Chapter 19
Basic EJB Architecture

In the previous chapter, we examined the common problems that all scalable applications must address. Now that you have a firm understanding of the issues at hand, we will begin to demonstrate how Enterprise Java Beans solve these problems. In the three years since we wrote the first edition of Enterprise Java Programming with IBM WebSphere, several things have changed on the Java development landscape. When we wrote the first edition, Enterprise Java Beans were a brand-new technology (the specification was at the 1.0 level). Few developers had encountered EJBs, and even those that had used the technology were not necessarily familiar with all of its capabilities. Now as we write this, the commonly accepted version of the EJB specification is the 2.0 level and the 2.1 specification is in the public draft stage. However, even though many things have changed, and many more developers are familiar with the benefits that EJBs grant to them, the basic ideas underlying the EJB specification haven’t changed. EJBs still provide the best API to enable Java developers to write secure, scaleable, distributed applications. We show their central position to our architectural roadmap in Figure 19.1.

[image: image1.emf]

Layered J2EE Runtime Architecture

Presentation

Controller /

Mediator

Servlet Container

Data Source Domain Data Mapping

EJB Container

Application Services

Exception

Handling

Properties Logging

Servlet

s

Struts

Java

Beans

Msg

Driven

Beans

Cactus

Java

Applica

tion

XSLT

Web

Service

s

HTTP

Unit

HTML

JSP

JDBC

JMS

Mapper

Object

s

CMP

EJBs

BMP

EJBs

WAS

UTC

Sessio

n

EJBs

JUnit

Java

Beans

Figure 19.1: Architectural Roadmap

In this chapter, we’ll begin with an overview of some of the core EJB concepts, explore some of the things that are new in the EJB 2.0 specification, and finally investigate some fundamental patterns and best practices for using EJBs.

Core EJB Concepts

Some of the key core concepts of the EJB 2.0 specification which have been carried over from the EJB 1.0 and EJB 1.1 specifications are as follows.

Components and Containers
An EJB is a component that implements business logic in a distributed enterprise application. By a component, we mean that an EJB is a “logical” concept that is spread across several physical Java classes and interfaces. An EJB container is where EJBs reside; multiple EJB classes are deployed (or run) within a single EJB container. The EJB container is responsible for making the EJB available to the client – you can’t use an EJB outside of a container. The EJB container provides security, concurrency, and transaction support and memory management (by swapping unused EJBs to secondary storage and by managing a pool of EJB instances). The container is transparent to the client in the respect that the client itself never interacts with it directly; the client only interacts with the container through proxies
 to the EJB.

Deployment
All EJBs are deployed into an EJB container within the context of an EJB-JAR file. Each EJB-JAR file can contain one or more EJBs. The EJB-JAR file consists of the class files that the specification requires the developer write for each EJB, as well as the classes that are generated by the container to support distribution, persistence, transactions and security. A set of entries in an XML file called a deployment descriptor describe each EJB in an EJB-JAR file and inform the container how to handle details like transaction support and persistence. This XML file is always named ejb-jar.xml and must be located within the META-INF directory of the EJB-JAR file. This structure is shown in Figure 19.2.

[image: image2.emf]

.class file for

Home

Interface

.class file for

Bean

Implelementation

ejb-jar.xml describing EJBs in the JAR

EJB Jar file

.class file for

Remote

Interface

.class file for

Generated

Support Classes

Figure 19.2 EJB-JAR file structure

The EJB Types

Earlier, we discussed some of the problems in building scalable applications; the need for object distribution, the need to support object persistence, and the need to handle enterprise messaging. The EJB specification does not provide a single “magic bullet” that solves all of these problems in one component. Instead, it provides several component types that you can use together to help you build support scaleable, secure distributed applications. Now we’ll explore the functions of the different EJB types and how each one contributes to our goal of building scalable, secure, distributed applications.
Figure 19.3 shows the types of EJBs defined in the EJB 2.0 specification.

[image: image3.wmf]

Message

Driven

EJB

Entity

Session

Stateless

Stateful

BMP

CMP

Figure 19.3 EJB Types
In general, all Enterprise Java Beans share two key attributes:
First, all EJBs are transactional objects. This means that any EJB can either participate in an existing transaction, or manage a new transaction either declaratively (meaning that the transaction boundaries are declared in the deployment descriptor and the transaction will be started and committed for you automatically) or programmatically using classes defined in JTA. You will learn more about this in Chapter 28.

