
Chapter 15

XML/XSL Web Interfaces in WSAD

Previously, we learned how to use JSPs with servlets to create robust web interfaces. These technologies are part of the J2EE blue print and are a standard way of creating web-based interfaces with J2EE. In this chapter, we will introduce an alternative way (which is also a part of J2EE) of creating web-based interfaces using XML (eXtensible Markup Language) and XSL (eXtensible Stylesheet Language). We will also cover several of the tools provided in WSAD that can be utilized to create XML/XSL interfaces. We will not discuss the basics of XML/XSL, but rather how to use XML/XSL within a J2EE application. We will discuss the following topics:

· Strategy for using XML/XSL for Web Interfaces

· Example static XML and XSL interface

· Example enhanced XSL file

· Example Dynamic XML and XSL interface

· When to use XML/XSL for Web Interfaces

[image: image1.png]
Figure 15.1 Where XML/XSLT fits into the Road Map

The purpose of this chapter is to advance your knowledge of the fundamental concepts of XML and XSL as a web interface alternative. In this chapter we will focus mostly on the servlet container with a short discussion on the domain layer in the ejb container (see Figure 15.1). Additionally, this chapter will demonstrate the use of XML/XSL in Java using the Apache Xalan-J transformer from within WebSphere Studio.

Strategy for using XML/XSL for Web Interfaces

XML and XSL can be used for many purposes. The primary purpose of XML is to represent data in a self-describing way. XML is not a programming or a logic based language but instead it is a language created to represent data with the “meta-data” information included in the XML document. XSL is an XML based language used by a transformer program (Apache Xalan-J is a transformer program) to transform XML documents into other forms (XML, HTML, Text, CSV, etc.). When looking at XML and XSL it is not obvious that these technologies can be used to build web interfaces. However, using XML and XSL together can greatly enhance separation of the presentation layer from the controller layer as well as increase developer productivity.

The basic technique for creating web interfaces using XML and XSL is to utilize an “XML Generator” Java class to generate an XML stream, which can then be transformed into HTML using XSL. This XML Generator utilizes the domain objects and mediators to generate a concise and complete XML document as output from some servlet request or Struts action. Figure 15.2 shows how this technique fits into the MVC architecture.

[image: image2.png]
Figure 15.2 XML/XSL Web Interface MVC Diagram
In Figure 15.2, the interaction controller is responsible for obtaining the request and returning the HTML response. The interaction controller utilizes mediators and domain objects to service the request and then calls the XML generator to generate the XML based on the data result returned from the domain model. Finally, the interaction controller calls the XSL Transformer to transform the XML into HTML as a response to the request.

Lets consider a set of requirements that we provide a web interface for Time Sheet detailed data as well as Time Sheet Summary Information as shown in Figure 15.3.

[image: image3.jpg]
Figure 15.3 Time Sheet Information

In the sections that follow, we will discuss the various MVC components shown in Figure 15.2 using the Time Sheet Information in Figure 15.3.

Interaction Controller

The interaction controller is the gatekeeper to the function that is requested from a web page URL. The interaction controller can be implemented as a servlet, a JSP or as a Struts Action. The interaction controller really has no logic in it except to process a request, delegate to other objects, and then return a response.

XML Generator

The job of the XML Generator is to generate an XML DOM, JDOM or Stream. While the generator could generate an XML document, rendering it in a persistent form is not necessary. The generated XML document will contain dynamic data, which is only valid for the duration of the request. Many implementations save the generated XML to a file for debugging purposes and turn this extra file output off when moving to production.

The structure of a generated XML document must represent what is needed for the web interface rather than that of the domain model or data model. In a domain model, domain objects contain other domain objects. In a data model, foreign keys are used to relate multiple tables. In a web interface, the data is derived from several domain objects and database tables. The generated XML document should contain pre-resolved relationships and references. The job of coding the XSL is not a programming exercise but a "painting" exercise, which we will cover very shortly.

In order to create a web interface, we need application data to drive the interface. The application data will almost always ultimately come from a database and the data it provides will be instantiated in some domain object. Consider a portion of the domain model for the Time Sheet Case Study (covered in its entirety later) in Figure 15.4.

[image: image4.png]
Figure 15.4 Time Sheet Partial Domain Model

 We have a requirement to generate web interfaces, which show the summary, detail and combined information for a timesheet. We need data from each of the five domain objects pictured in Figure 15.4. However, it would not be prudent to generate an XML document from all the data contained in the domain model. The structure of a generated XML document must represent what is needed for the web interface rather than that of the domain model or data model

The following XML document, timesheet.xml, gives us the needed data to meet the web interface requirements for displaying a time sheet.

<?xml version="1.0" encoding="UTF-8"?>
<TimeSheet weekEnding="4/25/2003">

<Employee id="257899" name="Leonard, Elouise" deptName="Programming"/>

<Entries>

<Entry>

<Date>4/21/2003</Date>

<Hours>8.5</Hours>

<Project id="4567" name="ACME AP"/>

</Entry>

<Entry>

<Date>4/22/2003</Date>

<Hours>5</Hours>

<Project id="4567" name="ACME AP"/>

</Entry>

<Entry>

<Date>4/22/2003</Date>

<Hours>5</Hours>

<Project id="2345" name="ACME HR"/>

</Entry>

…

</Entries>

<Summary totalHours="45.5" overTimeHours="5.5">

<ProjectTotals>

<Project id="4567" name="ACME AP" totalHours="37.5"/>

<Project id="2345" name="ACME HR" totalHours="8"/>

</ProjectTotals>

</Summary>
</TimeSheet>
This XML document represents a time sheet for a single employee working on multiple projects. As you review the timesheet.xml file you will notice that the Employee information as well as the detailed time sheet entries are included. Also, notice that the Employee contains a “deptName” attribute instead of a sub element for “Department” with a “name” attribute. Since there is really no additional information needed from the Department besides its name, it is better to go ahead and simplify the XML so that the XSL can be more easily coded. Additionally, notice that the XML document contains a “Summary” element, which contains hourly totals by time sheet and by project. This summary information could have been derived from the detailed information; however; it is a best practice to compute derived values in Java code, in the XML Generator, instead of in XSL. Java is a much more powerful language than XSL and therefore should be used to compute derived values.

