Chapter 20
Developing EJBs with WSAD

[image: image1.png]Up to this point you’ve seen how Enterprise Java beans are structured and how the J2EE technology makes use of EJBs.  Now we are ready to give an explanation of how EJBs are created within WebSphere Studio Application Developer. We will begin by looking at creating and using Session beans which fall within the Domain layer as shown in the Roadmap in Figure 20.1.  Before we delve into the details of how this is accomplished, we will provide a foundation of how the WSAD environment operates in connection with EJBs and other J2EE artifacts.
[image: image18.png]The J2EE Perspective

Before you begin building Enterprise Java beans, it is necessary to understand the environment in which this is done.  Remember that within WSAD, perspectives provide a grouping of views and editors that makes development or testing of a particular technology easier.  WSAD provides the J2EE perspective, which makes developing, assembling, and testing of J2EE applications and modules simpler.  Figure 20.2 shows the basic views that are grouped to produce the J2EE perspective.  The key views are the J2EE Hierarchy view, the J2EE Navigator view, and the Servers view.

J2EE Hierarchy View

The J2EE Hierarchy view is a logical object representation of the Enterprise Applications, J2EE modules, EJB Schemas, and servers that are currently loaded within the workspace.  Therefore the contents of this view do not necessarily map to individual workspace files.  The view is split into 8 groupings:  Enterprise Applications, Application Client Modules, Connector Modules, Web Modules, Databases, Servers, and Server Configurations.  Each group provides a tree view of the structure of each root element of the group such as an Application, EJB Jar, or Database.  

The J2EE Hierarchy view is used primarily to open the specialized editor for the selected object such as the EJB Deployment Descriptor editor, Application Deployment Descriptor editor, Server Configuration editor, Database Table editor, and several others.  The view also provides delete actions for virtually every object in the view as well as creation actions for many of the main elements in the view such as Enterprise Java beans, Database Schemas and Tables, Servers and Server Configurations, J2EE module projects.  The ability to easily execute a J2EE object on the server is simple from this view since both Run on Server and Debug on Server actions are available for most elements such as an Enterprise Bean.
[image: image21.png]
Figure 20.2 J2EE Perspective

The J2EE Hierarchy view groups each type of module separate from the Enterprise Application because a module may be added to multiple Enterprise Applications.  Like each Enterprise Application, each module type element also displays a tree view of the main components in its deployment descriptor.  For example, an EJB module will display the EJB Jar, the Enterprise Java beans within the EJB Jar, Enterprise Bean classes, and cmp properties for each Container Managed Entity.  There will also be an entry for each of the Maps which map the contents of the EJB JAR to a set of database tables.  Figure 20.3 shows the expanded view of the TimeSheetGroup EJB module used in the case study.  You can easily see from the figure that the EJB JAR (TimeSheetGroup) and all of the different EJBs, the Assembly Descriptor, and the set of Maps are clearly presented.  You should also notice that the EJB

[image: image2.png]
Figure 20.3 EJB Modules group

JAR and each EJB have a version number (e.g., “2.0”) displayed in their corresponding icon in the tree view.  This is the EJB specification number.  This is also true of the other groups.

The Database group displays the object representation of a database that has either been imported into the workspace or created by hand.  The Servers and Server Configurations go hand in hand.  They display the current set of Servers defined in the workspace as well as each server configuration that has been defined.  A server configuration model provides the specific server settings necessary to test Enterprise Applications.  Normally there is a one to one relationship with a server and a server configuration but it is possible to share configurations with servers, hence why they are displayed as separate groups.
J2EE Navigator View

The J2EE Navigator view is a tabbed tree view in the same pane of the J2EE perspective as the J2EE Hierarchy view.  Unlike the J2EE Hierarchy view, the J2EE Navigator view shows the actual underlying resources that exist on disk for each of the J2EE projects that exist in the workspace.  We will go into more detail about J2EE projects a little later in this chapter.  Figure 20.4 shows a portion of the expanded J2EE Navigator view with the TimeSheetGroup project which was also shown in Figure 20.3 but in the J2EE Hierarchy view.  You can think of this view as a combination of the base Navigator view and the Java Package Explorer.  Like the traditional Navigator view, the J2EE Navigator view shows all projects within the workspace and their contained resources.  Like the Java Package Explorer, the J2EE Navigator displays all Java projects with their package structure exposed.  The view also has some unique J2EE features such as the specific Deployment Descriptor entry placed within the root of the project.  This is used as a convenience mechanism to quickly open the deployment descriptor editor for the J2EE project.  The view also contains specialized filters so that you can filter out projects that are not J2EE projects.