Second, all EJBs participate in EJB security. For Session and Entity EJBs, this means that the EJB will pass on a Security context containing information about the user (such as his identity and the security roles that he can take on) to other EJBs, and that you can declare in the EJB deployment descriptor what methods of that EJB may be invoked by users in a particular role. Message-Driven beans are an exception to this latter rule; we will discuss the security complications arising from their differences in Chapter 29.

The similarities between the bean types end with these attributes, however. In the following section we’ll examine each bean type in more detail.

Session EJBs

A Session EJB is a non-persistent object that provides access to some business logic on the server. In most cases, a client accesses a session EJB’s logic through a remote interface over the network although (as we will see later) EJB 2.0 defines a mechanism for accessing that logic locally (in the same JVM) as well. The wire protocol that Session EJBs
 use to provide this remote access is RMI over IIOP. This means that there is a well-defined, standard mapping of EJB interfaces to CORBA IDL. These two together assure the interoperability of systems written in an EJB compliant server to external CORBA systems.
 It also ensures that systems that have evolved to accommodate CORBA (like firewalls) can support EJB systems.

Other than the new provision of optimized local access, Session beans function almost identically to the way that they have functioned since EJB 1.0, so if you have written applications using Session beans before, you will find that few or no code changes are necessary to update them to work in WebSphere 5.0.

Session EJBs can be either stateful or stateless. Stateful session beans exist for the duration of a single client/server session. Likewise, the client has a reference to a stateful session bean that is potentially valid for the lifetime of the client. Because a stateful session bean may have state, and may last a long time, the container is responsible for passivating (or storing) and activating (or retrieving) the stateful Session EJB state. This allows the container to manage the total amount of memory that is in use at any time; if a stateful bean is still active (e.g. it hasn’t been removed by the client) but has not been in use for some time, the container can passivate it to disk storage to make room for newer, more active instances.
However, when a client has a reference to a stateless session bean, it is not necessarily holding a reference to any particular session bean. The EJB container may pool stateless session beans to handle multiple requests from multiple clients. Compare this to the case with stateful beans. If we had 1000 clients all making requests of a stateful bean type, we would have to simultaneously keep 1000 instances in memory, since each client has a connection to a unique stateful bean. On the other hand, if we implemented the same logic in a stateless bean, then all 1000 clients could be serviced by 100, or 10, or conceivably even 1 bean instance, resulting in significantly lower memory use.
The easiest way to think about Session beans is that they provide the client’s view of the business logic of an application. They are the “function” of the application if you prefer to think of it that way. Since Session beans represent the “function” of the application, there should logically be something else to represent the “data” of the application. The EJB model provides for that (among other mechanisms) through Entity EJBs.
Entity EJBs

An Entity EJB is a persistent object that represents an object view of information stored in a persistent data store. Each entity EJB is unique in that it carries its own identity – that is to say that entity EJBs of a particular type must be uniquely identifiable by a specific primary key. Entity EJBs that manage their own persistence are called bean-managed persistence (BMP) entity beans. Entity EJBs that delegate the management of their persistence to the EJB container are called container-managed persistence (CMP) entity beans.

An entity EJB represents some set of data in a database (e.g. is persistent), can participate in transactions, and allows shared access from multiple users. An EJB server like WebSphere provides a scaleable runtime environment for a large number of concurrently active Entity EJBs.

The major difference between Entity beans as they existed in previous versions of WebSphere (implementing the EJB 1.0 and EJB 1.1 specifications) and the Entity beans that exist in WebSphere 5.0 (using the EJB 2.0 specification) is that the Container-Managed Entity bean portion of the specification was nearly completely rewritten to accommodate many of the capabilities that have been part of WebSphere’s CMP implementation since WebSphere 3.5. In particular, Entity bean relationships are now a standard part of the EJB 2.0 specification. You will learn about how CMP relationships are created and used in WebSphere in Chapters 23 and 25.

