

Performance with FastObjects™ for JDO

A FastObjects White Paper

Performance with FastObjects™ for JDO

08/11/2003

Page 1

Table of Contents
1 Introduction ...4

2 General Facts to Keep in Mind ...4

2.1 Using an Inappropriate (Not Object-Oriented) Database
Schema...5

2.2 Performing Unnecessary Read and Write Operations..6

2.2.1 Writing Objects ..6

2.2.2 Reading Objects..6

2.2.3 Performing Too Many Client/Server Calls...6

2.2.4 Keeping Unnecessary Objects in Memory..6

2.3 Using Transactions that Are Too Large or Too Long Lasting...7

2.4 Using an Inappropriate Access Method..7

2.4.1 Using Queries Instead of Alternative Access Methods ...7

2.4.2 Defining Too Little or Too Many Indexes ..8

3 Example Object Model ..8

4 Optimizing the Database Schema ..9

4.1 Avoiding Redundant Information in the Object Model ..10

4.2 Use a Minimum Number of Classes in Your Object Model...10

4.3 Declare Which Object Data-members Really Need to Be
Persistent ..10

4.4 Using Backward References With Indexes Instead of Large or
Changing Collections ..11

4.5 Using Backward References Instead of Queries ..12

4.6 Using Embedded Objects ...13

4.7 Using Java Collections As Data-members ...15

4.7.1 Embedding the Collection Elements ...15

4.7.2 Implementing Your Own Collection Class...16

4.7.3 Creating Your Own java.util.Map Implementation...17

4.8 Not Using Non-persistent Capable Data-members ..20

5 Using Transactions ...20

5.1 Object Lifecycle...21

5.1.1 Object Lifecycle States..21

5.1.1.1 Transient ..21

5.1.1.2 Persistent-new ...21

5.1.1.3 Persistent-dirty...21

5.1.1.4 Hollow ..21

5.1.1.5 Persistent-clean ...22

Performance with FastObjects™ for JDO

08/11/2003

Page 2

5.1.1.6 Persistent-deleted..22

5.1.1.7 Persistent-new-deleted ..22

5.1.2 Object Lifecycle State Transitions...22

5.1.2.1 Creation of Objects ..22

5.1.2.2 Storage of Objects ...22

5.1.2.3 Retrieval of Objects ...22

5.1.2.4 Modification of Objects ..22

5.1.2.5 Deletion of Objects ..23

5.2 The Transaction Cache...23

5.3 Reading and Writing Objects in Transactions...24

5.4 Transaction Duration...24

5.4.1 Long Lasting Transactions ..24

5.4.2 Short Transactions ..25

5.5 Transaction Size ...25

5.5.1 Large Transactions..25

5.5.2 Small Transactions..26

5.6 Commit Time of Transactions ...26

5.7 Using Checkpoints in Transactions...27

5.8 Using Autoflush During Transaction Commit..27

5.9 Using Objects Outside of Transactions ..27

5.10 Reusing PersistenceManager and
PersistenceManagerFactory Objects...28

6 Avoiding Unnecessary Read and Write Operations ...30

6.1 Automated Management of Reading and Writing Objects ...30

6.2 Deleting Objects..32

6.2.1 Directly Deleting Objects ...32

6.2.2 Indirectly Deleting Objects ..33

6.3 Retrieving Objects...34

6.3.1 Using FastObjects Active Java Cache ..34

6.3.2 Using Access Patterns ..35

6.3.3 Enable immediateRetrieve When Reading Objects From
an Extent ...37

6.3.4 Using setPreFetch() When Reading Elements From an
Extent ..37

6.3.5 Using retrieveAll() to Load All Objects of a Collection...38

6.3.6 Using the requires-extent Keyword...38

6.3.7 Avoiding Unnecessary Objects in Memory ...39

7 Choosing the Appropriate Access Method, Object Retrieval..39

Performance with FastObjects™ for JDO

08/11/2003

Page 3

7.1 Direct Navigation...39

7.1.1 Using Direct Navigation...39

7.1.2 Using Extents for Fast Access ..39

7.1.3 Using Iterators on Extents: advance, current, previous,
reset..40

7.1.4 Reusing Extent Iterators ...41

7.1.5 Using Indexes for Sorted Access ..42

7.2 Finding Objects by Index Keys ...43

7.2.1 Finding Objects by selectKey ..43

7.2.2 Finding Objects by findKey ..44

7.2.3 Finding Objects by Using selectRange ...45

7.2.4 Index Key Specifications ...46

7.2.5 Limitations ...47

7.3 Finding Objects by Using Filtered Extents..47

7.3.1 The setFilter Method...48

7.3.2 Sort Orders for Filtered Extent Iterators ..49

7.3.3 Filter Limitations ..50

7.4 Finding Objects by Using Queries ..50

7.4.1 Execution Time of Queries..51

7.4.2 Building Optimal Search Phrases for the FastObjects Query
Optimizer ...51

7.4.2.1 The Query Optimizer with Search Criteria (Filter and
WHERE Clauses)...53

7.4.2.2 The Query Optimizer with Query Ordering ..54

7.4.2.3 Grouping Expressions to Give Hints to the FastObjects
Query Optimizer...54

7.4.2.4 Not Using Unsupported Term Transformations...54

7.4.2.5 Avoiding Projections With Large Result Collections in OQL
Queries ..55

7.4.3 Tracing the Query Execution...56

7.4.4 Using Indexes for Effective Queries..58

7.4.5 Using Compound Indexes...59

7.4.6 Using Indexes for Effective Queries on Sub-Object Attributes ...59

7.4.7 Considering Query Performance vs. Update Performance
When Defining Indexes ...60

7.4.8 Choosing an Appropriate Index Significance ..60

Performance with FastObjects™ for JDO

08/11/2003

Page 4

1 Introduction
There are many ways in a Java application to store data need to live
longer than the actual execution of the program. The Java language even
provides a mechanism, called serialization, that allows you to write Java
object networks to disk. Although this is an easy way to make data
persistent, realistically it can only be used for simple object networks.
Furthermore, essential features such as transactions, recovery, and
reorganization utilities are missing. A database is needed for this.

The original idea for developing object-oriented database systems was to
overcome the "impedance mismatch" that results from the need to map
your programming data structure to a different data structure that can be
handled by a (relational) database system. This need for mapping from
one data structure (objects) to another (tables) not only costs time during
development of your application, it limits your data structure modeling
possibilities. It also slows down performance when using complex data
during runtime of the application.

With object-oriented databases data is stored using the same structure as
in your application. One data structure means you don't have to worry
about how the data will be stored or how to retrieve your objects back
from storage. If you store an object in a FastObjects database and read it
back, the object behaves as though it had never been stored. The object
you read from the database has the same identity, encapsulation,
inheritance structure, polymorphism, and references as the original
object. So you can model your data structure to perfectly fit the needs of
your application. None of the information regarding the relationship
between data is lost when storing data to database. And your objects
need not be expensively reconstructed when retrieving data back from
database.

2 General Facts to Keep in Mind
When developing applications with FastObjects, you are completely freed
from thinking about how your object data is stored and retrieved.
Nevertheless, you should always be aware that your data is being stored
to and retrieved from a database. Naturally, FastObjects databases
reside on secondary storage units (mostly fixed-disk storage). This
means that, just like for any other database system, access speed to a
FastObjects database is limited by the access speed to the secondary
storage provided by your hardware and your operating system.
FastObjects is designed to minimize this limitation and provides a great
range of sophisticated features to speed up data access in order to
accommodate the needs of your specific application.

To enable FastObjects to fully take advantage of its potential, you should
know about these features and keep them in mind when designing your
application. There is no "silver bullet" that will solve your every problem
when working with FastObjects. All of the features and tricks we present
in this paper can result in substantial improvements in performance in
specific access scenarios. However, under certain circumstances these
tuning tricks can actually slow down access speed. In this paper we will
describe these features and their positive effects but will also show the
side effects that can occur. You must determine whether the use of a

Performance with FastObjects™ for JDO

08/11/2003

Page 5

specific feature will speed up your own application or whether it actually
slows your application down.

We have identified a few common problems that can significantly restrict
the potential of FastObjects:

! Using an inappropriate (not object-oriented) database schema

! Performing unnecessary read and write operations

! Performing too many client/server calls

! Keeping unnecessary objects in memory

! Using transactions that are too large or too long lasting

! Using an inappropriate access method

! Building and maintaining too many indexes

These points will be discussed in the following sections.

2.1 Using an Inappropriate (Not Object-Oriented) Database
Schema

An object database is a database that fully supports the object-oriented
programming model. Like an object-oriented programming language, an
object database is designed to express the relationships among data.
And, like a conventional database, an object database is designed to
manage large amounts of persistent data.

FastObjects is a true object database. It only makes sense to model your
object data as a true object-oriented data-model. Much of FastObjects'
power comes from the ability to represent complex object networks in the
database on a one-to-one basis. When trying to simplify complex
interrelationships between objects by modeling a less complex database
schema, much of the benefits of using FastObjects is lost. In such cases,
you must reconstruct the complexity of the object network in your
application. And that means more effort in work and time for development
and loss of application speed resulting from having to process the
reconstruction. Simplifying the data-model can have the negative
consequence of making many of the FastObjects features inappropriate
or unavailable to you. FastObjects must maintain certain data constructs
and perform background administrative tasks and this, of course,
consumes some amount of memory and time. If your design does not
allow you to make use of these features these administration efforts are
unproductive.

Relational databases do not provide those features simply because they
do not have the power to make any use of them. This can lead to the
impression that an object database is slower than a relational database–
that is, when you simply try to transfer the data structure you developed
for a relational database to FastObjects. From a technical point of view,
this is no problem. But to consider working with FastObjects as a simple
transfer is a false beginning and will not allow you to fully embrace
FastObjects. Optimized work with FastObjects begins with, and highly
depends on, developing an optimal database schema, one that
represents your object model in the same way you will later work with the
objects in your application.

Performance with FastObjects™ for JDO

08/11/2003

Page 6

2.2 Performing Unnecessary Read and Write Operations

2.2.1 Writing Objects

As pointed out earlier, access speed to a FastObjects database is limited
by your hardware and operating system capabilities to access secondary
storage. When you write an object, you are making a secondary storage
access. In fact, only objects that were newly created or objects that were
modified must actually be written. The FastObjects JDO Binding
automatically identifies the modified objects in your object network and
makes sure that only these objects are written to database. This is one of
the major advantages of the FastObjects JDO Binding because you as
the application designer need not be concerned about database tasks.

2.2.2 Reading Objects

Reading objects from a FastObjects database does not necessarily mean
that the entire object data content is always read from secondary storage.
The FastObjects JDO binding provides an automatic transaction cache to
cache objects that were read into memory. Its main task is to provide
object identity, that is to ensure that every object has just one
presentation in memory.

However, this cache only works for one specific client at once, because it
is located on the client side. If your application has a client/server
scenario where several clients are connecting to one or more servers,
this cache management cannot be used, because data integrity is not
ensured across the different client caches. For such scenarios
FastObjects provides a sophisticated cache management system to keep
the caches of the involved clients in synchronization. This feature is
called Active Java Cache. It will be discussed in depth later in this article.

2.2.3 Performing Too Many Client/Server Calls

One of the most common uses of a database is the sharing of data
among concurrent users. For this purpose, client/server scenarios are set
up where one database server provides the requested data to many
different applications. These applications may be running on the same or
on different computers. The freedom of storing the data in one place and
accessing it from anywhere is obtained with some administration effort.
That naturally means a loss in performance compared to direct database
access. This is especially true when applications operate via networks.
The number of client/server calls can, and should, be minimized by
reading and writing groups of objects rather then to read and write every
object individually. FastObjects provides a range of features to bundle
server calls. They will be discussed later in this article.

2.2.4 Keeping Unnecessary Objects in Memory

Every object loaded into memory consumes a specific amount of RAM
space. Too many objects can cause the system to run low on RAM space
and to begin swapping data to secondary storage. This can significantly
slow the application. Strict memory management is therefore essential for
high performance application execution. The Java programming language
provides a garbage collection mechanism to automatically remove
objects from memory that are no longer referenced. However you should

Performance with FastObjects™ for JDO

08/11/2003

Page 7

pay attention that the garbage collector can do its work by immediately
releasing references to objects that are no longer needed by your
application. You can help the garbage collector by explicitly marking
objects that are not needed, allowing FastObjects to remove them from
the cache. This will also be discussed.

2.3 Using Transactions that Are Too Large or Too Long
Lasting

Transactions are series of operations that succeed or fail as a unit.
Transactions allow you to tell FastObjects to make changes to a
database tentatively and to save or abandon any series of changes as a
whole. In this sense, transactions are responsible for data integrity. With
the FastObjects JDO Binding, you always need to use transactions for
accessing objects from the database.

Large transactions are transactions that contain many objects. They will
likely require much memory, thus slowing down the application as pointed
out in the previous section. The memory consumption during the lifetime
of the transaction, and especially during commit, increases with the
number of modified objects.

Long lasting transactions are transactions with a long duration period.
They can become a performance problem when they are holding locks to
objects that other transactions try to write. As long as one or more
transactions hold read locks to an object, no other transaction is allowed
to modify this object. And maybe even worse, as long as the long lasting
transaction holds a write lock to an object no other transaction is allowed
to read it.

2.4 Using an Inappropriate Access Method

FastObjects provides many techniques for accessing objects. In principle,
two types of access methods can be defined: relationship-based and
value-based access. As FastObjects is an object database, following
object relationships (i.e., references) will always provide the best
performance. Value-based access should generally only be used to
retrieve a “root object” or some other entry point to an object network and
following relationships should then be used to access related objects.
These access methods are discussed in the following sections.

2.4.1 Using Queries Instead of Alternative Access Methods

As an object database, FastObjects holds the complete description of
your classes and objects, their data and their relationships. Therefore, the
natural and fastest way to access a specific object is by direct navigation
through the object network based on the relationships between the
objects.

