Chapter 29
J2EE Security in WebSphere

Let’s face it, security is a painful subject. Far too often, developers simply say “that’s not my problem” and leave securing their applications up to the nameless, faceless “security people” in an organization. There are tragic results from this. It seems like almost daily you hear of major web sites being hacked or defaced, sensitive information being stolen, or massive fraud being committed as a direct result of that attitude. Is this the fault of these “security people”? No, the reality is that building secure systems is the job of all developers, not just a privileged and knowledgeable few.

However, due to the way that WebSphere’s J2EE Security works, it’s easy to get away with that attitude. By default, all security is turned off in WebSphere Application Server and WSAD. Unless you turn it on and think about what securing your application means, you’ll never encounter it. Unfortunately, that’s the way that it stays in far too many customer installations. Here are a couple of scenarios, though, that might give you pause when you consider the results of leaving security turned off:

· Leaving J2EE Security turned off leaves exposure to all administrative functionality across the WebSphere cells. Severe damage can be done to production systems simply by a developer mistakenly connecting the WAS Admin Console to a production server and making changes there when they intended to modify a test server instead.

· If you use EJBs then your application server will be listening for requests to those EJBs over RMI-IIOP. When WebSphere security is turned off, these requests do not require authentication nor perform any authorization checks before they are processed, and these communication is not encrypted. So, the entire application is open for intrusion from the inside. In the past, developers have argued that the obscurity of EJB requests (i.e., the obscurity of RMI-IIOP) makes this a moot point. The problem is that tools like WSAD’s Universal Test Client use introspection to determine available EJB method signatures and names, and from there provide a platform to execute these methods. Anyone with a copy of WebSphere Studio can use the UTC to query an unsecured application server directly and possibly obtain confidential data by casually browsing the EJBs that are available.

So, our recommendation is that in nearly every application, be it for an intranet or certainly for the global Internet, at a minimum that you turn on WebSphere J2EE security and use the J2EE security model. This will begin to plug some of the holes in your security infrastructure. In the next sections we’ll examine the basic parts of J2EE Security, and see how WebSphere implements them. Finally, we’ll take a look at the “edges” of dealing with Security in WebSphere – handling some of the more interesting programmatic issues that using J2EE security can bring up. Note that we won’t cover most of the hard issues of developing a truly secure production environment; things like firewall placement, server hardening, and physical security are beyond the scope of this book. However, we will at least introduce you to the basic things you can do for your own applications that will help you begin to create a more secure environment.

J2EE Security Overview

So, what does J2EE security, consist of? Well, for the most part it boils down to answering some basic questions about your system:

· Who is asking for this particular request? – This is the problem of Authentication. You don’t necessarily want anyone off the street to access your application; instead you want to know exactly who makes each request, and you want to make sure that they are who they say they are.
· Should the person or program making this request be allowed to make this request? – This the problem of Authorization.

· How do you know that a user's interactions with an application are private and not viewed by other persons? Likewise how do you know that requests and responses haven’t been altered in mid-flight? These are issues of Privacy (often dealt with through Encryption) and Integrity (the domain of digital signatures).

At its core, you have to determine how much risk you are willing to take for your application. As we’ve said earlier, implementing no security entails very little effort but comes with a very high risk. On the other hand, locking down everything can require a very high level of effort, but carries with it a relatively low risk. In the next section, we’ll examine how these issues are addressed in WebSphere.

J2EE Security Architecture

Figure 29.1 shows some typical J2EE-defined paths into a WebSphere Application Server. Using this diagram as a guide, we’ll quickly address where each of the areas identified in the previous section come into play in WebSphere.

[image: image1.emf]

Web Client

(Browser)

Application

Client

Web Container

EJB Container

Servlet

JSP

EJB

Authentication,

Authorization, Encryption

Authentication, Authorization,

Encryption

Authorization

Authorization

A

B

C

Figure 29.1 Secured Paths in WebSphere

The first path we’ll examine is the most common; the one into the Web Container from a Web Browser (labeled “A” in the diagram). On this path, all three areas of concern may come into play. First, you will want to make the conversation private; the way this is done is through the use of HTTPS (the version of HTTP that runs over the Secure Sockets Layer (SSL)). Configuring HTTPS for your application server and Web Server plugin is beyond the scope of this book, but is covered in the InfoCenter. Of more immediate concern to you here is how you identify your user to the Web Container and how you determine whether or not that user can actually access that particular Server.

J2EE Authentication in the Web Container

Secure interaction with a Web container initiates a challenge-response interaction where the Web server challenges the client to provide proper authentication before it will honor the request. Authentication consists of two processes; identification and validation. Identification means that a party making a request has to provide some proof of their identity. These proofs of identity are called credentials. This is often in the form of a user id and password pair (something that only that person would know) or providing a certificate (something that only that person would have access to). Validation consists of one partner presenting his credentials, with the other partner in the transaction validating that the credentials match a previously stored set.

