
Chapter 11
Tag Libraries and Custom Tags

Introduction

The JSP specification defines a very limited set of standard actions. However, the specification defines a mechanism to make JSPs extensible. These Custom (actions) tags provide an opportunity to design special presentation logic, factored into reusable components and callable from within JSP via a tag, or XML markup, syntax. One aspect of JSP syntax that is a feature– and in some ways a drawback– is the ability to write any arbitrary Java logic, via scriptlets and declarations, co-mingled with HTML syntax within the same JSP file. This can lead to JSP source that is both hard to read and maintain. Therefore, we recommend that a JSP should be predominantly HTML.

So while the combination of these two syntaxes is easily expressed within a JSP, it is awkward and inefficient to maintain. In addition, a page designer (role) is not likely the right person to be writing and/or maintaining Java code within such JSPs. JSP custom tags address this problem by providing an alternative way of expressing dynamic page content using XML tags so the final syntax will be more suitable for user interface development using HTML.

[image: image10.png]Controller /
Presentation Mediato Domain DataMapping Data Source

Figure 11.1 JSP custom tags within the roadmap.

This chapter by addressing JSP tag libraries as a mechanism for extending JSP, is addressing only the presentation layer and the JSP technology (Figure 11.1).
Basic Model for Custom Tags

There are three parts that make up custom tags. First there are the tags themselves that are added to a JSP. These tags provide the mechanism for how the service of a custom tag is invoked within a JSP. The second piece is the taglib descriptor. This is a file that provides metadata about a set of custom tags that are packaged together within a tag library. The file type for the taglib descriptor is .tld, and thus is frequently referred to as the tld file. The JSP author will include a taglib directive within the JSP to resolve the “source” for custom tags used within the page and to associate a prefix (namespace) to be used to refer to that set of custom tags within the page. At translation time, the page compiler uses the metadata within the taglib descriptor file to validate the syntax of its use within the JSP. Also the page compiler uses the metadata to perform code generation – actually writing Java code to invoke the appropriate methods on the corresponding Tag Handlers. This brings up the third part of custom tags, the tag handlers. These are Java classes that provide the runtime behavior for the custom tags. [image: image2.png]JSP File

<%@taglib
uri="http:fwwwwshiook.comy
prefix="timeApp" %>

<timeAppformatDate
farmatl d="formatter*
calendar=

"<%= _pD getDate() %>">

aglin”

tid file

<tag>
<name>formaiDate<hame>
| ¥ ctagclass>com wsbook.casestudy tags FormatDate<ftagclass>

1

public class FormatDate
extends TagSupport {
"

public int doStartTag()
throws JspException {
#..

FormatData.java

Figure 11.2 Key pieces of JSP custom tags

JSTL and other widely used tag libraries

One of the immediate benefits of JSP tag libraries is the ability to use them across multiple applications, multiple projects, and multiple organizations. A prime example of this is the Java Standard Tag Library (JSTL). This tag library, available from Sun Microsystems, provides a number of utility services in a collection of easy to use custom tags
. JSTL includes simple utility tags. It includes a set of conditional tags – if and choose (with its companion when and otherwise tags). There is a powerful pair of iteration (looping) tags, forEach and forTokens. These are useful in writing display pages without writing scriptlets to supply the looping logic.

JSTL also includes a set of tags for working with web resources including the url, import and redirect tags. Finally, there is a large set of tags dedicated to supporting internationalization (I18N) of JSPs including the fmt:message tag and a number of format and parsing tags (e.g., formatNumber and parseNumber). Without a good set of I18N tags, providing support for multiple locales in JSPs becomes a chore and is difficult to maintain.

More and more you will see a greater portion of JSPs being written using standard utility tag libraries. For example, authors of Theme and skins (the branding look and feel elements) for WebSphere Portal Server have their JSPs comprised mostly of custom tags from a single tag library, which provides highly optimized and specialized tags for manipulating presentation objects associated with the Portal.