A value-based access method, in contrast, does not make any use of the
modeled relationships. With value-based access, one or more specific
objects will be retrieved based on whether the values of its data-members
meet a certain condition. Relational database systems lack the capability
for direct navigation. In such systems all data must be accessed using the
value-based method. For many application designers who are not
experienced in using object databases, this seems to be the natural way.

Performance with FastObjects™ for JDO

08/11/2003

Page 8

So, often unnecessary queries are used to access data. Access based on
direct navigation is simply overlooked.

There are situations, even when using an object database, when objects
must be accessed on the basis of the values of their data-members. A
query is just one technique used for returning all occurrences of objects
satisfying the query specification. FastObjects provides a range of
features for value-based access of objects. These features include
finding objects by their object ID or by key values, filtered extents for
specific classes and executing queries. Finding objects by key values
requires that indexes be defined. Filtering extents and queries do not
necessarily need a defined index but can make use of one. In many
cases, the find and filter methods provide much better performance than
using queries.

2.4.2 Defining Too Little or Too Many Indexes

When objects have to be retrieved by their member values, using indexes
can be much faster than working without them. Finding objects by key
values and filtering extents do not even work without a defined index.
Queries can also be faster when using indexes. But a significant
performance improvement of the application as a whole is not necessarily
guaranteed. Every change in the value of an indexed data-member of an
object, every creation of a new object which an indexed data-member
and every deletion of an indexed object causes an update of the index.
This is necessary to ensure that the index always contains the
appropriate objects at any given time. Otherwise, searches or queries
based on the index cannot be insured to return all valid objects. Index
updates are carried out automatically by FastObjects. Although
automatic, updates are not instantaneous and take time.

You should think carefully about every index in your object model. It is
true that indexes speed up value-based access to objects. But keeping
the index up-to-date slows down write operations. You must find the
optimal number of indexes for your application to balance these two
conflicting aspects.

Often, it is difficult to anticipate the optimal index strategy for an
application during the design phase. FastObjects provides a powerful
schema versioning functionality that allows you to make changes to the
schema (including indexes) even after product deployment. This gives
you the opportunity to fine-tune your indexes using real-life data.

For more information on index definition, maintenance and optimization
please refer to section 9 of the FastObjects™ Administration Guide.

3 Example Object Model
The proper design of the object model is at the heart of any well-running
application. To assist the process of designing the object model, a
graphical representation of the object model can be created using a
CASE tool. Among the case tools that can automatically generate a
FastObjects database schema are Rational Rose and OEW. The
following is a sample object model that will be referenced throughout this
paper.

Performance with FastObjects™ for JDO

08/11/2003

Page 9

The object model represents a School Enrollment System. The available
courses have an id to uniquely identify them, a name and it is noted at
which day in the week at which time they are taking place. They
reference the instructor that will teach the course and the students that
attend this course. They also reference the room in which they will take
place. Each room has its name and the capacity noted. Every person
involved in the school enrollment has a first name, a last name, its
birthday and its gender as members. They also have a reference to an
image and to an address object. This address object holds the street, the
zip code, the city and the state where the person resides. A person can
be a student or an instructor. An instructor can teach one or more
courses. The courses an instructor actually teaches are referenced by
each Instructor object. A student can be enrolled in one or more courses.
The courses a student actually attends are referenced by each Student
object.

In the following sections we will present and discuss various features that
FastObjects provides. Based on the school enrollment example, above,
we will show when using a specific feature is advisable and when it is not
recommended.

4 Optimizing the Database
Schema

FastObjects gives you complete freedom in designing your object model.
Nevertheless, with regard to performance, you should consider some
things when creating your object model. The proposals we present in the
next sections are by no means to be interpreted as limitations to your

Image
blobImage : com.poet.jdo.Blob

Address
street : String
zipCode : long
city : String
state : String

Person
firstName : String
lastName : String
birthday : String
gender : char

-picture

Has a

-address

Lives at

Student Instructor

Room
name : String
capacity : long

Course
id : long
name : String
dayTime : String

0..*

0..*

-studentSet 0..*
{java.util.HashSet}

-courseSet 0..*
{java.util.HashSet}

Enrolled in

0..1

0..*

-instructor0..1

-courseSet0..*
{java.util.HashSet}

Teaches

-room

Location

Performance with FastObjects™ for JDO

08/11/2003

Page 10

freedom to design your object model to fit your needs. But when
performance is essential, you should be aware of the following in your
object model designas a way to help FastObjects run at its optimum.

4.1 Avoiding Redundant Information in the Object Model

In general you should avoid having redundant information in your object
model. On the one hand, this makes your object model more complex
than it needs to be and on the other hand it results in more objects that
must be written to or retrieved from the database.

There are, of course, special situations where redundant information
could otherwise help avoiding frequent database accesses. If, for
example, the sum of an invoice is stored in the database, it could prevent
the necessity to iterate every invoice record each time its sum is needed.

4.2 Use a Minimum Number of Classes in Your Object
Model

One thing you should consider during design phase is the granularity of
your object model. For every object in the database FastObjects has to
perform maintenance efforts. The object gets an own object identity, a
special collection type to hold all objects of a specific class, called an
extent, is maintained, relationships among objects must be maintained,
etc.

You should carefully think about whether the objects you are going to
design are really objects that need to have an own identity in your
application or whether they are objects that have only a "value character".
This means, these objects only make sense in a certain context and will
be accessed solely through another specific object. In this case, the
object has no stand-alone character, it depends on a specific other
object. You should think about integrating those objects in the objects
they depend on or to model them as embedded objects, so-called
second-class-objects. You will find an in-depth discussion of second-
class-objects later in this article.

4.3 Declare Which Object Data-members Really Need to
Be Persistent

You should avoid making data-members persistent that are transient in
nature. If you make these data-members persistent, your objects will be
larger than necessary and writing and reading will take longer.

Imagine in our School Enrollment Example we have a data-member in
each Person object to represent the age of that specific person. It does
not make any sense to store this data-member because the age of a
person depends on the current date. You should instead define the age
data-member as transient and compute its effective value at the time
the Person object is requested. For such purposes JDO provides the
InstanceCallback Interface. You can use its jdoPostLoad()
method, which will be executed just after loading of the objects data to
calculate the age of the Person by subtracting birthdate from the current
date.

Performance with FastObjects™ for JDO

08/11/2003

Page 11

4.4 Using Backward References With Indexes Instead of
Large or Changing Collections

The standard Java collections are optimized for memory operations.
These collections load all item references into memory at once and
construct hollow objects for every referenced item. This causes
performance problems when collections containing a large number of
objects are used as class members.

If the application's object model contains a class which holds a large
collection of references to other objects, and elements of the collection
are frequently being added and removed, the continuous resizing of
objects of this class can slow down your application. In such cases it is
not advisable to directly express such a relationship in the application
implementation by defining a collection of object references as a member
of the respective class.

Instead, it is a good alternative to express this relationship more
indirectly, keeping indexed backward references from the elements to
their "owners" instead of keeping forward references from the collection
to its elements. The ability for the object to recall all of the (former
collection) elements can be implemented using FastObjects' extents or
query capabilities finding the respective objects at the time when they are
needed.

FastObjects is able to maintain indexes on object identity. This feature
allows the placement of an index on an object or a collection of objects,
and is recommended when requiring fast retrieval using a query on
attributes of an aggregate relationship.

For instance, in our School Enrollment Example, consider the number of
students participating in a particular course. Such a collection can
become very large. Since we designed our model to keep a collection of
all participating students in every Course object this can lead to poor
performance when accessing Course objects.

public class Course {

 long id;

 String name;

 String dayTime;

 java.util.HashSet studentSet;

};

It may be a good solution to only hold a collection of references to the
Courses in every Student object and define an index on the collection
elements.

public class Course {

 long id;

 String name;

 String dayTime;

};

Performance with FastObjects™ for JDO

08/11/2003

Page 12

public class Student {

 java.util.HashSet courseSet;

};

Additionally an index on the object identities of the courseSet elements
is defined in the Student JDO metadata file:

<class name="Student">

 <extension vendor-name="FastObjects" key="index"

 value="CourseIndex">

 <extension vendor-name="FastObjects" key="member"

 value="courseSet"/>

 </extension>

</class>

If you need to look for all students participating in a particular course, you
need only to set a filter on the Student Extent or to perform a query.
The index allows filtering and accelerates a query for all Student objects
that hold a particular Course object.

Using an indexed extent, for example, finding all students participating in
a particular course course can now be done by defining an appropriate
iterator:

// assuming pm represents the current PersistenceManager

Transaction txn = pm.currentTransaction();

txn.begin();

Extent students = pm.getExtent(Student.class,true);

// get an iterator of all students participating in a particular course

// using the CourseIndex index

// assuming course is the Course object we search all students for

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(students,"CourseIndex",course,true);

// do something useful with the iterator

. . .

txn.commit();

4.5 Using Backward References Instead of Queries

In our School Enrollment System, suppose the application requires that
all the courses be listed that take place in a particular room named "A-
1001". Since our object model only includes references from courses to
rooms but not the other way around, we have to use a query to find all
courses being held in a specific room. A query can be constructed
through the Course extent.

Performance with FastObjects™ for JDO

08/11/2003

Page 13

The query in JDOQL would look like:

Extent extentCourse = pm.getExtent(Course.class,true);

Query aQuery = pm.newQuery();

aQuery.setFilter("room.name == \"A-1001\"");

aQuery.setCandidates(extentCourse);

aQuery.setClass(Course.class);

java.util.Collection result = (java.util.Collection) aQuery.execute();

The requirement to list all the courses in a particular room can also be
achieved by programmatically maintaining a collection of backward
references from the Room to the Course class. The drawback to
maintaining a backward reference collection is that the data integrity must
be ensured programmatically and two objects must be modified for each
assignment. On the other hand, if the number of courses is great but only
very few of them actually take place in a particular room, maintaining a
collection of backward references may improve performance.

public class Course {

 . . .

 Room room;

};

public class Room {

 . . .

 java.util.HashSet courses; // Set of references

};

4.6 Using Embedded Objects

In our School Enrollment Example, the Person class has a reference to
an instance of Address. In this model, multiple Person objects may
share a single Address instance. However, if addresses are not shared
between different persons, a performance gain can be had by embedding
the Address instance. Embedded objects are not referenced but are a
part of the containing object. In JDO, an embedded object is called a
second-class-object or SCO. The containing object is a first-class-object
or FCO. FCOs have object identity, SCOs do not.

class Address { // Address does not have to be persistence capable

 . . .

 String street;

 long zipCode;

 String city;

 String state;

}

Performance with FastObjects™ for JDO

08/11/2003

Page 14

If a Person instance never has more than one address, you could
embed the Address object directly, as a single instance:

class Person {

 . . .

 Address address;

}

You declare objects as embedded by declaring the whole class as
embedded.

Definition in the Address JDO metadata file:

<class name="Address">

<extension vendor-name="FastObjects" key="embedded" value="true">

 </extension>

</class>

The basic difference between embedding an object or an object collection
and referencing an object or an object collection is, that embedded
objects don't have any object identity. Even if the embedded object is an
instance of a persistence capable class, the embedded object is stored
without an object ID and will not be found in the class extent. If the
container object (a Person object in the example) is deleted, any
embedded objects are deleted as well because they are a part of the
container object. An embedded object cannot be shared between
different container objects, as it belongs to its container object.

Apart from a logical mapping, embedding objects into container objects
can help to increase database performance:

! When a container object is loaded in memory from the database, the
embedded objects are automatically retrieved as well. They are not
handled as separate objects that are referenced outside the container
object. Embedded objects are correctly reflected in the logical
database storage as well—they are not stored in a different cluster but
are stored together with the container objects.

! In object models where embedded objects are always required by the
container object, retrieving embedded objects together with the
container objects will help to improve performance because less IO
communication is required. This becomes even more obvious in a
network environment where every network call is expensive.

! Embedded objects do not have the "persistence overhead" of
persistent objects on disk.

! No class extent is involved when storing or deleting the embedded
objects.

! You do not have to assign embedded objects to the database.

! Locks cannot conflict across embedded objects.

Performance with FastObjects™ for JDO

08/11/2003

Page 15

4.7 Using Java Collections As Data-members

FastObjects JDO Binding supports the following Java collections and
maps: Collections, Vector, List, LinkedList, ArrayList, Set,
HashSet, SortedSet, TreeSet, Map, HashMap, Hashtable,
SortedMap and TreeMap.

You can use any of these classes as members of the classes in your
object model. In FastObjects, collection data-members will always be
treated as second-class-objects. This means, the collection itself will be
embedded in the parent object. The elements of the collection on the
other hand will by default not be embedded. When you make an object
with a collection data-member persistent, the objects that the collection
holds will also be made persistent due to the persistence-by-reachability
principle. By default, they become independent objects with their own
object ID and their membership in the collection is stored as reference.
This implies that after storing, these objects will be reachable as any
other "normal" persistent objects, an extent is maintained for their class,
etc.

When an object containing a collection data-member is retrieved from the
database, the collection is automatically reconstructed as a whole with its
elements containing references to the collection objects. These objects
will not be automatically read from the database, but for each of these
objects a hollow object will be created. The data of these objects will be
retrieved from the database at the time when the object is visited. When
iterating such a collection, one database call for every visited object will
be performed.

One exception to this rule is when you have overwritten the equals()
and hashCode() methods of the collection and use them when adding
new elements to the collection. In this case all existing collection
elements will be retrieved at once in order to be able to compare them.

4.7.1 Embedding the Collection Elements

If you do not need to access the collection objects other than through the
collection, you should consider using collections with embedded
elements. The objects contained in the collection will, in this case, not
become independent objects but will be embedded in the collection. This
implies that they will have no object ID, no extent will be maintained, etc.
They will only be reachable through the respective collection. When an
object containing a collection data-member with embedded elements is
retrieved from the database this means, the collection with all its
elements altogether with their data will be created at once.

This can lead to significant performance gains for both storing and
reading objects with collection members. FastObjects need not maintain
the object identities for all the collection objects and all objects will be
read at once, which can be an advantage especially in client/server
environments.