Servers View

The Servers view is simply a view that has a listing of the defined local and remote application servers.  Within this view you can start a particular server in one of three different modes; normal, debug, and profiling.  Other actions that are available in this view include restarting a server, stopping a server, disconnecting from a server, and publishing to a server.  When testing EJBs, you will typically like to start the Universal Test Client (UTC).  The UTC can be launched from the Server view by selecting the Run universal test client context menu for a particular running server.  You should consult the WSAD documentation for more details on each of these actions.

[image: image3.png]
Figure 20.4 J2EE Navigator

DB Servers View

The DB Servers view, shown in Figure 20.5, is a view of live database connections which allows you to view the tables in a database, view the data in a table, and import database tables to a folder in the workbench.  You should consult the WebSphere Application Developer documentation for more information about creating database connections or use the F1 help provided for this view.  
One of the most important features of this view is the ability to import databases, schemas, and/or tables to a specific folder.  For example, if you select a specific table, you can import that table definition into an EJB project by selecting the Import to Folder context menu action.  This action will open a dialog, shown in Figure 20.6, to enter the folder in which you want to import the table definition.  If you are importing to an EJB project, just browse for the EJB project and ensure that the Use default schema folder for EJB projects is checked.  This will ensure that the table definitions are imported to the proper backend folder location so that they can be used by the EJB module.  An EJB project stores its table definitions in a specific folder under the ejbModule/META-INF/backends folder.  Table definitions outside of this location cannot be used for object-to-relational mappings for CMPs.

[image: image4.png]
Figure 20.5 DB Servers view

If you would like to import database tables to an existing backend folder within an EJB project, you will need to deselect the Use default schema folder for EJB projects and then browse to the specific backend folder.  If you do not deselect this checkbox, a new backend folder will be created within the EJB project for the tables that you have selected to import.  So, this means that the table definitions for the selected tables will be imported into a new backend folder for the EJB module.  If the option is deselected, you can then import the table definitions of the selected tables into an existing backend folder that already exists for the EJB module.
[image: image19.png][image: image20.png]Importing a database into the backend folder creates a subfolder and populates it with a number of XMI (XML Metadata Interchange) files that contain information about the database connection, the database itself, its schema, and the tables in the database. These files will be used when mapping CMP beans to a relational database.

J2EE Projects

Before we can talk about J2EE projects, let us present a gentle reminder of what a project is. As described in Chapter 7, a project is a structure in the workbench that is used to store resources.  It actually maps to a physical directory on disk in any location that you wish.  A project can be a simple project which is nothing more than just a container or it can have specific behavior.  An example of a specific type of project within the workbench would be a Java project.  A Java project is a simple project with specific actions and behaviors for dealing with Java files.  For example, a Java project will have the notion of a Java Build Path or classpath.  Also, a Java project can have one or more source folders that contain .java files that are to be compiled when one of them changes or a build is performed.  The compiled .class files will be copied to the projects output location which is also specific to a Java project.

J2EE projects, like Java projects, are specialized projects that have additional semantics that map to concepts from the J2EE specification.  For example, an Enterprise Application project maps to an Enterprise Application in the J2EE specification.  The other J2EE projects include EJB projects, Application Client projects, Web projects, and Connector projects.  Each one of these project types is represented as a group within the J2EE Hierarchy view.  Also, all of these projects, except for the Enterprise Application project, are Java projects because they may contain .java files.  The Enterprise Application project does not contain any .java files so it is not a Java project. 

J2EE projects have specific behaviors for dealing with the deployment descriptor and its contents.  To ensure that there are no problems with the contents of these projects validations are performed on the contents.  The validations are done by specialized objects called validators.  Each validator knows how to validate a specific object.  This validation may be syntax validation or semantic validation.  For example, the EJB Validator will validate the semantic of the EJB Deployment Descriptor but the EJB XML Validator will validate the syntax of the EJB Deployment Descriptor based on the ejb-jar.dtd.  Validators run during each build of the workbench which usually happens after saving changes to an editor.  It may be desirable to disable one or more validators if you are not concerned with the results of the validation.  This can be done by changing the Validation property for a specific project.  You may also disable validators for all projects by changing the Window > Preferences > Validation preferences.

Let’s take a simple example of how to create an EJB project.  We will go through the steps of creating the TimeSheetGroup EJB project that was used in the case study.
1. Select File > New.  Select EJB from the left list of the New wizard and select EJB Project from the right list.  
2. Click the Next button to proceed to the EJB Project wizard.  
3. Select Create 2.0 EJB Project to create a 2.0 EJB module.  Each EJB project and all other J2EE projects, are associated with a deployment descriptor specification version.

4. Click the Next button.

5. Enter TimeSheetGroup for the Project name as shown in Figure 20.8.  The Directory is the actual directory on your system that will physically contain the contents of the EJB project.  By default, a new directory with the same name as your project is created in your current workspace directory.