XSL

The XSL is essentially the paint for the web interface. XSL is a combination of three other Application Programming Interfaces:

· XSLT - XSL: Transformations

· XPath – XML Path Language

· XSL FO – XSL: Formatting Objects

XSLT supports conditional logic and looping constructs; however, the basic construction element in XSLT is the “template”. A template is a block of XSLT code in many ways like a Java function. Templates can either be named to act more like a function call or they can be set up to match an element in the XML data file.

XPath is the mechanism used in XSL to find elements and attributes in the XML data file. The XPath expression “TimeSheet/Employee/@id” gives a path from the current location in the XML document to the attribute “id” on the sub-element “Employee” which is a part of the element “TimeSheet”. This is a very simple XPath expression but should show you right away that XSL was designed to help programmers very easily find data in an XML document. If we were to say that XML is like a database then we would also say that XPath is like the SELECT verb in SQL. XPath is used to find things in an XML document.

XSL FO is an API and set of elements that allow an XSL developer to transform XML into other things besides XML, text or HTML. XSL FO allows XML to be transformed into print streams and even more importantly PDF output.

In the previously provided XML document, we have an element named “TimeSheet”. As such, we can create a template in the XSL file, which matches on “TimeSheet”. An XSL file, which contains a basic Template to create summary time sheet information, follows (timesheet1.xsl).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0" xmlns:xalan="http://xml.apache.org/xslt">
 <xsl:strip-space elements="*" />
 <xsl:output method="html" />

<xsl:template match="TimeSheet">

<H1>Time Sheet</H1>

<TABLE border="0">

<TR>

<TD>Week Ending:</TD>

<TD><xsl:value-of select="@weekEnding"/> </TD>

<TD> </TD>

<TD> </TD>

</TR>

<TR>

<TD>Employee:</TD>

<TD><xsl:value-of select="Employee/@name"/> </TD>

<TD></TD>

<TD>Total Hours:</TD>

<TD><xsl:value-of select="Summary/@totalHours"/>

</TD>

</TR>

<TR>

<TD>Department:</TD>

<TD><xsl:value-of select="Employee/@deptName"/> </TD>

<TD> </TD>

<TD>Total Overtime Hours:</TD>

<TD>

<xsl:value-of select="Summary/@overTimeHours"/>

</TD>

</TR>

</TABLE>

</xsl:template>
</xsl:stylesheet>
This XSL file, timesheet1.xsl, contains a single template for the “TimeSheet” element. This XSL file is almost 90% HTML with the few XSL statements in bold typeface. With exception to the first five lines and the last two lines of this file, the XSL statements are concerned with obtaining the data from the XML document. For example, the line

<TD><xsl:value-of select="@weekEnding"/> </TD>

will cause the value of the “weekEnding” attribute of the “TimeSheet” element to be placed inside the HTML “TD” element. Notice that the XPath expression “@weekEnding” is used to access the “weekEnding” attribute of the current element (“TimeSheet”). Also, the line

<TD><xsl:value-of select="Employee/@deptName"/> </TD>
will cause the value of the “deptName” attribute of the “Employee” element of the “TimeSheet” element to be placed inside of the HTML “TD” element.

When the timesheet1.xsl file is applied to the timesheet.xml file, the result will resemble Figure 15.5.

[image: image5.jpg]
Figure 15.5 Time Sheet Summary Only

Pulling it all Together

Figure 15.5 represents a portion of the Time Sheet output that we would like to build in XML and XSL. We will add additional templates and expressions to the XSL so that we obtain the web interface shown in Figure 15.3. We will not have to change the XML document as it contains all of the necessary data. For now, it is important to understand that while we are using a static XML document in this discussion so far, in our completed application the XML Generator will generate an XML Stream with dynamic data and then it will be transformed with our XSL.

Example XML/XSL Web Interface with WSAD

In this section we will build the example shown in Figure 15.3 using the static XML document, timesheet.xml. In the next section, we will add a servlet and an XML Generator in order to show you how to use Java to do the transformation. WSAD provides many tools to help create, test, and debug XML and XSL. We will utilize the tools provided in WSAD to enhance our development efforts. Most of our time will be spent in the Web Perspective and the XML Perspective. You will follow these steps in implementing the XML/XSL example using WSAD:

1. Open the XML Perspective

2. Create a Web project

3. Create a sample XML file containing a time sheet (use timesheet.xml)

4. Create an XSL file to display the time sheet (use timesheet1.xsl)

5. Use WSAD tools to apply XSL to XML

6. Debug XSL

The following sections cover each step.

Creating a Web Project

In Chapter 7, we learned how to create a web project. We will primarily use the XML Perspective instead of the Web Perspective to view this project in this section. Open the XML perspective by selecting Window --> Open Perspective --> Other… from the menu bar. Select XML from the list of available perspectives.

[image: image6.png]
Figure 15.6 Select Perspective

Next create a new Web project by selecting File --> New --> Web Project. This will bring up the Create a Web Project wizard. Enter the Project Name of XMLXSLExample and specify that this is a J2EE project. Uncheck any checked items for creation. Specify the DefaultEAR project as your Enterprise project and enter a Context Root of XMLXSLExample (no spaces). Finally, select J2EE version 1.3. Refer to Chapter 7 for details on each of these settings.

Let’s take a quick look at what was created.

