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PREFACE
Lrrrrrrnnnnn

1 CALL DECISION THEORY the collection of mathematical, logical, and
philosophical theories of decision making by rational individuals —taken alone,
in competition, and in groups. For me it includes utility theory, game theory,
and social choice theory. By whatever name, it has become an integral part of
important approaches to the philosophy of science, the theory of rationality, and
ethics. The debate between John Rawls and John Harsanyi about the proper deci-
sion method to use behind the “veil of ignorance” is perhaps the best-known in-
stance of the use of decision theory in philosophy. But the use of epistemic utility
maximization is equally important in the philosophy of science, and the prison-
er’s dilemma of game theory and Arrow’s theorem of social choice theory re-
cently have stimulated ethical thought.

Not only is decision theory useful to philosophers in other fields; it also
provides philosophers with philosophical perplexities of its own, such as the
well-known Newcomb’s paradox. (I call it the Predictor paradox.) These and a
host of other paradoxes raise serious questions for our accepted view of rational-
ity, probability, and value.

Decision theory has been taught largely by statisticians, economists, and
management scientists. Their expositions reflect their interests in applications of
the theory to their own domains. My purpose here is to put forward an exposi-
tion of the theory that pays particular attention to matters of logical and philo-
sophical interest. Thus I present a number of proofs and philosophical commen-
taries that are absent from other introductions to the subject. However, my
presentation presupposes no more than elementary logic and high school al-
gebra. In keeping with the introductory nature of the book, I have left open many
of the philosophical questions I address.

The first four chapters are concerned with decision making by a single
agent. In chapter 1, I set out the standard act-state-outcome approach and then
turn in chapter 2 to decision making under ignorance. Here I discuss several of
the well-known rules, such as the maximin rule and the principle of insufficient
reason. In this chapter I also discuss types of scales for measuring utilities and
demonstrate which type of scale each rule presupposes. With each rule I give
a brief account of its philosophical and practical advantages and disadvantages.
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PREFACE

1 then turn to the question of which rule, if any, is the correct one and illustrate
this with an account of the Rawls-Harsanyi dispute.

Chapters 3 and 4 deal with individual decisions under risk. After present-
ing the rule of expected utility maximization, I turn to the component theories
associated with it—probability theory and utility theory. My account of probabil-
ity begins with a development of the probability calculus through Bayes’s the-
orem. I then discuss several interpretations of probability, proving the Dutch
Book theorem during the course of my account of subjective probability. Turn-
ing to utility theory, I develop the Von Neumann-Morgenstern approach and
prove a representation theorem. I take pains to explain how this theorem shows
that all agents who satisty certain conditions of rationality must have preference
orderings that can be represented as if they maximize expected utility. I explain
why this shows that it is rational to maximize expected utility even when one
is taking a one-shot gamble. The discussion of utility concludes with a review
of paradoxes — Allais’s, Ellsberg’s, the Predictor, and the St. Petersburg—and an
examination of causal decision theory.

Chapter 5 is devoted to game theory with a focus on two-person zero sum
games. I develop the standard account and prove the maximin theorem for two-
by-two games. This requires some fancy factoring but no higher mathematics.
I then turn to two-person nonzero sum games and the failure of the equilibrium
concept to provide satisfactory solutions. This leads into the prisoner’s dilemma
and the challenge it poses to the theory of rationality. I discuss Gauthier’s at-
tempt to show that it can be rational to cooperate with one’s partners when caught
in a prisoner’s dilemma. I pass from this to bargaining games and the solutions
proposed by John Nash and David Gauthier. This part of the book concludes
with a discussion of multiperson games and coalition theories.

Chapter 6 is devoted to social choice theory. I prove Arrow’s theorem, af-
ter exploring the nature of its conditions. Then I turn to majority rule and prove
May’s theorem. Last, I turn to utilitarianism and prove a theorem of Harsanyi’s,
which can be stated dramatically as to the effect that in a rational and impartial
society of rational agents the social ordering must be the utilitarian one. The
book concludes with a critique of this theorem and a discussion of the problem
of interpersonal comparisons of utility.

Although I intend this book for use by philosophers (as well as social and
management scientists and others) seeking an introduction to decision theory, I
also have found it suitable for a one-semester undergraduate course enrolling
students with a variety of interests and majors. Most of my students have had
a semester of symbolic logic, but able students with no previous work in logic
have done quite well in the course. The logical and mathematical exercises given
throughout the book have formed the basis for much of the written work in my
course, but I have also assigned, with good results, a number of philosophical
cssay questions on the material covered.

M. D. R.
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Chapter 1
INTRODUCTION
EERRRRNRLD ]

1-1. What Is Decision Theory?

Decision theory is the product of the joint efforts of economists, mathematicians,
philosophers, social scientists, and statisticians toward making sense of how in-
dividuals and groups make or should make decisions. The applications of deci-
sion theory range from very abstract speculations by philosophers about ideally
rational agents to practical advice from decision analysts trained in business
schools. Research in decision theory is just as varied. Decision theorists with
a strong mathematical bent prefer to investigate the logical consequences of
different rules for decision making or to explore the mathematical features of
different descriptions of rational behavior. On the other hand, social scientists
interested in decision theory often conduct experiments or social surveys aimed
at discovering how real people (as opposed to “ideally rational agents”) actually
behave in decision-making situations.

It is thus usual to divide decision theory into two main branches: normative
(or prescriptive) decision theory and descriptive decision theory. Descriptive de-
cision theorists seek to find out how decisions are made — they investigate us ordi-
nary mortals; their colleagues in normative decision theory are supposed to pre-
scribe how decisions ought to be made—they study ideally rational agents. This
distinction is somewhat artificial since information about our actual decision-
making behavior may be relevant to prescriptions about how decisions should be
made. No sane decision analyst would tell a successful basketball coach that he
ought to conduct a statistical survey every time he considers substituting players —
even if an ideally rational agent acting as a coach would. We can even imagine
conducting research with both normative and descriptive ends in mind: For in-
stance, we might study how expert business executives make decisions in order to
find rules for prescribing how ordinary folk should make their business decisions.

Recently some philosophers have argued that all branches of the theory of
rationality should pay attention to studies by social scientists of related behavior
by human beings. Their point is that most prescriptions formulated in terms of
ideally rational agents have little or no bearing on the question of how humans
should behave. This is because logicians, mathematicians, and philosophers
usually assume that idecally rational agents can acquire, store, and process un-
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limited amounts of information, never make logical or mathematical mistakes,
and know all the logical consequences of their beliefs. Of course, no humans—
not even geniuses—come close to such ideals. This may favor studying more
realistic models of rational agents, but I do not think that we have grounds for
dismissing the usual theories of rationality altogether. The ideals they describe,
although unattainable in practice, still serve to guide and correct our thinking.
For example, we know that perfect memories would help us make better deci-
sions. Instead of settling for poor decisions, we have tried to overcome our limi-
tations by programming computers—which have larger and better memories
than we do—to assist us in those tasks whose success depends on storing and
retrieving large quantities of information.

Another problem with putting much weight on the distinction between nor-
mative and descriptive decision theory is that some abstract decision models
have been introduced with neither normative nor descriptive ends in mind. I am
thinking of the concept of rational economic man used in economics. This
hypothetical being is an ideally rational agent whose choices always are the most
likely to maximize his personal profit. By appealing to a hypothetical society of
rational economic men economists can derive laws of supply and demand and
other important principles of economic theory. Yet economists admit that the no-
tion of rational economic man is not a descriptive model. Even people with the
coolest heads and greatest business sense fail to conform to this ideal. Sometimes
we forget the profit motive. Or we aim at making a profit but miscalculate. Nor
do economists recommend that we emulate economic man: Maximizing personal
profit is not necessarily the highest good for human beings. Thus the model is
intended neither normatively nor descriptively, it is an explanatory idealization.
Like physicists speculating about perfect vacuums, frictionless surfaces, or ideal
gases, economists ignore real-life complications in the hope of erecting a theory
that will be simple enough to yield insights and understanding while still apply-
ing to the phenomena that prompted it.

For these reasons I favor dropping the normative-descriptive distinction in
favor of a terminology that recognizes the gradation from experimental and sur-
vey research toward the more speculative discussions of those interested in ei-
ther explanatory or normative idealizations. With the caveat that there is really
a spectrum rather than a hard-and-fast division, I propose the terms “experimen-
tal” and “abstract” to cover these two types of decision-theoretic research.

This book will be concerned exclusively with abstract decision theory and
will focus on its logical and philosophical foundations. This does not mean that
readers will find nothing here of practical value. Some of the concepts and meth-
ods I will expound are also found in business school textbooks. My hope is that
readers will come to appreciate the assumptions such texts often make and some
of the perplexities they generate.

Another important division within dccision theory is that between deci-
stons made by individuals and those made by groups. For the purposes of this
division an individual need not be a single human being (or other animal). Cor-
porations, clubs, nations, states, and universities make decisions as individuals
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(and can be held responsible for them) when they attempt to realize some organ-
izational goal, such as enhancing their reputation or bettering last year’s sales fig-
ures. However, when several individuals who belong to the same club, corpora-
tion, or university adjudicate differences about group goals or priorities, they are
involved in making a group decision. We can illustrate the difference between
group and individual decisions by looking at the role of United States presidents.
By electing a Republican rather than a Democratic president, voters can decide
general social and economic policy. Elections are thus one way for United States
citizens to make group decisions. Once elected the president also makes deci-
sions. They are in the first instance his own choices, to be sure; but, insofar as he
incorporates the national will, they may be decisions of the United States as well.
Thus when President Reagan elected to invade Grenada, this also became a deci-
sion of the United States. This was in effect an individual decision by a nation.

When we turn to game theory we will deal with individual decisions that
at first sight look like group decisions. Games are decision-making situations
that always involve more than one individual, but they do not count as group
decisions because each individual chooses an action with the aim of furthering
his or her own goals. This decision will be based on expectations concerning
how other participants will decide, but, unlike a group decision, no effort will
be made to develop a policy applying to all the participants. For example, two
neighboring department stores are involved in a game when they independently
consider having a post-Christmas sale. Each knows that if one has the sale and
the other does not, the latter will get little business. Yet each store is forced to
decide by itself while anticipating what the other will do. On the other hand, if
the two stores could find a way to choose a schedule for having sales, their
choice would ordinarily count as a group decision. Unfortunately, it is fre-
quently difficult to tell whether a given situation involves an individual or a
group decision, or, when several individuals are choosing, whether they are in-
volved in a game or in a group decision.

Most of the work in group decision theory has concerned the development
of common policies for governing group members and with the just distribution of
resources throughout a group. Individual decision theory, by contrast, has con-
centrated on the problem of how individuals may best further their personal inter-
ests, whatever these interests may be. In particular, individual decision theory
has, to this point, made no proposals concerning rational or ethical ends. Individ-
ual decision theory recognizes no distinction—either moral or rational —between
the goals of killing oneself, being a sadist, making a million dollars, or being a
missionary. Because of this it might be possible for ideally rational agents to be
better off violating the policies of the groups to which they belong. Some group
decision theorists have tried to deny this possibility and have even gone so far as
to offer proofs that it is rational to abide by rationally obtained group policies.

It should be no surprise, then, that some philosophers have become fasci-
nated with decision theory. Not only does the theory promise applications to
traditional philosophical problems but it too is replete with its own philosophical
problems. We have already touched on two in attempting to draw the distinctions
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between the various branches of decision theory, and we will encounter more as
we continue. However, philosophers have paid more attention to applications of
decision theory in philosophy than they have to problems within decision theory.
The notion of a rational agent is of primary importance to philosophy at large.
Since Socrates, moral philosophers have tried to show that moral actions are ra-
tional actions, in other words, that it is in one’s own best interest to be moral. Po-
litical philosophers have similarly tried to establish that rational agents will form
just societies. Such arguments remained vague until modern decision theory sup-
plied precise models of rationality and exact principles of social choice. It is now
possible to formulate with nearly mathematical exactness modern versions of
traditional arguments in ethics and social philosophy. The techniques of decision
theory have also suggested new approaches to old ethical and moral problems.

Statisticians use decision theory to prescribe both how to choose between
hypotheses and how to determine the best action in the face of the outcome of
a statistical experiment. Philosophers of science have turned these techniques
with good results on the problems in rational theory choice, hypothesis accep-
tance, and inductive methods. Again this has led to significant advances in the
philosophy of science.

Decision theory is thus philosophically important as well as important to
philosophy. After we have developed more of its particulars we can discuss
some of its philosophical applications and problems in greater detail.

PROBLEMS

1. Classify the following as individual or group decisions. Which are games?
Explain your classifications.

Two people decide to marry each other.

The members of a club decide that the annual dues will be $5.

The members of a club decide to pay their dues.

The citizens of the United States decide to amend the Constitution.

Two gas stations decide to start a price war.

2. If it turned out that everyone believed that 1 + 1 =3, would that make it ra-
tional to believe that 1 +1=3?

3. Although decision theory declares no goals to be irrational in and of them-
selves, do you think there are goals no rational being could adopt, for exam-
ple, the goal of ceasing to be rational?

(DO-OO"N

1-2. The Basic Framework

A decision, whether individual or group, involves a choice between two or more
options or acts, each of which will produce one of several outcomes. For exam-
ple, suppose I have just entered a dark garage that smells of gasoline. After
groping to no avail for a light switch, I consider lighting a match, but I hesitate
because I know that doing so might cause an explosion. The acts I am consider-
ing are light a march, do not light a match. As I see it, if [ do not light the match,
there will be only one outcome, namely, no explosion results. On the other hand,
if I do light the match, two outcomes are possible: an explosion results, no ex-
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plosion results. My decision is not clear-cut because it is not certain that an ex-
plosion will result if I light the match. That will depend on the amount and distri-
bution of the gasoline vapor in the garage. In other words, the outcome of my
act will depend on the szate of the environment in which the act takes place.

As this example illustrates, decisions involve three components—acts,
states, and outcomes, with the latter being ordinarily determined by the act and
the state under which it takes place. (Some outcomes are certain, no matter what
the state or act. For instance, that I will either live through the day or die during
it is certain whether or not I light the match and regardless of the presence of
gasoline in the garage.) In decision theory we also construe the term “state” in
a very broad sense to include nonphysical as well as physical conditions. If you
and a friend bet on the correct statement of the fundamental theorem of calculus,
the outcome (your winning or losing) is determined by a mathematical state, that
is, by whether your version really formulates the fundamental theorem.

When analyzing a decision problem, the decision analyst (who may be the
decision maker himself) must determine the relevant set of acts, states, and out-
comes for characterizing the decision problem. In the match example, the act
do not light a march might have been specified further as use a flashlight, return
in an hour, ventilate the garage, all of which involve doing something other than
lighting the match. Similarly, I might have described the outcomes differently
by using explosion (no damage), explosion (light damage), explosion (moderate
damage), explosion (severe damage). Finally, the states in the example could
have been analyzed in terms of the gasoline-to-air ratio in the garage. This in
turn could give rise to an infinity of states, since there are infinitely many ratios
between zero and one. As I have described the example, however, the relevant
acts, states, and outcomes are best taken as the simpler ones. We can represent
this analysis in a decision table. (See table 1-1.)

1-1 States
Explosive
Gas Level Nonexplosive
Light a Match Explosion No Explosion
Acts

Do Not Light
a Match No Explosion | No Explosion

In general, a decision table contains a row corresponding to each act, a column
for each state, and an entry in each square corresponding to the outcome for the
act of that row and state of that column.

Suppose we change the match example. Now I want to cause an explosion
to scare some friends who are with me. But I am a practical joker, not a mur-
dercr, so I want the explosion to be nondamaging. Then in analyzing this deci-
sion problem we would be forced to break down the explosive outcome into
damaging/nondamaging . But the magnitude of the explosion would depend on
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the amount of vapor in the garage, so our new analysis would also require a
different division of the environment into states. This might yield a decision ta-
ble such as 1-2.

1-2 States
Amount of Gas Present
X Y Z
Light No Explosion | Explosion Explosion
Acts No Damage Damage

Do Not Light No Explosion | No Explosion | No Explosion

In specifying a set of acts, states, and outcomes, or in drawing a decision
table, we determine a problem specification. A moral to be drawn from the
match example is that several problem specifications may pertain to the same de-
cision situation. In such cases the decision analyst must determine the proper
specification or specifications to apply. This is a problem in applied decision the-
ory yet it may be absolutely crucial. In 1975, government health experts con-
ducted an elaborate analysis prior to deciding to issue the swine influenza vac-
cine to the general public. But according to newspaper accounts, they simply
never considered the outcome that actually resulted—that the vaccine would
paralyze a number of people. Thus they failed to use the proper problem speci-
fication in making their decision.

For a problem specification to be definite and complete, its states must be
mutually exclusive and exhaustive; that is, one and only one of the states must
obtain. In the match example, it would not do to specify the states as no vapor,
some vapor, much vapor, since the second two do not exclude each other. Light-
ing a match under the middle state might or might not cause an explosion. On
the other hand, if we used the states no vapor, much vapor, we would neglect
to consider what happens when there is some but not much vapor.

Securing mutually exclusive state specifications may require careful analy-
sis, but we can easily guarantee exhaustiveness by adding to a list of nonexhaus-
tive states the description none of the previous states obtain. Like the cover an-
swer “none of the above” used to complete multiple-choice questions, this easy
move can lead a decision analyst to overlook relevant possibilities. Perhaps
something like this was at work in the swine flu vaccine case.

1-2a. Some Philosophical Problems about Problem Specifications
Selecting a problem specification is really an issue that arises in applying deci-
sion theory. We will eschew such problems in this book and, henceforth, assume
that we are dealing with problem specifications whose states are mutually exclu-
sive and exhaustive. Yet there are several interesting philosophical issues related
to the choice of problem specifications. Three merit mention here.

The first concerns the proper description of states. Any decision problem
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involves some outcomes the decision maker regards as better than others. Other-
wise there would be no choice worth making. Thus any decision might be speci-
fied in terms of the state descriptions things turn out well, they do not. Suppose,
for example, that you are offered a choice between betting on the American or
National League teams in the All-Star Game. A winning bet on the American
League pays $5 and one on the National League pays $3. A loss on either bet
costs $2. We would usually represent this decision problem with table 1-3.

1-3 American League Wins National League Wins
Bet American +$5 ~-3$2
Bet National -$2 +$3

Given that you are not a totally loyal fan of either league, this way of looking
at the choice would lead you to choose between the bets on the basis of how
probable you thought the American League to win. (Later we will see that you
should bet on the American League if you think its chances are better than 5 in
12.) But suppose you use table 1-4 instead. Then you would simply bet Amer-

1-4 I Win My Bet I Lose It
Bet American + 35 —-$2
Bet National + $3 —-$2

ican on the grounds that that bet pays better. You might even argue to yourself
as follows: I will either win or lose. If T win, betting American is better, and
if I lose, my bet does not matter. So whatever happens, I do at least as well by
betting American.

