
14 www.javapro.com | Java Pro JULY 2002

COVER STORY

ava developers use serialization,
JDBC, or EJB Container Managed
Persistence (CMP) for the persis-
tence of the data in their programs,
but each of these commonly used per-

sistence mechanisms has some drawbacks (see
sidebar “Limitations of Current Persistence Mecha-
nisms”). Now, however, the Java Data Objects (JDO)
API defined in the Java Community Process (JCP) pro-
vides transparent persistence of Java object models in transactional
datastores (see sidebar “The JDO Story” online at www.javapro.com). JDO has been
adopted by the JCP and became a Java standard on March 26, 2002. Among other benefits
JDO provides, instances of Java classes are directly persisted and the application does not
have to handle any other data model, and JDO’s architecture integrates well into EJB
application servers and provides needed portability in such environments. JDO also
provides transaction and query support, and binary compatibility is provided across all
implementations. Implementations are planned for all object and relational
databases, providing a high level of application portability. JDO provides a
query language called JDOQL, which is a required component of these
JDO implementations. Let’s see how it works.

 JDOQL consists of an API to issue queries
and a query language in which Boolean

filters are expressed. JDOQL pro-
vides a high degree of insulation
from the underlying database
architecture, which may support

a relational query language like
SQL, an object database query

language such as Object Data Man-
agement Group’s (ODMG) OQL, or

simply be a set of library calls on which
JDOQL is implemented.

J
by David Jordan

The Java Data Objects API and its query language
overcome the deficiencies of other commonly used
persistence mechanisms

JDOQL:
The JDO Query Language

Go Online
Visit www.javapro.com for related
resources. Simply type the
Locator+ code into the field in the
upper-right corner of the page.

Download __________
JP0207 Download all the code
for this issue.

JP0207DJ Download the code
for this article separately.

JP0207DJ_S Download a
sidebar entitled “The JDO
Story” that gives a few facts
about JDO as well as provides
additional links for more info.

Discuss ___________
JPTalk Discuss this article in the
“Talk to the Editors of Java Pro
Magazine” discussion forum.

Read More _________
JP0207DJ_T Read this article
online.

15Java Pro JULY 2002 | www.javapro.com

COVER STORYJDOQL

JDO defines an interface called Query in
package javax.jdo. In JDO, the primary
interface an application uses to operate on
instances in a transaction context is defined
by the interface PersistenceManager, which
includes methods to construct instances of
Query. An application may construct and
use multiple Query instances within the
context of a particular PersistenceManager.

Components of a Query
Evaluating a query in JDOQL involves
applying a Boolean filter to a collection of
candidate instances and returning all candi-
date instances for which the filter evaluates
to true. Scoping the names used in the query
filter is necessary, so applications must specify
the class of the candidate instances. All
candidate instances must be of this class or

a subclass. The collection of candidate in-
stances passed to the query must either be a
java.util.Collection or an Extent (defined in
package javax.jdo). JDO defines the Extent
interface; it represents all the instances of a
particular class (and optionally its subclasses)
in the database. The JDO interface
PersistenceManager has the method
getExtent(), which is used to get an Extent
for a class. The Boolean filter is specified
with a String that contains a JDOQL bool-
ean query expression. If the filter is not
specified, then the filter defaults to true,
causing all the candidate instances to be in
the query result.

The PersistenceManager interface has a
set of methods called newQuery(), which
allows you to create a Query instance from
one or more of these query components:

Query newQuery();

Query newQuery(Class cls);

Query newQuery(Class cls,

 Collection c);

Query newQuery(Class cls,

 String filter);

Query newQuery(Class cls,

 Collection c,

 String filter);

Query newQuery(Extent e);

Query newQuery(Extent e,

 String filter);

In addition to specifying query compo-
nents in the construction of a Query in-
stance, the Query interface also provides
these methods:

void setClass(

 Class candidateClass);

void setCandidates(

 Collection candidates);

void setCandidates(

 Extent candidates);

void setFilter(String filter);

A query can also have parameters. You
would pass a parameter into a query to
provide a value at run time used in a query
constraint. The Query interface has the
method declareParameters(), which is
passed a String containing one or more
parameter declarations separated with com-
mas. A parameter declaration in JDOQL
uses the same syntax as formal method
parameters in Java, which consists of a type
name and parameter name. For example,
using the application schema provided in
Listing 1, you may want to declare param-

Limitations of Current Persistence Mechanisms

he commonly used persistence mechanisms—serialization, JDBC, or EJB Container

Managed Persistence (CMP)—all have disadvantages. These include:

•Serialization provides a tight integration with the Java language (allowing object

models to be easily persisted), but it lacks support for robust database capabilities

like transactions and queries.

