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 Mixing Methods: A Bayesian Approach
 M AC ART AN HUMPHREYS Columbia University
 ALAN M. JACOBS University of British Columbia

 TT Te develop an approach to multimethod research that generates joint learning from quantitative
 1/1/ and qualitative evidence. The framework—Bayesian integration of quantitative and qualitative
 f J data (BIQQ )—allows researchers to draw causal inferences from combinations of correlational

 (cross-case) and process-level (within-case) observations, given prior beliefs about causal effects, assign
 ment propensities, and the informativeness of different kinds of causal-process evidence. In addition
 to posterior estimates of causal effects, the framework yields updating on the analytical assumptions
 underlying correlational analysis and process tracing. We illustrate the BIQQ approach with two ap
 plications to substantive issues that have received significant quantitative and qualitative treatment in
 political science: the origins of electoral systems and the causes of civil war. Finally, we demonstrate how
 the framework can yield guidance on multimethod research design, presenting results on the optimal
 combinations of qualitative and quantitative data collection under different research conditions.

 Social scientists like to mix their methods. It is becoming increasingly common for scholars to
 pursue research strategies that combine quanti

 tative with qualitative forms of evidence. This trend
 in research practice is in line with the prescriptions of
 methodologists who see "small-«" and "large-«" anal
 ysis as drawing on a single logic or shared standards of
 inference (Brady and Collier 2004; King, Keohane, and
 Verba 1994). Multimethod approaches are also encour
 aged in the guidelines issued by many research funding
 agencies (Creswell and Garrett 2008).

 A typical mixed-methods study includes the estima
 tion of causal effects using data from many cases as well
 as a more detailed examination of the processes taking
 place in a few. Examples include Lieberman's (2003)
 study of racial and regional dynamics in tax policy;
 Swank's (2002) analysis of globalization and the wel
 fare state; and Stokes' (2001) study of neoliberal reform
 in Latin America. To adopt the terminology of Collier,
 Brady, and Seawright (2004), these studies engage in
 the analysis of both "dataset observations" (patterns of
 X, Y correlation) drawn from a large number of cases
 and "causal process observations" (often bearing on
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 the mechanisms connecting X to Y) made in a small
 subset of this sample.

 While commonly engaging in multimethod research,
 however, social scientists lack clear principles for ag
 gregating findings derived from different strategies of
 inquiry. How should the inferences drawn from dif
 ferent approaches—whether mutually reinforcing or
 conflicting—be combined to arrive at causal conclu
 sions? How should the results of one form of analysis
 inform the assumptions underlying the other? And,
 given scarce resources, how should researchers choose
 between forms of evidence at the margins? When are
 we better off investing more in extending the scope of
 analysis to a larger set of cases, and when should we
 deepen the analysis through more intensive examina
 tion of process?

 In this article, we present a unified analytical frame
 work for drawing integrated inferences from causal
 process observations and dataset observations. The ap
 proach, Bayesian integration of quantitative and qual
 itative data (BIQQ), uses Bayesian logic to aggregate
 the separate inferential contributions of correlational
 and process-based observations while allowing data of
 each kind to inform assumptions underlying the inter
 pretation of the other kind.

 Bayesian analysis has become increasingly common
 in quantitative social science and, as qualitative schol
 ars have pointed out (Beach and Pedersen 2013; Ben
 nett 2008; Rohlfing 2012), also lies at the heart of
 process tracing. Yet we are aware of no previous
 attempt to formally unify Bayesian reasoning about
 both forms of data. From a formal perspective, the
 approach that we propose amounts to a straightfor
 ward application of Bayes' rule, and centers in partic
 ular on the specification of an appropriate likelihood
 function. Put briefly, the method draws leverage from
 asking how likely we would be to observe a given
 set of quantitative and qualitative observations if a
 particular causal proposition were true, compared to
 the likelihood of observing those data if the alterna
 tives were true. In doing so, the approach draws on
 analytic assumptions that qualitative and quantitative
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 researchers already routinely employ in drawing causal
 inferences.

 The payoffs to this integrative move are several.
 Based on any combination of quantitative and quali
 tative evidence, the framework yields inferences about
 a wide range of causal questions, including average
 population-level causal effects, case-specific causal ex
 planations, and the validity of theories of causal pro
 cess. Further, the approach allows qualitative evidence
 to update the assumptions underlying quantitative
 analysis, and vice versa. Finally, by modeling the pro
 cesses of learning flowing from different logics of in
 ference, the framework yields practical guidance on
 research design: specifically on the conditions under
 which additional dataset or additional causal-process
 observations are likely to generate the greatest lever
 age.

 The article proceeds as follows. In the next section we
 summarize existing understandings of the relationship
 between qualitative and quantitative research, and we
 locate our contribution within the current literature.

 We then describe the basic problem of causal infer
 ence and the ways in which qualitative and quantita
 tive analysis address this problem, formalizing each in
 Bayesian terms. From there, we develop a combined
 framework, BIQQ, that draws inferences using both
 inferential strategies simultaneously. We focus on de
 veloping this logic for a simplified research situation
 involving a binary outcome variable and a single bi
 nary independent variable, providing a complete de
 scription of the inferential problem for this situation,
 along with code for implementation and substantive
 applications. In addition, we indicate how the general
 approach may be used to examine a much wider class of
 problems. The final sections demonstrate the approach
 in action, in two respects. First, we provide two substan
 tive illustrations of the method, based on quantitative
 and qualitative studies of (i) the drivers of electoral
 system choice and (ii) the relationship between natu
 ral resources and conflict. Second, we provide results
 from a suite of simulations that demonstrate how the

 BIQQ framework can be used to inform research de
 sign choices—by generating estimates of the gains, in
 different research situations, from going "wide" versus
 going "deep." The final section considers challenges to
 the framework's implementation.

 EXISTING APPROACHES TO MIXED
 METHODS

 A large literature has sought to parse the relationship
 between qualitative and quantitative modes of causal
 inference (Gerring 2012). We can map current un
 derstandings of the qualitative-quantitative relation
 ship into three broad categories: (1) approaches that
 view qualitative and quantitative methods as address
 ing distinct questions; (2) approaches emphasizing dif
 ferences in the types of data used in qualitative and
 quantitative research; and (3) approaches identifying
 differences in the logics of inference in operation in
 qualitative and quantitative inquiry.

 1. Distinct questions. In one prominent view, qualita
 tive and quantitative modes of inference seek to gener
 ate distinct types of knowledge. Some have argued, for
 instance, that only quantitative analysis of covariation
 is suited to the estimation of causal effects (e.g.. Beck
 (2010, p. 502)). Other accounts suggest that the distinct
 contribution of qualitative approaches lies in linking
 quantitatively derived causal estimates to theoretical
 logics. In Paluck's (2010) view, for example, cross-case
 experimental evidence can provide estimates of causal
 effects, while process tracing can illuminate the mech
 anism through which any effects are produced—but
 does not itself contribute to identifying those effects.
 Thus, in these understandings, each type of inquiry
 answers a different kind of question (see also Collier
 and Sambanis (2005, p. 19)). Relatedly, Goertz and
 Mahoney (2012) point to typical differences in the
 knowledge-generating goals of qualitative and quan
 titative research—such as the common orientation of

 qualitative research toward explaining individual case
 outcomes and the orientation of quantitative research
 toward estimating average causal effects. Insofar as the
 questions addressed by the two research strategies are
 different, the scope for systematic integration of qual
 itative and quantitative inferences is narrow.

 2. Distinct measurement strategies. Other schol
 ars have argued that qualitative and quantitative ap
 proaches can be understood as addressing the same
 basic questions, using the same logic of inference. These
 scholars have tended to view the difference between

 qualitative and quantitative research as one of mea
 surement. King, Keohane, and Verba (1994), for in
 stance, argue that logics of causal inference commonly
 employed in quantitative inference can also be em
 ployed with qualitative (non-numerical) data.

 Although King, Keohane, and Verba do not focus on
 procedures for integrating the analysis of qualitative
 and quantitative evidence, it is clear that such integra
 tion is possible under a single logic of causal inference.
 Large families of discrete choice models enable the
 quantitative analysis of data taking categorical or or
 dinal form (Barton and Lazarsfeld 1955; Young 1981).
 Recent work on causal inference has also pointed to
 the gains from integrating qualitative measures into
 quantitative analyses. Glynn and Ichino (2014), for in
 stance, outline a framework in which the researcher
 draws on qualitative information from in-depth case
 studies to generate ordinal rankings of cases on partic
 ular variables that, in turn, inform the statistical esti
 mation of causal effects. Importantly, such approaches
 allow for the integration of diverse data types within an
 essentially correlational model of inference: in which
 leverage derives from observation of the covariation of
 causal and outcome variables across cases.

 3. Distinct inferential logics. In a third characteriza
 tion qualitative and quantitative research are under
 stood as addressing a common set of causal questions
 using distinct logics of causal inference. In this view,
 the core differences between qualitative and quantita
 tive research are largely independent of approaches to
 measurement. Most commonly, scholars in this group
 have focused on a distinction between "cross-case" and
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 "within-case" modes of inference: while quantitative
 research typically relies on associations between inde
 pendent and dependent variables across cases, qualita
 tive research frequently draws leverage from observ
 able features of processes unfolding within individual
 cases (Collier, Brady, and Seawright 2010; Freedman
 2010; Hall 2003; Lieberman 2005; Seawright and Ger
 ring 2008; White and Philips 2012).

 Scholars taking this "distinct logics" view frequently
 point to the benefits of mixing correlational and
 process-based inquiry (e.g., Collier, Brady, and Sea
 wright (2010, p. 181)), and have sometimes mapped
 out broad strategies of multimethod research design
 (Lieberman 2005; Seawright and Gerring 2008). For
 the most part, however, this literature does not indi
 cate how the integration of inferential leverage should
 unfold. In particular, it does not imply specific prin
 ciples for aggregating findings—whether mutually re
 inforcing or contradictory—across different modes of
 analysis.

 A small number of exceptions stand out. In the ap
 proach suggested by Gordon and Smith (2004), for
 instance, possibly imperfect expert knowledge regard
 ing the operative causal mechanisms for a small num
 ber of cases can be used to anchor the statistical es

 timation procedure in a large-/V study. Western and
 Jackman (1994) propose a Bayesian approach in which
 qualitative information shapes subjective priors which
 in turn affect inferences from quantitative data. Re
 latedly, in Glynn and Quinn (2011), researchers use
 knowledge about the empirical joint distribution of the
 treatment variable, the outcome variable, and a post
 treatment variable, alongside assumptions about how
 causal processes operate, to tighten estimated bounds
 on causal effects. Seawright (ND) presents an informal
 framework in which case studies are used to test the

 assumptions underlying statistical inferences, such as
 the assumption of no-confounding or the stable-unit
 treatment value assumption (SUTVA).