The Servlet specification outlines four methods for providing credentials to a Web container. They are:

· HTTP Basic Authentication – This is the most straightforward. What this does is use a set of headers defined in the HTTP specification (the HTTP Basic-authentication headers) and passes a user id and password to the container in this header in response to the challenge. When a Web Browser first attempts to access a page that is set up for basic authentication, the web server and the browser coordinate with each other according to a flow set forth in the HTTP specification. The server issues a “challenge” to the browser, and the browser will then typically pop up a password dialog asking for a userid and password. That information will then be sent to the container in the headers mentioned earlier. One thing to note is that the userid and password are not encrypted; they are instead merely base-64 encoded in the headers. This means that you should plan on securing your login page (if not the rest of your site as well) through HTTPS as we discussed earlier.

· Form-based Authentication – Form-based login is an alternative to basic authentication where you as a developer provide an HTML or JSP page that provides a login page with the custom look-and-feel of your application. Your login page must contain an HTML <FORM> tag that performs an HTTP POST to a special action called “j_securitycheck” with two specifically defined HTTP parameters, “j_username” and “j_password”.

· Certificate-based Authentication (HTTPS Client Authentication) – In this method, the client browser must possess a public key certificate from a certificate authority to identify the user. This is useful in certain situations, particularly where you want to physically restrict all access to your application to a specific set of users. However, you must plan on generating and disseminating the certificates to your users.

· Digest authorization – This is an optional authentication mechanism specified in the Servlet specification that WebSphere does not support. Digest authentication is similar to basic authentication, but uses an encrypted password. The problem is that few browsers support this option.

The particular mechanism you want to support in your application is specified on a web-app basis through the Web deployment descriptor (web.xml). So, let’s say you wanted to support Form-based authentication in your application. First, you would need to implement an HTML page or JSP page as your login page, following the rules described above. You’d also want to specify a login error page. You would then add the following lines to your web.xml file:

<login-config id="LoginConfig_1">

<auth-method>FORM</auth-method>

<realm-name>My Form-based Authentication</realm-name>

<form-login-config id="FormLoginConfig_1">

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

So if that’s the first part of Authentication in the Web container, how does the second part work? In other words, how does WebSphere know what people correspond to particular userid’s and passwords and if a particular combination is valid? Luckily for you, in most cases, you don’t have to do anything programmatically to perform this lookup. WebSphere does this for you through the use of User Registries. There are three different options for User Registries in WebSphere:

· WebSphere can use the local operating system (Unix, Linux or Windows) to obtain userids and passwords.

· WebSphere can also use an LDAP V3 compliant directory server to provide userids and passwords. WebSphere currently directly supports the IBM Directory Server, Lotus Domino Enterprise Server, the Sun ONE Directory Server, and Windows 2000 Active Directory. However, WebSphere can be made to work with almost any LDAP V3 directory server if you provide the proper configuration information.
· Finally, you can build your own custom User Registry to look up user ids and passwords from a file, a database, or any other data source you choose.

Once a user has been authenticated into WebSphere, WebSphere then generates a special client credential to keep the user from having to log in again. This credential uniquely identifies the user and is kept in a cookie that is stored in memory on the user’s browser. It has an expiration time associated with it to keep someone else from finding the cookie and using it to surreptitiously log in as the original user (called a “replay” attack) after which it is regenerated and retransmitted. Likewise, there is a second timeout value in WebSphere associated with this cookie; if a user does not request a page from WebSphere within this timeout, then the cookie is invalidated, and he is forced to log back in.

Note that there is a ramification associated with this when you consider the different authentication mechanisms. If a user does not allow cookies from your site in his browser, then EVERY web request must be re-authenticated. This isn’t an issue in basic-authentication since the userid and password is still in the HTTP header it can still re-authenticate every request, which is expensive but workable. However, in forms-based authentication, it will force your application into a loop where every action goes back to the login page. So, the moral of the story is – either inform your users that they MUST leave cookies turned on if they are using a secured application, or plan on using basic or certificate-based authentication.

EJB Client Mechanisms (JAAS)

Now that you’ve seen how Encryption and Authentication are done along the “A” path from the Web Browser into the Web Container, you may be wondering what happens on the “B” path from an Application Client to the EJB container. Unlike in the Servlet case, this case is not handled by a specification. The mechanism for providing credentials to an EJB container is left up to the vendor’s discretion.

In WebSphere 5.0, IBM has chosen to use the Java Authentication and Authorization Service (JAAS) API’s for programmatic login for EJB’s. JAAS is a very broad API that allows the definition of custom authentication, authorization and access control mechanisms. However, WebSphere does not fully support all of the JAAS API in this way. WebSphere instead supports a limited subset of the JAAS API, allowing you to use its facilities to perform programmatic login only.

In many cases, developers have used JAAS in other servers without a predefined security model (like Tomcat) to define their own lookup mechanisms for userids and passwords. In WebSphere, as we have described earlier, you would want to use a Custom Registry instead in that situation. In effect, JAAS is a more standards-compliant replacement for the old CORBA programmatic login API's that were supported in WebSphere 3.5 and WebSphere 4.0.

