in closing JDBC resources");

// log and ignore the exception

}

}

}
Note that there’s no rocket science going on here – this is vanilla JDBC code that simply obtains a connection, creates a prepared statement, executes the statement, and closes the connection. The only interesting thing is that if a problem is encountered that an OrderException (an application defined exception) is thrown, with the information on the originating exception enclosed within it. This idiom is called “Converting Exceptions” or “Wrapping Exceptions” – we’ll look more deeply into this later. But first, we need to examine the message that puts the Order creation message on the JMS Queue:

void writeOrderToOutputQueue(String text) throws OrderException {

QueueConnection connection = null;

QueueSession session = null;

try {

InitialContext ctx = new InitialContext();

QueueConnectionFactory qcf =

(QueueConnectionFactory) ctx.lookup(

"java:comp/env/jms/QueueConnectionFactory");

Queue queue = (Queue) ctx.lookup("java:comp/env/jms/OutputQueue");

connection = qcf.createQueueConnection();

session =

connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

QueueSender sender = session.createSender(queue);

TextMessage message = session.createTextMessage(text);

sender.send(message);

} catch (Exception e) {

System.out.println("exception in put to queue " + e);

throw new OrderException(e.toString());

} finally {

try {

if (session != null)

session.close();

if (connection != null)

connection.close();

} catch (Exception e2) {

System.out.println("Exception in closing JMS resources");

// log it and eat it

}

}

}
As you see, there is nothing truly special about this method either – it simply obtains a JMS connection from a QueueConnectionFactory, creates a Session and a Sender, sends the message and then closes everything down. Likewise, if it encounters any problems, it wraps the exception text in an OrderException and throws that.

The interesting bit comes in when we consider how the Stateless Session bean that wraps this code invokes this – and what kind of flexibility this design gives us. So, to understand that, look at the processOrder method in the OrderPlacementBean:

public void processOrder(Order anOrder) throws OrderException {

try {

OrderProcessor processor = new OrderProcessor();

processor.processOrder(anOrder);

} catch (OrderException e) {

mySessionCtx.setRollbackOnly();

throw e;

}

}
This looks very simple, doesn’t it? However, this shows a general-purpose way to handle rolling back transactions when things go wrong. First, let’s consider what happens when everything works correctly – in this code, we enter the try block, create an OrderProcessor, call the processOrder, and the method completes. That’s the beauty of EJB declarative transaction management. There was no additional code needed to create a two-phase commit connection between the JDBC data source used in the storeOrderInOrderDatabase() method and the JMS Session used in the writeOrderToOutputQueue() method. We didn’t have to explicitly look the transaction up, tell it to start, or commit as you do when using the JTA API.

However, what happens when something does go wrong? This simple example shows an easy way to handle that too. In this simple application, we’ve used the Session Façade pattern from [Alur]. In that pattern, we wrap a session bean around a set of objects that implement the functional behavior of our application – the session bean acts as a “Façade” around the other application objects. In this case, it is the OrderProcessor that does all of the real work in our application, but note that we’ve left handling the exceptional case out of scope of this object. Since the Session Façade implicitly knows about the transaction, it is the best place to handle the work of rolling back the transaction (using setRollbackOnly). There are many cases when applying this pattern that you will want to handle exceptional cases like this by explicitly rolling back the transaction, and then passing on the application exception to the client code. Now, there is one more way to force a transaction rollback explicitly – you can throw a javax.transaction.SystemException. However, we have found that this mechanism is usually easier and cleaner than that approach since it allows you to do cleanup that is not possible when you simply jump all the way out by throwing a SystemException.

There is one final thing that we should point out about this example – that is the fact that the only reason that we can get a 2-phase commit in this example is because both the SQL DataSource and the JMS QueueConnection Manager have been explicitly set up as XA resources. You do not get 2-PC if you don’t use an XA connection manager – and this opens you up to a particular class of error in the case where you try to mix one-phase commit and two-phase commit resources within the same transaction.

So what do you do in the case where you do not have an XA capable resource to work with? This situation may occur when using certain databases not directly supported by WebSphere, or when using certain JCA adapters (like the IBM JCA Adapter for CICS) that do not support XA from within WebSphere Application Server on Distributed platforms. There are two ways of handling this: in some cases, you can try to make this work yourself by using the SessionSynchronization interface, or in others, you can use the Last Participant Support that is available in WebSphere 5.0 Enterprise Edition.

First, you should examine how the SessionSychronization interface works. You can make a Stateful session bean aware of transaction synchronization by implementing the interface javax.ejb.SessionSynchronization. This interface provides hook methods to a stateful Session EJB that allows it to read or write its internal fields to or from external database storage. Likewise the Session bean could also force a rollback using sessionContext.setRollBackOnly() if necessary. There are three methods in this interface that you should become familiar with. They are:

afterBegin() – Receipt of this method notifies a session Bean instance that a new transaction has started. Subsequent business methods on this instance are within the context of the transaction.

beforeCompletion(boolean) – This method notifies the session Bean instance that a transaction is about to be committed. The value of the Boolean tells the instance whether the transaction has been committed or rolled back.

afterCompletion(boolean) -- This method notifies the session Bean instance that a transaction commit protocol has completed The value of the boolean tells the instance whether the transaction has been committed or rolled back.