 Our article is most similar in spirit to this last group of
 studies. Our contribution shares with Glynn and Quinn
 (2011) a focus on combining inferences from X, Y data
 and within-case data.1 However, the BIQQ framework
 yields a distinctive set of insights. Rather than focus
 ing on the bounds on causal effects, our framework
 can generate a wide range of estimates of substantive
 and methodological interest, including average causal
 effects, the distribution of causal effects in a popula
 tion, case-level causal effects, and the validity of rival
 theories. By placing the analysis in a Bayesian context,
 including an explicit probability model for the data, the
 BIQQ framework also takes into account the varying
 likelihoods with which potentially probative pieces of
 evidence may be associated with causal effects. Unlike
 Western and Jackman's (1994) proposal, moreover, the
 approach presented here includes explicit procedures
 for drawing inferences from qualitative data. The ap

 proach, further, shares with Seawright (ND) an interest
 in how one method can inform the inferential assump
 tions underlying another. The multiparameter frame
 work developed below allows the analyst to update not
 just causal estimands of interest, but also the premises
 on which the interpretation of evidence is based—
 including beliefs about the probative value of qualita
 tive data and about the process through which cases are
 assigned to values on the explanatory variable. Finally,
 the framework allows us to derive claims about the

 conditions under which a marginal piece of qualitative,
 as opposed to quantitative, evidence is likely to yield
 greater inferential payoffs.

 BAYESIAN QUALITATIVE AND
 QUANTITATIVE CAUSAL INFERENCE

 The framework that we propose involves the integra
 tion of causal inferences deriving from cross-case corre
 lations in X and Y data with causal inferences deriving
 from within-case evidence of causal processes (often
 termed dataset observations and causal process obser
 vations, respectively) (Collier, Brady, and Seawright
 2010).

 To lay the groundwork for our framework, we intro
 duce notation to describe a common inferential prob
 lem that both quantitative and qualitative scholars seek
 to address when studying causal effects. We simplify
 the analysis here by employing a single, binary causal
 variable and a binary outcome variable. We discuss
 extensions to this baseline setup below.

 The Problem of Causal Inference

 Consider, to begin, a situation in which some individ
 uals in a diseased population are observed to have
 received a treatment while others have not (X). As
 sume that, subsequently, a researcher observes which
 individuals become healthy and which do not (Y). Let
 us further assume that each individual belongs to one
 of four unobserved "types," defined by the potential
 effect of treatment on the individual:2

 • adverse: Those who would get better if and only if
 they do not receive the treatment

 • beneficial: Those who would get better if and only
 if they do receive the treatment

 • chronic: Those who will remain sick whether or not

 they receive treatment
 • destined: Those who will get better whether or not

 they receive treatment

 Throughout, we will use the letters a, b, c, and d to de
 note these causal types and the terms, ka, kb, kc, kd, to
 denote the relative share of these types in a population
 of interest.

 1 The approach presented here is also connected to strategies
 for ecological inference that combine case-level information with
 population-level information to better estimate population-level
 causal effects (Glynn et al. 2008).

 2 Chickering and Pearl (1996) use an analogous set of case-level
 causal effects, which they refer to as "hurt," "helped," "never
 recover," and "always-recover," respectively. See also Herron and
 Quinn (2009) for a similar classification. Note that we implicitly
 invoke a SUTVA assumption here.
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 TABLE 1. Potential Outcomes and Causa! Types with a Binary Causal and Binary Outcome
 Variable

 Type a adverse effects Type b beneficial effects Type c chronic cases Type d destined cases

 Not treated healthy sick sick healthy
 Treated sick healthy sick healthy

 Note: What would happen to each of four possible types of cases if they were or were not treated?

 TABLE 2. The Fundamental Problem of

 Type Ambiguity

 y=o y=1

 X = 0 bore a or d
 X=î aor c bord

 Note: Conditional on X and V values, each unit is one
 of two possible causal types.

 These types differ in their "potential outcomes" —
 that is on what outcomes, Y, they would take on under
 alternative treatment conditions, X (Rubin 1974).
 More formally, we let Y(x) denote a case or type's
 potential outcome when X = x. Thus, the potential
 outcomes are Y(0) = 1, 7(1) = 0 for type a; Y(0) =
 0, Y(l) = 1 for type b: Y(0) = 0, Y(l) = 0 for type c;
 and Y(0) = 1, Y(l) = 1 for type d. These potential out
 comes are illustrated in Table 1.

 Shifting to the social world, consider the effect of
 economic crisis on the collapse of an authoritarian
 regime, where "collapse" is understood as the positive
 outcome ( Y = 1). An a case is one in which crisis, if it
 occurs, prevents an authoritarian regime from collaps
 ing; in a b case, economic crisis, if it occurs, generates
 authoritarian collapse in a country that would other
 wise have remained authoritarian; a c case is a regime
 that will not collapse with or without economic crisis;
 and a d case is one that will collapse with or without
 crisis.

 The treatment effect for a case is defined as the dif

 ference in potential outcomes for that case between
 the treatment and control conditions, Y(l) — Y(0). The
 well-known fundamental problem of causal inference is
 that, for any given case, it is only possible to observe
 Y(l) or Y(0). Thus, for no case is it possible to observe
 the difference between these two quantities and, hence,
 the treatment effect. Put differently, it is impossible to
 directly observe the type of an individual case.

 Table 2 displays the ambiguity that we face about the
 type of a case given an observation of X and Y for that
 case.

 Importantly, as seen in the table, the ambiguity al
 ways involves one element of a, b and one element of
 c, d. To return to our regime-change example, if we
 observe an authoritarian country that has experienced
 crisis and has subsequently democratized, we do not
 know whether the regime collapsed because of the

 economic crisis (and is, thus, of type b) or would have
 collapsed in any case (type d). Similarly, if we observe
 a country that does not experience economic crisis and
 does not collapse, we do not know whether the regime
 would have collapsed in case of crisis (and is, thus, of
 type b) or would have survived intact in any case (and
 is, thus, of type c). The table also indicates, however,
 that we can rule out either a or b and either c or d

 based solely on the observation of values on X and Y
 For instance, a regime that collapsed after economic
 crisis is with certainty neither an a nor a c type.

 Identifying the type of a given case is to make a case
 level causal claim for the case in question. Population
 level causal claims, on the other hand, are claims about
 the distribution of types in the population—that, is the
 quantities Xa, Xb, Xc, and Xj. A quantity of particular
 interest is thus the value Xb - Xa, which is the average
 causal effect for the population.

 We turn next to describe, and formalize in Bayesian
 terms, strategies used in qualitative and quantitative
 analyses to support case- and population-level causal
 claims, respectively.

 The Process Tracing Approach

 While process tracing can be put to different purposes,
 we focus here on process tracing as an approach that
 draws causal inferences—about whether X caused Y or

 how Xcaused Y—for a given case, by examining within
 case data that is believed to shed light on whether a
 given causal relationship exists or causal process is in
 operation.

 Translated into our typological setup, we can summa
 rize the standard view of process tracing as a method
 that inspects a case for evidence of that case's type: that
 is, to determine whether or not the outcome in that
 case was generated by the case's treatment status on a
 given X. We refer to the within-case evidence gathered
 during process tracing as clues in order to underline
 their probabilistic relationship to the causal relation
 ship of interest. Readers familiar with Collier, Brady,
 and Seawright's (2010)) framework can usefully think
 of our "clues" as akin to causal process observations,
 although we highlight that there is no requirement that
 the clues be generated by the causal process per se.
 Process tracing can be understood as a search for clues
 that will be observed with some probability if the case
 is of a given causal type and that will be observed with
 some differing probability if the case is of a different
 causal type.
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 It is relatively straightforward to express the logic of
 process tracing in Bayesian terms, a step that will aid
 the integration of qualitative with quantitative causal
 inferences. As noted by others (e.g., Beach and Ped
 ersen (2013), Bennett (2008), Rohlfing (2012)), there
 is an evident connection between the use of evidence

 in process tracing and Bayesian inference. In the arti
 cle's Supplementary Materials (Sec. A), we provide a
 survey of recent accounts and applications of process
 tracing that follow a logic akin to that underlying our
 formalization.

 In a Bayesian setting, we begin with a prior belief
 about the probability that a hypothesis is true. New
 data then allow us to form a posterior belief about the
 probability of the hypothesis.

 Formally, we express Bayes' rule as

 (1)

 H represents our hypothesis, which may consist of
 beliefs about one or more parameters of interest. V
 represents a particular realization of new data (e.g., a
 particular piece of evidence that we might observe).
 Thus, our posterior belief derives from three consid
 erations. First, the "likelihood": how likely are we to
 have observed these data if the hypothesis were true,
 Pr(£>|if)? Second, how likely were we to have observed
 these data regardless of whether the hypothesis is true
 or false, Pr(2?)? Our posterior belief is further condi
 tioned by the strength of our prior level of confidence in
 the hypothesis, Pr(H). The greater the prior likelihood
 that our hypothesis is true, the greater the chance that
 new data consistent with the hypothesis have in fact
 been generated by a state of the world implied by the
 hypothesis.

 In formalizing Bayesian process tracing, we start with
 a very simple setup, which we then elaborate. To return
 to our running example, suppose that we already have
 X, Y data on one authoritarian regime: we know that it
 suffered economic crisis (X = 1) and collapsed (y = 1).
 We want to know if X caused Y. We answer the question
 by collecting one or more clues that we believe are
 related to the case-level causal effect of X on Y. We use

 the variable K to register the outcome of the search
 for a clue (or collection of clues), with K = 1 indicating
 that a specific clue (or collection of clues) is searched
 for and found, and K = 0 indicating that the clue is
 searched for and not found.

 Bayesian inference involves five steps: (a) defining
 our parameters, which are the key quantities of inter
 est, (b) stating prior beliefs about the parameters of
 interest, (c) defining a likelihood function, (d) assess
 ing the probability of the data, and (e) the application
 of Bayes' rule. We discuss each of these steps, in the
 context of process tracing, in turn.

 Parameters. For an X = Y = 1 case, the inferential
 challenge is to determine whether the regime collapsed
 because of the crisis (the case is a b type) or whether
 it would have collapsed even without it (d type). The
 parameter of interest is thus the causal type. Let j e

 Vol. 109, No. 4

 {a, b, c, d) refer to the type of an individual case. Our
 hypothesis, in this initial setup, consists of a belief about
 j for the case under examination: specifically whether
 the case is a b type (j = b)?

 Prior. We then assign a prior degree of confidence to
 the hypothesis (Pr(H)). This is, here, our prior belief
 that an authoritarian regime that has experienced eco
 nomic crisis is a b. For now, we express this belief as a
 prior point probability.

 Likelihood. We next indicate the likelihood, Pr(K =
 1 \H). This is the probability of observing the clue, when
 we look for it in our case, if the hypothesis is true—i.e.,
 here, if the case is a b type. We thus require beliefs
 relating clues to causal types.

 The key feature of a clue is that the probability of
 observing the clue is believed by the researcher to be
 a function of the case's causal type. For the present
 example, we will need two such probabilities: we let
 denote the probability of observing the clue for a case
 of b type (Pr(2£ = l|y = b)), and 4>d the probability of
 observing the clue for a case of d type (Pr(/C = 1|j =
 d)). We note that, for the hypothesis that the case is
 a b, 4>b corresponds to Van Evera (1997)'s concept of
 "certainty."4 The key idea in process tracing is that
 the difference between the probability of the clue for
 a b type and for a d type (<pd) provides the clue
 with "probative value,"—that is, the ability to generate
 learning about causal types.5

 In process tracing, analysts' beliefs about the proba
 bilities of observing clues for cases with different causal
 effects typically derive from theories of, or evidence
 about, the causal process connecting X and Y. Suppose
 we theorize that the mechanism through which eco
 nomic crisis generates collapse runs via the regime's di
 minished capacity to reward its supporters. A possible
 clue to the operation of a causal effect, then, might be
 the observation of diminishing rents flowing to regime
 supporters shortly after the crisis. Given our theory, this
 is a clue that we might believe to be highly probable for
 cases of type b that have experienced economic crisis
 (where the crisis in fact caused the collapse) but of
 moderate probability for cases of type d that have ex
 perienced crisis (where the collapse occurred for other
 reasons). This would imply a high value for <pb and
 moderate value for 0^.

