
©2002 Versant Corp. 3/20/2002

1

Java Data Objects
The Future for Java Object Persistence

Keiron McCammon
CTO
Versant Corporation
kmccammon@versant.com

2

OverviewOverview

What is JDO?
JDO Goals
How does JDO work?
Using JDO
JDO and EJB
Looking forward...

©2002 Versant Corp. 3/20/2002

2

3

What is JDO?

4

Java Data Objects (JDO)Java Data Objects (JDO)

Standard for transparent Java object persistence
Provides developers with a Java-centric and object view
of persistence and data store access

Designed to allow pluggable vendor “drivers” for
accessing any database/data store
Designed to work in conjunction with Application
Servers

“Connector Architecture” used to specify the contract
between JDO Vendor and Application Server for
instance, connection, and transaction management

©2002 Versant Corp. 3/20/2002

3

5

public class Employee {
 private String name;
 private int age;
 private float salary;
 private Department department;

 public Employee (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public String getName () {
 return name;
 }
 public int getAge () {
 return age;
 }
 ...
 public Department getDepartment () {
 return department;
 }
 public void setDepartment (Department d) {
 department = d;
 }
}

Department
name : String

1

0+

Employee
name : String
salary : float
age : int

An Example - Creating the classesAn Example - Creating the classes

6

static void main (String[] args) {

 // Need to get a database connection
 ...

 Department dept = new Department(“R&D”);

 Employee emp = new Employee(“Joe Bloggs”, 30);

 emp.setDepartment(dept);

 // Committing the transaction stores the
 // new instances in the database
 ...
}

An Example - Adding persistenceAn Example - Adding persistence

©2002 Versant Corp. 3/20/2002

4

7

http://jcp.org/jsr/detail/012.jsp

Java Community ProcessJava Community Process

Standard driven by the Java Community
JDO is a Java Specification Request

JSR-000012
Specification “lead” heads expert group who
propose formal specification
Participants & public review specification
Reference implementation and compatibility tests
required prior to publication
Standard approved by JSR Executive Committee

8

Expert Group MembersExpert Group Members

Alagic
Ericsson
Forte Software
IBM
Informix Software
Lawson Software
LIBeLIS
Object People
Objectivity
Oracle

Poet Software
Rational Software
SAP AG
Secant Technologies
Silverstream Software
Software AG
Sun Microsystems
Tech@spree
VersantVersantVersantVersant

©2002 Versant Corp. 3/20/2002

5

9

http://access1.sun.com/jdo/index.html

JDO Current StatusJDO Current Status

JSR-000012 approved July-1999
Specification lead selected July-1999

Craig Russell, SUN Microsystems

Expert group formed August-1999
Expert group reviews specification before release
Versant is a member of the expert group

First public review completed July-2000
Second public review started June-2001
Reference implementations and Technology Compatibility
Kit (TCK) development underway

10

JDO Goals

©2002 Versant Corp. 3/20/2002

6

11

Goals of the JDO ArchitectureGoals of the JDO Architecture

Transparent “object” persistence
Minimal to 0 constraints on building classes
No new data types or data access language

DDL & DML is Java

Use in a range of implementations
J2ME - Embedded, device-oriented
J2SE - Client/server
J2EE - Enterprise Java Beans

Data store independence
Relational, object, object-relational, hierarchical, file systems, …

12

JDO AudienceJDO Audience

Java application developers
Transparent object persistence
Java-centric, no need to know how to access a database

EJB application developers
Connection pooling & transaction management via
Application Server
Transparent database access for non-CMP solutions
(Session Beans & BMP)

No need to use JDBC directly
Object Queries to find instances

©2002 Versant Corp. 3/20/2002

7

13

JDO versus JDBCJDO versus JDBC

Not meant to replace it!
Complimentary technology
Standardizes object access to data stores
Programmer just sees Java classes

JDO for RDBs likely implemented on top of JDBC
JDBC useful for direct control over database access and
connection management
JDBC is mature, widely accepted and understood
JDBC supported by major database vendors

14

How does JDO work?

