Chapter 12
Design Considerations for Controllers

Introduction

When designing large-scale applications based upon servlets and JSPs many design options need to be considered. Each design decision you make should ultimately enhance the reliability and scalability of the application as a whole. Furthermore, you should always strive to reduce the complexity of the application and ease the maintenance process. This chapter will focus on a few simple design considerations than can help you achieve some of these goals.

[image: image7.png]
Figure 12.1 Controller design within the Roadmap

In this chapter we are looking at design decisions of the Controller/Mediator layer. In addition it will address Application Services (Figure 12.1).

Where do Controllers come From?

Possibly the biggest single hurdle to overcome for many developers new to web-based J2EE technologies is understanding how to divide the behavior of their application among different classes. While the basic principles of layering and the MVC pattern may seem obvious to some, they are certainly not readily apparent to many new web programmers, especially those who come from traditional windowed user interface backgrounds. To begin with, we will have to first review the role of the controller within a layered architecture.

Recall from the discussions of five-layer architecture in Chapter 1 and in Chapter 5 that the Controller/Mediator layer is responsible for separating the presentation of information from the domain or model that holds the information. The motivation behind this separation is generally to allow more flexibility and reuse when creating or changing the views or presentation, or when making changes to the domain layer of the application. Moreover, applying a layered architecture in this fashion allows for a particular domain to be used more flexibly across multiple applications. With this in mind, you can see that the servlets and other associated classes that we write in a web-based application really fall into the controller layer of the architecture. Controllers are responsible for taking parameters passed from the presentation layer, contacting the appropriate business logic classes and passing the processing on to them, then taking the results from those classes and routing the user to the next appropriate screen. Given the design of J2EE, servlets will perform either part, or all of this function, as we will see in the following sections.

However, a major issue that we haven’t described is exactly how this is done, and how you discover what controllers and views are necessary for a particular application. To teach you this process we will begin by examining an example application to see how you can factor it into Model, View, and Controller aspects. Toward this end, let’s consider a simple application for managing Employees taken from our case study. Our case study is comprised of several use cases for managing and tracking Employee time sheets, and reporting on the time sheets submitted. However, there’s a prerequisite to this; you must first have Employees present in the system to be able to submit a time sheet for that Employee. Toward that end, imagine that our users have sketched out the following (partial) design for the application:

[image: image2.wmf]Show

Details

Index Page

Create

Employee

Delete

Employee

Update

Employee

Browse

Employees

New

Employee

Submit

Browse

Employees

Employee

Details

Figure 12.2 Employee Management Screen design

In building this kind of web-based application, users will often start with a set of page designs that have been “mocked-up” as static HTML. Let’s assume that is the case in our application – we will show how to transform a set of web pages into an MVC application. As with any MVC application, the first step in writing our application is to determine what the model classes are. In this case, this is pretty simple; we only have a single model class, the Employee. We’ll examine the implementation of this class in later chapters, but as you can guess, it’s pretty straightforward. There are attributes for the Employee’s name, id number, and also for information like age and address
.

Now, how do we proceed from this mockup showing only the screens to building an application? A simple procedure can help identify the remaining parts of the application. First of all, let’s identify the Views in our application. This is trivial given the diagram above. We can first assume that all of the pages in our sample application are JSP pages. If there is any dynamic content in a page (meaning content that changes based on the state of the application or a user action) then it should be a JSP page. We would find that this means we have three JSP pages in our application:

· Browse Employees

· New Employee

· Employee Details

The index page is the only page that has no dynamic data, and thus does not need to be a JSP page.

The next thing to look for is the transitions between the pages. Transitions arise from what we call “Go buttons” on a page. A “Go button” is either an HTML button that submits a form or performs a GET on a URL, or a link between pages. Each unique Go button that performs a unique function should have its own servlet. If two or more buttons refer to the same function and have the same set of parameters (or one is a subset of the other) then the two buttons represent the same transition. Each “go button” represents one of two things:

1. An individual function request to present some data (e.g., an HTTP GET)

2. A request to process a particular data stream (e.g., a set of HTTP parameters from the URL or parameters that are POSTed from an HTML form).