6. Select New for the Enterprise application project and enter wasbook for the New project name.  This is the Enterprise Application project that this new EJB project should be added to.  You must either create a new Enterprise Application or use an existing one to associate the new EJB project or any J2EE module project.  This is required since an EJB project or any other module project must be tested within the context of an Enterprise Application.  
7. Click Finish.  Two new projects will be created, TimeSheetGroup and wasbook, both of which will appear in the J2EE Navigator view and the J2EE Hierarchy view with their specific icons and versions.  Note that the Enterprise Application version is 1.3 since this is the lowest J2EE version that supports the new 2.0 EJB project that was created.

When you expand the wasbook Enterprise Application from the J2EE Hierarchy view, as shown in Figure 20.7, the TimeSheetGroup.jar EJB module appears under the Modules tree group.  This EJB module maps directly to the TimeSheetGroup EJB project that was just created.  If you select the TimeSheetGroup.jar entry, you can then select the Go to deployment descriptor context menu item which will move the current selection to the TimeSheetGroup entry under the EJB Modules group.  This is a convenience action to find the actual module within the J2EE Hierarchy view so that you may edit its contents or open the deployment descriptor editor.


[image: image5.png]
Figure 20.8 EJB Project wizard

When this new EJB project is added to the Enterprise Application as an EJB module, the module URI used is derived from the name of the project.  This module URI will then be used when the Enterprise Application is exported to create the module JAR file.  To change the module URI, you will need to open the Enterprise Application deployment descriptor editor.  Do this by expanding the Enterprise Application from the J2EE Hierarchy view and double clicking on the EAR Deployment Descriptor entry to open the editor.  On the Modules page of the deployment descriptor editor, you will notice a list of all the modules.  Figure 20.9 shows the upper portion of the Module page.  If you select the TimeSheetGroup.jar module, detail information for the URI and the project is displayed in the text areas to the right.  You can now update the URI to another name that you would like to use.  If for some reason you need to change the project that the selected module represents, you can do so by clicking on the Browse button next to the project text field.  You will be presented with a list of the J2EE projects that exist in the workbench that correspond to the same type of module that is selected.  So, for example, if the TimeSheetGroup.jar module is selected, the list will only contain other EJB projects within the workbench.

The Module section shown in Figure 20.9 allows you to add or remove modules from the Enterprise Application.  To remove a module from the Enterprise Application, select the desired module from the list and click on the Remove button.  This will not delete the corresponding module project.  It merely removes the reference to this module project from the Enterprise Application project.  Remember that the Application defines the modules which will need to be installed on the server.  If you click on the Add button, you will be presented with a list of J2EE module projects that exist in the workbench.  Selecting one of these module projects will result in a new module reference being created within the Enterprise Application and it will be linked to the module project that was selected.

[image: image6.png]
Figure 20.9 Enterprise Application Editor Modules

Java Utility JARs

According to the J2EE 1.3 specification, you are allowed to place JAR files that are not represented as a module within an EAR.  These JAR files are typically called “utility” JAR files since they contain supporting Java code that is used by the other modules defined within the EAR (see the sidebar below for more information).  In WSAD, you can add a JAR directory to the Enterprise Application project using the basic file system import wizard that is a part of the base workbench.  More often you are developing the utility JAR contents yourself and have an actual Java project in WSAD for building the JAR file.  Ideally, you would like to use this Java project to create the JAR file that is to be added to the EAR.  In WSAD, we have added a concept called a Project Utility JAR to designate a simple Java project as a utility JAR within an Application.

Sidebar:  Utility JARs within Enterprise Applications for code sharing

Within an Enterprise Application there are specified EJB and Web modules.  When developing an application, there is often a common set of Java files that are used by multiple portions of the application.  For example, in our case study, we have application specific exception classes.  When packaging a module, you can easily place all Java files that it requires within the module JAR file.  This would work but if multiple modules require the same Java files, they would have to package them within their module JAR file as well.  This means you will have duplicate sets of the same Java files in the Enterprise Application.  This is where “utility” JAR files become useful.

According to the J2EE specification, you can have any number of JAR files packaged within the EAR.  Many of these JAR files are specified as module files within the deployment descriptor.  Any JAR file that is not defined as a module is considered a “utility” JAR file.  This means that these JAR files are available to be referenced by any module within the EAR within their MANIFEST file as a Class Path entry.  Thus, you are able to share code among modules without duplication of Java files.  This is a best practice because it encourages code sharing and it helps to minimize size and it improves maintainability of the Enterprise Application.

