
A practical introduction to TriActive JDO

Search for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology

A practical introduction to TriActive JDO
Contents:

Environment requirements

Installing and configuring the example code

Steps to use TJDO

Example domain model

JDO API basics

Creating the XML metadata files

Building, enhancing, and testing the example code

Summary

Resources

About the author

Rate this article

Related content:
Hands-on Java Data Objects

IBM developer kits for Java (downloads)

Subscribe to the developerWorks newsletter

developerWorks Toolbox subscription

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Transparently persistent data regardless of the
underlying data store
Level: Introductory

Jeff Gunther (jeff.gunther@intalgent.com)
General Manager, Intalgent Technologies
November 4, 2003

TriActive JDO (TJDO) is a lightweight, open source implementation of Sun's Java
Data Objects (JDO) 1.0 specification. With it, developers can use a transparent
persistence mechanism with any JDBC-compliant database and any Java object.
In this article, Java developer Jeff Gunther provides an introduction to TJDO by
demonstrating how a domain model can be persisted to a MySQL database. In
addition to illustrating specific implementation details for TJDO, the article reviews
the basic concepts and components of the JDO specification.

As the Java platform rapidly advances into every corner of the modern enterprise,
developers are inundated with acronyms for new technologies and specifications that
promise to cure every IT ailment. Even within the Java community, it's difficult for
developers and management alike to determine which technologies are simply a flash in
the pan and which ones will be sustainable. If you surveyed an average group of Java
developers and asked them how they persist data within their applications, you'd probably find a wide variety of answers.
Some of the respondents might be using basic JDBC against a relational database; some might be using a pure object-
oriented database; while others might be using Container Managed Persistence 2.0 (CMP) within an application server.
Though each of these solutions can and do provide persistence services to developers, each technique has its own set of
distinct disadvantages, restrictions, and overhead.

Similar to other initiatives within the Java community, the JDO specification was created through the Java Community Process
under Java Specification Request 12. One of the primary objectives of the JDO architects was to provide developers a
transparent mechanism to handle and manipulate persistent information regardless of the underlying data store. Since its
inception, it has been designed to shield developers from the drudgery of developing a persistence infrastructure. Because
developers have a common API that interoperates across a variety of data stores, development teams can postpone the
decision of what data stores will be used and supported for a particular project. Each of these benefits diminishes the coding
effort and allows developers to focus on other pertinent areas of the project. Like other specifications within the Java family,
JDO eliminates the risk of becoming locked into a particular vendor. Each vendor's JDO implementation provides a distinct set
of features and types of supported data sources. Depending on your project's requirements and budget, one vendor might be
more attractive than another.

To give you an opportunity to test out JDO without having to purchase a license, we'll work with TriActive JDO (TJDO), a
lightweight, open source implementation of the JDO 1.0 specification. TJDO supports a variety of JDBC-compliant databases
as its data store.

Environment requirements
To fully test out TJDO using the provided files, your environment must meet the following minimum requirements:

● Java 2 SDK, Standard Edition 1.4 or later installed

http://www-106.ibm.com/developerworks/library/j-tjdo/ (1 of 7)11/4/2003 9:05:48 AM

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-tjdo.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/edu/j-dw-javajdo-i.html
http://www-106.ibm.com/developerworks/java/jdk/index.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
mailto:jeff.gunther@intalgent.com

A practical introduction to TriActive JDO

The source code
If you're like most developers, learning a
new technology is an iterative process of
trial and error. To help jump start your
exploration of TJDO and expand your
general knowledge of JDO, a complete build
package, series of configuration files, and
example source code are provided (see
Resources for links to the source package
and other required technologies).
Additionally, if you want to integrate TJDO
within another project, the provided package
and Ant build script will assist you in
completing the integration effort.

● Apache Ant 1.5.3 or later installed
● MySQL Server 4.0.14 or later installed

See Resources for links to these technologies. Note that while the Ant build script
should be cross-platform, the example class has only been tested and verified on
Microsoft Windows XP. Before getting started reviewing some code and the basics of
JDO, we'll start by installing and configuring the source code.