So, if you needed to use a resource that is not XA compatible, one way to handle it is to perform your actions on the non-XA resource in the beforeCompletion() method, after first checking the value of the boolean argument to be assured that the rest of the data in this transaction will been committed. Then in the afterCompletion() method you would have to check the boolean value to see if everything else succeeded. If it did, then you are finished. If not, then you need to “undo” (or compensate for) the action you performed in the beforeCompletion() method. So, if you inserted a row in the beforeCompletion() you would have to delete it in the afterCompletion(). Likewise, if you updated a row in beforeCompletion() you would have to update it a second time with the old values in the afterCompletion(). Please note that this is not guaranteed to work; if something fails in the afterCompletion() method then data may be corrupted. Thus, while this technique may be your only option in some circumstances, it should not be confused with simulating a full two-phase commit. Full transactional support requires support from both the application server and all the resources that participate in the transaction. This is why you should try to use XA compliant resources whenever possible.

In addition, you should note that this would only work if WebSphere were not aware of the non-XA resource – if (for instance) you tried to use a 1-PC database driver from WebSphere together with other 2-PC transaction resources, you would receive an error that would inform you that you couldn’t do that. Therefore, you would have to use the standard JDBC mechanism of using a JDBC DriverManager to obtain a Database connection – which could potentially lead to a database connection leak if you don’t remember to close the connection when you are finished with it.

As you can imagine, this isn’t a desirable situation. To get around this limitation, WebSphere Application Server Enterprise Edition supports a special feature (called Last participant support) that can correct for this in one special case. The way in which Last Participant Support works is by ordering the resource managers within the two-phase commit protocol. Thus a single one-phase commit resource manager can be “put off” and be committed last, only after all of the two-phase commit resource managers have voted “yes” in the first (prepare) phase of the two-phase commit process. If any two-phase commit resources veto the transaction during the prepare phase, which occurs prior to this last participant being invoked, then the one-phase commit resource manager is not invoked, and the transaction rolls back. If the one-phase commit resource manager successfully completes, then the transaction is then allowed to commit. If it fails, however, then the entire transaction rolls back.
Transaction Settings for J2EE 1.3 in WebSphere 5.0

So how do you set up WebSphere to use the transaction attributes? Since these settings are described in the EJB specification, you need to remember that you will need to edit the EJB deployment descriptor to set them. The EJB Specification [EJB] describes the format of the <container-transaction> tag in detail, but we show the basic format below. So, let’s see how you would set up transaction attributes for the Order processing example described earlier. In this example, you will need to set the transaction attribute of the processOrder method to be Required (since an EJB transaction is required in order for the 2-PC connection between the database insert and the enqueueing of the message to work). Likewise, you will set the transaction attribute of the retrieveOrder method to Supports (since the EJB doesn’t need to establish a transaction for this, single read, but will still work within one if it is provided). We show the <assembly-descriptor> section that describes this below:

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>OrderPlacement</ejb-name>

<method-intf>Remote</method-intf>

<method-name>processOrder</method-name>

<method-params>

<method-param>

 com.ibm.ejb.tests.Order

 </method-param>

</method-params>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

<method>

<ejb-name>OrderPlacement</ejb-name>

<method-intf>Remote</method-intf>

<method-name>retrieveOrder</method-name>

<method-params>

<method-param>

 java.lang.String

 </method-param>

</method-params>

</method>

<trans-attribute>Supports</trans-attribute>

</container-transaction>

</assembly-descriptor>
This is a simple example that doesn’t even begin to cover all the different variations of setting up transaction attributes on home methods or using wild-card specifications. For more information on doing that, see [Monson-Haefel].

So, to begin your examination of setting transaction attributes in WebSphere Studio Application Developer, you will need to open an EJB Deployment Descriptor editor on the Deployment Descriptor of the QueueAndDatabaseUpdateEJB project. Then, select the “Assembly Descriptor” tab and look for the “Container Transactions” section on the right-hand side of the page.

[image: image5.png]
Figure 28.5 Add Container Transactions

If you press the Add button in the Container Transactions section, you will see the following wizard page (Figure 28.6) for adding new Container Transaction settings.

[image: image6.png]
Figure 28.6 Select Beans for CMT

At this point, we’re only interested in setting up transactions for the OrderPlacement EJB. The OrderQueueClearingMDB is simple way to verify that the Order was placed on the Queue – we’ll examine it when we look at running the example later. For now, select the OrderPlacement check box and press the Next button. That brings up the following wizard page (Figure 28.7).

