©2002 Versant Corp. 3/20/2002

VERSANT

Java Data Objects
The Future for Java Object Persistence

Keiron McCammon

CTO
Versant Corporation _I.,_l

kmccammon@versant.com

Overview

B What is JDO?

DO Goals

B How does JDO work?
B Using JIDO

B DO and EJB

B Looking forward...

VERSANT —H

©2002 Versant Corp. 3/20/2002

What is JDO?

VERSANT —H

Java Data Objects (JDO)

M Standard for transparent Java object persistence
Provides developers with a Java-centric and object view
of persistence and data store access
M Designed to allow pluggable vendor "drivers” for
accessing any database/data store
B Designed to work in conjunction with Application
Servers

@ "Connector Architecture” used to specify the contract
between JDO Vendor and Application Server for
instance, connection, and transaction management

VERSANT —H

©2002 Versant Corp.

An Example - Creating the classes

public class Employee {

private String name;
private int age;
private float salary;
Employee private Department department;
name 3 Sming public Employee (String name, int age)
salary : float .
. this.name = name;
age : int .

this.age = age;
0+ II }
) public String getName () {

return name;

Department

public int getAge () {
return age;

}

public Department getDepartment () {
return department;

name : String

public void setDepartment (Department df)

VERSANT | } department = d; _'-,—S‘

An Example - Adding persistence

static void main (Stringl[] args) {

// Need to get a database connection

Department dept = new Department (*R&D”) ;
Employee emp = new Employee (“Joe Bloggs”, 30);
emp . setDepartment (dept) ;

// Committing the transaction stores the
// new instances in the database

o
VERSANT Ly

3/20/2002

©2002 Versant Corp.

http://jcp.org/jsr/detail/012.jsp

Java Community Process

B Standard driven by the Java Community

M JDO is a Java Specification Request
4)SR-000012

Specification "lead" heads expert group who
propose formal specification

@ Participants & public review specification

Reference implementation and compatibility tests
required prior to publication

Standard approved by JSR Executive Committee

VERSANT —

Expert Group Members

B Alagic B Poet Software
B Ericsson B Rational Software
B Forte Software B SAPAG
: IB:A - Soft B Secant Technologies
. :_n ormleSc:ct ware W Silverstream Software
awson Software
|
® LiBellS Software AG
B Object People B Sun Microsystems
B Objectivity W Tech@spree
B Oracle W Versant

VERSANT —H

3/20/2002

©2002 Versant Corp.

http://access1.sun.com/jdo/index.html

JDO Current Status

B JSR-000012 approved July-1999

B Specification lead selected July-1999
@ Craig Russell, SUN Microsystems]

B Expert group formed Auglist- mm I nent
Expert ayﬁrati se
A ofthe expert group
B HrsTBublc review completed July-2000

B Second public review started June-2001

B Reference implementations and Technology Compatibility
Kit (TCK) development underway

VERSANT —H

VERSANT ki

JDO Goals

3/20/2002

©2002 Versant Corp.

Goals of the JDO Architecture

B Transparent “object” persistence
@ Minimal to O constraints on building classes
@ No new data types or data access language
DDL & DML is Java

B Use in arange of implementations

¢ J2ME - Embedded, device-oriented
& J2SE - Client/server
& J2EE - Enterprise Java Beans

B Data store independence
Relational, object, object-relational, hierarchical, file systems, ...

VERSANT

Lr

JDO Audience

M Java application developers
@ Transparent object persistence
@ Java-centric, no need to know how to access a database

M EJB application developers

@ Connection pooling & transaction management via
Application Server

@ Transparent database access for non-CMP solutions
(Session Beans & BMP)
No need to use JDBC directly
Object Queries to find instances

VERSANT

_I=

3/20/2002

©2002 Versant Corp. 3/20/2002

JDO versus JDBC

B Not meant to replace it!
@ Complimentary technology
Standardizes object access to data stores
@ Programmer just sees Java classes

B JDO for RDBs likely implemented on top of JDBC

@ JDBC useful for direct control over database access and
connection management

@ DBC is mature, widely accepted and understood
€ JDBC supported by major database vendors

VERSANT A

How does JDO work?