So, now that you understand what you can do in JAAS, how would you actually use it in practice? Well, first there is a number of setup steps that you need to perform such as setting up a sas.client.props file which will be used by the JAAS login API to locate the server that will perform the client authentication. All of these steps are described in detail in the WebSphere InfoCenter. Once you have performed these steps, then you can begin using the JAAS LoginContext API as shown here:

LoginContext lc = null;

String username = “myUserName”;

String password = “myPassword”

String realm = “myRealm”

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl(myUserName ,myRealm, myPassword));

 } catch (LoginException e) {

 System.out.println("Cannot create LoginContext. " + e.getMessage());

 // do any error processing here

 } catch(SecurityException se) {

 System.out.printlin("Cannot create LoginContext." + se.getMessage();

 // do any error processing here

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.printlin("Cannot create Subject. " + le.getMessage());

 // do your error processing here

}

This particular example assumes that you’ll provide your own username and password to the WSCallbackHandlerImpl. This means that (for instance) you would have your own Swing-based dialog to obtain the userId and password from the user prior to calling this API. However, that’s not your only option, there are also two other CallbackHandler implementations: WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl. The former reads a userid and password from statndard input, while the latter pops up a dialog box to prompt the user for the userid and password. You can use whichever of these is most appropriate for your particular implementation.

Just as there are security credentials that are passed back and forth from the browser to the Web container to provide the authentication status of a Principal
, there are similar credentials that are passed between an EJB client and an EJB. In WebSphere, there are two different protocols you can choose from; the CORBA Common Secure Interoperability, Version 2 (CSIv2) protocol, and the WebSphere Secure Association Service (SAS) protocol. Your clients can be configured to use either or both. In practice, this choice has hardly any impact on you; it’s only if you need to interoperate with another Application Server vendor that you’ll ever care. The only result you care about is that credentials are passed along transparently with every EJB call. This is also how that the path marked “C” in the diagram above (Figure 29.1) is handled. If you are authenticated into a Web Container, WebSphere will automatically flow your credentials into the EJB Container without your having to provide any special credentials to the EJB or the InitialContext (as is the case with some other application servers).
J2EE Authorization

Authorization is the process of controlling access to resources. The basic process of authorization involves an idea called an Access Control List, which is a way of specifying a mapping between users and resources, and showing which users have access to which resources.

J2EE bases its authorization model on the notion of a Role. You can think of a Role as a job that a user might perform. Each user may participate in more than one Role

Basically, each J2EE component (a servlet, or an EJB, for instance) is associated with a set of abstract, developer-defined roles that are granted access to run the methods of a particular EJB, or to use a particular servlet or JSP. At deployment time, these abstract roles are mapped to actual groups of users that are stored in the User Registry. To facilitate this, WebSphere keeps a mapping of groups in the User Registry to J2EE roles, so you must configure this as part of the deployment process of your application.

Here’s how it works. Roles may have different access rights to the same resource. Let’s say we were working in a Bank where we have two Roles, Tellers and LoanOfficers. If you’re a Loan Officer you need to be able to view a person’s bank account balance to determine if they are a good credit risk. So, if we had an Account EJB, LoanOfficers should be allowed to call "getAccountBalance()" on that EJB. On the other hand, Tellers can call not only "getAccountBalance()" in order to tell a depositor how much money they have in that account, but also the "deposit()" and "withdraw()" methods to update the account balance. Likewise, if we had a Servlet called “AdminServlet” that allowed someone to perform administration functions in your application, you would want to restrict access to that Servlet to users who were in the Admin Role.

Specifying Authorization in the Web Container

As you can imagine from the way in which Authentication was specified in the web deployment descriptor, Authorization is similarly specified there as well. The basic mechanism in specifying Web Container authorization is to create a set of tuples of Role, Resource, and Action. The way this is done is through the Security constraint tag in the web.xml. This XML element will usually contain two sub-elements, web-resource-collection and auth-constraint. (There is a third possible sub-element, user-data-constraint, that can be used to ensure that a particular collection should be accessed through either HTTP or HTTPS, but it will not enter into this discussion). The web-resource-collection element is used to specify a named collection of URL patterns and HTTP methods that can be used to access those elements. So, if we wanted to limit deposits and withdrawals in our imaginary bank to only Tellers, we would first create a web-resource collection containing the URLs to the Servlets and JSPs that implement those functions. The second part of the security-constraint element is the auth-constraint sub-element. This XML element is used to define a collection of J2EE Role names. These role names are references to Role names declared elsewhere in the web.xml file in a security-role tag. So, putting it all together, the security portions of the web.xml in our bank example might look like the following:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Protected Area</web-resource-name>

 <!-- Define the context-relative URL(s) to be protected -->

 <url-pattern>/finance/account/*.jsp</url-pattern>

 <url-pattern>/finance/account/MakeDepositServlet</url-pattern>

 <url-pattern>/finance/account/MakeWithdrawalServlet</url-pattern>

 <!-- If you list http methods, only those methods are protected -->

 <http-method>GET</http-method>

 </web-resource-collection>

 <auth-constraint>

 <!-- Anyone with one of the listed roles may access this area -->

 <role-name>Teller</role-name>

 </auth-constraint>

 </security-constraint>

<security-role>

<role-name>Teller</role-name>

</security-role>

Now, one of the interesting things about the way that web-resource collections are specified that you may not have noticed is that what you are specifying here are specific URLs and not individual Servlets and JSPs declared elsewhere in the web deployment descriptor. This makes it possible, for instance, to easily declare different security constraints on different parts of a Struts application. Since in the struts deployment descriptor you declare the full URL of each Action, you can simply add that complete URL to a web-resource-collection in a security-constraint element.