But, if the collection grows large, embedding its elements can lead to a
performance loss, because the application must wait until all objects are
read. This may slow down your application without having any advantage
if you do not need all of the collection objects. And, also remember,
embedded collection elements can not be referenced from anywhere

Performance with FastObjects™ for JDO

08/11/2003

Page 16

else, they only exist in the collection and are only accessible through the
collection.

In our School Enrollment Example suggest a person could have more
than one address. You can use a collection data-member to hold all
addresses for every person. For example, a HashSet of Address
instances.

class Person {

 . . .

 HashSet addressSet;

}

Collections are rarely, if ever, referenced by multiple objects. In all but
exceptional cases, a collection object is the sole “property” of a single
referencing object. Therefore, by default, a collection is a second-class-
object in FastObjects for JDO. In the example above, a HashSet of
Address objects are directly embedded in the container class Person.
In this case, it is the HashSet object that is embedded in the Person
object.

For embedded collections, the default behavior is that the collection
elements (the Address objects in the example) are normal persistent
objects in the database, referenced by the collection. However, you can
also instruct FastObjects to embed the collection elements. This makes
the entire collection, including the objects in the collection, an embedded
part of the containing object. You declare elements in a collection as
embedded the same way you declare objects as embedded by defining
the whole class as embedded.

Definition in the Address JDO metadata file:

<class name="Address">

 <extension vendor-name="FastObjects" key="embedded" value="true">

 </extension>

</class>

4.7.2 Implementing Your Own Collection Class

You can prevent the collection from being stored as a second class
object by writing your own collection class. This can be a simple wrapper
class for one of the standard collection classes, for example.

Performance with FastObjects™ for JDO

08/11/2003

Page 17

class MyHashSet implements Set

{

 private HashSet hashSet = new HashSet();

// you must implement all Set methods: add, addAll, clear,

// contains, containsAll, equals, hashCode, isEmpty, iterator, remove

// removeAll, retainAll, size and toArray

// Example:

 public boolean add(Object o)

 {

 return hashSet.add(o);

 }

. . .

}

When you retrieve the parent object, only a hollow object for the
collection is created and the time for reconstruction of the collection and
creation of the hollow (collection element) objects is saved. This can be
effective when the parent object contains other data, besides the
collection, that might be needed more often then the collection itself. On
the other hand, this approach means that the collection object will appear
in the database as an independent object with its own object ID and will
be accessible from anywhere, not only through its parent object.

4.7.3 Creating Your Own java.util.Map Implementation

When using large maps, you run into the same problems as with using
other large collections. An alternative approach for maps is to create your
own java.util.Map implementation and a helper class, that stores
data triples: the owner object (this is the object the map belongs to), the
key and the value of the map entry. Also, you have to define a compound
index on the owner and the key. If you want to read one of the map
entries, you can do a findKey() on the owner and the key and return
the value. The drawback of this approach is that map entries will only
appear in the map after commiting the transaction where they were
created. They are not searchable immediately after creation but only
when they have been written to the database.

Suppose in our School Enrollment Example we want to maintain a list of
seminar papers for every student and want to be able to find them by
keywords. We can implement this using a Map.

class Student

{

. . .

Map seminarPapers;

}

Performance with FastObjects™ for JDO

08/11/2003

Page 18

This map can grow large, if many keywords are applied to every seminar
paper. An own Map implementation could look like this:

The helper class:

class MyMapImpl

{

 private java.lang.Object owner; // the Person object

 // the map belongs to

 private String key; // we want to use keywords as keys,

 // therefore we define the key as string

 private java.lang.Object value;

// you must implement the set and get methods for the private members

. . .

}

The compound index MyMapImplIndex on the MyMapImpl class,
specified in the MyMapImpl JDO metadata file:

<class name="MyMapImpl">

 <extension vendor-name="FastObjects" key="index"

 value="MyMapImplIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="owner"/>

 <extension vendor-name="FastObjects" key="member"

 value="key"/>

 </extension>

</class>

The own map class:

class MyMap implements java.util.Map

{

// constructors

// this constructor must be called in the constructor

// of the Student object

public MyMap() {}

// you must implement all Map methods: clear, containsKey,

// containsValue, entrySet, equals, get, hashCode, isEmpty, keySet,

// put, putAll, remove, size and values

Performance with FastObjects™ for JDO

08/11/2003

Page 19

// The get method

 public java.lang.Object get(String key)

 {

// get the current persistence manager

 javax.jdo.PersistenceManager pm =

 javax.jdo.JDOHelper.getPersistenceManager(this);

// get the MyMapImpl extent

 javax.jdo.Extent myMapImpls = pm.getExtent(MyMapImpl.class,true);

// get an MyMapImpls iterator using the MyMapImplIndex

 java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(myMapImpls,"MyMapImplIndex");

// get the requested object by findKey()

// using the owner and the map key as keys

 boolean b = com.poet.jdo.Extents.findKey(iter,

 new java.lang.Object[]{this,key});

// return the map value if found

 if (b)

 {

 return ((MyMapImpl)

 com.poet.jdo.Extents.current(iter)).getValue();

 }

 else

 {

 return null;

 }

 }

// The put method

 public java.lang.Object put(String key,java.lang.Object value)

 {

// get the old value object for return purposes

 java.lang.Object oldValue = this.get(key);

// delete the old map entry

 this.remove(key);

// set the new value object

 MyMapImpl myMapImpl = new MyMapImpl();

 myMapImpl.setOwner(this);

 myMapImpl.setKey(key);

 myMapImpl.setValue(value);

 javax.jdo.PersistenceManager pm =

 javax.jdo.JDOHelper.getPersistenceManager(this);

 pm.makePersistent(myMapImpl);

 return oldValue;

 }

}

Performance with FastObjects™ for JDO

08/11/2003

Page 20

A new map entry can now be set in the following manner:

// assuming student is the Student object where we want to put

// a seminar paper "paper" and "JDO" is the keyword

SeminarPaper oldpaper = (SeminarPaper)

 student.seminarPapers.put("JDO",paper);

If you need to search for a seminar paper with a specific keyword, you
can do this in the following manner:

// assuming student is the Student object where we search

// for a seminar paper and "JDO" is the keyword

SeminarPaper paper = (SeminarPaper)student.seminarPapers.get("JDO");

4.8 Not Using Non-persistent Capable Data-members

Non-persistence capable class types such as GregorianCalendar can
be stored in a FastObjects database when they are serializable. This is
sometimes necessary but you should think carefully about using this
feature.

Serialized object (sub-)networks can only be written and read as a whole.
This may cause heavy network transfer and time consumption during
read and write operations.

Persistent object identity is preserved only for objects of persistence-
capable classes. Objects of non-persistence-capable classes have no
persistent object identity and are stored as separate instances in a
serialized object network. Therefore when two or more persistent objects,
referencing the same non-persistent object network are stored, the
referenced non-persistent object network is serialized as two separate
networks. When the persistent objects are read, memory contains two
instances of the non-persistent network.

Members of serialized object (sub-)networks cannot be queried and
cannot be indexed, thus filtering and searching methods are not
available.

5 Using Transactions
Transactions are series of operations that succeed or fail as a unit.
Transactions allow you to tell FastObjects to make changes to a
database tentatively and to save or abandon any series of changes as a
whole. In this sense transactions are responsible for data integrity. When
using the FastObjects JDO Binding, you always need to use transactions
for accessing objects from the database.

Any persistent object undergoes a certain lifecycle. At one point in time it
is created, then it is stored, eventually is retrieved back, modified, written
back to database one or more times, and finally is deleted. This lifecycle
can be described in terms of the states of the object together with well
defined state transitions. The object's state describes how the object
behaves and the state transition describes from which state to which
other state an object can change.

Performance with FastObjects™ for JDO

08/11/2003

Page 21

The state of an object depends on two aspects: 1) what was the object's
state before state transition, and 2) what operation was done on that
object. The second aspect contains all explicit operations on an object,
like reading or modifying data-members and implicit operations on an
object caused by transaction operations like begin() or commit(). The
transaction performs implicit operations on the objects and changes the
states of the objects to control that all objects in a transaction will be
written to the database at once or not at all.

It is important to understand the object lifecycle and how it is influenced
by transactions to understand how objects behave in your application.

5.1 Object Lifecycle

The JDO specification defines seven required states and the associated
state transitions. At any point in time a persistent object has exactly one
of the states described below.

5.1.1 Object Lifecycle States

The seven required states of an object are: transient, persistent-new,
persistent-dirty, hollow, persistent-clean, persistent-deleted and
persistent-new-deleted. These are described in the following sections.

5.1.1.1 Transient

When an object of a persistence capable class (i.e., objects of this class
can be made persistent) is in transient state, it resides only in the memory
of the Java Virtual Machine and behaves like any other object of any
Java class, persistence capable or not.

5.1.1.2 Persistent-new

An newly constructed object of a persistence capable class is made
persistent in the current transaction using
PersistenceManager.makePersistent(). Such objects are in the
state persistent-new. They reside only in the memory of the Java Virtual
Machine. They have an object identity and, because of persistence-by-
reachability, objects that are reachable from these objects are also given
identity.

5.1.1.3 Persistent-dirty

Persistent-dirty objects are objects that represent persistent data that was
changed in the current transaction.

5.1.1.4 Hollow

Objects that represent persistent data, but whose data-member values
have not been read from the data store, are in a hollow state. Hollow
objects have their object identity loaded, but not the values of their
persistent data-members. The hollow state provides for the guarantee of
uniqueness for persistent objects between transactions.

Objects committed in a previous transaction, returned by iterating an
Extent, returned in the result of a query execution or navigating an
object reference are also initially hollow.

Performance with FastObjects™ for JDO

08/11/2003

Page 22

5.1.1.5 Persistent-clean

Objects that represent persistent data and whose values have not been
changed in the current transaction, are persistent-clean. This is the state
of an object whose data-member values have been retrieved from the
database have not been changed in the current transaction.

5.1.1.6 Persistent-deleted

Objects that represent persistent data and that have been deleted in the
current transaction are persistent-deleted.

5.1.1.7 Persistent-new-deleted

Objects that represent objects that have newly made persistent and
subsequently deleted in the same current transaction are persistent-new-
deleted.

5.1.2 Object Lifecycle State Transitions

There are about fifty defined state transitions in the JDO specification. We
will only treat a few important ones that occur during typical operations on
objects. Please refer to the JDO specification to learn about the other
state transitions.

5.1.2.1 Creation of Objects

When you first create an object of a persistence capable class, this object
is not persistent but rather in the transient state and behaves like any
other Java object.

5.1.2.2 Storage of Objects

When you make an object an object persistent using the
makePersistent() method of the PersistenceManager, the object
state changes from transient to persistent-new.

This does not mean that the object is written to the database. It is only
marked that it shall be written to the database. The actual writing occurs
upon successful transaction commit and the object's state is changed to
hollow.

5.1.2.3 Retrieval of Objects

By default, objects will always be retrieved from the database in the
hollow state. This means that an object will be constructed in memory
that represents the object stored in the database but is not filled with its
data. When the first of the object data-members is accessed, the data will
be retrieved from the database and the object's state is changed to
persistent-clean.

5.1.2.4 Modification of Objects

If one or more of the object data-members is changed, the object's state
is changed to persistent-dirty. This marks the object as modified which
indicates to the transaction that the object must be written back to the
database at transaction commit.

Performance with FastObjects™ for JDO

08/11/2003

Page 23

5.1.2.5 Deletion of Objects

A persistent object can only be deleted using the deletePersistent()
method of the PersistenceManager. At the time the method is called,
the object's state is changed to persistent-deleted. The actual deletion
takes place only on transaction commit.

5.2 The Transaction Cache

FastObjects has an automatic transaction cache that minimizes read and
write operations, as opposed to JDBC™ and relational databases, where
the application developer is responsible for the read/write operations, and
Java Serialization, where object networks are always read and written
completely.

Each persistent object has an object ID. This ID is used by the database
to uniquely identify the object beyond its lifetime in transient memory.

The application developer usually does not need to worry about object
IDs. Although IDs may be used to retrieve objects from the database, the
preferred approach is to retrieve objects by walking through extents, by
executing queries, or by direct navigation (traversing references). The
transaction cache maintains a table for mapping object IDs to objects.
This table is used to reconstruct references when objects are loaded from
the database, and to make sure that every object is loaded only once.
Consider the case where two parent objects point to the same child
object, and the two parent objects are read independently. When reading
the second parent object, the transaction cache figures out that the child
object has already been constructed and the parent-to-child reference is
set accordingly.

The database holds references only to application objects within its
transaction cache. The database never references an application object
outside a transaction.

An object may enter the transaction cache in the following ways:

! A makePersistent() operation is executed with the object as an
argument.

! A reference to this object is read from the database.

! The object becomes persistent due to persistence by reachability.

! A reference to an object is reused in a new transaction when both the
old and new transactions were created as part of the same
persistence manager.

Thus, transient objects that have just been allocated by a new operation
are not considered part of the transaction cache.

An object leaves the transaction cache when:

! The transaction is terminated (by committing or aborting the outmost
level).

! An object residing in the transaction cache is eligible for garbage
collection if no application helds any strong reference to it. If such an
object is garbage collected it leaves the transaction cache.

Performance with FastObjects™ for JDO

08/11/2003

Page 24

5.3 Reading and Writing Objects in Transactions

When you read an object from the database, the transaction obtains a
read lock for the object. This tells FastObjects that the object is in
memory and that it is being viewed by this transaction. Attempts by other
transactions to make changes to this object need to wait until the object is
no longer being viewed.

When you modify the object, the transaction attempts to obtain a write
lock. The write lock informs the FastObjects database engine that this
object is going to be modified, and that no other transaction should see it
until the changes are written back to the database.

It is important to keep this automatic locking in mind when working with
objects in transactions. Each time you read an object, the transaction
attempts to lock it. When you modify an object the transaction first
attempts to obtain a write lock on the object. This can fail if the object is
being viewed (a read lock exists) in one or more other transactions. This
then results in an exception.