In the first case, you would want a unique controller to perform that function since it could not otherwise be determined what set of information the user was requesting. In the second case, the fact that each form or set of HTTP parameters passed on a URL represents a different data stream (with a different format, e.g., set of parameters and values) would indicate that you would want a different filter for that data stream, and thus a unique controller.

 If a transition is dynamic in some way, e.g. either:

· the data displayed on the page changes, or

· a particular link or submit button may ultimately direct the user to more than one page,
then this is an indication that there needs to be a controller that implements the transition to the page. In this respect, the controller is acting as a “filter” in a pipes and filters architecture [Buschmann]. Data come in, are processed, and go out in a different form. Think about each controller as filtering a different data stream. Just like you wouldn’t attempt to use the same filter to clean both the air and the oil in your car, you wouldn’t want to process multiple data streams through the same filter. In this context, you can see why you would want a different controller, or filter, for each set of input data, or data stream.

Here we see that not all transitions in our example meet these criteria – for example the link from “Browse Employee” to “New Employee” does not change the way in which the New Employee page is displayed in any way. So, we have the following results from our analysis, summarized here in table form:

	Source Page
	Action Required
	Destination Page

	index.html
	Browse Employee List
	browseEmployees.jsp

	browseEmployees.jsp
	N/A
	newEmployee.jsp

	browseEmployees.jsp
	Show Details
	employeeDetails.jsp

	newEmployee.jsp
	Create employee
	browseEmployees.jsp

	employeeDetails.jsp
	Update Employee
	browseEmployees.jsp

	employeeDetails.jsp
	Delete Employee
	browseEmployees.jsp

What we have on either side of the table are the Views of our system. What we have identified in between each source and destination page are the Controllers of our system. There is a different controller for each unique, active transition. So, we have identified five potential controllers:

· BrowseEmployeeList

· ShowDetails

· CreateEmployee

· UpdateEmployee

· DeleteEmployee

Now, you may recall the discussion earlier about subsets of parameters; in fact, this occurs in our application between Delete and Update Employee. Deleting an Employee involves identifying the Employee to be deleted, while updating the Employee involves identifying the Employee and providing the Updated data. In the case study chapters that follow, we’ll actually combine these two into a single controller that handles both actions, although you can see how they could have just as easily remained separated.

Controller Design Alternatives
So, now that we’ve identified the Controllers, how do we implement them? Two approaches we will look at include the Page Controller approach and the gateway servlet approach.

Page Controller

Perhaps the easiest approach, and the one that was most often used in the early days of J2EE, was to make each Controller so identified its own servlet. That would mean that each servlet (which corresponds to its own unique URL) would implement one and only one controller function. [Fowler] refers to this approach as the Page Controller approach, and we will refer interested readers there for a detailed treatment of that design approach. We will show a detailed example of using this approach in Chapter 14.

However, as simple and effective as this approach is, it is not always the most appropriate choice. With the role of the servlet clearly defined as a “control” mechanism within the application, we can quickly identify a very abstract role that it fills. You might even go as far as saying that every servlet within an application follows a similar design or “pattern”. Specifically, the role of the servlet is to take a request made over the HTTP, extract any arguments that were passed, initiate a process that is specific to the request, and provide dynamic results based upon the processing that was performed. The results that are returned could basically fall into one of three types, including returning HTML directly, forwarding the request on to a JavaServer Page, or redirecting the request on to a new page.