Message Driven Beans

Message-Driven Beans are a new EJB type that was first introduced in the EJB 2.0 specification. A Message-Driven Bean (MDB) is a special object that acts as a receiver of JMS messages from a JMS Queue or Topic. Message-Driven beans implement a single method that is not part of the standard EJB lifecycle – the onMessage(Message m) method. This method is invoked in response to the receipt of a JMS message from the topic or queue that the MDB is configured to listen on and then may optionally begin a transaction that includes the message receipt.

An MDB is different from a JMS MessageListener (e.g. a class that implements the javax.jms.MessageListener interface) in that since it is an EJB it begins an EJB transaction prior to the receipt of the message. In this case, the message receipt is included as part of the transaction that is started. So, if an exception is thrown later in the handling of the message (say by an Entity EJB that writes to a database table) that causes the EJB transaction to rollback, and then the message is placed back on the queue automatically for reprocessing. This unique ability to include the message receipt in the same transaction as other work performed by the bean is the major reason why MDBs were introduced in the EJB 2.0 specification.
While this survey has covered a lot of ground, it’s OK if you don’t understand everything yet. We will be covering these topics in much more detail in succeeding chapters. Also, you may want to consult [EJB] or a book like [Monson-Haefel] for additional perspective on this complex issue.
Introducing the EJB programming model

Now that you understand a little bit about the different types of EJB’s, you are ready to start exzamining the EJB programming model. In fact, there are two distinctly different programming models for EJB’s – one for Session Beans and Entity Beans, and another one for Message-driven beans. We’ll begin by looking at the way in which Session and Entity beans are developed and used, and then take a look at how the Message-Driven bean approach differs from that base.
First of all, let’s remember that EJB’s are components. Each EJB is composed of a number of different classes, some provided by you the developer, and some provided by the EJB container. An example of this is how Session and Entity EJBs use the Factory idiom for creating objects. You see, since an EJB is a component, you can’t simply use the new operator in Java to create on. First of all, the code that creates the EJB may not be running in the same JVM as the actual EJB, and beyond that, the EJB container may want to pool EJB objects and reuse them to reduce the overhead of object creation. Instead, an EJB programmer must create a Java Interface, called a Home Interface, which defines the ways in which the EJB will be created. The EJB factories that implement these interfaces (whose implementation is provided by the container) are called EJB Homes.

So how, then, does a client obtain an EJB Home? It seems that if they cannot use the new operator, since then they would simply be back in the same position we were in earlier. Clients locate EJB Homes through a standard naming service that supports the JNDI (Java Naming and Directory Service) API. JNDI is simple to use (like the RMI naming service) but it supports many of the advanced features of the CORBA Naming Service (like support for directory-structured names). When you deploy a Session or an Entity Bean, you give it a unique JNDI name; clients can then look the implementation of the Home up through that unique name.

Once an EJB client obtains a home and uses it to look up or create and EJB, what does it actually receive in return? EJBs take the RMI approach of only requiring that the programmer define a simple Java interface that declares a remote object’s “external face” to the rest of the world. In EJB terminology, this is called the Remote Interface, and it declares the externally accessible methods the remote object will implement. What the client receives, then, is another class provided by the container that implements this interface. This object acts as a Proxy to the actual EJB implementation class, which is the final piece of this EJB that the developer is required to implement and provide to the container within the EJB-JAR file.

By applying the factory and proxy patterns in this way, the EJB specification avoids some of the problems that plagued CORBA and RMI. Since the Remote and Home Interfaces are Java Interfaces, we avoid the need to program in both IDL and Java as in CORBA. Since EJB deployment automatically registers EJB Homes in the JNDI namespace, we avoid the “bootstrapping” problem of RMI, since RMI required the developer to manually insert distributed objects into the RMI registry.
As we hinted earlier, starting in EJB 2.0 there are actually now two different ways to define homes and proxies for your EJB’s, depending on whether or not the client knows it will be deployed within the same JVM as the EJB or not. In addition to declaring a Home Interface and a Remote Interface, EJB providers can also declare a Local Home Interface and a Local Interface as well. If the EJB client and the EJB are in the same JVM, then the Client can choose to look up the Local Home rather than the “remote” Home from the JNDI provider. The client will receive an object that implements the Local Interface from any of the Local Home’s factory methods. In most other respects, the using the local interface is the same as using a remote interface. We’ll discuss what this means to the design of your EJB programs in the next section.