The locks are obtained at the moment the object is read or is written but
the read locks are not released until transaction commit (or rollback).

5.4 Transaction Duration

5.4.1 Long Lasting Transactions

Long lasting transactions can become a performance problem when they
are holding locks to objects that other transactions try to write. As long as
one or more transactions hold read locks to an object, no other
transaction is allowed to modify this object. And, even worse, when you
modify an object, the transaction obtains a write lock, so that no other
transaction can access that object for either reading or writing.

You should try to narrow the duration of your transactions. This is
especially true for transactions where objects are written. You should
check if it is possible to split transactions. Use longer lasting transactions
only for reading objects and shorter transactions that write objects.

The PersistenceManager keeps references to objects between two
transactions. Therefore if you use the same PersistenceManager you
can use the objects you load in one transaction in a new transaction.
Here is an example:

// assuming pm the current PersistenceManager

Extent nodes = pm.getExtent(Node.class,true);

Transaction txn1 = pm.currentTransaction();

txn1.begin();

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(nodes,“NameIndex”);

boolean found = com.poet.jdo.Extents.findKey(iter,“root”);

Performance with FastObjects™ for JDO

08/11/2003

Page 25

Node root = (Node) com.poet.jdo.Extents.current(iter);

Node subTree = root.getChild(1).getChild(2).getChild(3);

txn1.commit();

Transaction txn2 = pm.currentTransaction();

txn2.begin();

subTree.name = "0.1.2.3";

. . .

txn2.commit();

pm.close();

Note that in the intermediate step, after committing one transaction and
before beginning the new one, FastObjects is quiet. It does not keep
strong references or locks in memory. This means that another process
or client or thread may have altered the objects. For this reason, the
object's data is refreshed when it is accessed in the following transaction.

5.4.2 Short Transactions

When your applications consists of numerous fine-grained transactions, it
may be difficult or require too much memory to navigate to a particular
object.

If you use the same PersistenceManager, the FastObjects JDO
Binding automatically checks when the object of a former transaction is
accessed for the first time in a new transaction. If it can be reused,
FastObjects refills the object with valid data from the database. Checking
is done because the object might have been changed after the first
commit. For example, it checks whether the transaction to which the
passed object was assigned has been deleted and whether it belonged to
the same database. If everything is correct, the object enters the
transaction cache of the new transaction.

5.5 Transaction Size

5.5.1 Large Transactions

Large transactions are transactions that contain many objects. Such
transactions can require large amounts of memory. The memory
consumption during the lifetime of the transaction, and especially during
commit, increases with the number of modified objects. If you are using
very large transactions, you may want to see if it is possible to split them.
Alternatively you may use the solutions described in Using Checkpoints
and Using Autoflush during Commit.

Transactions cache all objects that were modified until the transaction is
committed or rollbacked to ensure data integrity. The FastObjects
transactions are designed to be scalable with respect to the number of
objects involved, so it is not a problem to have thousands of objects
involved in a single transaction. The drawback is memory consumption.

Performance with FastObjects™ for JDO

08/11/2003

Page 26

For this reason, the FastObjects JDO Binding provides operations to
intentionally remove objects from the transaction cache:
PersistenceManager.evict() to remove a single object from the
cache, and PersistenceManager.evictAll() to remove several
objects at once.

Objects can be evicted only if they have not been modified (i.e., its state
is not Dirty). Therefore, objects are typically evicted after a checkpoint
operation, which flushes their content, clears the dirty flag and sets the
object's state back to Hollow.

The strategy of using large transactions, using checkpoints to flush data
while maintaining the transaction cache (see section Using Checkpoints
in Transactions), and occasionally evicting objects is often applied when
browsing data. Selecting the candidates that should be evicted is not
always easy, especially if complex object network structures are involved.
But in cases such as walking linearly through an extent, the strategy is
optimal:

// assuming pm the current PersistenceManager

Extent students = pm.getExtent(Student.class,true);

Transaction t = pm.currentTransaction();

t.begin();

java.util.Iterator iter = students.iterator();

while(iter.hasNext())

{ // assuming you have defined a toString() method for Student

 Student student;

 student = (Student) iter.next();

 System.out.println(student);

 pm.evict(student);

}

t.commit();

pm.close();

5.5.2 Small Transactions

However, having many very small transactions may result in poor
performance. Starting a transaction implies some administration
overhead in FastObjects and is always accompanied by calls to the
database. These are time consuming operations—especially in
client/server environments. The same is true for commit or rollback of a
transaction, even if no objects have been modified. If you are running
very small transactions with very few objects, these administration
operations may affect the overall performance.

5.6 Commit Time of Transactions

The time required for committing a transaction increases with the number
of objects contained in the transaction. This is especially true for
client/server environments. Also, the need to maintain many indexes can
increase the commit time.

Performance with FastObjects™ for JDO

08/11/2003

Page 27

5.7 Using Checkpoints in Transactions

FastObjects supports transaction checkpoints to reduce memory
consumption during commit. Checkpoints mirror the "File Save" menu
item of typical applications. They flush all changes to the database but
keep everything open. In other words, they maintain the transaction
cache and all locks.
Checkpoints specify that an intermediate commit should be performed for
the objects being stored within a transaction. This means that the
transaction is no longer atomic, i.e. the transaction no longer acts like a
single all-or-nothing transaction, but is subdivided into smaller
transactions bounded by the checkpoints. The intermediate checkpoint
calls perform real commits and cannot be rolled back. However, for long
transactions that involve many objects, checkpoints can help to avoid
running out of memory. A checkpoint can be performed by calling the
com.poet.jdo.Transactions.checkpoint() function. When you
call the checkpoint() method, the modified objects associated with the
transaction are written to the database, but they maintain their locks.
They remain accessible after the checkpoint and will not be reloaded
when their fields are accessed after the checkpoint. In all other aspects,
calling the checkpoint() method is equivalent to calling the commit()
method of a transaction followed immediately by the begin() method of
a new one.

5.8 Using Autoflush During Transaction Commit

There is another possibility for decreasing memory consumption during
commit of large transactions. Using the autoflush transaction property,
the commit operation is internally done within a sequence of nested
transactions. This decreases the memory consumption but also increases
the execution time of the commit operation.

The following example shows how to enable autoflushing during commit:

Transaction t = pm.currentTransaction();

java.util.Properties p = com.poet.jdo.Transactions.getProperties(t);

p.put("shadowTransaction","true");

p.put("autoFlush","10000");

com.poet.jdo.Transactions.setProperties(t,p);

t.begin();

// Do something useful

. . .

t.commit();

In this example, the commit internally uses nested transactions with
10000 objects each. Try out different values of the autoflush property, to
find the optimum ratio between memory consumption and runtime in your
application.

5.9 Using Objects Outside of Transactions

Objects that participate in a transaction are, by default, inaccessible after
the transaction terminates. When a data-member of such an object is
accessed, an exception is thrown. This can be considered a harsh

Performance with FastObjects™ for JDO

08/11/2003

Page 28

restriction. It can be weakened by setting the transaction property
retainValues to true. The setting of this property indicates that
eviction of the persistent objects does not take place after transaction
commit. The state of the objects is changed to Persistent-
Nontransactional. You can read and modify data-members of those
objects outside a transaction as long as they are not accessed in a new
transaction. Of course, outside of a transaction the database connection
is lost and any changes to data-members will not be reflected in the
database.

You can only access objects outside a transaction, that were retrieved in
the transaction. Objects in the Hollow state can neither be read nor
written.

Nevertheless, it is sometimes useful to retain objects and have them
accessible after the transaction has ended. In this case, you must make
sure that the objects have been properly retrieved.

// assuming pm the current PersistenceManager

Extent students = pm.getExtent(Student.class,true);

Transaction t = pm.currentTransaction();

t.setRetainValues(true);

t.begin();

java.util.Iterator iter = students.iterator();

Student student = (Student) iter.next();

pm.retrieve(student);

t.commit();

. . .

// assuming you have defined a toString() method for Student

System.out.println(student);

pm.close();

txn.begin();

Note: The above sample code uses retrieve() to explicitly ensure the
object is retrieved from the database. This is necessary because the
attempt to access an object outside a transaction that was in the hollow
state at transaction commit will throw an exception. But even
retrieve() may not retrieve the object in all circumstances. If the
object is locked by another transaction retrieve() will throw an
exception and leave the object in hollow state.

5.10 Reusing PersistenceManager and
PersistenceManagerFactory Objects

In FastObjects, each PersistenceManagerFactory maintains a
database connection to the underlying data store. The database
connection is established when the first PersistenceManager is
returned from the PersistenceManagerFactory. The connection is
closed when the last PersistenceManager of a

Performance with FastObjects™ for JDO

08/11/2003

Page 29

PersistenceManagerFactory is closed. Since opening and closing
database connections is time consuming, especially in client/server
environments, the number of these operations should be optimized.

If possible, each client should have only one
PersistenceManagerFactory for each database.
PersistenceManager instances should be obtained from this specific
PersistenceManagerFactory.

To avoid the database connection being closed and opened again and
again, the application should ensure that at least one
PersistenceManager remains active for as long as operations are
expected on the database. In the following example, the database
connection is closed within each PersistenceManager.close() call
and reopened during
PersistenceManagerFactory.getPersistenceManager().

PersistenceManagerFactory pmf =

 com.poet.jdo.PersistenceManagerFactories.getFactory();

pmf.setConnectionURL("FastObjects://LOCAL/base");

// assuming finished() represents a condition to end the loop

while (!finished())

{

 PersistenceManager pm = pmf.getPersistenceManager();

// Do something useful

 . . .

 pm.close();

}

Reusing the same PersistenceManager avoids repeated close/open
operations:

PersistenceManagerFactory pmf =

 com.poet.jdo.PersistenceManagerFactories.getFactory();

pmf.setConnectionURL("FastObjects://LOCAL/base");

PersistenceManager pm = pmf.getPersistenceManager();

// assuming finished() represents a condition to end the loop

while (!finished())

{

// Do something useful

 . . .

}

pm.close();

Alternatively, you may specify, that the database connection is not closed
implicitly, when the last PersistenceManager is closed.

This can be done with the
PersistenceManagerFactories.setExplicitClose() method. In
this case, you have to call the

Performance with FastObjects™ for JDO

08/11/2003

Page 30

PersistenceManagerFactory.close() method to explicitly close the
database connection.

PersistenceManagerFactory pmf =

 com.poet.jdo.PersistenceManagerFactories.getFactory();

pmf.setConnectionURL("FastObjects://LOCAL/base");

com.poet.jdo.PersistenceManagerFactories.setExplicitClose(true);

// assuming finished() represents a condition to end the loop

while (!finished())

{

 PersistenceManager pm = pmf.getPersistenceManager();

// Do something useful

 . . .

 pm.close();

}

pmf.close();

When you are using the same objects in a sequence of subsequent
transactions, it is also a good idea to reuse the PersistenceManager.
In this way, the object instance of the previous transaction can be reused,
and no new instance has to be created.

6 Avoiding Unnecessary Read and
Write Operations

6.1 Automated Management of Reading and Writing
Objects

In the FastObjects JDO Binding, objects are read from the database only
when at least one of their data-members is accessed, and they are
written back to the database only when they have actually been modified.
If an object reference is passed to the application, the reference points to
an object in the Hollow state, i.e., an object of the proper class whose
memory has been allocated but not yet filled with data from the database.
When the application then accesses a data-member, a shared lock is
acquired (if concurrency control is enabled) and the actual state is
changed to Persistent-Clean (the object is retrieved).

PersistenceManagerFactory pmf =

 com.poet.jdo.PersistenceManagerFactories.getFactory();

pmf.setConnectionURL("FastObjects://LOCAL/base");

PersistenceManager pm = pmf.getPersistenceManager();

Extent students = pm.getExtent(Student.class,true);

Transaction t = pm.currentTransaction();

t.begin();

java.util.Iterator iter = students.iterator();

Performance with FastObjects™ for JDO

08/11/2003

Page 31

// returns hollow object

Student student = (Student) iter.next();

students.close(iter);

// student will be read/locked

System.out.println(student.name);

// returns hollow object

Address address = student.address

// address will be read/locked

System.out.println(address.city);

// write-lock on address

address.zipCode = 12345;

// address will be written

t.commit();

pm.close();

In nearly all cases, this transparent behavior is what the application
requires, and it is more efficient than any handwritten code.

Nevertheless, you can test the object's state with the methods defined in
the JDOHelper class. You can determine whether an object is a new
object (isNew()), whether it represents a persistent instance
(isPersistent()), whether it is associated with the current transaction
(isTransactional()) or whether it is dirty (isDirty()). It is also
possible to explicitly retrieve an object or make it dirty. This is seldom
needed except in the following cases:

! When an object is accessed or modified using the Java Reflection
API, or before serializing it

! When using the retrieveAll() method may speed up reading in
client/server scenarios

! When objects are supposed to be accessed outside the transaction
(see below)

! When you access arrays such as Object[], String[] and so on.

The object model granularity and the modeling of redundant information
discussed in the sections Avoiding Redundant Information in the Object
Model and Use a Minimum Number of Classes in Your Object Model are
the only parameters you as the application designer must be aware of.
These parameters naturally influence the number of objects that must be
written to or retrieved from the database.

Performance with FastObjects™ for JDO

08/11/2003

Page 32

6.2 Deleting Objects

In FastObjects there are, in principal, two ways to delete objects from a
database, a direct way and an indirect way.

6.2.1 Directly Deleting Objects

It is best to delete objects directly as soon as they are not needed any
longer. You should take care to also delete the referenced objects. You
can use the InstanceCallback interface method jdoPreDelete().
Instance callbacks provide a mechanism for performing user-specified
operations for specific JDO instance life cycle events. You implement the
InstanceCallbacks interface in the same manner that you implement
any interface in Java.

class Person implements javax.jdo.InstanceCallbacks

{

//...