The case study is structured in this manner.  The Enterprise Application structure is shown below.  Each module depends on the TimeSheet-AppLogic.jar utility JAR file.

wasbook (EAR)


TimeSheetGroup.jar (EJB module)


TimeApp.war (Web module)


TimeAppTestClient.jar (Application Client module)


TimeSheet-AppLogic.jar (utility JAR)

Figure 20.10 shows the Project Utility JARs section from the modules page of the Enterprise Application editor for the wasbook Enterprise Application.  This section allows you to add a Java project as a utility JAR to an Enterprise Application much like you can add a J2EE project as a module in the Module section on the same page.  Like a module, a utility JAR has a URI and a Java project.  When the Enterprise Application is exported, the projects defined as utility JARs will be “jarred” up and added to the exported EAR using the URI defined in the Enterprise Application editor.  The benefits of this mechanism are that you can debug your utility JARs using breakpoints in the project Java files.  You can also add the same Java project to multiple Enterprise Applications easily.  This nicely supports team development since you do not have to explicitly create the JAR that is to be added to the EAR after each change, and it eliminates the need for redundant copies of the Java files that are contained in the utility JAR during development.

Sidebar:  EJB Client JAR
There is an optional ejb-client-jar element for the ejb-jar element within the EJB Deployment Descriptor.  This element defines the location of a JAR file within the Application relative to the Deployment Descriptor which contains all of the necessary class files that a client program needs to use the client view of the Enterprise Java beans contained within the ejb-jar file.  The class files within the ejb-client-jar will be the home and component interfaces as well as other classes that these interfaces depend upon.
The ejb-client-jar is then packaged within the same application as the ejb-jar element that defines it.  The ejb-client-jar may then be referenced as a Class-Path entry of other modules within that enterprise application.  The ejb-client-jar file will need to be copied to another enterprise application if a module in the other application references the client view.  For example, if the deployment descriptor for ejb1.jar defines an ejb-client-jar which is referenced by web1.war.  Since web1.war references the client view of ejb1.jar, it includes a Class-Path reference to the ejb1_client.jar.  A second application has a Web module, web2.war, also reference the ejb1_client.jar in a Class-Path entry.  Notice that the ejb1_client.jar is copied to the second application.

application1.ear:

META-INF/application.xml

ejb1.jar
Class-Path:  ejb1_client.jar


<ejb-client-jar>ejb1_client.jar</ejb-client-jar>  In Deployment Descriptor


ejb1_client.jar


web1.war
Class-Path:  ejb1_client.jar

application2.ear:


META-INF/application.xml


ejb1_client.jar


web2.war
Class-Path:  ejb1_client.jar
WebSphere Studio does not currently have support for EJB Client JARs; however, an EJB project can be assigned as a Project Utility JAR within an Enterprise Application.  This will add the EJB project as a utility JAR within an Enterprise Application that does not define that same EJB project as a module.  This is very similar to using an EJB Client JAR except that the JAR that is created will contain all of the contents from the EJB project whereas an EJB Client JAR would only contain the client interfaces and stubs necessary for remote method invocations.
[image: image7.png]
Figure 20.10 Project Utility JARs

J2EE Project Dependencies

A well factored Enterprise Application will have modules and utility JARs that are dependent upon each other without introducing cyclical dependencies.  Modules define their dependencies on other modules or utility JARs within the EAR by specifying the dependent JARs with the Class-Path entry in the MANIFEST.MF file in the META-INF folder.  This is how the “runtime” classpath is specified for a particular module which is used within the server.  Below are the contents of the MANIFEST.MF file for the TimeSheetGroup EJB module used in the case study.

Manifest-Version: 1.0
Class-Path: TimeSheet-AppLogic.jar
Notice that its classpath entry includes the TimeSheet-AppLogic.jar utility JAR that was added in the Enterprise Application editor.

Setting the MANIFEST.MF Class-Path is required in order to test the module on the server but it does not help with developing and compiling the Java code within J2EE module projects.  In this case, the “development” classpath is maintained by updating the Java Build path for each module project.  Remember that a module project is also a Java project.  As you can quickly see, there are two classpaths that must be maintained and in synch at all times, the development time classpath and the runtime classpath.  This can be very confusing and frustrating for developers because they can get their code to compile but they have a difficult time getting the same module to run on the server.  To alleviate this problem, WSAD has created the JAR Dependency Editor and the Java JAR Dependencies property page.

JAR Dependency Editor

The JAR Dependency editor is used to update both the runtime MANIFEST.MF classpath as well as the development time Java Build path; therefore, you should avoid using the Java Build path for a module project.  If you use the Java Build path to update the development time classpath, the runtime classpath will not be modified and there is a good chance that the module will not operate properly when deployed to the server. 

The JAR Dependency editor can be opened by selecting the module in the J2EE Hierarchy view and then selecting Open With -> JAR Dependency Editor from the context menu.  This editor can also be opened by double clicking on the MANIFEST.MF file from the J2EE Navigator view.  There is also a project property page with the same information and functionality.  This property page is opened by selecting the module or J2EE project and select Properties from the context menu.  Then select Java JAR Dependencies.  