Installing and configuring the example code
To install the source code package, complete the following steps:

1. Download the source code package.
2. Unzip the j-tjdo.zip file into a temporary directory.
3. Create a database called tjdo within your MySQL environment
4. Open the common.properties file and modify the MySQL key/value pairs to match your environment. Here is an

example:
...
mysql.server=127.0.0.1
mysql.database=tjdo
mysql.user=root
mysql.password=

Steps to use TJDO
The primary goal of this article is to give you enough knowledge and information to get started using TJDO within your own
applications. Before covering how to test out the provided example code, I'll review the general steps necessary to use TJDO.
You'll find that many of these steps are applicable to other JDO implementations. These steps are not necessary for you to
complete before continuing. They are simply provided to give you an outline for future projects. Each of these steps was
completed during the development of the provided source package.

1. Create a domain model as plain old Java objects (POJOs).
2. Create the supporting application code.
3. Compile your classes.
4. Create an XML metadata file that describes the persistence behavior of the domain classes.
5. Enhance the bytecode of the compiled classes.
6. If you're using a relational database as the data store, create the appropriate database schema.

Example domain model
To provide a context for reviewing the basic concepts and APIs of JDO, the example source code includes a simple domain
model. Figure 1 illustrates a UML diagram of the POJOs. In this example, a Developer instance represents a particular
employee that develops software. Similarly, a Manager instance represents a particular employee that manages other
employees. A Location instance represents a physical building where employees, developers and a manager work.

Figure 1. A UML diagram of the Java objects

http://www-106.ibm.com/developerworks/library/j-tjdo/ (2 of 7)11/4/2003 9:05:48 AM

ftp://www6.software.ibm.com/software/developer/library/j-tjdo.zip

A practical introduction to TriActive JDO

These domain classes are used with supporting classes to persist data to MySQL.

Understanding JDO concepts
"Hands-on Java Data Objects" provides an
excellent introduction to JDO concepts and
the background behind this technology. As
the title implies, this tutorial also includes
some practical, hands-on exercises to help
developers get up to speed with this
powerful new technology.

JDO API basics
Now that we've covered how to configure your workstation and the basic domain
model, we'll review how to use the JDO APIs to persist these objects and their
relationships to MySQL. Because this article's purpose is to provide a broad
introduction of JDO and TJDO, I won't dive into much detail about any particular feature
of the JDO API. If you are interested in more information about a particular component,
you'll find a link to the JDO 1.0 specification in Resources.

The code snippet in Listing 1 illustrates the initial properties necessary for connecting TJDO to MySQL.

Listing 1. TJDOTest.java file

http://www-106.ibm.com/developerworks/library/j-tjdo/ (3 of 7)11/4/2003 9:05:48 AM

http://www-106.ibm.com/developerworks/edu/j-dw-javajdo-i.html

A practical introduction to TriActive JDO

0 ...
1 public static void main(String[] args)
2 {
3 Properties props = new Properties();
4
5 props.setProperty("javax.jdo.PersistenceManagerFactoryClass",
 "com.triactive.jdo.PersistenceManagerFactoryImpl");
6
7 props.setProperty("javax.jdo.option.ConnectionDriverName",
 "com.mysql.jdbc.Driver");
8 props.setProperty("javax.jdo.option.ConnectionURL",
 "jdbc:mysql://" + args[0] + "/tjdo?autoReconnect=yes");
9 props.setProperty("javax.jdo.option.ConnectionUserName", args[1]);
10 props.setProperty("javax.jdo.option.ConnectionPassword", args[2]);
11 props.setProperty("com.triactive.jdo.autoCreateTables", "true");
12
13 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(props);
14 PersistenceManager pm = pmf.getPersistenceManager();
15
16 Transaction tx = pm.currentTransaction();
17
18 try
19 {
20 tx.begin();
21 ...

Let's step through the important parts of this code listing:

● The JDO specification requires that each JDO vendor provide a class that implements PersistenceManagerFactory.
The PersistenceManagerFactory is used to obtain PersistenceManager instances. A PersistenceManager is the
primary interface used during the development of supporting application code and is responsible for persisting data to
MySQL.