[image: image7.png]
Figure 28.7 Add Container Transaction

Begin by setting the container transaction type to Required in the top drop-down, and then scroll down the method list until you encounter the processOrder() method. Select that method by checking the check-box next to the method name and press Finish to create this container-transaction entry.

Repeat the process by again pressing Add to create a new container-transaction entry, but this time set the container transaction type to Supports and then select the retrieveOrder() method before finishing the wizard. Once you are done, you will then see the following two entries in the container-transaction section of the EJB deployment descriptor editor (Figure 28.8).

[image: image8.png]
Figure 28.8 List of Container Transactions

Advice on using Transactions

Probably the best set of advice about EJB transactions that I’ve come across is a set of simple rules that Keys Botzum (from the IBM Software Services for WebSphere group) came up with that give you the 90% case for dealing with transactions. Keys’ rules of thumb are:

· Always assume you’re going to use container demarcated transactions when using EJB’s. It’s complicated and difficult to use the JTA API to do your own transaction demarcation, and not worth it in most circumstances.

· If you need transactions with a servlet (e.g. outside the EJB container), use the JTA API for demarcating a transaction. The beauty of this rule and the previous one is that by doing this you will not have to write your database code one way (using setAutoCommit()) to work within the EJB container and another way to work outside the EJB container. In fact, you should try not to mess with Connection.setAutoCommit() – just assume that the container will handle transaction commit/rollback for you.

· Assume that the container will handle the appropriate magic of managing local vs. global transactions based on the number of participants. Also, assume that it will perform automatic one-phase commit optimizations if appropriate. Thus, there is no penalty to "global" transactions.

· Use XA enabled resources in the following situations:

· If there may be more than one participant in a transaction (this could be two JDBC databases, or a database and a JMS connection or EIS connection, or any other combination of the above). This allows the container to do any appropriate optimizations if there is only one participant, but to handle XA correctly if there are two or more.

· If an EJB needs to access another EJB deployed in a different EJB container then both containers should use XA resource managers. Sometimes one of your applications EJBs will need to use a “utility EJB” that provides some service to you. The only way to tie together the two EJBs into a single transaction is to use XA resources in both EJBs. This is an example of a “distributed” transaction; something relatively rare, but that also requires the use of XA resources.
These rules will work for most situations, but there are a few that you may find yourself in that will require you to go beyond the rules – in particular we need to look at some of the differences between the EJB 1.1 and EJB 2.0 specs with regard to “local” transactions. Let’s look at the following sections from Section 6.5.7 of the EJB 1.1 spec:

“A session Bean’s newInstance, setSessionContext, ejbCreate, ejbRemove, ejbPas-sivate, ejbActivate, and afterCompletion methods are called outside of the client’s global transaction. For example, it would be wrong to perform database operations within a session Bean’s ejbCreate or ejbRemove method and to assume that the operations are executed under the protection of a global transaction. The ejbCreate and ejbRemove methods are not controlled by a transaction attribute because handling rollbacks in these methods would greatly complicate the session instance’s state diagram (see next section).”

This statement was modified a bit in the EJB 2.0 specification. You see, the problem is that this statement left things a bit confused. It said that the operations shouldn’t be controlled by the transaction attribute of the bean, but it didn’t specify what the behavior of these operations should be in relation to any ongoing global transaction. In particular, it didn’t give the vendors much guidance as to how SQL statements in these methods should be handled; should each statement be its own transaction (e.g., should it be as if the connection were in auto-commit mode) or should the method be a single transaction scope? So let’s examine how this statement changed in EJB 2.0 (the following quote is from section 7.5.7 of the EJB 2.0 specification):

“A session bean’s newInstance, setSessionContext, ejbCreate, ejbRemove, ejbPassivate, ejbActivate, and afterCompletion methods are called with an unspecified transaction context. Refer to Subsection 17.6.5 for how the Container executes methods with an unspecified transaction context.”

What the above-referenced section discusses is that it is up to the Container vendor to determine how methods in the unspecified transaction context operate. Now in addition, you should turn your attention back to the table referenced previously. When an EJB’s transaction attribute is Never or NotSupported (or Supported without an outer transaction context) then the business methods also run within an unspecified transaction context. Therefore, it is important to understand exactly what that means in WebSphere, and how to know what the behavior of methods running in the unspecified transaction context will be. To understand that we will need to investigate a new feature in WebSphere 5.0. in WebSphere 5.0, there are extended transactional attributes that apply to the unspecified transactional context. The three settings we have to understand are:

· Boundary (which can be one of either Bean_Method, or Activity_Session)

· Resolver (which can be either Application, or Container_At_Boundary)

· Unresolved Action (which can be either Commit, or Rollback)

Let’s leave aside the issue of Activity Sessions for the moment. So, for the moment, just go along with this and we’ll discuss what happens when you set “Boundary” to Bean_Method. Basically, what this means is that all RMLT’s (Resource Manager Local Transactions – we’ll just call them “local transactions” from now on) must be committed within the same enterprise bean method within which they are started. So, what does “Resolver” mean? In short, Resolver specifies resolution control and determines who is responsible for handling the commitment of statements that are left “hanging” by being called within an unspecified transaction context. The two options for Resolver are Application, which means that your program is responsible for forcing commitment (either by using setAutocommit(true) or by using LocalTransaction.begin() and LocalTransaction.commit()) and Container_At_Boundary, which means the container is responsible for committing the local transaction.