String firstName;

String lastName;

//...

// the InstanceCallbacks methods

 public void jdoPostLoad()

 {

//...

)

 public void jdoPreStore()

 {

//...

 }

 public void jdoPreClear()

 {

//...

 }

 public void jdoPreDelete()

 {

// get the current persistence manager

 PersistenceManager pm = JDOHelper.getPersistenceManager(this);

// delete the referenced address object

 pm.deletePersistent(this.address);

// delete the referenced image object

 pm.deletePersistent(this.picture);

 }

}

Performance with FastObjects™ for JDO

08/11/2003

Page 33

If your FastObjects JDO class implements the InstanceCallbacks
interface, the FastObjects database engine automatically calls the
methods defined by the interface. The jdoPreDelete() method is
called when the application calls pm.deletePersistent(obj) and
prior to the object actually being removed from the database.

// assuming pm the current persistence manager

// and person the Person object to be deleted

pm.deletePersistent(person);

Alternatively FastObjects provides a mechanism for directly traversing, or
"walking", an object network starting from a given root object or collection
of root objects and collecting the objects of the network. You can use the
resulting collection to perform whatever operations you desire, i.e. collect
and delete all dependent objects of a given object. The following example
shows how this is accomplished:

// assuming pm the current persistence manager

Transaction txn = pm.currentTransaction();

txn.begin();

NetWalker walker = new NetWalker();

// tell the walker to collect all sub-objects

walker.setDeep(true);

// assuming person the Person object to be deleted

Collection dependentObjects =

 walker.compute(txn,person);

pm.deletePersistentAll(dependentObjects);

myTxn.commit();

6.2.2 Indirectly Deleting Objects

The second principal way to delete objects from a FastObjects database
is to use the FastObjects Java garbage collector, PtGC. Garbage
collection is a Java platform feature that removes objects from a
database that can no longer be referenced by the application. You can
run it from the command line or you can also call the
garbageCollection() method of the class
com.poet.jdo.admin.DatabaseAdministration.

There are a number of limitations that you should be aware of that can
restrict the abilities of PtGC:

! Because PtGC potentially deletes objects from the database, it
requires exclusive access. If any other clients are using the database,
garbage collection is not possible.

! To identify the deletable objects, the garbage collector checks whether
each object is reachable from any object bound to the database as a
named object or you must explicitly mark classes as having non-weak
instances by adding a weak entry under the appropriate classes
section in the Java options files:

Performance with FastObjects™ for JDO

08/11/2003

Page 34

[classes\MyPackage.MyClass]

persistent = true

weak = false

This prevents instances of classes from being deleted by the garbage
collector.

! Deleting objects using PtGC is slower than deleting objects from
within an application because PtGC has to verify for every object that
it can be deleted by following every reference to this object back to the
root to find out whether the root object is a named object or not.

6.3 Retrieving Objects

As pointed out before, in general with FastObjects, objects are read from
the database only when at least one of their data-members is accessed.
You can, however, influence the point in time when objects are read from
the database by using the techniques presented in the next sections.

6.3.1 Using FastObjects Active Java Cache

In some multi-user applications, e.g., Internet data-delivery applications, a
large number of clients are busy accessing a single database. The clients
in these applications are, for the most part, only reading the data from the
database and presenting the data in some form to the application user.
Multi-tier environments have been developed for distributing the work
involved in delivering such large volumes of data to so many users.
Typically, the database server handles data requests from a manageable
number of "application servers". Each application server, in turn, handles
the requests of many clients. From the point of view of the database
server, each application server is a request funnel and data fan-out
device. This hierarchical approach to the distribution of the data reduces
the number of client connections to the FastObjects database server but
not necessarily the number of requests to the FastObjects database
server.

To reduce the number of requests arriving at the database server, the
application server can be written to optimize its communication to the
database server. One strategy is to provide data caching at the
application server rather than at the database client side (which is
standard in a straightforward client-server scenario). This is particularly
effective if the numerous end clients that are communicating with the
application servers are often requesting the same data. When you use
FastObjects, caching at the application server is accomplished with the
Active Java Cache.

The FastObjects Active Java Cache provides a mechanism for minimizing
FastObjects database server requests in application scenarios where the
bulk of the database server traffic is read-only. The cache keeps recently
read objects locally, at the application server, so that the application
server can deliver the object without re-reading the object from the
database server. This can significantly reduce the database server traffic
for frequently read objects.

Performance with FastObjects™ for JDO

08/11/2003

Page 35

The cache is most efficient for the high-volume reading of objects.
However, the occasional need to update objects that may reside in one or
more caches must also be met. An important component of the
FastObjects Active Java Cache is a lock service that also caches the
read-locks held by the end clients. This further reduces the database
server traffic because the application server cache can grant the read
lock to additional end clients that request the object without
communicating with the database server. The lock service is notified
when a write-lock request is issued to the database server and can be
configured to revoke any read-locks that are still held by the end clients.
Cache consistency is not a concern.

The FastObjects Active Java Cache can be used transparently by the
application. There is no need to change application logic to use the
application server cache.

Note that the configuration of isolation levels and lock mode mapping is
not supported together with the Active Java Cache and lock server
usage.

The application cache is activated and configured directly in your
application code, before you open the database, by specifying the
desired cache size.

The parameter is passed by a property object as follows:

Properties cacheprops = new Properties();
cacheprops.setProperty("databaseCacheSize","5000");

// assuming pmf is the PersistenceManagerFactory
PersistenceManagerFactories.setBackendProperties(
 pmf,"fastobjects",cacheprops);

The database cache size specifies the number of cached objects and
depends heavily on the configuration and profile of your machine and
application. 5000 objects is just an example value. The cache can be
switched off by specifying a cache size of 0.

For more information on the Active Java Cache and how to use it, please
refer to the FastObjects Programmer's Guide - Java™ Platform (JDO).

6.3.2 Using Access Patterns

One way to control when objects will be loaded into memory is to use
access patterns. Many applications retrieve sub-objects following clearly
defined patterns. The rules may even be different for certain modules of
the application. Access patterns allow you to tell FastObjects—before
requesting the root object—which associated referenced objects may
also be needed. Access patterns only work in client/server architectures,
telling the server which objects are transferred together with the root
object. The referenced objects will not constructed as hollow objects but
will be filled with data immediately. The network transfer for the desired
parts of an object network is bundled and this can significantly reduce the
time necessary to access each associated object as it is used in the
application.

Suppose, in our School Enrollment example a browser screen may want
to display persons together with their address. To print the data, the
browser will always request the address after requesting a person.

Performance with FastObjects™ for JDO

08/11/2003

Page 36

Another module of the browser might display persons along with their
picture, always requesting the image. Here the definition of both the
Image and the Address object as references together with defining two
different access patterns can be useful, defining exactly which sub-
objects shall be pre-loaded for each task.

Access patterns are defined in the [schemata] section of the server
configuration file (ptserver.cfg). The access patterns for loading
Address or Image objects together with a Person object would look like
this:

[schemata\PersonDict\accessPatterns]

usedPatterns = personAddress,personPicture

defaultPreloadDepth = 2

maxPreloadObjects = 7

[schemata\PersonDict\accessPatterns\personAddress]

pattern = *.Person.address

[schemata\PersonDict\accessPatterns\personPicture]

pattern = *.Person.picture

The access patterns that you specify in the configuration file are parsed
when the FastObjects server physically opens a database. This is done
when the first PersistenceManager is obtained from a
PersistenceManagerFactory. To see how the server processes
access patterns, this configuration file entry can be used:

[debug]

accessPatterns = true

To use access patterns you must activate them. Activating access
patterns can be achieved in two different ways: automatically or from the
application. If the access pattern definition in the ptserver.cfg
configuration file defines a default access pattern, this access pattern is
activated automatically. To activate an access pattern from the
application, you have to set transaction properties:

Transaction txn = pm.currentTransaction();

java.util.Properties props = com.poet.jdo.Transactions.getProperties(txn);

props.put("accessPatternName","personAddress");

com.poet.jdo.Transactions.setProperties(txn,props);

txn.begin();

Using access patterns only makes sense in client/server architectures. If
you try to use access patterns in LOCAL mode, they will have no effect.
For more details about access patterns, refer to FastObjects™
Programmer’s Guide - Java Platform (JDO).

Performance with FastObjects™ for JDO

08/11/2003

Page 37

6.3.3 Enable immediateRetrieve When Reading Objects From
an Extent

In FastObjects 9.0 objects are retrieved from the database in hollow state
by default. This means when accessing an object through the Extent
iterator only an "envelope" object without the data is constructed in
memory. The data is reloaded, when the first data member is requested.
In client/server environments this results in two server calls for every
accessed object, one to construct the hollow object and one to retrieve
the data.

Setting the immediateRetrieve property of the Extents utility class
to true causes all objects that are accessed through the Extent iterator
to be constructed and filled with data at once. In client/server
environments this means that only one server call is performed for every
accessed object.

// assuming students is the extent of the Student class

java.util.Iterator iter = students.iterator();

Extents.setImmediateRetrieve(iter,true);

Note:
Immediately retrieving objects implies a change in the locking behavior.
Objects retrieved in hollow state will not be locked until their first data
memeber is requested. Objects retrieved in retrieved stete will be locked
immediately at construction time.

The immediateRetrieve property can alternatively be enabled globally
by using the switch
-Dpoet.extents.immediateResolve=true

when starting the Java Virtual Machine.

In FastObjects 9.5 the immediateRetrieve property is enabled by
default.

In some cases it might be advisable to disable immediateRetrieve,
either to realize a delayed locking or to prevent large amonuts of data to
be loaded when it is not needed.

6.3.4 Using setPreFetch() When Reading Elements From an
Extent

setPreFetch() is a function of the com.poet.jdo.Extents utility
class which improves the speed of retrieving objects from the database.

public static void

setPreFetch(java.util.Iterator iter,

 int numberOfObjects)

Following is a typical situation for using this function: Assume that you
want to display the first ten elements of an Extent in a list box. This
means that the first ten elements of the Extent must be retrieved from
the database. By calling the setPreFetch() method with an argument
of 10 (setPreFetch(iter,10)) the ten objects will be retrieved from
the database at once.

Performance with FastObjects™ for JDO

08/11/2003

Page 38

In a client/server environment, this means all objects requested with
setPreFetch()will be transferred from the server into the client's
memory in just one server call. This behavior will have much better
performance than requesting each of the ten objects sequentially from
the server, as it is the default behavior for retrieving objects from an
Extent. setPreFetch() only makes sense in a client/server
environment. It is ignored when operating in LOCAL mode.

To enable preFetch globally – e.g. for testing purposes – you can also
use the switch -Dpoet.extents.preFetch=10 when starting the Java
virtual machine.

Note that the immediateRetrieve property of the Extents utility
class is automatically set to “true” when using preFetch with a value
greater zero.

For more information on immediateRetrieve refer to section Enable
immediateRetrieve When Reading Objects From an Extent.

6.3.5 Using retrieveAll() to Load All Objects of a Collection

By default, FastObjects retrieves objects when the first of their data-
members is accessed. In client/server environments this means a server
call for every object. You can tell FastObjects to retrieve objects
contained in a collection all at once using the
PersistenceManager.retrieveAll(java.util.Collection
pcs) method thus making only one server call for the collection contents.

You can also use the
PersistenceManager.retrieveAll(java.lang.Object[] pcs)
method to tell FastObjects to retrieve all objects contained in the objects
array.

6.3.6 Using the requires-extent Keyword

In JDO, all persistence capable classes normally have a class extent. It is
possible to turn off the extent maintenance for a class in the XML
metadata using the class attribute requires-extent.

For each class extent, an index tree is maintained that is updated each
time an object of that class is added, modified, or deleted. The Extent is
necessary for the following two situations: 1) for iterating over all objects
of a class and 2) for performing queries on all objects of that class. If an
object will not be accessed through either of these mechanisms, then you
should indicate that the class does not need to maintain an Extent.

For instance, in our School Enrollment System example, the Person
class has a reference to an Address class. You can easily imagine that
in your application you will probably do things like listing all the persons in
the database. For such purposes the Person class needs an Extent.
However, you will probably never perform tasks like listing all addresses
without the persons they belong to, this simply makes no sense. The
Address objects will always be accessed via an Person object,
therefore the Address class does not need to maintain an Extent since
all requests on the address will be through the person.

Performance with FastObjects™ for JDO

08/11/2003

Page 39

The following is the entry in the Address JDO metadata file, defining that
the class should have no Extent:

<class name="Address" requires-extent="false" />

6.3.7 Avoiding Unnecessary Objects in Memory

When FastObjects reads an object from the database, it never creates a
second copy of the object in memory for the same persistence manager.
Instead a reference to this object is created. The Java garbage collector
keeps track of the number of references made to each object. If there are
no more active references, the object can be garbage collected.

Upon transaction commit, FastObjects, by default, automatically sets the
object's state to hollow. But this does not mean the Java garbage
collector can clear the memory. The reference is still held until either the
lifetime of the object variable is completed or you explicitly set the object
variable to another object or to null. Therefore you should take care to
not expand the object's lifetime longer as it is necessary.

With PersistenceManager's evict() and evictAll() methods you
can give a hint to the persistence manager that you do not need a
specific object in memory any longer. These methods immediately clear
all references held by the object with the result that after completion of
the transaction the object will be garbage collected. Regardless of
whether the retainValue flag is set to true or not.

7 Choosing the Appropriate
Access Method, Object Retrieval

7.1 Direct Navigation

7.1.1 Using Direct Navigation

An Object Database Management System maintains the semantics of the
data model. This allows objects and their relationships to be retrieved
through navigation. By contrast, a relational database system must
recreate all relationships using joins. Developers more experienced with
relational databases are inclined to initiate queries to retrieve objects,
since they are unfamiliar with traversing relationships. Given a one-to-
many relationship between two classes, an object database system
allows the objects in the collection to be retrieved directly without the
necessity of performing a query. The ability to navigate relationships
using an object database system reduces the necessity for queries.