 3 More formally, we can let our hypothesis be a vector 0 that contains
 a set of indicators for the causal type of the case y = (yj,. yd), where
 y; e {0,11 and £ yy = 1.
 4 More fundamentally one might think of types being defined over Y
 and K as a function of X. Thus potential clue outcomes could also be
 denoted K( 1) and K(0). High expectations for observing a clue for a
 b type then correspond to a belief that many exchangeable units for
 which Y(X) = Xalso have K(l) = 1 (whether or not K(0) = 0).
 5 More formally, we operationalize the concept of probative value
 in this article as twice the expected change in beliefs (in absolute
 value) from searching for a clue that is supportive of a proposi
 tion, given a prior of 0.5 for the proposition. For example, in de
 termining whether /' = b or j = d for a given case, starting from
 a prior of 0.5 and assuming > fy, the expected learning can
 be expressed as EL = O.5(O.5<fc/(O.50i, + 0.5<pa) - 0.5) + 0.5(0.5 -
 (1 - ij>b)0.5/((l - </>b)0.5 -f (1 - </y)0.5)). The probative value, after
 simplifying, is then PV = 4>b/(<Pb + 4>d) ~ (1 - <t>b)/(( 1 - <t>b) + (1 -
 0<i)), which takes on values between 0 and 1.

 657

This content downloaded from 132.174.250.76 on Sat, 07 Jan 2023 20:15:38 UTC
All use subject to https://about.jstor.org/terms



 Mixing Methods: A Bayesian Approach

 Here the likelihood, Pr(/C = 1|H), is simply fa.
 Note that the likelihood takes account of known

 features of the data-gathering process. The likelihood
 given here can be thought of as following from an im
 plicit assumption that the case is randomly sampled
 from a population of X = Y = 1 cases for which share
 fa of the ft cases have clue K = 1 and share tpd of the d
 cases have clue K = 1.

 Probability of the data. This is the probability of
 observing the clue when we look for it in a case, re
 gardless of its type, (Pr(X = 1)). More specifically, it
 is the probability of the clue in a treated case with
 a positive outcome. As such a case can only be a ft
 or a d type, this probability can be calculated simply
 from 4>b and fa, together with our beliefs about how
 likely an X = 1, Y = 1 case is to be a b or a d type. This
 probability aligns (inversely) with Van Evera's concept
 of "uniqueness."

 Inference. We can now apply Bayes' rule to describe
 the learning that results from process tracing. If we
 observe the clue when we look for it in the case, then
 our posterior belief in the hypothesis that the case is of
 type b is

 fa Pr(/ = b)

 4>b Pr(/ = ft) + fa Pr(/ = d) '

 Suppose, in our running example, that we believe the
 probability of observing the clue for a treated b case is
 4>b = 0.9 and for a treated d case is fa = 0.6, and that
 we have prior confidence of 0.5 that an X = 1, Y = 1
 case is a ft. We then get

 0 9x05
 Pr(/ = b\X= Y= K = 1) = = 0.6. v ; 0.9x0.5 + 0.6x0.5

 Analogous reasoning follows for process tracing in
 cases with other X, Y values. For an X = 0, Y = 1 case,
 for instance, we need prior beliefs about whether the
 case is an a or a d type and beliefs about the probabili
 ties fa and fa for the clue being sought.
 The inferential leverage in process tracing thus

 comes from differences in the probability of observ
 ing K = 1 for different causal types. As should also be
 clear, the logic described here generalizes Van Evera's
 familiar typology of tests by conceiving of the certainty
 and uniqueness of clues as lying along a continuum.
 Van Evera's four tests ("smoking gun," "hoop,"

 "straw in the wind," and "doubly decisive") represent,
 in this sense, special cases—particular regions near the
 boundaries of a "probative-value space." To illustrate,
 we represent the range of combinations of possible
 probabilities for fa and fa as a square in Figure 1 and
 mark the spaces inhabited by Van Evera's tests. As can
 be seen, the type of test involved depends on both the
 relative and absolute magnitudes of fa and fa. Thus,
 a clue acts as a "smoking gun" for proposition "ft"
 (the proposition that the case is a ft type) if it is highly
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 unlikely to be observed if proposition "ft" is false, and
 more likely to be observed if the proposition is true
 (bottom left, above diagonal). A clue acts as a "hoop"
 test if it is highly likely to be found if "ft" is true, but less
 likely to be found if it is false. Doubly decisive tests arise
 when a clue is very likely if "ft" and very unlikely if not.
 It is also easy to imagine clues with probative qualities
 lying in the large space amidst these extremes.

 At the same time, the probative value of a test does
 not fully describe the learning that takes place upon
 observing evidence. Following Bayes' rule, inferences
 also depend on our prior confidence in the hypothesis
 being tested. At very high or very low levels of prior
 confidence in a hypothesis, for instance, even highly
 probative evidence has minimal effect on posteriors;
 the greatest updating generally occurs when we start
 with moderate prior probabilities. Figure 5 in the Sup
 plementary Materials (Sec. B) graphically illustrates
 the effect of prior confidence on learning.

 We have so far described a very simple application
 of Bayesian logic. A further elaboration, however, can
 place process tracing in a more fully Bayesian setting,
 allowing for considerable gains in learning. Instead of
 treating clue probabilities (<p values) as fixed, we can
 treat them as parameters to be estimated from the data.
 In doing so, we allow the search for clues to provide
 leverage not only on a case's type but also, given a
 belief about type, on the likelihood that a case of this
 type generates the clue. We can define our hypothesis
 as a vector, 9, that includes both the causal type of
 the case and the relevant <p values, e.g., <f>b, 4>d- We can
 then define our prior as a prior probability distribution
 p (9) over 9.6 We can thus express any prior uncertainty
 about the relationship between causal effects and clues.
 Our likelihood is then a function that maps each pos
 sible combination of type and the relevant 0 values to
 the probability of observing the clue when we search
 for it, given those parameter values.

 In this multiparameter approach, updating produces
 a joint posterior distribution over type and our 0 values.
 Observing the clue will shift our posterior in favor of
 type and 0-value combinations that are more likely
 to produce the clue. In sum, and critical to what fol
 lows, we can simultaneously update beliefs about both
 the case's type and the probabilities linking types to
 clues—learning both about causal effects and empirical
 assumptions. We provide further intuition on, and an
 illustration of, this elaboration in the Supplementary
 Materials (Sec. B).

 The Correlational Approach

 The correlational solution to the fundamental prob
 lem of causal inference is to focus on population
 level effects. Rather than seeking to identify the types
 of particular cases, researchers exploit covariation
 across cases between the treatment and the outcome

 6 Here, this distribution could, for example, be given by the product
 of a categorical distribution over y (indicators of causal type) and a
 beta distribution for each rpj ■
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 FIGURE 1. Probative-Value Space

 Classification of tests

 05
 -O
 O

 CL

 K present:
 doubly decisive for b

 K absent:

 doubly decisive for d
 A

 <r

 K present:
 hoop test for b

 K absent:

 smoking gun for d

 More specific
 for b

 More sensitive
 for b

 K present:
 straw in the wind for b

 K absent:
 straw in the wind for d

 K present:
 hoop test for d

 K absent:

 smoking gun for b

 K present:
 straw in the wind for d

 K absent:

 straw in the wind for b More sensitive
 for d

 K present:
 smoking gun for b

 K absent

 hoop test for d

 More specific
 ford

 V

 K present:
 smoking gun test for d

 K absent:

 hoop test for b

 K present:
 doubly decisive for d

 K absent:

 doubly decisive for b

 T  ~r

 o.o  0.2  0.4 0.6

 <|>d (Probability of observing K given d)

 1.0

 Note: A mapping from the probability of observing a clue if a proposition "Ö' (i.e., that a case is a bfype) is true (0^) or false (<j>ci) to a
 generalization of the tests described in Van Evera (1997).

 variables—i.e., dataset observations—in order to as
 sess the average effect of treatment on outcomes for a
 population or sample of cases.

 In the simplest, frequentist approach, under condi
 tions described by Rubin (1974), the average effect of a
 treatment may be estimated as the difference between
 the average outcome for those cases that received treat
 ment and the average outcome for those cases that did
 not receive treatment.

 Although this frequentist approach to estimating
 causal effects from correlational data is more famil

 iar, recasting the strategy in Bayesian terms will facil
 itate the integration of within-case and between-case
 data that we undertake below. The general utility of
 the Bayesian framework for cross-case data analysis
 is already well appreciated, and so we simply review
 Bayesian correlational inference as applied to the bi
 nary setup.7

 Suppose, returning to our running example, that we
 are interested in determining the distribution of causal
 types in a population of authoritarian regimes. We
 again need to specify our parameters, priors, likelihood,
 and the probability of the data, and then draw our
 inference via the application of Bayes' rule:

 Parameters. One set of parameters to be estimated
 are our X values: i.e., the proportion of the popula
 tion of authoritarian regimes for which economic crisis
 would prevent collapse (Xa), the proportion for which
 it would cause collapse (À/,), and so on.

 As in our multiparameter process-tracing setup, we
 also include a set of parameters capturing analytic as
 sumptions. In correlational inference, these parameters
 relate to the process of assignment of types to treat
 ment. Let TTj denote the (possibly unknown) proba
 bility that a case of type j is assigned to treatment
 (X = l).8 Thus, for instance, Tib indicates the likeli
 hood that a country of type b (one susceptible to a
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 FIGURE 1. Probative-Value Space

 7 For a similar treatment for a case with known propensities but
 noncompliance, see Imbens and Rubin (1997).  8 We assume that all cases are independently assigned values on X.
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 regime-collapsing effect of crisis) has been "assigned"
 to experiencing economic crisis. Critically, the X, Y
 data pattern consistent with any given belief about the
 distribution of types depends on beliefs about these
 assignment probabilities.

 We can now define our hypothesis as a vector,
 6 = (ka, Xb, kc, kd, 7Ta, 7Tb, Kc, ltd), that registers a pos
 sible set of values for the parameters over which we
 will update: type proportions in the population and
 assignment propensities by type.

 Prior. We next need to assign a prior probability to
 6. In the general case, we will do so by defining a prior
 probability distribution, p{9), over possible values of
 the elements of 6.

 Likelihood. Our data, V, consist of X and Y obser
 vations for a sample of cases. With a binary X and Y,
 there are four possible data realizations (combinations
 of X and Y values) for a given case. For a single case,
 it is straightforward to calculate an event probability
 wxy—that is, the likelihood of observing the particu
 lar combination of X and Y given the type shares and
 assignment probabilities in 9. For instance,

 Woo = Pr(X=0, Y=O|0)

 = kb(l - JTb) + kc(l - 71 c).  (2)

 More generally, let wxy denote the vector of these
 event probabilities for each combination of X and Y
 values, conditional on 9. Further, let nxy denote a vec
 tor containing the number of cases observed with each
 X, Y combination and n the total number of observed
 units. Under an assumption of independence (data are
 independently and identically distributed), the full like
 lihood is then given by the multinomial distribution:

 Pr(X>|0) = Multinomial(nxH«, wxy)

 We again assume here that cases are randomly drawn
 from the population, though more general functions
 can allow for more complex data gathering processes.