The principle illustrated in this reasoning is called the dominance principle.
We say that an act A dominates another act B if, in a state-by-state comparison,
Ayields outcomes that are at least as good as those yielded by B and in some states
they are even better. The dominance principle tells us to rule out dominated acts.
If there is an act that dominates all others, the principle has us choose it.

However, we cannot always rely on the dominance principle —as an exam-
ple from the disarmament debate demonstrates. Doves argue that disarmament is
preferable whether or not a war occurs. For, they claim, if there is no war and
we disarm, more funds will be available for social programs; if there is a war and
we disarm, well, better Red than dead. This produces decision table 1-5.

1-5 War No War
Arm Dead Status Quo
Disarm Red Improved Society
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Given the view that it is better to be Red than dead, disarming dominates.

Hawks need not question anything that has transpired. They can simply
respond that disarming makes it virtually certain that the other side will attack
us but that continuing to arm makes war very unlikely. Doves have not taken
this into account. They have not considered that in this case the act we choose
affects the probabilities of the states. The example shows that the dominance
principle applies only when the acts do not affect the probability of the states.

The same problem arises in the betting example. The probability of win-
ning varies with the bet chosen. So reasoning according to the dominance princi-
ple does not apply to the choice between betting American or National.

One might think that all that is wrong with the betting example is a misap-
plication of the dominance principle, but I think there is a deeper problem here.
It is a case of an illegitimate problem specification. In any decision table that uses
states such as I win, or things turn out well, we can substitute the state descrip-
tion I make the right choice without having to change the outcomes or the effect
of the various acts on the states. But it is surely pointless to use a decision table
with the state headings I make the right choice, I fail to make the right choice
to make that very choice. If you already knew the right choice, why bother set-
ting up a decision table? Actually, this is a bit flippant. The real problem is that
the designation of the term “right choice” varies with the act. If I bet American,
I make the right choice if and only if the American League wins. Correspond-
ingly for betting National. So the phrases I make the right choice, I fail to make
the right choice cannot serve as state descriptions, since they do not pick out one
and the same state no matter what the act. The same point obviously applies to
descriptions such as I win or things turn out well.

[tis not always clear, however, when a state description is proper. Suppose,
for example, that you are trying to choose between going to law school and going
to business school. It is tempting to use state descriptions such as I am a success
or opportunities are good, but a moment’s thought should convince you that these
are variants of I make the right choice and, thus, improper. Unfortunately there
is no algorithm for determining whether a state description is proper.

Nor are there algorithms for deciding whether a set of states is relevant.
Suppose again that you are deciding between law school and business school.
The states the rainfall is above average for the next three years, it is not are
plainly irrelevant to your decision. But how about there is an economic depres-
sion three years from now, there is not? Perhaps lawyers will do well during a
depression whereas business school graduates will remain unemployed; those
states might then be relevant to consider.

I will leave the problem of state descriptions to proceed to another one,
which also involves the choice of problem specifications. In this instance, how-
ever, the state descriptions involved may be entirely proper and relevant. To il-
lustrate the problem I have in mind let us suppose that you want to buy a car
whosc asking price is $4,000. How much should you bid? Before you can an-
swer that question, you must consider several alternative bids, say, $3,000,
$3,500, and $4,000. Those three bids would generate a three-act problem speci-
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fication. But is this the best specification for your problem? How about using
a wider range of bids? Or bids with smaller increments? Those are clearly rele-
vant questions and they bear on which decision table you ultimately use. Now
if we think of the various answers to these questions as giving rise to different
decision tables (e.g., the three-bid table first mentioned, another with the bids
$2,500, $3,000, $3,500, $3,750, etc.), choosing the best problem specification
amounts to choosing between decision tables. We are thus involved in a second-
order decision, that is, a decision about decision problem specifications. We can
apply decision theory to this decision too. For example, if the best act according
to any of the specifications under consideration is bid $4,000, it would not matter
which table you choose. And if all the tables use the same states, we can combine
them into one big table whose rows consist of all the bids used in any of the
smaller tables and whose columns are the states in question. The best bid accord-
ing to that table will be the best for your decision. If the states vary too, the solu-
tion is not so clear. But that is a technical problem for decision theory. Let us
continue with the philosophical problem. We have now formulated a second-
order decision problem concerning the choice of tables for your original bid-
ding problem. But questions may arise concerning our choice of a second-order
problem specification. Should we have considered other first-order tables with
additional bids or other sets of states? Should we have used different methods
for evaluating the acts in our first-order tables? Approaching these questions
through decision theory will lead us to generate a set of second-order tables and
attempt to pick the best of these to use. But now we have a third-order decision
problem. An infinite regress of decision problems is off and running!

The difficulty here can be put succinctly by observing that whenever we ap-
ply decision theory we must make some choices: At the least, we must pick the
acts, states, and outcomes to be used in our problem specification. But if we use
decision theory to make those choices, we must make yet another set of choices.

This does not show that it is impossible to apply decision theory. But it
does show that to avoid an infinite regress of decision analyses any application
of the theory must be based ultimately on choices that are made without its bene-
fit. Let us call such decisions immediate decisions. Now someone might object
that insofar as decision theory defines rational decision making, only those deci-
sions made with its benefit should count as rational. Thus immediate decisions
are not rational, and because all decisions depend ultimately on these, no deci-
sions are rational.

Should we give up decision theory? I think not. The objection I have just
rehearsed assumes that decision theory has cornered the market on rational deci-
sion making, that a decision made without its benefits is irrational. In fact, it is
frequently irrational to use decision theory; the costs in time or money may be
too high. If an angry bear is chasing you, it would not make sense to use decision
theory to pick which trce to climb. On the other hand, it is not always rational
to make an immediate decision either. You would not (or should not) choose
your carecr, college, or professional school without weighing the pros and cons
of a few alternatives.

11
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But then how do we decide when to do a decision analysis and when to
make an immediate decision? Well, we do not do it on a case-by-case basis.
Each time I see a car coming at me in my lane, I do not ask myself, Should I
do a decision analysis to decide between braking, pulling off the road, or con-
tinuing as I am or should I make an immediate decision? If I did I would have
been killed years ago. (I would also have trapped myself in an infinite regress.)
Instead, I follow an unstated policy of letting my “gut reactions” make the
choice. And that is plainly the rational thing to do, since a sober, healthy, and
experienced driver usually does the right thing in such situations. We live by
many policies that tell us when we should make an immediate decision and when
a decision analysis of some kind is required. Some of those policies are more
rational than others; they lead in general to better lives. This means that it may
be appropriate from time to time to reassess one or more of our policies. Of
course, decision theory may help with that task.

A persistent skeptic might object that now we need a policy for reassessing
policies, and another regress of decisions is in the offing. But I will leave the
matter as it stands.

A final preliminary philosophical issue is illustrated by this fanciful exam-
ple. Baker and Smith, competitors in the oil business, are both considering leas-
ing an oil field. Baker hires a decision analyst to advise him, and Smith decides
to base his decision on the flip of a coin. The decision analyst obtains extensive
geological surveys, spends hours reviewing Baker’s balance sheets, and finally
concludes that the risks are so great that Baker should not bid on the lease at
all. Letting the flip of a coin decide for him, Smith pays dearly for the lease.
Yet, to everyone’s surprise, a year later he finds one of the largest oil reserves
in his state and makes piles of money. Something seems to have gone wrong.
Smith never gave the matter any consideration and became a billionaire, whereas
the thoughtful Baker remained a struggling oilman. Does this turn of events
show that Baker’s use of decision theory was irrational?

We can resolve some of our discomfort with this example by distinguish-
ing between right decisions and rational decisions. Agents’ decisions are right
if they eventuate in outcomes the agents like at least as well as any of the other
possibilities that might have occurred after they had acted. According to our
story Smith made the right decision and Baker did not. If we had complete fore-
knowledge, individual decision theory would need only one principle, namely,
make the right decision. Unfortunately, most of our decisions must be based on
what we think might happen or on what we think is likely to happen, and we
cannot be certain they will result in the best outcomes possible. Yet we still
should try to make choices based on the information we do have and our best
assessments of the risks involved, because that is clearly the rational approach
to decision making. Furthermore, once we appreciate the unfavorable circum-
stances under which most of our decisions must be made, we can see that a ratio-
nal decision can be entirely praiseworthy even though it did not turn out to be
the right decision. (How often have you heard people remark that although it
was true they had hoped for a better outcome, they made the only rational choice
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open to them at the time? Or that despite having made a stupid decision, some-
one “lucked out™?)

PROBLEMS

1. Set up a decision table for the following decision situation. Jack, who is now
twenty, must decide whether to marry his true love Jill immediately or not
sec her again until he is twenty-one. If he marries her now then he will lose
the million dollars his uncle has left him in trust. If he waits to see her until
he is twenty-one, he will receive the money and can marry Jill at that time — if
she still loves him. (Part of your problem is selecting an appropriate set of
acts, states, and outcomes.)

2. Pascal reasoned that it was better to lead the life of a religious Christian than
to be a pagan, because if God exists, religious Christians go to Heaven and
everyone else goes to Hell, whereas if God does not exist, the life of the reli-
gious Christian is at least as good as that of the pagan. Set up a decision table
for this argument and explain why the dominance principle supports Pascal’s
reasoning.

1-3. Certainty, Ignorance, and Risk

Sometimes we can be quite certain that our acts will result in given outcomes.
If you are in a cafeteria and select a glass of tomato juice as your only drink
then, ingenious pranksters and uncoordinated oafs aside, that is the drink you
will bring to your table. Sometimes, however, you can know only that your
choice will result in a given outcome with a certain probability. If, for instance,
you bet on getting a 10 in one roll of a pair of unloaded dice, you cannot be
certain of winning, but you can know that your chances are 1 in 12. Finally,
sometimes you may have no earthly idea about the relationship between an act
open to you and a possible outcome. If you have a chance to date a potential
mate, a possible outcome is that the two of you will someday together pose for
a photo with your great-grandchildren. But, offhand, it would seem impossible
for you to estimate the chances of that happening if you make the date.

If you are making a decision in which you can be certain that all your acts
are like the first example, decision theorists call your choice a decision under
certainty. Here all you need to do is determine which outcome you like best,
since you know which act (or acts) is certain to produce it. That is not always
easy. Even a student who could be certain of getting all her courses might have
a hard time deciding whether to sign up for logic and physics this term or for
music and physics this term, postponing logic until next term. Or suppose you
are planning an auto trip from New York to Los Angeles with stops in Chicago,
St. Louis, New Orleans, and Las Vegas. You can use one of many routes, but
they will differ in mileage, driving conditions, traffic, chances for bad weather,
and scenery. Even supposing that cverything concerning these attributes is cer-
tain, which will you choose?

The mathematical theory of linear programming has been applied to many
problems concerning decisions under certainty with quantitative outcomes.
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However, neither decision theorists nor philosophers have paid this subject
much attention, so we will not cover it further in this book.

When, in a given decision problem, it is possible to assign probabilities
to all the outcomes arising from each act, the problem is called a decision under
risk. Choices between bets on fair coins, roulette wheels, or dice are paradigms
of decisions under risk. But it is usual to classify investment decisions, bets on
horse races, marketing decisions, choices of crops to plant, and many others like
them as decisions under risk, because even when we cannot assign an exact
probability, say, to the stock market rising or to a drought, it often pays to treat
those decisions as if they were decisions under risk, pure and simple.

Finally, when it makes no sense to assign probabilities to the outcomes
emanating from one or more of the acts (as in your date resulting in great-
grandchildren), the decision problem is called a decision under ignorance.
(Some decision theorists call it a decision under uncertainty.) Ignorance may be
partial or total; it may be possible to assign probabilities to some of the outcomes
emanating from some of the acts, but to none emanating from the other acts.
We will turn shortly to techniques for dealing with decisions under ignorance,
but we will treat only decisions under total ignorance in this book.

This classification of decisions as under certainty, risk, and ignorance is
plainly an idealization. Many decisions do not fall neatly into one category or
another. Yet if the uncertainties in a decision are negligible, such as an uncer-
tainty as to whether the world will exist tomorrow, the problem is fairly treated
as one under certainty. And if we can estimate upper and lower bounds on prob-
abilities, we can break a decision problem into several problems under risk,
solve each, and compare the results. If each solution yields the same recommen-
dation, our inability to assign exact probabilities will not matter. On the other
hand, if the range of probabilities is very wide, it might be better to treat the
problem as a decision under ignorance.

The classification is philosophically controversial too. Some philosophers
think the only certainties are mathematical and logical. For them there are few
true decisions under certainty. Other philosophers —not necessarily disjoint from
the first group —think we are never totally ignorant of the probabilities of the out-
comes resultant from an act. Thus for them there are no true decisions under igno-
rance. We will learn more about this later when we study subjective probability.

1-3a. Some Details of Formulation
Suppose you are deciding whether to eat at Greasy Pete’s and are concerned that
the food will make you sick. The relevant outcomes associated with your act are
you get sick and you do not get sick. Now if you take the states to be Pete’s food
is spoiled, it is not, the act of eating at Greasy Pete’s under the state that his food
is spoiled is not certain to result in your getting sick. (Perhaps you eat very little
of the spoiled food or have a very strong stomach.) Yet, our use of decision ta-
bles presupposes that we can find exactly one outcome for each act-state pair.
So how can we use decision tables to represent your simple problem?

We could introduce outcomes that themselves involve elements of uncer-
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tainty. For example, we could replace the outcomes of your getting (not getting)
sick with the outcomes you have a chance of getting sick, you do not. This would
ensure no more than one outcome per square. Or we could introduce a more
refined division of the environment into states, using, for instance, the food is
spoiled but you can handle it, the food is spoiled and you cannot handle it, and
the food is not spoiled for the last example. Different decision problems will call
for different combinations of these approaches. In any case, because these are
problems with applying decision theory, we will assume henceforth that each
act-state pair determines a unique outcome.

In view of this assumption, we can focus all the uncertainty in a decision
on the states involved. If you do not know whether eating at Greasy Pete’s will
make you sick, we will take that to be because you do not know whether the
food is spoiled or whether you can handle it. A further consequence is that, in
the case of decisions under risk, probabilities will be assigned to states rather
than outcomes. Again, if you eat at Greasy Pete’s, the only way you can get sick
is for the food to be spoiled and you to be unable to handle it. So to treat your
problem as a decision under risk we must assign probabilities to that compound
state and the other states. Suppose the probability of the food being spoiled is
70% and that of your being unable to handle spoiled food is 50%. Then (as we
will learn later) the probability of your getting rotten food at Greasy Pete’s and
being unable to handle it is 35%, whereas the probability that you will get bad
food but will be able to handle it is 35% and the probability that your food will
be fine is 30%.

Unless some malevolent demon hates you, your choosing to eat at Greasy
Pete’s should not affect his food or your ability to handle it. Thus the probabili-
ties assigned to the states need not reflect the acts chosen. This means that we
can use the unqualified probability that Greasy Pete’s food will be spoiled rather
than the probability that it will be spoiled given that you eat there. On the other
hand, if you are deciding whether to smoke and are worried about dying of lung
cancer, your acts will affect your chances of entering a state yielding that
dreaded outcome. As you know, the lung cancer rate is much higher among
smokers than among the total population of smokers and nonsmokers. Conse-
quently, the probability of getting lung cancer given that you smoke is much
higher than the probability that you will get lung cancer no matter what you do.
The latter probability is called the unconditional probability, the former the con-
ditional probability of getting lung cancer. Plainly, in deciding whether to
smoke, the conditional probabilities are the ones to use.

We say that a state is independent of an act when the conditional probabil-
ity of the state given the act is the same as the unconditional probability of that
state. Getting heads on the flip of a fair coin is independent of betting on heads.
There being rotten food at Pete’s is independent of your eating there. But con-
tracting lung cancer is not independent of smoking, earning good grades is not
independent of studying, and surviving a marathon is not independent of training
for it.

When some of the states fail to be independent of the acts in a decision
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under risk, we should use the probabilities of the states conditional on the acts.
When all of the states are independent of the acts, it does not matter which prob-
abilities we use; for, by the definition of independence, there is no difference
between them. Since there is no harm in always using conditional probabilities,
for the sake of uniformity, we will do so.

Those who prefer unconditional probabilities may find it possible to refor-
mulate their decision problems using new states that are independent of the acts.
Consider the smoking decision again. Not everyone who smokes gets lung
cancer —not even those who have been very heavy smokers since their teens. It
is plausible, then, that those who avoid cancer have some protective factor that
shields them from smoking’s cancer-inducing effects. If there is such a factor,
smoking is unlikely to be responsible for its presence or absence. With this in
mind, we can reformulate the smoking decision in terms of states involving this
new factor. We replace the two states you (do not) get lung cancer with four
states: you have the protective factor and do (do not) get terminal lung cancer
Jrom nonsmoking causes, you do not have the protective factor and you do (do
not) get terminal lung cancer from nonsmoking causes. Then your smoking will
not affect your chances of being in one state rather than another. In the original
formulation, you saw smoking as actually determining whether you entered a
state leading to your death from lung cancer; thus you saw smoking as affecting
the probability of being in that state. On the new formulation, you are already
in a state that can lead to your death from lung cancer or you are not. If you
are in the unlucky state, your not smoking cannot alter that; but if you smoke
you are certain to die, since you lack the protective factor. You do not know
what state you are in, but if you knew enough about lung cancer and the factors
that protect those exposed to carcinogens from getting cancer, you could assign
unconditional probabilities to the four new states. For those states would be in-
dependent of the acts of smoking or not smoking.

For a final bit on reformulations, consider Joan’s problem. She is pregnant
and cannot take care of a baby. She can abort the fetus and thereby avoid having
to take care of a baby, or she can have the baby and give it up for adoption.
Either course prevents the outcome Joan takes care of a baby, but Joan (and we)
sense a real difference between the means used to achieve that outcome. There
is a simple method for formulating Joan’s choice so that it becomes the true
dilemma that she sees it to be. We simply include act descriptions in the outcome
descriptions. We no longer have a single outcome but two: Joan has an abortion
and does not take care of a baby, Joan gives her baby up for adoption and does
not take care of it.

PROBLEMS
1. Classify the following as decisions under certainty, risk, or ignorance. Jus-
tify your classifications.
a. Jones chooses his bet in a roulette game.
b. Smith decides between seeking and not seeking a spouse.
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c. A veterinarian decides whether to put a healthy stray dog to sleep or to
adopt it as his own pet.

d. A student trying to satisfy degree requirements chooses among the
courses currently available.

e. A lawyer decides whether to accept an out-of-court settlement or to take
her client’s case to trial.

2. Set up a decision table for the last version of the Greasy Pete problem. Why
is the outcome description you do not get sick in more than one square? What
is the fotal probability that you will get an outcome so described?