[image: image7.png]
Figure 15.7 XMLXSL Example Project

Figure 15.7 shows the DefaultEAR and XMLXSL Example projects that were created by the Create a Web Project wizard in the Navigator View. If you would like to avoid a lot of typing, you can import the rest of the files for the example XML/XSL web interface from the CD. Select the XMLXSL Example project in the J2EE Navigator and select File --> Import…, and then select File system from the Import wizard. Browse to the XMLXSL Example folder on the CD and import the example by selecting the XMLXSL Example folder. If you do the import, you can skip “Creating the XML file” and “Creating the XSL file” sections and go directly to the “XSL debugging and transformation” section.

Creating the XML file

XML and XSL files do not have to be on the HTTP path in order for them to be used in a web application. The HTTP path is a path that is accessible to the web browser through a URL. We will discuss this in detail later but for now create the XML file in a folder that is not on the HTTP path. Create a folder named XMLSource as a sub folder of the main project folder, “XMLXSL Example” by first selecting the “XMLXSL Example” project and then selecting the File --> New --> Folder menu option. In the wizard, enter the folder name of XMLSource.

Previously, we worked with the timesheet.xml file. Now we need to bring this file into WSAD so that we can use the WSAD tools to test it with our XSL files. Select the XMLSource folder and then select the File --> New --> Other…menu to display all of the types of files that can be created as shown in Figure 15.8.

[image: image8.png]
Figure 15.8 Creating an XML File

Select XML from the list on the left and XML again from the list on the right. Press the Next button to move on to the next screen in the wizard as shown in Figure 15.9.

[image: image9.png]
Figure 15.9 How to create XML file

This wizard screen gives several ways to create an XML file. If you had a DTD or XML Schema file, you could generate a sample XML file from either of those. Also, we will see later that you can generate a DTD or XML Schema from an XML file. Select the Create XML file from scratch radio button. Press the Next button to move on to the next screen in the wizard as shown in Figure 15.10
[image: image10.png]
Figure 15.10 Name the XML file

Enter the name of the XML file as “timesheet.xml” and press the Finish button to complete the creation of the XML file. The navigator view of WSAD will now resemble Figure 15.11.

[image: image11.png]
Figure 15.11 XMLSource Folder with timesheet.xml file

 Additionally, the XML file will be opened in the editor area with the minimal lines for an XML file. You will need to enter the code from the timesheet.xml file as shown earlier in this chapter or import the one from the CD-ROM. Once you have entered the code, save the file and close it.

Creating the XSL file

As we have said previously, the XSL file is the paint for our web interface. The first XSL file that we created previously, timesheet1.xsl, needs to be brought into WSAD. Select the XMLSource folder and then select the File --> New --> Other…menu to display all of the types of files that can be created as shown in Figure 15.12.

[image: image12.png]
Figure 15.12 Creating an XSL File

Select XML from the list on the left and XSL from the list on the right. Press the Next button to move to the next screen in the wizard as shown in Figure 15.13.

[image: image13.png]
Figure 15.13 Name the XSL file

Enter the name of the XSL file as “timesheet1.xsl”. Press the Next button to move to the next screen in the wizard as shown in Figure 15.14.

[image: image14.png]
Figure 15.14 Associate an XML file

Select the timesheet.xml file as shown in Figure 15.14. Then select the Finish button to complete the creation of the XSL file. The navigator area of WSAD will now resemble Figure 15.15.

[image: image15.png]
Figure 15.15 XMLSource Folder with timesheet1.xsl file

Additionally, the XSL file will be opened in the editor area with the required lines for an XSL file. Also notice that the editor color codes the various elements of the XSL file to aid in your recognition of the parts of an XSL file. Additionally, the Outline view shows a hierarchical tree structure of the elements contained in the XSL file. You will need to enter the code form the timesheet1.xsl file as shown earlier in this chapter. Once you have entered the code, save the file and close it.

XSL debugging and transformation

You can use the XSL editor to create an XSL file. Then, to test your XSL file, you can use the XSL debugging and transformation tool to apply the XSL file to a source XML file and create a new HTML, XML, or text file. You can open the new HTML, XML, or text file in a Web browser from the Sessions view in the XSL Debug perspective.

The XSL debugging and transformation tool records the transformation that is generated by the Apache Xalan-j processor. The Xalan-j processor is an XSLT processor that transforms XML files into HTML, text, or other XML file types. It implements the W3C Recommendations for XSL Transformations (XSLT) and the XML Path Language (XPath). For more information on the Xalan processor, refer to the following Apache Web site: http://xml.apache.org/xalan-j/
Transforming XML files

A transformation describes rules for transforming a source tree (logically a Document Object Model or DOM tree) into a result tree. The transformation is achieved by associating patterns with templates. A pattern is matched against elements in the source tree. A template is instantiated to create part of the result tree. The result tree is separate from the source tree and the structure of the result tree can be completely different from the structure of the source tree. In constructing the result tree, elements from the source tree can be filtered, reordered, and arbitrary structures can be added.

To transform the timesheet.xml file using the timesheet1.xsl file, select both files from the Navigator view in the XML perspective. Next, right-click and select the Apply XSL --> As HTML menu option. This is shown in Figure 15.16.

[image: image16.png]
Figure 15.16 Applying XSL to XML

The Xalan-j processor will be initialized and then the “XSL Debug Perspective” will be launched with a session for the timesheet.xml and timesheet1.xsl files. The processing will be halted at the root tag in the XML file as shown in Figure 15.16.

[image: image17.png]
Figure 15.17 XSL Debug Perspective

Notice that this perspective shows the current sessions in the top left hand corner and the current XSL element in the top right hand corner. Also, notice that the XML file and XSL file are side by side in the middle, and the output (HTML in this case) is located at the bottom. This perspective is setup to allow a developer to step through each line in the XML and XSL so that you can debug the file. However, if you want to do a quick transform and view the resulting HTML page, simply select the globe icon. The transformation will occur and the result will be displayed in the WSAD internal web browser as shown in Figure 15.18.