 Probability of the data. We calculate the uncondi
 tional probability of the data, Pr(P), by integrating the
 likelihood function above over all parameter values,
 weighted by their prior probabilities.

 Inference. After observing our data, D, we then form
 posterior beliefs over 9 by direct application of Bayes'
 rule, above:

 BAYESIAN INTEGRATION OF QUALITATIVE
 AND QUANTITATIVE DATA

 We now turn to the unification of Bayesian inference
 from correlational and process-tracing data. As de
 scribed above, a Bayesian approach can be used to
 update beliefs about causal effects using either process
 based or correlational data. The BIQQ framework
 builds on this logic to allow updating of causal be
 liefs and analytic assumptions following the observa
 tion of any combination of X, Y data and within-case
 clues.

 The basic intuition of the BIQQ approach is as
 follows. Observations of X and Y values for a case

 provide some discriminating information about the
 type of that case—in our binary setup, narrowing
 it down to one of two types. (For instance, an
 X=1,Y=1 case can only be a b or a d.) Addi
 tional within-case clue (K) information provides fur
 ther discriminating power. Put another way. since the
 causal type affects the likelihood of observing pat
 terns over X, Y, and K, information about all three
 of these quantities allows us to update over the causal
 types.

 Critically, however, beyond providing a way to up
 date over the distribution of causal types, BIQQ pro
 duces a set of updated beliefs about other quantities
 such as assignment processes and the probative value
 of clues. Moreover, while we focus here on inference
 regarding average causal effects, the same framework
 can be used to generate updated beliefs about case
 level explanations or about theoretical logics (e.g., the
 ories of mechanism).

 We emphasize that the BIQQ framework's crit
 ical integrative move derives from writing down a
 likelihood function that maps each point in the pa
 rameter space onto the probability of occurrence of
 the observed pattern of quantitative and qualitative
 data. While we place estimation in a Bayesian frame
 work, thus allowing for integration of prior knowledge
 about the parameters, the basic insight can also be
 applied in a non-Bayesian, maximum-likelihood set
 ting, as we discuss in the Supplementary Materials
 (Sec. J).

 In the remainder of this section we describe a simple
 but complete baseline model that is likely to cover a
 range of applications of interest. We then discuss how
 this basic model can be extended to more complex
 research situations.

 P(e\v)
 Pr(V\9)p(d)

 (3) Baseline Model

 This posterior distribution reflects our updated beliefs
 about which sets of parameter values are most likely,
 given the data. Critically, upon observing X and Y data,
 we simultaneously update beliefs about all parameters
 in 9: beliefs about causal effects (type shares) in the
 population and beliefs about the assignment propensi
 ties for cases of each type. We provide further detail and
 a simple illustration in the Supplementary Materials
 (Sec. C).

 Turning now to the formalization of the baseline model,
 we describe a complete BIQQ model with respect to
 parameters, priors, likelihood, and inference.

 Parameters. In the baseline model, we have three sets

 of parameters:

 1. The population distribution of causal types
 2. The probabilities with which types are assigned to

 treatment
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 3. The probabilities with which clues are associated
 with types

 We discuss these in turn.

 Distribution of types. As above, we are interested
 in the proportion of a, b, c, or d types in the pop
 ulation, denoted by k = (ka, kb, kc, kd) (Table 1). Im
 plicit in this representation of causal types is a SUTVA
 assumption—i.e., that potential outcomes for a given
 case depend only on that case's treatment status. Our
 setup with four types also implies just a single explana
 tory variable. Though embedded in the baseline model,
 both of these assumptions can be relaxed (see discus
 sion of extensions, below).

 Treatment assignment. Let n = {ixa, 7ib, Jtc, Jtd) de
 note the collection of assignment probabilities: that is,
 the probability of receiving treatment (X = 1) for cases
 of each causal type. We assume in the baseline model
 that cases are independently assigned to treatment. As
 signment propensities could in principle, however, be
 modeled as correlated or as dependent on covariates.

 Clues. Let <p = (4>JX) denote the collection of prob
 abilities that a case of type j will exhibit clue K = 1
 (when it is sought), when X = x. Thus, foi is the proba
 bility of observing the clue for a treated case of b type,
 while (frbo is the probability of observing the clue for
 an untreated b type. Note that we allow clue probabil
 ities to be conditional on a case's treatment status. The

 rationale is that, for many process-based clues, their
 likelihood of being observed will depend on the case's
 causal condition. We again assume that the realization
 of clues is independent across cases. For simplicity, we
 write down the baseline model in terms of the search

 for a single clue, though a search for multiple clues can
 readily be accommodated.

 In total, in the baseline model the parameter vec
 tor 0 has 16 elements grouped into three families:
 0 = (À, n, (p).

 Priors. Our uncertainty before seeing the data is rep
 resented by a prior probability distribution over the pa
 rameters of interest, given by p{9). The model accords
 great flexibility to researchers in specifying these prior
 beliefs, a point we return to in the concluding section.
 In our baseline model, we employ priors formed from
 the product of priors over the component elements
 of 0; that is, we assume that priors over parameters
 are independent. For the k parameters, we employ a
 Dirichlet distribution in most applications below; for
 n and 4> parameters, we employ a collection of beta
 distributions.

 In some situations, researchers may have uncertainty
 over some parameters but know with certainty the
 value of others. In experimental work, for instance,
 assignment probabilities may be known with certainty.
 Parameters with known values can be removed from 0,
 entering into the likelihood as fixed values. We model
 0 as fixed in some applications below; in general, we
 expect researchers to have uncertainty over k and (p
 and, in most observational work, over :x as well.

 Likelihood. In the baseline model, we assume that X
 and Y data are observed for n cases under study, and
 that K data are sought for a random subset of k of
 these. Thus, each case displays one of 12 possible data
 realizations: formed by all combinations of X e {0,1},
 Y e {0,1}, and K e {0,1, *}. While K = 0 implies that
 the clue is sought and not found, and K = 1 implies
 that the clue is sought and found, K = * indicates
 that no process tracing has been conducted for that
 case.

 We can then define two vectors registering the event
 probabilities of the 12 possible case-level data realiza
 tions:

 wxy* =

 / kb(l - Ttb) + A.c(l - 7tc) \
 ^«(1 - TTfl) + kd(l - 7td)

 ka^a K^c)
 kb^b ~t~ kdjtd

 WXYK -

 /W(X)*\
 W01*

 Wio*

 \Wll*/

 ( wooo\
 Wool

 \wm /

 (kb{\ - 7T;,)(1 - (pbO) + Àc(l - 7TC)( 1 - (pco)\
 ^•b(l ~ ^ft)0bO "t" *c(l — ^c)<AcO

 V  kbnb<t>b\ + kd7Td<pdi  )

 We next let hxyk denote an eight-element vector
 recording the number of cases in a sample display
 ing each possible combination of X, Y, K data, where
 K e {0,1}, thus nxYK = ("ooo, "ooi, "too. • • • - "in)- The
 elements of hxyk sum to k. Similarly, we let tixy* de
 note a four-element vector recording the data pat
 tern for cases in which no clue evidence is gathered:
 nxY* = (noo*,noi*,nio*,nu*), with the elements sum
 ming ton - k. Finally, assuming that data are indepen
 dently and identically distributed, the likelihood is

 Pr(X>|0) = Multinom («ay* I" - k wxy*)

 x Multinom (nxYK\k, wxyk) ■

 This likelihood simply records the product of the prob
 ability that X, Y data would look as they do in those
 cases in which only X, Y data are gathered (given the
 number of such cases and the event probability associ
 ated with each possible X, Y data realization), and the
 probability that the X,Y,K data would look as they
 do in those cases in which within-case data are also

 gathered (given the number of such cases and the event
 probability for each possible X,Y, K data realization).

 As before, we highlight that the likelihood contains
 information on data gathering: in particular, on qualita
 tive and quantitative case selection. The baseline model
 assumes that clue evidence is sought in a randomly
 selected set of cases in the study sample. Again, one
 could model more complex qualitative case selection
 processes, which for instance might be independent
 (if for example a clue is sought in each case in the
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 population with a fixed probability), dependent on X
 or Y values, or dependent on potential outcomes. We
 discuss these possibilities in the Supplementary Mate
 rials (Sec. F).

 Further, the baseline model assumes that the overall
 number of studied cases is fixed at n and that each case

 in the population is selected for study with equal proba
 bility. Alternatively, one could model the probability of
 selection of cases as independent (and thus the number
 of cases, n, as stochastic) or as dependent on potential
 outcomes or other features (such as the values of X or
 Y). Some of these possibilities are addressed in the Sup
 plementary Materials (Sec. F). Our application below
 to the civil-war literature also illustrates how known

 nonrandom case selection processes can sometimes be
 treated as random, conditional on a clue.

 The assumption of random sampling in the base
 line model, both for the selection of study cases (from
 the population) and for the selection of a subsample
 of these for further, within-case data collection, justi
 fies treating cases as "exchangeable," which renders
 the likelihood function informative (Ericson 1969).
 More generally, even where researchers choose to sam
 ple on some observable (e.g., X or Y values), select
 ing randomly (conditional on that observable) will
 generally be necessary to defend an assumption of
 exchangeability.

 Inference. With these elements in hand, inference oc
 curs through the application of Bayes' Rule (see Equa
 tion (3)).

 There are many methods for estimating posterior
 probabilities, though in most cases we use Markov
 chain Monte Carlo sampling implemented via RStan
 (Gelman et al. 2013; Stan Development Team 2014).
 In the Supplementary Materials (Sec. D), we show
 how to carry out BIQQ inference "by hand." In the
 Supplementary Materials (Sec. E), we also provide
 code for implementing the baseline BIQQ model via
 RStan, given user-defined priors and arbitrary X, Y, K
 data.

 The resulting posterior probability distribution re
 flects a shift in weight toward those parameter values
 that are more consistent with the evidence, for all pa
 rameters in 9. Of special interest in many situations will
 be the posterior distribution over types in the popula
 tion,^, kb, Àc, Àf/). From these, a marginal distribution
 of the posterior on treatment effects, (Xb - Xa),can be
 readily computed.

 Equally important, the posterior provides updated
 beliefs about the other primitives in the analysis, in
 cluding the assignment propensities (7ry ) and the pro
 bative value of clues (<pjX). That is to say, the framework
 captures the effect that observing evidence should have
 on the very beliefs that condition our interpretation of
 correlational or process-tracing evidence. This updat
 ing can occur because of the integration of independent
 streams of evidence: in effect, BIQQ employs clue
 independent X, Y information about types to update
 clue probabilities, and correlation-independent clues to
 test beliefs about how types are assigned to treatment.

 Extensions

 The baseline model simplifies certain features of real
 world research situations: treatments and outcomes

 are binary; neither measurement error nor spillovers
 occur; there is only one treatment of interest and one
 clue to examine; and our focus is on a single causal
 estimand (population-level treatment effects).

 Importantly, however, the basic logic of integration
 underlying the BIQQ framework does not depend on
 any of these assumptions. In what follows, we sugges
 tively indicate how BIQQ can be extended to capture
 a wider range of research situations and objectives.

 Multiple explanatory variables and interaction ef
 fects. Suppose that, instead of a single explanatory
 variable, we have m explanatory (or control) variables
 X\,Xï, Xm. As these m variables can take on 2m
 possible combinations of values, we now have 22 " types,
 values, rather than four. Assuming that clue probabil
 ities are conditional on type and the values of the ex
 planatory variables, </> would contain 22"' x 2"' = 21"'+m
 values, rather than the eight values in our baseline
 model. In the Supplementary Materials (Sec. F), we
 describe the situation with two explanatory variables in
 more detail and show how this setup allows researchers
 to examine both interaction effects and equifinality.