1-4. Decision Trees

It is often more expeditious to analyze a decision problem as a sequence of de-
cisions taking place over time than to treat it as a single one-time decision. To
do this we use a decision tree instead of a table. A decision tree is a diagram
consisting of branching lines connected to boxes and circles. The boxes are
called decision nodes and represent decisions to be made at given points in
the decision sequences. The circles are called chance nodes and represent the
states relevant to that point of the decision. Each line projecting to the right of
a node represents one of the acts or states associated with it and is usually labeled
with an appropriate act or state description. To demonstrate these ideas, let us
use the decision tree (shown in figure 1-1) to represent the disarmament problem
discussed earlier. As the tree illustrates, outcomes are written at the tips of the
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Figure 1-1

tree. This permits us to assess the possible consequences of a choice by follow-
ing each of the branches it generates to its tip. Disarming, for instance, leads
to an improved society if there is no war, but it leads to life as a Red if there
is one.

17



INTRODUCTION

The practical advantage of trees over tables can be appreciated by con-
sidering the following example. Suppose you must first choose between going
to the seashore or staying at home. If you go to the seashore, you will wait to
determine whether it is raining. If it rains, you will decide whether to fish or
stay inside. If you fish and the fishing is good, you will be happy; if the fishing
is not good, you will be disappointed. If you stay in, you will feel so-so. On
the other hand, if there is no rain, you will sunbathe and be happy. Finally if
you stay home, you will feel so-so. Figure 1-2 presents the tree for this decision.
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It is easy to go from a decision table to a decision trce. Start the tree with
a box with one line emanating from it for each row of the table. At the end of
each line place a circle with one line coming from it for each column of the table.
Then at the tips of each of these lines write the outcome entries for the square
to which that tip corresponds.

It is by far more interesting and important that the decision tree for any
problem can be transformed into an equivalent decision table. We accomplish
this by collapsing sequences of decisions into one-time choices of straregies. A
strategy (S) is a plan that determines an agent’s choices under all relevant cir-
cumstances. For example, the plan

Si: 1 will go to the shore; if it rains, I will fish; if it does not rain, |
will sunbathe

is a strategy appropriate for the problem analyzed by the preceding tree. The
other appropriate strategies are:

S>: I will go to the shore; if it rains, I will stay in; if it does not, I will
sunbathe;
S3: T will stay at home (under all circumstances).

We can similarly find a sct of stratcgics that will cnable us to represent any other
sequential decision as a choice betwecn strategies. This representation generally
necessitates using more complicated states, as table 1-6 illustrates for the sca-
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shore problem. In case you are wondering how we obtain the entries in the
second row of this table, notice that in this row S is adopted. So if it rains you

1-6 Rain & Good Fishing Rain & Bad Fishing No Rain

Si Happy Disappointed Happy
) So-so So-so Happy
S3 So-so0 So-so So-so

will stay in, and whether or not the fishing is good (for anyone), you will feel
so-so. If it does not rain, you will sunbathe and be happy.

Decision theorists have presented mathematically rigorous formulations of
the technique illustrated here and have proved that any decision tree can be
reduced to a decision table in which the choices are between strategies. Since
our interest in this book is more theoretical than practical, we will stick with de-
cision tables and not pursue the study of decision trees further.

PROBLEMS

1. Formulate the following decision problem using a decision tree. Danny, who
has been injured by Manny in an automobile accident, has applied to
Manny’s insurance company for compensation. The company has responded
with an offer of $10,000, Danny is considering hiring a lawyer to demand
$50,000. If Danny hires a lawyer to demand $50,000, Manny’s insurance
company will respond by either offering $10,000 again or offering $25,000.
If they offer $25,000, Danny plans to take it. If they offer $10,000, Danny
will decide whether or not to sue. If he decides not to sue, he will get
$10,000. If he decides to sue, he will win or lose. If he wins, he can expect
$50,000. If he loses, he will get nothing. (To simplify this problem, ignore
Danny’s legal fees, and the emotional, temporal, and other costs of not set-
tling for $10,000.)

2. Mimicking the method used at the end of this section, reformulate Danny’s
decision problem using a decision table.

1-5. References

In giving references at the end of each chapter, I will refer to works by means
of the names of their authors. Thus Luce and Raiffa refers to the book Games
and Decisions by R. D. Luce and H. Raiffa. When I cite two works by the same
author, I will either use a brief title or give the author’s name and the publication
date of the work in question.

The classic general treatise on decision theory is Luce and Raiffa. It not
only surveys several of the topics not covered in this book but also contains an
extensive bibliography. The reader wishing to do more advanced study in deci-
sion theory should begin with this work. Von Neumann and Morgenstern was
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the first major book on the subject and set the agenda for much of the field. A
number of journals publish articles on decision theory, but Theory and Decision
is the principal interdisciplinary journal devoted to the subject.

Raiffa is an excellent introduction to individual decision theory for those
interested in applications of the theory to business problems. This book also
makes extensive use of decision trees. Eells, Jeffrey, and Levi are more ad-
vanced works in the subject for those with a philosophical bent. Savage and
Chernoff and Moses approach the subject from the point of view of statistics.

Davis is a popular introduction to game theory, and Sen is a classic treatise
on social choice theory. Both books contain extensive bibliographies.

For more on problem specifications, see Jeffrey’s “Savage’s Omelet,” and
Nozick.
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Chapter 2
DECISIONS UNDER IGNORANCE
NERERRINII L

KATHRYN LAMBI is a brilliant graduate student in physics. She is also happily
married to Paul Lambi and they want children. Kathryn has a difficult decision
to make because her ideas about mothering are rather traditional; she believes
that she ought to care for her children herself during their preschool years. But
she cannot do that and perform long and delicate experiments. Each day resolv-
ing her dilemma becomes more urgent. Should she have her children now and
postpone her career? Or should she capitalize now on her brilliant start in order
to establish herself as a physicist and raise her family later? As Kathryn sees her
decision, the relevant states concern her ability seven years from now to estab-
lish a career or to be a good mother. (She believes that the latter depends on
her fertility and psychic energy and that both decrease with age.) We can thus
represent her problem as choosing between two acts: have children now and
postpone career and pursue career now and postpone children. This choice is
made against the background of four states:

In seven years K. L. will be able to be a good mother and have a good
career.

In seven years K. L. will not be able to be a good mother but will be able
to have a good career.

In seven vears K. L. will be able to be a good mother but will not be able
to have a good career.

In seven years K. L. will be able neither to be a good mother nor to have
a good career.

Kathryn has read several articles and books about delayed motherhood and feels
that she can confidently assign a probability (or range of probabilities) to her being
able to be a good mother seven years hence. But she simply has no idea of how
to assign a probability to her being able successfully to start over as a physicist.

Kathryn’s is a decision under ignorance. Decision theorists have debated
long and hard about how to handle such decisions, and today many issues con-
cerning them remain unresolved. In this chapter I will present four of the alter-
natives decision theorists have proposed, discuss their advantages and limita-
tions, and briefly explore the matter of determining which approach to decisions
under ignorance is correct.
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Kathryn’s decision is one of partial ignorance, since she can assign some
probabilities to the states relative to her acts. For instance, she can appeal to the
literature she has read to assign a probability to her being able to be both a good
mother and a good physicist if she pursues her career now. Despite this I will
restrict my treatment to decisions under complete ignorance.

2-1. Preference Orderings

There is another complication to Kathryn’s decision. She would rather be a good
mother and a good physicist, but when she contemplates the prospect of not be-
ing able to be both, she finds herself wavering between preferring to be a good
mother and preferring to be a good physicist. Of course, she cannot even begin
to resolve her original dilemma until she gets her preferences straight. Decision
theory has very little to say about how Kathryn should do this. Rather it concen-
trates on describing what her preferences must be like if she is to apply decision
theory to her problem. That will be our focus here.

For convenience, I will use the expression “xPy” to mean “the agent
prefers x to y” and “xIy” to mean “the agent is indifferent between x and y.” I
will also use these abbreviations in discussing Kathryn's preferences:

“m & p” for “K. L. is a good mother and a good physicist.”

“m & —p” for “K. L. is a good mother but not a good physicist.”
“—m & p” for “K. L. is not a good mother but is a good physicist.”
“—~m & —p” for “K. L. is neither a good mother nor a good physicist.”

(We may presume that these are the outcomes Kathryn considers.) We know that
(m & pPm & —p), (im & p)P(—m & p), that is, Kathryn prefers being both
a good mother and a good physicist to being only one of the two. Do we not
also know that (m & — p)I(—m & p); namely, she is indifferent between being,
on the one hand, a good mother while not a good physicist and, on the other
hand, being a good physicist while not a good mother? No, that does not follow
from her wavering. In decision theory, an agent is considered to be indifferent
between two alternatives only if she has considered them and is completely will-
ing to trade one for the other. Kathryn has arrived at no such conclusion. Deci-
sion theorists think that she should, and this is reflected in the requirement that
given any two acts, the agent prefers one to the other or is indifferent between
them (in the sense just stated).

To be more explicit, decision theorists have proposed a minimal set of
conditions that the preferences of an ideally rational agent must satisfy. (Such
conditions have been called variously conditions of coherence, consistency, and
rationality, but we will see that it is debatable whether rational, consistent, or
coherent agents must conform their preferences to each of these conditions.) 1
will refer to these conditions collectively as the ordering condition.

Let us start with three uncontroversial components of the ordering condi-
tion. They require the agent not to prefer a thing x to one y while also being
indifferent between them or preferring y to x. These hold for all outcomes x and
y that the agent has under consideration:
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Ol. If xPy, then not yPx.
02. If xPy, then not x/y.
03. If xIy, then not xPy and also not yPx.

In more mathematical terms, these conditions state that various asymmetries
hold among the agent’s preferences.

Of course, agents change their minds and may be quite rational in doing
so. Condition O1, for instance, is not meant to preclude my now preferring writ-
ing a book to traveling around the world and having the opposite preferences
in ten years. The ordering condition deals only with an agent’s preferences at
a moment.

The next condition requires that any two outcomes be connected to each
other via the agent’s preferences.

O4. xPy or yPx or xly, for any relevant outcomes x and y.

This is the condition that requires Kathryn to make up her mind. (Note: I am
following the practice, customary in mathematics and logic, of interpreting “or”
as meaning “at least one and possibly both.” That is why I need both the asym-
metry and connectivity conditions. If I had interpreted “or” as “at least one but
not both” then I could have used just a reinterpreted condition O4 instead of my
conditions O1-04. Exercise: Prove my last claim.)

The next components of the ordering condition are called the transitivity
conditions.

05. If xPy and yPz, then xPxz.
06. 1f xPy and xIz, then zPy.
O7. If xPy and ylz, then xPz.
08. If xly and yIz, then x/z.

These are to hold for all relevant outcomes x, y, and z. Condition O5, for exam-
ple, requires you to prefer apples to ice cream if you prefer apples to peaches
and peaches to ice cream; condition O7 requires you to prefer cars to boats if
you prefer cars to horses and are indifferent between horses and boats.

Experiments can easily demonstrate that humans are not always able to
have transitive preferences. By adding small amounts of sugar to successive cups
of coffee, one can set up a sequence of cups of coffee with this property: People
will be indifferent between adjacent cups, but not between the first and last. This
shows that sometimes we violate condition O8. But a carefully designed version
of this experiment can show more, namely, that we cannot help ourselves. All
we need do is make sure that the increments in sugar levels between adjacent
cups are below the level of human detectability. Does this mean that our biology
forces us to be irrational? Or that condition O8’s claim to be a condition of ra-
tionality is a fraud?

Speaking for myself (for there is no consensus among the experts on this
issue), neither alternative is quite correct. Surely we should try for transitive
preference orderings when and where we can. For transitive preference order-
ings organize our prefercnces into a simple and tractable structure. Yet the
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coffee cups do not signal an irrational blind spot. The transitivity conditions
characterize the preferences of an ideally rational agent. We fall short of that
ideal by lacking tastes sufficiently refined to avoid being “tricked” into a transi-
tivity failure. But rather than dismiss a powerful decision theory based on transi-
tivity, we should take steps, when a decision is important, to emulate ideal
agents more closely. For instance, if some very important matter turned on a
transitive ranking of the cups of coffee, we could use chemical tests to determine
their relative “sweetness.”

We also fail from time to time to have connected preferences—especially
when many things must be evaluated at once and our attention spans become
overtaxed. Again I regard the connectivity condition as an ideal whose impor-
tance increases in proportion to the importance of the decision at hand.

Those depressed by our failures at ideal rationality might take comfort in
the fact that we can often make a rational choice without satisfying all the order-
ing conditions. For instance, if you know that you can have your first choice for
dessert, you need not completely rank ice cream, cake, fruit, and pie against
each other. It is enough that you decide that cake, say, is better than all the rest.
You can leave the rest unconnected or with failed transitivities, since, as far as
getting dessert goes, the effort of ranking them is wasted.

If an agent’s preferences meet conditions O1-08, items ordered by his
preferences divide into classes called indifference classes. They are so called be-
cause the agent is indifferent between items in the same classes but prefers items
one way or the other in one class to those in a different class. (Economists, who
usually restrict themselves to graphable preferences, speak of indifference
curves rather than indifference classes. Qur concept is a generalization of
theirs.) We will rank an agent’s indifference classes according to the preference
relations that hold between their members: One indifference class ranks above
another just in case its members are preferred to those of the other. To illustrate
this, let us suppose that an agent’s preferences among ten items—a, b, ¢, d, e,
/> g, h, i, and j—are as follows:

alb, aPc, cPd, dle, elf, flg, dPh, hli, iPj.

The ordering condition permits us to derive additional information from the
preferences given. For example, condition OS8 yields dIf and dlg and condition
06 yields bPc. This additional information tells us that the ten items divide into
ranked indifference classes as follows:

a, b [5]
¢ [4]
doe f g (3]
h,i 2]
J (1]

Once we have divided a set of alternatives into ranked indifference classes,
we can assign a number to each class that will reflect the relative importance or
utility of items in the class to the agent. (Note: This may not be possible when
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the number of indifference classes is infinite. See exercise 6 in the next Problems
section.) The convention used in decision theory is to assign higher numbers to
higher-ranked items. Other than that we are free to choose whatever numbers
we wish. We have used the numbers 1-5 but we could have used 5-10, or even
—1,0, 1/2, 1, 3. Any increasing sequence of five numbers will do. All that is
required is that the number assigned to an item x—called the utility of x and writ-
ten “u(x)”—be such that

a. u(x) > u(y) if and only if xPy
b. u(x) =u(y) if and only if xIy

for all ranked items x and y.

Decision theorists call the various ways of numbering the items in a prefer-
ence ordering utility functions or utility scales. (More precisely, the functions
are the various ways of associating numbers with preference orderings and the
scales are the sequences of numbers used. But no harm will result from our using
the terms “utility function” and “utility scale” interchangeably.) Utility functions
(scales) that satisfy conditions (a) and (b) are called ordinal utility functions
(scales) because they represent only the ordering of an agent’s preferences. Any
change or transformation of an ordinal scale that preserves this representation
gives rise to an equally acceptable ordinal scale for the agent’s preferences. Sup-
pose t[u(x)] is the transformation of the utility of x on the u-scale into a utility
number on the #(u)-scale. Then the new scale will be an acceptable ordinal utility
scale for the agent just in case

c. w>v if and only if #(w) > #(v), for all w and v on the u-scale.

For then the #(u)-scale will satisfy conditions (a) and (b) too. We will call trans-
formations that satisfy condition (¢) ordinal transformations.

Ordinal scales represent only the relative ordering of the items falling
within the scope of an agent’s preferences; they do not furnish information about
how many items fall between two items or about the intensity of an agent’s
preferences. Yet they do allow us to formulate some decision methods more con-
veniently. One example is the dominance principle. We can now define domi-
nance in terms of utilities: An act A dominates an act B if each utility number
in row A is greater than or equal to its correspondent in row B and at least one
of these numbers is strictly greater.

Example. In table 2-1, with three acts and four states, act A> dominates
the others.

2-1 S1 hY) S3 S4

Ay 1 0 3 0
A 2 1 3 1
A3 2 -1 3 0
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PROBLEMS
Convert the 1 to 5 scale used to rank a—j into a 20 to 25 scale, intoa — 35
to O scale, and into a scale whose numbers are all between O and 1.
What happens to an ordinal scale when it is transformed by multiplying each
number by — 1? By 0? Are these acceptable transformations of the original
scale? Why or why not?
Show that the transformation ¢ of an ordinal utility scale u into a scale, ¢(u),
produces a scale that also satisfies conditions (a) and (b), provided ¢ satisfies
condition (c).
Show that the following are ordinal transformations:

a. t(x)=x—2.
b. t(x)=3x+5.

Is the transformation #(x) =x” an ordinal transformation when applied to a
scale whose numbers are greater than or equal to 0?7 What if some of the
numbers are negative?

Suppose an agent has preferences for paired items (x; y) where item x is the
amount of time she has to live and y is the amount of time she will go through
her death throes. Let us suppose that x varies continuously between 0 mo-
ments and 20 years and y between 0 moments and 2 weeks. The agent always
prefers to live longer and suffer less but puts an absolute priority on living
longer. This means, for instance, that she prefers the pair (18 years; 2 weeks)
to (17 years; 11 months and 28 days; 25 minutes). Explain why it is impossi-
ble to use an ordinary finite number scale to represent the agent’s preferences,
although she does satisfy the ordering condition. Explain why it is possible
to represent this preference using the real numbers if we concern ourselves
with only preferences for moments of life or for moments of death throes.

2-2. The Maximin Rule

Using ordinal utility functions we can formulate a very simple rule for making
decisions under ignorance. The rule is known as the maximin rule, because it
tells the agent to compare the minimum utilities provided by each act and choose
an act whose minimum is the maximum value for all the minimums. In brief,
the rule says maximize the minimum.

Example. In table 2-2 the minimums for each act are starred and the act

whose minimum is maximal is double starred.
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When there are two or more acts whose minimums are maximal, the maxi-
min rule counts them as equally good. We can break some ties by going to the
lexical maximin rule. This tells us to first eliminate all the rows except the tied
ones and then cross out the minimum numbers and compare the next lowest en-
tries. If the maximum of these still leaves two or more acts tied, we repeat the
process until the tie is broken or the table is exhausted.

Example. Applying the lexical maximin rule still leaves A; and A4 tied in
table 2-3.

23 St 8 S S S
Al 0 3 5 4 1
A 0 3 2 1 1
A3 0 1 2 3 3
As 3 0 4 1 5

Conservatism underlies the maximin approach to decisions under igno-
rance. Assuming that whatever one does the worst will happen, the maximin
rules pick the best of the worst. Perhaps this is the best stance to take when one’s
potential losses are enormous. Being no James Bond, I suspect I would follow the
maximin rule were I to contemplate jumping from a plane without a parachute.

Despite examples like these, the maximin rules are easily criticized on the
grounds that they prohibit us from taking advantage of opportunities involving
slight losses and great gains. For example, in table 2-4 the maximin act is Ay;

2-4 S1 RY)
A $1.50 $1.75
A $1.00 $10,000

but choosing 4> would mean giving up at most $.50 for a chance at $10,000.
(I am assuming here that the agent’s attitude toward money is fairly typical.)

PROBLEMS
1. Find the maximin acts for tables 2-5 and 2-6. Use the lexical maximin rule
to break ties.