Finally, we come to the programming model of Message-Driven beans. This model is significantly simpler than the programming model for Entity or Session beans, since Message-Driven Beans do not have clients that invoke specific methods on those beans. A Message-Driven bean responds to any messages that are sent to the JMS destination that it monitors, regardless of how that message arrived at that destination. So, this simplifies the interface of the MDB down to a single method – onMessage(Message aMsg). All MDB’s implement this same interface, although each will respond differently to the message that is received. Likewise, since there is no need to look up an MDB from JNDI, there is no Home or Local Home interface for the MDB.
EJBs – Distributed or not?

Up until the introduction of EJB 2.0 (first implemented by IBM in WebSphere Application Server 5.0), all WebSphere EJBs were alike in one respect – not only were they transactional components, but they were always, by their very nature, distributed components as well. In the EJB 1.0 and EJB 1.1 specification, there was only one way that you could access the methods of an EJB – by calling methods in a Remote stub that implemented the Remote interface. This had some ramifications on every call to an EJB; regardless of whether the EJB was in the same JVM as the EJB stub or not, the method parameters passed to the call and the return value brought back from the call were serialized on one end and de-serialized on the other end.

The reason this was done was to preserve the illusion of local/remote transparency; if every client has to use the same interface, and the semantics of every call are pass-by-value (e.g. always serializing and de-serializing parameters) then it doesn’t matter to the EJB client whether the EJB the client is calling is in the same container, or in a remote container. Now, while local/remote transparency is a cool idea in theory, in practice it turns out not to be quite as useful as you might imagine. In fact, when you are designing an EJB system, you are nearly always aware as to whether or not the EJB you are calling is located in the same JVM as you are. To understand why this is true, let’s examine some principles of layering in EJB systems.

You’ve already seen how there are three basic types of EJBs; Session beans, Entity beans and Message-Driven beans. As we discussed earlier, Session beans provide the access to the business logic in your EJB server. In fact, there’s even a special way of using Session beans in this manner that has become so ubiquitous that only rarely would we recommend using them in any other way; this is that Session beans act as Distributed Facades onto the business logic of your application.

The heart of the Distributed Façade pattern (as described in [Fowler], also called Session Façade in [Alur]) is a simple idea. You don’t want to expose the details of how your application implements its business logic or handles implementation details like persistence to the application’s clients; you want to hide these details so that EJB clients are only aware of how the business logic is invoked, not what the business logic does. The ramification of this idea is that clients only ever see Session beans; any Entity beans in your application are hidden behind a protective layer of session beans, as shown in Figure 19.4.

[image: image4.emf]Session

EJB

Entity EJB

Entity

EJB

Figure 19.4 Distributed Façade Design

There are other ramifications of this pattern, but we will examine those in detail in Chapter 30, when we will show a detailed implementation of this pattern in our case study..

The Local EJB idea

While the Distributed Façade pattern has proven to be extremely useful in practice, there’s a problem inherent in its use. Sometimes bean deployers separate the Web container and EJB container into separate tiers, or JVM instances, to facilitate reuse and enable additional load balancing flexibility. However, it is often the case that the client to the Session beans is a Servlet or JSP co-deployed in the same JVM as the Session EJB. In that case, the additional overhead from the serialization required by the pass-by-value semantics is unnecessary. The place where this overhead becomes particularly unnecessary is where Entity beans are concerned. If all Entity beans are wrapped in a layer of Session beans, then there is never any reason to incur the overhead required by remote access to an Entity bean. In recognition of these scenarios, the EJB 2.0 specification added a new approach to both Entity and Session beans; a Local Interface and Local Home Interface that parallels the Remote and Home interfaces discussed earlier.