 Continuous data. We can similarly shift from binary
 to continuous variable values through an expansion of
 the set of causal types. Suppose that Y can take on
 t possible values. With m explanatory variables, each
 taking on r possible values, we then have tr causal
 types and, correspondingly, very many more elements
 in (p. Naturally, in such situations, researchers might
 want to reduce complexity by placing structure onto
 the possible patterns of causal effects and clue proba
 bilities, such as assuming a monotonie function linking
 effect sizes and clue probabilities.

 Measurement error. The probability of different types
 of measurement error can be included among the set
 of parameters of interest, with likelihood functions
 adjusted accordingly. Suppose, for instance, that with
 probability ea 7=0 case is recorded as a Y = 1 case
 (and vice versa). Then the event probability of observ
 ing an X = 1,7 = 1 case, for example, is €Xana + (1 —
 e)Xb7tb + eXc7tc + (1 - e)XliTCd- Similar expressions can
 be derived for measurement error on X or K. Speci
 fying the problem in this way allows us both to take
 account of measurement error and to learn about it.

 Spillovers. Spillovers may also be addressed through
 an appropriate definition of causal types. For example,
 a unit i that is affected either by receiving treatment or
 via the treatment of a neighbor,;', might have potential
 outcomes Y,(Xn Xf) = max(Z, , Xj ) while another type
 that is not influenced by neighbor treatment status has
 Yj(Xj, Xj) = max(X;). With such a setup, relevant clue
 information might discriminate between units affected
 by spillovers and those unaffected.

 Complex qualitative data. While the baseline model
 assumes a single, binary within-case observation, we
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 TABLE 3. Learning from Multiple Clues

 Type /C1 = K2 = 0 K, = 1, K2 = 0 = 0, K2 = 1 K^ = K2 = 1 Total

 b 0 1/2 1/2 0 1
 af 1/4 1/4 1/4 1/4 1

 Note: We illustrate here possible clue probabilities in a search for two clues within an X = 1, Y - 1 case.
 Cells show the probability of observing a given clue combination, conditional on each causal type.

 can readily incorporate more complex qualitative data.
 Instead of assuming K e {0,1}, we could assume K 6
 Mm, a multidimensional space capturing the possibility
 of multiple clues, each taking on any number of pos
 sible values. Let (pj (K\X) denote a probability density
 function over Rm. Probative value then comes from the

 differences in the </>; densities associated with different
 causal types, j.

 Multiple clues can also be correlated in arbitrary
 ways, allowing for additional learning to emerge from
 their joint observation. To illustrate, suppose that two
 binary clues are examined and that these have a joint
 distribution as given in Table 3. In this case, informa
 tion on K\ or K2 alone provides little information (not
 even a "straw-in-the-wind" test). The combination of
 clues, however, provides a stronger test. For example,
 examining whether both A4 and Ki are present pro
 vides a smoking gun test for a d type.

 Evaluating theories. The framework can also be used
 to keep track of uncertainty over the validity of a theory
 (e.g., a theory of causal mechanism) underlying a set of
 clue predictions. Let rf e {0,1} denote the event that
 theory t, specifying a particular causal mechanism, is
 correct. We can allow for uncertainty over t by includ
 ing rf in our vector of parameters of interest, 9, and our
 confidence in t is then captured by p(0). Although rf
 is never directly observed, we may associate different
 theories with the presence or absence of different clues
 in different X, Y conditions, or with distributions of
 causal types. Beliefs in t can thus be updated as we
 observe patterns in the data. In our running example
 above, suppose that, under the theory, we expect a
 clue—say, diminishing rents—to be more likely to be
 observed in b cases facing crisis than in d cases. If we
 then observe the clue more frequently in cases that
 have X, Y values that are more consistent with a b than
 a d type, the result will be an increase in the weight
 accorded to theory t, from which the clue predictions
 for differentiating b from d types have been derived.
 In associating clue patterns with theories in this way,
 our framework allows for simultaneous learning about
 the probative value of clues and about the validity of
 different theoretical accounts of causal processes. We
 give an illustration of this logic in the Supplementary
 Materials (Sec. D).

 Other variations might allow for different forms
 of effect heterogeneity, or for different case-selection
 strategies.

 ILLUSTRATIONS OF THE BIQQ APPROACH

 We provide two illustrations of the BIQQ approach.
 In each case we combine quantitative and qualitative
 data generated by different scholars to address major
 questions in political economy: the origins of electoral
 systems and the causes of civil wars.

 Application 1: The Origin of Electoral
 Systems

 We now apply the BIQQ framework to an issue that has
 received both quantitative and qualitative treatment in
 comparative politics: explaining variation in electoral
 systems across democracies. We use this application in
 part to illustrate the substantive effects that integration
 can have on causal conclusions. Equally important, the
 application demonstrates the dependence of conclu
 sions on how many and which cases are selected for
 qualitative analysis.

 Boix (1999) advances one influential theory of
 electoral-system choice as well as a quantitative test
 of the theory. In brief, Boix theorizes that the prefer
 ences of governing parties between plurality rules and
 proportional representation (PR) depend on the threat
 posed by challenger parties under the current rules. In
 particular, the presence of a strong opposition party
 together with coordination failure among the ruling
 parties will create strong incentives for governments
 to shift from plurality to PR. Boix's central test of
 the theory focuses on a set of 22 interwar European
 cases. In this context—the extension of universal suf

 frage, enabling the rise of socialist challengers—the
 theory implies that ruling parties should have been
 most likely to shift to PR where the left was electorally
 strong and the right was fragmented. In his main model,
 Boix regresses the effective electoral threshold on the
 electoral strength of the left, the effective number of
 right parties, the interaction of the two, and a number
 of controls, and finds (consistent with the theory) a
 strong negative interaction between left strength and
 right division.

 Kreuzer (2010) then undertakes a qualitative anal
 ysis of Boix's cases. He does so by collecting within
 case information relating to three implications of
 Boix's causal logic. For each case, Kreuzer asks (1)
 whether any proposal for PR followed a major suffrage
 expansion, (2) whether it was the ruling parties who ini
 tiated the move, and (3) whether the ruling parties were
 united in their support for PR. Kreuzer reports that the
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 TABLE 4. Mixed Data for Electoral

 Systems Analysis

 Y=0 Y=1

 X = 0 K= 0 4 3
 K = 1 0 1

 X=1 K=0 1 7
 K= 1 0 4

 Source: Based on Kreuzer (2010).

 process tracing yields full support for the theory in 36
 percent of the cases, partial support in 21 percent, and
 no support in the remaining cases.
 What conclusion can be drawn from the adjoining
 of these two analyses? Kreuzer draws the reasonable
 inference that Boix's theory offers an incomplete ex
 planation of PR adoption. Yet it is not at all obvious
 how much this particular mix of confirmatory and dis
 confirmatory qualitative evidence should unsettle the
 quantitative findings. That is, it is not clear what these
 two separate analyses—one quantitative, the other
 qualitative—ought to imply for our beliefs about the
 effect of left threat on PR adoption in interwar Eu
 rope. The separated analyses also do not allow us to
 learn about other parameters of interest, such as the
 distribution of case types, the probative value of the
 clues, or the propensities of different types of cases to
 be assigned to treatment.
 We illustrate how BIQQ can be applied to a some
 what simplified version of the problem, focusing on
 the average causal effect of left threat as our esti
 mand of interest. Consistent with the setup introduced
 above, we treat all variables as binary, employing the
 dichotomized codings of Boix's independent and de
 pendent variables as provided in Table 5 of Kreuzer
 (2010). Since the move to PR is theorized to depend
 both on the left being strong and the right being di
 vided, we code a single independent variable, X, as 1
 if and only if Kreuzer codes both conditions as present
 and 0 otherwise. We include in the analysis only those
 cases that started with single-member districts, thus
 dropping 2 of Boix's cases. And we code Y as 1 if
 the country moved to a form of PR and 0 otherwise.9
 Further, we maintain the bivariate setup for the corre
 lational analysis, setting aside the covariates in Boix's
 analysis. We note that, even with these simplifications,
 the basic bivariate relation between X and Y remains

 consistent with Boix's theory and strong (correlation
 = 0.47, p = 0.036).

 Finally, we collapse Kreuzer's three process-tracing
 tests into a single clue. We code the clue K = 1 for a
 given case if all three clues are present and K = 0 if
 one or more of the indicators is absent.

 Table 4 summarizes the X, Y, and clue (K) data that
 enter into the analysis, indicating the number of cases
 with each combination of X, Y, and K values.

 TABLE 4. Mixed Data for Electoral

 Systems Analysis
 TABLE 4. Mixed Data for Electoral

 Systems Analysis

 Y=0 Y=1

 X = 0 K = 0 4 3
 K= 1 0 1

 X=-\ K = 0 1 7
 /<= 1 0 4

 Source: Based on Kreuzer (2010).

 9 As our purpose is to illustrate the integration that BIQQ enables,
 rather than to weigh in on the substantive debate, we do not seek to
 adjudicate Kreuzer's coding choices.

 November 2015

 Alongside the data given in Table 4, we need to
 supply priors or known values on the parameters of
 interest: the distribution of types (a, b, c, and d) in the
 population; the probability of each type being assigned
 to treatment; and the probative value of clues. In this
 exercise, we fix assignment propensities to 0.5 for a and
 b types but use a flat prior for the assignment of c and
 d types. We employ a flat Dirichlet distribution for the
 proportion of each type in the population.

 Finally, while Kreuzer does not indicate the proba
 tive value he assumes for his clues, we assign probabil
 ities of observing the clues for each type and treatment
 status by reasoning with Boix's theoretical framework.
 The idea here is that these are values that a reader

 sympathetic to the theory might take as plausible ex
 pectations about the clue generation process. For this
 analysis we assume no uncertainty over the probative
 value of clues, fixing the eight 4> parameter values. The
 specific (j) values that we employ and our detailed rea
 soning can be found in the Supplementary Materials
 (Sec. G.l). Among the more important 0 probabilities
 here are those associated with b and d types for cases
 with X — 1 values. For cases with high left threat and a
 shift to PR, the inferential task is to determine whether

 they would have (d) or would not have (b) shifted to PR
 without left threat. The <pb\ and <j>a\ values that we have
 chosen are such that the clue operates as a hoop test
 for the proposition that such a case is a b type. On the
 other hand, for cases with no left threat and no shift to
 PR (which could be b or c types), (p values are such that
 the search for Kreuzer's clue will be minimally infor
 mative. This is because, regardless of type, the theory
 would not expect ruling parties to unanimously push
 for PR in the absence of left threat. Off the diagonal,
 in low-threat cases that shifted to PR, the (j) probabil
 ities make the clue a smoking gun for designation as
 a d type; and for high-threat cases that did not shift,
 the clue serves as a hoop test for designation as an
 a type.

