Chapter 26

Bean Managed Persistence

In earlier chapters you have seen how the Enterprise JavaBean specification provides for persistence management in EJB implementations. While data can be stored and retrieved from a database by both Session and entity EJBs, you have learned that the primary component type defined in the specification for persistent data storage and retrieval is the entity EJB. You have seen how the specification describes using one of two options for entity beans: Container managed persistence (CMP) or bean managed persistence (BMP). CMP implicitly applies persistence to enterprise beans, relieving the bean developer from having to code for it. A detailed discussion of the implementation of CMP EJBs in WebSphere Application Server and WebSphere Studio can be found in Chapters 23, 24 and 25. BMP, on the other hand, enables the bean developer to implement persistent operations within bean class methods. The goal of this chapter is to help you understand the basics of writing BMP beans that work in J2EE V1.3 and WebSphere Application Server. [image: image1.png]
Figure 26.1 Bean-Managed Entity Beans within the Roadmap

Applying BMP

Recall that entity beans represent an underlying data source or application, and as such require access to them (Figure 26.1). To ensure that the state of an active entity bean is consistent with the state of the underlying resource is the basis for the entity bean lifecycle. Whenever a developer needs more complete control in managing the data persistence than is provided by CMP, the alternative is BMP entity beans.

[image: image2.wmf]

Customer

EJB Stub

Customer

EJB

Customer

Table

EJB client

EJB container

Relational DB

Figure 26.2 Entity bean data source relationship

The data access calls necessary to store the state of a BMP entity bean in a persistent store are defined in methods implemented to satisfy the entity bean component contract listed below.

	ejbCreate()
	Insert entity bean state into a data source.

	ejbRemove().
	Remove entity bean from an underlying data source

	ejbFind<method>()
	Retrieve entity bean instances based upon the finder method signature.

	ejbLoad()
	Refresh entity bean state from the data source.

	ejbStore()
	Update data source attributes with the entity bean state.

We will see how these methods are used in the following sections. Bean developers can use the Java Database Connectivity (JDBC) API, or any other vendor supplied framework, such as an Object Relational (OR) mapping product, to access data sources. We will begin with examining this approach, and also investigate some of the ramifications.

At first, simply nesting JDBC calls in entity bean methods might seem like a reasonable approach to implementing persistence. However, a more flexible and reusable design can be produced if requests are forwarded to a mapping class, similar to the mapping design described in Chapter 16 and 30. We will cover that approach at the end of this chapter.

A Simple BMP Bean
We will go ever so slightly outside the bounds of our example so far in order to investigate how BMP beans are written, and their advantages. So far we have only dealt with one aspect of our Business domain; the timesheet aspect of an HR system. However, any large company will have other systems as well. Let’s imagine, for a moment, that we are building our system for an airline or travel agency. Let’s further imagine that we are dealing with a “frequent-traveler” program. In this sort of program, one of the primary objects involved will be a Customer. Viewing Customer information and making modifications to it constitutes the bulk of the activity in this system. So, we can imagine that we have the following object, a “Customer as a BMP entity bean.” This bean will manage its own state (fields) and we will need to implement each of the entity bean lifecycle methods to interface with the persistent datastore.
package com.wsbook.casestudy.ejb;

import com.wsbook.casestudy.ejb.CustomerKey;

public interface CustomerLocal extends javax.ejb.EJBLocalObject {

public int getAccountBalance();

public String getCustomerName();

public void setAccountBalance(int accountBalance);

public void setCustomerName(String customerName);

public int getCustomerNumber();

}

Listing 26.1 Local Interface for Customer.
Listing 26.1 shows a simple Local interface that defines a customer consisting of a unique customer number, a customer name, and an account balance. The customer number will actually be contained within a separate primary key class, CustomerKey. This makes it easier to modify the key mapping, if necessary, in future revisions. The LocalHome interface for the EJB is likewise simple and straightforward (Listing 26.2):

package com.wsbook.casestudy.ejb;

public interface CustomerLocalHome extends javax.ejb.EJBLocalHome {

public CustomerLocal create(int customerNumber, String customerName)

throws javax.ejb.CreateException;

public CustomerLocal findByPrimaryKey(CustomerKey primaryKey)

throws javax.ejb.FinderException;

}

Listing 26.2 LocalHome Interface for Customer
In this case we are taking a very simple approach where we have defined the simplest Home Interface possible – a create() method taking as its arguments a new customer number and customer name, and a findByPrimaryKey() method. Now that you’ve seen the external definition of our EJB, we can move into the meat of the example, the bean implementation class.