Now, if you set Resolver to Container_At_Boundary (and set the Unresolved Action to Commit) then the bean's method will act the same as it would if you had set the bean’s transaction attribute to RequiresNew. That is, the container will begin a local transaction when a connection is first used, and the local transaction will commit automatically at the end of the method. However, the difference is that this method will execute in a Local Transaction Context – this means (for instance) that it won’t tie together two different data sources into a single 2-PC transaction within the same method. Likewise, you can’t carry a connection over into a method that is being used in this way. You must obtain the connection, use it and close it all within the same method. Any attempt to pass a connection carried over from another transaction context into a method set up in this way will throw an exception.

Things are a bit more complicated if you choose to set the Resolution Control to Application. Now the behavior of the local transaction depends upon what your code does. If your code specifies the behavior of each local resource (for instance if you use setAutoCommit(true) in JDBC) then each statement will run in its own local transaction. Another option would be that you could delineate the transaction yourself by using javax.resource.cci.LocalTransaction.begin() and javax.resource.cci.LocalTransaction.commit() (or rollback()). However, the interesting bit occurs if you do not do either of these things, and leave a transaction “open” or “hanging”. This could happen in one of two ways; either you could use LocalTransaction.begin() without a corresponding LocalTransaction.commit() at the end of the method, or you could use setAutocommit(false) after obtaining your JDBC connection and not add any additional code to control the transaction. As you can see, the state of the transaction at the end of the method is now ambiguous. To resolve that ambiguity, there is the other option, the “Unresolved Action”. If “Unresolved Action” is set to Commit, then “open” local transactions will commit at the end of the bean method; if it is set to Rollback, they will roll back.

Activity Sessions in WebSphere 5.0 Enterprise Edition

So, why did we have to ignore the possibility of setting Boundary to “Activity Session” in the discussion above? Mostly that is because Activity Sessions, the subject of this next discussion, are a feature of WebSphere 5.0 Enterprise Edition only – they are not available in either other versions of WebSphere 5.0. However, the feature is useful enough that it is worth a discussion for those who may be trying to determine whether to use the Network Deployment or Enterprise Edition versions of the product.

Activity Sessions provide an alternate unit of work model to standard EJB transactions. In particular, Activity Sessions can provide a way of solving the “business transaction” problem where a single business activity will have to cross more than one EJB transaction. Activity Sessions can be associated with an HttpSession so that the activity session can span several servlet invocations as well – spanning user “think time”, resolving the case where the application really needs a human being to be involved in a process but does not want to give up the unit of work model. Using Activity Sessions require additional thought and planning be put into the design of your applications, since the transactional span is quite different from what most developers are used to. For more information, you should consult the WebSphere Enterprise Edition InfoCenter, and JSR-95, which is a proposal to standardize Activity Sessions through the Java Community Process.
Extended Transaction Settings in WebSphere 5.0

Setting up the extended transaction settings in WebSphere Studio is actually quite simple. The extended settings apply for an entire bean; any method of that bean running in an unspecified transaction context will take on the same extended attributes. To set them in WSAD, Open an EJB Deployment Descriptor editor, select the Beans tab and then select the bean from the beans list. Scroll down to the WebSphere Extensions section. You then select the Boundary, Resolver and Unresolver Action settings from the drop-down menus as shown in the following Figure (Figure 28.9).
[image: image9.png]
Figure 28.9: Extended Transaction Settings in WSAD

The big question that remains unresolved is exactly where you would use this? In truth, this feature is simply not used that often. Probably the most common case where this would be used would be in an ejbCreate() method of a Stateful session bean; since those methods always run in an unspecified transaction contract, you would need to use the extended transaction settings if you wanted to perform an insert into a database during the ejbCreate() method. However, Stateful beans are honestly not that useful, and are not a part of our best practices. We would recommend that instead of trying to make a Stateful bean act like an Entity bean, that instead you simply use an Entity bean where it is applicable.
Special Transaction Considerations for JMS

While EJB developers have been writing transactional systems using JDBC since the EJB 1.0 days (which, to us WebSphere developers means WebSphere 3.X) it’s only more recently that we’ve been able to develop fully transactional EJB systems using JMS. WebSphere 4.0 for the first time provided full transactional connection between JDBC and JMS when using WebSphere MQ. Because this capability has not been in the field as long, the patterns for using JMS within EJBs and WebSphere are not as well known as the patterns for using JDBC within EJBs.