 We present the results of the analysis in Figure 2.
 The figure displays the estimated causal effects for
 a range of possible research strategies. All strate
 gies examined use the correlational data for all 20
 cases, but they differ in the number of cases (k) for
 which clues are sought. We imagine for the purpose
 of this analysis that researchers randomly select the
 set of cases for which they gather within-case data,
 giving rise to a distribution of posterior distributions
 for each design. The X axis indicates the number of
 cases for which clues are sought, while the Y axis
 reports the resulting distribution of the posterior ex
 pected value of the average causal effect. On the
 far left, where we employ only Boix's correlational
 data and no within-case data, we estimate a poste
 rior mean just over 0.3. On the far right we see the
 analysis where all cases are examined qualitatively,
 which yields a posterior mean just below 0.15. Between
 these extremes we see the distribution of results for

 each research design, representing the causal-effect es
 timates for 500 random samples of cases for each level
 of k.

 Three features of the graph are of particular interest.
 The results indicate, first, that the impact of Kreuzer's
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 FIGURE 2. Distribution of Posterior Expected Values for Average Causal Effect under Alternative
 Research Designs: Electoral Systems Analysis
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 k : number of cases for which clue data is gathered

 Note: Each point represents the mean of the posterior distribution for the average treatment effect from a research design in which a
 random k of 20 available cases is studied qualitatively. The black circle marks the mean estimate for each k-, for each k, 95% of the
 simulations lie along the black line.
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 full analysis, under our stipulated priors, is large: al
 though it does not eliminate the effect, it cuts the esti
 mated impact of left threat on electoral-system reform
 roughly in half. Second, we see that in designs in which
 clue data are not collected for all cases, the results
 depend substantially on which cases are selected for
 process tracing. Even with as many as 12 cases, there
 are samples that result in a higher estimate of the causal
 effect than is found in the pure correlational analy
 sis. Third, we note how slowly the effect of process
 tracing data cumulates as the qualitative sample size
 increases. If we collect clues on a sample of the size
 typical of much qualitative work—say, between one
 and four cases —the expected result moves us no more
 than about a quarter of the way toward the full 20-case
 finding. Moreover, with random sampling at least, the
 variance in estimates resulting from qualitative sam
 ples of this size is large. These findings are all the more
 striking given that the clue data are on the whole in
 substantial tension with Boix's claims, that the clues
 have been assumed to have fairly high probative value,
 and that the correlational sample is itself quite small.

 Application 2: Natural Resources and
 Conflict

 Our second substantive application focuses on the re
 lationship between natural resources and civil conflict.
 This application illustrates the use of multiple clues,
 shows how conclusions can be reported conditional on
 beliefs about priors, and highlights an important fea
 ture of integration: that even strongly probative within
 case evidence collected for a small number of cases

 may make only a small contribution to inference when
 combined with a substantial amount of correlational
 data.

 We base our analysis on Ross (2004), who under
 takes qualitative analyses of 13 cases that feature both
 high levels of natural resources and the emergence of
 civil conflict. Ross draws his population of cases from
 a frame used in a quantitative study by Collier and
 Hoeffler (2004). Ross's study identifies all cases of civil
 wars that started or were ongoing between 1990 and
 2000 for which "scholars, nongovernmental organiza
 tions, or UN agencies suggested that natural resource
 wealth, or natural resource dependence, influenced the
 war's onset, duration, or casualty rate."10 In his anal
 ysis he seeks evidence of whether natural resources
 were associated with looting, grievance, or separatism;
 on examination of the cases, he also concludes that
 foreign intervention and evidence of resource-based
 rebel financing are also clues for a causal link between
 resources and conflict onset. Ultimately, Ross's deter
 mination of whether natural resources have a causal

 effect is based on whether any of the above clues were
 observed in these cases. In the event, at least one such
 clue is found in 5 cases out of the 13 in which clues are

 sought.
 Ross's overall conclusion is that "in these thirteen

 conflicts, there is strong evidence that resource wealth
 has made conflict more likely to occur." This conclu
 sion is consistent with the claim in Collier and Hoeffler

 (2004) that resources are causally linked to conflict,
 though Ross's analysis does not support the interpre
 tation favored by Collier and Hoeffler. For this analy
 sis, we do not call into question any of Ross's conclu
 sions about these cases. We focus instead on assessing
 the inferences that one can make from these cases, in
 combination with the correlational data, about average
 causal effects in the population.

 10 Although Ross examines onset, duration, and severity, here we
 focus on onset only.
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 TABLE 5. Mixed Data for Civil Conflict Analysis

 Y= 0 Y= 1 K2 = NA Kz = 0 Kz = 1

 X = 0 61 6 K\ = 0 1
 X=-\ 64 5 K1= 1 1 3

 A/ofe: Left panel shows X, Y data based on Collier and Hoeffler (2004); right panel shows K-\. K2
 data for cases with X = 1, V = 1, drawn from Ross (2004).

 Note that Ross's analysis shares many of the char
 acteristics of the type of qualitative analysis described
 above. He focuses on a binary outcome variable—war
 onset. Although the underlying treatment variable —
 natural-resource dependence—is continuous, he di
 chotomizes the variable, considering natural resources
 to be either present or absent in each case. Most im
 portantly, Ross's analysis does not focus on variation
 in X and Y to make inferences on causal effects; in
 fact, only cases with X = Y= 1 are examined. Inferen
 tial leverage is based instead on additional within-case
 information—clues—and indeed ultimate conclusions

 are based on a single clue, albeit a complex one, for each
 case: the presence of one of a number of "subdues,"
 each of which is indicative of a possible mechanism
 connecting resources to war onset.

 Qualitative analysts frequently seek to use findings
 from a sample of this kind to shed light on broader
 causal theories. How, then, do Ross's findings in these
 13 case studies—together with the correlational evi
 dence from Collier and Hoeffler—add up to a set of
 population-level causal inferences?

 To carry out this integration in the BIQQ framework,
 we need first to be able to identify the quantitative
 sample from which Ross draws his cases. For reasons
 that we explain in the Supplementary Materials (Sec.
 G.2), we identify this sample as all cases in which there
 was not a conflict ongoing in the 1990s. Surprisingly,
 in this subset of cases the positive relation between X
 and Y, identified in Collier and Hoeffler's study, is not
 present; indeed there is a small negative correlation.

 Second, we need to situate the cases in Ross's qual
 itative analysis within this quantitative sample. An
 important feature of Ross's analysis is that selection
 into the process-tracing sample depends not simply on
 values of X and Y but also on expert assessments of
 whether X and Y are causally linked.11 This implies
 nonrandom selection of cases into the process-tracing
 sample. In our framework, we can take account of
 this nonrandom selection by treating expert statements
 that natural resources caused a conflict as a first clue,
 Ki : these statements can be conceptualized as evidence
 suggesting that a case is a b type rather than a d type.
 We can then conceive of the evidence uncovered in

 Ross's own analysis as a second clue, K2, which is gath

 ered only conditional upon observation of the first clue
 (and which may or may not reflect the same underlying
 information used to generate the first clue).

 Employing this interpretation, Table 5 shows the dis
 tribution over X,Y,K\, K2 values used in this analysis.
 Note that there are no K2 data for cases with /sTi = 0
 (given Ross's selection rule), and there are only K\ data
 for cases with X = Y = 1 (since Ross uses expert causal
 assessments only of those cases with resources that ex
 perienced wars). This nonrectangularity presents no
 special problem for the analysis, however.

 Alongside the data given in Table 5, we need to form
 priors about the probative value of clues and about the
 assignment process. For the purposes of this analysis,
 we adopt the positions taken implicitly by Collier and
 Hoeffler for the X, Y data: we assume that assignment
 probabilities are similar for all types—though we al
 low for uncertainty over these assignment probabili
 ties. For the probative value of clues, we carry out the
 analysis under multiple sets of assumptions. First, we
 use optimistic assumptions most consistent with Ross's
 discussion, treating K\ as a hoop test (providing entry
 to the sample) and K2 as doubly decisive. However, we
 also examine the sensitivity of the results to the pos
 sibility that either K\ or K2, or both, is uninformative
 (of low probative value).12 We note that the situation
 in which neither clue has probative value is equivalent
 to an analysis of X, Y data only. With respect to the
 distribution of types, we assume a flat prior (Dirichlet)
 over the proportions Xa, Xb, Àc, and Xj.

 The first panel of Table 6 provides statistics from
 the prior distribution on Xb - Xa and nc. With the flat
 prior over type shares, the expected value of Xb - Xa
 is 0 with a wide credibility interval. The second panel
 shows the posteriors from the mixed-method analysis
 under the assumption that the experts' determinations
 were uninformative (low probative value). On this as
 sumption, it is as if Ross had sampled at random from
 the set of X = Y = 1 cases. We see here that, if K2
 is also uninformative, our mean estimate of Xb - Xa
 is negative, consistent with the negative correlation in
 the X, Y data. Though not reported in the table, our
 posterior also contains a positive association between
 beliefs about causal effects and beliefs about nc (see
 Supplementary Materials (Sec. G.2)). This association
 reflects the fact that a weak correlation in the X, Y data

 TABLE 5. Mixed Data for Civil Conflict Analysis TABLE 5. Mixed Data for Civil Conflict Analysis

 Y= 0 Y= 1 K2 = NA Kz=rO K2 = 1

 X = 0 61 6 K\ = 0 1
 X=-\ 64 5 K1= 1 1 3

 A/ote: Left panel shows X, Y data based on Collier and Hoeffler (2004); right panel shows Ki. K2
 data for cases with X = 1, Y = 1, drawn from Ross (2004).

 11 Other considerations regarding the sample and the subsample of
 Ross's sample that we examine here are discussed in the Supplemen
 tary Materials (Sec. G.2). 12 See Supplementary Materials (Sec. G.2) for details.

 666

This content downloaded from 132.174.250.76 on Sat, 07 Jan 2023 20:15:38 UTC
All use subject to https://about.jstor.org/terms



 American Political Science Review  Vol. 109, No. 4

 TABLE 6. Priors and Posteriors: Civil Conflict Analysis

 Àfc Xg

 mean  sd  Iwr.  upr.  mean  sd

 Prior distribution:

 (No clues)  0.00  0.32  -0.63  0.63

 Posterior, assuming expert assessments are uninformative:
 Uninformative K2 -0.02 0.2 -0.40 0.37
 Informative^ 0.00 0.19 -0.39 0.38

 Posterior, assuming expert assessments are informative:
 Uninformative K2 -0.02 0.19 -0.40 0.37
 Informative K2 -0.01 0.19 -0.39 0.37

 0.50 0.29

 0.51 0.21
 0.51 0.22

 0.51
 0.51

 0.21
 0.22

 Note: Table provides statistics of the prior and posterior distribution over Xb - Xa and nc for the civil
 conflict analysis. Top panel provides statistics on priors; middle panel provides statistics on posteriors
 assuming that expert assessments (K-\ ) are uninformative; lower panel provides statistics on posteriors
 assuming that expert assessments are informative.

 is consistent with either of two states of the world: (1)
 no true effect and no confounding (equal treatment
 propensities across types) or (2) a true positive effect
 that is masked by confounding (c types being more
 likely to be assigned to treatment).

 What happens if we treat the qualitative clues exam
 ined by Ross (K2) as highly informative about effects
 in the individual cases? We see the result in the sec

 ond row of the second panel. Here our mean estimate
 of Xb - Xa hardly moves, rising to approximately zero,
 with a very wide credibility interval. Likewise, the pos
 terior on tic increases just marginally..

 In the third panel, we now assume that expert
 assessments—the clue used to determine process
 tracing sample selection—are highly informative. Our
 willingness to make such an assumption would, of
 course, depend on our beliefs about how such judg
 ments were formed. Focusing on the second row, we see
 that, even if we assume both clues to be highly infor
 mative, the process-tracing yields virtually no change in
 posterior means or uncertainty relative to the estimates
 derived from purely correlational evidence.