• JDBC provides an interface between Java programs and SQL. It uses the SQL data

model, which consists of rows and columns, but it does not provide support of storing

Java object models. Although JDBC does provide database capabilities like transac-

tions and queries, applications really communicate with a specific SQL implementa-

tion, and incompatibilities among SQL implementations can result in a loss of

application portability.

•Developers use EJB so that they can leverage CMP’s capability of allowing a more

object-oriented model of their data than can be attained using JDBC. But EJB

assumes a distributed model of computation, imposing performance degradations

when one has objects of fine granularity.

// Assume methods defined for these
// classes as well.
public class Address {
private String street;
private String city;
private String state;
private String zipcode;

}

public class Department {
private long deptid;
private String name;
private HashSet employees;//element:Employee
private HashSet projects;//element:Project

}

public class Employee {
private long empid;
private String firstname;
private String lastname;
private Address address;
private Date birthdate;
private Date hiredate;
private float salary;
private Department department;
private Employee manager;
private HashSet projects;//element:Project

}

public class Project {
private String name;
private BigDecimal budget;
private HashSet members;//element:Employee

}

Here is the data model of classes shown in the example.

Listing 1 Company Data

T

16 www.javapro.com | Java Pro JULY 2002

COVER STORY JDOQL

Figure 1 | Viewing Relationships Here is a visual representation of the example schema.

department

* employees *
*

1

1

*
members

projects

projects

address

Department

Employee

Address

Project
1

manager

Description JDOQL operator ANSI SQL operator

Equals == ==

Not equal != <>

Greater than > >

Greater than or equal >= >=

Less than < <

Less than or equal <= <=

Boolean logical AND & AND

Conditional AND && AND

Boolean logical OR | OR

Conditional OR || OR

Logical complement ! NOT

Integral unary bitwise complement ~ (-expr) - 1

String concatenation + ||

Binary or unary addition + +

Binary subtraction or numeric sign inversion - -

Multiplication * *

Division / /

Table 1 | Equivalent Operators Here are the JDOQL operators and ANSI SQL equivalents.

eters to be used to constrain a person’s
name and birthdate:

query.declareParameters(

"String lname, Date bdate");

Each parameter must be bound to a value
when the query is executed. A value for a
parameter is specified by a Java Object,

which may be a simple wrapper type (for
example, Float) or a more complex object
type. Because a parameter is likely to have
a different type than the class of the candi-
date instances, the types of the parameters
need to be declared to avoid ambiguity.

It is necessary to import classes other than
the candidate class. Import statements can be
specified by calling the Query method

declareImports(), which is passed a String
containing semicolon-separated import state-
ments (using the same syntax as the Java
language import statement). For example:

query.declareImports(

"import Project;" +"import

Employee");

A query has two namespaces. Type names
live in one namespace; fields, variables, and
parameters share another namespace. When
a type is used, it must either be the name of
the candidate class, the name of a class or
interface imported by declareImports(), or a
class or interface from the same package as
the candidate class.

A JDOQL query can also have vari-
ables that are bound to values during the
execution of the query. In particular,
when a query filter involves iteration
through a collection, a variable is used in
conjunction with the contains() method
to reference a collection element (more
on this later). The name and type of each
variable must be declared. The Query
method declareVariables() can be called,
passing a String that contains one or
more variable declarations. They are sepa-
rated by semicolons, using the same syn-
tax as Java local variables. You may ex-
ecute a query that uses the Department
class for the candidate collection, but
you can also navigate to Employee and
Project instances to specify some query
constraints (see Figure 1). You would
need to declare variables like this:

query.declareVariables(

"Employee emp; Project proj");

As you can see, JDOQL uses Java syntax
conventions wherever possible.

Lastly, the order of the result set of a
query can be specified. An ordering speci-
fication is a String that contains a list of
comma-separated expressions, each with
an ascending/descending indicator. This
list of expressions is evaluated in sequence:
Result instances are ordered according to
the first expression, followed by the second
expression (if it exists), followed by the
third, and so on. This is the same behavior
as the order by clause in SQL. The Query
method setOrdering() is used to specify
the ordering specification.

18 www.javapro.com | Java Pro JULY 2002

COVER STORY JDOQL

For example, if you want to have a
query result of employees that are ordered
based on their city, followed by their salary
from highest to lowest, this ordering speci-
fication could be used:

query.setOrdering(

"address.city ascending," +

"salary descending");

Filter Specification
The query filter is a Boolean expression
used to determine whether an instance in
the candidate collection should be a mem-
ber of the result. A candidate instance is
returned in the result if it is assignment
compatible with the candidate class of the

is ignored. One can build up expressions
nested to arbitrary depths by using operator
composition.