2-5 2-6

Ar 1 -3 5 6 Ay 0 1 1 3
Az 2 2 3 3 Az 0 4 2 1
Az 4 6 —10 5 Az 3 0 0 1

27




DECISIONS UNDER IGNORANCE

2. Some students of medical decision making have alleged that doctors always
use the maximin rule. Do you think that when most plastic surgeons decide
to do a facelift (rather than not do it), they follow the maximin rule? Explain
your reasoning.

3. My criticism of the maximin rule based on table 2-4 tacitly presupposes that
we know more than the fact that the agent prefers more money to less. What
more must we know for my criticism to work?

4. Present decision tables that show that neither the maximin nor the lexical
maximin rule always excludes a dominated act.

2-3. The Minimax Regret Rule

Examples such as the last, where the agent rejected a chance at $10,000 to avoid
a potential loss of $.50, suggest that in some situations it may be relevant to fo-
cus on missed opportunities rather than on the worst possibilities. In table 2-4,
the agent misses an opportunity to gain an additional $9998.25 if he chooses A4;
and S> turns out to be the true state, whereas he only misses an opportunity to
gain an additional $.50 if he does A when the true state is Sq1. Let us call the
amount of missed opportunity for an act under a state the regret for that act-state
pair. Then the maximum regret for 4; is $9998.25 and that for 4> is only $.50.
(The regret for the pairs (A4;, S1) and (42, S») is zero, since these are the best
acts to have chosen under the respective states.)

To extract a general rule from our example, we must first explain how to
derive regret numbers and a regret table from a decision table. We first obtain
a regret number R corresponding to the utility number U in each square in the
decision table by subtracting U from the maximum number in its column. Notice
that although we can use the formula

R=MAX-U,

where MAX is the largest entry in R’s column, the number MAX may vary from
column to column, and thus R may vary even while U is fixed. MAX represents
the best outcome under its state. Thus the value MAX — U represents the amount
of regret for the act-state pair corresponding to R’s square. To obtain the regret
table corresponding to a decision table, we simply replace each entry U with its
corresponding regret number R (tables 2-7 and 2-8).

2-7 Decision Table 2-8 Regret Table

S Sz S3 S1 $2 $3
Ax 5 -2 10 Ai 0 1 10*
Az -1 -1 20 « A2 6* 0 0
As -3 -1 5 Ajs 8 0 15
Ag 0 —4 I As 5 3 19
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Example. Maximum regrets are starred; the act with the minimum maxi-
mum regret is double starred.

The minimax regret rule states that we should pick an act whose maximum
regret is minimal. The maximum regrets in table 2-8 are 10, 6, 15, and 19 for
Ay, Az, Az, and As, respectively. So the rule picks 4. To handle ties one can
introduce a lexical version of the minimax regret rule, but we will not bother
with that here.

Given two decision tables the two maximin rules pick the same acts as long
as the utility scales used in the two tables are ordinal transformations of each
other. Not so for the minimax regret rule. Consider decision and regret tables
2-9 and 2-10. The maximin act is A; and the minimax regret rule ties A; and

2-9  Decision Table 2-10  Regret Table
Ay 3 5 A; 0 2
A 1 7 A 2 0

Az. Next consider the two new tables (2-11 and 2-12) that we can obtain from
the original two by first performing an ordinal transformation on the decision
table and then forming a regret table from the new decision table. (The ordinal
transformation converts 1 to 3, 3to 7, 5to 11, and 7 to 16.)

2-11 Decision Table 2-12  Regret Table
Ay 7 11 A, 0 5
Az 3 16 A 4 0

The maximin act remains the same—it is still A;; but the only minimax act is
now Ay. Thus the minimax regret rule need not pick the same act when an ordi-
nal utility transformation is applied to a decision table. This means that the mini-
max regret rule operates on more information than is encoded in a simple ordinal
utility scale. Otherwise, applying an ordinal transformation should never affect
the choice yielded by the rule, since ordinal transformations preserve all the in-
formation contained on an ordinal scale.

Go back to the new decision table (2-11) and replace 16 with 15. Now cal-
culate the new regrets. You will see that the maximum regrets for A; and A4; are
both 4 and that the minimax regret rule again ties the two acts. Both times we
transformed the decision tables using an ordinal transformation, but the second
time we operated in accordance with a special type of ordinal transformation.
For notice that the conversion of 1 to 3, 3to 7, 5to 11, and 7 to 15 takes place
according to the formula

uw' =2u+1.
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This is a special case of the formula
u' =au+b,

which is known as a linear transformation because the graph of u’ against u is
aline. When a > 0, as happens above, the transformation is called a positive lin-
ear transformation. As we will see, positive linear transformations are of great
importance in decision theory.

To see that positive linear transformations are special types of ordinal
transformations, suppose that (with a > 0)

wx)=aux)+b

u' (y)=au(y)+b.

Then u(x) > u(y) if and only if au(x) > au(y), since a >0. But for any b,
au(x) > au(y) if and only if au(x) + b > au(y) + b. Putting this together yields
u(x) > u(y) if and only if u’(x) > u'(y), which is the condition for #’ to be an
ordinal transformation of u.

Not every ordinal transformation is a positive linear transformation. Not
every ordinal transformation preserves the ordering of the acts given by the
minimax regret rule, but positive linear transformations do. The last example
illustrated this, but let us see why it holds in general. When we form a regret
table we calculate the numbers R = MAX — U, where MAX is the largest num-
ber in the column containing U. Now suppose we perform a positive linear trans-
formation on a decision table to obtain aU + b in place of the old U. The old
MAX was one of the old U’s; the new MAX will now have the form aMAX + b.
Since positive linear transformations are order preserving, the new MAX will
still be the largest number in its column. Thus when we form the new regret ta-
ble we will calculate R’ = (aMAX + b) —(aU + b). But a little algebra shows
that R = aR. Recall that a > 0. This implies that our transformation of the deci-
sion table has brought about an order-preserving transformation on the old re-
gret table. That in turn means that the new maximum regrets are located in the
same squares as were the old ones and that the minimums of these are located
in the same rows. Thus the same acts are picked by the minimax regret rule as
were picked prior to the transformation.

We have seen that positive linear transformations of a utility scale preserve
more information than is preserved by ordinal transformations in general. But
what is that additional information? Algebra shows that (where a > 0)

x—y>z~—wif and only if (ax +b) —(ay + b) > (az + b) — (aw + b).

This means that the distance or interval between two utility numbers is preserved
under a positive linear transformation. For this reason utility scales that admit
only positive linear transformations are called interval scales. Accordingly, we
can summarize our examination of the various decision and regret tables as fol-
lows: Although the maximin rules presuppose merely that the agent’s prefer-
ences can be represented by an ordinal utility scale, the minimax regret rule
presupposes that they can be represented by one that is also an interval scale.

However, satisfying the ordering condition (O1-08) does not suffice to
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generate an interval utility scale. Thus to use the minimax regret rule agents
must have more refined preference structures than are needed to use the maximin
rules. This is considered a definite disadvantage of the minimax regret rule. (In
chapter 4 we will prove that if agents satisfy certain conditions over and above
the ordering condition, their preferences are representable on an interval scale.)

There is another feature of the minimax regret rule that disadvantages it
in comparison with the maximin rules. It is illustrated in tables 2-13 through

2-13 Decision Table 2-14 Regret Table
Ay 0 10 4 Ay 5 0 6
A 5 2 10 A 0 8 0
2-15 2-16

Ay 0 10 4 Ax 10 0 6
Ay 5 2 10 A> 5 8 0
As 10 5 1 As 0 5 9

2-16. Tables 2-15 and 2-16 have been obtained by adding a new act, A43. In the
first set A; is the minimax regret act, in the second A is. Thus, although A3 is
not a “better” act than A, or A, according to the rule, its very presence changes
the choice between 4, and 4. Of course, the reason is that A3 provides a new
maximum utility in the first column, which in turn changes the regrets for 4,
and A>. Yet it seems objectionable that the addition of an act (i.e., A3), which
will not be chosen anyway, is capable of changing the decision.

A final objection to the minimax regret rule is that, as with the maximin
rule, there are situations in which it seems inappropriate. Consider, for example,
tables 2-17 and 2-18. The minimax regret act is A». Despite this it appears that

2-17 Decision Table 2-18 Regret Table

S 08 S ... Swo St 8% S ... Swo
Ay 019991999 ...1999| A:| 100 0 0f... 0
Az | 100 0 0f... 0| A 0]99.9|99.9|...]99.9

we actually have a greater chance of suffering regret if we pick A4, since there
are ninety-nine states under A; in which we will have no regrets and only one
under A;.

There is a standard reply to this sort of objection, however. It consists in
pointing out that the 99 to 1 ratio of the A, zero regret to the one A, zero regret
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is no reason to conclude that states with zero regrets are more probable. After
all, the decision is supposedly made under ignorance; so, for all we know, state
Sy is a billion times more probable than all the other states together.

Despite this reply, many people would feel uncomfortable with applying
the minimax regret rule to decisions such as that illustrated in table 2-18. A full
account of this would lead us to an examination of the subjective theory of prob-
ability. That must be postponed until the next chapter.

PROBLEMS

1. Form the regret tables and find the minimax regret acts for decision tables
2-19 and 2-20.

2-19 2-20

Ay 7 0 4 Ay 5 20 6
A 5 21 11 A -3 8 10
As 10 -5 -1 Az 4 5 9

2. Prove that the minimax regret rule does not exclude all dominated acts.

3. What happens to a decision table when we apply a nonpositive linear trans-
formation (i.e., one in which a < 0)?

4. Show that if we can convert one decision table into another by means of a posi-
tive linear transformation, we can convert the regret table for the former into
that of the latter by means of a transformation of the form u’ = au witha > 0.

5. Show that if the scale u is convertible to the scale #’ by means of a positive
linear transformation and #' is similarly convertible to the scale #”, then u
can be similarly converted into u”.

6. Show that any decision table can be converted by means of a positive linear
transformation into one whose maximum entry is 1 and whose minimum en-
try is zero.

2-4. The Optimism-Pessimism Rule

The maximin rule reflects the thinking of a conservative pessimist. An unbridled
optimist, by contrast, would tell us to maximize maximums. He would assume
that no matter which act we choose the best outcome compatible with it will
eventuate, and accordingly, he would urge us to aim for the best of the best. This
thinking would give rise to what one could call the maximax rule. But that rule
surely would have few adherents. Still, perhaps the heavy conservatism of the
maximin rule could be lightened by combining it with the maximax rule. The
former operates only on the minimum of each act, the latter only on the maxi-
mum. Because these are represented by numbers, it is possible to “compromise”
between them by using numbers that themselves fall between the two extremes.
For example, if the maximum for an act is 10 and the minimum is zero, then
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5 can represent a halfway compromise, 8 can represent one favoring the maxi-
mum, and 3 one favoring the minimum. To be consistent, we should at least use
the same weighting factor throughout a decision problem. Thus letting MAX be
the maximum for an act and min its minimum, we want a weighting of MAX
and min that yields a number somewhere in between. The formula

aMAX + (1 —a)min,

where 0 < a < 1, produces such a number, and it yields MAX and min them-
selves as special cases (by taking a as 1 and 0, respectively). We will call the
number a an optimism index. The optimism-pessimism rule then tells us to calcu-
late the number aMAX + (1 — a)min for each act (this is the act’s a-index) and
then pick an act whose a-index is maximal.

Example. In table 2-21, if we let a = 1/2, the a-index for A; will be 5 and
that for A; will be 4, and A; will be chosen. Letting a = .2 yields a-indexes of
2 for Ay and 2.8 for A;, and causes A, to be chosen. Notice that the interme-

2-21
A 10 4 0
Az 2 6 6

diate utilities have no effect on which act is chosen.

Where do the optimism indexes come from? Each agent must choose an
optimism index for each decision situation (or collection of decision situations).
The closer the optimism index is to 1, the more “optimistic” the agent is. When
the index equals 1, the agent’s use of the optimism-pessimism rule is equivalent
to using the maximax rule. Similarly, an agent with an index of 0 will in effect
use the maximin rule.

Agents can determine just how “optimistic” they are by performing the fol-
lowing thought experiment. They think of a decision problem under ignorance
whose utility table has the form of table 2-22, where they are indifferent between

2-22
Ay 0 1
A> C* C*

the acts Ay and A, and where 0 < ¢* < 1. Since the agents are indifferent be-
tween A, and A2, and since we may assume (in this section) that they use the
optimism-pessimism rule, we may conclude that the acts have identical a-
indexes. Hence

la+0(1—-a)=c*xa+c*(1 —a),

which implies that @ = ¢ =*.
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This method is, perhaps, better than just guessing at one’s optimism index
without the benefit of further reflection, and using a simple decision problem to
find one’s optimism index is a useful preparation for approaching more complex
problems. Nevertheless, this method accents a rather deep conceptual difficulty
with optimism indexes and the rule based on them. Since it is left to the agent
to determine an optimism index, it is to be expected that different agents will
have different indexes. Furthermore, we could hardly require that an agent pick
an optimism index once and for all time, since even rational people change their
attitudes toward uncertainties as their living circumstances or experiences
change. Consequently, the optimism-pessimism rule imposes no consistency on
the decisions under ignorance made by a group of individuals or even by a single
individual over time. How can we find a paradigm of rationality in an agent who
rejects yesterday’s well-wrought decision for no reason other than feeling more
pessimistic today? Indeed, by going over their prior reasons, we can persuade
friends who get “cold feet” to go ahead with their decisions. That avenue will
be closed to us if we permit agents to change their minds by merely changing
their optimism indexes.

Worse, we could often get away with making snap decisions and “ration-
alizing” them by declaring an appropriate optimism index. Given any two-act
problem in which the maximum for 4, is greater than that for A; while the mini-
mum for A, is less than that for A,, we can “rationalize” the choice of either act
by appropriately moving our optimism index closer to 1 (to justify A1) or to O
(to justify Az).

Finally, let us also note that the optimism-pessimism rule presupposes an
interval utility scale. To see this consider decision table 2-23. Letting the opti-

2-23
A 0 4
A 2 1

mism index be 1/2, the rule picks 4. But now let us hold the optimism index
constant and apply an ordinal transformation to obtain table 2-24. Now the rule

2-24
Ay 0 10
Az 8 7

picks A». Hence the rule presupposes more than an ordinal utility scale. On the
other hand, it can be proven that positive linear transformations do not change
the acts picked by the rule; so it presupposes no more than an interval utility
scale.
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PROBLEMS

1. Find the a-indexes for all the acts presented in tables 2-23 and 2-24.

2. Show that in the last example the transformation of table 2-23 into table 2-24
is ordinal but not positive linear.

3. Give an example of a decision table for which the optimism-pessimism rule
fails to exclude a dominated act no matter what the agent’s optimism index is.

4. Prove that if the a-index for an act A is greater than or equal to that for an
act B (0 <a < 1), it remains so when the utilities for the acts A and B are
subjected to the same positive linear transformation. (Hint: MAX, is trans-
formed to cMAX4 +5.)

5. Do you think that the canons of rational decision making should require more
consistency among various agents than the optimism-pessimism rule re-
quires?

2-5. The Principle of Insufficient Reason

The rules we have considered so far focus on maximums and minimums while
ignoring the intermediate values and the number of states in a decision problem.
The two acts of table 2-25, for example, appear to be quite different, yet all the
rules introduced so far in this chapter treat them as indifferent. The next rule

2-25

A 10} 9 9 9 9 9 9 9 0

Az 10| 9 0 0 0 0 0 0 9

takes account of both these neglected features of decision tables.

In a decision problem under ignorance there is no reason for viewing one
state as more probable than another. Thus, it has been argued, if we are truly
ignorant, we should treat all states as equally probable and independent of our
choices. For example, suppose we are presented with a coin about which we
know nothing and are asked to choose between the two bets given in table 2-26.

2-26 H T
B, -1 5
B, 8 -2

Then, or so it is suggested, we should assume that no matter which bet we
choose the chance of heads equals that of tails, the explanation offered being that
there is insufficient reason for any other assignment of probabilities. (Notice that
this is different from the claim that the probabilities should be taken as equal be-
cause we have good reasons for believing that the coin is fair—a condition that
never holds when the decision is made under ignorance.)
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Let us grant the probability assignment proposed. Then what should we
expect if the coin is flipped time after time and we choose By each time? Half
the time we would lose 1, half the time we would gain 5. Thus our average gain
would come close to 1/2( —1) +1/2(5) or 2. Similarly our average gain from
taking B, time after time would be 3. Thus it seems more rational to pick B
since it provides a greater long-term expectation.

This argument for B; is not completely tight, since we may not intend to
take the bets more than once and in any given flip we gain neither 3 nor 2. To
deal with this objection we need to introduce the concept of the expected utility
of an act and argue that we should maximize expected utilities. Doing this will
take us almost completely through the next two chapters. For the moment, let
me simply introduce the formula for the expected utility of an act for a two-state
problem. It is

uip +uz(l —p),

where u; and u; are the outcome utilities, p is the probability of Sy and 1 —p
is the probability of S,. Although this formula also fits the calculation of the
average gains for the two bets, expected utilities (and not average gains) are
defined for choices that are made only once and they represent the agent’s evalu-
ation of an act (not just an outcome) in terms of its utility. These may seem un-
necessary subtleties right now, but when we have completed our study of utility
theory they will fall into place.

The rule illustrated by means of the two-bets example is known as the princi-
ple of insufficient reason. 1t tells us to calculate the expected utilities for each act
under the assumption that each state is equally probable and then pick an act whose
expected utility is maximal. For each row this amounts to dividing the utilities by
the number of states and summing the results. We then compare the resulting sums
and pick an act whose sum is maximal. There is a shortcut, however, since the
fractions obtained for each row have the same denominator: We simply add the
entries across each row and pick an act whose resulting sum is maximal.

Example. In table 2-27 the expected utilities for each act (under the princi-
ple of insufficient reason) are given at the right of each row. The principle
chooses A4,.

2-27 M hY) $3 Sa Ss

Ay 5 7 2 1 10 5
A 10 2 3 5 20 8
A3 1 4 6 4 0 3

Like the minimax regret and the optimism-pessimism rules, the principle
of insufficient reason demands that the agent’s utility scale be invariant under
positive linear transformations. No mere ordinal utility scale will suffice; it must
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be an interval scale as well. In this respect the maximin rule has the upper hand
on the other rules.

There is also an important philosophical objection to the rationale given
earlier for the principle of insufficient reason. It is this: If there is no reason for
assigning one set of probabilities rather than another, there is no justification for
assuming that the states are equiprobable either. 1 find this point compelling.
If every probability assignment is groundless, the only rational alternative is to
assign none at all. Unless some other rationale can be provided for the principle
of insufficient reason, that means that we should turn to some other rule for mak-
ing decisions under ignorance.