©2002 Versant Corp. 3/20/2002

8

15

JVM

Database

JDO Implementation

Application

Transparently
fetches

objects from
the database

into JVM

Transparently
writes changes

back to the
database

O/R mapping via JDBC
or direct object persistence

Persistent Objects
Transient Objects

Navigational versus
query-based access

Transparent Object PersistenceTransparent Object Persistence

16

MyClass
.java

Java
Compiler

JDO
Enhancer

JVM

MyClass
.class

MyClass
.class

XML
Config

JDO Development Life CycleJDO Development Life Cycle

©2002 Versant Corp. 3/20/2002

9

17

JDO Enhancer - What does it do?JDO Enhancer - What does it do?

Reads byte code and generates new byte code
Adds hooks to enable JDO implementation to
transparently:

Retrieve objects
Track changes to object state
Write changes to data store on commit

Developer doesn’t have to explicitly fetch/store
objects

18

Non-managed versus ManagedNon-managed versus Managed

Two ways of developing JDO applications
Non-managed Environments

Client/Server, 2-tier
Explicit connection and transaction management

Managed Environments
Application Server (EJB), n-tier
Implicit connection and transaction management

©2002 Versant Corp. 3/20/2002

10

19

JDO Application

JD
O

 A
PIs

JVM
vendor

A

vendor
B

vendor
C

Application explicitly
creates

PersistenceManagers

Application explicitly
manages

transaction boundaries
using JDO APIs

PersistenceManagers
communicate with

the database

Non-managed EnvironmentsNon-managed Environments

20

EIS

Application Server
Container Transaction

Manager

JDO Resource
Adapter

JDO APIsBean/Servlet/JSP
Connection Contract

Transaction Contract

Application Server
implicitly creates

PersistenceManagers

Application Server
implicitly

manages transaction
boundaries

Managed EnvironmentsManaged Environments

©2002 Versant Corp. 3/20/2002

11

21

Using JDO

22

JDO Interfaces and ClassesJDO Interfaces and Classes

PersistenceManagerFactory (Interface)
PersistenceManager (Interface)
Transaction (Interface)
Query (Interface)
PersistenceCapable (Interface)
InstanceCallbacks (Interface)
JDOHelper
JDO Exception Classes

...

©2002 Versant Corp. 3/20/2002

12

23

An OverviewAn Overview

Use PersistenceManagerFactory to get a
PersistenceManager

PersistenceManager embodies a database connection

Use a PersistenceManager to create a Transaction or a
Query
Use a Transaction to control transaction boundaries
Use a Query to find objects by value
Enhanced classes implicitly implement PersistenceCapable
PersistenceCapable classes can implement
InstanceCallbacks

24

JDO Object ModelJDO Object Model

Support for all Java field types
Primitives, object references, interfaces
Exception: References to system-defined classes

Support for all Java class and field modifiers
Public, private, protected, static, transient, abstract, final,
synchronized, volatile

Support for all user-defined Java classes
Exception: any classes that depend on state of inaccessible or
remote objects

java.net.SocketImpl

Exception: any classes that use native methods

©2002 Versant Corp. 3/20/2002

13

25

PersistenceManagerFactoryPersistenceManagerFactory
(Interface)(Interface)

Standard mechanism to get PersistenceManager instances
May implement resource pooling and connection management

Implements java.io.Serializable
Support for lookup via JNDI

Uses JavaBeans pattern for get/set Properties
Standard properties

ConnectionUserName

ConnectionPassword
ConnectionURL
…

26

PersistenceManagerPersistenceManager (Interface)(Interface)

Primary interface to the “object cache”
Cache management methods

Refresh/release objects

Provides management of PersistenceCapable objects
Identity management methods
Life-cycle management methods

Acts as factory for other JDO classes
Query creation methods
Transaction creation methods

Use to get Collection of all instances of a class
Class extent methods

©2002 Versant Corp. 3/20/2002

14

27

PersistenceManagerPersistenceManager Methods Methods

Identity Methods
Get the JDO Identity of a JDO Instance
Object getObjectId (Object pc)

Get a JDO Instance given its JDO Identity
Object getObjectById (Object oid)