Differences between local and Remote EJBs

There are a few differences between using a local interface and a remote interface that you have to keep in mind when developing with EJBs. First, parameters to a local Interface are pass-by-reference, and not pass-by-value. One of the ramifications of this is that you can’t “reuse” a parameter inside your EJB; that is you shouldn’t update a value of an object parameter inside of a session EJB (which would be a Java programming practice in any case). While this would work with a remote interface (because the object instance that is passed in would be a different copy than the one that was created in the client) with a Local interface the same object would be used, perhaps leading to unexpected behavior later in the client. Second, the actual interfaces used by the client application are different. If an EJB has both local and remote interfaces, client applications will choose different JNDI references and Home interfaces to access them. In short, to create or find a local EJB, a client must use an EJB local reference (which we will cover in detail in the following chapter) and then use the Local Home Interface. However, to create or find a remote EJB, the client may either look up an EJB remote home reference, or look up a JNDI name directly, and then use the remote Home interface. This is a subtle point that many people miss when first learning about remote and local EJBs. We will investigate this in more detail in both the following chapter and in Chapter 22 on EJB client programming.
Basic Architectural Patterns for EJBs

So, how do you practically apply this information to your EJB designs? There are a few simple rules that we will show you how to apply in our case study, and that you can apply to your own designs that can help you take best advantage of the capabilities of EJB 2.0.

· When you are using Session beans as Session Facades, provide both a Remote and a Local Interface for your Session bean. That allows you to take advantage of the remote capability of the Session bean if you separate the EJB container from the Web container, and also allows you to take advantage of the performance benefit of Local Interfaces if you do co-deploy the Web and EJB containers. The WebSphere 5.0 Performance Report [Willenborg] shows that co-deployment and the use of local interfaces can provide up to a 21% performance increase in many situations over calling a remote EJB method.
· Always create only Local Interfaces for Entity beans. Do not allow access to Entity beans remotely, and only use them in the context of the Session Façade pattern. We will cover the reasons for this restriction later in chapter 30.

Finally, there is one more pattern you should consider applying with regards to local and remote interfaces. Let’s consider, for a moment, how you use Message Driven Beans. You might remember that we’ve only discussed remote and local interfaces when applied to Session and Entity beans. This is because Message-driven beans do not have either Remote or Local Interfaces (or even Homes, for that matter!) This is because a client doesn’t create an MDB or invoke its methods – as discussed earlier, the onMessage() method is invoked whenever a JMS message arrives on the Queue or Topic with which the MDB is associated. However, there is a useful variation on the Distributed façade pattern to apply when you are building MDBs.

The issue here is that if you have business logic that you need to run asynchronously when a message is received by an MDB, then there is a good chance that you also need to run that same logic synchronously at some point. For instance, consider the following case. Let’s say we’re in a bank and that we have a system that processes requests to transfer money from one banking account to another as they come in from a queue. This might happen if the requests are received from a non-J2EE system like a telephone voice response system. One possibility is to implement the order processing logic directly in the MDB, or in a Java class called by the MDB. However, another, better approach would be to place a Session bean (another façade) between the business logic implementation and the MDB. You would then use an EJB local interface to the Session bean in the MDB. This allows you to also synchronously process transfer requests – something you might want to do if you had tellers who also needed to be able to do the same thing, but need to complete the transaction while the customer is standing directly in front of them in the bank. This approach is shown in Figure19.5.

[image: image5.emf]Session

EJB

Message

Driven

Bean

Queue

EJB

Client

Business

Logic

Figure 19.5 Message Driven Beans with Session Beans

The role of persistence

One of the most contentious parts of designing systems that use EJBs is determining how object persistence will be handled. There is almost no area of EJB design that can cause more religious arguments and flame wars than debating the merits of the various persistence options. The problem is that many of the most strongly held opinions are held by those with the least amount of experience with the different technologies; often people will generalize from a bad experience with one tool or application server and use that broad brush to paint an entire technology (like Entity beans) as not being useful. While we will examine many of these technologies in more detail in later chapters, gaining a basic understanding of how the different options function can be useful in making an informed decision about which technology best fits in each situation.