Rather than walk through the entire EJB class, we’ll look at some selected parts of the EJB and see how it was written using WSAD, and how it can be tested there and used in WebSphere Application Server. First of all, let’s examine the class definition of our Customerbean (Listing 26.3).

package com.wsbook.casestudy.ejb;

import java.sql.*;

import javax.ejb.*;

import javax.naming.*;

import javax.sql.DataSource;

public class Customerbean implements javax.ejb.entitybean {

private javax.ejb.entityContext myentityCtx;

private String customerName;

private int accountBalance;

private CustomerKey key;

public static final String LOAD_STRING =

"SELECT cNum, cName, acctBal from USERID.Cust WHERE cNum = ?";

public static final String FIND_BY_PRIMARYKEY_STRING =

"SELECT cNum from USERID.Cust WHERE cNum = ?";

public static final String UPDATE_STRING =

"UPDATE USERID.Cust SET cName = ?, acctBal = ? WHERE cNum = ?";

public static final String INSERT_STRING =

"INSERT INTO USERID.Cust(cNum, cName, acctBal) VALUES (?, ?, ?)";

public static final String REMOVE_STRING =

"DELETE from USERID.Cust where cNum = ?";

/* Create SQL is CREATE TABLE Cust (cNum INTEGER NOT NULL,

cName VARCHAR(60), acctBal INTEGER) */

private DataSource ds;

public static final String DATASOURCE_NAME = "java:comp/env/jdbc/DS_Ref";

Listing 26.3 Class declaration for Customerbean.
The first few lines declare the class as being an implementer of the “entitybean” interface, and declare the entityContext instance variable. The “New Enterprise bean” wizard in WSAD generated that much for us. You’ve seen this wizard in use several times already in this book, so we won’t cover that topic again. The only difference in the initial generation of this EJB was that we choose the EJB to be an “entity bean with bean-managed persistence (BMP) fields”, a choice we have not previously made. Likewise we added three instance variables key, customerName and accountBalance and then promoted the getters and setters for each of these variables to the Local Interface. The primary key is accessible via the getPrimaryKey() which returns the CustomerKey object. The CustomerKey object exposes the customerNumber via getCustomerNumber(). We did not promote the setter for key to the local interface – since we don’t want clients to be able to change the primary key of a Customer.

Note that unlike the CMP counterpart, this bean class is not abstract. The BMP entity bean class is responsible for managing its own attributes.

The next few lines declare several final static String variables to hold SQL statements – this is the SQL that our persistence methods will execute to store or retrieve our bean data from the database. We will look at some of these in more depth later.

Finally, we declare an instance variable of type DataSource, and declare a final static String value that names a DataSource. The name of the DataSource is a resource reference that has been defined in the EJB deployment descriptor. To set this up, open up the ejb-jar.xml file for the EJB module.

[image: image3.png]
Figure 26.3 Setting resource reference for Customer

In WebSphere Studio, the ejb-jar.xml editor has tabs to organize the deployment descriptor elements. On the References tab, you can add references for a specific EJB. Launch the Add Reference wizard by selecting the Customer and clicking on the Add button.

[image: image4.png]
Figure 26.4 Add Reference wizard, page 1

The first page of the wizard lets you choose the type of reference to create. In this particular case, we are interested in creating an EJB resource references. On the second page of the wizard (Figure 26.4), you will select the object referenced to be of type javax.sql.DataSource.

[image: image5.png]
Figure 26.5 Add reference wizard, Page 2

The name jdbc/DS_Ref will be added to the java:comp/env “local namespace” for Customer, “java:comp/env/jdbc/DS_Ref”. The Container-based authentication will be supplied by a JAAS security alias. Finally, for testing purposes, the resource reference is bound to the global JNDI name jdbc/MyDataSource for the DataSource (we visit creating the DataSource in the test server configuration a bit later in this Chapter). This is done in the WebSphere Bindings section on the References tab after reference is created (Figure 26.5).