VERSANT Ay

©2002 Versant Corp.

Transparent Object Persistence

Transient Objects VM

Transparently
writes changes
back to the
database

O/R mapping via JDBC
or direct object persistence

VERS ANT Database

Persistent Objects

Transparently
fetches
objects from
the database
into JVM

Navigational versus
query-based access

1=

JDO Development Life Cycle

MyClass MyClass
Jjava .class
L
MyClass XML
.class Config
L

)

VERSANT

o

3/20/2002

©2002 Versant Corp.

JDO Enhancer - What does it do?

B Reads byte code and generates new byte code

@ Adds hooks to enable JDO implementation to
transparently:
Retrieve objects
Track changes to object state
Write changes to data store on commit
B Developer doesn't have to explicitly fetch/store

objects

VERSANT

A

Non-managed versus Managed

B Two ways of developing JDO applications

B Non-managed Environments

Client/Server, 2-tier

@ Explicit connection and transaction management
B Managed Environments

@ Application Server (EJB), n-tier

@ Implicit connection and transaction management

VERSANT

I+

3/20/2002

©2002 Versant Corp.

Non-managed Environments

Application explicitly

manages PersistenceManagers
transaction boundaries communicate with
using JDO APIs the database

%...

creates
VERSAN T PersistenceManagers

Application Server

Managed Environments implicitly

e - manages transaction

- oges tran
Application Server oundaries

/Transaction Contract

\ /
. g
N
S e

Connection Contract

Bean/Servlet/JSP JDO APIs

Application Server

implicitly creates
VERSAN T PersistenceManagers —Ll?)'

3/20/2002

10

©2002 Versant Corp.

Using JIDO

VERSANT

1=

JDO Interfaces and Classes

B PersistenceManagerFactory (Interface)
B PersistenceManager (Interface)

B Transaction (Interface)

B Query (Interface)

B PersistenceCapable (Interface)

B |nstanceCallbacks (Interface)

B JDOHelper

B JDO Exception Classes
L O

VERSANT

3/20/2002

11

©2002 Versant Corp.

An Overview

B Use PersistenceManagerFactory to get a
PersistenceManager

@ PersistenceManager embodies a database connection

B Use a PersistenceManager to create a Transaction or a
Query

B Use a Transaction to control transaction boundaries
B Use a Query to find objects by value
B Enhanced classes implicitly implement PersistenceCapable

B PersistenceCapable classes can implement
InstanceCallbacks

VERSANT

1=

JDO Object Model

B Support for all Java field types
® Primitives, object references, interfaces
@ Exception: References to system-defined classes
B Support for all Java class and field modifiers
® Public, private, protected, static, transient, abstract, final,
synchronized, volatile
B Support for all user-defined Java classes

@ Exception: any classes that depend on state of inaccessible or
remote objects

java.net.SocketImpl
@ Exception: any classes that use native methods

VERSANT

I

3/20/2002

12

©2002 Versant Corp.

PersistenceManagerFactory
(Interface)

B Standard mechanism to get PersistenceManager instances
@ May implement resource pooling and connection management

B Implements java.io.Serializable
@ Support for lookup via INDI

B Uses JavaBeans pattern for get/set Properties

Standard properties
ConnectionUserName
ConnectionPassword
ConnectionURL

VERSANT

1=

PersistenceManager (interface)

B Primary interface to the "object cache”

@ Cache management methods
Refresh/release objects

B Provides management of PersistenceCapable objects
@ |dentity management methods
Life-cycle management methods
B Acts as factory for other JDO classes
@ Query creation methods
Transaction creation methods
B Use to get Collection of all instances of a class
@ Class extent methods

VERSANT

I

3/20/2002

13

©2002 Versant Corp.