Gateway servlet

With this said, you can make a valid argument for having only one servlet in an application handle all requests and pass the real processing off to a helper class. This single servlet is often called a “Gateway” servlet. This argument is strongly based upon the fact that each call to a servlet results in a very nearly identical set of processing. Again, the real difference is in the actual processing that is performed, and the results that are returned, but it follows a very simplistic pattern. Here the key lies in identifying a unique controller for a particular request – this can be easily accomplished by using a polymorphic set of controllers, plus an object Factory. In a sense, each controller acts as a Strategy for implementing a particular transition of the type shown in Figure 12.2 This is shown in Figure 12.3

[image: image3.emf]ControllerFactory

getController()

UpdateEmployee

Controller

DisplayEmployee

Controller

GatewayServlet

doGet()

doPost()

AbstractController

handleRequest()

creates

uses

delegates to

Figure 12.3 Gateway servlet Design

In this simple design (which should only be taken to be representative of designs of this type – we will not actually walk through an implementation of this framework) we see the basic parts of the architecture. The entry point into frameworks of this type is the gateway servlet, which implements the standard doGet and doPost methods we have seen earlier by using a ControllerFactory to create instances of subclasses of an Abstract Controller class. The Controller classes are simple POJO’s – they are not part of J2EE. Usually, the ControllerFactory will use a map of URI’s to Controller classes to determine which controller subclass to instantiate. Once the correct controller instance is returned to the Gateway servlet, it will then delegate the responsibility of handling the request on to controller instance. [Fowler] and [Alur] both refer to this particular design approach as the Front Controller approach, and it has become the most common approach for designing web-based J2EE front-ends.

The benefits of using this design technique are two-fold. The first benefit is the ability to add new functions to your application without requiring reconfiguration of the Application Server. This is possible because new functions are not defined in individual servlets, but rather by implementing a simple interface or extending an abstract controller class. The second benefit stems from the first and is simply that work is not duplicated between classes; rather it is leveraged through a simple abstraction. It is important to note the subtle differences between this design pattern and what has been the traditional servlet approach. Traditionally, the number of application functions that are being supported has determined the number of servlets in an application. In other words, if you need to be able to handle login requests, and user profile update requests, then you would implement a servlet for each function and configure the application server to recognize both servlets. In contrast, this solution simply classifies application functions as controllers created within a standard abstract servlet that has the ability to “process’ them abstractly. This gives the ability to add, change, and delete functionality in the application server, without the need to administer the configuration of the server itself.

This design will ultimately make your applications more extensible, and easier to maintain. The Apache Struts framework is built on this model. It is the framework used to build the web front-end to our case study. We will discuss the specifics of Struts in more detail in Chapter 14, but for the time being, we will only consider the abstract design of the framework in general.

One final advantage that this design conveys is that it makes thread safety less of an issue in servlet development. Since each Controller is created individually and will be used only by a single thread you need not be as careful with thread safety issues as you must be when the servlet is acting as the controller. This alone is often enough to make developers, especially those who are uncomfortable with multithreaded programming, choose this approach. On the other hand, you still must be careful to consider the use of any shared resources accessed by these controllers. One of the advantages of the servlet approach is that it reuses servlet instances to reduce memory footprint problems and performance issues resulting from creating and destroying controller objects. However, any approach you choose will end up creating and destroying other objects used in processing a request. Since controller objects are usually lightweight, the impact is often minimal.
Some notable disadvantages of the gateway approach include: 1) with anonymous controllers, you can not utilize performance monitoring tools to identify the distinct behavior of individual controllers; 2) The access control requirements for each controller within you application must be identical as there is only one principal URL upon which you can apply security constraints.

In each of our full implementations of the case study we will use Struts for the Controller/Presentation layer thus employing the gateway servlet approach.

Exception Handling

One of the key elements of delivering reliable software is the ability to recover gracefully from unexpected application errors. In web-based applications this is key because you do not want the users of your application to see unpleasant HTTP error returns in their browser. Often this confuses users who do not understand the meaning of HTTP error codes.

To ensure that these kinds of errors never reach the client browser, we must have a mechanism in place to intercept any potential application exceptions that are not expected. The following discussion, while brief, provides a simple and straightforward solution to this problem in a way that does not use any application-server-specific features. Later we will examine some WebSphere-specific solutions to the same problem. Which approach you choose is largely a matter of personal preference and concern for portability.