Mapper layers

In Chapter 7 we examined one way of connecting objects (used in Servlets and JSPs) to a relational database through an implementation of the Active Record pattern described in [Fowler]. Active Record is a simple way to retrieve objects from a database, and then update the objects in the database. However, Active Record has some drawbacks, as we discussed earlier. First, it doesn’t handle object relationships very well. Imagine if we were trying to load a TimeSheet for an Employee from the database that contained TimeSheetEntries with different tasks and the hours worked on those tasks. The problem there is that there’s no good way to fetch the set of contained objects using the Active Record pattern. The Active Record pattern also includes database access queries (in this case SQL) directly in the domain model code. This is often derisively referred to as “Sprinkling SQL” and can become a maintenance problem as developers find they must go to several objects to make a simple change like changing a table name.

 In fact, very few projects end up using the Active Record pattern. Instead, a more useful approach described in Chapter 16, and one that we will use in our case study, is called the Data Mapper pattern, sometimes referred to as Data Access Objects (DAO) in [Crupi]. [Fowler] describes the heart of this pattern as “A layer of Mappers that moves data between objects and a database while keeping them independent of each other and the mapper itself.” Moving the database access logic into a separate class away from the domain object allows you to more easily centralize your SQL code (making maintenance easier). It also allows you to define object relationships by creating networks of mappers that rely on other mappers to create objects of the right type. In our earlier case, you could imagine that the TimeSheet Mapper might call on the TimeSheetEntry mapper to create the entries for a particular TimeSheet.

The great thing about the Data Mapper pattern is that it works equally well either outside of an EJB, or inside an EJB. It can also work with any arbitrarily complex SQL statement, and it can handle things like views, calculated columns, and joins. As a result, it’s the basis of many of the persistence schemes we see used in practice for most J2EE applications. However, as discussed in Chapter 16, the Data Mapper pattern is not perfect. The problem is that even though mappers can handle complex SQL and odd relational structures, the fact is that YOU as a programmer are responsible for writing this logic. This can be time-consuming and error-prone, especially if you are not intimately familiar with SQL and JDBC. You can instead choose to use an open-source Data Mapper framework (like Apache Castor) or a commercial framework like Oracle TopLink, but this both introduces yet another API you must master and puts you at the mercy of the capabilities of that particular tool.

Finally, there are a number of very complex, and subtle issues involved in building complex O/R mapping layers. For instance, it is difficult to correctly implement capabilities like caching, which can have an enormous impact on the overall performance of your mapping layer. So, in many cases, it’s useful to look at the built-in persistence scheme for WebSphere – Container-Managed Entity beans.

Container Managed Entity Beans

There have been two major complaints made in the J2EE community about CMP Entity beans. First, some assert that CMP Entity beans have such poor performance that they’re too slow for any real application. Second, some have asserted that are so limited in their support of object/relational (O/R) mapping that they’re not useful in the real world. Like most complaints, these accusations do have their basis in truth. In fact, in some very early Application Servers, the O/R mapping support for CMP beans was extremely limited. However, this has never been the case of CMP beans in WebSphere. Even WebSphere Application Server version 3.5 had sophisticated, albeit proprietary, O/R mapping support that supported object relationships, EJB inheritance supported in a relational database, and even mapping to a relational database in a top-down, bottom-up or meet-in-the-middle approach. All of this support has improved substantially, and aspects of it have even become part of the J2EE standard, as you will see when you examine these features in Chapters 23, 24 and 25.

The performance complaint also had an element of truth in it at one point. In prior versions of WebSphere there were substantial differences between the performance of CMP EJB’s and other approaches like raw JDBC. However, that difference has narrowed significantly. With the improved caching techniques in WebSphere 5.0, and the introduction of features like CMP preloading, the performance of CMPs in WebSphere 5.0 is acceptable for most applications. CMP preloading uses an SQL JOIN to load a set of EJB’s when a “parent” EJB in a relationship is loaded. For example, the TimeSheetEntries for a Timesheet can be loaded whenever a TimeSheet is loaded, saving one or mjore SQL statements to load the individual TimeSheetEntries. CMP preloading will be discussed in more detail in Chapter 25. What’s more, the ease of development makes it an excellent choice for application developers with tight time constraints.

So, are CMP Entity beans right for you? In most cases, they should be your first choice for object persistence. If your need to use highly complex SQL that a CMP bean can’t handle, then use Data Mappers. However, it doesn’t have to be either-or. In fact, most applications can successfully use a mix of the two approaches, using the most appropriate tool in each situation. The important thing to remember is that finely crafted persistence mechanisms are costly to develop and difficult to maintain when the domain model changes. Since many applications have life-times measured in web-years
, it may make better sense to use the automated tools and focus more development resources on the actual business problem.