Another objection to the principle is that it could lead to bad results. For
all we know, when we make a decision under ignorance, one state with a terrible
outcome or that produces a large regret has the greatest chance of being the true
one. Thus the principle of insufficient reason could lead us to disaster. The point
is illustrated by table 2-28. The principle recommends 4;. Yet, if unbeknown

2-28 St $2
A, —100 300 100
A 10 30 20

to us, the probability of S| were, say, .9, the expected utility of 4; (being
[ —100].9 + [300].1 or —60) would be significantly less than that of A, (being
12). In a life-or-death situation the principle could be totally disastrous.

This is not an objection to the rationale for the principle of insufficient rea-
son; it is rather an attempt to move us toward a more conservative approach to
decisions under ignorance. In evaluating it we should remember that even the
maximin rule is no guarantee against disaster. If one of the outcomes of the max-
imin act is terrible, that rule can do nothing further to avoid it. It can only ensure
that even worse outcomes (if there are any) are avoided.

PROBLEMS

1. Prove that the principle of insufficient reason never recommends a domi-
nated act.

2. Present a decision table and an ordinal transformation of it that shows that
some ordinal transformations fail to preserve the acts picked by the principle
of insufficient reason.

3. Show that the shortcut version of the principle (i.e., summing across the
rows) is equivalent to the original formulation.

2-6. Too Many Rules?

Suppose we were to exclude the principle of insufficient reason on the grounds
that we would be unjustified in a decision under ignorance in treating each state
as equally probable. Would that help us determine which of the remaining rules
is the correct one? No, for we have seen that strong considerations can be offered
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for and against each of the rules that have been proposed. The result is that it
is simply not clear which is preferable to the others.

To make matters worse, there are even decision problems in which the
maximin, minimax regret, and optimism-pessimism rules make contradictory
recommendations. In table 2-29 maximin picks A;, minimax regret picks A2, and
the optimism-pessimism rule picks 43 (for an optimism index of 1/2).

2-29

A 1 14 13
Az -1 17 11
Az 0 20 6

We might try to resolve this by using “majority rule.” The “votes” are
given in table 2-30. (Note that in applying the minimax regret rule we cannot

2-30 Ay vs. As Ay vs. Az Ay vs. Az
Maximin A As Ay
Minimax Az Az Ay
Opt.-Pess. A A3 A3

use the original three-act table but must use three two-act tables, since the three-
act table would illegitimately affect pairwise comparisons of the acts.) Majority
rule will not work, as table 2-30 shows. Two out of three rank A, over A, two
out of three rank A; over A, and two out of three rank A; over A;. Thus we
have a cycle: A; over A3, Az over As, A over Ay, Ay over As, and so on. There
is no first, second, or third choice, since any candidate for any position has
others ranked above and below it. (The generation of cycles such as this by
majority rule is known as the voting paradox. We will return to it in our treat-
ment of group decision making.)

With majority rule eliminated, there appears to be no easy or plausible
method for combining conflicting recommendations from the rules into a single
decision. Indeed, even if majority rule did not produce cycles or other anoma-
lies, there is little reason to view it as a plausible solution to the problem. After
all, the rules are not persons with conflicting points of view whose interests
should be respected and adjudicated. The rules instead embody alternative
proposals concerning the rational approach to decision making under ignorance.
Is it not more reasonable to judge each proposal on its merits and try to deter-
mine whether one rule is the best?

Some decision theorists have attempted to do this by proposing conditions
that purport to describe how an ideally rational agent would rank acts when mak-
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ing decisions under ignorance. They hoped to find a set of conditions that would
eliminate all the rules but one. The survivor could then be declared to be the
only rational rule to use.

One of the proposed conditions is the following mixture condition:

If a rational agent is indifferent between two acts, the agent will be in-
different between them and the third act of flipping a fair coin and doing
the first on heads and the second on tails.

This eliminates the optimism-pessimism rule. For in table 2-31, A; and A, are
indifferent according to that rule for any index of optimism. But if we add the

2-31
Ay 1 0
Az 0 1

“mixed” act of flipping a fair coin and doing A; on heads and A on tails, we
obtain table 2-32. And the only way for an agent to be indifferent between its
three acts is to have an optimism index equal to 1/2. (The values for A3 are

2-32

Ai 1 0
Az 0 1
A3 2 Y

computed by noting that its utility under either state is the expected utility of a
bet on a fair coin that pays O and 1.) A rational agent using the optimism-
pessimism rule with an optimism index of, say 5/8, would fail to be indifferent
between all three acts in this table. This would contradict the mixture condition.
But since we cannot restrict an agent’s optimism index, this means that many ra-
tional agents would be unable both to conform to the requirements of the mixture
condition and to use the rule. The mixture condition thus eliminates the
optimism-pessimism rule.

The next condition eliminates the minimax regret rule. I will call it the irrele-
vant expansion condition. You may remember it from our previous discussion.

The addition of a new act, which is not regarded as better than the
original ones, will not change a rational agent’s ranking of the old
acts.

If you do not recall how this affects the minimax rule, return to section 2-3 where
you will find two sets of tables (2-13, 2-14 and 2-15, 2-16) demonstrating why
an agent cannot use the minimax rule while respecting this condition.
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As it turns out, the sole survivor of a seemingly reasonable set of condi-
tions is none other than the principle of insufficient reason. Yet earlier we argued
against that rule! One way out of this situation is to attack the conditions that
have pushed this principle to the forefront. For instance, we could object to the
irrelevant expansion condition on the grounds that the addition of a new act—
even one that would not be chosen— could lead a rational agent to reevaluate a
decision. To take an illustration well known to decision theorists, suppose you
sat down in an apparently seedy restaurant and were offered a choice between
hamburger and roast duck. Ordinarily you prefer roast duck but you fear that
this cook will ruin it. So you silently opt for the hamburger. Then the waiter
returns to tells you that today you can also have frog legs sautéed in wine. The
thought revolts you, but the new choice informs you that the cook has skill; so
you change your mind and order the duck.

Alas, there are counterarguments to this counterargument. For example,
somebody could argue that the addition of the new act has caused such a radical
change in the decision situation that the old acts are no longer options. For the old
acts were order hamburger at a seedy place, order roast duck at the same seedy
place. But the new acts do not include these since you no longer think of the restau-
rant as seedy. Hence the restaurant example fails to call the condition into question.

The debate could go back and forth over the conditions in this fashion with
results no more conclusive than our previous discussions of the rules them-
selves. The situation is likely to remain this way, I think, until we have amassed
a rich backlog of studies of genuine real-life examples of good decision making
under ignorance. My hope is that these would help us sharpen our judgments
concerning the various rules. I would also conjecture that we will ultimately con-
clude that no rule is always the rational one to use but rather that different rules
are appropriate to different situations. If this is so, it would be more profitable
to seek conditions delimiting the applicability of the various rules rather than to
seck ones that will declare in favor of a single rule.

PROBLEMS

1. With respect to table 2-32, show that A;, A>, and A4; are indifferent only if
the agent’s optimism index is 1/2.

2. Also with respect to table 2-32, show that A; and A, are both picked if
the index is greater than 1/2 and that As is picked when the index is less
than 1/2.

3. Show that the maximin rules are excluded by the condition that a rational
agent always excludes dominated acts.

4. If you had to choose one rule for making all decisions under ignorance for
the rest of your life, which would you choose? Why?

2-7. An Application in Social Philosophy: Rawls vs. Harsanyi

One of the most interesting and important recent debates in social philosophy
is that between John Rawls, a moral philosopher, and John Harsanyi, a decision
theorist with strong philosophical interests. Although the stated issue of their de-
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bate concerns conflicting conceptions of the just society, crucial points in their
reasoning turn on the choice of a rule for making decisions under ignorance.
Rawls argues for the maximin rule and principles of social justice that protect
the interests of those at the bottom of the social ladder; Harsanyi champions the
principle of insufficient reason and principles of justice that tend to promote the
average level of well-being in a society.

Rawls calls his principle of justice the difference principle. For our pur-
poses, we can take it as declaring one society better than another if the worst-off
members of the former do better than the worst-off in the latter. (I have greatly
simplified both the difference principle and Rawls’s view. The same warning ap-
plies to my exposition of Harsanyi’s view.) According to Rawls, contemporary
North American society, for all its ills, is superior to medieval European soci-
ety, because the destitute in North America today fare better than did their medi-
eval European counterparts.

Harsanyi counters Rawls by claiming that we should not focus on the
worst-off in societies when determining which is more just but instead should
compare societies in terms of the average amount of utility realized in them. His
position is a form of utilitarianism, a view that originated with Jeremy Bentham
and John Stuart Mill. If we assume that we can measure utility in purely mone-
tary terms—and that is a big assumption—then certain oil-rich Middle Eastern
societies will count as more just than contemporary England, since the average
wealth in the oil-rich nations is greater than that in England. (Of course, using
the difference principle the ranking might be just the opposite.)

Even if we do not measure happiness in terms of wealth, it is clear that,
in theory at least, the difference principle and utilitarianism can lead to differ-
ent rankings. To see how, let us imagine two societies. The first consists of
1,000 people, with 100 being workers and the rest free to engage in any pleasure
they wish. We can easily imagine the workers being able to produce enough
goods and services to take care of the needs of the entire society. Let us also
think of the workers as quite poor and unhappy and the nonworkers as flourish-
ing and happy. To be more specific, using a 0 to 100 utility scale, let us suppose
that the workers each receive 1 unit of utility while the others get 90 units each.
Then the average utility is 81.1. Next let us imagine a society technologically
quite similar to the first, but let us suppose that under some reasonable rota-
tional scheme, everyone takes a fair turn at being a worker. This now causes
everyone to realize the same utility of, let us say, 35 units. Thus utilitarianism
would count the first society as more just, but the difference principle would fa-
vor the second.

(One way to get a feel for this example is to think of the first society as
a resort community and the second as a rural commune. Which do you think is
more just? If you might end up having any role in the society you happen to be-
long to, but do not know which role, to which society would you rather belong?)

Now it might be that the difference principle and utilitarianism will never
conflict in practice, despite the theoretical conflicts we can casily derive from
them. One reason is that it is very difficult to determine whether a given social
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policy really promotes average utility or the interests of the worst-off, and thus
it is difficult to determine whether the policy accords with either utilitarianism
or the difference principle.

Whether or not utilitarianism and the difference principle conflict in prac-
tice is not crucial to our present concern. What is important is the differing argu-
ments Rawls and Harsanyi use to support their views. Both start from common
ground: Principles of social justice must pass a special test of fairness. The test
is that they be principles that rational, self-interested agents would choose when
behind a “veil of ignorance.” This veil of ignorance would prevent them from
knowing who they are, their social status, their ancestry, or their talents. In
short, behind the veil of ignorance individuals know neither their place in society
nor their ability to change it. For all they know, they can be movie stars, beloved
politicians, uneducated dishwashers, or inmates of a Nazi concentration camp.
Their society might be a modern democratic welfare state or a despotism.

To test a proposed principle of social justice, Harsanyi and Rawls tell us
to ask ourselves this question: Would rational agents, placed behind the veil of
ignorance and given a list of proposed principles of justice from which to
choose, pick this principle? (The list will include not only the candidate but also
both the difference principle and the principle of maximizing average utility
[utilitarianism]. Agents are to think of themselves as choosing the principle that
will regulate whichever society they happen to find themselves in when the veil
is lifted.) Rawls and Harsanyi believe that principles chosen under these circum-
stances should count as just and fair, since they are ones that would be chosen
by rational self-interested agents under conditions of choice in which everyone
is treated fairly and impartially. They also agree that the decision in question
is made under ignorance.

But here their agreement ends. Harsanyi claims that all rational individuals
placed behind the veil of ignorance will use the principle of insufficient reason
as their decision rule. Although an agent will not know which person she will
be in a given society or to which society she will belong, she can be expected
to know (or so Harsanyi claims) the amount of utility she would receive if she
were a given person in a given position in a given society. It would simply be
the amount of utility that person enjoys. Furthermore, using the principle of
insufficient reason, an agent will infer that she has an equal chance of being any
given person in a given society. She will thereby conclude that the utility of be-
longing to a given society is the same as the utility of a gamble or lottery in
which she has an equal chance of being any given person in that society. But
that utility is simply the average of the utilities available in that society. Given
all this, the principle of insufficient reason will enjoin an agent to pick a society
for which the average utility is maximal. It follows from all this that when Har-
sanyi’s rational agents ask themselves, What sort of society would I want to be
in when the veil is lifted? they will answer, One in which the principle of max-
imizing expected utility holds sway. Thus Harsanyi’s rational agents will be
utilitarians.

Not so for Rawls. He claims that the proper principle for rational agents
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to use behind the veil of ignorance is the maximin rule. Given this, rational
agents will compare societies by looking at the positions of the worst-off persons
in them —because occupying one of these positions is the minimum of the out-
comes they can expect. And they will favor one society over another if the
worst-off in the former do better than in the latter. That means that rational
agents will rank societies in accordance with the difference principle, and thus
will choose that principle when placed behind the veil of ignorance.

Rawls also presents an interesting case for the use of the maximin rule be-
hind the veil of ignorance. He points out that since we have no reason for choos-
ing one probability assignment over another, there are no grounds for the
equiprobable assignment implicit in the principle of insufficient reason. This
does not lead us directly to the maximin rule, but Rawls believes that the particu-
lar decision at hand mandates its use. First, the consequences of making a bad
choice are extremely serious. One could end up being the only serf in a society
of nobles. Second, we do not need great amounts of wealth or power to lead
happy lives. Realizing this, rational individuals will hardly regret missing a
chance to be rich or powerful. This excludes the considerations that support the
minimax regret rule. Finally, Harsanyi’s approach requires agents behind the
veil of ignorance to rank the lives of members of various socicties on a common
interval utility scale. As we will see in chapter 6 (section 6-4c), there are reasons
to doubt that such interpersonal comparisons of utility are possible. By contrast,
Rawls’s proposal requires only that agents behind the veil be able to generate
an ordinal ranking of the worst-off individuals in the various societies.

This argument for the maximin rule on the grounds of its appropriateness
and lack of presuppositions will not favor the maximin approach to all decisions
under ignorance. However, it suggests a way for resolving our problem of hav-
ing too many rules: When making a decision under ignorance, we should look
for circumstances connected with the decision at hand that favor some rules and
exclude others.

The debate over the difference principle and utilitarianism is far from set-
tled, as is the debate about the correct rule for making decisions under igno-
rance. For the time being let us take notice of how one debate has advanced the
other. Rawls and Harsanyi have borrowed from decision theory to argue for po-
sitions in social philosophy. Yet their debate has helped us better understand
some of the issues in decision theory. For Rawls has pinpointed the conditions
under which the best case can be made for the maximin rule and has sharpened
some of the objections to the principle of insufficient reason.

PROBLEMS

1. Setup in schematic form a decision table for picking societies behind the veil
of ignorance.

2. Explain in detail how in the Rawls-Harsanyi framework rational agents be-
hind the veil of ignorance can replace the choice of principles to regulate
their socicty by the choice of societies to which to belong.

3. Do you think there are circumstances under which utilitarianism could sup-
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port oppression? Are there circumstances under which the difference princi-

ple could support it?
4. In my discussion of Rawls’s case for the maximin rule, I failed to rule out

the optimism-pessimism rule. Can Rawls exclude it? How?

2-8. References

My treatment of decisions under ignorance draws heavily from Luce and Raiffa.
Levi presents an approach to partial ignorance. For the Rawls-Harsanyi dispute
see both Rawls and Harsanyi.
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Chapter 3

DECISIONS UNDER RISK:
PROBABILITY

[T rnrnnnnn

3-1. Maximizing Expected Values

When Michael Smith applied to Peoples Insurance Company for a life insurance
policy in the amount of $25,000 at a premium of $100 for one year, he was re-
quired to fill out a lengthy health and occupation questionnaire and submit to an
examination by a physician. According to the results, Smith fell into the cate-
gory of persons with a 5% death rate for the coming year. This enabled Peoples
to assign a probability of .05 to Smith’s dying within the year, and thus the deci-
sion whether or not to insure him became one under risk.

I will represent this decision problem by means of decision table 3-1. No-
tice that I have put both outcome values and probabilities in the same square.

3-1 Smith Dies Smith Lives

Insure —$25,000 $100

Smith .05 .95
$0 $0

Do Not 05 95

Let us leave the Peoples example for a moment and turn to Sally Harding’s
decision. She needs a car and has a choice of buying an old heap for $400 or
a four-year-old car for $3,000. Harding plans to leave the country at the end of
the year, so either car need serve her for only the year. That is why she is con-
sidering the old heap. On the other hand, if either car breaks down before the
end of the year, she intends to rent one at an estimated cost of $200. Harding
would pay cash for the older car and junk it at the end of the year. If, on the
other hand, she buys the newer car, she will finance it and sell it when she
leaves. She believes that her net cost for the newer car would come to $500.
Being an experienced mechanic, Harding estimates that the chances of the
old heap surviving the year are 5 in 10 and that the newer car’s chances are 9
in 10.

Harding’s decision is again one under risk and can be represented by table
3-2.
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32 No Need to Rent Must Rent
—$500 —$700

Buy New .90 10
—$400 — $600

Buy Old .50 .50

You might be tempted to solve Harding’s problem by appealing to the
dominance principle, for buying the old heap costs less no matter what happens.
But remember, the chances of Harding having to rent a car are a function of
which car she buys. Buying the older car increases her chances of having to rent
by a factor of 5. This is exactly the sort of case where the dominance principle
should not be applied.

In Harding’s decision problem, the probabilities of the states vary with the
acts. Writing different probability numbers in different rows reflects this. In the
insurance problem the acts do not affect the probabilities of the states; hence,
the probabilities of the states conditional on the acts collapse to absolute proba-
bilities. That is why the same probability numbers are written in each row.

Peoples Insurance Company came to a decision quite easily. They decided
they could not afford to insure Smith—at least not at a $100 premium. They rea-
soned that if they were to insure a hundred people like Smith, five would die.
That would cost the company $125,000 in death benefits and would be counter-
balanced by only $10,000. So the net loss would be $115,000. Peoples con-
cluded that, whether they insured a hundred, a thousand, or a million people
similar to Smith, their losses would average close to $1,150 per person. On the
other hand, they would neither gain nor lose by not insuring Smith and others
like him.

Peoples proceeded as insurance companies are wont to do. They calculated
the expected monetary value (EMV) of each option and chose the one with the
highest EMV. You can calculate the EMV for an act from a decision table quite
easily: Multiply the monetary value in each square by the probability number
in that square and sum across the row. Do this for Sally Harding’s decision. You
will see that the EMV of buying the newer car is — $520 and the EMV of buying
the older one is — $500.

Should Sally Harding buy the older car? On the average, that would save
her the most money. But what about the pleasures of riding in a newer car? And
what of the worry that the older one will break down? These relevant factors
have been neglected. But perhaps these could be assigned a monetary value and
the decision could be made on the basis of a revised set of EMVs. There remains
another problem. Sally Harding will buy a car only once this year, and to the
best of our knowledge, no one clsc has been confronted with a very similar deci-
sion. So how can we speak of what happens “on the average” herc? This is a
onc-shot deal so there is nothing to average out. And even if there were, Sally
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Harding should be concerned with what happens to her, not to the average per-
son like her.