Lifecycle Methods
void makePersistent (Object pc)

void deletePersistent (Object pc)

void makeTransient (Object pc)

void makeTransactional (Object pc)

void makeNontransactional (Object pc)

28

Class ExtentsClass Extents

Collection of all object instances of a given class
managed by the data store
Available for any PersistenceCapable class

Extent getExtent (Class pc,

 boolean subclasses)

©2002 Versant Corp. 3/20/2002

15

29

JDO Query ObjectivesJDO Query Objectives

Query language neutral
Optional support for SQL, OQL, etc.
Optimizations possible for specific query languages

Multi-tier architecture
Entirely in-memory
Server-side (data store query engine) execution

Support for Large result sets
Support for “compiled” queries

30

Query Query (Interface)(Interface)

PersistenceManager is the Query factory
Query newQuery (Class cls,

 Collection cln,

 String filter)

Queries filter Collections and return Collections
Required elements in a query

Collection of candidate instances
May be a class extent
May be a Collection in the JVM

Class (type) of the result set
Filter (Java boolean expression)

Optional elements in a query
Parameter & variable declarations; Imports; Ordering

©2002 Versant Corp. 3/20/2002

16

31

Query “Filters”Query “Filters”

Filters are Java boolean expressions
Identifiers are class attributes
Navigation via ‘.’ notation

Support for single object navigation
Support for collections via “contains()” method
Support for wildcards via “startsWith()” & “endsWidth()”

Support for parameter substitution and variables

32

Extent employees = pm.getExtent(Employee.class);

Query query = pm.newQuery(employees, filter);

Collection results = (Collection) query.execute();

“Filters”: Simple example“Filters”: Simple example

Find well compensated employees
String filter = “salary > 100000”;

Department
name : String

1

Employee
name : String
salary : float
age : int

1

boss

employees
0..*

©2002 Versant Corp. 3/20/2002

17

33

“Filters”: Object Navigation“Filters”: Object Navigation

Find over compensated employees
String filter = “salary > boss.salary”;

Department
name : String

1

Employee
name : String
salary : float
age : int

1

boss

employees
0..*

Extent employees = pm.getExtent(Employee.class);

Query query = pm.newQuery(employees, filter);

Collection results = (Collection) query.execute();

34

Using Parameters & VariablesUsing Parameters & Variables

Support for parameterized queries
Parameters are substituted at execution time
Parameters are typed
Parameters specified using Java syntax
Multiple statements separated by semicolons
query.declareParameters ("float salary");

Support for use of variables in queries
Variables are typed
Variables specified using Java syntax
Multiple statements separated by semicolons
query.declareVariables ("Employee emp");

©2002 Versant Corp. 3/20/2002

18

35

Extent depts = pm.getExtent(Department.class);
Query query = pm.newQuery(depts, filter);
query.declareParameters(“float salary”);
query.declareVariables(“Employee emp”);
Collection results =
 (Collection) query.execute(new Float(100000.0));

“Filters”: Complex example“Filters”: Complex example

Find all Departments with at least
one well-compensated Employee

String filter = “

employees.contains(emp) &&

emp.salary > salary”;

Department
name : String

1

Employee
name : String
salary : float
age : int

1

boss

employees
0..*

36

Imports & OrderingImports & Ordering

Imports
Imports specified using Java syntax
Multiple statements separated by semicolons
query.declareImports (“import example");

Ordering
Ordering can be “ascending” or “descending”
query.setOrdering (“salary ascending");

Ordering can include navigation via ‘.’ notation

©2002 Versant Corp. 3/20/2002

19

37

Transaction Transaction (Interface)(Interface)

PersistenceManager is the Transaction factory
Transaction currentTransaction ()

Transactions can be “unmanaged” (local) or “managed”
(distributed)

Explicit control versus implicit control
Designed to work in Embedded & Enterprise environments

Support for data store (default) and optimistic (optional)
concurrency models
Methods for “unmanaged” transactions

isActive ()

begin ()

commit ()

rollback ()

38

PersistenceCapablePersistenceCapable (Interface)(Interface)