For instance, in some situations, you can use JMS synchronously (that is a process can place a message on a queue, then turn around and wait for a response in the same thread). We call this the “pseudo-synchronous” approach to using JMS. It is quite common in some older client-server systems that interfaced with legacy applications using MQ Series. Unfortunately, this pattern will not work within the EJB container in WAS 5.0. There is an extremely good reason for this limitation. The EJB specification (section 17.3.5) specifically states, “The Bean Provider must not make use of the JMS request/reply paradigm (sending of a JMS message, followed by the synchronous receipt of a reply to that message) within a single transaction.” The reason for this is that in fact, within an EJB transaction, the request would not be sent until the end of the transaction – so the response would time out (after receiving nothing) and the entire operation would fail. Note that this is not some arbitrary limitation of the J2EE specification, but rather an inherent property of a transactional system.
Another common approach that cannot be used in WAS 5.0 is to use the JMS message Session.setMessageListener() inside an EJB – the problem here is that if this were allowed, then the messages received within the message listener would not be received within a specified transaction context. This makes sense in retrospect, as providing a way of involving both a message receipt and work done by the onMessage() method of an MDB is the raison d’etre of introducing MDBs into the EJB 2.0 specification. However, what will surprise some developers is that not only is the use of Session.setMessageListener() forbidden within the EJB container but within the Web container as well. There are some good reasons for this; but foremost among them is that the J2EE 1.4 specification (which is not yet implemented in WebSphere 5.0) explicitly states in section J2EE.6.6 that Session.setMessageListener() may only be used by application clients running within an application client container. The J2EE 1.3 specification was not as strong in this regard as is the J2EE 1.4 specification. Therefore, many vendors allowed the use of setMessageListener() in the web container in the absence of a strong J2EE 1.3 statement. IBM, on the other hand, is anticipating the J2EE 1.4 requirement in WebSphere 5.0 by disallowing the use of setMessageListener(). This may cause a problem in porting applications from other Web Containers to WebSphere. However, it should not be a huge issue – often the reason for this was to provide the same kind of functionality provided by Message-Driven Beans. If you do run into this problem in porting an application to WebSphere 5.0, simply move the code from the Message Listener class into an MDB.

Dealing with Concurrency

Every application that uses a database in any form will at some point in time have to face an age-old question – how do I keep two different users from stepping on each other while they update their data? That is, if Tammy in the graphics department is updating our catalog to reflect the new look of our summer items, while Bob in accounting is also updating the catalog to reflect the new price list, how do we keep Bob’s updates from overwriting Tammy’s and vice versa? This comes down to the issue of managing concurrency – and there are two general approaches to this, optimistic and pessimistic concurrency management.
Pessimistic concurrency management is probably the easiest to understand. This is the idea of using a lock on a database record to keep more than one application from updating the database at the same time. So, at the beginning of Tammy’s transaction, she obtains a lock on the catalog row. When Bob comes along, he may be restricted from reading the catalog row (if Tammy’s lock was a lock on read) and forced to wait until Tammy is done. Another option would be a lock on write – this would mean that Bob can read the original data, but he’s restricted from writing new data to the row until Tammy’s update completes (this would ensure that Bob’s updates are additive to Tammy’s).

The main problem with the pessimistic approach is the waiting. If several readers are kept from reading a row while another holds a lock that might result in an update then this may result in unacceptable runtime performance. In this case, the readers are needlessly waiting for a write that might never occur. To avoid this problem, another option is the idea of optimistic concurrency;. This involves two things; first not obtaining locks, thus allowing for maximum concurrency in reading, and second, performing a read immediately before a write to ensure that the data has NOT changed in the interim. If the data has changed, then the writer will abort the writing process. So, in our scenario, Bob would read his row at the beginning of his transaction, getting the original row without Tammy’s updates. At the end of his transaction, under most circumstances he would read the row again and discover it had not changed, and then complete the update. However, in some cases, he might read the row, discover Tammy’s update, and abort his attempt to write the row since he would over-write Tammy’s intervening update in the process.
Detecting whether a row has changed requires one of two approaches. Bob could detect Tammy’s update either by using a Timestamp, which is applied at the end of each update, or by using an “Overqualified update”. An “Overqualified update” is where you use the originally read value of every column in the table as part of the WHERE clause of your update statement. In this case if there are any mismatches (due, for instance, to Tammy’s update), then the WHERE clause of the SQL Update statement will not locate that row and fail. The major advantage of Optimistic concurrency control is that since it doesn’t require locking that it allows for much better throughput – at the cost of some number of aborted updates when collisions occur.

Concurrency and EJBs

Historically, the specification has left question of how to handle concurrency within Entity EJBs to the vendor’s discretion. In its various releases, WebSphere has gone through several different options in trying to represent the best way to handle concurrency in Entity beans. To begin with, in WebSphere 3.X (which implemented the EJB 1.0 specification) WebSphere maintained the following approaches:

As per the EJB 1.0 specification, each Entity bean specified an Isolation Level. This provided a “hint” to the database as to how transactions should be separated (note that the idea of an isolation level is still part of the JDBC specification [JDBC] as discussed earlier). The problem with this was that the effect the isolation levels had on EJB applications was determined by the locking mechanisms available in the database and how WebSphere’s transaction manager uses those locking mechanisms. So, in fact, each database driver supported by WebSphere could have different locking semantics (we’ll look more into this later). In addition, a more subtle issue with Isolation levels is that every method of every EJB in a transaction had to have the SAME isolation level – trying to change isolation levels in mid-stream led to a commit-time exception.