● Lines 7 through 10 define the connection details to MySQL. Each of the arguments passed into this class are defined
within the common.properties file found within the root of the build directory.

● If they don't exist, line 11 instructs TJDO to automatically create the supporting tables within MySQL at runtime.

● On lines 13 and 14, the properties are passed into a helper class, a PersistanceManagerFactory is created, and a
PersistanceManager is created.

● Lines 16 through 20 ensure that all the data is transitionally consistent, by creating a Transaction object from
PersistanceManager and starting it.

Listing 2 illustrates the domain model being manipulated and populated with data. First, you will create a Location object.
Then you create two employees: one Developer and one Manager. Finally, we add the newly created employees to the
Location.

Listing 2. TJDOTest.java file
...
 Location location = new Location();
 location.setName("SomeLocation");
 location.setAddressLine1("1234 Some Street");
 location.setAddressLine2("Suite 111");
 location.setZipcode("12345");

 ArrayList employees = new ArrayList();
 ArrayList developers = new ArrayList();

 Developer developer = new Developer();
 developer.setFirstName("Jane");
 developer.setLastName("Doe");
 developer.setLocation(location);
 employees.add(developer);
 developers.add(developer);

 Manager manager = new Manager();
 manager.setFirstName("John");
 manager.setLastName("Smith");
 manager.setLocation(location);
 manager.setEmployees(developers);

http://www-106.ibm.com/developerworks/library/j-tjdo/ (4 of 7)11/4/2003 9:05:48 AM

A practical introduction to TriActive JDO

 employees.add(manager);

 location.setEmployees(employees);
...

The code snippet in Listing 3 illustrates the beauty of JDO. Each object created in Listing 2 is passed to the
PersistanceManager into the makePersistent function. That's it. All the data was magically added to the database. You
didn't have to worry about any SQL INSERT statements, database connections, or relationship tables. TJDO completely
handles the job of taking the objects and inserting the data into the database.

Listing 3. TJDOTest.java file
...
pm.makePersistent(developer);
pm.makePersistent(manager);
pm.makePersistent(location);

tx.commit();
...

Creating the XML metadata files
Before the supporting application code and domain model can be used together, an XML metadata file must be created that
describes the persistence-capable class. These metadata files are used during the bytecode enhancing process and at run
time. For each class, a file named <class-name>.jdo must be created. Listing 4 illustrates the Location.jdo file used in the
provided domain model:

Listing 4. Location.jdo file
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE jdo PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects
 Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
3
4 <jdo>
5 <package name="test">
6 <class name="Location" identity-type="datastore">
7 <field name="employees">
8 <collection element-type="Employee">
9 </collection>
10 </field>
11 <field name="name">
12 <extension vendor-name="triactive" key="length" value="max 50"/>
13 </field>
14 <field name="addressLine1">
15 <extension vendor-name="triactive" key="length" value="max 100"/>
16 </field>
17 <field name="addressLine2">
18 <extension vendor-name="triactive" key="length" value="max 100"/>
19 </field>
20 <field name="zipcode">
21 <extension vendor-name="triactive" key="length" value="max 5"/>
22 </field>
23 </class>
24 </package>
25 </jdo>

Let's examine the important parts of this XML file:

● Lines 6 through 23 define the attributes of the class and the appropriate field elements. The second attribute of the
class element is called identity-type. TJDO only supports datastore as its identity type.

● Lines 7 through 10 define a collection field. This field is used to store the employees that work at a particular location.
The element-type attribute of the collection element defines the type of class that is stored within the collection.

● Lines 11 through 22 define various string fields. The extension element is used by TJDO to determine the attributes of

http://www-106.ibm.com/developerworks/library/j-tjdo/ (5 of 7)11/4/2003 9:05:48 AM

A practical introduction to TriActive JDO

the MySQL table.

For more information about the various elements and attributes of a JDO metadata file, see Resources.

Building, enhancing, and testing the example code
To compile, build, and test the package, complete the following steps:

1. Verify that a database called tjdo is created within your MySQL database server.
2. Type ant clean within the directory where you unpacked the source code to clean the environment.
3. Type ant to start the build process.

