


Persistence Frameworks – JDO Simplifies 
the “Buy versus Build” Decision 

Introduction 
 
Organizations that leverage object oriented languages like Java often face the object-
relational impedance problems inherent of working in an elegant object-oriented manner 
while having to store persistent information in the rows and columns structure of a 
relational database.  To solve this issue, developers in such organizations face a decision 
between internally developing the persistence framework or licensing persistence 
middleware software from a third-party vendor.  This “buy vs. build” decision typically 
incorporates factors that are easy to quantify like total cost of ownership (TCO), initial 
start-up effort, opportunity costs, and protection from vendor lock-in, as well as factors 
that are impossible to quantify like strategic direction.  This decision becomes even more 
challenging because either answer can achieve the desired goal of persisting information 
into a relational database. 
 
In the past, the available “buy” options included proprietary object relational mapping 
software and solutions that employed entity beans.  Proprietary object-relational mapping 
solutions often came with problems of vendor lock-in and poor support whereas entity 
beans were complex to code and created performance bottlenecks.  Both solutions were 
expensive and risky to implement making the “buy vs. build” decision difficult. 
 
The Java Data Objects (JDO) standard dramatically changes the dynamics of the “buy vs. 
build” decision for persistence by providing a clear and simple winner to this problem.  
Traditional compelling reasons to buy transparent persistent middleware from a JDO 
vendor include: 

• Faster time-to-market. 
• Focus limited resources on core competencies, not infrastructure coding, 

especially in current environments where availability of corporate resources are 
limited. 

• Ongoing cost savings in maintenance (traditionally, companies underestimate 
maintenance of internally developed solutions). 

• Higher reliability through rigorous commercial testing necessary to sell into 
thousands of organizations. 

• Greater level of integration with third-party technologies. 
• Faster innovation with new features required by not just one client but many 

clients. 
• Access to third party consultants and professional training. 
 

Mature vendors supporting the JDO standard, like SolarMetric, offer additional benefits: 
• Portability across data stores, not just the ones currently being used by the 

stakeholders of the “build” project. 

 SolarMetric Confidential 
 Page 1 of 10 



• No vendor lock-in, common among proprietary solutions 
• Simple API designed for ease-of-use and power with the JDO developer in mind, 

and not for the engineer of the implementation. This is in contrast to proprietary 
solutions and internal projects, which are often designed to get the persistence 
framework out the door rather than to be as simple and intuitive as possible for 
the end user. 

 
Unless you are gaining a strategic competitive advantage by building your own solution 
(which is difficult to achieve in low level technology like data access middleware) or you 
can not fulfill your business requirements with existing tools like Kodo JDO (which is 
unlikely due to the extensibility of Kodo JDO), experts indicate that you should not 
endeavor to build your own persistence product. 
 
This white paper explores the key financial reasons impacting the buy vs. build decision.  
We examine both building from scratch and building upon existing open source 
solutions.  By focusing on shareholder value through the calculation of Return on 
Investment (ROI), this white paper attempts to deliver a quantitative framework to assist 
with the buy vs. build decision.  By examining total cost of ownership (TCO) and risk, 
the white paper comes to the conclusion that most organizations cannot justify the cost of 
maintaining an internally developed persistence solution, let alone actually developing 
such a solution when mature JDO alternatives are available.  Kodo JDO offers a lower 
TCO, greater functional capabilities, reduced risk and therefore higher ROI. 
 

Return on Investment (ROI) – The Ultimate Financial 
Measurement 
 
There are a number of ways to perform an ROI analysis, from Net Present Value 
calculations to payback.  In this white paper, we only examine the factors that go into 
calculating an ROI.  Regardless of how your organization prefers to handle its ROI 
analysis, the factors used to determine ROI of a buy vs. build persistence decision are the 
same: 

• Risk 
• Application Functionality 
• Total Cost of Ownership (TCO) 

Risk 
 
An over-arching factor in determining ROI is Risk.  Internal persistence projects are 
fraught with risks of both a business and technical nature that can result in cost overruns, 
project delays, and unanticipated development and maintenance, all negatively affecting 
ROI. 
 
Inflexible Architecture and Limited Portability 
 

 SolarMetric Confidential 
 Page 2 of 10 



Although the promise of internally developed persistence solutions is a solution that is 
specifically designed and developed for the particular technology problem, this is rarely 
the case.  Often the design of internally developed solutions only takes into account the 
current problems that are faced by the organization.  Even if the persistence project is 
designed appropriately, aggressive deadlines cause the development team to typically 
focus on solving current problems first. 
 