We can deal with these problems by replacing monetary values with utility
values and showing that maximizing expected utility does not suffer from the
drawbacks of maximizing EMVs. Utility is thus one of the chief ingredients of
the theory of decisions under risk. But before we can attend to it we must achieve
a better understanding of the other major ingredient, namely, probability.

3-2. Probability Theory

Probability judgments are now a commonplace of our daily life. Every time we
turn on the radio or pick up a newspaper we are apt to encounter a weather, eco-
nomic, or political forecast framed in probabilistic terms. Probability is also es-
sential to theoretical science since it is the backbone of certain areas of physics,
genetics, and the social sciences. Despite its pervasiveness in our culture, there
is still much debate among philosophers, statisticians, and scientists concerning
what probability statements mean and how they may be justified or applied.
Some believe, for instance, that it is not proper to assign probabilities to single
events, and hence that probability judgments inform us only of proportions.
They claim that, strictly speaking, we should not say that the chances are 1 in
10 that Jackson will die within the year; rather, we should say that in a large
group of people like Jackson, 10% will die. Others believe that single events or
statements can be assigned probabilities by simply refining our best hunches.
Some believe that probability is a measure of the strength of beliefs or lack
thereof; others think it is a property of reality.

There is, however, a common focal point for the study of probability —the
probability calculus. This is a mathematical theory that enables us to calculate
additional probabilities from those we already know. For instance, if I know that
the probability that it will rain tomorrow is 50% and that there is a 10% proba-
bility that the price of gold will drop tomorrow, the calculus allows me to con-
clude that the probability that both will occur tomorrow is 5%. The beauty of
the probability calculus is that it can be used with almost all the interpretations
of probability that have been proposed. Furthermore, much of the superstructure
of the theory of decision under risk depends on the probability calculus. Let us
then turn to this calculus before we plunge into the more philosophical questions
about probability.

There are a number of alternative presentations of the probability calculus.
I will use a formulation in which probabilities are assigned to simple and com-
pound statement forms, since this will enable many philosophical readers to
draw on their training in symbolic logic.

The basic formulas of the calculus will take the form

P(S)=a.

Here S represents a statement form, such as “p or ¢,” “p & g,” or “p & (g or
r),” and a represents a numeral. The entire expression “P(S) = a” should be read
as: “the probability of S is a.” Some examples are
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Pp)=1/2, P(p or q) =2/3, P(not g or r)=.9.

In applications the letters will be replaced with sentences or sentence abbrevia-
tions. Thus we can have:

P(the coin comes up heads) = 1/2
P(heart or diamond) = 1/2
P(ace and spade) = 1/52.

These statements are all absolute probability statements.
We will also need conditional probability statements, which we will write
as

P(S/W)=a

and read as “the probability of S given W = a.” Because it is essential to appreci-
ate the difference between conditional and absolute probability statements, let us
reflect on an example. The probability of drawing a heart at random from a fair
deck is 1/4, but if all the black cards were removed and only red cards remained,
the probability in question would be the probability of drawing a heart given that
the card to be drawn is red. That would be 1/2. We express the first probability
judgment as an absolute probability statement

P(heart) = 1/4,
but the second should be formulated as the conditional probability
P(heart/red) = 1/2.

Now one might think that the conditional probability of a heart given a red card
is just the absolute probability of the conditional “If the card is red, then it is
a heart.” But that will not work, given our current methods for treating condi-
tionals in logic and mathematics. For the conditional in question is equivalent
to “either the card is not red or it is a heart,” and

P(not red or heart) =3/4

since thirty-nine out of fifty-two cards are either not red or hearts.

Another important point: P(S/W) and P(W/S) are generally distinct. Thus
P(heart/red) = 1/2 but P(red/heart) = 1, since every heart is red.

Conditional and absolute probability are related, however, through a num-
ber of laws of probability. This is one of the most important of those laws: P(p
& q) =P(p) X P(q/p). It says that the probability of a conjunction is the proba-
bility of the first component times the probability of the second given the first.
The idea here is that it is less probable that two things will be true together than
that either one will be true separately. Since probabilities are less than or equal
to 1, multiplying them will produce a number smaller than or equal to either.
But in general we cannot simply multiply the probabilities of the two conjuncts,
since their truth and falsity might be linked. There is, for instance, no chance
for a coin to come up both heads and tails, yet the simple product of the probabil-
ities that it does is 1/4. On the other hand, multiplying by the conditional proba-
bility of the second component given the first avoids this difficulty:

48



DECISIONS UNDER RISK: PROBABILITY

Pfheads and tails (on the same toss)] =0 = P(heads) X P(tails/heads)
=1/2x0.

Example. What is the probability of drawing two aces in a row from an
ordinary deck of fifty-two cards when the first card is not put back into the deck?
This is the probability of drawing an ace on the first draw and then again on the
second draw. So we must calculate as follows:

P(ace on draw 1 and ace on draw 2) = P(ace on draw 1) X
P(ace on draw 2/ace on draw 1) =4/52 x 3/51 =3/663.

The first probability is simply the ratio of the aces to the total number of cards
in the deck. The second is figured by noting that if an ace is drawn on the first
draw and not replaced, three aces out of a total of fifty-one cards remain.

This example illustrates another important concept of probability theory.
Because the first card is not put back into the deck, the outcome of the first draw
affects the outcome of the second draw: There are fifty-one cards to draw after
the first draw, and one less ace if the first card drawn was an ace. On the other
hand, if the first card drawn is replaced and the deck reshuffled, the outcome
of the first draw has no effect on the outcome of the second draw. In this case,
we say that the outcomes are independent. When we replace and reshuffle the
cards

P(ace on draw 2) = P(ace on draw 2/ace on draw 1).
This leads to the following definition.
Definition 1. p is independent of q if and only if P(p) =P(p/q).

Another important concept we will need is that of mutual exclusiveness.
If a single card is drawn, then drawing an ace and simultaneously drawing a king
are mutually exclusive. But drawing an ace and drawing a spade are not; one
can draw the ace of spades. Generalizing we have:

Definition 2. p and g are mutually exclusive if and only if it is impossible
for both to be true.

If p and g are mutually exclusive, if one is true the other must be false.
So if p and g are mutually exclusive, P(p/q) and P(q/p) are 0. Consequently,
if p and g are mutually exclusive, p and g will not be independent of each
other—unless each already has a probability of 0.

With these definitions in hand we can now lay down the basic laws or ax-
ioms of the probability calculus. All the other laws of the calculus can be derived
from these using purely logical and mathematical reasoning.

A (logically or mathematically) impossible statement has no probability of
being true; so 0 is a natural lower bound for probabilities. On the other hand,
the probability of a certainty being true is 100%; so 1 is a natural upper bound
for probabilities. Statements that are neither impossible nor certain have proba-
bilities between 0 and 1. These considerations motivate the first two axioms of
the calculus.
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axioMm 1. a. 0<P(p) < 1.
b.0<P(p/g) <.
axiom 2. If p is certain, then P(p)=1.

What is the probability of drawing a face card or an ace? Four cards out

of fifty-two are aces and twelve are face cards. So the probability of drawing
an ace or a face card is 16/52 or 5/13. This example illustrates the next axiom.

axiom 3. If p and ¢ are mutually exclusive, then

P(p or q)=P(p) +P(q).
We can immediately apply these axioms to derive this law.
THEOREM 1. P(p) + P(not p)=1.

PROOF. “p” and “not p” are mutually exclusive, and their disjunction is cer-
tain. Thus by axioms 2 and 3 we have:
1=P(p or not p) = P(p) + P(not p).

Theorem 1 yields a rule for calculating negated statements. If we already
know P(p), we can find P(not p) by subtracting P(p) from 1.

Example. What is the probability of taking more than one roll of a fair die
to get a 67 Since taking more than one roll to get a 6 is the same as not getting
a 6 on the first roll, P(not 6) is the probability we want. But it must equal 5/6,
since P(6)=1/6.

We can also generalize the proof of theorem 1 to establish that the proba-
bilities of any set of mutually exclusive and exhaustive alternatives sum to 1.
(Alternatives are exhaustive if and only if it is certain that at least one of them
is true.) This is important for decision theory, since it tells us that the probabili-
ties in each row of a properly specified decision table must total 1.

Two equivalent statements must both be true together or both be false to-
gether. Thus there is no chance for the one to be true when the other is not. This
leads to the following theorem.

THEOREM 2. If p and g are equivalent, then P(p) = P(q).

PROOF. Suppose that p and ¢ are equivalent. Then one is true just in case
the other is. But then (a) “either not p or ¢” is certain and (b) ¢ and not
p are mutually exclusive. From (a) and axiom 2, we conclude that

Pmot por g)=1.

From (b) and axiom 3, we get
P(not p or q) = P(not p)+ P(q).

Putting this together with an application of theorem 1 yields
1=1-Pp)+Plg)

from which P(p)=P(q) follows immediately by algebra.

This theorem lets us draw on mathematics and logic to show that certain
statements or statement forms arc equiprobable. (In applying this and axioms 2
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and 3 to examples outside mathematics and logic, we may also use those equiva-
lences, certainties, and impossibilities that are part of the background assump-
tions of the application. For example, we may ordinarily assume that it is certain
that a coin will land either heads or tails, though one tossed onto a sand pile need
not.) The next theorem appeals to logical equivalences.

THEOREM 3. P(p or q) =P(p) + P(g) — P(p & q).

PROOF. “p or ¢” is logically equivalent to “either p & g or p & not g or else
not p & ¢q”; so their probabilities must be equal. But the first two disjuncts
are mutually exclusive with the third. Thus by substituting in axiom 3, we
obtain

(1) P(either p & q or p & not g or else not p & g) = P(either p & q or
p & not g) + P(not p & q).

a9,

But “either p & g or p & not ¢” is equivalent to “p”; so if we apply theorem
2 and substitute in equation (1) we get:

(2) P(either p & g or p & not g or else not p & g) = P(p) + P(not p & g).

But, remember, the left side of equation (1) equals P(p or g); so we may
get

@3) P(por g)=P(p)+Pmot p & q).
Adding P(p & q) to both sides of equation (3) we get
4 Pporg)+Plp & q)=P(@p)+Pmot p & q)+P{p & q).

Noting that “not p & g or else p & q” is equivalent to “¢” and that its dis-
juncts are mutually exclusive, we may apply axioms 3 and 4 to equation
(4) to obtain:

) P(p or q)+Pp & q)=P(p) +P(q).

The theorem then follows by subtracting P(p & ¢) from both sides of this
equation.

Theorem 3 and axiom 3 can both be used to calculate the probabilities of
disjunctions from the probabilities of their components. Axiom 3 is simpler to
use, but it does not always apply, whereas there is no restriction on theorem 3.
(Note that theorem 3 has axiom 3 as a special case; for when p and ¢ are mutu-
ally exclusive P(p & ) =0.) The more complicated appearance of theorem 3
is to prevent double counting when calculating probabilities of disjunctions
whose components do not exclude each other. For example, the probability of
a heart or a king is not 1/4 + 1/13 because the king of hearts would be counted
twice; rather the probability is 1/4 + 1/13 — 1/52 where the double count has
been subtracted. Notice that this follows the model of theorem 3.

Example. What is the probability of getting exactly two heads on three
tosses of a fair coin? The two heads might occur in any one of three mutually
exclusive ways: HHT, HTH, and THH. Each of these has a probability of 1/8
since each is one of the eight possibilities. Thus the answer is 3/8.
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Example. What is the probability of geiting a heart or an ace on at least
one of two draws from a deck of cards, where the card drawn is replaced and
the deck reshuffled after the first draw? The probability of getting a heart or an
ace on the first draw is 13/52 +4/52 — 1/52 or 4/13. But the probabilities are
the same for the second draw. Furthermore, the question allows for the possibil-
ity that a heart or an ace is drawn both times; so the probability in question is
8/13.

We still lack methods for calculating the probability of conjunctions. This
is remedied by the next axiom, which we discussed in connection with condi-
tional probability.

axiom 4. P(p & q)=P(p) X P(q/p).
If P(p) #0, we can divide both sides of axiom 4 by it, obraining the formula
of the next theorem.

THEOREM 4. If P(p) + 0, then
Plglp)=Pp & q)/IP(p).
(In many presentations theorem 4 is taken as the definition of conditional proba-
bility.)
According to definition 1, if g is independent of p, P(g) = F{g/p). Thus,
by axiom 4, we have:

THEOREM 3. If ¢ is independent of p, then
P(p & q)=P(p) X P(q).
Theorem 5 and axiom 4 let us calculate the probabilities of conjunctions in terms
of their components. This is illustrated in the next example.

Example. What is the probability of getting twenty heads on twenty tosses
of a fair coin? This is the probability of getting heads on the first toss and on
the second toss and . . . and on the twentieth toss. But each toss is independent
of the others, so the probability of getting twenty heads 1s the probability of get-
ting one head multiplied by itself nineteen more times, i.e., (1/2)*.

The next theorem shows that independence is almost always mutual.

THEOREM 6. p is independent of ¢ if and only if ¢ is independent of p,
provided that P(p) and P(g) are both nonzero.

PROOF. Suppose that both P(p) and P(g) are not zero. Suppose that p is
independent of q. Then P(p)=P(p/q). Then, by theorem 4,

P(q/p)=P(q & p)/P(p) =[P(q) X P(p/q)1/P(p)
=[P(q) X P(p)V/P(p) = P(q).
That means that g is independent of p. By interchanging “g” and “p” in this proof

we can show that p is independent of ¢ if g is independent of p.
The next theorem relates independence and murual exciusiveness.

THEOREM 7. If p and g are muzually exciusive and both P(p) and £(g) are
nonzero, then p and g are not independent.
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PrOOF. If p and g are mutually exclusive, then the negation of their con-
junction is certain; so by theorem 1 and axiom 2, we have P(p & q)=0.
On the other hand, if either p or g is independent of the other, then

Pp & q)=0=P(p) X P(q),

which implies that one of P(p) or P(g) is 0. That would contradict the
hypothesis of the theorem.

Notice that the converse of theorem 7 does not hold: Independent state-
ments need not be mutually exclusive. Getting heads on the second toss of a coin is
independent of getting heads on the first toss, but they do not exclude each other.

The next pair of theorems, known as the inverse probability law and
Bayes’s Theorem, respectively, have been of fundamental importance in deci-
sion theory, statistics, and the philosophy of science.

THEOREM 8 (the inverse probability law). If P(g) # 0, then
P(plq) = [P(p) X P(q/p))/P(q).
PROOF. Since “p & ¢” and “g & p” are equivalent, theorem 2 and axiom
4 yield
P(q) X P(p/q) = P(p) X P(q/p),
and the theorem follows by dividing by P(q).
THEOREM 9 (Bayes’s theorem). If P(g) # 0, then

P(p) X P(q/p)
[P(p) X P(q/p)] + [P(not p) X P(g/not p)]
PROOF. By theorem 8 we have

P(p) X P(q/p) .

P(q)
But “g” is equivalent to “either p & g or not p & q.” The probability of this dis-
junction is equal, by axioms 3 and 4, to the denominator of the theorem. Thus
the theorem follows from equation (1) and theorem 2.

To give these theorems some meaning, let us consider the situation of a
physician who has just observed a spot on an X ray of some patient’s lung. Let
us assume that the physician knows the probability of observing such spots given
that the patient has tuberculosis and that she also knows the incidence of TB and
the incidence of lung spots. Letting “S” stand for “the patient has a lung spot,”
the known probabilities are P(S), P(TB), and P(S/TB). By applying the inverse
probability law our physician can calculate the probability that the patient has
TB given that he has a lung spot. This is

P(TB/S) =[P(TB) X P(S/TB)}/P(S).

Having observed the lung spot, it would be legitimate for our physician to take
P(TB/S) as the probability that the patient has TB and to base her decisions on it.

Pplq)=

(1) P(plg) =
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The probability assigned to TB before the spot was observed —P(7B)—is
called the prior probability of TB. The conditional probability, P(7B/S), the
physician uses after observing the spot is called the posterior probability of TB.
(The physician also uses a prior probability for lung spots, but does not obtain
a posterior probability for them in this example.) Posterior probabilities can also
be used as new priors in further applications of the inverse probability law. For
example, if the physician now tests her patient with a TB skin test and obtains
a positive reading, she can apply the formula again using the posterior probabil-
ity for TB as her new prior.

It is likely that a physician will know or can easily find out the probability
of observing lung spots given that a patient has TB, and it is likely that she can
find the probability of a patient’s having TB, since there are much medical data
concerning these matters. But it is less likely that a physician will have access
to data concerning the probability of observing lung spots per se. Then the in-
verse probability law will not apply, but Bayes’s theorem might. For suppose
the physician knows that the patient has TB or lung cancer but not both. Then
lung cancer (LC) can play the role of not TB in Bayes’s Theorem and we obtain:

P(TB/S) = [P(TIB) X P(S/TB)]
[P(TB) X P(S/TB)] + [P(LC) x P(S/LC)]
Example. Suppose that on any given day the probability of rain (R) is .25,
that of clouds (C) is .4, and that of clouds given rain is 1. You observe a cloudy

sky. Now what are the chances of rain? Using the inverse probability law we
obtain:

P(RIC)=[P(R) X P(C/R)|/P(C) =[1/4 x 1)/(4/10) = 5/8.

PROBLEMS

1. Assume a card is drawn at random from an ordinary fifty-two card deck.
a. What is the probability of drawing an ace?
b. The ace of hearts?
c. The ace of hearts or the king of hearts?
d. An ace or a heart?
2. A card is drawn and not replaced, then another card is drawn.
a. What is the probability of the ace of hearts on the first draw and the king
of hearts on the second?
b. What is the probability of two aces?
c. What is the probability of no ace on either draw?
d. What is the probability of at least one ace and at least one heart for the
two draws?
3. Pp)=1/2, P(g)=1/2, P(p & q)=1/4. Are p and g mutually exclusive?
What is P(p or q)?
4. A die is loaded so that the probability of rolling a 2 is twice that of a 1, that
of a 3 three times that of a 1, that of a 4 four times that of a 1, etc. What
is the probability of rolling an odd number?
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5. Prove that if “p” implies “g” and P(p) # 0, then P(q/p) = 1. (Hint: “p” im-
plies “g” just in case “p” is equivalent to “p & gq.”)

6. Prove that P(p & q) < P(p).

Suppose that P(p) = 1/4, P(q/p) =1, P(g/not p)=1/5. Find P(p/q).

8. There is a room filled with urns of two types. Type I urns contain six blue
balls and four red balls; urns of type II contain nine red balls and one blue
ball. There are 800 type I urns and 200 type II urns in the room. They are
distributed randomly and look alike. An urn is selected from the room and

a ball drawn from it.

~

a. What is the (prior) probability of the urn’s being type I?

b. What is the probability that the ball drawn is red?

c. What is the probability that the ball drawn is blue?

d. If a blue ball is drawn, what is the (posterior) probability that the urn is

of type 1?
e. What is it if a red ball is drawn?
9. Suppose you could be certain that the urn in the last example is of type II.
Explain why seeing a blue ball drawn from the urn would not produce a
lower posterior probability for the urn being of type II.