7.1.2 Using Extents for Fast Access

FastObjects' JDO Binding provides a special type of collection, called an
extent, to retrieve objects. Class extents are special collections that are
maintained by the database. These extent collections include all objects
of a specified class type.

A class extent is a “virtual” collection of all or some instances of a so-
called “candidate” class and its subclasses. It is a virtual collection

Performance with FastObjects™ for JDO

08/11/2003

Page 40

because it does not exist in memory, as is the case for classes such as
java.util.HashSet or java.util.Vector. Therefore working with
extents rather than working with standard Java collections can result in
significant performance improvements. The objects, that are hold in the
extent will not be loaded into memory unless they are explicitly requested.
This means less memory consumption and in client/server scenarios less
client/server calls. You can use the extent of a particular class together
with searches, filters or queries to find and load only the objects you
need.

FastObjects provides various search operations on extents which are
often much faster than using queries. These operations can be divided
into two groups:

! Finding objects by index keys. These functions can be used for search
operations based on a specified index.

! Finding objects by setting extent filters. These functions are very
similar to queries, but the result collection is computed while iterating
the Extent. The query result collection will always be created at
once, including the creation of hollow objects for every collection item.
Filtering an Extent does not load any objects or create hollow
objects. The objects only loaded when they are actually accessed.

7.1.3 Using Iterators on Extents: advance, current, previous,
reset

In the JDO standard API, the support for iteration through an extent is
restricted to the facilities provided by the interface Iterator (excluding
the optional method remove().)The order in which the elements are
accessed is undefined (and differs for different database engines). The
method Extent.close() allows you to free the resources of the
iterator. In addition, FastObjects extends this API to provide additional
functionality such as iteration in the order specified by an index, iteration
forwards and backwards and skipping a certain number of elements.

When using iterators on extents, you should be aware that the largest
administration effort for FastObjects is creating the iterator.

Creating an Extent object does not cause a database call because the
Extent object will not be filled with any objects during creation. The
objects will be retrieved when an iterator on the Extent is created and
the objects are accessed via this iterator.

An iterator consumes some resources. For this reason, reusing iterators
is a good idea. FastObjects provides some methods which allow iterators
to be reused. This is an enhancement to the standard specification of
iterators.

You can use the previous() method to navigate backwards through
the iterator. This is also possible using an offset. And the reset()
method repositions the iterator to the first object in the Extent.

In addition, two other methods are available for positioning the iterator.
advance() positions the iterator forwards with a specified offset and
current() returns the current object without advancing the iterator.

These methods add considerable flexibility and allow reusing iterators.
This can speed up the performance of your application.

Performance with FastObjects™ for JDO

08/11/2003

Page 41

7.1.4 Reusing Extent Iterators

When using Extent Iterators, the following should be kept in mind:

! In client/server scenarios, for every Extent.iterator()call a
server call is executed.

! Resources for the Iterator are held until the current transaction is
terminated.

Therefore, in many cases, it is a better choice to reuse an existing
Iterator. The last of the following three options is the most performant,
especially if the Extent has only a few elements or only a small part of
the Extent will be actually visited.

1. Option:

// assuming finished() represents a condition to end the loop

while (!finished())

{

 Extent ext = pm.getExtent(Person.class,true);

 java.util.Iterator iter = ext.iterator();

// do something useful with the Extent Iterator

 . . .

 ext.close(iter);

}

2. Option:

Extent ext = pm.getExtent(Person.class,true);

// assuming finished() represents a condition to end the loop

while (!finished())

{

 java.util.Iterator iter = ext.iterator();

// do something useful with the Extent Iterator

 . . .

ext.close(iter);

}

3. Option:

Extent ext = pm.getExtent(Person.class,true);

java.util.Iterator iter = ext.iterator();

// assuming finished() represents a condition to end the loop

while (!finished())

{

 com.poet.jdo.Extents.reset(iter);

// do something useful with the Extent Iterator

 . . .

}

ext.close(iter);

Performance with FastObjects™ for JDO

08/11/2003

Page 42

7.1.5 Using Indexes for Sorted Access

Programs often need to retrieve objects in a specific sorted order.. For
example, in the School Enrollment System, the application may require
that the students be displayed in alphabetic order. An index built on
Person.lastName for the Student Extent will allow all students to
be retrieved by this index as well as queries to be performed on the
Student Extent with the result collection being returned in alphabetic
order.

By default, Extents use the surrogate (OID) as the index sort order.
This is equivalent to sorting the objects by the order in which they were
first assigned to the database. The
com.poet.jdo.Extents.iterator() methods can be used to obtain
an Extent Iterator that uses a specified index.

An iterator for all instances of a class—in a particular—order can be
obtained only if the database is configured to maintain an appropriate
index.

To select an alternative index order for the Extent

1. Define the index in the database schema:

Index definition in the Student JDO metadata file:

<class name="Student">

 <extension vendor-name="FastObjects" key="index"

 value="LastNameIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="lastName"/>

 </extension>

</class>

2. Select the index in the application code, using one of the following
com.poet.jdo.Extents.iterator() methods:

Iterator iterator(Extent extent,

 String indexName,

 boolean ascending);

Iterator iterator(Extent extent,

 String indexName);

The first parameter specifies an Extent object, the second the name of
the index. This is the name defined in the database schema. Make sure
that you use the exact index name specified in the schema. The
iterator() method will throw an Exception if this index name is not
found. Indexes of superclasses cannot be used.

The third parameter provides the sort order. The sort order may be
ascending or descending. The default is ascending.

Performance with FastObjects™ for JDO

08/11/2003

Page 43

In the following example, the Extent.iterator() method is used to
retrieve objects from the Student extent in name sorted order.

Extent students = pm.getExtent(Student.class,true);

Student student;

// sort by LastName index in ascending order

java.util.Iterator iter = com.poet.jdo.Extents.iterator(students,

"LastNameIndex");

while(iter.hasNext())

{ // assuming you have defined a toString() method for Student

System.out.println(iter.next());

}

students.close(iter);

7.2 Finding Objects by Index Keys

If speed is essential, you can search for objects using an indexed search.
Indexed searches look at the data in the index associated with an
Extent. Different search methods of the com.poet.jdo.Extents
class allow you to perform indexed searches for objects based on their
indexed values. These methods are almost always much faster than
using queries since there is less overhead when compared to compiling
and optimizing the query.

7.2.1 Finding Objects by selectKey

If, for instance, an application needs to find a Person object by
lastName, an indexed search is the fastest way to find that object,
assuming the Person object is indexed by its lastName data-member.

The indexed values of an object are the values that make up a specific
index that is defined for a class. For example, the Person class has an
index named LastNameIndex. This index contains the data-member
lastName:

Following is the index definition in the Person JDO metadata file:

<class name="Person">

 <extension vendor-name="FastObjects" key="index"

 value="LastNameIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="lastName"/>

 </extension>

</class>

You can then search for Person objects by name using this index and
the Extents.selectKey() method by specifying the value of the
lastName member as the search criterion. The selectKey() method
works directly with indexes. The selectKey() method can only be run

Performance with FastObjects™ for JDO

08/11/2003

Page 44

on an Extent Iterator, for which an appropriate index has been
selected.

// select an index before searching

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,"LastNameIndex");

// get an Iterator with all Persons matching the specified lastName

iter = com.poet.jdo.Extents.selectKey(iter,"Miller",true);

while (iter.hasNext())

{

// traverse all matching objects

 Person next = (Person) iter.next();

}

Instead of selectKey you can also use the following Extent
Iterator:

// get an Iterator with all Persons matching the specified lastName

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,

 "LastNameIndex","Miller",true);

7.2.2 Finding Objects by findKey

Another possibility is to use the findKey function, which searches for the
first occurrence of a member that matches the key. It positions the
Extent Iterator on the first object with the specified key. The
findKey method can only be run on an Extent Iterator for which
an appropriate index has been selected. You can use this option if you
want to iterate all objects with a key value greater than a specified value.

In our School Enrollment Example assume you want to print a list of all
persons whose last name is "Miller" or after "Miller" in alphabetical order.

// select an index before searching

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,"LastNameIndex");

// position the Iterator on first matching object

boolean found = com.poet.jdo.Extents.findKey(iter,"Miller");

if (found)

{

// get the first matching object

 Person first = (Person) com.poet.jdo.Extents.current(iter);

Performance with FastObjects™ for JDO

08/11/2003

Page 45

 while (iter.hasNext())

 {

// traverse all subsequent objects with key >= specified key

 Person next = (Person) iter.next();

 }

}

If an object matching the index key exists, true is returned. If the key
value is not present, the Iterator is positioned on the first object with a
key value greater than the searched for key value and the return value is
false.

7.2.3 Finding Objects by Using selectRange

If you are searching for objects based on data that spans a defined
range, then the selectRange method of com.poet.jdo.Extents can
be used. Using selectRange is significantly faster than a query for
finding objects whose data falls within a range of values. This method
restricts the Extent Iterator to the range specified. You can think of
the selectRange method as a selectKey but with both upper and
lower bounds. Following the call to selectRange, as you walk the
Iterator, only the objects whose data falls within the specified range
will be traversed.

As with the selectKey method, selectRange can only be used with an
index. Here is an example call to selectRange that will limit the Extent
Iterator to those Person objects whose lastName is in the range “H”
through “K”.

// select an index before searching

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,"LastNameIndex");

// get an Iterator with all Persons matching the specified lastName

iter = com.poet.jdo.Extents.selectRange(iter,"H","L",true,false,true);

These are the parameters of the selectRange() method:

java.util.Iterator selectRange(java.util.Iterator iter,

 java.lang.Object lowerBound,

 java.lang.Object upperBound,

 boolean lowerInclusive,

 boolean upperInclusive,

 boolean forwards)

The way in which index search keys must be specified was described in
the description of the selectKey method, above. Here you will need two
search keys: one to specify the value of the lower bound and one to
specify the upper bound. For our example call above, the Extent
Iterator will be positioned at the object whose lastName has the
value “H”.

Performance with FastObjects™ for JDO

08/11/2003

Page 46

The lowerInclusive parameter specifies whether the lower bound is
included in the range or whether the range starts with the next “greater”
value. I.e., is the specified value included in the range or not. The same
applies to the upperInclusive parameter. It specifies whether to
include objects with the specified upper bound or stop just before objects
with the upper bound value. In the example, we want all objects with
lastName in the range “H” through “K”. So, we specified a lower bound
of “H” and set lowerInclusive to true (just in case someone has the
last name “H”). The upper bound is set to “L” (the letter following “K”) and
upperInclusive to false. A lastName of “Kzzzzzz” will be in the
range but “L” will not.

The last parameter specifies the traversal direction. Setting forwards to
false will traverse the range in reversed direction. This allows you to
decide between ascending and descending order.

Instead of selectRange() you can also use the following Extent
Iterator:

// get an Iterator with all Persons matching the specified lastName

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,

 "LastNameIndex","H","K",true,false,true);

7.2.4 Index Key Specifications

In the example above, LastNameIndex is an index on a String field.
Therefore, a String value has to be passed to the selectKey call. If
the indexed field is of a primitive type (e.g. int), you have to pass an
instance of the corresponding wrapper type (e.g. java.lang.Integer).

If the index is a compound index, an Object[] array filled with objects of
the appropriate types of the indexed fields has to be passed. The
following example shows the usage of compound indexes.

In our School Enrollment Example, assume you want to find all persons
with a specific last name and birthday.

Compound index definition in the Person JDO metadata file:

<class name="Person">

 <extension vendor-name="FastObjects" key="index"

 value="NameBirthdayIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="name"/>

 <extension vendor-name="FastObjects" key="member"

 value="birthday"/>

 </extension>

</class>

Performance with FastObjects™ for JDO

08/11/2003

Page 47

Searches can now be done in the following way:

// select an index before searching

Extent persons = pm.getExtent(Person.class,true);

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(persons,"NameBirthdayIndex");

// get an Iterator with all Persons

// named "Miller" with birthday on 02/17/1965

Object[] key = {new String("Miller"),new String("02/17/1965")};

iter = com.poet.jdo.Extents.selectKey(iter,key,true);

7.2.5 Limitations

The search based on index keys has the following limitations:

! No wildcards are supported for strings.

! Searching beyond the defined significance of a string is not possible.
For instance, the LastNameIndex index has a significance of ten by
default, because a value was not specified. Only the first ten
characters of the name are stored in the LastNameIndex index. In
this case, only searching based on the first ten characters of the data-
member lastName is possible.

7.3 Finding Objects by Using Filtered Extents

Sometimes it is necessary to iterate through only those instances of a
certain class that fulfill a certain criterion. One way to achieve this is to
collect the desired elements into a collection by execution of a query. In
this section we present a different approach, namely filtered extents. A
filter is an OQL predicate String with a free variable 'this'.

In contradiction to selectKey, findKey and selectRange, filtered
Extent Iterators can be used without specifying an index. Filters on
Extent Iterators are very similar to queries, but they fetch results
one (or n+1 if you use setPreFetch(iter,n) for that Extent) at a
time, also in client/server environment—a difference that can be very
important when you write browsers or share a server on a network. For
instance, suppose a user performs a query that returns 1000 items.

If you display the results in a window that holds 50 items, you may want
to display each item as soon as it is found, and you would like to stop as
soon as the window is full. If the user scrolls to the next page, you could
then get the next 50 items.

Performance with FastObjects™ for JDO

08/11/2003

Page 48

Queries Filters

find item 1 find item 1

find item 2 display item 1

... find item 2

find item
1000

 display item 2

 display item 1 ...

 display item 2 ...

 ... find item 1000

 display item
1000

 display item
1000

By design, queries always find all results. This means that you cannot
start displaying the initial items that are found until all items have been
found. You can circumvent this limitation by using filters, which allow you
to display each item as soon as it is found.

7.3.1 The setFilter Method

A filter is simply a query specification that “modifies” an Extent
Iterator. It is set with the com.poet.jdo.Extents.setFilter
method. The filter critreria are specified in OQL syntax. Sorting arguments
are not allowed within the query expression. In contradiction to
selectKey, findKey and selectRange, filters can be used without
specifying an index.