[image: image18.png]
Figure 15.18 Result of Transformation

You should also notice that the transformation output is saved in an HTML file in the same folder as the XSL file. Notice the newly created “timesheet_timesheet1_transform.html” file in the XMLSource folder. Before leaving this perspective, close the web browser and end the session. Select the session, right-click and select Terminate to terminate the session. Close the perspective.

Debugging XSL and XML files

Return to the XML perspective, select the timesheet.xml and timesheet1.xsl files again and restart the debug session by selecting Apply XSL --> As HTML. When the XSL Debug Perspective displays, begin stepping through the XSL and XML by selecting the step icon as shown in Figure 15.19.

[image: image19.png]
Figure 15.19 Stepping through the XML and XSL

As you step through the XSL transformation script, information about the XSL element being used is shown in the Current XSL Element view. The XSL Breakpoints view shows the breakpoints set in the input XSL file. The Tasks view shows a list of any errors that occurred during the transformation.

After you make any changes, you can select the session in the Session view and right-click to select Relaunch. This will apply the XSL file to the XML file again and let you see what impact your changes had. You can terminate the session and close the perspective.

Options for debugging and transforming XSL files

There are two ways you can debug and transform XSL files:

1. Select the XSL and XML files you want to work with and select Apply XSL from the pop-up menu as we just did or

2. Use the XSL Debugging and Transformation wizard.

If you simply want to quickly apply an XSL file to an XML file and transform it, you should use the pop-up menu to transform your XML file. If, however, you want to specify information about the transformation (for example, the location of the output file), you should use the XSL Debugging and Transformation wizard.

If you are transforming and debugging any XSL files that call external Java programs, you should use the XSL Debugging and Transformation wizard. In the wizard, you can select the Remote XSL Application option to specify a class path for the external Java program.

Enhanced Example of XML/XSL Web Interface with WSAD

Now that you have learned how to use WSAD to transform and debug simple XML and XSL files, it is time to introduce some new XSL concepts that will help you to use XSL within WSAD on a future project. We will continue to work with a static XML file at this point, timesheet.xml, as this is the best way to build XSL interfaces in the real world. Later we will dynamically generate the XML from Java and then apply the XSL to the XML stream using the Java API for XML Parsing (JAXP) and Apache Xalan-j Java API. In the code samples that follow, each point of interest has been highlighted with a bold typeface.

You will follow these steps in implementing the XML/XSL example enhancements using WSAD:

1. Review timesheet1.xsl

2. Re-factor 1: Decompose into templates

3. Re-factor 2: Add time sheet entry detailed information

The sections that follow will cover these steps. If you previously imported the XMLXSL Example project, you will not need to create any of the files in this section.

Review timesheet1.xsl

Currently, the timesheet1.xsl file does not fulfill our requirements to display timesheet summary and detailed information. Let’s review timesheet1.xsl.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0" xmlns:xalan="http://xml.apache.org/xslt">
 <xsl:strip-space elements="*" />
 <xsl:output method="html" />

<xsl:template match="TimeSheet">

<H1>Time Sheet</H1>

<TABLE border="0">

<TR>

<TD>Week Ending:</TD>

<TD><xsl:value-of select="@weekEnding"/> </TD>

<TD> </TD>

<TD> </TD>

</TR>

<TR>

<TD>Employee:</TD>

<TD><xsl:value-of select="Employee/@name"/> </TD>

<TD></TD>

<TD>Total Hours:</TD>

<TD><xsl:value-of select="Summary/@totalHours"/>

</TD>

</TR>

<TR>

<TD>Department:</TD>

<TD><xsl:value-of select="Employee/@deptName"/> </TD>

<TD> </TD>

<TD>Total Overtime Hours:</TD>

<TD>

<xsl:value-of select="Summary/@overTimeHours"/>

</TD>

</TR>

</TABLE>

</xsl:template>
</xsl:stylesheet>
The timesheet1.xsl file only shows summary information at this point. We need to re-factor the existing code into several templates and also add templates to handle the “Entry” elements so that we can show detailed information. Let’s re-factor the existing file to use more templates first then we’ll handle adding “Entry” templates to handle the details.

Re-factor 1: Decompose into Templates

Create a new XML file in the XMLSource folder named timesheet2.xsl. The XML below is the first re-factor.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:xalan="http://xml.apache.org/xslt">
 <xsl:strip-space elements="*" />
 <xsl:output method="html" />

<xsl:template match="TimeSheet">

<H1>Time Sheet</H1>

<TABLE border="0">

<TR colspan="2">

<TD>Week Ending:<xsl:text> </xsl:text>

<xsl:value-of select="@weekEnding"/>

</TD>

<TD></TD>

</TR>

<TR>

<TD><xsl:apply-templates select="Employee"/></TD>

<TD><xsl:apply-templates select="Summary"/></TD>

</TR>

</TABLE>

</xsl:template>

<xsl:template match="Employee">

<TABLE border="0">

<TR>

<TD>Employee:</TD>

<TD><xsl:value-of select="@name"/> </TD>

</TR>

<TR>

<TD>Department:</TD>

<TD><xsl:value-of select="@deptName"/> </TD>

</TR>

</TABLE>

</xsl:template>

<xsl:template match="Summary">

<TABLE border="0">

<TR>

<TD>Total Hours:</TD>

<TD><xsl:value-of select="@totalHours"/> </TD>

</TR>

<TR>

<TD>Total Overtime Hours:</TD>

<TD><xsl:value-of select="@overTimeHours"/> </TD>

</TR>

</TABLE>

</xsl:template>

</xsl:stylesheet>
Paste this code into the timesheet2.xsl file. Notice that the single template, “TimeSheet” has been broken into two other templates the “Employee” template and the “Summary” template. One of the reasons for this re-factor is to simplify the XPath expressions. Notice that in the timesheet1.xsl file (the first version) has an XPath expression such as “Employee/@name”. In the revised version, the timesheet2.xsl file’s XPath expression is simply “@name” because the code is now inside of the “Employee” template instead of the “TimeSheet” template. Another reason for this re-factor is to break the logic up into manageable pieces. Additionally, if you create a separate template per XML element in the XML data file then you can re-use the templates in various ways. Notice that the “TimeSheet” template uses the xsl:apply-templates element to first call the “Employee” template and then to call the “Summary” template. Now that we have this logic in separate templates, we can show the summary information ahead of the employee information by simply changing two lines of code. We would change the following lines from:

<TR>

<TD><xsl:apply-templates select="Employee"/></TD>

<TD><xsl:apply-templates select="Summary"/></TD>

</TR>
to:

<TR>

<TD><xsl:apply-templates select="Summary"/></TD>

<TD><xsl:apply-templates select="Employee"/></TD>

</TR>
If you apply the new timesheet2.xsl file against the timesheet.xml file, the result will be unchanged. The output will be identical.

Re-factor 2: Add Time Sheet Entry Detailed Information

The next re-factor is to add the detailed information (time sheet entries) to the output. In order to do this, we need to add more templates and update some of the templates. First, let’s add the some additional templates to the file

Entries Template

The Entries template matches the “Entries” element in the timesheet.xml file. The “Entries” element contains “Entry” elements. This is the perfect place to put HTML output that only needs to occur one time for all “Entry” elements. The Entries template follows.

<xsl:template match="Entries">

<TABLE border="1" cellpadding="0" cellspacing="0" width="100%">

<TR>

<TH>Date</TH>

<TH>Hours</TH>

<TH>Project</TH>

</TR>

<xsl:apply-templates select="Entry">

<xsl:sort data-type="text"

order="descending" select="Date"/>

</xsl:apply-templates>

</TABLE>

</xsl:template>

Add this template to your timesheet2.xsl file. There are several things to note about the Entries template. First, note that we are displaying the time sheet entries in an HTML table. We need to supply TH (table heading) elements for the entire table only one time for the table. Next, note that we are using an xsl:sort element in this XSL file. The xsl:sort element must be specified as a nested element in the xsl:apply-templates element and it allows the developer to specify how the data given to the applied templates will be sorted. Normally, the data is given to the applied templates in the order they appear in the XML document. In this case, the “Entry” elements will be sorted by the “Date” child element in descending order.

Entry Template

The Entry template matches the “Entry” element and has the sole purpose of generating a row in the HTML table using data from the “Entry” element in the timesheet.xml file. The Entry template follows.

<xsl:template match="Entry">

<TR>

<TD><xsl:value-of select="Date"/></TD>

<TD><xsl:value-of select="Hours"/></TD>

<TD><xsl:value-of select="Project/@name"/></TD>

</TR>

</xsl:template>

Add this template to your timesheet2.xsl file. The only thing to note here is that for an “Entry” element, we would like to display the project name. The “Project” element is nested within the Entry element and had two attributes – “name” and “id”. All we are interested in is the “name” attribute. The XPath expression “Project/@name” points to the “name” attribute in the child element of the current element named “Project”. When writing XSL, remember that the current element is the element that matched the template you are writing the code in. The current element in the Entry template is the “Entry” element.

Integrating with Existing Templates

In order to cause the Entries and Entry templates to be used, we need to update the TimeSheet template to use the xsl:apply-templates XSLT element to call the Entries template. Add the following code to the bottom of the TimeSheet template just before the </xsl:apply-templates> end tag.

<HR/>

<xsl:apply-templates select="Entries"/>

This will add a horizontal rule (a line) to the HTML output and then it will call the Entries template.

Testing the New Templates

Once you have made these updates, apply the timesheet2.xsl to the timesheet.xml file. The generated HTML should create a web page as shown in Figure 15.20.

[image: image20.png]
Figure 15.20 Re-factor 2 Time Sheet Output

Re-factor 3: Add Project Summary Information

The next re-factor will add the project total information to the output. In order to do this, we need to add more templates and update some of the templates.

ProjectTotals template

The ProjectTotals template matches the “ProjectTotals” element in the XML document. The ProjectTotals template is very similar to the Entries template where it handles the one time only items such as table headers.

<xsl:template match="ProjectTotals">

<TABLE border="1">

<TR>

<TH>Project ID</TH>

<TH>Name</TH>

<TH>Hours</TH>

</TR>

<xsl:apply-templates select="Project"/>

</TABLE>

</xsl:template>
Add this template to the timesheet2.xsl file. We’ll create a template to handle the layout of the results returned from the highlighted <xsl:apply-templates> tag in the next section.

Project Template

The Project template matches the “Project” element in the XML document. The Project template has the sole purpose of generating a row in the table of project information displaying the information specific to a project.

<xsl:template match="Project">

<TR>

<TD><xsl:value-of select="@id"/></TD>

<TD><xsl:value-of select="@name"/></TD>

<TD><xsl:value-of select="@totalHours"/></TD>

</TR>

</xsl:template>
Integrating with Existing Templates

In order to invoke the ProjectTotals and Project templates, we need to update the TimeSheet template to use the xsl:apply-templates XSLT element to call the ProjectTotals template. Modify the TimeSheet template so that it resembles the following code

<xsl:template match="TimeSheet">

<H1>Time Sheet</H1>

<TABLE border="0">

<TR colspan="2">

<TD>Week Ending:<xsl:text> </xsl:text>

<xsl:value-of select="@weekEnding"/></TD>

<TD></TD>

</TR>

<TR>

<TD><xsl:apply-templates select="Employee"/></TD>

<TD><xsl:apply-templates select="Summary"/></TD>

</TR>

</TABLE>

<HR/>

<TABLE border="0">

<TR colspan="2">

<TD>Project Totals</TD>

<TD></TD>

</TR>

<TR>

<TD><xsl:apply-templates

select="Summary/ProjectTotals"/>

</TD>

<TD></TD>

</TR>

</TABLE>

<HR/>

<xsl:apply-templates select="Entries"/>

</xsl:template>

The <HR/> tag will add a horizontal rule (a line) to the HTML output and then it will call the ProjectTotals template.