The JAR Dependency editor shown in Figure 20.11 is opened on the MANIFEST.MF file for the TimeApp Web project used in the case study.  The editor has two pages, a Dependencies page and a Source page.  The Dependencies page has several fields and a list used to edit the dependencies among modules and utility JAR files within a specified Enterprise Application.  The Source page is the raw text associated with the MANIFEST.MF file.  A change to the Source page will update the Dependencies page and vice versa.

[image: image8.png]
Figure 20.11 JAR Dependency Editor

The Classpath Scope section is a read-only section that is used to set which Enterprise Application to use when setting the classpaths.  The Enterprise Application combo box will default to the first available application that the given module is contained within.  Remember that a module project may be added to one or more Enterprise Application projects.  The JAR or module URI in EAR text field is a read-only field that shows the URI for the selected module project within the selected Enterprise Application.  In this case, the module URI is TimeApp.war for the TimeApp module project within the wasbook Enterprise Application.  Changing the Enterprise Application will drive changes to the Dependencies table in the section below.

The Dependencies section will show all available JARs or modules that are contained within the selected Enterprise Application which are valid dependencies for the selected module.  If a JAR file you need is not in the list, go back to the EAR application that contains the module, and add it to the Project Utility JARs  The table shows the URI for the module or utility JAR file as well as the project that the file maps to within the workbench.  Any JAR that does not map to a project is contained directly within the Enterprise Application project as an actual JAR file.  Table 20.1 below shows the valid dependencies across the top and the selected module or utility project along the left side.  Any combination that is not valid will not appear as a possible JAR dependency in the list.  Note from the table that no other module or utility JAR can depend upon either a Web module or an Application Client module.

	
	EJB Module
	Web Module
	Connector Module
	Application Client Module
	Utility JAR

	EJB Module
	X
	
	X
	
	X

	Web Module
	X
	
	X
	
	X

	Connector Module
	X
	
	X
	
	X

	Application Client Module
	X
	
	X
	
	X

	Utility JAR
	X
	
	X
	
	X


Table 20.1 Valid JAR Dependency combinations

When you set up your MANIFEST classpath, you may be tempted to select all the available JARs and modules within the Enterprise Application because you may be uncertain about your final application structure.  You should avoid this because it leads to cyclical project dependencies which fail to build within WSAD.  You can eliminate this problem by carefully setting up modules and utility JARs within an Enterprise Application such that there are no bidirectional dependencies (e.g., JAR A depends on JAR B and JAR B depends on JAR A).  Also, you should only add required JARs or modules that are not already required by the existing utility JARs or modules in the dependencies list to the Java JAR Dependencies.  For example, if you have a module a.jar, which has a dependency on module b.jar and utility JAR c.jar, and b.jar already depends on c.jar, you will only need to add b.jar as a dependency since you will also pick up c.jar through b.jar (see Figure 20.12).

[image: image9.emf]a.jar

<<module>>

b.jar

<<module>>

c.jar

<<utility>>

Manifest-Version: 1.0

Class-Path: b.jar c.jar


Figure 20.12 Implicit module class-path dependencies

To make our example a bit more interesting, we are going to select the junit.jar from the Dependencies list shown in Figure 20.11.  Below are the contents from the Source page where you can see that both JARs on specified in the Class-Path.  Note that WSAD will split each entry on a new line to make it easier to read.

Manifest-Version: 1.0
Class-Path: TimeSheet-AppLogic.jar
 junit.jar
After saving the changes in the editor, you can select the TimeSheetGroup from the J2EE Hierarchy view and select Properties from the context menu.  Then select Java Build Path to see how the development time classpath is affected by the changes.  Figure 20.13 shows the Order and Export page of the Java Build Path.  You should notice that there is an entry for the TimeSheet-AppLogic project which maps to the TimeSheet-AppLogic.jar entry in the Enterprise Application.  There is also an entry for the junit.jar file which is located in the wasbook project.  This is a direct reference to the JAR file since there is not a mapping to a project within the workbench.  Both of these entries are exported so that any other Java project that requires the TimeSheet-AppLogic project will also pick-up these entries on their classpaths.  These Java Build Path entries directly map to the entries that were saved in the MANIFEST.MF file so that the runtime and development time classpaths are in synch.