When you retrieve an item from a filtered Extent Iterator, you see
only the items that satisfy the query conditions that you specified in the
filter. In other words, the Iterator acts as though it were the result
collection for the query, but instead of performing the query all at once,
FastObjects finds each item as you read it from the filtered Extent.

The following is a simple example that lists the persons in a database that
satisfy the conditions set by a given filter. The filter is defined to find all
persons which last names begin with "F".

// assuming pm represents the current PersistenceManager

Extent personExtent = pm.getExtent(Person.class,true);

java.util.Iterator iter = personExtent.iterator();

com.poet.jdo.Extents.setFilter(iter,

 "WHERE this.lastName LIKE \"F*\"");

You may also specify a read ahead.

com.poet.jdo.Extents.setPreFetch(iter,10);

Now you can read all elements out of the filtered collection—only the
persons who match the query specification will be found:

Performance with FastObjects™ for JDO

08/11/2003

Page 49

while (iter.hasNext())

{

 Person person = (Person) iter.next();

// assuming you have defined a toString() method for Person

 System.out.println(person);

 pm.evict(person);

}

PersistenceManager.evict is called to immediately release
resources held by the Person object.

7.3.2 Sort Orders for Filtered Extent Iterators

When indexes are available, the default behavior is that the filter uses the
best index, not the current index order of the Extent Iterator. The
elements are returned in the order of the best index. If you want to use
the current index, you need to set the useCurrentIndexForFilter
transaction property to true. In this case the elements are returned in
the order of the current index, but this may decrease the performance of
the filter.

For instance, the following example demonstrates a search for people
whose last name starts with “F”, sorted by the last name in descending
order:

Transaction txn = pm.currentTransaction();

java.util.Properties p = com.poet.jdo.Transactions.getProperties(txn);

p.put("useCurrentIndexForFilter", "true");

com.poet.jdo.Transactions.setProperties(txn, p);

txn.begin();

Extent personExtent = pm.getExtent(Person.class,true);

// use an indexed Extent Iterator with descending sort order

java.util.Iterator iter =

 com.poet.jdo.Extents.iterator(personExtent,"LastNameIndex",false);

com.poet.jdo.Extents.setFilter(iter,"WHERE this.lastName LIKE \"F*\"");

while (iter.hasNext())

{

 Person person = (Person) iter.next();

// assuming you have defined a toString() method for Person

 System.out.println(person);

 pm.evict(person);

}

Keep in mind, however, that specifying a sort order may slow down the
filter considerably if you force FastObjects to use an index that has no
relationship to the filter. The preceding example is fine because the filter
requires FastObjects to look through the lastName members, and the

Performance with FastObjects™ for JDO

08/11/2003

Page 50

LastNameIndex is a reasonable way to do this. FastObjects simply
finds the first person whose lastName begins with "F" and walks the
LastNameIndex until it finds someone whose name does not begin with
"F". If, however, if you want FastObjects to find all people whose first
name (firstName member) starts with "'F", using the specified index on
the lastName members, then FastObjects would have to search the
entire LastNameIndex sequentially, returning a value every time it found
someone whose firstName starts with "F", which of course slows down
performance.

7.3.3 Filter Limitations

Filters are better than queries for many tasks, but they do have some
limitations that you need to be aware of:

! Filters are currently available only for Extents, so you will have to do
queries to examine other kinds of collections.

! Filters do not nest. An Extent Iterator may have only one filter at
a given time.

! Queries on filtered Extent Iterators currently ignore the filter
entirely and act as though the filter had never been set.

! The query that is applied as a filter must always return a collection of
persistent objects. Queries that return single objects, base types, or
collections of base types are not allowed. For instance, if you use the
COUNT statement, an integer is returned as the result of this query.
This makes no sense when applying it as a filter, as the filtered
Extent Iterator has to return object references.

! ORDER BY clauses are not allowed.

7.4 Finding Objects by Using Queries

The FastObjects JDO Binding provides two different query languages:
JDOQL and OQL.

JDOQL is the JDO query language, defined in the JDO specification. Its
syntax follows the Java syntax. JDOQL is used to formulate the query
filter string required by the JDO Query object. The Query object applies
the query filter to a so-called candidate collection, which may be a
collection or an extent, and returns all matching objects from the
candidate collection to a unmodifiable Collection. Please refer to the
JDO specification for more information on JDOQL.

Example:

// assuming pm the current PersistenceManager

Extent persons = pm.getExtent(Person.class,true);

String filter = "lastName == \"Miller\"";

Query jdoqlQuery = pm.newQuery(persons,filter);

Collection result = (Collection) jdoqlQuery.execute();

// result contains Person objects with last name="Miller"

...

jdoqlQuery.close(result);

Performance with FastObjects™ for JDO

08/11/2003

Page 51

OQL, the Object Query Language, defined by the Object Data
Management Group (ODMG) is a standard query language for object
database management systems. It is a declarative query language based
on the syntax of Structured Query Language (SQL), the query language
used with relational databases. The basic querying construct is the same
as that used in SQL, that is, a SELECT...FROM...WHERE statement.
OQL statements are simply text strings. For detailed information on OQL
please refer to the FastObjects OQL Reference.

In FastObjects, an OQL query can be directly executed in the JDO
Binding by creating a Query object using the newQuery(String
language, Object query) method provided by the
PersistenceManager. The language parameter specifies the query
language. For an OQL query this parameter must be "org.odmg.OQL".
The query parameter is the query instance. The required class of this
instance is defined by the specified query language. For OQL it must be
String. The result of such an OQL query is an unmodifiable
Collection as for JDOQL.

Example:

String query = "select persons from PersonExtent AS persons "

 + " where persons.lastName = \"Miller\"";

// assuming pm the current PersistenceManager

Query oqlQuery = pm.newQuery("org.odmg.OQL",query);

Collection result = (Collection) oqlQuery.execute();

// result contains Person objects with last name="Miller"

...

oqlQuery.close(result);

In the following sections we will only concentrate on the filter string for
JDOQL or OQL, respectively. Creating and executing of a query will be
the same as above.

7.4.1 Execution Time of Queries

The time a query needs for execution mainly depends on:

! The number of objects that must be inspected

! The number of results comprising the final and all intermediate results
that may be generated by the FastObjects Query Optimizer

! The way in which indexes are used by the FastObjects Query
Optimizer

7.4.2 Building Optimal Search Phrases for the FastObjects Query
Optimizer

The FastObjects Query Optimizer is a software component that optimizes
query and filter requests. The optimizer examines the query request,
consults information it holds on the content and structure of the database,
and determines the fastest way to execute the query request.

This is not a simple task. Because of the variety and complexity of object
relationships in the database, there may be a number of ways to execute

Performance with FastObjects™ for JDO

08/11/2003

Page 52

a query, one of which will be the fastest. It is the job of the optimizer to
identify the fastest method available and execute it.

The optimizer often works with indexes, automatically selecting and using
indexes during complex queries. Since the query optimizer works
automatically with queries, you do not have to worry about selecting
indexes when performing a query. However, if a query requires sorting on
lastName, but an index is not defined for lastName, then the optimizer
must resort to sorting the result collection.

The query optimizer generates a query tree (QTree) and a query plan
(QPlan).

The main job of a query tree is to perform the comparison on buffer
content, index keys or memory objects and also hold intermediate results.
It builds a new result starting with several intermediate results depending
on the logical operation (conjunction/disjunction).

The query tree consists of one or more query tree nodes. Every query
tree node represents a subquery, a sorting instruction or a logical
operation. Each query tree node has a type:

! type member condition (TYPE)

! structure component like subclass (SUBCLASS)

! logical operation (AND,OR)

! sortby criteria (SORT)

! logical constant true or false.

The query plan defines the way in which the query tree is executed. It
defines which of the query tree nodes is to be executed first, when and
how results of query tree nodes have to be combined, etc.

The query plan is a sorted list of possible query plan tasks (QPTask);
tasks that depend on another task are executed in order. If no indexes
are available, the query plan only consists of one query plan task, the
main task. The main task represents the query tree. If indexes are
available, the query plan can consist of more than one query plan task.
Every query plan task then represents a sub-query tree and one of the
query plan tasks represents the query tree as a whole (the main task). In
general, a query plan task encloses all conditions of one sub-query tree
within the object network and is also responsible to generate a result for
its sub-query tree.

A query plan task is a sorted list of query plan nodes (QPNode). For every
condition that may be resolved via index access, one query plan node is
built. This means that each query plan node consists of just one query
tree node of type TYPE or SUBCLASS and AND/OR conditions using the
same index. Before executing the next node, and if the logical operation
between the previous node and the current is a conjunction, the result of
the previous node will be set as a source list for the current node. In that
case, the usefulness of the execution of the node will be checked. If the
execution of the current node seems to be more expensive than buffer
comparison, the node will not be executed. If the node is executed, every
matching object will be checked against the source list coming from the
previous node and only the objects also matching the source list will be
kept in the result set. After all nodes are executed, the results are
combined as the result set of the query plan task.

Performance with FastObjects™ for JDO

08/11/2003

Page 53

Every query plan node will be executed in the following manner:

If there is an index that can be used, the appropriate sub-query tree and
information on boundaries are passed to the index service. If the
optimizer could not find an index that can be used, the query plan node
uses the extent of the class without any boundary information.

The query plan node then works as follows:

1. If there is a lower bound, the query tree node is positioned to that
lower bound, otherwise to the first entry of the index or extent.

2. The query tree node loops through the index/extent until the end of the
index/extent or the upper bound (if given) is reached. Within the loop
every entry will be checked against:

! Existence within a source list (if given). The source list is the result set
of a previously executed query plan node.

! Correct scope, which means it is checked that the object is of the
correct class. To illustrate this, consider students are searched by
their last name and no lastNameIndex is defined on the Student
class but on the Person class. In this case the query optimizer would
take this index. But this index contains all students and also all
instructors. So for every object found, it must be checked that it is
really a Student object.

! The query condition (compare). If the query plan node is executed on
an extent, the comparison will be done directly on the previously read
object buffer.

3. If all succeeds, the entry will be put into the result set together with
additional information such as sortby values and compare warnings
(due to truncated strings).

At last, the query plan task checks if there are unresolved issues such as
compare warnings (resulting of truncated strings due to a too short
chosen index significance) or conditions which are not resolved via index
query. If so, the task iterates over the given result set and resolves those
issues by comparing the disk buffer. If the task is the main task it builds
the final (sorted) result set.

7.4.2.1 The Query Optimizer with Search Criteria (Filter and WHERE
Clauses)

A common area for optimization is the filter expression of a query.
Following is a simple example for a query on the Person Extent to find
all persons whose last name begins with "Q" or greater:

The JDOQL filter string will look like this:

lastName > "Q"

The OQL query string will look like this:
SELECT p FROM PersonExtent as p WHERE p.lastName > "Q"

Assume we have defined an index LastNameIndex on the lastName
data-member of the Person class. The query optimizer can either read
all Person objects sequentially and later disregard those that do not
qualify, or use the index and select all those beginning with "Q". It knows
that the LastNameIndex index will quickly find all Person objects with

Performance with FastObjects™ for JDO

08/11/2003

Page 54

lastName starting with "Q". But what about the rest of the objects? Do
they make up half of the database or less?

The best choice depends on what proportion of the objects has names
beginning with "Q". If the proportion is small, it will probably be best to
use the index, but if the proportion is high, it will be faster to read the
whole Extent. To help determine the optimal solution, the optimizer
uses statistics on the distribution of indexed values to aid in making the
best choice.

Another point to make here that can help the query run faster. Use < and
> where possible instead of <= and >= (for example “age < 10” instead
of “age <= 9”). This will eliminate a second test on a data-member.

7.4.2.2 The Query Optimizer with Query Ordering

The ordering of a JDOQL query (using setOrdering(String
ordering)) or of an OQL query (using the ORDER BY clause) may
cause a query to be sorted. The optimizer must determine if extra sorting
is necessary based on the defined and used indexes.

The current index defined for an Extent is ignored during queries when
using ordering.

When using indexed string-values, the optimizer is capable of sorting
beyond the significance of the index. This can be demonstrated using the
previous example of the Person class, where the index defined on the
data-member lastName was called LastNameIndex. Since a
significance for this index was not specified, by default, only the first 10
characters of the string were stored in the index. Even though the index
only has a 10-character significance, the optimizer is still capable of
looking into the objects and sorting to the full extent of the name string.

7.4.2.3 Grouping Expressions to Give Hints to the FastObjects Query
Optimizer

If you execute queries that include data ranges, you should group
expressions in the following way:

JDOQL: gender == 'm'

 && (lastName >= "H" && lastName < "K")

OQL: SELECT * FROM PersonExtent AS x

 WHERE x.gender = 'm'

 AND (x.lastName >= "H"

 AND x.lastName < "K");

This helps the query tree builder to group the range criteria together. It
supports the query optimizer in finding the optimal ranges for an index or
at least to find it faster.

7.4.2.4 Not Using Unsupported Term Transformations

The query optimizer does not support term transformation according to
the following rule:
a AND (b OR c) #$ a AND b OR a AND c

Performance with FastObjects™ for JDO

08/11/2003

Page 55

Suppose, for example, that you have defined a compound index on
lastName + firstName members of the Person class and you want to
find all persons named "Miller" and with a first name of "Tom" or "Jerry".

If you use the following query it will not make efficient usage of the
compound index:

JDOQL: (lastName == "Miller")

 && (firstName == "Tom"

 || firstName == "Jerry")

OQL: SELECT * FROM PersonExtent AS x

 WHERE x.lastName = "Miller"

 AND (x.firstName = "Tom"

 OR x.firstName = "Jerry");

You would be better off using the following syntax:

JDOQL: (lastName == "Miller" && firstName ==
"Tom")

 || (lastName == "Miller"

 && firstName == "Jerry")

OQL: SELECT * FROM PersonExtent AS x

 WHERE (x.lastName = "Miller"

 AND x.firstName = "Tom")

 OR (x.lastName = "Miller"

 AND x.firstName = "Jerry");

7.4.2.5 Avoiding Projections With Large Result Collections in OQL
Queries

This is only an issue for OQL, because JDOQL does not support
projections.