For example, a persistence solution developed for Oracle 8i may need large amounts of 
maintenance work when the organization upgrades to Oracle 9i, and even more work 
when the organization moves to Sybase as its primary database.  Imagine the integration 
challenges after acquiring a company that doesn’t use Oracle but rather IBM DB2 and 
SQL Server 2000.  An internally developed solution locks the organization into the 
design and development constraints that are usually associated with current business 
needs, not a holistic view of current and future requirements. 
 
To meet the needs of a wide customer base, Kodo JDO must support as wide a range of 
data stores as possible (See the Supported Databases and Application Servers Section).  
In addition, by providing source code for its database dictionaries, Kodo JDO can easily 
be extended to access the most esoteric relational databases. Kodo JDO can even use 
legacy data stores in conjunction with relational databases.  
 
Mature JDO vendors like SolarMetric offer solutions that are highly extensible, making it 
easy to extend the persistence framework. 
 
Poor Alignment with Future Needs 
 
Although seemingly well suited to meet current needs, internally developed applications 
often fail to address future needs.  Performance and scalability are often compromised 
because of uncertain future needs. Additionally, internally developed solutions often 
make significant constraints on standard object-oriented concepts such as polymorphism 
or encapsulation, placing undue restrictions on the design and architecture of object-
oriented projects. 
 
Open source projects are typically no more aligned to the business needs than a packaged 
solution. 
 
Based on the Java Data Objects (JDO) standard, Kodo JDO benefits from a specification 
team represented by a diverse cross section of industry.  This team makes enhanced 
design decisions compared to individual companies or development groups.   
 
On top of the 3 years (and continuing) of effort into the specification, JDO solutions are 
designed and specified by professional product managers that gather technical and 
business requirements from a broad customer base.  Organizations that develop solutions 
internally derive no benefit from this requirements gathering process or the past 
experiences and practices of other companies.  Although internally designed applications 

 SolarMetric Confidential 
 Page 3 of 10 



are intended to be well-aligned to the organization’s needs, such applications often fall 
short and do not account for future needs. 
 
To remain competitive, SolarMetric must remain on the cutting edge of evolving 
technologies and business needs, and can do so in part through its large customer base 
and user community.  As a consequence, SolarMetric is in a far better position to 
anticipate and, consequently, prepare for future market needs.  SolarMetric’s Kodo JDO 
is designed to scale and perform for the largest enterprise customers and offer standards-
based, market-proven architectures and data models. 
 
Unchallenged by Competitive and Commercial Demands 
 
Internally developed solutions rarely have to face competition from external solutions.  
Safely nestled within an organization, political pressures and personal biases affect fact-
based decisions.  Often, organizations have to live with technology limitations for 
extended periods of time that would not be acceptable in the commercial marketplace.  
The result is often an internal vendor lock-in that can be more costly than external vendor 
lock-in. 
 
Competition and commercial demands drive product improvements, performance 
enhancements and innovation.  The market determines the winners and losers based on 
technical functionality.  If a JDO vendor does not provide superior support, powerful 
functionality, and innovation, their product can be easily replaced by another JDO 
compliant vendor.   
 
Unlike open source solutions, SolarMetric’s Kodo JDO has to meet commercial 
documentation and support requirements.  As a result, developers using Kodo JDO to 
handle their organization’s persistence requirements aren’t digging through source code 
but rather leveraging Kodo JDO’s documentation and highly responsive support system 
to quickly get answers. 
 
Risk of Developer Turnover 
 
In general, internally developed solutions do not have the documentation that is common 
among packaged solutions.  As a result, there is tremendous risk that an internally 
developed solution will become obsolete should the inevitable turnover occur among the 
developers of the solution.  In such situations, proper documentation initially or ongoing 
maintenance are both extremely expensive. 
 
Even internally developed solutions that are based on an open source product become 
"one offs" if their changes are not incorporated into the core build of the open source 
project.  In time this internally developed software turns into a proprietary, unmaintained 
application. This can be avoided by ensuring that the open source project remains aligned 
with an  organization’s business needs, but doing so requires committing significant 
resources to the open source project. 
  

 SolarMetric Confidential 
 Page 4 of 10 



As a vendor whose purpose is to maintain Kodo JDO, SolarMetric offers professional 
training courses, prompt technical support, and commercial grade documentation to 
ensure that transition among developers is easy.  In addition, consulting organizations 
have familiarity with the JDO specification and the Kodo JDO implementation.  Five 
books are scheduled for publication from 2002 through early 2003 on JDO.  The 
resources of an accepted standard and an organization committed to its product greatly 
reduce the risks of turnover among the development staff. 
 

