

DEPARTAMENTO DE INGENIERIA INDUSTRIAL

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS UNIVERSIDAD DE CHILE

IN 34A OPTIMIZACION 10 U.D.

D H: (4.5-1.5-4.0)

REQUISITOS : SD20A,MA26B

CARACTER : Obligatorio de la Licenciatura de Ingeniería

CONTROLES : SEMANAS $6^a - 10^a - 13^a$ (MODULOS 3.6 3.7)

SEMESTRE : PRIMAVERA 2002

OBJETIVOS:

GENERAL: Modelar, resolver e interpretar soluciones de problemas de

optimización, lineales y no lineales, con o sin restricciones.

ESPECIFICOS: Se espera que al final del curso el alumno sea capaz de:

a) Modelar problemas de optimización.

b) Analizar cualitativamente el rol de los objetivos y las restricciones, y decidir el o los métodos adecuados para encontrar su solución.

c) Identificar la estructura de un algoritmo y usar algoritmos de programación lineal y no lineal;

d) Plantear problemas de decisión dinámicos y señalar formas de enfrentarlos.

CONTENIDOS:			<u>Hrs. de Clases</u>
1.	Introducción a la Optimización.		4.5
	b) Análisis de alc) Clasificación	ral de optimización. Igunos casos introductorios. de los modelos. algoritmo y complejidad.	
2.	Modelamiento.		9.0
3.	Programación No Lineal.		9.0
	a) Convexidad y	y caracterización de óptimos locales y	
	b) Programaciór	n no lineal irrestricta: Algoritmo de goritmo de Newton.	
	d) Teorema de	n Restringida. e Lagrange: condición necesaria,	
	e) Teorema d	ficiente e interpretación geométrica. de Karush-Kuhn-Tucker: condición condición suficiente e interpretación	
	geométrica. f) Aplicación.	·	
4.	Programación Lin	eal.	
	algunos conc factibles, vér	ráfica: caso simple e introducción de ceptos básicos (espacio de soluciones rtice, problema infactible, problema no ación de costos y lado derecho).	1.5
	Desarrollo entrada yFase I: soDegenerado	candard de un P.L. de los criterios de optimalidad, salida, del Método Simplex (Revisado) lución inicial básica factible ción en Programación lineal ción Geométrica del comportamiento	7.5
	c) Aplicación.		1.5

	a)	- Definición relación de dualidad - Teorema Débil y sus corolarios - Teorema Fundamental - Holgura complementaria - Interpretación Gráfica - Interpretación económica - Simplex Dual Fase II	7.5	
	e)	Análisis de Sensibilidad y postoptimal de costos y lado derecho, e interpretación de resultados.	4.5	
	f)	Aplicación.	1.5	
	g)	Programación Lineal Entera: - Algortimo de ramificación y acotamiento	3.0	
5.	Fluj	Flujo en Redes.		
	a) b) c)	efiniciones Básicas y Modelamiento enRedes. oblemas de flujo máximo: formulación lineal, goritmo de marcas (Fulkerson). oblema de flujo a costo mínimo: Formulación leal, características particulares del simplex con ltas, algoritmo simplex especializado oblema de la Ruta más corta: formulación lineal y goritmo de Dijkstra.		
	e)	Aplicación.		
6.	Programación Dinámica.			
	a) b)	Caracterización del modelamiento para programación dinámica. Principio de optimalidad de Bellman. Anlicaciones		

ACTIVIDADES:

Clases de cátedra, clases auxiliares, tareas computacionales y de investigación, controles y controles de trabajo personal (CTPs).

EVALUACION:

Se realizarán 3 controles y un examen, 2 tareas computacionales y 1 de investigación, 3 controles de trabajo personal (CTP). La ponderación de las actividades en la nota final es:

Controles y examen	70%
Tareas computacionales	15%
CTP's	15%

Cada una de las actividades requiere ser aprobada por separado con nota = 4.0

BIBLIOGRAFIA:

Obligatoria:

- 1. Ortiz, C., S. Varas y J. Vera, "Optimización y modelos para la gestión". 1ª ed., Dolmen, 2001.
- 2. Hiller, F. y G. Lieberman, "Introducción a la Investigación de Operaciones". 5ª ed. Holden-Day, 1991.
- 3. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 1: "Introducción a la Optimización", Publicación 94/01/F, D.I.I., 1994.
- 4. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 2: "Programación No Lineal", Publicación 94/02/F, D.I.I., 1994.
- 5. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 3: "Modelamiento", Publicación 94/03/F, D.I.I., 1994.
- 6. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 4: "Programación Lineal", Publicación 94/04/F, D.I.I., 1994.
- 7. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 5: "Flujo en Redes", Publicación 94/05/F, D.I.I., 1994.
- 8. Ortiz, C., S. Varas y J. Vera, "Investigación Operativa para Ingenieros": Cap. 6: "Programación Dinámica", Publicación 94/06/F, D.I.I., 1994.

Complementaria:

- 1. Barros, O. "Investigación Operativa", Vols. I y II.
- 2. Bazaraa, M. y C. Sheltly, "Nonlinear Programming, Wiley, 1979.
- 3. Dreyfus and Law, "The Art of Dynamic Programming", Academic Press, 1977.
- 4. Fox, R. "Optimization Methods for Engineering Design", Addison-Wesley, 1971.
- 5. Hu, T.C. "Combinatorial Algorithms", Addison Wesley, 1982.
- 6. Luenberger, D. "Introduction to Linear and Nonlinear Programming", Addison-Wesley, 1973.
- 7. Murthy, K. "Linear and Combinatorial Programming", Wiley, 1976.
- 8. Simmonard, M. "Linear Programming", Prentice Hall.
- 9. Taha, H.A. "Operations Research", Mac Millan, 1987.
- 10. Vanderplaats, G. "Numerical Optimization Techniques for Engineering Design", McGraw Hill, 1984.
- 11. Wagner, H. "Principles of Operations Research", Prentice Hall, 1975.
- 12. Winston, W.L. "Operations Research: Applications and Algorithms", Duxbury Press, 1994.
- 13. Manuales CPLEX y LINGO.