Writing Tag Handlers

The third piece in Figure 11.2 is the actual Java class that provides the runtime behavior of a custom tag – the tag handler. Such a class must implement one of the three interfaces, Tag, IterationTag, or BodyTag. The interface that your class implements depends upon the context and behavior of the corresponding tag.

	Characteristic
	Behavior Description
	Interface

	Simple Action
	Just does some logic (within the doStartTag()). May be parameterized by attribute values.
	Tag

	Actions with a Body
	Similar to Simple Action but needs to perform logic at the beginning of the body and the end of the body (logic in both doStartTag() and doEndTag()
	Tag

	Conditionals
	Use of return values from doStartTag()
	Tag

	Iterations
	The doAfterBody() method is invoked to determine whether to reevaluate the body or not
	IterationTag

	Actions that process their body
	Needs a way of diverting the output of a body evaluation for other manipulation. Works with a BodyContent object and uses the setBodyContent() and doInitBody() methods of the BodyTag Interface
	BodyTag

	Cooperating Actions
	Interact with other (logically nested) tags – sharing data for instance. Makes use of the setParent() method and the findAncestorWithClass() helper method of TagSupport.
	Any

	Actions defining scripting variables
	Many actions will creating server-side objects and make them available to other scripting elements on the page. This is the prime use for the page context. May define implicit objects declared either via the variables element or the tageiclass element in the taglib descriptor.
	Any

Table 10.1 Categorizing Custom Actions.

More often than not, tag handlers will be classes that extend one of the convenience support classes, TagSupport or TagBodySupport. Let’s take a look at an example tag handler. Consider the following class:

Listing 10.1 FormatDate tag handler class.

package com.wsbook.casestudy.tags;

// various imports omitted for brevity

public class FormatDate extends TagSupport {

private String formatId; // attribute with key into session for

 // DateFormat object

private Calendar calendar; // attribute - Date to be displayed

/**Performs the processing of this simple action. */

public int doStartTag() throws JspException {

String dateString = null;

Formatter formatter = (Formatter)pageContext.getSession().getAttribute(formatId);

if (formatter == null)

formatter = Formatter.getDefaultFormatter();

if (calendar != null) {

dateString = formatter.format(calendar);

try {

pageContext.getOut().write(dateString);

} catch (IOException ioe) {

throw new JspException(ioe.getMessage());

}

}

return EVAL_BODY_INCLUDE;

}

public void setCalendar(Calendar calendar) {

this.calendar = calendar;

}

public void setFormatId(String formatId) {

this.formatId = formatId;

}

}

This class extends TagSupport making it very easy to code. Other than declaring the two attribute fields and the corresponding setters
, all of the logic is found in the doStartTag() method. This is common for a large set of Simple Actions. This tag will have no body (or at least one that this tag depends upon). The method retrieves the formatting object from the session using the key value supplied via the formatId attribute. There is then some logic to handle the case where no such formatter object exists on the session. It then generates the formatted date string using the format object and the other attribute calendar. Next, the logic gets access to the output stream and inserts the formatted date string into this stream. Finally, the return value indicates to continue to evaluate the body of the tag (if it exists). This tag does not create or manipulate any scripting variables – very simple indeed.

Different return values are available for each of the methods of the various “Tag” interfaces. These can cause the tag body to be skipped, evaluated, or reevaluated. There are others that indicate that processing should not continue on the page or that processing should continue.

Tag library descriptor (.tld)

The semantics of custom actions must be validated both at translation time and at runtime. More importantly, the code generator (page compiler) at translation time must know how to convert a “foreign tag” into valid Java code. This is the roll of the tag library descriptor file (or .tld file). This XML descriptor specifies information about the tag library itself, e.g., its namespace as well as describing each tag. For our simple single tag taken from the tag library used in the case study, let’s look at the corresponding .tld file. This file is commonly located in the WEB-INF\tld folder of a web archive (.war) file.