[image: image10.png]
Figure 20.13 Java Build Path

Creating a Session Bean

Now that you have seen how to create an EJB project as well as how to set up dependencies from an EJB project to other modules and utility JARs within the Enterprise Application, you are ready to create an Enterprise Bean.  Creating an Enterprise Bean within WSAD is accomplished by using the Enterprise Bean Creation wizard.  You will use this wizard to add an Enterprise Bean entry to the ejb-jar.xml deployment descriptor.  It also has the capability of generating, if necessary, the Java bean classes and interfaces that are required to support the Enterprise Bean. We will start by providing details of how to create both stateless and stateful Session beans.  Later chapters will provide additional details for creating Entity beans and Message Driven beans.

Start by creating a new EJB project named UtilitiesGroup which belongs to a new EAR project named UtilityEAR.  We will use this EAR and EJB project for the rest of this example.  Once you have done so, you are ready to create a Session bean that will be used to create random integer values.  This could be a useful class if you do not have a natural key value for your object model.  For example, a Person will have a social security number as a natural key value but a LineItem may not have a natural key value.  In this case, any unique value would be adequate.  Note that this is just a simple example of a Session bean and you would probably not use this example as a way to produce unique IDs because random integers are not guaranteed to be unique.  A much better option for automatic ID generation will be described in Chapter 23 when container managed entity beans are described.
Using the EJB Creation Wizard

Like many other actions within WSAD, opening the EJB Creation wizard can be accomplished many different ways.  The most basic way to open the wizard is to select New -> EJB -> Enterprise Bean from the File menu bar.  This path is available anywhere within WSAD.  When working in the J2EE Perspective, which is the desired perspective to operate within when working with Enterprise applications and Enterprise Java beans, there are many methods to open this wizard.  For example, it can be opened using the context menu on an EJB module selection in J2EE Hierarchy view.  Refer to the online documentation for other shortcuts to opening the EJB Creation wizard.
[image: image11.png]
Figure 20.14 EJB Creation Wizard page 1

Select File > New > EJB > Enterprise Bean from the menu bar to open the Enterprise Bean Creation wizard.  Figure 20.14 shows the first page of this wizard where it is necessary to select an EJB project in which you would like to create the new Enterprise Bean.  For this example, we will select the UtilitiesGroup EJB project from the combo box.  This page will not appear for all open actions because the selected project may already be known and cannot change.

The second page of the EJB Creation wizard, shown in Figure 20.15, contains choices for the basic settings of the new Enterprise Bean.  Near the top of the page is a series of four radio buttons for each type of Enterprise Bean.  In this example, we are creating a Session bean.  The name of the Session bean that we are going to create is RandomIDGenerator and it is entered in the Bean name text field.  The Source folder, which defaults to ejbModule, is a folder within the EJB project in which the newly created bean is placed.  You may select another existing source folder or enter a new folder name and it will be created for you.  You may wish to select a different source folder other than ejbModule since this is the location used when generating deploy code.  Choosing another source folder will allow you to keep your bean classes and deploy code completely separated.  We will enter source so that we can demonstrate the difference from using the default.  The Default package will be the package name used for the bean class and interface names that are set on the next page.

[image: image12.png]
Figure 20.15 EJB Creation Wizard page 2

The third page of the EJB Creation wizard, shown in Figure 20.16, is used to set deployment descriptor details for the Session bean.  The first section of the page is where you specify whether or not the session bean is Stateful or Stateless.  With a stateful session bean, conversational state must be retained across methods and transactions.  This is accomplished within the EJB container by serializing each method cal to ensure that the state is preserved between method invocations.  A stateless session bean does not contain any conversational state between method calls.  Therefore, any session bean instance may be used by the container since state is not preserved.  This also means that method calls are not serialized.
The next section is used to specify the Transaction type which can be either Container or Bean.  This setting determines whether the session bean will have container-managed or bean-managed transaction demarcation.  When the transaction type is set to Container, the transaction demarcation is controlled by the container and is governed by transaction settings on the methods of the session bean client interfaces.  With a transaction type of Bean, the session bean is required to create, commit, and rollback the user transactions itself and no transaction attributes should be set for the client interface methods.  See Chapter 28 for more details on transactions.
The next field is the Bean supertype.  This combo box will contain the names of other Session beans already created in the EJB project.  You can select one of these bean names to define an EJB inheritance hierarchy.  You will learn more about EJB inheritance in Chapter 25, Advanced CMP Mappings.  The Bean class text field is the name of the new Session bean’s EJB class.  The default EJB class name is the bean name and the default package name from the previous page.  You may change the name or you may browse for another existing Java bean class or just an existing package name.  If you select an existing bean class, the text in the field will change to blue if Java source code is detected and red if only a Java binary file exists for the class name.  Note a bean class will only be generated upon finish if the selected Java class name does not already exist because it is possible to create a Session bean definition from a set of existing bean classes.