Specifying Authorization in the EJB Container

While there are some parallels between the way security elements are specified in the EJB deployment descriptor and the Web deployment descriptor, there’s not a one-to-one correspondence. However, the basic idea is the same; you want to specify a set of tuples of Role, EJB, and method on that EJB just as you earlier specified tuples of Role, URL and HTTP method to be used to access that URL.

Unlike in the Web deployment descriptor, there’s no top level security element per se. This often confuses people when they’re learning how to read an EJB deployment descriptor. Instead, security elements are contained inside the assembly-descriptor element along with other items general to either all the EJBs in the EJB JAR file or a subset of those EJBs. This is, by the way, the same place where elements like container-managed transactions are declared, as described in Chapter 28.

The first sub-element that we’ll need to deal with is the security-role element. This element has the same meaning as it is in the web deployment-descriptor; it allows you to declare a particular security role to be used elsewhere. The second sub-element we will examine is the more interesting one, though. The method-permission element is roughly analogous to the security-constraint element we saw earlier. In a method-permission element you specify a set of Roles, and then a set of method elements. Each method element corresponds to one or more methods on a particular EJB. This can include methods defined on the local or remote interface, or even in the home or local home interfaces. Wildcards (*) are also allowed if you want to specify all methods for an EJB. So, our bank example, which would allow Tellers to access the account balance, deposit and withdraw from an account, while Loan Officers can only check an account balance, would have the following elements in its deployment descriptor.

<assembly-descriptor>

<security-role>

<role-name>Tellers</role-name>

</security-role>

<security-role>

<role-name>LoanOfficers</role-name>

</security-role>

<method-permission>

<role-name>Tellers</role-name>

<method>

<ejb-name>Account</ejb-name>

<method-name>deposit</method-name>

</method>

<method>

<ejb-name>Account</ejb-name>

<method-name>withdraw</method-name>

</method>

<method>

<ejb-name>Account</ejb-name>

<method-name>getAccountBalance</method-name>

</method>

</method-permission>

<method-permission>

<role-name>LoanOfficers</role-name>

<method>

<ejb-name>Account</ejb-name>

<method>

<ejb-name>Account</ejb-name>

<method-name>getAccountBalance</method-name>

</method>

</method-permission>

</assembly-descriptor>

There are many other options for specifying the details of security in the deployment descriptor. For more information on those options beyond this basic survey, see [EJB20] or [Monson-Haefel].

Securing Resources with WebSphere Studio

Now that you understand the theory of how Role-based security works in WebSphere and J2EE, you’re ready to try an example of securing some resources. We will secure the example you completed in Chapter 21 in order to show you how to secure web and EJB resources, and how to configure a Test Server for security. After that, we’ll talk about some basic issues in deploying Secured applications to WebSphere Application Server.

Defining an Authentication Mechanism in WSAD

Earlier we discussed how each Web Deployment descriptor that contains secured resources must describe its authentication mechanism in its web.xml deployment descriptor. The first task we will take on in securing our EmployeeManagementWeb web application is to set the authentication mechanism for that web app to be Http Basic Authentication. To begin, turn to the J2EE perspective in WSAD and open the J2EE Hierarchy View. You’ll start by securing the Web resources in the application, so open the Web Modules tree and double-click on EmployeeManagementWeb to open the Web Deployment Descriptor Editor. Once you are in the Web Deployment Descriptor Editor, turn to the Pages tab (Figure 29.2).

[image: image2.png]
Figure 29.2: Setting the Authentication Method

In this page, in the Login Section , set the Authentication method drop-down to “Basic”. Set the Realm name to be “myRealm”. “Realm” is an artifact of the HTTP Basic Authentication Mechanism – in HTTP Basic Authentication, a Realm is a set of related web pages that share the same userid and password. The realm name is passed along with the server challenge that requests authentication. It really does not matter what you place here.
Securing Web Resources in WSAD

Now that we have set up the Authentication mechanism, we are ready to specify which web resources are secured. Make sure you have the Web Deployment Descriptor Editor open on the EmployeeManagementWeb web app. Turn to the Security Tab at the bottom of the Web Deployment Descriptor Editor (Figure 29.3 Web Security Tab). You’ll see two tabs at the top; Security Roles and Security Constraints. The first job you have is to add a new Security Role to the Web Deployment Descriptor.

[image: image3.png]
Figure 29.3 Web Security Tab

Adding and removing Employees from our company is the job of an Administrator, so we are going to create an Administrators J2EE Role. So, make sure you are looking at the Security Roles page and then press the Add button beneath the Security Roles List box. This will create a New Security Role and highlight it. Type the name “Administrators” while it is selected (it is editable) and then click outside the text box. At this point, if you switch to the Source Tab in the Web Deployment Descriptor editor, you’ll find that you’ve added a Security Role to the web.xml file like so:

<security-role>

<description></description>

<role-name>Administrators</role-name>

</security-role>
Now, switch back to the Security Tab in the Web Deployment Descriptor Editor and click on the Security Constraints Tab at the top of the page (Figure 29.4).

[image: image4.png]
Figure 29.4 Security Constraints Tab

Press the Add button at the bottom of the page to add a new Security Constraint (note that the name of the security constraint is not editable here). Make sure the Security Constraint is selected and you will notice a web resource collection (named “(New Web Resource Collection)”) in the Web Resource Collections list box. Select the web resource collection and press the Edit… button. This will bring up the Web Resource Collections Dialog (Figure 29.5).