Application Functionality 
 
Another factor affecting ROI is application functionality.  In the buy versus build 
decision, Kodo JDO must meet the functionality requirements of the developer.  Kodo 
JDO benchmarks favorably against all competing technology on a functionality level.   
 
Support for the Final Version of the Java Data Objects Standard 
 
Kodo JDO is a robust implementation of the Java Data Objects specification that not only 
meets the requirements of the specification’s Technology Compatibility Kit, but also 
supports almost all of the optional features in the JDO specification. 
 
SolarMetric also helps shape the direction of future versions of the specification by 
participating on Sun Microsystems’ Java Community Process JDO expert team.  In 
addition, SolarMetric helps market the standard as a charter member of JDOcentral and at 
a grassroots level by presenting at Java User Groups around the world. 
 
Over the first eighteen months that Kodo JDO has been available, it has been downloaded 
over 18,000 times and is used by customers throughout the world and in all industries.  
SolarMetric makes it a point to continue to innovate ensuring Kodo JDO is the best 
performing data access tool available. 
 
Full Life Cycle of Object Persistence 
 
With Kodo JDO, SolarMetric offers the full life cycle of object relational mapping tools. 
 
Kodo JDO’s reverse engineering schema tool creates persistent class definitions, 
metadata, and mapping extensions from an existing schema.  This provides value when in 
the common situation of working with existing database structures. 
 
In addition, Kodo JDO offers its Schema Tool for taking a class and creating the 
corresponding database schema. Thus, with Kodo JDO, it is possible to round-trip 
schema modifications to and from the data store.  Finally, Kodo JDO permits schema 
evolution over the life cycle of a project, meaning that you can add or remove fields in 
your business objects, and automatically propagate the necessary changes to your 
database without doing any export or import of data already in your database. 
 

 SolarMetric Confidential 
 Page 5 of 10 



Performance Pack 
 
In Kodo JDO, SolarMetric has focused on developing a high performance JDO 
implementation. The achievement of this goal can be seen in several ways. 
 
Kodo JDO offers a high-performance cache that dramatically enhances performance over 
standalone JDO by 20 – 40 times.  This cache can be used in a standalone configuration 
or across a distributed cluster of machines. The cache results in the greatest performance 
gains in applications that frequently access the same data – a common pattern in many 
server-based applications 
 
When used with a JDBC 2.0 driver, Kodo JDO uses batched statements when possible. 
This can lead to quite significant performance enhancements when performing many 
repetitive operations, such as creating or deleting many new objects. A future version of 
Kodo JDO will include the capability to dynamically re-order SQL to maximize the 
amount of batching possible.  
 
Extensive internal performance testing projects help us keep a close eye on the scalability 
of Kodo JDO, both in multi-threaded environments and with long-lived systems. 
Scalability is a critical issue when deploying an enterprise solution. 
 
Developer Friendly 
 
Kodo JDO is considered to be the most developer friendly JDO implementation 
available.  This manifests itself in a number of ways but most predominantly: 
 

• Kodo JDO is highly extensible.  A number of Kodo JDO’s subsystems are 
configurable and pluggable via publicly available and documented APIs. 
Examples include our performance cache component, database sequence 
generation, SQL generation control to support particular dialects of SQL, and 
subclassing of our PersistenceManager implementation. Other components can be 
easily customized upon request. Examples include support for non-relational 
databases, particular sets of stored procedures, and transparent recognition of 
custom implementations of the Collections interfaces. 

• SolarMetric open-sourced its standards-based byte code enhancement tool (serp 
on Source Forge).  This allows organizations evaluating Kodo JDO to see exactly 
how the byte code is being manipulated. 

• Kodo JDO also provides source code for selected utilities, allowing users to 
quickly debug problems they might have and extend Kodo JDO more easily. 

• SolarMetric offers pre-sales technical support for developers evaluating Kodo 
JDO.  SolarMetric also requires that every member of its technical staff (from 
engineering management to summer interns) participate in some technical support 
activities on a weekly basis.  For these reasons, SolarMetric has some of the best 
technical support in the software industry. 

• SolarMetric believes very strongly in not creating another GUI tool that 
developers have to learn and deal with but rather make sure that Kodo works well 

 SolarMetric Confidential 
 Page 6 of 10 



with the tools that developers currently use.  Tight Apache Ant integration makes 
it possible to support any IDE that supports Ant.  In addition, a seamless high-
level integration has been completed with JBuilder with additional high-level 
integrations planned for other popular IDEs. 