WebSphere 3.X extended the EJB 1.0 specification by providing a special extension to handle deadlock in some databases in the case where the EJB Isolation level was set to TRANSACTION_SERIALIZABLE (the safest level as described earlier). In this case, if two transactions both read the same row (entity), then they both acquired a read-lock on it. If one transaction then tried to write the entity, it would acquire a write lock, which must wait until all read-locks are released to complete. If the other transaction also tried to write to the entity, deadlock would occur. For this purpose, WebSphere introduced the Find for update option. This option specified whether the container should get an exclusive lock on the enterprise bean when the "find by primary key" method is involved. If it is set to false, then it will instead acquire exclusive locks on “find by primary key” methods, and the deadlock condition would not occur.

Finally, WebSphere 3.X provided an option to reduce the number of write-locks needed (while increasing overall performance) by providing a “read-only” flag. The issue here was that the EJB 1.0 specification did not describe any way for the container to find out if a bean’s state has changed during a transaction. The specification implicitly assumed that all beans used during a transaction were “dirty” and must have their state written back to the back-end store at the end of a transaction. To address this, WebSphere 3.X defined a read-only method flag in the deployment descriptor of entity Beans. This allowed the EJB developer to tell the container which methods were read-only, i.e., which didn't change the state of the bean. WebSphere 3.X looked for the setting of this flag whenever a method is invoked. If only “read-only” methods (e.g. methods this flag set) were sent to a bean in a transaction, then the container would not assume that the bean is “dirty” and would not execute a SQL UPDATE statement when the transaction is committed.

Now, this changed a bit in WebSphere 4.0. First, the EJB 1.1 specification removed the isolation level from the deployment descriptor, and left it to the vendors to handle transaction isolation in a consistent way. So, IBM provided an IBM extension for isolation levels similar to what was provided in WebSphere 3.X. Now, to handle the “find for update” and the “read-only” problems, WebSphere 4.0 introduced a new extension flag for all methods called “access intent”. The access intent flag could be set on all methods, but it had two different results. The valid values for Access Intent were “read” and “update”. If a business method (a getter method) was set to “read” then it would have the same effect as setting the “read-only” flag to “true” in WebSphere 3.X. Likewise, it were set to “update” then executing the method marked the bean as dirty. However, if the Access Intent flag were set to “update” on a Home Finder method, then this had the effect of making this method use a “find by update”.

So far, you will notice that we have only discussed managing the effects of a pessimistic concurrency strategy – that is because until WebSphere 4.02, WebSphere did not support optimistic concurrency. In WebSphere 4.02, a new IBM deployment descriptor extension was introduced – a setting for “concurrency control”, which had two values, pessimistic (the default, using the support described above) and optimistic. If you chose “optimistic” concurrency control, then WebSphere would use an overqualified update scheme to identify if any columns in the target row changed during the transaction. WebSphere would use all columns defined in the EJB deployment descriptor as CMP fields, with the exception of those columns having an ineligible column type (BLOB, CLOB, LONG VARCHAR, and VARCHAR having a length greater than 255).

So this demonstrates everything that led up to the concurrency control support in WebSphere 5.0 – now how is all this managed in WebSphere and WSAD 5.0? WebSphere 5.0 simplified the process by combining all this into one setting – now called Access Intent. You now define one or more Access Intent Policies to apply to a set of Entity EJB methods that will control both the concurrency scheme used (optimistic or pessimistic) and the locking strength used in a pessimistic scheme. The cool thing about the new Access Intent approach in WebSphere 5.0 is that it also abstracts away the details of picking the right isolation level for each particular database; given that different databases have different locking semantics, the Access intent setting allows the container to pick the right isolation level based on a general hint.

There are seven different settings for Access Intent in WebSphere 5.0. To begin with, we have the two possible optimistic settings:

wsOptimisticUpdate – use this setting when you want to allow a method (or group of methods) to perform updates but use optimistic concurrency. This will not perform any locking on select statements, and will perform an overqualified update at the end of the transaction if any set() methods are used during the transaction.

wsOptimisticRead – this setting is used when you want to allow one or more methods to only read from a database. If you attempt to perform any updates (e.g. if you send a set()) method during the execution of the transaction, a PersistenceManagerException will be thrown.

In addition to the two optimistic settings, there are the five pessimistic settings:

wsPessimisticRead is nearly identical to wsOptimisticRead other than the fact that the underlying database isolation levels are set slightly differently (PessimisticRead sets the isolation level to RepeatableRead instead of ReadCommited as it is in OptimisticRead). As is the case with wsOptimisticRead, if an update is attempted, the container will throw a PersistenceManagerException. Note that the isolation level setting for this is different in Oracle (see below).