[image: image6.png]
Figure 26.6 Binding resource reference to JNDI name for testing

 This resource reference is used in the getConnection() method of our Customer BMP bean, which is shown below:

protected Connection getConnection() throws SQLException, NamingException

{

if (ds == null) {

InitialContext initContext = new InitialContext();

ds = (DataSource) initContext.lookup(DATASOURCE_NAME);

}

return ds.getConnection();

}

Listing 26.4 getConnection() utility method.
We will use this getConnection() method in each of the persistence methods in our EJB. The datasource itself will be created pointing to our EJPBOOK database utilizing an XA compliant JDBC driver. Like your CMP beans, you will want your BMP beans to be able to participate in 2-PC distributed transactions. Even though the BMP beans will be managing getting a connection to the datasource it is still the EJB container, and not the bean implementation class, that is responsible for committing the changes to the database. When a connection is retrieved to access an XA resource, the resulting commands executed using that connection will join the distributed XA transaction. The EJB container will handle committing the distributed transaction or roll the transaction back if the EJB transaction aborts (see Chapter 28 for more details).

Examining BMP Persistence

Now that the preliminaries are out of the way, we can begin investigating how the persistence methods defined in a BMP entity EJB are implemented. This will involve looking at each of the persistence methods described earlier in turn.

Writing ejbCreate() Method in BMP beans
We will start by examining the ejbCreate() method in our example. Remember from the chapter 23 on CMP entity beans that each create() method in a Home Interface will correspond to an ejbCreate() method with the same parameters in the bean implementation class. However, this is where the similarity ends. While in an CMP EJB the ejbCreate() method is only responsible for setting the values of the container-managed instance variables to the values passed in as arguments to the create() method, in a BMP EJB the ejbCreate() method is also responsible for creating a persistent representation of the object in the data source. In our simple case, this means that it must INSERT a row into the SQL database. The code for the sample ejbCreate() method is shown in Listing 26.5:

public CustomerKey ejbCreate(int customerNumber, String customerName)

throws CreateException {

CustomerKey key = new CustomerKey(customerNumber);

this.setCustomerName(customerName);

this.setAccountBalance(0);

Connection jdbcConn = null;

PreparedStatement sqlStatement = null;

try {

jdbcConn = getConnection();

sqlStatement = jdbcConn.prepareStatement(INSERT_STRING);

sqlStatement.setInt(1, customerNumber);

sqlStatement.setString(2, customerName);

sqlStatement.setInt(3, accountBalance);

if (sqlStatement.executeUpdate() != 1) {

throw new CreateException(

"Failure in ejbCreate() -- duplicate Customer number");

}

return key;

} catch (NamingException e) {

throw new CreateException(

// log Naming Exception

"Failure in ejbCreate() -- " + e.getMessage());

} catch (SQLException se) {

throw new CreateException(

"Failure in ejbCreate() -- " + se.getMessage());

} finally {

// close statement and connection

close(sqlStatement, jdbcConn);

}

}

Listing 26.5 ejbCreate method.
This method begins much as the corresponding method in a CMP implementation would – it sets the values of the instance variables customerNumber and customerName to the values passed in to the method. However, the lines following that section of code are unique to a BMP. What happens next is that the method creates a PreparedStatement from the Database connection it obtains from the getConnection() method we discussed earlier. The Prepared Statement will execute the following SQL, defined in the INSERT_STRING constant:

INSERT INTO Cust(cNum, cName, acctBal) VALUES (?, ?, ?)

Here we substitute the customerNumber, customerName and accountBalance values for the parameters (?’s) in the SQL statement. Finally the method executes the SQL statement and checks to see that only one row was really added to the database. The final statement in the main branch of the method is to then return a new instance of CustomerKey created from the newly assigned customer number.

A try…catch block handles the different possible exceptions that may occur. You should pay particular attention to the finally clause in this method – it ensures that the PreparedStatement is always closed, and also ensures that the JDBC Connection is closed – in the case of a JDBC Connection obtained from a DataSource, this means that the connection is returned back to the pool, rather than being deallocated and destroyed.

Writing BMP finder methods

Now that you’ve seen how BMP EJBs are created, we can move on to the process of finding a BMP EJB, or a set of BMP EJBs, and then loading their state from the database. This process starts with the execution of a finder method on the EJB Home, which in BMP EJBs will correspond exactly to an ejbFind…() method in the EJB bean implementation class. Note that this is different from CMP EJBs, where the finder implementation was entirely handled in the generated EJB Home, with only the EJB QL provided by the developer in the deployment descriptor.