The basis for this solution is an abstract controller that serves as the root for all of your application controllers. (Note that this feature could just be an intrinsic part of your “gateway” servlet.). As an example, let’s consider the other approach, where each controller is a unique servlet. In this case, this abstract controller class should be the place that you will implement common behavior across all of the servlets within your application. Part of the common behavior is the ability to handle all uncaught exceptions generically. This has proven to be a convenient way to keep the users of your web-based applications from ever seeing the result of an unexpected server exception. These exceptions, if left unhandled, result in an HTTP Error 500 that is unpleasant and confusing for the user.

import java.io.*:

import javax.servlet.*;

import javax.servlet.http.*;

public abstract class BaseServlet extends HttpServlet {

public final void service (HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {

try {

super.service(request, response);

}

catch(Throwable aThrowable) {

handle(aThrowable, request, response);

}

}

protected abstract void handle(Throwable aThrowable, HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException;

}

The implication of this solution is that extensions of this servlet must not override the service() method, as this will short-circuit the exception handling functionality. This usually proves to be acceptable as you usually override specific HTTP request methods such as doGet() or doPost().

Notice also that the handle() method is abstract. This simply means that concrete servlets extending BaseServlet must provide an implementation for handling exceptions, which allows for application specific exception handling. The handle() method in each subclass would probably return a simple error page to the user, indicating what error occurred, as well as providing instructions on how to proceed.

Now that you have seen a generic solution to this problem, we can look at error-page feature of J2EE. This is easiest to set using the Web Deployment Descriptor (web.xml) editor from within WebSphere Studio (Figure 12.4). It can also be set using the Application Assembly Tool
. This allows an arbitrary number of application specific error pages (JSP or servlets) that are forwarded to whenever the corresponding HTTP error code is to be returned to the browser or the corresponding Java Exception is thrown and uncaught by the application.

[image: image4.png]
Figure 12.4 Setting Error response pages in Web Deployment Descriptor editor.

In the past, this error page solution was proprietary and supported in different ways by different vendors. It is now a standard element of the web.xml file and part of the J2EE specification. In cases where the HTTP error code can be translated into an application response, this mechanism is very useful. For the Java Exception error handling, although this is a very flexible mechanism, it should only be used and configured for fallback behavior. It is much better to at least initially catch all exceptions and respond in the base controller in an application appropriate manner.

Logging

As part of any application, it is useful to support application level logging and tracing. Although a low-tech approach for debugging, it is often the most useful mechanism for detecting application mis-behavior in production (particularly in a distributed environment.

Any logging framework used by an application needs to have low impact when logging is turned off. In this way, production code can have logging code deployed without incurring a heavy performance cost. Looking forward, J2EE V1.4 which prerequisites J2SE V1.4 requires the use of the java.util.logging framework. What to do in the meantime? The most common approach is to use the Logging framework maintained by the Apache group, log4j (see http://jakarta.apache.org/log4j).

With log4j, logging behavior is controlled by editing a configuration file, without touching the deployed application binary. One of the distinct features of log4j is inheritance in loggers. Using a logger hierarchy makes it possible to manage which log statements are enabled at an arbitrary granularity by whatever organization the developer desires. A Logger has five distinct “printing” methods, one for each “log level”. The levels and their order are: DEBUG < INFO < WARN < ERROR < FATAL.

A following code sample from log4j manual, outlines the use of this hierarchy, the level inheritance and the corresponding determination of whether a statement is “enabled” or not:

Listing 8‑1 Filtering of Log messages within log4j.