• JDOQL extensions are supported.  This means that it is possible to execute 
custom SQL that may not have an analogy in JDOQL. Additionally, we provide 
default extensions to do things like searching for a substring anywhere inside a 
string (JDOQL only supports String.startsWith() and String.endsWith()) and case-
insensitive querying. 

• SolarMetric publishes its bug tracking database.  Unlike traditional software 
companies, SolarMetric recognizes that bugs will crop up.  As a result, 
SolarMetric feels it is important to provide developers with a resource to identify 
bugs, manage the bugs identifies, and help guide product rollouts by voting on  
enhancements. 

 
Supported Databases and Application Servers 
 
Kodo JDO supports a wide variety of databases (both commercially available and open 
source databases): 
 

• Oracle 
• IBM DB2 
• Microsoft SQL Server 2000  
• MySQL 
• PostgreSQL 
• Sybase Adaptive Server Enterprise 
• Cloudscape 
• Hypersonic Database Engine 
• InstantDB 
• Pointbase 

 
SolarMetric provides source code for its DB dictionaries, thereby making it very easy for 
our customers to support any special databases that they may use.  For example, 
customers are using Kodo JDO with Oracle Lite, Microsoft Access, and SAPDB. 
 
In addition Kodo JDO supports the major application servers: 
 

• BEA WebLogic Server 
• IBM WebSphere Application Server 
• JBoss 

 
Kodo JDO can be integrated with any application server that supports the Java Connector 
Architecture. 
 

 SolarMetric Confidential 
 Page 7 of 10 



Total Cost of Ownership (TCO) 
 
When looking at TCO, one must look at the initial project development costs and 
ongoing maintenance costs as well as opportunity costs of skilled developers focusing on 
what is likely not a core aspect of the organization’s business. 
 
Initial Project Development 
 
Kodo provides a 20-40 % time savings in the total coding effort of an enterprise 
application.  Additionally, Kodo reduces the size of the code base, improving code 
quality.  Planning, developing, and implementing an internally developed proprietary 
system is a limited, more expensive option.  Again, the smaller group or individual does 
not benefit from the resources of the standards body specification team or our user 
community. 
 
Ongoing Maintenance and Future Planning 
 
Often, internally developed products focus on immediate problems and do not 
take into consideration the future needs of the organization.  Six months or 
3 years from now when upgrades or enhancements to the internally developed 
product are necessary, the software often needs to be completely redesigned, and the 
original development staff will likely no longer be available.  The initial effort to 
implement the old system is often repeated. 
 
Again, aside from specification improvements made by the JDO standards body, a 
maintained product like Kodo takes into consideration the feedback of tens of thousands 
of users in our community.  The feedback is invaluable when planning new 
enhancements such as performance capabilities, improved customizability, and 
documentation and error message improvements. 
 
Opportunity Cost 
 
Typically, organizations leverage their most skilled and experienced developers to 
internally create a persistence framework.  The complexity of writing such a framework 
and the high importance of getting it right requires that the developers be skilled to 
ensure that future projects based on the persistence mechanism work as prescribed.  
Unless extremely well documented, the ongoing maintenance will typically be done by 
the same skilled developers who wrote the persistence framework.   
 
The cost of having the high-powered developers focusing on low-level persistence costs 
the organization in lost opportunities to develop true business applications.  Does the 
benefit justify the cost especially when mature JDO implementations are available today?  
Unlikely. 
 
Advanced Features 
 

 SolarMetric Confidential 
 Page 8 of 10 



Internally developed persistence solutions often stagnate once they become ‘good 
enough’. That is, once a solution can more-or-less persist data into a database, the 
developers involved in the project often get moved on to other projects. SolarMetric, on 
the other hand, has a full-time research and development staff working on designing and 
implementing innovative new features. 
 
Recent research projects that have made an appearance in production versions of Kodo 
JDO include our distributed caching functionality, the capability to automatically 
generate Java files and JDO metadata from an existing schema, flexible inheritance 
mapping capabilities, and SQL statement batching. 
 
As a result of our performance-focused research efforts, systems using Kodo JDO often 
operate considerably faster than comparable systems using hand-coded SQL. We have 
accomplished this by developing algorithms that optimize common database hot spots to 
transparently accelerate data access and manipulation.  
 
It is important to consider these advanced features when calculating the final TCO. 
Sticking with an existing product that is in maintenance mode will make it impossible to 
realize the benefits that an innovative solution can offer, both today and in the future. 
 