The EJB binding name is the JNDI name that will be bound to the Session bean within WebSphere.  In this example, the default JNDI name is set to ejb/com/wsbook/casestudy/ejb/utilities/RandomIDGeneratorHome which is derived from the fully qualified name of the default home interface name.  This JNDI name is specified at bean creation time since it is required for testing purposes.

The last section of this wizard page is for the client views.  You can choose to create a local and/or remote client view by selecting the Local client view and Remote client view check boxes respectively.  Using a remote client view indicates that a remote client interface and a remote home interface will be created for use by remote clients.  Remote clients use remote method invocation (RMI) for accessing the enterprise bean.  Using a local client view indicates that a local client interface and a local home interface will be created for use by local clients (i.e., clients on the same Java Virtual Machine).  Local method invocation does not require RMI.  Refer to Chapter 22 for more detail about EJB clients and Chapter 30 for deciding when is the best time to use local client interfaces.  

For Session beans, the Remote client view check box is selected by default but you may decide to create a local client view or both.  Just like the bean class, the Remote home interface and Remote interface default values are set using the bean name and default package name from the first page.  The name of the Remote home interface adds Home to the end of the default Bean class name (e.g., com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorHome).  Also, like the bean class name, you can change the default name and choose an existing class name.  Again, the Java interface will only be generated if an existing Java interface name is not selected.

The last page of the Enterprise Bean Creation wizard gives you some control over the generated bean class and client interfaces that will be generated.  The EJB Java Class Details page, shown in Figure 20.17, has three sections for affecting the generated classes and interfaces.  The Bean superclass field allows you to specify another Java class for the new bean class to extend.  This is normal Java inheritance and not EJB inheritance.  If a bean supertype is specified from the previous page, this field will have the fully qualified name of the supertype bean's bean class and it will be disabled.  It is disabled since you are unable to change the superclass if an EJB supertype is specified.  This field will also be disabled if you have selected an existing bean class on the previous page.  The second section is a list of Java interfaces that the new remote interface should extend.  This section will be disabled if you have not selected to generate a remote interface or you have selected an existing remote interface.  The last section is very similar to the second section except that it allows you specify other Java interfaces that the local interface should extend.  This section will be disabled if you have not selected to generate a local interface or you have selected an existing local interface.

[image: image13.png]
Figure 20.16 EJB Creation Wizard page 3

[image: image14.png]
Figure 20.17 EJB Creation Wizard page 4

After you press the Finish button, three new Java classes will be generated under the source folder.

· com.wsbook.casestudy.ejb.utilities.RandomIDGenerator

· com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorBean

· com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorHome

A new Enterprise bean entry will be entered into the deployment descriptor for the new RandomIDGenerator session bean.

<session id="RandomIDGenerator">

  <ejb-name>RandomIDGenerator</ejb-name>

  <home>com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorHome</home>

  <remote>com.wsbook.casestudy.ejb.utilities.RandomIDGenerator</remote>

  <ejb-class>com.wsbook.casestudy.ejb.utilities.RandomIDGeneratorBean

  </ejb-class>

  <session-type>Stateless</session-type>

  <transaction-type>Container</transaction-type>

</session>

Testing the new Session bean

Before we can test anything, we first need to provide some behavior on our new RandomIDGenerator Session bean.  This bean will be responsible for generating a new random integer that may be used for setting ids on other beans.  So, we will add the following methods and field to the RandomIDGeneratorBean Java class using the editor provided by WSAD.  You can open this bean class in a number of different ways including double clicking on the RandomIDGenerator bean from the list on the Beans page of the EJB Deployment Descriptor editor.  Remember that the implementation of the getRandom() method will not guarantee a unique integer but rather a random integer.  Chapter 23 will describe a mechanism to obtain a truly unique integer.
private Random random;
…

public int calculateID() {

  return getRandom().nextInt();

}

private Random getRandom() {

  if (random == null)

    random = new Random(System.currentTimeMillis());

  return random;

}

The method calculateID() will not be accessible to a remote client unless we add it to the remote interface of our Session bean.  You can do this from the Java editor for the RandomIDGeneratorBean class.  Select the calculateID() method from the Outline and select the Enterprise Bean >> Promote to Remote Interface menu action.  You will notice that a small “R” will appear in the Outline next to the method to indicate that it appears on the Remote interface.