If your environment met the requirements and was properly configured, you should have seen something similar to Listing 5:

Listing 5. Successful build output
Buildfile: build.xml

init:
 [mkdir] Created dir: D:\TJDO\tjdo\dist

compile-common:

compile-module:
 [echo] Compiling ...
 [mkdir] Created dir: D:\TJDO\tjdo\build
 [mkdir] Created dir: D:\TJDO\tjdo\build\classes
 [javac] Compiling 5 source files to D:\TJDO\tjdo\build\classes

enhance:
 [copy] Copying 4 files to D:\TJDO\tjdo\build\classes
 [apply] Enhancing class test.Employee
 [apply] Enhancing class test.Developer
 [apply] Enhancing class test.Location
 [apply] Enhancing class test.Manager
 [apply] done.

package-common:
 [jar] Building jar: D:\TJDO\tjdo\dist\tjdo-demo.jar

default:

BUILD SUCCESSFUL
Total time: 5 seconds

Type ant test to test the provided code. If your environment was properly configured, the tjdo database within MySQL
should have all the Location, Developer and Manager data within it.

Summary
TJDO, an open source implementation of Sun's Java Data Objects (JDO) 1.0 specification, provides developers a great way to
transparently persistent data regardless of the underlying data store. Even through the JDO specification is just beginning its
evolution, it has already filled a void within the Java community. JDO implementations, like TJDO, combine relational
databases with the object-oriented Java language and provide developers a powerful tool that can be put to work today. To
assist you in that task, the example package provides a build and packaging framework that can be used to incorporate TJDO
into your own projects.

Resources

● Download the example source code used throughout this article.

● The TJDO project page on Sourceforge has all the information you'll need to get started using this JDO
implementation.

● See the Java Data Objects specification.

http://www-106.ibm.com/developerworks/library/j-tjdo/ (6 of 7)11/4/2003 9:05:48 AM

ftp://www6.software.ibm.com/software/developer/library/j-tjdo.zip
http://tjdo.sourceforge.net/
http://java.sun.com/products/jdo/

A practical introduction to TriActive JDO

● Visit the IBM developer kits page for a list of the SDKs for Java technology available from IBM.

● Download Ant 1.5.4 from the Apache Software Foundation.

● Download MySQL 4.0.14 from MySQL AB.

● For an excellent introduction to JDO, Paul Monday's tutorial "Hands-on Java Data Objects" (developerWorks, July
2002) is the place to start.

● JDO Central is an extensive resource for experienced and novice JDO developers alike. In particular, the Web-based
forums are a great way to collaborate and share ideas about JDO.

● You'll find hundreds of articles about every aspect of Java programming in the developerWorks Java technology zone.

About the author
Jeff Gunther, a Studio B author, is the General Manager and founder of Intalgent Technologies, an emerging provider of software products and solutions using the
Java 2 Enterprise Edition and Lotus Notes/Domino platforms. Jeff is an application and infrastructure architect with experience in architecting, designing,
developing, deploying, and maintaining complex software systems. His diverse experience includes the full life-cycle development of software running on multiple
platforms, from Web servers to embedded devices. He has been a part of the Internet industry since its early, "pre-Mosaic" days. You can contact Jeff at jeff.
gunther@intalgent.com

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks > Java technology

 About IBM | Privacy | Terms of use | Contact

http://www-106.ibm.com/developerworks/library/j-tjdo/ (7 of 7)11/4/2003 9:05:48 AM

http://www-106.ibm.com/developerworks/java/jdk/index.html
http://ant.apache.org/
http://www.mysql.com/downloads/mysql-4.0.html
http://www-106.ibm.com/developerworks/edu/j-dw-javajdo-i.html
http://www.jdocentral.com/
http://www-106.ibm.com/developerworks/java/
http://www.studiob.com/
http://www.intalgent.com/
mailto:jeff.gunther@intalgent.com
mailto:jeff.gunther@intalgent.com
ftp://www6.software.ibm.com/software/developer/library/j-tjdo.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	JFHHJMHEOBMBIMDFEEKHCALFCAAGNCFF:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A practical introduction to TriActive JDO
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