PersistenceManager Methods

B |dentity Methods
@ GCet the JDO Identity of a JDO Instance
Object getObjectId (Object pc)
@ GetaJDO Instance given its JDO Identity
Object getObjectById (Object oid)

B Lifecycle Methods
void makePersistent (Object pc)
void deletePersistent (Object pc)
void makeTransient (Object pc)
void makeTransactional (Object pc)

void makeNontransactional (Object pc)

VERSANT

1=

Class Extents

M Collection of all object instances of a given class
managed by the data store

B Available for any PersistenceCapable class
Extent getExtent (Class pc,

boolean subclasses)

VERSANT

_I=

3/20/2002

14

©2002 Versant Corp.

JDO Query Objectives

B Query language neutral

@ Optional support for SQL, OQL, etc.

Optimizations possible for specific query languages
B Multi-tier architecture

® Entirely in-memory

® Server-side (data store query engine) execution
M Support for Large result sets

B Support for “compiled” queries

VERSANT

1>

Query (Interface)

B PersistenceManager is the Query factory
Query newQuery (Class cls,
Collection cln,

String filter)

B Quieries filter Collections and return Collections

B Required elements in a query
@ Collection of candidate instances
May be a class extent
May be a Collection in the JVM
@ Class (type) of the result set
@ Filter (Java boolean expression)
B Optional elements in a query
@ Parameter & variable declarations; Imports; Ordering

VERSANT

_I=

3/20/2002

15

©2002 Versant Corp.

Query “Filters”

M Filters are Java boolean expressions
M |dentifiers are class attributes
B Navigation via "." notation

@ Support for single object navigation

@ Support for collections via “contains()" method
@ Support for wildcards via "startsWith()" & "endsWidth()"

B Support for parameter substitution and variables

VERSANT

1=

“Filters”: Simple example

M Find well compensated employees

String filter = “salary > 100000”;

Extent employees = pm.getExtent (Employee.class) ;

Query query = pm.newQuery (employees,

Employee

name

age

salary :

: String
float
: int

0..

*
employees
1

Department

name :

String

filter) ;

Collection results = (Collection) query.execute() ;

VERSANT

_I=

3/20/2002

16

©2002 Versant Corp.

boss

(17 == . = - .
Filters”: Object Navigation [=pioe-
name : String
salary : float
B Find over compensated employees e+ ne
String filter = “salary > boss.salary”; |Smeiovees
Department

name : String

pm.getExtent (Employee.class) ;

Extent employees
Query query = pm.newQuery (employees, filter);

(Collection) query.execute() ;

Collection results

VERSANT

1=

Using Parameters & Variables

B Support for parameterized queries

@ Parameters are substituted at execution time

@ Parameters are typed

@ Parameters specified using Java syntax

@ Multiple statements separated by semicolons

query.declareParameters ("float salary");

B Support for use of variables in queries

@ Variables are typed

® Variables specified using Java syntax

@ Multiple statements separated by semicolons
query.declareVariables ("Employee emp") ;

VERSANT

_I=

3/20/2002

©2002 Versant Corp.

boss

“Filters”: Complex example | [Ewpioyee
name : String
salary : float

B Find all Departments with at least o

one well-compensated Employee Srployess
String filter = Department
employees.contains (emp) && mewme ¢ Eieedng
emp.salary > salary”;
Extent depts = pm.getExtent (Department.class) ;

Query query = pm.newQuery (depts, filter);
query.declareParameters (“float salary”);
query.declareVariables (“Employee emp”) ;
Collection results =

(Collection) query.execute (new Float (100000.0)) ;

VERSANT A

Imports & Ordering

B Imports
@ Imports specified using Java syntax
@ Multiple statements separated by semicolons
query.declareImports (“import example");
B Ordering

@ Ordering can be "ascending” or "descending”

query.setOrdering (“salary ascending");

Ordering can include navigation via '." notation

VERSANT i

3/20/2002

18

©2002 Versant Corp.