Testing the Session Bean with the Universal Test Client

There are a number of different ways to test our new Session but we have chosen to use the Universal Test Client for our initial testing.  Later on in Chapter 22 you will create an Application Client to do the testing for you.  Before we can test this new Session bean, it is necessary to generate the deployment code.  The deployment code will contain the concrete beans as described by the EJB 2.0 specification as well as the necessary stubs and ties for all Enterprise Java beans that have remote client interfaces.  To generate the deployment code, select the UtilitiesGroup EJB module from the J2EE Hierarchy view and click on the Generate > Deploy and RMIC Code from the context menu that is opened using the right mouse button.  This will open the Generate Deploy and RMIC  Code wizard.  Ensure that all of the Enterprise Java beans are selected that you want to have deployment code generated and click the Finish button.  Note, all of the generated deployment code will be generated to the ejbModule folder.  It was mentioned earlier that you may want to generate your Enterprise bean classes to a different folder to keep the code separated from the deployment code.
Now that the deployment code has been generated, the Session bean is ready to be tested with the Universal Test Client.  To begin, select the RandomIDGenerator bean in the J2EE Hierarchy View of the J2EE Perspective.  Pop up the context menu and select Run on Server as shown in Figure 20.18.

[image: image15.png]
Figure 20.18 Run UTC and Server

If there are no servers already defined, you will be presented with a Server Selection dialog to specify the type of server that you would like to create.  We will select WebSphere v5.0 Test Environment and click OK.  This will automatically create a new server and configuration with the UtilityEAR added to the new server and it also starts the server.  Once you’ve either created or selected a server, then the server will start.  The console view will show the progress of the server startup sequence.  Look for a line similar to the following one:

[4/7/03 21:42:47:700 EDT] 660cfc3b WsServer A WSVR0001I: Server server1 open for e-business
When this line appears your server has started normally without any errors.  However, that line won’t be the last line in the console.  There will be a set of lines containing the text [IBM Universal Test Client] that will follow the open for e-business message that will indicate that the Universal Test Client is starting.  At the end of this sequence, you will see the following new page contained in a new Web Browser tab as shown in Figure 20.19.

[image: image16.png]
Figure 20.19 Universal Test Client

This page shows the Universal Test Client (UTC) opened to your new EJB.  The Universal Test Client is a web application that allows you to test both EJBs and Web Services. It consists of two different views – a references view that allows you to select objects like EJBHomes and EJB instances, and methods within those objects, and a Parameters pane that allows you to set parameters for the methods, invoke the methods and examine the results.  We’ll examine some more of its capabilities later.  For the time being, we’re simply going to use the UTC to:

· obtain a reference to the EJB home for the RandomIdGenerator EJB

· create an instance of the RandomIdGenerator EJB 

· send the calculateId() message to the new instance

So, if you have not already done so, expand the RandomIDGenerator tree view under EJB References to show both the RandomIDGenerator Bean icon and the Icon for the RandomIDGenerator Home.  Under “Method visibility” you will see an entry for the create() method in RandomIDGeneratorHome (which is, after all, the only method in the Home Interface).  Select that method and the Parameters pane will change to show a button allowing you to invoke that method.  Press the Invoke Button.  This will invoke the create() method and return a remote reference to a RandomIDGenerator bean.  Your Parameters page should look like Figure 20.20 after pressing the Invoke button.

[image: image17.png]
Figure 20.20 Parameters pane of UTC

As you see, you have a reference to a RandomIDGenerator available.  Since we want to send other messages to this object, press the Work with Object button, which will add the RandomIDGenerator reference to the References tree view.  The remote reference will be labeled RandomIDGenerator 1.  Expand the reference and now you’ll see a list of the methods available on the remote Interface.  As you might expect, the list will only contain one entry (int calculateID()) since that is the only method in the remote interface.  If you select the int calculateID() method in the references pane, again you’ll see an Invoke button in the Parameters pane.  Press the Invoke button and you’ll see your random number.  Your Parameters pane should then look something like Figure 20.21.

Figure 20.21 Random ID generator results

Note that your random number obtained from invoking the calculateID() method will be different from this one – it is random after all!  So, now you’ve seen the basics of using the UTC – you might want to experiment with sending the calculateID() message several times, or seeing what happens if you try to send create() a second time.  This experimentation (and reading the appropriate online help available by clicking the question mark icon at the top right of the UTC page) should make you familiar with the operation of the UTC, and able to use it to test your EJB methods.

Summary

This chapter provided the first introduction to the J2EE Perspective and its basic usage for developing and testing Enterprise Applications.  The chapter discussed the structure of J2EE artifacts within WebSphere Studio and it provided information about packaging and Enterprise Application and setting of class paths for J2EE modules.  A simple example of creating and testing a Session bean was then provided to provide the basic understanding of how Enterprise Java beans are created and tested using WebSphere Studio.  The next several chapters will build upon this foundation to provide more details about testing and debugging Enterprise Java beans, creating Enterprise bean clients, creating and mapping container managed entity beans, creating bean managed entity beans and message driven beans, container transactions, J2EE security, and lastly a wrap up of the best practices for an EJB architecture.






























Figure 20.7 Enterprise Applications Group



Figure 20.6 Imports to Folder dialog











Figure 20.1 Session beans within the Roadmap





PAGE  
23