Testing the New Templates

Once you have made these updates, apply the timesheet2.xsl to the timesheet.xml file. The generated HTML should create a web page as shown in Figure 15.21.

[image: image21.png]
Figure 15.21 Final Time Sheet HTML Output

Dynamic Example XML/XSL Web Interface with WSAD

The only thing that remains to be done with our sample is to add Java code to make the web interface dynamic. Using static XML document as we did in the previous sections is the preferred way to create the initial XSL web interfaces because you only have to debug your templates, not the Java code as well. However, at some point, the XSL has to be used in an application that dynamically generates XML. To add the dynamic nature to our sample, we will first create some JavaBeans representing our domain model. Next, we will need an XML Generator to generate the XML. Additionally, we need to create a servlet to handle the web interaction and XSL transformation and a utility class that implements the javax.xml.transform.URIResolver interface to find the XSL files on the classpath.

You will follow these steps in implementing the XML/XSL dynamic example using WSAD:

1. Create a Java package

2. Create an XML Generator

3. Update project classpath to find Xalan-j and the XSL files

4. Create a URIResolver to resolve XSL files on classpath

5. Create a Servlet to process requests

6. Test and debug on WSAD Test Environment

The sections that follow will take you through the above steps. If you previously imported the XMLXSL Example project, you will not need to create any of the files or Java packages that are mentioned in this section, rather you can simply browse them as you read along.

Create a Java package

The first thing you will do is to create a Java package named com.wsbook.xmlxsl.sample. Create this package in the XMLXSL Example project under the JavaSource folder. If you are unsure how to create a java package, refer to Chapter 7.

Create an XML Generator

The XML Generator is the class that creates the dynamic XML. In most cases, this class interacts with mediator and domain layers to extract data for the generated XML. In order to focus on the Java generation of XML, we will simplify the problem and use hardcoded data to render the XML. The XMLGenerator contains one method, generateXML(String showDetails). If the showDetails string is equal to “on” then the TimeSheet details will be displayed. The XMLGenerator is called TimeSheetXMLGenerator.java and the source code follows (Note: Some redundant source code has been omitted).

package com.wsbook.xmlxsl.sample;
import java.util.Properties;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
public class TimeSheetXMLGenerator {

public Document generateXML(String showDetails) {

Document doc = null;

try {
doc = DocumentBuilderFactory.newInstance().

newDocumentBuilder().newDocument();

} catch (Exception e) {

System.out.println(“Exception occurred – “ + e);

Return null;

}

//
<TimeSheet weekEnding="4/25/2003">

Element timeSheetElem = doc.createElement("TimeSheet");

doc.appendChild(timeSheetElem);

timeSheetElem.setAttribute("weekEnding", "04/25/2003");

//

<Employee id="257899" name="Leonard, Elouise"

//

deptName="Programming"/>

Element employeeElem = doc.createElement("Employee");

timeSheetElem.appendChild(employeeElem);

employeeElem.setAttribute("id", "257899");

employeeElem.setAttribute("name", "Leonard, Elouise");

employeeElem.setAttribute("deptName", "Programming");

if (showDetails.equalsIgnoreCase("on")) {

// <Entries>

Element entriesElem = doc.createElement("Entries");

timeSheetElem.appendChild(entriesElem);

// Entry 1

//

<Entry>

Element entryElem = doc.createElement("Entry");

entriesElem.appendChild(entryElem);

//

<Date>4/21/2003</Date>

Element dateElem = doc.createElement("Date");

Node textNode = doc.createTextNode("4/21/2003");

dateElem.appendChild(textNode);

entryElem.appendChild(dateElem);

//

<Hours>8.5</Hours>

Element hoursElem = doc.createElement("Hours");

textNode = doc.createTextNode("8.5");

hoursElem.appendChild(textNode);

entryElem.appendChild(hoursElem);

hoursElem.setNodeValue("8.5");

//

<Project id="4567" name="ACME AP"/>

Element projectElem = doc.createElement("Project");

entryElem.appendChild(projectElem);

projectElem.setAttribute("id", "4567");

projectElem.setAttribute("name", "ACME AP");

// ... Additional entries not shown

}

//

<Summary totalHours="45.5" overTimeHours="5.5">

Element summaryElem = doc.createElement("Summary");

timeSheetElem.appendChild(summaryElem);

summaryElem.setAttribute("totalHours", "45.5");

summaryElem.setAttribute("overTimeHours", "5.5");

//

<ProjectTotals>

Element projectTotalsElem = doc.createElement("ProjectTotals");

summaryElem.appendChild(projectTotalsElem);

//

<Project id="4567" name="ACME AP"

//

totalHours="37.5"/>

Element project1Elem = doc.createElement("Project");

projectTotalsElem.appendChild(project1Elem);

project1Elem.setAttribute("id", "4567");

project1Elem.setAttribute("name", "ACME AP");

project1Elem.setAttribute("totalHours", "37.5");

//

<Project id="2345" name="ACME HR"

//

totalHours="8"/>

Element project2Elem = doc.createElement("Project");

projectTotalsElem.appendChild(project2Elem);

project2Elem.setAttribute("id", "2345");

project2Elem.setAttribute("name", "ACME HR");

project2Elem.setAttribute("totalHours", "8");

return doc;

}
}
The generator’s main purpose is to generate a Document. As we said before, this sample uses hard coded data so that the focus of the sample can be on how to use the JAXP API to create a Document object. JDOM can also be used in the XMLGenerator if your team is familiar with that API.

Notice that the XMLGenerator does conditionally generate the “Entries” element. One of the nice things about XSL is that if you want to exclude a part of the output, you can simply omit the XML elements without having to make a change to the XSL document. Also, notice that the JAXP API allows for text nodes to be added to elements to give them their data as shown in the creation of the “Date” and “Hours” elements. JAXP also provides the setAttribute() method to add attributes to an element as a key/value pair.