Transaction (Interface)

B PersistenceManager is the Transaction factory
Transaction currentTransaction ()
B Transactions can be "unmanaged” (local) or "managed”
(distributed)
@ Explicit control versus implicit control
@ Designed to work in Embedded & Enterprise environments

B Support for data store (default) and optimistic (optional)
concurrency models

B Methods for "unmanaged" transactions
isActive ()
begin ()
commit ()
rollback ()

VERSANT

1=

PersistenceCapable (interface)

B Implemented by a “Persistence Capable” Class

PersistenceManager Get Persistence
jdoGetPersistenceManager () Manager for
this instance

Object jdoGetObjectId () JDO Object
Identity

boolean jdoIsPersistent ()

boolean jdoIsTransactional ()

boolean jdoIsDirty () Status
boolean jdoIsNew () Interrogation
boolean jdoIsDeleted ()

VERSANT

_TI=

3/20/2002

19

©2002 Versant Corp.

JDOHelper

B Static methods that mirror PersitenceManager &
PersistentCapable interfaces
@ Delegates to appropriate interface

B Simplifies management of persistent objects
static Object getObjectId (Object pc)

static boolean isPersistent (Object pc)
static boolean isDirty (Object pc)
static boolean isNew (Object pc)

static boolean isDeleted (Object pc)

VERSANT

1>

JDO Identity

B Object identity implemented by JVM

@ s this the same object instance?
objl == obj2

B Object equality implemented by class developer

@ |s this the same object?
objl.equals (obj2)

VERSANT

1=

3/20/2002

20

©2002 Versant Corp.

JDO Identity (cont’d)

B JDO identity implemented by JDO vendor
@ Can be based on primary key
Defined by application, enforced by database
@ Can be managed by the data store
Not related to any attribute value
@ Can be managed by JDO implementation
Guarantee uniqueness in the JVM but not datastore

objl.jdoGetObjectId () .equals (obj2.jdoGetObjectId())

VERSANT &

“Uniquing” in JDO

B JDO instances representing the same data store
"object” exist only once per PersistenceManager
B Regardless of how the instance is obtained
Queries
@ Navigation
Other PersistenceManager methods

VERSANT i

3/20/2002

21

©2002 Versant Corp.

An Example

VERSANT Ar

How does it work? An example...

boss

Employee
name : String
salary : float
age : int
0..*

employees
1

Department
name : String

VERSANT i

3/20/2002

22

©2002 Versant Corp.

An Example: Employee Class

public class Employee {

private String name;
private int age;
private float salary;

private Employee boss;
private Department department;

public Employee (String name, int age) ({
this.name = name;
this.age = age;

public String getName () {

return name;

public Department getDepartment () {
return department;

public void setDepartment (Department d)
department = d;

}
VERSANT

1=

An Example: Department Class

public class Department {
private String name;
private Set employees = new HashSet () ;

public Department (String name)
this.name = name;
}

public String getName ()
return name;
}

public void addEmployee (Employee emp)
emp .setDeparment (this) ;
employees.add (emp) ;

}

}
VERSANT

_TI=

3/20/2002

23

©2002 Versant Corp.

XML Metadata

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>

<jdo>
<package name = “com.versant.jdoexample”/>
<class name = “Employee”/>
<class name = “Department”>
<field name = ”"employees”>
<collection element-type="Employee”/>
</field>
</class>
</jdo>

VERSANT

i

An Example: Connecting

static void main (String[] args) {

// Create a Vendor specific factory
PersistenceManagerFactory factory =
new VersantPersistenceManagerFactory () ;

// Set connection parameters
factory.setConnectionURL (args[0]) ;

// Get a PersistenceManager
PersistenceManager pm =

factory.getPersistenceManager () ;

VERSANT

_TI=

3/20/2002

24

©2002 Versant Corp.

An Example: Find a Department

// Begin a Transaction
Transaction tx = pm.currentTransaction() ;

tx.begin () ;

// Construct the Query

Extent depts = pm.getExtent (Department.class) ;
String filter = “name = dept”;

Query query = pm.newQuery (depts, filter);

// Execute the Query
query.declareParameters (“String dept”) ;

Collection results = pm.execute(args[l]);
// Extract the Department from the result set

Department dept =
(Department) results.iterator () .next () ;

VERSANT

1=

An Example: Create an Employee

// Create a new Employee
Employee emp =
new Employee (args[2], Integer.parselnt (args[3]));

// Add Employee to Department
dept .addEmployee (emp) ;

// Commit transaction
tx.commit () ;

VERSANT

1=

3/20/2002

25

©2002 Versant Corp.