[image: image5.png]
Figure 29.5 Web Resource Collection Dialog

There are several things you’ll want to do in this dialog. First, change the name to be “EmployeeManagement”. Next, select both the GET and POST HTTP methods so authorized users can read resources in the resource collection. Finally, Use the Add button and type into the editable fields in the list box to add the URL Patterns *.jsp, *.html, /CreateEmployee and /UpdateEmployee. Finally, press OK to dismiss the dialog. What that will do is create the following section in the web.xml that specifies the web resources that are secured in this Web application.

<security-constraint>

<web-resource-collection>

<web-resource-name>EmployeeManagement</web-resource-name>

<description></description>

<url-pattern>*.jsp</url-pattern>

<url-pattern>*.html</url-pattern>

<url-pattern>/CreateEmployee</url-pattern>

<url-pattern>/UpdateEmployee</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

</security-constraint>
The final action you’ll take in the Web Deployment Descriptor editor is to associate the web resource collection you just created with the Administrators role you previously created. To do that, make sure the EmployeeManagement Web Resource collection is selected, then press the Edit… button next to the Authorized Roles list box. In the dialog that appears, select the Administrators Role in the list and then press OK to dismiss the dialog. That will tie all of the pieces together within the web.xml file by adding an auth-constraint tag linking the resource collection to the Administrators Role as is shown below:

<security-constraint>

<web-resource-collection>

<web-resource-name>EmployeeManagement</web-resource-name>

<description></description>

<url-pattern>*.jsp</url-pattern>

<url-pattern>*.html</url-pattern>

<url-pattern>/CreateEmployee</url-pattern>

<url-pattern>/UpdateEmployee</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<description></description>

<role-name>Administrators</role-name>

</auth-constraint>

</security-constraint>

<security-role>

<description></description>

<role-name>Administrators</role-name>

</security-role>
Securing EJB Resources in WSAD

Now that you’ve secured your Web Resources, it’s time to move on to Securing the EJB resource in this application. This time, open the EJB Modules Tree in the J2EE Hierarchy View and double-click on the EmployeeManagementEJB module to open the EJB Deployment Descriptor Editor. Note that there’s no “Security” tab here – it’s not quite as obvious what you need to do to secure your EJBs; instead, you need to remember the structure of the EJB deployment descriptor that we discussed at the beginning of the chapter. To add security constraints, you must first select the Assembly Descriptor tab (Figure 29.6). In the Assembly Descriptor page, press the Add button under the Security Roles list box to add a new Role. In the dialog that pops up, name the Role “Administrators” as we did in the first step.

[image: image6.png]
Figure 29.6 Assembly Descriptor Tab

Now it is time to add method permissions to go along with the Security Role we just defined. Press the Add... button beneath the Method Permissions list box. This will bring up a dialog box with several pages.

· In the first page (Method Permission), select the “Administrators” security Role. This will tie this role into the selected EJBs and their methods. Press Next to move to the second page.

· In the second page (Enterprise bean selection), select the EmployeeManagement EJB and press Next

· In the third page, (Method Elements) simply check the box next to the EmployeeManagement bean This selects the wildcard method element which means select all methods in all interfaces (Home, Remote, Local and LocalHome). Finally, press Finish.

Adding Method permissions and the Security Role in the Assembly Descriptor page will create the following Assembly-Descriptor section in the ejb-jar.xml deployment descriptor file:

<assembly-descriptor>

<security-role>

<description></description>

<role-name>Administrators</role-name>

</security-role>

<method-permission>

<role-name>Administrators</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

</assembly-descriptor>
Finally, press Control-S to save your work in the EJB Deployment Descriptor Editor.

Reconciling Roles in the Enterprise Application Deployment Descriptor

Now that your work in the EJB Deployment Descriptor Editor is finished, you have one more thing to do to effect the way your EAR file is configured. That is, you have to reconcile the Roles between the WAR file and the EJB JAR file. To do this, in the J2EE Hierarchy View, open the Enterprise Applications folder and double-click on the EmployeeManagement Deployment Descriptor to bring up the it’s editor.

Next, switch to the Security Tab of the Application Deployment Descriptor Editor (Figure 29.7). Underneath the Security list box, press the button marked Gather… This will add the Administrators role to the Security list. Select the Administrators role. Finally, check the check box marked All Authenticated Users.

[image: image7.png]
Figure 29.7 Application Deployment Descriptor Editor Security Tab

To understand what you have done, think back a bit and remember how we discussed the fact that WebSphere allows for several different User Registries, and that one of the features of WebSphere was that it was capable of mapping from Users and Groups defined in a User Registry to J2EE roles defined inside a J2EE application. That is exactly what this page allows you to do. If you were to select the “Users/Groups” check box, you could then add User or Group names into the Users list box and that would define the mapping between the group and the list of users or names. But where does this mapping go? This mapping isn’t part of the J2EE specification, so it can’t go inside the application.xml file. Instead, as we’ve seen earlier, this kind of information goes into a special extension file for WebSphere, in this case one called ibm-application-bnd.xmi. The contents of the file you just created are shown below.