Update Java Classpath

The XMLXSL Example project classpath must be modified to find the xalan.jar and the XSL files. The xalan.jar contains the Apache Xalan-j Java classes needed to perform an XSL transformation. When we use the WSAD tools to do a transformation as we did in the previous sections, the xalan.jar file is automatically placed on the classpath. However, for our Java project, we must explicitly add this jar file to the project build classpath. To do this, select the XMLXSL Example project and then select the Properties selection from the right-click menu. The dialog window as shown in Figure 15.22 will be displayed.

[image: image22.png]
Figure 15.22 Changing the Java Build Path

Select the Libraries tab so that we can add the jar file. The dialog will change to resemble Figure 15.23.

[image: image23.png]
Figure 15.23 Libraries Tab

From the Libraries tab, select the Add External Jars button to display the file selection dialog. Navigate to the [wsad-install-dir]/runtimes/base_v5/lib directory. Select the xalan.jar file from the list of files and then press the Open button to make the selection. The Libraries tab will now resemble Figure 15.24.

[image: image24.png]
Figure 15.24 Libraries tab with xalan.jar added

Select the OK button to close the dialog and update the Java classpath change. Now the Apache Xalan API will be available to any Java source code created in the XMLXSL Example project.

When using XSL in a web application, the XSL will not interfere with making the distributed war portable. A portable war file is a war that can be moved from one application server to another without having to be re-built. At the heart of this issue is how the XSL files found by the XSL transformer. If the XSL files are found using File IO, then a relative or absolute path will have to be given to the web application in a properties file or servlet initialization parameter. While this will work, it leads to many development-time and runtime errors that can be easily avoided. Additionally, it can render the war file non-portable.

The way to avoid this situation is to set up the XSL transformer to find the XSL files on the Java classpath. In a web application, the WEB-INF/classes directory is always on the Java classpath. We want our XSL files copied to that directory. In the next section, we will discuss how to setup the transformer to find the XSL files on the Java classpath. To add the XSL files to the WEB-INF/classes directory, we need to once again modify the XMLXSL Example projects Java build path. Open the Properties dialog again and select the Libraries tab as shown in Figure 15.25.

[image: image25.png]
Figure 15.25 Adding XMLSource - Libraries tab

Select the Advanced button to open the dialog shown in Figure 15.26.

[image: image26.png]
Figure 15.26 Advanced Add Classpath Entry

Select the Add Existing Class Folder radio button and then select the OK button. When the dialog appears, drill down into the XMLXSL Example project and select the XMLSource folder. Select the OK button to return to the Libraries Tab as shown in Figure 15.26.

[image: image27.png]
Figure 15.27 Libraries tab after Adding XMLSource

Select the OK button to close the dialog and finish the classpath update. Notice that in the Navigator view, the XSL files have been copied from the XMLSource folder to the WEB-INF/classes directory as shown in Figure 15.28.

[image: image28.png]
Figure 15.28 XSL files have been copied to WEB-INF/classes folder

Whenever the project goes through a rebuild, the contents of the XMLSource folder will be copied to the WEB-INF/classes directory. To force this copy to happen, use the Project (Rebuild Project menu option.

Create a URIResolver Implementation

Now that the XSL files are on the classpath we need to create a class called an URIResolver, which will be used by the transformer to find the XSL files. The javax.xml.transform.URIResolver is an interface in JAXP which contains one method named resolve(String href, String base) and returns a javax.xml.transform.stream.StreamSource object which is also a part of JAXP. Our URIResolver is named ClassPathURIResolver.java and the source code follows.

package com.wsbook.xmlxsl.sample;
import java.io.InputStream;
public class ClassPathURIResolver implements javax.xml.transform.URIResolver {

public javax.xml.transform.Source resolve(String href, String base)

throws javax.xml.transform.TransformerException {

javax.xml.transform.stream.StreamSource result = null;

String path = href;

try {

InputStream inputStream = getClass().

getResourceAsStream(path);

System.out.println("ClassPathURIResolver.resolve() path = "

+ path);

if (inputStream != null) {

result = new javax.xml.transform.stream.StreamSource();

result.setInputStream(inputStream);

}

} catch (Exception exc) {

System.out.println(" Exception on --> href = "

+ href + " base = " + base

+ " Exception = " + exc);

}

System.out.println("resolved path = " + path + " href = "

+ href + " base = " + base);

return result;

}
}
The heart of the URI resolver is the statement:

InputStream inputStream = getClass().getResourceAsStream(path);
This statement uses the Java classpath to find the file represented by the path variable and places that file in an InputStream object. This is the same method that java.util.ResourceBundle uses to find *.properties files, which are also typically located on the classpath. This saves us the time and trouble of having to write code to search the classpath ourselves.

Create a Servlet

The servlet handles the request, parses any parameters, calls any business or mediator logic, calls the XMLGenerator, and finally transforms the XML into HTML. Our servlet, TimeSheetXSLServlet.java does not call any business or mediator logic so that we can shorten the sample. The TimeSheetXSLServlet.java servlet has three methods, doGet(), render(), and dumpXML().. The doGet() method handles the GET HTTP request and parses parameters from the request. The doGet() uses the XMLGenerator to generate the XML and then calls the render() or dumpXML() methods depending on the value of the transform HTTP parameter. The TimeSheetXSLServlet.java follows.

package com.wsbook.xmlxsl.sample;
import java.io.IOException;
import java.io.Writer;
import java.util.Properties;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import org.apache.xalan.serialize.SerializerToXML;
import org.w3c.dom.Document;
public class TimeSheetXSLServlet extends HttpServlet {

public static final String XSL_FILE = "/timesheet2.xsl";

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

String showDetails = req.getParameter("showDetails");

if (showDetails == null) {

showDetails = "off";