JDO and J2EE

VERSANT

1=

Java Connector Architecture

B Mandated as plug-in for non-JDBC data access

@ Deals with connection, transaction & security
management

B Common Client Interface
Provides standard APIs to get a connection

javax.resource.cci.ConnectionFactory

javax.resource.cci.Connection

VERSANT

_I=

3/20/2002

26

©2002 Versant Corp.

JDO & JCA

B PersistenceManagerFactory maps to
ConnectionFactory
B PersistenceManager maps to Connection

@ Container-managed transactions
Management delegated to container

@ Bean-managed transactions
Explicit commit/rollback

VERSANT

1=

Getting a Connection

M First get a PersistenceManagerFactory
@ Done during setSessionContext()

// Obtain the initial JNDI Naming context
Context ctx = new InitialContext();
// perform JNDI lookup to obtain the connection factory

PersistenceManagerFactory pmf = (PersistenceManagerFactory)

B Then get a PersistenceManager

// Obtain a connection

PersistenceManager pm = pmf.getPersistenceManager () ;

VERSANT

ctx.lookup (“java:comp/env/jdo/VersantPersistenceManagerFactory”) ;

_TI=

3/20/2002

27

©2002 Versant Corp.

JDO & EJB

B Alternative to using CMP for data store access
@ Simpler & faster to develop
@ Sitill standard-based & database independent
B Can be used from JSP/Servlets, SessionBeans or BMP
EntityBeans
Eliminates need to use JDBC directly
Simplifies development
B Facilitates an approach to development that compliments
common J2EE design patterns
Session Facade
@ Value Object
@ Data Access Object

VERSANT

1=

An Example: SessionBean

public void createEmployee (
String name,
int age,
String dept) : throws RemoteException {

// Get a PersistenceManager

PersistenceManager pm = pmf.getPersistenceManager () ;

try {
// Construct the Query
Extent depts = pm.getExtent (Department.class) ;
String filter = “name = “ + dept;
Query query = pm.newQuery (depts, filter);

Collection results = pm.execute() ;

VERSANT

_I=

3/20/2002

28

©2002 Versant Corp.

An Example: SessionBean

// Extract the Department from the result set
Department dept =
(Department) results.iterator () .next () ;

// Create a new Employee
Employee emp = new Employee (name, age);

// Add Employee to Department
dept .addEmployee (emp) ;

}

catch (Exception e) {

throw new RemoteException(e) ;

}

}
VERSANT Ag

JDO & CMP

B EJB 2.0 addresses many of earlier CMP issues
® Local interfaces
@ Container-managed relationships
¢ EJBQL
B Development still order magnitude harder
@ Home & bean interfaces (local or remote)
@ Abstract bean class & dependent value classes
@ PrimaryKey class
@ Deployment descriptor
B Increasingly difficult to test

EJB 2.0 requires good tool support to make it useable! I I_l

VERSANT [

3/20/2002

29

©2002 Versant Corp.

Summary

VERSANT

1>

Looking forward...

M JDO accepted by Java Community
@ Needs your support
B JDO incorporated into Java platform
Standard mechanism for Java object persistence
@ Complimentary to JDBC
W JDO supported by Application Server vendors
@ Alternative to CMP
@ Disparity between JDO QL & EJB QL

Needs to be resolved

VERSANT

_Tw

3/20/2002

30

©2002 Versant Corp.

Vendor Support

O/R Mapping Tool Vendors
Forte for Java— SUN

TopLink - WebGain
OpenfFusion JDO — PrismTech
Kodo JDO - TechTrader
LiDO - LIBelLIS

Rexip JDO — TCCybersoft

Consultants
B Object Identity
B Olgilivie Partners

VERSANT

Database/Middleware Vendors

enlin — Versant
FastObjects — Poet
ObjectStore — eXcelon

Orient ODBMS — Orient
Technologies

GemStone Facets — GemStone
Systems

Others

SAP

1=

3/20/2002

31