3-2a. Bayes’s Theorem without Priors

Suppose you are traveling in a somewhat magical land where some of the coins
are biased to land tails 75% of the time. You find a coin and you and a friend
try to determine whether the coin is biased. There is a certain test using magnets
that will tell whether the coin is biased, but you do not have any magnets. So
you flip the coin ten times. Each time the coin lands tails up. Can you conclude
that the coin is more likely to be biased than not?

It would seem natural to try to apply Bayes’s theorem (or the inverse prob-
ability law) here. But what is the prior probability that the coin is biased? Of
course, if you knew that, say, 70% of the coins in this land are biased and that
your coin was “randomly” selected, it would be reasonable for you to use .7 as
your prior. However, as far as the story goes, you know no such thing.

Some statisticians and decision theorists claim that in a situation such as
this you should take your best hunch as the prior probability and use it to apply
Bayes’s theorem. These people are known as Bayesians. This is not only because
they desire to use Bayes’s theorem (when other statisticians believe it should not
be applied), but also because they have constructed an argument in support of
their position that is itself based on Bayes’s theorem.

In brief, their argument is this. Suppose you (or a group of individuals)
come to a situation in which you use your best hunch (or hunches) to estimate
the prior probability that some statement p is true. Next suppose you are exposed
to a large amount of data bearing on the truth of p and you use Bayes’s theorem
or the inverse probability law to generate posterior probabilities for the truth of
p, taking the posterior probabilities so yielded as their new priors, and repeat
this process each time you receive new data. Then as you are exposed to more
and more data your probability estimates will come closer and closer to the “ob-
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jective” or statistically based probability —if there is one. Furthermore, if several
individuals are involved, their several (and possibly quite different) personal
probability estimates will converge to each other. The claim is that, in effect,
large amounts of data bearing on the truth of p can “wash out” poor initial proba-
bility estimates.

I have put this argument in an overbold and imprecise form. Unfortu-
nately, a careful formulation would require more mathematics than is appropri-
ate for this book. Perhaps we can illustrate the phenomenon with which the argu-
ment is concerned by returning to our example. Recall that you have flipped the
coin ten times and each time it has come up tails. These data favor the biased
coin, since it is biased to produce tails on three tosses out of four. Now suppose
that before you decided to toss the coin you assigned a probability of .01 to its
being biased (B) and a probability of .99 to its being not biased (not B). Each
toss of the coin is independent of the others, so the probabilities of ten tails in
a row conditional on either coin are:

P(10 tails/B) = (3/4)*°
P(10 tails/not B) = (1/2)'°.

Now instead of calculating P(B/10 tails) and P(not B/10 tails), let us calculate
the ratio of the latter to the former. Using the inverse probability law we obtain:

P(B/10 tails) _ [P(B) X P(10 tails/B)]/P(10 tails)
P(not B/10 tails) [P(not B) X P(10 tails/not B)]/P(10 tails)
___ P(B)X P10 tails/B)

P(not B) X P(10 tails/not B)
= (.01 X (3/4)1%9/(.99 x (1/2)1%)
= (1/99)(3/2)'°.

This is approximately 57.7, which means that the probability you assigned to
the coin’s being biased has gone from ninety-nine times smaller than that of its
being unbiased to almost fifty-eight times larger. If you had flipped it a hundred
times and had gotten a hundred tails, the probability of its being biased would
be over 3,000 times larger than its being not biased.

Of course, we have looked at one of the simplest and most favorable cases.
More complicated mathematics is required to analyze the cases in which some
proportion of the tosses are heads while the balance are tails. It is not hard to
show, for example, that if 1/4 of the tosses turned out to be heads, that you
would assign a higher probability to the coin’s being biased, and that the proba-
bility would increase as the number of tosses did.

PROBLEMS

1. Calculate the posterior probability that the coin is biased given that you flip
the coin ten times and observe eight tails followed by two heads.
[P(B)— .01.]

2. Calculate the posterior probability that the coin is biased given that you flip
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it ten times and observe any combination of eight tails and two heads.
[P(B)=.01.]

3. Suppose you assigned a probability of 0 to the coin’s being biased. Show
that, noc matter how many tails in a row yon observed, neither Bayes’s the-
orem nor the inverse probability law would lead to a nonzero posterior prob-
ability for the coin’s being biased.

3-2b. Bayes’s Theorem and the Value of Additional Information

Another important application of Bayes’s theorem and the inverse probability
law in decision theory is their use to determine the value of additional informa-
tion. It is a commonplace that having more facts on which to base a decision
can make a radical difference to our choices. But how can we determine how
much those facts are worth? The basic idea for a decision theoretic answer is
this. In decisions under risk the choices we make are a function of the values
we assign to outcomes and the probabilities we assign to states. As we obtain
more information we often revise our probability assignments and, conse-
quently, the choices made on that basis. Additional information may save us
from serious mistakes, or it may leave our decisions unchanged. Often, by using
Bayes’s theorem or the inverse probability law, we can calculate how our proba-
bilities and decisions would change if we had an additional piece of information
and how much our expectations would be raised. The latter may be used to deter-
mine upper bounds on the value of that information. There are many applications
of this technigue ranging from evaluating diagnostic tests in medicine to design-
ing surveys for business and politics to the evaluation of scientific research pro-
grams. The following example is a simple illustration of the method used.
Clark is deciding whether to invest $50,000 in the Daltex Oil Company.
The company is a small one owned by some acquaintances of his, and Clark has
heard a rumor that Daltex will sell shares of stock publicly within the year. If
that happens he will double his money; otherwise he will earn only the unattrac-
tive return of 5% for the year and would be better off taking his other choice—
buying a 10% savings certificate. He believes there is about an even chance that
Daltex will go public. This has led him to decision table 3-3. Clark makes his

33 Daltex Goes Public Does Not

Invest $100,000 $52,500
in
Daltex .5 5

Buy a $55,000 $55,000
Savings
Certificate .5 .5

decisions on the basis of expected monetary values; so he has tentatively decided
to invest in Daltex since that has an EMV of $76,250. Suppose he could pay
some comipletely reliable person to tell him now whether Daltex will go public.
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As things now stand, he is looking at an EMV of $76,250. But if he learned that
Daltex was certain to go public, his EMV would increase to $100,000, whereas
if he learned that it was certain not to go public, he would buy the savings certifi-
cate and decrease his EMV to $55,000. As of now, he believes that he has an
even chance of learning either piece of information. Thus his expectations prior
to paying the completely reliable person for the truth about Daltex are
$100,000(.5) + $55,000(.5) or $77,500. This is an increase of $1,250 over his
current expectation of $76,250. Learning the truth about Daltex in order to re-
vise his decision is thus not worth more to him than $1,250.

So far we have not used Bayes’s theorem or the inverse probability law,
so let us change the example. Now let us suppose that Clark knows Daltex is
preparing a confidential annual report and he also knows that if they are going
public there is a chance of .9 that they will say so in the report and only a .1
chance that they will deny it. On the other hand, if they are not going public
there is a chance of .5 that they will say that they are not and .5 chance that they
will lie and say they are.

Clark knows someone in Daltex who will show him a copy of the report—
for a price. So he decides to use Bayes’s theorem to calculate the probabilities
that Daltex will (will not) go public given that they say (deny) that they will in
the report. Where P stands for their going public, Y stands for their saying they
will, and D stands for their denying it, he obtains

P(P)XP(Y/P)
P(P)XP(Y/P)+ P(not P) X P(Y/not P)

X9 =.64 +.
SX.9+.5%.5
Similarly, P(not P/Y)= .35+, P(P/N) = .16 +; P(not P/N)= .83 +. Clark
then considers two revised decision tables—one based on the probabilities he
would use after reading an affirmation of going public, the other based on those
he would use after reading a denial. He finds that on either version the EMV
of investing in Daltex would still be higher than that of buying the savings certi-
ficate. So he decides not to offer the bribe.

By changing the example appropriately we can arrange for Clark to dis-
cover that reading a denial in the report would change his original decision. He
would then proceed as in the first version of the example to calculate the gains
he can expect under the two scenarios and average these to find the maximum
price he should pay to see the report.

As the example illustrates, applications of this method can become quite
complicated. When nonmonetary values are involved, as happens in medicine
or science, it may also be necessary to enlist some advanced ideas in utility the-
ory. So I will not discuss the topic of the value of additional information further
in this book.

P(PIY)=
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PROBLEMS

1. Suppose P(Y/P)=.01, P(N/P)=.99, P(¥Y/ not P)=.5, and P(N/ not

P)=.5. How much should Clark be willing to pay to see the report?

2. A closet contains 800 type I urns and 200 type two urns. Urns of both types
appear identical but type I urns contain six blue balls and four red ones; type

IT urns contain one blue ball and nine red ones. An urn is drawn at random

from the closet and you must bet on the type of the urn. If you bet on type

I and it is one, you win $20, otherwise you lose $10. If you bet on type II

and it is one, you win $80, otherwise you lose $10. Assume that you max-

imize expected monetary values.

a. Set up a decision table for the choice between the two bets and calculate
the EMVs of the two bets. Which one would you choose?

b. Prior to making your choice, what is the maximum amount you should
pay to learn the type of the urn?

c. Assume that a blue ball has been drawn from the urn. Appropriately re-
vise your table and calculate the new EMVs. Which bet would you
choose now?

d. Assume that the ball drawn is red and and then follow the rest of the in-
structions for c.

e. Prior to seeing the ball and making your choice, what is the maximum
amount that you should pay to see it?

3-2¢. Statistical Decision Theory and Decisions under Ignorance

Several of the rules for making decisions under ignorance were originally devel-
oped by statisticians for handling statistical problems in which some of the data
necessary for applying Bayes’s theorem are unavailable. I will illustrate their
thinking with a typical problem in applied statistics—the predicament faced by
a drug company that needs to test a new batch of pills prior to marketing them.
Let us suppose that we own such a company and our laboratory staff has just
manufactured a new batch of pills. Their usual practice is to test new lots by feed-
ing some of the pills to a hundred rats and observing how many die. From their
previous experience with this and similar drugs, they have developed good esti-
mates of the percentage of rats that will die if the batch is defective. Unfortunate-
ly, due to an irregularity in making this particular batch, our staff has no idea
of the probability of its being defective. Suppose the test is run and five rats die.
Since the rats in our laboratory die from time to time from various other causes,
the staff cannot be certain that the pills are defective. Can they use the test results
to calculate the probability of the batch’s being defective? They could use Bayes’s
theorem if they could assign a probability to the batch’s being defective prior to
running the test. But that is exactly the probability they cannot assign.

Bayesian statisticians would urge our staff to try to use their best hunches
as the prior probability that the batch is defective. And they could even offer
some methods for refining and checking these hunches.
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Many statisticians dissent from this recommendation and urge that the
problem be treated as one under ignorance. But it is not as simple as a two-
act/two-state choice of marketing or not marketing the pills against the possibili-
ties of the batch’s being fine or being defective for that would not respond to the
test results. They have proposed that prior to running the test we should choose
between various strategies for responding to the test results. For instance, we
might adopt the strategy of marketing the pills no matter how many rats die or
marketing them if no more than two die or not marketing them at all. Then after
the test is run we market or withhold the pills according to the prescriptions of
the strategy we have selected. This allows the test results to influence our actions
without depending on guesses as to the prior probability that the batch is
defective.

But how do we choose a strategy? We presumably know the value of mar-
keting defective (or good) pills and the value of withholding them. Also we can
use the probabilities that various percentages of the rats die given that the batch
is defective (or fine) to calculate the various expected values of our strategies
under the assumption that the batch is defective, and we can make similar cal-
culations under the assumption that it is fine. Using this we can form decision
table 3-4. Finally, we can apply one of the rules for making decisions under ig-
norance to this table.

34 Batch Defective Batch Fine
Strategy 1 x y
Strategy 2 z w
Strategy n u v

Now this certainly does not settle the philosophical and methodological is-
sues raised by the absence of prior probabilities. For we must once again face
the question of the proper rule to use for making our decision under ignorance.
We will not pursue that question further here, although we will examine more
closely the Bayesian case for the use of subjective priors.

PROBLEMS

1. Suppose you formulate strategies as depending on whether fewer than ten
rats die or whether ten or more die. This yields four strategies. Two are:
(1) market if fewer than ten die; market if ten or more die; (2) market if
fewer than ten die; withhold if ten or more die. List the remaining two.

2. Suppose that the probability that ten or more rats die given that the batch is
defective is .5 and that it is .01 given that the batch is fine. Construct two
tables —one assuming that the batch is defective, the other that it is fine—that
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will tabulate your probabilities of marketing and withholding the pills under
each strategy. (For example, in the row for strategy 2 of the first table there
is a probability of .5 that you will market and one of .5 that you will with-
hold.) These tables give your action probabilities.

3. Now assume that your value for marketing a defective batch is — 1,000, for
marketing a fine one is 100, for withholding a defective one is 0, and for
withholding a fine one is — 100. Use these values and your action proba-
bilities to calculate the expected values for each strategy under the assump-
tion that the batch is defective. Do the same under the assumption that it
is fine. (For example, the first value for the second strategy is — 500 or
[.51[ — 1000] + [.5][0].) This should enable you to complete table 3-5. If

3-5 Batch Defective Batch Fine
Strategy 1

Strategy 2 — 500

Strategy 3

Strategy 4

you use the maximin rule, which strategy do you choose? Do you think this
is the only reasonable choice to make in this situation?

3-3. Interpretations of Probability

There are many contending views concerning what probability statements mean,
when and how they may be applied, and how their truth may be ascertained. I
will not pretend to resolve the complicated and heated debate that surrounds the
various views on probability. Here I will only review several of the major views
and discuss some of the objections that have been raised against them.

I will classify the interpretations of probability as objective or subjective.
The objective interpretations see probability as measuring something indepen-
dent of human judgments, and constant from person to person. The subjective
views regard probability as the measure of an individual’s belief or confidence
in a statement and permit it to vary from person to person. Objective views are
further classified as logical or empirical, according to whether they count proba-
bility as a property defined in terms of logical or mathematical structures or as
an empirically defined property. To illustrate these distinctions, suppose I assert
the statement:

The probability that 2/3 of the next 100 tosses of this coin will land head
up is .75.

Subjective views will construe this as meaning that I am reasonably confident
that 2/3 of the tosses will result in heads. Logical views will see it as reflecting
a logical or mathematical analysis of the various possible tosses and (perhaps)
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my evidence concerning them. Finally, the empirical views will see my claim
as about the behavior of the coin and as testable in terms of it.

Until quite recently probability theorists maintained that a satisfactory in-
terpretation of probability must satisfy the probability calculus. The views I will
discuss do, and I will show this by verifying that each interpretation satisfies the
axioms of the calculus. Since the theorems of the calculus follow logically from
the axioms, any interpretation that makes the latter true must verify the former
as well.

3-3a. The Classical View

The classical interpretation of probability, also known as the Laplacean view af-
ter one of its founders, is the oldest and simplest view of probability. It is an
objective and logical view, which is best applied to games of chance and other
clearly specified situations that can be divided into a number of equally likely
cases. We have used it implicitly in illustrating the probability calculus, since
most of our examples have concerned random card drawings, tosses of fair
coins, and rolls of unloaded dice, where one can reasonably assume that each
card has an equal chance of being drawn and that each face of the coin or die
has an equal chance of landing up.

To state the view in its general form, let us think of each statement as hav-
ing a finite set of possibilities associated with it. For example, the statement “The
coin will land heads in at least one of the next two tosses” is associated with the
four possible outcomes of tossing the coin twice (HH, HT, TH, TT). Some of
the possibilities associated with a statement verify it, others falsify it. Thus the
possibility of getting two heads (HH) verifies the statement about the coin, while
the possibility of getting two tails (77") falsifies it. Given a statement p and the
possibilities associated with it, let us call those that verify it the p-cases. Then
the classical view may be put as the claim that the probability of p is the ratio
of the number of p-cases to the total number of cases or possibilities:

P(p) = #(p-cases)/#(total possibilities).

We must interpret conditional probability too, since it figures in the axioms of
the calculus. Ordinarily, P(q/p) is the number of p-cases that are also g-cases.
However, when there are no p-cases, it is zero. This leads to:

P(gq/p)=#(p & g-cases)/#(p-cases) if #(p-cases) >0,
=0 if #(p-cases) =0.

To see that this works, consider the probability that the card you have drawn
is an ace given that it is a heart. This is just the ratio of the number of aces of
hearts to the number of hearts, that is 1/13.

Before discussing the philosophical objections to the classical view let us
verify that it does satisfy the probability calculus. That comes to showing that
each axiom of the calculus becomes true when interpreted by construing “P(p)”
and “P(q/p)” as previously defined. This is easy to see in the case of axiom 1.
For the number of possibilities associated with a statement is never negative and
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the number of p-cases (p & g-cases) never exceeds the total number of cases (the
number of p-cases). Thus P(p) [P(q/p)] must be a number between O and 1 in-
clusively.

Axiom 2 is easily verified too. A certainty is true no matter what; thus the
cases in which it is true must be identical with all the cases associated with it
and the ratio of the number of the one to that of the other must be 1.

Turning now to axiom 3, we must remember that in the probability calcu-
lus “p or q¢” is construed as meaning that either p is true, g is true, or both p
and q are true. The probability of “p or g” is then the ratio of the number of
(p or q)-cases to the total number. If p and g are mutually exclusive (as the con-
dition on axiom 3 states), the (p or g)-cases are simply the cases in which either
p or g (but not the other) is true. Thus we have:

P(p or g) =#[(p or q)-cases]/#(total cases)

= #(p-cases)/#(total cases) + #(g-cases)/#(total cases)
=P(p)+P(q),
which verifies axiom 3.

This leaves axiom 4. To verify it let us distinguish two cases: those p for

which there are no p-cases and those for which there are some. In the first case,

both P(p) and P(q/p) are 0. Furthermore, since every p & g-case is a p-case,
P(p & q) is 0 too. Thus

P(p & q)=0=P(p) X P(qlp),
which verifies axiom 4 for this case.
In the second case,
P(q/p)=#(p & g-cases)/#(p-cases),
but we also have
P(p & q)=#(p & g-cases)/#(total cases)
P(p) = #(p-cases)/#(total cases).
Whence we obtain
P(p) X P(q/p) = #(p-cases)/#(total cases) X #(p & g-cases)/#(p-cases)
= #(p & g-cases)/#(total cases)
=P(p & q).
This establishes that axiom 4 holds for both of the cases we distinguished and

completes the demonstration that the classical interpretation satisfies the proba-
bility calculus.

PROBLEMS

1. Use the technique of this section to show directly that theorem 1 holds under
the classical interpretation.
2. Do the same for theorem 2.

Now let us turn to the objections to this approach. Some can be overcome
by enlisting the technical machinery of modern logic and mathematics, but

63



DECISIONS UNDER RISK: PROBABILITY

others remain obstacles to the acceptance of even up-dated versions of the classi-
cal view.