Table 2 indicates which data types are
supported for each operator. The opera-
tors apply to all types as they are defined in
Java, except that String concatenation is
supported only with String operands. The
use of these operators is similar to their use
in Java, but there are a few exceptions. One
difference between Java and JDOQL is
that in JDOQL it is valid to have equality
and comparison operations between primi-
tives (such as int, float) and instances of
wrapper classes (such as Integer, Float).
Equality, comparison, and arithmetic op-
erations on object-valued fields of wrapper
types (such as Integer and Long) and the
numeric types (BigDecimal and BigInteger)
use the wrapped values for comparisons.
Numeric operands are promoted for com-
parisons. This allows a byte to be com-
pared with a BigDecimal, to provide an
extreme example. Use of the comparison
operators on Strings is also supported. In
JDOQL using the equality and compari-
son operators on two Date operands is
possible—a capability not available in Java.

Equality of object-valued types depends
on whether the type has been declared as a
PersistenceCapable type in the JDO envi-
ronment. Classes that will have instances
stored in the database are enhanced to
implement interface PersistenceCapable.
Two instances of a PersistenceCapable type
will be equal if they have the same JDO
identity; in other words, if they refer to the
same instance in the database. If equality
is evaluated on instances of a non-
PersistenceCapable type, the equals()
method defined for the type is used.

Two String methods, startsWith() and
endsWith(), are supported to perform wild
card queries. The expression:

lastname.startsWith("Jo")

finds all employees whose name starts with
“Jo”, as in Jones, Johnson, and Joyner. JDO
does not define any semantics associated with
the String argument to these methods; spe-
cial wild card characters are not specified.

Even though a JDOQL query evaluates a
collection of instances of a single class, it is
possible to navigate to related objects and
apply additional query constraints. You can

JDOQL operator Supported types

== byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger Boolean, boolean, Date,
any class instance or array

!= byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger Boolean, boolean, Date,
any class instance or array

> byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger, Date, String

>= byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger, Date, String

< byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger, Date, String

<= byte, short, int, long, char, Byte, Short, Integer, Long, Character
float, double, Float, Double, BigDecimal, BigInteger, Date, String

& Boolean, boolean

&& Boolean, boolean

| Boolean, boolean

|| Boolean, boolean

! Boolean, boolean

~ byte, short, int, long, char, Byte, Short, Integer, Long, Character

+ String

+ byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger

- byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger

* byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger

/ byte, short, int, long, char, Byte, Short, Integer, Long, Character float,
double, Float, Double, BigDecimal, BigInteger

Table 2 | Good Support Here are the supported types for JDOQL operators.

Query, and if for all variables there exists
a value for which the filter expression
evaluates to true.

Table 1 lists the JDOQL query operators
and their ANSI SQL equivalents. The map-
ping analysis work comparing JDOQL and
SQL is provided courtesy of Michael Bouschen
of Tech@Spree, a member of the JDO expert
group. As you can see, the Boolean operators
AND, OR, and NOT can be used to build up
logical expressions of arbitrary complexity.
Equality, comparison, and arithmetic opera-
tors are also supported. JDOQL is a left-
associative language—operands are bound to
operators in a left-to-right fashion. Parenthe-
ses can be used to explicitly mark operator
precedence. White space is a separator and

20 www.javapro.com | Java Pro JULY 2002

COVER STORY JDOQL

navigate through a reference by using the “.”
operator, using standard Java syntax. The “.”
operator can also be applied repeatedly in one
expression (manager.manager.address.street)
to navigate through multiple references in
the model. Navigation through a null-valued
field would throw a NullPointerException in
Java. In JDOQL it is treated as if the filter
expression evaluated to false for the current
set of variable values.

If you have a collection in the model,
the Boolean method isEmpty() can be called
to determine if it contains any elements.
The expression:

members.isEmpty()

on Project instances determines whether a
project has any members assigned to it.

Navigating through a collection in the
model is also possible. A variable is used to
reference the current element of iteration
in the collection, so declaring a variable for
each collection that will be used in the
query is necessary. The method contains()
should be used in the query, with the
variable passed to the method. This con-
tains() method is really simply syntax that
is used to associate the variable with each
element in the collection. The contains()
method returns true if the collection is
non-null and contains at least one ele-
ment. The contains() method must be
used as the left operand of an AND ex-
pression, with the variable used in an
expression in the right operand of the
AND expression. In this example filter,
the candidate class is Department and
declareVariables() needs to have declared
emp and proj:

// This code assumes pm references a
// PersistenceManager and there is an active
// Transaction context

// assume this is initialized
PersistenceManager pm;

String filter =
"address.state == state && " +
"salary >= sal && " +
"department.name.startsWith(deptName) && " +
"projects.contains(proj) && " +
"proj.budget > 10000000";

Extent extent = pm.getExtent(
Employee.class, true);

Query query = pm.newQuery(extent, filter);

query.declareImports("import Project");
query.declareVariables("Project proj");
query.declareParameters(
"String state, String deptName, int sal");

query.setOrdering(
"department.deptid ascending, salary descending");

Collection result = (Collection)query.execute(
"Georgia", "Network", new Integer(100000));

Iterator iter = result.iterator();
while(iter.hasNext()){
Employee emp = (Employee) iter.next();
// do something with employee

}
query.close(result);

This is a rather complex query that finds all employees who live in the state of Georgia, earn a six-figure salary, work in a department
dealing with networks, and work on a project with a budget that exceeds ten million dollars.