In our case, we only have one finder method in our EJB Home interface, findByPrimaryKey(CustomerKey). This corresponds to the ejbFindByPrimaryKey(CustomerKey) method whose code is shown below:

public CustomerKey ejbFindByPrimaryKey(CustomerKey key)

throws FinderException {

boolean wasFound = false;

boolean foundMultiples = false;

Connection jdbcConn = null;

PreparedStatement sqlStatement = null;

try {

jdbcConn = getConnection();

sqlStatement =

jdbcConn.prepareStatement(FIND_BY_PRIMARYKEY_STRING);

sqlStatement.setInt(1, key.getCustomerNumber());

ResultSet sqlResults = sqlStatement.executeQuery();

wasFound = sqlResults.next();

foundMultiples = sqlResults.next();

} catch (NamingException e) { // DB error

throw new FinderException(

"Database Exception " + e + "caught in ejbFindByPrimaryKey()");

} catch (SQLException se) { // DB error

throw new FinderException(

"Database Exception " + se + "caught in ejbFindByPrimaryKey()");

} finally {

try {

if (sqlStatement != null)

sqlStatement.close();

if (jdbcConn != null)

jdbcConn.close();

} catch (SQLException e1) {

System.out.println(

"Exception caught in ejbFindByPrimaryKey() -- failure to close connection");

}

}

if (wasFound && !foundMultiples) {

return new CustomerKey(key.getCustomerNumber());

} else {

throw new FinderException(

"Multiple rows or no rows found for unique key in ejbFindByPrimaryKey().");

}

}

Listing 26.6 ejbFindByPrimaryKey method.
The flow of this method is simple, but surprising. All that this method does is to create a PreparedStatement executing the following SQL:

SELECT cNum from Cust WHERE cNum = ?

Now, this is a strange piece of SQL – we are only selecting one column. Why? The reason lies in the way in which BMP EJBs are instantiated from the database. The process works like this. When a finder method is called on an EJB Home, the container selects (more or less at random) an instance of the bean implementation class to run the ejbFind… method on. When the ejbFind… method executes, it must return either a single Primary Key object, or a Collection of Primary Keys (for finders that should return multiple objects). The container will then retrieve from the instance pool, or create, as many entity bean instances as necessary, and set these Primary Key(s) in the entityContext of those beans. It will then finally invoke ejbLoad() on these EJBs so that the latest values of the data can be loaded from the database. So, in this way the ejbFind… methods are more or less “disconnected” from the rest of the EJB implementation, and do not operate on any of the instance variables of the bean class, but instead only use the arguments of the method as arguments to the SQL. Since all the SQL needs to do is run a SELECT to find the primary key columns of the table based on the parameters, this is why we only select a single column in our example.

Since this is a single-valued EJB finder method, we only need to return a single Primary Key object. For this reason, we also want to make sure that only ONE row exists in the table for this particular primary key value, which is why we check for additional rows being returned. Now, we could do this by executing a COUNT function in the SQL, but this approach is probably just as easy, and as efficient.

Writing the BMP ejbLoad() method

Now that we’ve seen how the finder methods will create the Primary Key objects and set them into the entity Contexts, we are ready to move on to writing our ejbLoad() method. The source code for this method is shown in Listing 26.7.

public void ejbLoad() {

boolean wasFound = false;

boolean foundMultiples = false;

key = (CustomerKey) getentityContext().getPrimaryKey();

Connection jdbcConn = null;

PreparedStatement sqlStatement = null;

try {

jdbcConn = getConnection();

sqlStatement = jdbcConn.prepareStatement(LOAD_STRING);

sqlStatement.setInt(1, key.getCustomerNumber());

ResultSet sqlResults = sqlStatement.executeQuery();

wasFound = sqlResults.next();

if (wasFound) {

this.setCustomerName(sqlResults.getString(2));

this.setAccountBalance(sqlResults.getInt(3));

}

foundMultiples = sqlResults.next();

} catch (NamingException e) { // log details

System.out.println(

"Database Exception " + e + "caught in ejbLoad()");

} catch (SQLException se) { // log details

System.out.println(

"Database Exception " + se + "caught in ejbLoad()");