Cost 
 
The cost of simply maintaining an internally developed persistence framework is, very 
conservatively, 2 days per month or approximately 5 weeks per year for a persistence 
team.  An average salary for an inexperienced developer fully loaded is approximately 
$100,000 per year.  Simply maintaining an internally developed persistence framework 
costs approximately (for a team of 5 developers) $50,000 per year.  Customers using 
Kodo JDO as their persistence framework indicate that maintenance is driven to almost 
zero even when porting from one backend database to another.  Kodo licensing costs are 
a fractional portion of the long-term internal resource requirement for maintenance. 
 

Conclusion 
 
ROI analysis can play a critical role in helping to see the benefits of SolarMetric’s Kodo 
JDO, especially when compared to internally developing from scratch or from an open 
source starting point.  This is the case whether using EJBs Bean Managed Persistence / 
Container Managed Persistence, Session Beans, JSPs, Java Objects or other JDBC / SQL 
options. 
 
SolarMetric’s Kodo JDO provides valuable functionality while reducing the risks of 
internal development, at a price point that is far less than an internally developed 
solution.  Battle-tested by supporting the JDO standard and proven commercially by tens 
of thousands of members of our user and customer community, Kodo JDO is a robust and 
mature implementation of the JDO standard and a valuable product for persisting data to 

 SolarMetric Confidential 
 Page 9 of 10 



 SolarMetric Confidential 
 Page 10 of 10 

data stores.  Kodo is based on over 50 man-years of development effort and challenged 
everyday by competitors and customers alike. 
 
The persistence buy vs. build decision has been transformed by the Java Data Objects 
specification.  Organizations who are currently maintaining internally developed 
persistence frameworks should do an apples to apples comparison of functionality, 
performance and costs.  Organizations who openly consider Kodo JDO will be hard 
pressed to justify continuing to maintain their own persistence solutions.  Organizations 
considering internal development efforts clearly need to evaluate Kodo JDO.   
 
Given the risks of internally developed persistence frameworks, the high costs of 
maintenance and internal development, and reduced robustness and functionality 
available when building internally, Kodo JDO provides a viable and high-ROI 
alternative.  In recent customer ROI studies, Kodo JDO provided first year returns of 
300% - 600% in enterprise application development situations.  
 
To get started, you can download a complete and free evaluation of Kodo JDO at 
http://www.solarmetric.com/Software/Evaluate/. 
 
Interested in learning more about Kodo JDO?  Contact SolarMetric’s Sales Department at 
202-595-2064 x2 or sales@solarmetric.com. 

http://www.solarmetric.com/Software/Evaluate/
mailto:sales@solarmetric.com

	SolarMetric_Kodo_JDO_Buy_vs_Build_20021123.pdf
	Persistence Frameworks – JDO Simplifies the “Buy 
	Introduction
	Return on Investment \(ROI\) – The Ultimate Fi�
	Risk
	Inflexible Architecture and Limited Portability
	Poor Alignment with Future Needs
	Unchallenged by Competitive and Commercial Demands
	Risk of Developer Turnover

	Application Functionality
	Support for the Final Version of the Java Data Objects Standard
	Full Life Cycle of Object Persistence
	Performance Pack
	Supported Databases and Application Servers

	Total Cost of Ownership (TCO)
	Opportunity Cost
	Advanced Features

	Conclusion

	SolarMetric Kodo JDO Buy vs Build 20030127.pdf
	Persistence Frameworks – JDO Simplifies the “Buy 
	Introduction
	Return on Investment \(ROI\) – The Ultimate Fi�
	Risk
	Inflexible Architecture and Limited Portability
	Poor Alignment with Future Needs
	Unchallenged by Competitive and Commercial Demands
	Risk of Developer Turnover

	Application Functionality
	Support for the Final Version of the Java Data Objects Standard
	Full Life Cycle of Object Persistence
	Performance Pack
	Supported Databases and Application Servers

	Total Cost of Ownership (TCO)
	Opportunity Cost
	Advanced Features

	Conclusion

	SolarMetric Kodo JDO Buy vs Build 20030127.pdf
	Persistence Frameworks – JDO Simplifies the “Buy 
	Introduction
	Return on Investment \(ROI\) – The Ultimate Fi�
	Risk
	Inflexible Architecture and Limited Portability
	Poor Alignment with Future Needs
	Unchallenged by Competitive and Commercial Demands
	Risk of Developer Turnover

	Application Functionality
	Support for the Final Version of the Java Data Objects Standard
	Full Life Cycle of Object Persistence
	Performance Pack
	Supported Databases and Application Servers

	Total Cost of Ownership (TCO)
	Opportunity Cost
	Advanced Features

	Conclusion


	Title: Kodo JDO
	SubTitle1: An ROI Analysis Framework
	Date: January 2003