 This analysis illustrates some general features of the
 integration of qualitative and quantitative causal in
 ferences. First, it highlights some of the informational
 demands that are required to perform formal inference
 from mixed data. Of particular importance here is the
 need to understand, and explicitly model, the criteria
 used to select cases for process tracing from the quanti
 tative sample. Second, the analysis—especially in com
 parison to Application 1—highlights an important limit
 to the capacity of small-« work to shape population
 level inferences. Recall that Ross finds causal-process
 evidence that natural resources were a driver of con

 flict in four of five cases on which process tracing was
 carried out. This finding stands in apparently sharp con
 trast to the X, Y pattern of a small negative correlation.
 However, even when we take Ross's clues to be highly
 probative—treating causal conclusions about these five

 cases to be nearly certain—our posterior hardly shifts
 from the correlational finding. The result suggests that,
 at least for estimating population-level quantities, rel
 ative numbers matter: that in some circumstances even

 strong process-tracing evidence, gathered on a small
 number of cases, will have only a very modest impact
 on conclusions drawn from the quantitative analysis
 of a much larger sample. We turn now to a more
 general examination of the consequences of mixing
 quantitative and qualitative observations in differing
 proportions.

 IMPLICATIONS FOR RESEARCH DESIGN

 We now illustrate the model's usefulness in guiding
 research-design choices. Our focus here is on charac
 terizing the kind of learning that emerges from dif
 ferent combinations of investment in the collection

 of correlational as compared with process-tracing data
 under different research conditions. We report the re
 sults here of simulation-based experiments designed to
 tell us under what research conditions different mixes

 of methods can be expected to yield more accurate
 inferences. We also discuss, at a high level, the implica
 tions of the framework for strategies of qualitative case
 selection.

 As a metric of the returns from different research

 strategies we calculate the expected inaccuracy in the
 estimation of the average treatment effect, as given in
 Equation (4):

 C = E0(EV]e(z(9)-T(V))2l (4)

 where r(6) is the value of Xb - Xa (the average treat
 ment effect) given 6, and r(T>) is the estimate of this
 treatment effect (the mean posterior value) that is gen
 erated following some realization of data V. Thus, if
 some 9 characterized the true state of the world, then
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 hb

 mean sd Iwr. upr. mean sd

 Prior distribution:

 (No clues)  0.00 0.32  -0.63 0.63

 uninformative:
 -0.40 0.37
 -0.39 0.38

 informative:
 -0.40 0.37
 -0.39 0.37

 0.50 0.29

 0.51 0.21
 0.51 0.22

 0.51 0.21
 0.51 0.22

 Posterior, assuming expert assessments are
 Uninformative K2 -0.02 0.2
 Informative K2 0.00 0.19

 Posterior, assuming expert assessments are
 Uninformative K2 -0.02 0.19
 Informative K2 -0.01 0.19

 Note: Table provides statistics of the prior and posterior distribution over kb - '/.a and nc for the civil
 conflict analysis. Top panel provides statistics on priors; middle panel provides statistics on posteriors
 assuming that expert assessments (K-\) are uninformative; lower panel provides statistics on posteriors
 assuming that expert assessments are informative.
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 FIGURE 3. Expected Errors with Varying Mixes of Qualitative and Quantitative Data

 1 2 3 4 8 16 32 64 128

 Number of Cases

 Note: The figure displays the expected errors in the estimation of average treatment effects for designs in which X, Y data are sought in
 n studies (horizontal axis) and clue data are sought within k of these. The shading of dots indicates the proportion of cases for which
 within-case data are sought (white = none; black = all). For small sample sizes (n e {1,2,3,4}), we show results for all designs (m €
 {1,2,... ,n}). For larger sample sizes, we show only designs with clues sought in zero, half, and all cases.
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 lEü|ff(rö — r)2 is the expected error in estimation of the
 causal effect given different realizations of the data, V,
 that could obtain in this state of the world. £ is then
 the expected value of these errors given prior beliefs
 over possible values of 0.

 The general simulation procedure is as follows. We
 first draw a set of "true" parameter values from a prior
 distribution. For priors on type proportions, we use a
 Dirichlet distribution; for priors for each of the n and
 <p parameters, we use independent beta distributions.13
 From each set of "true" parameter values, we then draw
 a data realization for a particular research design —a
 particular number of correlational and process-tracing
 cases—and then calculate the posterior on the aver
 age treatment effect for that data realization. Then, by
 comparison with the "truth," we calculate the expected
 loss. We examine such estimates for a range of levels
 of investment in qualitative and quantitative evidence.
 In most of the experiments, we also systematically vary
 the prior distribution for one parameter of the research
 situation between two extreme positions, and observe
 the resulting change in the expected losses arising from
 different research designs. Further details of the sim
 ulation exercises can be found in the Supplementary
 Materials (Sec. H.5).

 A few further features of the experiments are worth
 noting. First, our illustrations focus on learning about
 population-level causal effects; however, the model can
 yield results about the benefits of alternative research
 designs for estimating a wide range of other quantities
 of interest, such as case-specific causal explanations
 or clue probabilities. Second,, while we focus on the
 search for a single clue in each case, the analysis can
 be extended to the case of an arbitrarily large set of

 13 While by construction priors on each parameter are independent,
 this will not generally be the case for posterior distributions.
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 clues. Third, in many of these experiments, the proba
 tive values are set at doubly decisive levels for all (f>
 parameters, and thus focus on the very optimistic case
 of maximally informative process tracing. Fourth, we
 illustrate tradeoffs at low levels of n, but the model
 can be employed to inform choices for arbitrarily large
 numbers of cases. Finally, we note that some results
 may be sensitive to the choice of priors. The results
 below should thus be understood as an illustration of
 the utility of the BIQQ framework for guiding research
 choices, rather than as a set of general prescriptive
 design rules.

 Varieties of mixing

 What are the marginal gains from additional pieces
 of correlational and process-tracing evidence for the
 accuracy of causal estimates? Figure 3 displays the re
 sults, plotting the errors associated with different mixes
 of correlational and process data. Each dot represents
 a single possible research design, with the x axis chart
 ing the total the number of cases examined. For all
 cases, X and Y data are collected. The shading of the
 dots in each column then represents the proportion of
 cases for which process tracing is also carried out. An
 unshaded dot is a design in which only correlational
 data have been collected for all cases; a black dot is
 a design in which the process-tracing clue is sought in
 all cases; and shades of grey, as they darken, indicate
 process tracing for increasing shares of cases. For n <4
 we report results for all designs; for n > 4 we report
 only results when within case information is sought for
 all, half, or none of the cases.

 We see first from the graph that, as one would
 expect, moving from lower-« to higher-« designs re
 duces the expected error of estimates. Further, both
 adding a correlational case and doing process tracing
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 on an additional case improve accuracy. The figure also
 suggests that there are diminishing marginal returns to
 both types of data: in particular, the grey point reflect
 ing 50% process tracing is generally well below the
 midpoint of the white and black dots, and converges
 toward the black dot (100% process tracing) as sample
 size increases. Other, less obvious results include the
 following:

 • Qualitative and quantitative data can act as partial
 substitutes for assessing causal effects. We see, in
 the smaller sample sizes, that the marginal gains
 from adding an extra correlational case are lower
 when there is more within-case information on

 existing cases. Similarly, the marginal gains from
 gathering more within-case information are lower
 when there are more correlational cases (for ex
 ample adding one case study when n = 1 has about
 the same effect as adding eight cases studies when
 n = 16).

 • The relative marginal gains from going wider and
 going deeper vary with the study design. Suppose
 that the costs of gathering X, 7 data and gathering
 clue data were the same per case. Suppose further
 that we have an « of 2 and only correlational data.
 Then, for the case illustrated in Figure 3, if we have
 additional resources to invest, we do about as well
 adding a third case as we would do from gathering
 information within one of the two existing cases.
 However, at this point the tradeoff shifts. From
 this new situation we are better off gathering in
 formation within one of the three cases than we

 are seeking correlational data on a fourth case.
 • Optimal strategies might involve going deep in a

 subsample of cases only. Suppose again that the
 costs for gathering X, Y data and gathering i^-type
 data were the same and, now, that researchers can
 gather four pieces of data of any type. The results
 in Figure 3 suggest that, for the priors chosen here,
 gathering X, Y data on three cases and K- type data
 on one produces more accurate estimates than ei
 ther going maximally wide (gathering X, Y data on
 four cases) and at least as accurate an estimate as
 going maximally deep (gathering X,Y,K data on
 two cases).

 Designs in Context

 More generally, the optimal level of mixing ought to
 depend on context—on features of the research situ
 ation that affect the problem, and the available tools,
 of inference. In the next subsections, we report results
 from experiments in which we vary the researcher's
 priors about (a) the probative value of clues, (b) hetero
 geneity of treatment effects, (c) uncertainty regarding
 assignment processes, and (d) uncertainty regarding
 the probative value of clues. In all cases we report the
 expected loss for the design in question, as given in
 Equation (4).

 Probative value of clues. If clues have no probative
 value—in the sense that <j)jX is known to be the same

 for all types, j—then gathering data on clues clearly
 cannot affect inference. Less obvious, however, is the
 extent to which gains in inference depend on the degree
 of probative value (see footnote 5). Our simulation
 evidence suggests that, in some ranges at least, the
 gains from increasing probative value are convex—
 that is, increasingly more is learned as the gaps be
 tween pairs such as 4>b\ and <pdi increase. The top left
 panel of Figure 4 shows an example of these convex
 gains, showing expected losses for the setting in which
 there is no probative value, the setting in which all tests
 are doubly decisive, and the situation halfway between
 these extremes.

 Effect Heterogeneity. We might expect that the opti
 mal research design for estimating average treatment
 effects would depend on how heterogeneous the true
 causal effects are in the population. If we believe that
 effects are strongly homogeneous, then confidence that
 one case is affected by treatment provides a great
 deal of information about population treatment effects.
 However, if effects are believed to be highly hetero
 geneous, then knowing that one case is affected by
 treatment provides less information regarding effects
 on other cases.

 Heterogeneity can be conceptualized in different
 ways. Here, however, we define heterogeneity as in
 creasing in the amount of variance in causal effects
 across cases in the population. In the binary environ
 ment, for any r € [0,1], maximum effect heterogeneity
 is obtained when Xa = (1 - r)/2 and A.& = (1 + r)/2,
 i.e., when all cases have either a positive or negative
 treatment effect, with no destined or chronic cases. For
 a positive treatment effect, maximum homogeneity oc
 curs when a = 0, b = t, with the remaining share 1 - r
 consisting of types c and d. For negative treatment ef
 fects, homogeneity is maximized with Àft = 0. For an
 average treatment effect of 0, there are two boundary
 possibilities: no treatment effect for any case (maximal
 homogeneity), or a positive effect for half the cases
 and a negative effect for the other half (maximal het
 erogeneity).

 Using this conceptualization of heterogeneity, our
 simulation results (top right panel, Figure 4) confirm
 that higher heterogeneity increases the marginal value
 of going "wide" rather than "deep." At low levels of
 heterogeneity, there are considerable gains to collect
 ing clues on cases at a given sample size; but the gains
 to process tracing diminish and then disappear as het
 erogeneity rises (see Supplementary Materials (Sec.
 H.2)).