} finally {

// close statement and connection

close(sqlStatement, jdbcConn);

}

if (wasFound && !foundMultiples) {

return;

} else {

System.out.println(

"Multiple rows found for unique key in ejbLoad().");

}

}

Listing 26.7 ejbLoad method.
The logic of this method is similar to the one in ejbFindByPrimaryKey(), but with a few key differences. First of all, the primary key information used in the WHERE clause of the SELECT statement is obtained from the EntityContext. This is important as none of the state values of this bean instance can be “trusted” at this point in the lifecycle. Only the EntityContext is known to be valid. Second, the SELECT statement itself retrieves values for all the columns in the table as you can see below:

SELECT cNum, cName, acctBal from Cust WHERE cNum = ?

After retrieving the row from the ResultSet, the method then sets the values of the instance variables in this EJB to be the values obtained from the corresponding rows in the result set. Note that this may involve some data type conversions or other translations. While WSAD and WebSphere provide helpful converter classes for converting data types (such as changing VARCHARS with “yes” or “no” to Booleans, or converting Dates to Strings with a non-standard format) these are only available in CMP beans – if there is any data conversion to be done in a BMP bean you must implement it yourself.

Writing the ejbStore() method for BMP beans

The next method to investigate is the ejbStore() method – the method that the container calls at the end of a transaction or business method to record the state of the EJB to the database. The implementation of this method is much like the implementation of the other methods you’ve seen:

public void ejbStore() {

Connection jdbcConn = null;

PreparedStatement sqlStatement = null;

key = (CustomerKey) getentityContext().getPrimaryKey();

try {

jdbcConn = getConnection();

sqlStatement = jdbcConn.prepareStatement(UPDATE_STRING);

sqlStatement.setString(1, customerName);

sqlStatement.setInt(2, accountBalance);

sqlStatement.setInt(3, key.getCustomerNumber());

if (sqlStatement.executeUpdate() != 1) {

System.out.println(

"No rows added -- failure in ejbStore()");

}

} catch (NamingException e) {

System.out.println(e.getMessage());

} catch (SQLException se) {

System.out.println(se.getMessage());

} finally {

// close statement and connection

close(sqlStatement, jdbcConn);

}

}

Listing 26.8 ejbStore method.
In many ways this method is the inverse of the ejbLoad() method we examined earlier. The SQL executed for this method is the following:

UPDATE Cust SET cName = ?, acctBal = ? WHERE cNum = ?

As you can see, we set the SQL statement parameters to contain the values of the customerName, accountBalance and customerNumber variables. Just as in the case of ejbLoad(), if there is any data type conversion to be done, you must do it in this method.

The implementation of the ejbRemove method follows a similar pattern. See the source code on the CD in BookBMP project for the details.

Sidebar: Why use PreparedStatements?

When using JDBC you have three options for your statements: A Statement is a class that can execute an arbitrary SQL String passed in to it. A PreparedStatement refines a Statement by adding substitution parameters, and by separating the SQL compilation process from the execution of the Statement. Finally, a CallableStatement takes away the SQL compilation process entirely by executing a SQL stored procedure. Normally, a PreparedStatement is used in a case where you may reuse the same PreparedStatement and execute it multiple times. So, why have we used PreparedStatement rather than Statement in each of our examples, where this is not the case? The reason is that WebSphere implements a PreparedStatement cache on its JDBC connection pooling mechanism. It entirely skips the compilation process for any statement that matches one that it has stored in its cache. This can provide a significant performance boost at runtime, even though it might not appear from reading the code that any performance gain would be evident.

BMP versus CMP

So, what is the best approach for implementing persistence? bean managed persistence builds data access within the bean source. Container managed persistence keeps persistence requirements independent of the bean itself. However, container managed persistence may be limited to data sources supported by a vendor container mapping tool. The decision lies in data access requirements, and in an EJB container’s support of these requirements. In this section we examine some questions you can ask yourself about your particular project to help you determine which choice (BMP, CMP, or neither) is right for a particular requirement.

Is there a set of objects (perhaps constituting a logical subsystem) that are both read and updated relatively frequently, with complex relationships between them changing rapidly?

In a nutshell, this is the case for CMP entity EJBs. When a set of complex relationships exist between different entity beans the complexity of the programming of the relationship management becomes a key driver in choosing a solution. CMP entity EJBs are a compelling solution to this problem. When a tool can generate this code, rather than it being laboriously hand coded, it allows a system to be more easily adapted to changes in the requirements or the underlying data model.