}

String transform = req.getParameter("transform");

if (transform == null) {

transform = "off";

}

TimeSheetXMLGenerator generator = new TimeSheetXMLGenerator();

Document xmlDoc = generator.generateXML(showDetails);

if (transform.equalsIgnoreCase("on")) {

render(req, resp, xmlDoc, new Properties());

} else {

dumpXML(xmlDoc, resp.getWriter());

}

}

public void render(HttpServletRequest req, HttpServletResponse resp,

Document xmlDoc, Properties xslParms) {

try {

Source src = new javax.xml.transform.dom.DOMSource(xmlDoc);

TransformerFactory tFactory =

TransformerFactory.newInstance();

tFactory.setURIResolver(new ClassPathURIResolver());

Transformer transformer =

tFactory.newTransformer(tFactory.getURIResolver().

resolve(XSL_FILE, null));

javax.xml.transform.Result result = new

javax.xml.transform.stream.StreamResult(

resp.getWriter());

transformer.clearParameters();

java.util.Enumeration parmNames = xslParms.keys();

while (parmNames.hasMoreElements()) {

String parmName = (String) parmNames.nextElement();

String parmValue = (String) xslParms.get(parmName);

transformer.setParameter(parmName, parmValue);

}

transformer.transform(src, result);

} catch (Exception e) {

System.out.println(

getClass().getName() + " Exception occured - " + e);

e.printStackTrace();

}

}

public void dumpXML(org.w3c.dom.Node xmlTree, Writer writer) {

try {

SerializerToXML s2x = new SerializerToXML();

s2x.setWriter(writer);

java.util.Properties props = new java.util.Properties();

props.setProperty(javax.xml.transform.OutputKeys.INDENT,

 "yes");

s2x.setOutputFormat(props);

s2x.serialize(xmlTree);

} catch (IOException ioExc) {

}

}
}
Notice that the URIResovler is used in the statements:

tFactory.setURIResolver(new ClassPathURIResolver());

Transformer transformer =

tFactory.newTransformer(tFactory.getURIResolver().

resolve(XSL_FILE, null));
First, the ClassPathURIResolver is assigned to the transformer factory. This guarantees that any <xsl:include/> or <xsl:import/> elements found in the XSL file will be obtained using the ClassPathURIResovler. Then, the ClassPathURIResolver is used to get the Stream for the timesheet2.xsl file. Using the ClassPathURIResolver helps to ensure that using XSL does not in anyway make the war file non-portable.

Test and Debug

In order to more easily test the TimeSheetXSLServlet.java, a simple index.html file can be created. This HTML file will resemble figure when shown in the browser.

[image: image29.png]
Figure 15.29 Index.html

Using this index.html file will allow us to test the dynamic nature of our servlet, XML, and XSL more easily. This index.html file should be placed in the XMLXSL Example project in the WebContent folder. The source for the index.html follows.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>index.html</TITLE>
</HEAD>
<BODY>
<P>Test the XMLXSL Example

</P>
<FORM action="/XMLXSLExample/TimeSheetXSLServlet"

name="XMLXSLTransformer" target="_blank">
Show Details?

<INPUT type="checkbox" name="showDetails" checked="true">

Transform?

<INPUT type="checkbox" name="transform" checked="true">

<INPUT type="submit" name="Submit" value="Submit">
</FORM>
</BODY>
</HTML>
In order to test your work, simply run the index.html on a WebSphere version 5 test environment server. Select the index.html file and then from the context menu, select “Run on Server”.

When to Use XML/XSL for Web Interfaces

At this point you might be thinking, “I have JSPs, why would I want to use XML and XSL”? JSPs are indeed an effective way to develop dynamic HTML interfaces and with the addition of taglibs, a JSP can be crafted to keep the view code separated from the controller code. However, in many cases XML and XSL is a better choice for creating web interfaces.

One of the first arguments usually leveled against using XML and XSL is performance. As in any endeavor, performance measurements vary with the application. However, in our tests, we have seen that an XML and XSL interface doing the same function, as a JSP interface has been very comparable to JSP. In fact, using the built in caching provided by XSL transformers such as Xalan to cache the XSL document; we have seen that XML and XSL interfaces perform as well if not better than JSP interfaces. Additionally, Xalan provides a way to compile the XSL into Java using its “translet” technology to achieve even faster interfaces.

At development time, a JSP can be very cumbersome since it has to be continually re-compiled before testing the latest change. On the contrary, XSL is interpreted so a change to XSL is realized on the next HTTP request. Another development-time advantage is that XSL contains no Java code. XSL provides a way to create dynamic web interfaces that completely separates Java based controller code from view based XSL instructions. JSPs, even with the use of taglibs, often ends up including scriptlets, which are Java code. This means that a Java developer is needed to maintain the JSP pages. With XSL, all that is needed to develop the actual web interface is a sample XML document and an XSL transformer. Being able to develop the web interface using only a sample XML document is a key point. It means that the web interface developer does not have to know Java, does not have to have a database connection, and does not even have to have an application server handy in order to be productive. Additionally, due to the fact that the Java code in the XMLGenerator is focused on generating XML, the XML can be used for other purposes later in the lifetime of the application. For instance, if the application needed to work on a PDA, a different set of XSL files could be used to render smaller, more concise output. If the application needed to be called as a SOAP service, the generated XML could be used as part of the SOAP envelope.

There are several frameworks, which can be used in conjunction with the techniques described in this chapter. One such framework, Struts for transforming XML with XSL (stxx) is an extension of the struts framework to support XML and XSL without changing the functionality of struts. Stxx supports Struts 1.0 and 1.1. You can read more about stxx at http://stxx.sourceforge.net/.
Summary

In this chapter we have covered the basics of XSL, Java and XSL Transformations and how to use XSL in WSAD. XML and XSL can be used to build robust web interfaces that can be easily repurposed.

4