<?xml version="1.0" encoding="UTF-8"?>
<applicationbnd:ApplicationBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:applicationbnd="applicationbnd.xmi" xmlns:common="common.xmi" xmlns:application="application.xmi" xmi:id="ApplicationBinding_1050688790267">
 <authorizationTable xmi:id="AuthorizationTable_1050688790267">
 <authorizations xmi:id="RoleAssignment_1050688790267">
 <specialSubjects xmi:type="applicationbnd:AllAuthenticatedUsers" xmi:id="AllAuthenticatedUsers_1050688790267" name="AllAuthenticatedUsers"/>
 <role href="META-INF/application.xml#SecurityRole_1050688790267"/>
 </authorizations>
 </authorizationTable>
 <application href="META-INF/application.xml#Application_ID"/>
</applicationbnd:ApplicationBinding>
This file is used by WebSphere to determine which users it finds in a registries (based on userid and password or other credentials) correspond to what J2EE roles in a particular application. In this particular application, it shows the link between the Role defined in the application.xml file and the special subject “allAuthenticatedUsers”. In a more common case, it would link particular group names in a user registry to corresponding roles in the application.xml file as the following diagram (Figure 29.8) indicates.

[image: image8.emf]

Application.xml

<role-name>

 Teller

</role-name>

Ibm-ejb-bnd.xml

<authorizations>

 <role>

 <groups>

</authorizations>

User Registry

GroupA:

 User1, User2, User3

GroupB:

 User 4, User5

Figure 29.8 Binding File mapping for User Registries and Application DD

Creating a Secured Server and Running the Example

You’re almost done now. If you haven’t done so, make sure you’ve saved all of your work by using File>Save All or Control-Shift-S to save all of the different configuration files you’ve worked on. Now you’ve done everything that needs to be done for the EAR file – in fact, you could now export your EAR file to WebSphere and make it work there. However, we want to test our newly secure application in a WebSphere Test Environment first.

To do so, we’re going to create a new Server and Server configuration that is set up with Security enabled. You’ve created Servers and Server configurations before, so this process should seem familiar. In the J2EE Hierarchy view in the J2EE perspective, select the Servers group and select “New>Server and Server configuration” from the context menu. Name the Server “Secured Test Server”. Make sure that the Server type is set to WebSphere Version 5.0 Test Environment and press Finish to create the Server. Next, open the new Secured Test Server in the Server Configuration Editor by double clicking on the new server within the Servers group. Turn to the Security Tab (Figure 29.9) and check the check box that says Enable Security. Type in your Windows login id and password into the fields marked Server ID and Server Password. Type your password a second time into the Confirm Password field.

[image: image9.png]
Figure 29.9 Server Security Tab

After this, you need to create a JAAS Authentication Entry. Press the Add… button next to the JAAS Authentication Entries list and create an entry named default with your Windows userid and password as the UserId and Password specified.

[image: image10.png]
Figure 29.10 Add Authentication Entry Dialog

Next, switch over to the Data Sources Tab and create a new Version 5.0 Data Source for DB2 named jdbc/EJPBOOK (Figure 29.11). The crucial thing to do on this page is to set the Container-Managed Authentication alias and the Component-Managed Authentication Alias to the JAAS Authentication alias you created earlier named “default”.

[image: image11.png]
Figure 29.11 Data Source Definition

Once the Data Source is configured, make sure that the Database name that the data source corresponds to is set to EJPBOOK as well. At this point, you can now save your new Server configuration and close the Server Configuration Editor. Finally, select the Server Configuration in the Server Configuration View and use the context menu to add the EmployeeManagement EAR file to the Server Configuration.

Now let’s test the newly secure application. Switch back to a Web perspective and open the EmployeeManagementWeb project. Select the index.html file and select “Run on Server…” from the context menu. At this point, when the Web Container comes up and the Web Browser goes to the index.html page, you should see a Browser basic authentication dialog (Figure 29.12) asking you for your user id and password.

[image: image12.png]
Figure 29.12 Basic Authentication Dialog

After you enter the userid and password, you have been authenticated into the web application and you can use it as you did in Chapter 21.

EJB Security Recommendations

At a minimum, all Session and Entity EJBs should be secured to “all authenticated users”, so that only users that have authenticated into the application can access the EJBs. This simplest level of authentication should discourage the “casual” browser with a tool like the UTC.

Finally, there’s one more security entry you should be aware of . The security-identity element is an optional entry in the definition of any EJB. It can look like the following:

<security-identity>

<run-as>

<role-name>admin</role-name>

</run-as>

</security-identity>

The security-identity element informs the container how it is supposed to propagate identity from caller to callee. What is happening here is this; we’ve assumed that when you log in as a particular user, that your identity is passed along on all of the calls that are made in the Servlet container, and then passed again into the EJB container. What’s more, this is the identity that is used to compare against the Roles defined in the method-permissions for this EJB. However, at this point, a bean deployer has a choice. One of the options is that they can specify that the same identity be propagated further down to all other methods called. This is done with the <use-caller-identity/> element. However, if they choose, they could use the <run-as> element to specify that any EJB methods called by this EJB will instead run using another Role.

Now, you might not think this second option (run-as) would be very useful until you consider the ramifications of Message-Driven Beans. In a Message-driven bean there is no Identity associated with the receipt of a message and the invocation of an onMessage() method. So, in that case, you would need to use <run-as> to specify what Role under which you would run any other beans that are called from the onMessage() method.