Another feature of Container-Managed persistence that makes it attractive is its ability to manage optimization of the set of SQL calls that must be made in order to read or write the persistent state of an entity bean. For instance, the CMP model in WebSphere allows a set of entity EJBs to be read from a relational database in a find() method with only a single SQL SELECT call – much more efficient than the default BMP case, which requires N+1 SQL calls (e.g. 1 SQL select for the ejbFindBy call, and N selects, one for each ejbLoad) to do the same thing (see chapter 25 for more on read aheads).

Note that this is exactly the opposite of what some so-called EJB experts will tell you to do. There is an impression in the industry that CMP is somehow less efficient than BMP. In fact, one of the early Sun blueprints advocated an approach called the “Composite entity” pattern that advocated large-grained BMPs drawn from several relational tables and representing many logical entities. With the advent of EJB 2.0, and especially with the development of sophisticated and efficient mapping tools like those in WSAD, this pattern has become an antipattern. It is now far easier (and more efficient in most cases) to let WSAD write your SQL code than it is for you to write it in 80% of all cases.
Is there a set of objects that are updated VERY infrequently, but whose state is frequently read?

Almost every program has at least some examples of this sort of object. For instance, insurance applications have a number of codes for different medical procedures that change very rarely, perhaps only once a year. Another, more common type of object like this is a political entity like a county or a state. These change exceedingly rarely, but the list of them may be expanded if an application must be made to work internationally.

Here we have a problem that might sound like it could be solved in the same way as the previous case, or that might also suggest a BMP bean, but instead, this is usually best done by a stateless Session bean that returns Javabeans (e.g. dependent objects) whose state are read once, usually on first use or program startup. So why not use the previous solution and let a BMP entity manage these? The reason is that these objects are not transactional at all – they are read-only. While it depends upon the caching option used by the EJB container, usually a BMP’s state is read once per transaction. In this case the state will always be the same, regardless of the transaction. So, if we read the state once and hold it in memory for the lifetime of the stateless session bean we will save a large number of needless calls to the back-end storage mechanism.

Do you need to display and scroll through a large (>50 elements) list in your application?
Many applications need to be able to display large lists of data in order to let a user select from that list. In general, this should be avoided because scrolling through a large list is a poor user-interface design choice, but there are times where it is the only option.

When you are retrieving data to display in a list, you generally only need a small subset of data – often lists only contain a unique identifier and some sort of user-readable representation of the list element. In this case, using a custom finder method to retrieve back a large set of entity EJBs, only to then use a few data elements in each EJB, is a huge waste of resources. So, instead of retrieving a collection of EJBs and then iterating over the collection, create a simple Stateful Session EJB that can retrieve only those pieces of data that are necessary through a very minimal SQL query. You can then return the information in a very simple form like a Hashtable of key values to the Strings that will be displayed in the list.

Once the user has selected a particular selection from the list, then you can use an entity EJB to retrieve and operate on only that selected object by finding the entity EJB with a findByPrimaryKey() method using the key value that corresponds to the selected element. In practice, we have found this solution to be over twice as fast as iterating through a collection of entity EJBs in most circumstances, and to generate less references that need to be garbage collected as well. . This approach has been documented in detail as the Fast Lane Reader pattern in [Marinescu]. We will refer interested readers to there or [Brown00] for an implementation.
Do you need to use Stored procedures to access and manipulate your persistent data?
Some applications require the use of stored procedures to access the persistent data. This may be for performance reasons or it may be the only mechanism exposed via a legacy configuration. Unlike any of the previous cases, this is a situation that requires BMP entity beans. The BMP entity bean implementation of the container callback methods (ejbStore, ejbLoad, …) can use existing stored procedures. Currently, CMP strategies can not exploit stored procedures.

Summary

We’ve only scratched the surface of bean-Managed Persistence in this chapter. We have examined what the EJB API provides for BMP entity beans or even investigate obtaining BMP EJBs from data sources other than a relational database. However, this discussion should ground you in the principles necessary to understand how to move on to these more advanced options when necessary.

1

_1025371564.doc

Customer EJB Stub

Customer EJB

Customer Table

EJB container

EJB client

Relational DB