Other options

The major problem with picking technologies to use in a large-scale system is that Java technology doesn’t stand still for long. A decision made on the merits of a technology may be invalidated six months later, when a new technology emerges, or when an old technology is revitalized in a new version. The same is certainly true of persistence technologies. There are several interesting technologies that aren’t yet mature enough (or supported) for us to recommend at this point in time, but that may well become useful in the near future. Foremost among these is the JDO (Java Data Objects) standard. JDO is a technology for successfully hiding the persistence mechanism behind a set of plain old Java objects (or POJOs). In this way, you get the best of both worlds. You don’t have to think about coding the details of your object persistence (as when you use CMP EJBs) but the objects that are persisted are regular Java objects, and not heavier-weight components like CMP Entity beans (an advantage of Data Mappers).

The major issue with JDO is that its connection into the J2EE architecture has not been well-defined. It is not part of the J2EE standard, and it is not at all clear how the transaction support in JDO will work with the transaction support provided by EJB containers. So, in the future, JDO (or a technology like it) may prove to be the best choice for object persistence in WebSphere, but for the time being, it should probably be set aside. You may also find that local CMP beans provide additional services, such as security, that simplify the overall application development problem while reducing the overhead associated with the EJB container.

When do you need EJBs?

While EJBs provide a complete, scaleable solution for large-scale distributed Java programming, the technology is not appropriate for every project. We can now complete our look at the architecture of EJBs by considering some questions that project teams may ask if they are considering moving to EJBs from other technologies, or considering a new project that may use EJBs.

Some Technical Questions to ask:

Let’s begin by examining some questions that can be used to determine if EJBs are an appropriate technology for your situation. If you can answer “yes” to any of these questions, then EJBs may be an appropriate technology in your situation. On the other hand, if these questions do not apply, then other technologies may be more appropriate.

Is there a need now, or may there be a need in the foreseeable future for access to Enterprise data and shared business logic from multiple client types or multiple application clients?
Whenever an application needs to be used from multiple client types (e.g. web browser, pervasive devices like cell phones and PDA’s, Java client applications, etc.) EJBs are often a good solution to provide a common platform for shared business logic and data. EJBs provide a distributed infrastructure on which multiple client applications written using a number of technologies (Servlets and JSP’s, Java clients, and even CORBA clients) can be layered.

Another, very common situation where the distributed aspect of EJBs becomes extremely useful is when you are building applications that must have an application client written using Java Swing. In this case, you want to separate the reusable, common business logic away from the strict GUI logic of the application in order to avoid falling into the “Fat Client” trap where precious server-side resources (like database connections) are monopolized by client programs. In this case, writing your common business logic as a set of EJBs that are shared across all of the client applications allows for the best use of both client-side display power and server-side resources.

Finally, what is perhaps the most common case is where you need to layer your business logic. Often you can find that you can provide abstract business services that other applications can re-use. Providing this logic as a component that can be managed, deployed and versioned separately from the rest of the application can provide a number of benefits over and above lower-level forms of code reuse such as copy-cut-and-paste or including common libraries in your applications.
 Is there a need for concurrent read and update access to shared data?

Traditional, “fat client” solutions require the application to manage access to shared data at the database level. This often results in highly complex schemes to deal with database locking and concurrency, or alternatively, loss of data integrity when these issues are not considered.

CMP Entity EJBs automatically handle these complex threading and simultaneous shared-data issues. As mentioned previously, the EJBs control the access to the back-end data and manage the current transactions and database locking internally. This reduces the total programming effort by reducing the amount of effort spent in writing database control logic, while ensuring the consistency and validity of the data.

Is there a need to access multiple disparate data sources with transactional capabilities?

Many applications require the ability to access multiple data sources. For instance, a program may update data in both a middle-tier Oracle Database and a Mainframe CICS or IMS system accessible through MQ Series. The key is that some applications require that this access be fully transactional – that data integrity be maintained across the data sources. For example, an application may demand that placing a user order will consist of storing the detailed order information in an Oracle Database and simultaneously placing a shipment order with a CICS system through MQ Series. If either the database update or the MQ enqueuing fails, then the entire transaction should roll back.