In our School Enrollment example, suppose you want to print a list of the
names of all instructors holding courses in a specific room, e.g. the room
named "A-1001".

You can formulate an OQL query like this, containing a projection:

OQL: SELECT c.instructor.lastName

 FROM CourseExtent AS c

 WHERE c.room.name="A-1001"

You may think this a good solution, saving time and memory. After all,
you do not want to retrieve the complete Course object for matches but
only the name of the course instructor (perhaps to print it to a list). But at
present, in client/server environments, FastObjects executes projections
on the client side. So, what really happens is that all matching objects are
collected in a query result collection and this collection is sent to the
client. The client needs to perform the projection and therefore requests
all objects in the collection from the server in order to extract the names.

Performance with FastObjects™ for JDO

08/11/2003

Page 56

For result collections with a small number of objects, the performance
may be entirely acceptable. But the more objects a result collection
contains, the more the performance will affected and you should think
about another way to retrieve the needed members.

The above expression would cause all matching Course objects to be
loaded to the client and then loading all referenced Instructor objects.
It would be much better to express the query using the Instructor
Extent:

OQL: SELECT i.lastName FROM InstructorExtent

 AS i,i.courseSet AS course

 WHERE ((Course)course).room.name = "A-1001"

Using this expression avoids the loading of the matching Course objects
to the client. Only the matching Instructor objects would be loaded.
These objects are needed anyway to print the list of names.

In JDOQL you can express the filter like this:

// assuming pm the current PersistenceManager

Extent instructors = pm.getExtent(Instructor.class,true);

String filter = "courseSet.contains(r) && r.name == \"A-1001\"";

Query jdoqlQuery = pm.newQuery(instructors,filter);

jdoqlQuery.declareVariables("Room r");

Collection result = (Collection) jdoqlQuery.execute();

// result contains all Instructor objects with at

// least one course held in room A-1001

// to print the instructor names you must iterate

// through the result collection

...

jdoqlQuery.close(result);

7.4.3 Tracing the Query Execution

Because sometimes it is not clear why a query is executed differently
than expected, the query execution can be configured to provide more
output. This is for debugging purposes only and can be used to see how
many objects are processed in each stage of the query, how the query is
optimized, and which indexes are used. To configure the query to print
out more information, you need to provide the following FastObjects
configuration file entries before FastObjects is loaded (the usual name of
the FastObjects configuration file is poet.cfg):

[debug]

POETConsole=3; 1 is for stderr, 2 is for OutputDebugString

query=4

Continuing with the School Enrollment example, the use of an index with
query trace is demonstrated. Assume you perform a query on Person
objects:

JDOQL: lastName >= "D"

Performance with FastObjects™ for JDO

08/11/2003

Page 57

where an index LastNameIndex is available. A sample output can then
be as follows:

The part following QueryTree: contains the query string as seen by the
query optimizer. After the optimizer has processed it, the (transformed)
query expression is printed out again (see part optimized Tree:).
Note the “I:” after the TYPE statement. This indicates that this particular
condition can use an index. The index name is later printed out in the
query plan QPlan part. The very last part of the output shows the
quantities of objects compared within the index and the number of
matches, as well as the bounds to be used for that index.

// Build and optimize query tree and query plan

// Query as seen by the query optimizer

QueryTree:

TYPE (val=0){'lastName' >= "D"};

// Query as optimized by the query optimizer

// the value of the parameter val printed in parentheses is the rating

// computed by the query optimizer. It is the assumed number of objects

// to be found. The "I:" indicates that an index is available

optimized Tree:

TYPE (I:val=10.8408->QNode-2){'lastName' >= "D"};

// Query plan

// the following line summarizes the number of tasks that were set up,

// the number of tasks that will be analyzed (valid tasks)

// and the number of sorts that will be done in the query plan

QPlan: with 1 tasks, 1 valid tasks, 0 sorts

// Name of the query plan task and class to work on

 [0] QPTask-1 on class com.poet.schoolenrollement.Person

 with 1 nodes, 1 valid nodes, 0 sorts

// Sub-query tree the query plan task executes

 QTree:

 TYPE (I:val=10.8408->QNode-2){'lastName' >= "D"};

// Name of the query plan node(s) the query plan tasks consists of,

// name of the index to use and class to work on

 [0] QNode-2: uses index LastNameIndex of class

 com.poet.schoolenrollment.Person

// Sub-query tree to be executed by query plan node

 QTree:

 TYPE (I:val=10.8408->QNode-2){'lastName' >= "D"};

//Execution of query plan

{-->> QPTask-1 starting:

(..>> QPNode-2 starting:

// Sub-query tree to be executed by query plan node

QTree:

Performance with FastObjects™ for JDO

08/11/2003

Page 58

TYPE (I:val=10.8408->QNode-2){'lastName' >= "D"};

// Numbers of boundaries and indexes to be used by the query plan node

BoundsNum: 1 Query uses Index :00102_LastNameIndex

// Start with first (here the only one) boundary

Precondition of boundary 0:

// Query tree node to be executed

TYPE (I:val=10.8408->QNode-2){'lastName' >= "D"};

//Execution statistics of query plan node

// The query operates in the range from >= D (lower bound)

// to end of index (upper bound).

// This range contains 10 entries of 13 entries

// in the complete index (checked).

// source list is NO because no other query tree nodes were executed before

MIMService::Query statistic : err = 0

 checked : 10 of 13

 num of hits: 10 of 10 compares

 .. of warns: 0

 lower bound: >= D

 upper bound: <nil>

source list: NO with 0 entries

MIMService::Query found 10 results

QPNode-2 completed in 0.10s, err=0

<<..)

QPTask-1 completed in 0.10s, err=0

<<--}

Query found 10 results in 0.20s

7.4.4 Using Indexes for Effective Queries

Value-based queries can be very slow, especially if they have to examine
every record in the database. Indexes can dramatically speed up queries
without changing the way they are programmed.

The FastObjects query optimizer searches for a usable index for every
query attribute. If the current class does not have such an index, the base
classes are inspected. This implies that it is not necessary to have a
member indexed in every derived class. Sometimes it might be useful
also to add such an index to a derived class, particularly if the base class
has significant more objects than the derived class and the query on the
derived class is performance critical.

If the query consists of a boolean expression on different attributes, the
query optimizer tries to find the best usable compound index. The best
compound index is the one that contains the greatest number of the
queried attributes and has the fewest unnecessary attributes.

Performance with FastObjects™ for JDO

08/11/2003

Page 59

7.4.5 Using Compound Indexes

If you often use queries that combine searches on several attributes,
defining a compound index may be more powerful than using several
single indexes. For example, if the member lastName is sometimes
combined with firstName and sometimes combined with birthday, a
compound index on the members lastName + firstName + birthday
or lastName + birthday + firstName may be useful. A query can
also make use of only the first component of a compound index. If only
the first component of the index is used in the query, the other
components of the index may be omitted. If you design a compound
index, you should order the components by their significance to the
query.

7.4.6 Using Indexes for Effective Queries on Sub-Object
Attributes

Referring to the earlier example of a query to return courses taking place
in a particular room named "A-1001" (refer to section Using Backward
References Instead of Queries). The relationship there was modeled
programmatically by maintaining a collection of backward references from
the Room to the Course class instead of using a query on the Course
Extent. Using a query on the name attribute of the Room sub-object
together with an index on object identity eliminates the need for backward
pointers and modification of two objects. The tradeoff is that it requires an
index to be built and maintained.

Queries on attributes of sub-objects are dramatically sped up when
defining indexes (separate in each class) for the reference to a sub-object
(i.e. an index on object identity) and for the member of a sub-object. The
following query is sped up by indices on course.room and room.name:

JDOQL: room.name == "A-1001"

OQL: SELECT * from CourseExtent AS course

 WHERE course.room.name = "A-1001"

Index definition in the JDO metadata files:

<class name="Course">

 <extension vendor-name="FastObjects" key="index"

 value="RoomIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="room"/>

 </extension>

</class>

Performance with FastObjects™ for JDO

08/11/2003

Page 60

<class name="Room">

 <extension vendor-name="FastObjects" key="index"

 value="NameIndex">

 <extension vendor-name="FastObjects" key="unique"

 value="false"/>

 <extension vendor-name="FastObjects" key="member"

 value="name"/>

 </extension>

</class>

Also refer to the section Using Backward References With Indexes
Instead of Large or Changing Collections for another example of using an
index on object identity and a query instead of defining a collection
member.

7.4.7 Considering Query Performance vs. Update Performance
When Defining Indexes

Indexes will improve access time but slow down storage time. Therefore,
it is critical that the application developer understands the manner in
which objects will be accessed and stored and to judiciously select where
to use indexes. The reason storage time increases is because
FastObjects updates a corresponding index tree for each index in the
correspoding class when an object is added, updated, or deleted.

Of course, if you are using the FastObjects special features findKey,
selectKey or selectRange, which are implemented in the class
com.poet.jdo.Extents (and in com.poet.odmg.Extent), you will
need to define an index for the appropriate class data-member(s). By
taking advantage of FastObjects schema evolution functionality, indexes
can be fine-tuned even after an application is well into development or
even after deployment.

7.4.8 Choosing an Appropriate Index Significance

For indexes defined for a String member, the significance might also
effect the query performance. If the query uses an index whose
significance is too short, the query has to examine the record in the
database. For example, the index on lastName is set to 3 and the
database contains the objects
"Baker","Butcher","Miller","Millner","Millery","Military" and "Miltner". The
query:

JDOQL: lastName == "Miller"

OQL: SELECT * FROM PersonExtent AS x

 WHERE x.lastName = "Miller";

will examine five objects on disk because in the index, these five objects
are referenced by the "Mil" key. But be careful by increasing the
significance, higher significance results in larger index sizes and this
decreases store/delete performance.

Performance with FastObjects™ for JDO

08/11/2003

Page 61

©Poet Software GmbH 2003. Poet®, Poet Software and FastObjects are
trademarks or registered trademarks of Poet Holdings, Inc. All rights
reserved.

Java™ and all Java™-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. or other
countries. Poet Software is independent of Sun Microsystems, Inc. Other
product names may be trademarks of the companies with which the
product names are associated.

	Introduction
	General Facts to Keep in Mind
	Using an Inappropriate (Not Object-Oriented) Database Schema
	Performing Unnecessary Read and Write Operations
	Writing Objects
	Reading Objects
	Performing Too Many Client/Server Calls
	Keeping Unnecessary Objects in Memory

	Using Transactions that Are Too Large or Too Long Lasting
	Using an Inappropriate Access Method
	Using Queries Instead of Alternative Access Methods
	Defining Too Little or Too Many Indexes

	Example Object Model
	Optimizing the Database Schema
	Avoiding Redundant Information in the Object Model
	Use a Minimum Number of Classes in Your Object Model
	Declare Which Object Data-members Really Need to Be Persistent
	Using Backward References With Indexes Instead of Large or Changing Collections
	Using Backward References Instead of Queries
	Using Embedded Objects
	Using Java Collections As Data-members
	Embedding the Collection Elements
	Implementing Your Own Collection Class
	Creating Your Own java.util.Map Implementation

	Not Using Non-persistent Capable Data-members

	Using Transactions
	Object Lifecycle
	Object Lifecycle States
	Transient
	Persistent-new
	Persistent-dirty
	Hollow
	Persistent-clean
	Persistent-deleted
	Persistent-new-deleted

	Object Lifecycle State Transitions
	Creation of Objects
	Storage of Objects
	Retrieval of Objects
	Modification of Objects
	Deletion of Objects

	The Transaction Cache
	Reading and Writing Objects in Transactions
	Transaction Duration
	Long Lasting Transactions
	Short Transactions

	Transaction Size
	Large Transactions
	Small Transactions

	Commit Time of Transactions
	Using Checkpoints in Transactions
	Using Autoflush During Transaction Commit
	Using Objects Outside of Transactions
	Reusing PersistenceManager and PersistenceManagerFactory Objects

	Avoiding Unnecessary Read and Write Operations
	Automated Management of Reading and Writing Objects
	Deleting Objects
	Directly Deleting Objects
	Indirectly Deleting Objects

	Retrieving Objects
	Using FastObjects Active Java Cache
	Using Access Patterns
	Enable immediateRetrieve When Reading Objects From an Extent
	Using setPreFetch() When Reading Elements From an Extent
	Using retrieveAll() to Load All Objects of a Collection
	Using the requires-extent Keyword
	Avoiding Unnecessary Objects in Memory

	Choosing the Appropriate Access Method, Object Retrieval
	Direct Navigation
	Using Direct Navigation
	Using Extents for Fast Access
	Using Iterators on Extents: advance, current, previous, reset
	Reusing Extent Iterators
	Using Indexes for Sorted Access

	Finding Objects by Index Keys
	Finding Objects by selectKey
	Finding Objects by findKey
	Finding Objects by Using selectRange
	Index Key Specifications
	Limitations

	Finding Objects by Using Filtered Extents
	The setFilter Method
	Sort Orders for Filtered Extent Iterators
	Filter Limitations

	Finding Objects by Using Queries
	Execution Time of Queries
	Building Optimal Search Phrases for the FastObjects Query Optimizer
	The Query Optimizer with Search Criteria (Filter and WHERE Clauses)
	The Query Optimizer with Query Ordering
	Grouping Expressions to Give Hints to the FastObjects Query Optimizer
	Not Using Unsupported Term Transformations
	Avoiding Projections With Large Result Collections in OQL Queries

	Tracing the Query Execution
	Using Indexes for Effective Queries
	Using Compound Indexes
	Using Indexes for Effective Queries on Sub-Object Attributes
	Considering Query Performance vs. Update Performance When Defining Indexes
	Choosing an Appropriate Index Significance