Handling Instance-Based Security

So far, everything we’ve seen with EJB and Servlet Security has dealt with what is termed declarative security. That is, we’ve not had to write any code to perform any security actions; everything has been done in the deployment descriptor. However, there are a few methods that you can use to access information about the User under whose auspices a method in a Servlet or EJB is being called. You can get to these methods either from the HttpServletRequest or from the EJB Context. In the EJB context, the two methods you can use are:

java.security.Principal getCallerPrincipal();

boolean isCallerInRole(String roleName);

The first method allows you to obtain the Principal that represents the user. Principal implements the getName() method that will obtain for you the user id with which the user signed in. The second method allows you to determine if any particular user has been associated with a particular role whose name you supply. There are similar methods in HttpServletRequest with the following signatures:

public java.security.Principal getUserPrincipal();

public boolean isUserInRole(String role);
Up to this point, our discussion has focused upon how the EJB specification allows you to define access rights at a method or EJB level, but only to an entire class of EJB’s. The problem is that sometimes this is not appropriate for all applications. Consider the following problem: A team is building a CRM (Customer Relationship Management) application for their company’s sales force. One of the requirements of this application is that each salesperson be only able to view their own clients – not the clients belonging to other salespeople. This is, obviously, to prevent the unscrupulous salesperson from “stealing” the accounts of others. However, it is also to protect the company by prohibiting the transfer of sensitive data to our customer’s competitors – if a salesperson can’t find out what a competitor of a customer has ordered, they can’t then relay that information to the customer. This is called the problem of instance-based security, since you need to restrict access to a particular EJB instance, rather than to the entire class of EJBs.

So, how would we implement this as a set of EJBs? A simple solution would be to create a single Entity EJB class called Customer. This EJB would have a set of appropriate finder methods in the Home interface that allows us to retrieve the customers for a particular salesperson. This solution is shown in the following Home Interface:

/**

 * This is a Home interface for the Entity Bean

 */

public interface CustomerHome extends javax.ejb.EJBHome {

/**

 * create method for a CMP entity bean

 * @return com.ibm.ejb.examples.utilities.Customer

 * @param argKey int

 * @exception javax.ejb.CreateException The exception description.

 * @exception java.rmi.RemoteException The exception description.

 */

com.ibm.ejb.examples.utilities.Customer create(int argKey) throws javax.ejb.CreateException, java.rmi.RemoteException;

/**

 * findByPrimaryKey method comment

 * @return com.ibm.ejb.examples.utilities.Customer

 * @param key com.ibm.ejb.examples.utilities.CustomerKey

 * @exception java.rmi.RemoteException The exception description.

 * @exception javax.ejb.FinderException The exception description.

 */

com.ibm.ejb.examples.utilities.Customer findByPrimaryKey(com.ibm.ejb.examples.utilities.CustomerKey key) throws java.rmi.RemoteException, javax.ejb.FinderException;

/**

 * Insert the method's description here.

 * Creation date: (1/21/00 11:14:58 AM)

 * @return java.util.Enumeration

 * @param salesperson int

 */

java.util.Enumeration findBySalesperson(String salespersonId) throws java.rmi.RemoteException, javax.ejb.FinderException;

}

Now here lies the problem with this implementation. According to the EJB security model we can grant rights to different Identities for each method, but there is no way to restrict access to a particular EJB. You can only restrict access to the EJB type as a whole, or a set of methods in the type.

So in our example, we can restrict access to the finder methods in the EJB Home to only those users whose identities we verified and who should be granted access rights to those methods (for example the set of all Salespeople). However, we can not restrict access to any individual EJB returned by those finder methods. So, for instance, we couldn’t prevent one salesperson (John with logon Id “johnm”) from looking at the customers of another salesperson (Mary, with logon Id “maryq”) as long as John knew Mary’s logon.
What we need in this particular situation is a way of restricting access to a particular EJB – some way of keeping a user from gaining access to an EJB for which they have no rights. To that end, let’s examine the following solution to our example problem, which applies the EJB Security API’s we’ve examined earlier to make access by unauthorized users more difficult.

A Session Wrapper approach for Instance Based Security

The heart of our solution revolves around the following assumption. Let’s assume that John may know Mary’s SalesPerson logon ID, but does not know her private password. In that case, the Identity reported to the system will always be John (since he can only log in as himself) even though he may make queries (e.g., call finder methods) with Mary’s ID as a parameter. So, if we can assume that access should be granted to a particular EJB only if the Identity of the caller is on a list that is allowed to access that particular Id.

To implement this solution, we are going to place a Session EJB (a wrapper) around the queries in the EJB Home to validate the user’s identity when we make a query. Consider the following Remote interface:

package com.ibm.examples.security.ejbs;

/**

 * This is an Enterprise Java Bean Remote Interface

 */

public interface IdentityCheckWrapper extends javax.ejb.EJBObject {

/**

 *

 * @return java.util.Enumeration

 * @param arg1 int

 * @exception String The exception description.

 */

java.util.Collection getCustomersForSalesperson(String salespersonID) throws ImproperAccessException;

}
In this remote interface we have defined a method named “getCustomersForSalesperson()” that takes as its parameter a SalesPerson’s unique Id. The implementation of this method is shown below:

public class IdentityCheckingBean implements SessionBean {

/**

 * This method is a simple security hack to allow a verification of an identity

 * before it sends a query on to an EJB Home.