// get a logger instance named "com.foo"

Logger logger = Logger.getLogger("com.foo");

// Now set its level. Normally you do not need to set the

// level of a logger programmatically. This is usually done

// in configuration files.

logger.setLevel(Level.INFO);

Logger barlogger = Logger.getLogger("com.foo.Bar");

// This request is enabled, because WARN >= INFO.

logger.warn("Low fuel level.");

// This request is disabled, because DEBUG < INFO.

logger.debug("Starting search for nearest gas station.");

// The logger instance barlogger, named "com.foo.Bar",

// will inherit its level from the logger named

// "com.foo" Thus, the following request is enabled

// because INFO >= INFO.

barlogger.info("Located nearest gas station.");

// This request is disabled, because DEBUG < INFO.

barlogger.debug("Exiting gas station search");

As you can see, code can organize logging into whatever logical hierarchy they choose and allow very fine-grained control to enable and disable logging. The target of a log can is also very flexible in log4j. It can include an OutputStream, and Writer, a remote log4j server, a remote Unix Syslog daemon, or an NT Event logger among others. WebSphere Application server users should find this organization very familiar. It is this same organization that is used by the WebSphere trace facility. In this case, the trace “hierarchies” are call components. WebSphere also provides JRas extensions, an application API to the WebSphere Application Server trace and logging facility. This can also be used to add messaging and tracing to your WebSphere applications.
Servlet Filters

One of the themes throughout this book and surrounding J2EE applications is the goal to build reusable components. One key design philosophy that facilitates reuse is to provide the appropriate (fine) granularity of service. On top of that, provide a mechanism to allow for the composition of services to create more complex and full-featured functionality. New with the servlet V2.3 Specification, is just such a standardized composition model for web applications. The composable components in this case are servlet Filters.

[image: image5.png]
Figure 12.5 Design with servlet Filters

As we discussed briefly in Chapter 6, a filter is a component that gets called as a wrapper to a request to a web component (servlet or JSP). A filter can intercept the incoming request prior to delivery to the servlet. In this mode the filter may provide additional quality of service operations, e.g., encryption, logging and auditing. The filter can block the request and provide direct response back to the client. This might be the case with an authentication or authorization agent. It might also be done if the filter is acting as a caching filter. Finally, the filter can intercept and/or alter the response stream. Data conversion filters, e.g., image conversion, XSLT processing, or a MIME-type chain filter, frequently perform this function.

One of the other characteristics of a servlet filter is that they are associated at deployment time with either a web resource or a group of web resources via a URL pattern. Thus, the service composition is not something that needs to be managed programmatically.

A servlet Filter is a class that implements the javax.servlet.Filter interface. The key method defined in this interface has the signature:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws ServletException, IOException;

This method is invoked when the filter receives the incoming request stream. In the body of this method, the filter can do whatever processing it chooses. To forward the request on to the remaining filters (web component), the following line of code is called:

chain.doFilter(request, response);

Should the filter decide that further processing should not happen, this method is not called. If the filter wishes to intercept the response stream, that is available upon return from the chain.doFilter() call.

WebSphere Studio has a nice wizard to create Filter classes. It also has special entries in the Web Deployment Descriptor editor to manipulate and configure filter chains.

[image: image6.png]
Figure 12.6 Configuring filters in WebSphere Studio's Web Deployment Descriptor editor

Summary

We have covered several advanced topics in web programming in this chapter. We’ve discussed how to find and implement controllers in your application, seen how Exception handling within an application can be done using both J2EE-error pages and in a generic way, looked at using a standard Logging framework to enhance application maintenance, and examined servlet filters

� In fact, in a more complete design, Address might be split out into a second class, but we’ll keep this trivially simple so as not to distract from our discussion of Views and Controllers.

� The Application Assembly Tool (AAT) is a tool to build and edit J2EE archive files, e.g., .war and .ear files. It is targeted for use by the J2EE deployer role to make modifications to deployment descriptors prior to application deployment.

6

[image: image1]_1114027953.doc

[image: image1]

 SHAPE * MERGEFORMAT
[image: image2]

Browse Employees

Employee Details

Index Page

Update Employee

Delete Employee

Create Employee

Show Details

Browse Employees

New Employee

Submit

_1114179303.doc
[image: image1.emf]ControllerFactory

getController()

UpdateEmployee

Controller

DisplayEmployee

Controller

GatewayServlet

doGet()

doPost()

AbstractController

handleRequest()

creates

uses

delegates to

[image: image2]