Listing 10.2 timeApp.tld descriptor file.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.2</jspversion>

 <shortname>timeApp</shortname>

 <uri>http://www.wsbook.com/taglib</uri>

 <info>TimeApp application tag library</info>

 <tag>

 <name>formatDate</name>

 <tagclass>com.wsbook.casestudy.tags.FormatDate</tagclass>

 <info>displays incoming date using available Formatter</info>

 <attribute>

 <name>calendar</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 <attribute>

 <name>formatId</name>

 <required>true</required>

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

</taglib>

Of importance at the top of the file is the <uri> tag, which specifies a namespace for the tag library. A corresponding mapping is then found in the web.xml file to physically locate the .tld file given the uri. Next is the declaration of a tag whose name is formatDate that is handled by the FormatDate class. Following that is the declaration of the two attributes, calendar and formatId both of which are marked to be required (enforced at translation time) and can accept runtime expressions for their values. For additional examples and subtleties of the .tld contents, see the JSP specification.

Taglib directive and coding the custom actions

So we have worked our way back from the tag handler to the tag library descriptor and on to the use of the tags within a JSP. There are two parts to using custom actions within a JSP. The first, at JSP file scope, the page needs to let the translator know which .tld files may need to be interrogated while validating (syntax) and then generating code. This is accomplished with the taglib directive. For example, in most of the case study’s JSPs you will find the following directive:

%@taglib uri="http://www.wsbook.com/taglib" prefix="timeApp"%

This declares the availability of a tag library to this body of the JSP file. The uri attribute specifies a namespace-like uri, which should uniquely identify the corresponding .tld file. This is only resolved within the .war file and a taglib map element in the web.xml file. The second attribute of this directive, prefix specifies the prefix to be used (namespace alias) with tags from this tag library. For example the following appears within pending_view.jsp (see Chapters 30 and 31 for full discussion of the case study):

<TD align="center">

<timeApp:formatDate formatId="formatter"

calendar="<%= _p0.getDate() %>"/>

</TD>

Note the tag is specified as timeApp:formatDate where timeApp corresponds to the prefix declared in the taglib directive. Thus the validator (page compilation) will expect to find a tag named formatDate declared within the .tld file associated with the uri=” http://www.wsbook.com/taglib”. Upon locating that declaration, it can verify the tag attributes and generate code that calls the doStartTag() method of an instance of the FormatDate class (after invoking the two attribute setters).

The resulting custom tag, for our case study provides a simple way in which the end-user can select how they want dates to be displayed in the application. The preferred formatter object is stored on the HttpSession. All display of dates makes use of this formatDate tag to provide a consistent, yet customizable, look and feel to date presentation.

 [image: image3.png]Pending Time Sheets

[MName WeckTading| Hous
Tohn Doe 12152001 40.0

Tane Doe 12152001 515

Tane Doe 017192002 4.5

Tohn Doe 017192002 9.5

Tohn Doe 05/18/2002 9.0

Active Date Format M
MMIddiyyyy

11.3 Date display using custom tag

[image: image4.png]Pending Time Sheets

[MName WeckEading| Hows
Tohn Doe 20011215 40.0

Tane Doe 20011215 515

Tane Doe 20020119 45

Tohn Doe 20020119 9.5

Tohn Doe 20020518 9.0

Active Date Format
yyyy MM.dd

iins et pernt ol

Figure 11.4 Same page with different preference set for date format

Support for custom actions within WebSphere Studio

There are several simple features of WebSphere Studio that help you work efficiently with tag libraries. The first involves declaratively specifying any of a group of standard tag libraries to be associated with a web project. Through a simple checkbox, Studio will add the .tld files to the web project, add the corresponding entries in the web.xml file and update the projects Java build path to include the tag library jar file(s). [image: image5.png]@ Properties for TimeApp.

irfa web
Beanlrfo Path
ovs Web Project Type: J2EE Wb Project

Device Emulator Preference
Etemal Tools Buiders
JavaBuid Path

Javados Localion P |

Java JAR Dependencies

ConetFont [Tmehen

JSP Fragment Descipton
Links Validation/Retactoring [12EE Level 1 3 includes a Servlet Speciication level of 2.3 and a JSP Speciication |
Priect Refeences velof 1.2. Applctons developed for s J2EE levelpicaly argt S verson
Server Preference. 5.0 server.
Stuts
Valdaon
‘Web =
Web Cortent Setings
Wb Library Projects Available Web Project features: Description:

] Coate o dofau 55 fe "] [Eelect s e o ave suppot =]

K] Includs Tag Librares for acosssing JSP o {for Stuts added ta your project
0] Includs Tag Libraries for database access

0] Include Tag Libraries forintemationalizatior

(D] Includs the JSP Standerd Tag ibrary

Includs uiity Taq Libaries]
< 3

Restore Defauls
oK Cancel

Figure 11.5 Ability to select tag libraries as web project features

There is also easy support for mapping the tag libraries’ uri to a physical .tld file in the Web Deployment Descriptor editor (Figure 11.6). This results in the corresponding entry in the web.xml file (Figure 11.7).

[image: image6.png]References

38 £18 Lol Resoutce Resoue Envtcrment 5P agibiaes|
36p tag braries

Details

The foloing JSP tag lbtares are used in tis web

Detallsofthe selected JSP tag lbrary
application:

Location: [7WEE TN/ imetpe 12

it/ wsbook comitagi

Overview | Serviets | Fiers | Listeners | Secuity Envion.. | Referen.. |Pages | Paramet. .| MIME *
I | Filters | I I I I

Figure 11.6 JSP tag library references in the Web Deployment Descriptor editor.
[image: image7.png]<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
- <taglib>
<taglib-uri>http://wwwe.wsbook.com/taglib</taglib-uri>
<taglib-location>/WEB-INF/tlds/timeApp.tld</taglib-location>
</taglib>

Figure 11.7 JSP tag library reference in web.xml file.
Most of the support is within WebSphere Studio’s JSP editor, called the Page Designer. This allows easy insertion of taglib descriptors as well as the custom tags themselves.

[image: image8.png]d Select a Tag Library

Select a Tag Library

Selctone ot ore enties by checkingthefom the st below @
el
I T [Foe I ngor..|

T i v book conl. webagplcaion

& Show recommended URI choices (one choics fo sach resource]
€ Show allvalid URI choices

Pefic [imedpp e

URL it/ wsbook com/tagi
Desciption: TimeApp appiecation tag fbrary

Souce: WEBXML

Location: _ wehipplication/WEB-INF /ld/timeApp.td

Avallable Custom Tags:

Teg Desciption
fomaiDate displays incaring date using avalable Formater

=

Figure 11.8 Insert taglib directive dialog

The dialog shown in Figure 11.8 is launched from the page properties dialog after selecting the JSP tab and then clicking Add for the selected tablib directive tag. It provides a list of all tag libraries associated with the .war file. You can select any number of the available tag libraries and have the taglib directive(s) written for you. The nice thing about this directive, if your projects are large or complex, is that it shows you the available Custom tags associated with each tag library.

The final piece is the wizard to insert a custom tag. This is accessed via the JSP -> Insert Custom menu item. It provides a list of all available (for that page) custom tags (Figure 11.9).

[image: image9.png]@ Insert Custom Tag

Tag btaies in document Custom tags in selected tag bray:
URL [Prefis__[TogName | Iniomation |
i/ wsbook.co... timeApp displys incorin.

Figure 11.9 Insert custom tag dialog in Page Designer

The content assist will then provide you with information about the available custom tag attributes. For more information, see chapter 13.

Summary

We have looked at support for building and using reusable presentation and scripting logic within JSPs via a Tag extension mechanism known as tag libraries and custom tags. A JSP developer should exploit the available standard tag libraries to aid in the development of their JSP pages. When you are tempted to write custom Java code within your JSPs in the form of scriptlets, contemplate the option of creating one or more custom tags (actions) instead. If done properly (and these are generally simple to write), the resulting code will now be a reusable component. In addition, a JSP with custom tag(s) rather than scriptlet code will be easier to read and easier to maintain. When not done properly, the resulting custom actions will be poorly documented and useful only in the context where used, making readability and maintainability more difficult.
� http://java.sun.com/products/jsp/jstl

� Setter methods are called by the framework before the doStartTag() is invoked.

12

[image: image1]