There are four choices for Pessimistic updates, differing in both the isolation level used and also in the approach taken to using the “for update” clause on select statements.

wsPessimisticUpdate-Exclusive – “Exclusive” in this case means that your application needs exclusive access to the database rows it is using. This setting indicates that it will use the for-update clause, and will set the isolation level to Serializable. So, this setting will mean that you will not encounter either phantom reads or non-repeatable reads, and that the deadlock that is possible with the TRANSACTION_SERIALIZABLE level alone (without the use of a FOR UPDATE clause) will not occur. The problem here is that this is terribly expensive – this will force every transaction to “wait in line” to acquire a write lock at the beginning of the transaction and will hold all other transactions until this transaction completes.

wsPessimisticUpdate-NoCollision – “No Collision” means that the application should be designed such that no concurrent transactions are expected to access the same database rows. This setting (as in the previous) uses the for-update clause but sets the isolation level to ReadCommitted.

wsPessimisticUpdate-WeakestLockAtLoad – This is the default setting for WebSphere. Weakest Lock at Load is applicable only to those databases that support both read locks and write locks. If the database supports them both, then a read lock is first acquired when a row is accessed and then the lock is escalated (promoted) to a write lock if an update is performed on the bean. This setting uses an isolation level of RepeatableRead, but does not use a for-update clause. It will work pretty well with nearly every database except Oracle – more on that later.

wsPessimisticUpdate -- This setting uses a for-update clause on finder methods and sets the isolation level to RepeatableRead (as in WeakestLockAtLoad) except in Oracle – again, more later.

So, at this point you might be asking, “why is Oracle special”? Well, due to the way that it implements its locking mechanism, Oracle does not support the TRANSACTION_REPEATABLE_READ isolation level in the same way as other databases (for example, DB2 or SQL Server). So, everywhere that in other databases the server would have used TX_REPEATABLE_READ the server instead has to use TX_READ_COMMITTED.

In addition, Oracle doesn’t use locks in the same way as in other databases. In databases, there is usually a difference between read-locks and write locks – a read lock is shared – multiple processes or threads can read an item simultaneously. A write lock is exclusive – only a single transaction holds the lock on the item. However in Oracle the weakest lock is an update lock. This becomes interesting when you consider using wsPessimisticUpdate-WeakestLockAtLoad in Oracle – as mentioned earlier, for Oracle the server has to use the TX_READ_COMMITTED for this setting; what’s more in order to maintain the semantics of the setting, the server must also use a SELECT…FOR UPDATE as well. This is only true of Oracle – no other database requires the server to use a FOR UPDATE clause for this setting. The problem is that in many cases using this access intent with Oracle will result in a runtime exception of “The Backend datastore does not support the SQL Statement needed by this AccessIntent”. This is because certain types of SQL statements (for instance multiple table joins) cannot use the “FOR UPDATE” clause.

Choosing the right Access Intent

So given all of this, which Access Intent should you use for your applications? If the question were simple to answer then WebSphere wouldn’t have included so many choices. The fact is that this is a complicated question, often motivated by differences in the behavior of the databases themselves. So, let’s work through some best practices, some decision points, and some recommendations to guide you.

First, what’s the “easiest” route for access intent? Well, in many cases you would have expected that to be wsOptimisticUpdate. In that case (as you remember) if an application writes to a database, and there are few expected collisions, then readers and writers entirely stay out of each others way, and writers will only cause each other problems once in a blue moon. What’s more, it’s even easy to write your domain logic so that if a transaction fails in this way that you can “restart” the entire process if you captured the original data the user was operating on (perhaps using the Command pattern.

However, optimistic locking is not appropriate in all cases, Therefore, sometimes you have to use one of wsPessimisticUpdate variants. wsPessimistic-WeakestLockAtLoad will work in most cases with nearly every database; that’s why it’s the default. However, if you are using Oracle, it will fail in the cases described above (joins, and wherever the DISTINCT keyword is used) so you would have to move back to using wsPessimisticUpdate-NoCollision. However, this policy doesn’t ensure data integrity. Since it doesn’t hold locks, then concurrent transactions can step on each other and overwrite each other’s data. So, either you can live with that option (maybe by ensuring that you don’t get simultaneous transactions against a row through some other approach) or choose to live with wsPessimisticUpdate-Exclusive, which would serialize access to each row for both readers and writers. In some applications, this would be a significant performance problem. In others, it wouldn’t – your mileage may vary.