Implemented by a “Persistence Capable” Class
PersistenceManager
jdoGetPersistenceManager ()

Object jdoGetObjectId ()

boolean jdoIsPersistent ()

boolean jdoIsTransactional ()

boolean jdoIsDirty ()
boolean jdoIsNew ()

boolean jdoIsDeleted ()

Status
Interrogation

JDO Object
Identity

Get Persistence
Manager for
this instance

©2002 Versant Corp. 3/20/2002

20

39

JDOHelperJDOHelper

Static methods that mirror PersitenceManager &
PersistentCapable interfaces

Delegates to appropriate interface

Simplifies management of persistent objects
static Object getObjectId (Object pc)

static boolean isPersistent (Object pc)

static boolean isDirty (Object pc)

static boolean isNew (Object pc)

static boolean isDeleted (Object pc)

…

40

JDO IdentityJDO Identity

Object identity implemented by JVM
Is this the same object instance?
obj1 == obj2

Object equality implemented by class developer
Is this the same object?
obj1.equals (obj2)

©2002 Versant Corp. 3/20/2002

21

41

JDO Identity (cont’d)JDO Identity (cont’d)

JDO identity implemented by JDO vendor
Can be based on primary key

Defined by application, enforced by database

Can be managed by the data store
Not related to any attribute value

Can be managed by JDO implementation
Guarantee uniqueness in the JVM but not datastore

obj1.jdoGetObjectId().equals(obj2.jdoGetObjectId())

42

““UniquingUniquing” in JDO” in JDO

JDO instances representing the same data store
“object” exist only once per PersistenceManager
Regardless of how the instance is obtained

Queries
Navigation
Other PersistenceManager methods

©2002 Versant Corp. 3/20/2002

22

43

An Example

44

Department
name : String

1

0..*

Employee
name : String
salary : float
age : int

1

boss

employees

How does it work? An example...How does it work? An example...

©2002 Versant Corp. 3/20/2002

23

45

public class Employee {
 private String name;
 private int age;
 private float salary;
 private Employee boss;
 private Department department;

 public Employee (String name, int age) {
 this.name = name;
 this.age = age;
 }
 public String getName () {
 return name;
 }
 ...
 public Department getDepartment () {
 return department;
 }
 public void setDepartment (Department d) {
 department = d;
 }
}

An Example: Employee ClassAn Example: Employee Class

46

public class Department {
 private String name;
 private Set employees = new HashSet();

 public Department (String name) {
 this.name = name;
 }
 public String getName () {
 return name;
 }
 ...
 public void addEmployee (Employee emp) {
 emp.setDeparment(this);
 employees.add(emp);
 }
}

An Example: Department ClassAn Example: Department Class

©2002 Versant Corp. 3/20/2002

24

47

XML MetadataXML Metadata

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE jdo SYSTEM “jdo.dtd”>

<jdo>

 <package name = “com.versant.jdoexample”/>

 <class name = “Employee”/>

 <class name = “Department”>

 <field name = ”employees”>

 <collection element-type=”Employee”/>

 </field>

 </class>
</jdo>

48

static void main (String[] args) {

 // Create a Vendor specific factory

 PersistenceManagerFactory factory =

 new VersantPersistenceManagerFactory();

 // Set connection parameters

 factory.setConnectionURL(args[0]);

 // Get a PersistenceManager

 PersistenceManager pm =

 factory.getPersistenceManager();

An Example: ConnectingAn Example: Connecting

©2002 Versant Corp. 3/20/2002

25

49

 // Begin a Transaction
 Transaction tx = pm.currentTransaction();
 tx.begin();

 // Construct the Query
 Extent depts = pm.getExtent(Department.class);
 String filter = “name = dept”;
 Query query = pm.newQuery(depts, filter);

 // Execute the Query
 query.declareParameters(“String dept”);

 Collection results = pm.execute(args[1]);

 // Extract the Department from the result set
 Department dept =
 (Department) results.iterator().next();