 Uncertainty Regarding Assignment Processes. Here
 we examine the implications of uncertainty over treat
 ment assignment (confounding). Any differences in
 assignment probabilities that are known are built into
 our priors in a Bayesian setting and do not produce
 biases (just as known confounds can be controlled for
 in a standard regression model). However, uncertainty
 about assignment processes still generates higher vari
 ance in posterior estimates (see Gerber, Green, and
 Kaplan 2004).
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 FIGURE 4. Expected Error in Mean Posterior Estimates of Average Treatment Effects for Different
 Research Designs
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 Note: In these graphs, the horizontal axis denotes some feature of the research setting (captured in priors). The white and black circles
 represent errors from designs in which within-case information is sought for no cases and for all cases, respectively; the numbers
 marked in the circles indicate the number of data points in the study design.

 In the BIQQ framework, clues provide discrimi
 natory leverage on case types that is independent of
 assignment probabilities: with very strong probative
 value, b- and c/-type treated units can be distinguished,
 thus eliminating the identification problem generated
 by uncertain assignment propensities. In our simu
 lations (bottom left panel of Figure 4), we find that
 greater uncertainty over assignment processes indeed
 results in greater errors for correlational analysis —
 most clearly, at higher n. However, for the parameter
 space we examine, and assuming strongly probative
 clues, uncertainty about assignment does not apprecia
 bly reduce accuracy for mixed-method analysis. (See
 Supplementary Materials (Sec. H.3).)

 Uncertainty regarding the probative value of clues.
 As with assignment probabilities, researchers may be
 uncertain regarding the probative value of clues for
 discriminating between types. How much does this un
 certainty matter for the relative gains to qualitative
 evidence?

 Our experiment fixes the expected probative value
 of a clue and allows for variance around that expected

 value. Informally, we are thus comparing a situation
 in which one believes that a clue has moderate pro
 bative value to one in which one believes that it may
 have strong probative value or it may have none at
 all. Surprisingly, our simulations suggest that for very
 low n, uncertainty over the probative values of clues
 is relatively unimportant for expected errors (see Sup
 plementary Materials (Sec. H.4)). And, while we ob
 serve penalties to uncertainty, there is learning from
 within-case information even with very high levels of
 uncertainty.

 To be clear, this analysis does not imply that there is
 no penalty to being wrong about the probative value
 of clues. The result suggests rather that having more,
 rather than less, uncertainty about that probative value
 may sometimes be relatively inconsequential for the
 choice of research strategy, at least with a low n.

 Case Selection

 A critical decision for scholars employing mixed meth
 ods is to determine which cases are most valuable for

 within-case analysis.
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 In our framework the answer depends in large part
 on the configuration of <p,x values. For the basic in
 sight, consider a situation in which, for a given clue,
 we have <pb\ = 0.5, <pd] = 0.5, = 0.5, and 4>co = 0.1
 (taking these to be known). In this situation, searching
 for the clue in X = Y = 1 cases will yield no leverage
 since the clue does not discriminate between the two

 types (b and d) that need to be distinguished given
 X = Y = 1. Here there is no additional learning about
 kb that can be gained from looking for the clue. In con
 trast, X = 0, Y = 0 cases will be informative because
 the clue is much better at distinguishing between un
 treated b and c types—the two types in contention for
 this kind of case. Thus, for estimating kb and for these
 clue probabilities, process tracing an X = Y = 0 case
 will be productive, while process-tracing an X = Y = 1
 case will not.

 While it is common practice for mixed-method re
 searchers to perform their process tracing "on the re
 gression line," the BIQQ framework suggests that the
 gains to process tracing for different X and Y values in
 fact depend on the particular constellations of <p values
 for the potentially available clues. More generally, the
 framework allows one to assess the expected gains from
 any given case-selection strategy ex ante once priors
 have been specified.

 CONCLUSION

 Despite broad agreement that mixing methods is a
 good idea, scholars have produced limited guidance
 about how to integrate information gathered from
 qualitative and quantitative approaches. As we have
 shown, because the inferential strategies of both qual
 itative and quantitative analyses can be described in
 Bayesian terms, it is a short step to combine the two
 forms of inference within a single analytic framework.
 More broadly, the approach can be seen as a simple
 application of the general structure of Bayesian net
 works, as advocated for example by Pearl (2000) and
 others, to the problem of combining inferences from
 qualitative and quantitative data. Though conceptually
 simple, however, no integrated Bayesian approach like
 BIQQ has, to our knowledge, been developed or used
 for this purpose.

 While the BIQQ model does not seek to bridge all
 aspects of the qualitative-quantitative divide, it does
 achieve integration on four important fronts. First, it
 provides a method for combining the leverage derived
 from correlational and process-based data to arrive at a
 single set of causal inferences. Second, the framework
 uses the leverage derived from one form of data to
 inform the premises underlying the interpretation of
 the other form of data. In doing so, it thus demonstrates
 a precise sense in which mixing methods can sometimes
 be better than maximal investment in a single method.
 Third, while we have not emphasized the point here,
 the framework can be used not just to estimate average
 causal effects but also to address questions more com
 monly associated with small-n research. (Did X cause
 7 in this case? What is the mechanism of causation?)

 Vol. 109, No. 4

 Notably, the framework moves beyond the standard
 quantitative solution to the fundamental problem of
 causal inference—i.e., estimating average effects for a
 population. BIQQ's typological framework, in an im
 portant sense, keeps the inferential focus on potential
 outcomes at the level of the case, allowing us to build es
 timates of average treatment effects from case-level ex
 planations and vice versa. Finally, we have shown how
 the approach can provide guidance on mixed-method
 research designs to researchers allocating resources at
 the margins.

 We close by considering the demands that the BIQQ
 framework imposes on the researcher and the research
 process. The critical demand is that researchers be able
 to state a prior distribution over three distinct sets of
 quantities: the causal effects being assessed, the assign
 ment process, and clue probabilities by type and treat
 ment condition. This is, in a certain sense, a very tall
 order. In present work, scholars using process tracing
 sometimes indicate what kind of evidence they expect
 to find if a relationship is causal; but rarely do scholars
 indicate probabilities for these observations for differ
 ent possible causal effects or specify the uncertainty
 they hold over these probabilities. The BIQQ frame
 work thus requires greater explicitness and complete
 ness in the specification of the assumptions underlying
 analysis.

 What if the researcher does not have specific, well
 developed priors on the primitives entering into the
 analysis? As we have noted, learning in the BIQQ
 framework can occur even with "flat" priors over causal
 effects and assignment probabilities. And in some set
 tings, such as in experimental work, assignment prob
 abilities may be known with certainty. The greatest
 challenge we see is in the specification of priors over
 the probative value of clues. How is one to know, even
 approximately, the likelihood of observing a given clue
 conditional upon a causal type (itself a metaphysical
 concept) and treatment status?14

 One response is to abandon the project of formally
 drawing inferences from clues. Even at an informal
 level, we believe that the principles underlying the
 BIQQ approach can offer heuristic guidance in the
 interpretation of mixes of qualitative and quantitative
 evidence. We also see, however, three more construc
 tive approaches to the problem of specifying priors
 over the probative value of qualitative evidence.

 The first is to emphasize the conditional nature of
 inference, with conclusions reported as conditional on
 a clearly specified set of priors. For example, if clue
 probabilities are provided by theory, then posteriors
 are theory-conditional claims. If a theory T suggests
 that clue K will be observed if and only if X causes Y,
 then the presence of K provides evidence that X causes

 14 Note that in this discussion we treat beliefs over the probative
 value of clues as part of the researcher's priors. The same substantive
 issues arise even if, technically, there is no specification of priors over
 the <p parameters, or over any parameters, as these will nevertheless
 enter the likelihood. (For an example using a maximum likelihood
 approach, see Supplementary Material, Sec. J.) In an MLE context,
 the focus simply turns to a need to defend a model rather than a set
 of priors.
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 Y only to the extent that T provides a true account of the
 causal relationship between X and Y. If T captures the
 wrong mechanism of causation, for instance, then clue
 probabilities that derive from the theory may be wrong
 and causal inferences that draw on these may be wrong.
 Under such an approach it would be natural to show
 the sensitivity of results to varying conditions, as we
 have illustrated in the analysis of the causes of civil
 war.

 A second approach is to adopt a subjective Bayes
 perspective and seek to elicit what is actually believed
 prior to analysis. Given a set of subjective prior be
 liefs, the model can tell us what we ought to believe
 as a matter of consistency after observing the data.
 These subjective beliefs may be informed by, even if
 they cannot be formally derived from, arguments from
 theory and existing evidence. A subjective Bayes ap
 proach also faces a number of challenges. One is that
 researchers' and readers' priors may vary. In response,
 scholars might seek to ground priors on some system
 atic measure of collective beliefs, drawn for instance
 from a survey of existing findings or of experts in the
 relevant field (Gill and Walker 2005).15 A second con
 cern is that the formulation of numerical priors may
 be difficult. While we suspect that this will strike some
 readers as a significant obstacle to the framework's
 implementation, we believe that the difficulties can be
 overstated. Ordinary language terms such as "more
 likely" or "less likely" necessarily imply ordinal re
 strictions on quantitative relations that can be used to
 structure priors. It might be more difficult to trans
 late notions such as "much more likely" or "much less
 likely" into cardinal differences in probabilities. Yet
 most qualitative beliefs, if they have substantive con
 tent, minimally imply an upper or lower bound on the
 probability differentials involved.16 Uncertainty about
 probabilities can also be readily expressed in the frame
 work, and results probed for sensitivity to alternative
 specifications of that uncertainty.

 Of course, subjective priors, even if accurately and
 precisely elicited, may still be incorrect and lead to false
 conclusions. We believe that it is thus worth exploring
 a third approach, grounded in objective Bayes. In an
 objective Bayes setting, we would begin with uninfor
 mative priors—such as priors that maximize entropy
 (see for example Williamson (2004))—and let the data
 do all the work. In certain empirical situations, it may
 be possible to begin with uninformative priors about
 clue probabilities, and then to use a mix of qualitative
 and quantitative data to update beliefs about probative
 value, while simultaneously using the clue observations
 to inform causal inferences (see Supplementary Mate
 rials (Sec. I) for elaboration on this point). A critical
 avenue for future research, in our view, is the specifi
 cation of the empirical conditions under which process

 15 On the challenges of eliciting experts' priors faithfully and care
 fully, and potential responses to these problems, see Schlag, Treme
 wan, and Van der Weele (2013).
 16 For instance, a scholar who believes that a clue is "much more"
 likely if a causal effect has occurred than if it hasn't should be able
 at least to exclude some numerical differences as insufficiently large
 to count as "much more."

 tracing can yield inferential leverage in the absence of
 strong assumptions about probative value.

 The demands of both the subjective and objective
 Bayes approaches are considerable. We believe, how
 ever, that the model is useful in part because it places
 such high demands on scholars' beliefs: i.e., because it
 clearly identifies the required inputs into the process
 of drawing integrated causal inferences. Put differently,
 to the extent that scholars are unable to specify even
 approximate ranges on the relevant parameters, this
 is a problem for causal inference, not for the BIQQ
 framework. The framework helps identify the kinds of
 knowledge we need to generate if we are to make better
 use of mixed methods to provide causal accounts of the
 world.

 SUPPLEMENTARY MATERIALS

 To view supplementary material for this article, please
 visit http://dx.doi.org/10.1017/S0003055415000453 and
 http://www.columbia.edu/~mh2245/papersl/BIQQ.
 pdf
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