 * @return java.util.Collection

 * @param salesperson String

 */

public java.util.Collection getCustomersForSalesperson(String salespersonId) throws ImproperAccessException {

java.util.Collection value = null;

try {

java.security.Principal principal = mySessionCtx.getCallerPrincipal();

if (checkAccessForSalesperson(principal, salesperson)) {

value = getCustomerHome().findBySalesperson(salesperson);

} else {

throw new ImproperAccessException("Access not allowed to “ + salesperson + “ by “ + principal.getName());

}

return value;

}

public boolean checkAccessForSalesperson(principal, salesperson) {

String name = principal.getName();

// now would do a database lookup to see if this person can

 // access this salesperson’s sales.

}
}

What we show here is a mechanism by which you can check to see if any particular person (identified by the name returned from the Principal) can access the information for a particular SalesPerson. We’ve not shown the implementation of checkAccessForSalesperson() but you can readily imagine how it would work. For instance, it could be implemented as a database table lookup where you SELECTed against a table that mapped individual names against the id’s of the salesperson they corresponded to. This would allow for almost arbitrarily complex business rules in the implementation of this wrapper bean – for instance, perhaps a salesperson’s manager can access their customers, in addition to the salespersons themselves. By just adding the proper rows into this lookup table, you can specify exactly the access that needs to be granted.

GUI-Based Security

In the previous discussion of instance-based security we discussed ways of dealing with a finer granularity of control than is possible with the role-based controls that the J2EE specification provides. However, both actions occur a bit too late to help those who shouldn’t have access to particular data, but who access that data inadvertently, or through programmer error. For instance, let’s imagine the following case: Let’s say that in our time card application we’ve used for the case study that we have the case where any Employee can see the pending time sheets that are available, but that only Managers can approve them. So, in the first version of the display_pending.jsp we might see the following code:

The current time sheet has NOT been approved, click to

approve
So, how would we change this to set it so that only Managers see this message? Well, one way would be to wrap the code above in two scriptlets that uses the HttpRequest methods we saw earlier like so:

<% if (request.isUserInRole(“Manager”)) { %>

The current time sheet has NOT been approved, click to

approve
<% } %>

As you can imagine, this is error prone, and not in the spirit of the way JSPs are normally written. So, another option is to write a simple custom tag library that wraps this common scriptet like so:

<sec:rolespecific role=”Manager”>

 The current time sheet has NOT been approved, click to

approve
</sec:rolespecific>

There are other options that you can manage in the same way. For instance, in many cases you have the situation where you want some users to see a field, and others to be able to edit it. With the scripting approach you can have:

<% if (request.isUserInRole(“Manager”)) { %>

<html:text property="customer.name"/>

<% } else if (request.isUserInRole(“Employee”)) { %>

<%=customer.getName() %>

<% } %>

As you can imagine, as the number of unique cases for each role grows, the scripting becomes more repetitive and error prone and the need for a custom tag library grows along with it. While we will not present such a custom tag library here, you certainly have the tools necessary to build one on your own to solve this problem (and other similar problems).

Finally, one last note on this matter is that a significant advantage of the XML/XSLT approach is that it makes data restriction of this type extremely easy. In particular, [Fowler] describes a two-stage approach to generating user interfaces with XSLT in which an initial XML document is generated from domain objects to a “domain-like” schema, and that document is then transformed into a “UI-like” schema that is then transformed any of a number of different user interface styles. It is at this intermediate transformation that you can apply rules based on the identity of the user, or user preferences. So, in the case above you might choose to render an “entry field” tag into the intermediate, “UI-like” document if a person is a Manager, or a “text field” tag if they are not. To make it simple (and to very cleanly separate model from view) you might even provide a kind of “hint” in the “domain-like” XML where each tag could include a “Read-only” or “read-write” attribute that can be generated at the model level.

Summary

In this quick survey of J2EE security in WebSphere you’ve seen how the J2EE specifications define role-based security, and how authentication and authorization are described. You’ve seen a simple example of role-based security in WebSphere Studio, and also learned about some mechanisms for implementing more finely-grained security solutions in your J2EE code.

� A java.security.Principal is the J2EE representation of an entity that can be authenticated. Think of it as being a named user.

�Do we want to explain the new EJB “unchecked” method permission? Also, what about the EJB 2.0 Excludes List entries to restrict calls to methods.

�Note to reviewers – I’m doing this even though the code does NOT use a component-managed or a container-managed alias (It hardcodes userid and password into a properties file, believe it or not)– I actually want to change the code (from back in 21) to use container-managed authentication, but haven’t done so yet.

39

_1112093298.doc

[image: image1]

Web Client (Browser)

Application Client

Web Container

EJB Container

Servlet

JSP

EJB

Authentication, Authorization, Encryption

Authentication, Authorization,

Encryption

Authorization

Authorization

A

C

B

_1112296026.doc

[image: image1]

Application.xml

<role-name>

 Teller

</role-name>

Ibm-ejb-bnd.xml

<authorizations>

 <role>

 <groups>

</authorizations>

User Registry

GroupA:

 User1, User2, User3

GroupB:

	User 4, User5