An Example: Find a DepartmentAn Example: Find a Department

50

An Example: Create an EmployeeAn Example: Create an Employee

 // Create a new Employee
 Employee emp =
 new Employee(args[2], Integer.parseInt(args[3]));

 // Add Employee to Department
 dept.addEmployee(emp);

 // Commit transaction
 tx.commit();
}

©2002 Versant Corp. 3/20/2002

26

51

JDO and J2EE

52

Java Connector ArchitectureJava Connector Architecture

Mandated as plug-in for non-JDBC data access
Deals with connection, transaction & security
management

Common Client Interface
Provides standard APIs to get a connection
javax.resource.cci.ConnectionFactory

javax.resource.cci.Connection

©2002 Versant Corp. 3/20/2002

27

53

JDO & JCAJDO & JCA

PersistenceManagerFactory maps to
ConnectionFactory
PersistenceManager maps to Connection

Container-managed transactions
Management delegated to container

Bean-managed transactions
Explicit commit/rollback

54

Getting a ConnectionGetting a Connection

First get a PersistenceManagerFactory
Done during setSessionContext()

// Obtain the initial JNDI Naming context

Context ctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory

PersistenceManagerFactory pmf = (PersistenceManagerFactory)

 ctx.lookup(“java:comp/env/jdo/VersantPersistenceManagerFactory”);

Then get a PersistenceManager
// Obtain a connection

PersistenceManager pm = pmf.getPersistenceManager();

©2002 Versant Corp. 3/20/2002

28

55

JDO & EJBJDO & EJB

Alternative to using CMP for data store access
Simpler & faster to develop
Still standard-based & database independent

Can be used from JSP/Servlets, SessionBeans or BMP
EntityBeans

Eliminates need to use JDBC directly
Simplifies development

Facilitates an approach to development that compliments
common J2EE design patterns

Session Façade
Value Object
Data Access Object

56

An Example: An Example: SessionBeanSessionBean
public void createEmployee (
 String name,
 int age,
 String dept) : throws RemoteException {

 // Get a PersistenceManager
 PersistenceManager pm = pmf.getPersistenceManager();

 try {
 // Construct the Query
 Extent depts = pm.getExtent(Department.class);
 String filter = “name = “ + dept;
 Query query = pm.newQuery(depts, filter);

 Collection results = pm.execute();

©2002 Versant Corp. 3/20/2002

29

57

An Example: An Example: SessionBeanSessionBean
 // Extract the Department from the result set
 Department dept =
 (Department) results.iterator().next();

 // Create a new Employee
 Employee emp = new Employee(name, age);

 // Add Employee to Department
 dept.addEmployee(emp);
 }

 catch (Exception e) {

 throw new RemoteException(e);
 }
}

58

JDO & CMPJDO & CMP

EJB 2.0 addresses many of earlier CMP issues
Local interfaces
Container-managed relationships
EJBQL

Development still order magnitude harder
Home & bean interfaces (local or remote)
Abstract bean class & dependent value classes
PrimaryKey class
Deployment descriptor

Increasingly difficult to test

EJB 2.0 requires good tool support to make it useable!EJB 2.0 requires good tool support to make it useable!

©2002 Versant Corp. 3/20/2002

30

59

Summary

60

Looking forward...Looking forward...

JDO accepted by Java Community
Needs your support

JDO incorporated into Java platform
Standard mechanism for Java object persistence
Complimentary to JDBC

JDO supported by Application Server vendors
Alternative to CMP
Disparity between JDO QL & EJB QL

Needs to be resolved

©2002 Versant Corp. 3/20/2002

31

61

Vendor SupportVendor Support
O/R Mapping Tool Vendors

Forte for Java – SUN
TopLink - WebGain
OpenFusion JDO – PrismTech
Kodo JDO – TechTrader
LiDO – LIBeLIS
Rexip JDO – TCCybersoft

Consultants
Object Identity
Olgilivie Partners

Database/Middleware Vendors
enJinenJinenJinenJin – Versant – Versant – Versant – Versant
FastObjects – Poet
ObjectStore – eXcelon
Orient ODBMS – Orient
Technologies
GemStone Facets – GemStone
Systems

Others
SAP