In the past, the only choices to build systems like these were Transaction Monitors like Encina, CICS or Tuxedo, which used non-standard interfaces and required development in languages like COBOL, C or C++. However, now Enterprise JavaBeans in WAS 5.0 support multiple concurrent transactions with full commit and rollback capabilities across multiple data sources in a full 2-phase commit-capable environment. Some data sources are, however only supported with 1-phase commit semantics. We’ll discuss this more in detail later in Chapter 28 on EJB transactions.

Is there a need for method-level object security seamlessly integrated with security for HTML documents, Servlets, JSPs and client logins?
Certain types of applications have security restrictions that have previously made them difficult to implement in Java. For instance, certain insurance applications must restrict access to patient data in order to meet regulatory guidelines. Until the advent of EJBs there was no way to restrict access to an object or method by a particular user. Previously, restricting access at the database level, and then “catching” errors thrown at the JDBC level, or by restricting access at the application level by custom security code would have been the only implementation options.

However, EJBs now allow method-level security on any EJB or method. Users and user groups can be created which can be granted or denied execution rights to any EJB or method. In WebSphere, these same user groups can be granted or denied access to web resources (Servlets, JSP’s and HTML pages), and the user id’s can be seamlessly passed from the Web resources to the EJBs by the underlying security framework.

Summary

In this chapter we’ve examined some of the basic concepts inherent in the EJB architecture. We’ve looked at the types of EJBs that are available in WebSphere 5.0, seen where they are appropriately used, and examined some patterns for dealing with questions of Object persistence and application layering. In the process, you’ve seen how EJB’s can be the answer to many of the systematic IT concerns we looked at in the previous chapter. In particular, we briefly examined:

· How object distribution with Session Facades avoids the multiple programming-model pitfalls of CORBA, and provides object distribution at the “right” level of granularity.

· How the declarative security of EJB addresses the security concerns of RMI

· How all EJB’s are transactional objects, and how you can use this fact to build systems that are transactionally-aware.

· How CMP Entity beans can provide a mechanism for flexible and efficient object persistence.

In the next Chapter you’ll begin building your own EJBs and learn about the capabilities for EJB development that are in WebSphere Studio Application Developer.

� As in the Proxy pattern from [Gamma]

� Entity beans can also be distributed, but this is rarely a good idea, as we will see later.

� WebSphere Application Server fully supports interoperability with most CORBA ORBs. For details on how to use WebSphere together with CORBA systems, refer to the WebSphere InfoCenter.

� Note, even with a third-part O/R framework, you may still decide to apply the Data Mapper pattern to minimize the impact of external API’s on your business logic.

� A web-year is like a dog year, but far shorter.

2

_1119000635.doc

[image: image1]

EJB

Entity

Session

Stateless

Stateful

BMP

CMP

Message Driven

_1119115242.doc

[image: image2.bmp]

Layered J2EE Runtime Architecture

Presentation

Controller / Mediator

Servlet Container

Data Source

Domain

Data Mapping

EJB Container

Application Services

Exception�Handling

Properties

Logging

Servlets

Struts

Java�Beans

Msg Driven�Beans

Cactus

Java�Application

XSLT

Web�Services

HTTP�Unit

HTML

JSP

JDBC

JMS

Mapper�Objects

CMP�EJBs

BMP�EJBs

WAS�UTC

Session�EJBs

JUnit

Java�Beans

[image: image1]
_1110568034.doc

 SHAPE * MERGEFORMAT
[image: image1]

 SHAPE * MERGEFORMAT
[image: image2]

Session EJB

Session EJB

Session EJB

Entity EJB

Entity EJB

_1110777989.doc

EJB Jar file

ejb-jar.xml describing EJBs in the JAR

.class file for Bean Implelementation

.class file for Home Interface

.class file for Remote Interface

.class file for Generated Support Classes

_1110567286.doc

[image: image1]
[image: image2]

Message Driven Bean

MDB

Business Logic

Queue

Session EJB

Queue

EJB

Client

Business

Logic