Finally, there is a difference in how you set up the optimistic predicate in Websphere 5.0.0 and 5.0.1. In version 5.0 of WebSphere, by default all non-binary columns were added to the predicate (as we saw was true in the 4.0.2 version as well). The problem here was that this is slow since not all the columns will be typically indexed. Also, this can lead to problems because now the predicate is too constrained. In version 5.0.1, the default is instead not to add any columns to the predicate that means that for optimistic locking, no locking will take place. Instead, you need to manually set which columns are part of the predicate by selecting the mapping of a column in the Overview of the WebSphere Studio map editor and then by setting the "OptimisticPredicate" property to "true".
Setting up Access Intents for an EJB in WebSphere Studio is actually very simple. We’ve already covered this (in another context) in Chapter 25. The process is the same as we covered in that chapter.
Application profiles in WAS 5.0 Enterprise Edition

Now that you understand the benefits that you can gain from using WebSphere’s Access Intent feature, you may be thinking that it can solve all of your locking problems. However, there is yet another issue that we should at least bring up, so that you can be aware of another issue that sometimes can bring EJB developers grief, and how it can be ameliorated in WebSphere Enterprise Edition. Consider the following problem; let’s say that we have a task that entails lots of simultaneous reads, and even the occasional update to a particular set of Entity beans. For instance, let’s consider an application for college registration. The college course catalog is made up of courses, each with different sections taught by different instructors. Students register for a particular section in a course. Here, you will have many reads from the course catalog, and the occasional change to a student’s individual class assignments as they drop or switch sections at the beginning of the semester. Therefore, optimistic locking will work most of the time. It would be a very rare situation in which a student’s association to a course would need to be updated in two places at once. However, sometimes the situation arises where the college itself needs to make large-scale changes to the schedules of a number of students. If a course or section is dropped, or if a substitution is made for a section, then dozens of records may need to be changed at once. However, if we’re using optimistic locking, then during that lengthy change, a student might simultaneously make a change to his or her own schedule. The college’s update could fail if the student’s change “snuck in” during the transaction. So, we’d actually like to be able to lock the schedules of the students affected for the length of the transaction. However, if we’ve set the Access Intent to be an optimistic intent, then we can’t do that with our Entity beans. Therefore, it seems we’ve come to a catch-22. In this situation, WebSphere EE provides an answer. There is a feature called Application Profiles that allows you to associate several different Access Intents with the same bean under the rubric of a “Task”. A Task is a way of specifying a particular point in an application to the WebSphere Enterprise Edition EJB container. You can associate Tasks with different methods. So, you could associate one Task (in turn associated with a pessimistic Access Intent Policy for the course and schedule beans) to the method that dropped a course section altogether, while methods used in student registration could be associated with a different task that specified an optimistic Access Intent Policy for the same Entity beans. For more information on how to use Application Profiles in your own applications, refer to the WebSphere Enterprise Edition InfoCenter or to [Francis].

Summary

You’ve seen a lot in this chapter. We’ve covered why you need EJB transactions, how they work, how you use the transactional features of the EJB specification in WebSphere, and what special features WebSphere provides above and beyond the EJB specification. While we’ve not covered all of the possible transactional problems that you can encounter in writing EJB applications, you should now have the necessary tools to do debugging and work out the issues on your own.

� For a more complete listing of the messages in this Interface, refer to the JTS (Java Transaction Service) specification [JTS]

�Note that Session EJB’s using Bean-Managed Transactions should instead obtain the current transaction by using the method EJBContext.getCurrentTransaction(). Also, previous versions of WebSphere used a different name (“jta/usertransaction”) to look up the User Transaction – WAS v 5.0 requires java:comp/UserTransaction to be in compliance with the EJB 2.0 specification.

� XA is an X/Open standard specifying a protocol for communication between Transaction Monitors and Resource Managers.

� The EJB Specification [Sun] only describes support for “flat” transactions and does not include support for “nested” transactions. Only one transaction may execute within an object at a time.

� An exception to this would be through the use of the SessionSynchronization interface for stateful session beans as described later.

� These methods are also defined in CMP beans, but you usually do not do anything in them. (The method implementations contain no code).

1

_1111168478.doc

[image: image2.bmp]

Stock Sales EJB

Session Context

Audit Log EJB

Write stock sale to database

Check for Access to Account

setRollbackOnly()

Write to Audit Log database

T1

T2

Record stock sale

[image: image1]
_1119116717.doc

[image: image2.bmp]

Layered J2EE Runtime Architecture

Presentation

Controller / Mediator

Servlet Container

Data Source

Domain

Data Mapping

EJB Container

Application Services

Exception�Handling

Properties

Logging

Servlets

Struts

Java�Beans

Msg Driven�Beans

Cactus

Java�Application

XSLT

Web�Services

HTTP�Unit

HTML

JSP

JDBC

JMS

Mapper�Objects

CMP�EJBs

BMP�EJBs

WAS�UTC

Session�EJBs

JUnit

Java�Beans

[image: image1]
_1103710171.doc

Transactional Object

Transaction Manager

Resource Manager

Resource Manager

updates

coordinates

Txn start, commit, rollback

_1108363557.doc

[image: image1]

<<Session Façade>>

OrderPlacementBean

OrderProcessor

Queue

Connection