Listing 2 Find What You Need

employees.contains(emp) &

emp.projects.contains(proj) &

(proj.budget > 1000000.00 &

proj.name.startsWith(

"Software"))

Here, placing parentheses around the con-
straints on both the project budget and
name is necessary, because the variable
proj is valid only for the right operand of
the AND expression in which proj is
associated (in the left operand of the AND)
with the elements of the collection
emp.projects.

Compilation/Execution
The application can optionally call the
Query method compile() to compile a
query for subsequent execution. When

this method is called, any elements bound
to the Query instance are validated. Any
inconsistencies are reported by the throw-
ing of a JDOUserException. This method
is a hint to the Query instance to prepare
and optimize an execution plan for the
query. This method may yield better per-
formance if the query is used repeatedly.

The Query interface provides several
methods to execute a query; the methods
vary in their style of passing query param-
eters. Up to three query parameters can be
passed directly to an execute() method:

Object execute(Object p1);

Object execute(Object p1,

 Object p2);

Object execute(Object p1,

 Object p2,

 Object p3);

If you need more than three parameters, you
would use executeWithMap() or execute
WithArray(), described in a moment.

The parameters passed to execute are
associated according to the order they were
declared in the parameter declaration. Each

parameter is an Object that is either the
necessary object value or an Object-wrapped
value of a primitive. The parameters passed to
an execute() method are used only for a single
execution of a query, they are not remem-
bered for future executions of the same query.

The execute() methods return an
unmodifiable Collection. They are de-

Developers use EJB so that they can leverage
CMP’s capability of allowing a more object-
oriented model of their data than can be
attained using JDBC. But EJB assumes a

distributed model of computation, imposing
performance degradations when one has

objects of fine granularity

21Java Pro JULY 2002 | www.javapro.com

COVER STORYJDOQL

clared to return an Object instead of a
Collection to allow for future extensions
where a single instance could be returned.
So an application must explicitly cast the
result to a Collection. The application
can then iterate the collection to retrieve
the result. Attempts to change the collec-
tion will cause an UnsupportedOperation-
Exception to be thrown.

You can use two other methods to execute
a query. Use these when the number of param-
eters is greater than three or if you prefer this
alternate style of passing parameters:

Object executeWithMap(Map m);

Object executeWithArray(

 Object[] a);

The executeWithMap() method is passed a
Map of key/value pairs where the key is the
name of the declared parameter and the
value is the value to use for that parameter in
the query. The executeWithArray() method
is similar to the execute() methods in that

JDOQL should gain significant industry
support over the next year

the position of a value in the array corre-
sponds with the position of a parameter in
the parameter declaration.

Putting It All Together
Listing 2 provides a complete example of
the calls necessary to perform a rather com-

plex query. It assumes that the application
has acquired a PersistenceManager and be-
gun a transaction. This query finds all em-
ployees who live in the state of Georgia, earn
a six-figure salary, work in a department
dealing with networks, and work on a project
with a budget that exceeds ten million dol-
lars. The result collection is returned with
the employees grouped together according
to their department’s id, and within their
department they are returned in order from
highest to lowest salary.

JDOQL is a fairly simple language that
should gain significant industry support
over the next year. Its design, interface, and
set of expressions largely emulate the Java
language, which should make it fairly easy
for Java developers to learn. In some cases, as
with the promotion and conversion of oper-

ands, it provides a simpler syntax than Java
when working with semantically similar yet
distinct data types. JDO implementations
are planned for a wide variety of datastores,
including hierarchical, relational, and ob-
ject datastores. JDOQL is a required com-
ponent of these JDO implementations.
David Jordan has been developing object-oriented soft-

ware since 1981 and has been involved with object persis-

tence and databases since 1985. He is an active member

of the JDO expert group and founded Object Identity, Inc.

to provide consulting services in support of JDO develop-

ment. Reach him at david.jordan@objectidentity.com.

Check it all out at:

www.javapro.com
Java is a trademark of Sun Microsystems. Java Pro is published by Fawcette Technical Publications, Inc.

Articles from the current issue of Java Pro
—code, extra resources and content!
Comprehensive archives going back to 1997!
Interviews with leading Java authorities!
And much more!

New Web Site!

Get an Extra Shot of

Java Pro