Taking up a relatively technical problem first, the present version assumes
that a definite finite set of possibilities is associated with each statement. That
seems a simple enough matter when we are talking about tossing coins, spinning
roulette wheels, or drawing cards. But what happens when we are talking about
the probability of another world war, being successful in a career or marriage,
or even of a drought? What are the relevant possibilities here? And how do we
combine the possibilities needed for compound statements? How do we relate
the probability that you will have a good career and the probability that you will
have a happy marriage to the probability that you will have both? The classical
view has no ready answers to these questions.

The situation is worse: The classical view even has problems with the sim-
ple questions which it was designed to handle. For example, how do we compute
the probability of getting two heads in two tosses of the same fair coin? One
computation could run as follows: There are four cases: HH, HT, TH, and 17,
only one is verifying, so the probability is 1/4. But there is another computation:
There are three cases: HH, HT, and TT; thus the probability is 1/3. Of course,
we all know that the first computation is the right one, because it is based on
the relevant set of possibilities. But the classical view does not tell us that. (By
the way, the possibilities in the second set are mutually exclusive and exhaus-
tive, so we cannot fault it on those grounds.)

In recent years logicians have partially solved the problem of specifying
sets of relevant possibilities. They have used precise, limited, and technical lan-
guages for formulating those statements to which probabilities are to be assigned
and then have defined the associated sets of possibilities in terms of statements
within such languages. For example, to describe the tosses of a coin we can in-
troduce a language with two individual constants, “2” and “b” —one to designate
the side that comes up on the first toss, the other to designate the one that comes
up on the second toss —and one predicate “H” for heads. (Tails can be expressed
as “not H.”) Then the relevant set of possibilities for two tosses of the coin can
be specified as those statements of the language that affirm or deny that the coin
comes up heads on either toss. These yield the four possibilities: Ha, Hb; Ha,
not Hb; not Ha, Hb; not Ha, not Hb.

This method is clearly limited by our ability to construct artificial lan-
guages and specify possibilities within them. We would feel that limitation
acutely were we to try to use the classical approach to assign probabilities to
statements involving an indefinite or infinite number of cases. Try, for instance,
to assign a probability to the statement that there will be an atomic holocaust
sometime. It is not inconceivable, however, that technical developments in logic
will solve such problems eventually.

There is another objection that technical developments cannot avert. The
classical approach and its modern descendants depend on the assumption that
each of the possibilities associated with a statement is equally likely. This is
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used, for example, in assigning a probability of 1/2 to getting heads on a toss
of a fair coin, since the calculation assumes that we should give equal weight
to getting heads and to getting tails. But how do we know that each case is
equally likely? And what does “equally likely” mean in this context? We cannot
appeal to the classical view and say “ ‘equally likely’ means that they have the
same probability” without involving ourselves in a circle.

Two courses are open to the classical view. The first consists in invok-
ing some other conception of probability to explain and justify the assumption
that each case is equally likely. Thus one might state that the claim that getting
heads is just as likely as getting tails means that in a long series of tosses of
the coin, the proportion of heads will be approximately the same as the propor-
tion of tails. Somebody who took this position might then continue by adding
that the classical view is, strictly speaking, an idealization of a more properly
experimental approach to probability. Since ratios determined experimentally
are often “messy,” the classical approach is to be used as a shortcut approxi-
MACH.

Some adherents of the classical view have offered a second response. They
have claimed that the assignment of the same weight to each possibility is simply
an assumption that is so fundamental that further attempts to justify it are fruit-
less. Some have even gone so far as to claim that this assumption—which they
have dubbed the principle of insufficient reason—is self-evident. I hope that the
relationship of this principle to the homonymous rule for decisions under igno-
rance is clear. I find the principle no more compelling in the context of probabil-
ity theory than I found its relative in the earlier context.

3-3b. The Relative Frequency View

One trouble with the classical view is that it is devoid of empirical content. Be-
cause its probabilitics are ultimately ratios involving abstract possibilities, a
classically interpreted probability statement has no implications concerning ac-
tual events and can be neither confirmed nor refuted by them. The relative fre-
quency view is an objective and empirical view that was developed in response
to this need; it defines probability in terms of actual events.

To state this view with some precision we must assign probabilities to ei-
ther classes, kinds, or properties of events rather than to statements. Further-
more, we must view all probabilities as implicitly conditional. This entails modi-
fying our presentation of the probability calculus by replacing statements of the
respective forms

P(S)=a and P(S/W)=D>
with ones of the forms

Pr(S)=a and Pr(S/W) =0,
and reading these as

the probability that an R is an S equals a;
the probability that an R is an S given that it is a W equals b.
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With this modification probability statements no longer make assertions about
statements but instead make assertions about classes, properties, or kinds of
events. For example, instead of saying the probability assigned to the statement
that this coin will land heads on the next toss is 1/2, the frequentist says the prob-
ability that a toss of this coin (an event) is one in which it lands heads (another
event) is 1/2. This variation on our original approach to the probability calculus
is not sufficient to count for or against the frequency approach.

Relative frequentists hold that probabilities are proportions or relative fre-
quencies of events of one kind to those of others. Their interpretation of proba-
bility is thus

Pr(P)=a means the proportion of Rs that are Ps is a,
i.e., #(P & Rs)/#(Rs)=a.

The interpretation of conditional probability is just

Pr(Q/P)=#(P & Q & Rs)/#(P & Rs).
=0 if nothing is both a P and an R.

To illustrate this conception of probability consider the statements:

1. The probability that an airplane flying from New York to London
crashes is 1/1,000,000

2. The probability that an airplane flying from New York to London
crashes given that it has engine failure is 1/10.

The first predicts that if we were to inspect the record of flights from New York
to London we would find that only one in a million crashes, while the second
predicts that if we were to keep a record of those flights from New York to Lon-
don that also experienced engine failures, we would find that the crash rate in-
creased to 1 in 10. Plainly, this approach to probability is very different from
the classical approach.

Verifying that the relative frequency interpretation satisfies the axioms of
the probability calculus follows the model set earlier for the classical view. The
relative frequency interpretation of Pr(P) is concerned with the proportion of
events of kind P among those of kind R; it is thus a ratio between O and 1 inclu-
sively. Since the same is easily shown for Pr(Q/P) as well, the interpretation
satisfies axiom 1. Turning to axiom 2, if every R is certain to be a P, then the
ratio of Ps to Rs is 1 and Pr(P)=1.

To verify axiom 3 we must show that

Pr(P or Q)= Pr(P)+Pr(Q)

when no event can be both a P and a Q. But this just means showing that the
proportion of Ps among the Rs plus the proportion of Os among the Rs is just
the proportion of the (P or O)s among the Rs. And that must certainly be the
case when no R can be both P and Q.

The verification of axiom 4 parallels the verification of the classical in-
terpretation of that axiom. I leave it as an exercise.
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PROBLEMS

1. Verify axiom 4.
2. Do the same for theorem 2.

Given the way in which it has been specified, the relative frequency view
is bound to have problems with indefinite and infinite totalities. Even determin-
ing the frequency of heads in the tosses of the dime on my desk presents difficul-
ties, for no one can currently specify its total number of tosses. However,
mathematical improvements on the relative frequency view can handle cases like
this one and give them empirical content. Very roughly, we toss the coin again
and again and after each toss note the proportion of heads among the tosses to
that point. If these ratios appear to be tending to a limit point, then that limit
is identified with the probability of getting heads on a given toss of the coin. We
might call this “the long-run frequency” approach to probability.

Either frequency approach has the obvious advantage over the classical
view of not being circular. Nor does the frequency approach require dubious as-
sumptions, such as the principle of insufficient reason, and it extends to the in-
definite/infinite case with greater ease than does the classical approach. On the
other hand, the relative frequency approach has a less firm grip on “true” proba-
bilities than the classical approach. To see what I mean, consider the question
again of the frequency of heads in tosses of the dime on my desk. A theorem
of the probability calculus entails that if the probability of heads is 1/2, the fre-
quencies of these tosses will converge to 1/2 in the long run. However, another
theorem entails that ultimate convergence to 1/2 is compatible with any initial
finite sequence of tosses consisting entirely of heads. Now suppose my dime
were tossed 10,000 times and it came up heads 90% of the time. Most relative
frequentists would be willing to stop the tossing, proclaim that the coin is most
probably biased and that the true probability of heads is close to 9/10. But it
could turn out that after the first 10,000 tosses heads start to appear so often that
the long-run frequency is 1/2. On the frequency view, 1/2 would be the true
probability, although the initial observations belied it. Putting the point more
generally, there is simply no guarantee that the frequencies observed to date are
even close to the long-run frequency.

The classical view does not face this problem because it cuts itself off from
observation. But that does not seem to be much of an advantage either; for if
my dime did turn up heads on every one of 10,000 tosses, even fans of the classi-
cal view would be hard pressed to justify taking 1/2 as the probability of getting
heads. (But they would not be without any defense. They could recheck their
analyses and stand fast, since on any view of probability such a run of heads
on tosses of a fair coin is possible though not very probable.)

Since the frequency view specifies probabilities in terms of proportions,
it cannot make scnsc of assigning probabilitics to singlc cvents or statements.
Thus if you ask a frequentist what is the probability that you will pass your final
exam in English, he will respond that he can only speak to you of the percentage
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of students in the course that will pass, or of the percentage of those tests you
take that you pass, or of the percentage of those like you in certain relevant
respects who will pass, and so on. But he will refuse to assign a probability to
the single case of your passing.

Several of these problems can be averted while retaining an empirical ac-
count of probability by turning to the propensity interpretations of probability.
One version of this view construes probabilities as the frequencies predicted by
the relevant theoretical laws. Since predicted frequencies may differ from those
actually observed, this account is not thrown by my dime coming up heads on
the first 10,000 tosses. Of course, that happening with most dimes would
strongly signal something wrong with any theory that predicts a frequency of
1/2, and we would take steps to revise it. The propensity view responds to obser-
vation without following it slavishly.

The so-called single-case propensity interpretation even countenances as-
signing probabilities to single events. Consider my dime again. By taking advan-
tage of its symmetry and the laws of physics one should be able to design a de-
vice for tossing it that would favor neither heads nor tails. Such a device would,
we might say, have a propensity of 1/2 to yield heads on its tosses. More impor-
tant, however, it would have a propensity of 1/2 to yield a head on any particu-
lar toss. By identifying probabilities with such single-case propensities we could
make sense of assigning probabilities to single events.

Unfortunately, there are limits to the applicability of the propensity ap-
proach too. Often we do not know enough to discern propensities. Physicians,
for instance, know that heart disease is much more frequent among heavy
smokers, but currently they have no way of knowing whether any individual
heavy smoker has a higher propensity for developing heart disease than some
other one does. Also it does not always make sense to speak of propensities
where we can significantly speak of probabilities. Thus wondering about the
probability of the truth of the theory of relativity seems to make sense, but won-
dering about its propensity to be true does not.

3-3c. Subjective Views

The logical approach to probability fails in situations where we lack the analytic
resources it presupposes. The frequency approach breaks down on single-case
probabilities, whereas the propensity approach fails to cover cases where
propensities are not known or do not make sense. The subjective approach to
probability is an attempt to develop a notion of probability that meets all these
challenges. Subjective probabilities are personal assessments. Since we can have
and often do have our own estimates of the probability that something is true
even when that thing is a single case or when we lack any theory or logical analy-
sis concerning it, the subjective approach bypasses the impediments to the previ-
ous views.

Offhand, however, it would seem that a subjective view of probability
would immediately encounter insurmountable difficulties. How can personal as-
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sessments be subjected to critical evaluation? How can they produce a concept
of probability of use to scientists and decision makers? How can they be
measured —at all—or with enough accuracy to furnish appropriate numerical in-
puts for the probability calculus? In the last sixty years logicians, mathemati-
cians, and statisticians have made remarkable progress toward dealing with
these questions.

The connection between belief, desire, and action is well known to psy-
chologists and philosophers. There are boundless illustrations. If you believe
your water supply has been poisoned, you will resist attempts to make you drink
from it even though you may be quite thirsty. If you cross a street, we can
reasonably infer that you want to get to the other side and believe it is safe to
cross. Frank Ramsey was the first theorist to use these connections to construct
a subjective theory of probability. Ramsey realized that our degrees of belief (or
confidence) in statements are connected with certain of our actions—the bets we
make. If, for example, you believe a certain horse is very likely to win a race,
you are likely to accept a bet at less than even money. The more likely you think
the horse is to win, the less favorable odds you will accept. Now if we identify
your personal probabilities with the odds you are willing to accept, by asking
you about the various odds you would accept, we may be able to measure your
personal probabilities. Ramsey managed to parlay this into a full case for subjec-
tive probabilities.

We are used to betting on the outcome of events, such as races, football
games, or elections. But there is no reason in principle why we cannot bet on
the truth of statements too. For instance, instead of betting on Fancy Dancer to
win in the third race, I can bet that the statement Fancy Dancer wins the third
race is true. If [ am willing to set odds on enough statements and do so in a cer-
tain way, it can be shown that my odds constitute probability assignments to
those statements and obey the probability calculus. [ will present Bruno DeFinet-
ti’s proof of this rather than Ramsey’s, since the latter’s is intertwined with his
treatment of utility.

DeFinetti’s reasoning deals with an agent in a situation in which he must
place a series of bets on a certain set of initial statements as well as all negations,
conjunctions, disjunctions, and conditional bets that can be formed using these
statements. Let us suppose, for example, that you are the agent in question and
the initial statements are

Jones will win the match.
Smith will win the match.
The crowd will be large.

Then you will be expected to bet not only on those three statements but also on
the statements

Jones will not win the match.
Smith will win the match or Jones will win the match.
Jones will win the match and the crowd will not be large.
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In addition you will be expected to take conditional bets such as

Jones will win given that the crowd is large,
Jones will not win given that the crowd is large and Smith does not win,

and so on, for all of the infinitely many bets that are constructible from the ini-
tial set.

For future reference, let us call the set of statements on which the agent
is expected to bet the DeFinetti closure of the initial set of statements. Given a
set of statements A the DeFinetti closure of A, DC(A), may be formally defined
as follows:

1. Every statement in A4 is also in DC(A).

2. If the statements S and W are in DC(A), so are the statements not S,
(S or W) and (§ & W).

3. If S and W are in DC(A), so is the phrase S given W.

4. Nothing is in DC(A) unless its being so follows from 1-3.

With the DeFinetti closure behind us let us return to the agent, you. You
are expected to place bets on every statement in the DeFinetti closure of your
initial set with a “bookic.” But herc the situation changes dramatically from the
usual betting situation. For you must post the odds on all the statements and con-
ditional bets in the DeFinetti closure, and that is all you are permitted to do.
Once you set the odds, the bookie determines all the other features of the bet,
including the amount at stake on the various bets and who bets for or against
a given statement.

The situation with respect to a particular bet on a single statement p can
be summarized by means of table 3-6. The entries under the statement p are

36 p Payoff for p  Payoff against p
T (1-a)s —(1-a)s
F —a$ a$

simply the truth values, true and false; the other entries tell how much you (or
the bookie) win or lose for the various outcomes. Thus if you are betting for
p and p is false, you “win” — a§ and the bookie wins aS. Notice that the entries
in a row under “for” and “against” are the negatives of each other, so that the
person “for” always wins (or loses) an amount equal to that lost (or won) by the
person “against.” S is the stake for the bets, which is always some positive
amount of money, aS and (1 —a)S are portions of the stake, and a is a number,
called the betting quotient for p, the ratio of a to 1 — a constitutes the odds you
set for the statement p. (Notc that aS+ (1 — a)S = S.) When you set the odds for
the statement p at @ to 1 —a, you must be prepared to lose a portion a of the
stake S if p turns out to be false. The higher you set the betting quotient a, the
greater portion of the stake you risk losing; so, presuming you are rational and
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prudent, you will not set high odds for a statement unless you are quite confident
it is true.

The only feature of table 3-6 you control is the odds a to 1 — a. The bookie
not only fixes the amount S at stake but also decides who is to be for p and who
is to be against p. (However, he cannot bet for p and also against p, nor can
he force you to do so.) To complicate matters, remember that you must post
odds for many statements and take many other bets at the terms the bookie sets.

Before considering the rest of DeFinetti’s argument, let us use an example
to relate our concepts to conventional betting odds. Suppose the Golden Circle
Race Track posts odds of 99 to 1 on Fancy Dancer to win. This means that if
the horse wins, the track will pay us $100 for every $1 “to win” ticket for that
horse that we have purchased. The total stake for a $1 ticket is $100. We risk
1/100 of it, the track risks 99/100 of it. In our terms the track’s betting quotient
is 99/100, and the odds are 99/100 to 1/100. More generally, suppose that in
a conventional betting situation someone offers odds of a to b on a given out-
come. Then they are willing to risk losing a portion a/(a + b) of a stake in case
the outcome fails to obtain so long as we are willing to risk losing the portion
b/(a+ b) in case the outcome does obtain. In our terms the odds are a/(a + b)
to b/(a +b) and the betting quotient is a/(a +b).

Returning to DeFinetti’s work, suppose you were in the kind of situation
with which DeFinetti is concerned. Then a clever bookie might be able to ar-
range the bets so that he was bound to have a net gain no matter what happened.
For instance, suppose you posted odds of 9/10 to 1/10 on a statement p and odds
of 1/2 to 1/2 on its negation not p. Although the bookie cannot force you to bet
for p and also against p, he can force you to bet for p and for not p. Suppose
that he does and fixes the stake at $1. Then if p is true, he loses $.10 on his bet
against p and wins $.50 on his bet against not p. That is a net gain of $.40.
(Check and you will see that you will have a net loss of $.40.) On the other hand,
if p is false, the bookie wins $.90 on his bet against p and loses $.50 on his bet
against not p —again a net gain of $.40. The bookie has made a Dutch Book
against you. You could have prevented this by posting odds of 1/10 to 9/10 on
not p or odds of 1/2 to 1/2 on p, or any other combination of odds under which
your betting quotients for p and not p summed to 1. In short, so long as your
betting quotients for p and not p sum to 1, you have protected yourself against
this type of Dutch Book. DeFinetti generalized this to prove the following:

DUTCH BOOK THEOREM. Suppose that no Dutch Book can be made against
an agent using the odds he posts on the DeFinetti closure of set of state-
ments. Then his betting quotients for the DeFinetti closure in question
satisfy the probability calculus.

This means that the agent’s betting quotients form a satisfactory interpretation
of the probability calculus.
To establish the Dutch Book theorem, we will set

P(p)=the agent’s (your) betting quotient for p=a
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and verify that P(p) (i.e., a) satisfies the axioms of the probability calculus
provided that no Dutch Book can be made against you.

Turning to axiom la, we must show that if no Dutch Book can be made
against you,

O<a<l.

We will use an indirect proof to do this, however. We will first assume that
a < 0 and show how to make a Dutch Book against you, and then assume that
a > 1 and again show how to make a Dutch Book against you. This will be our
general strategy: In each case, we will show that if your betting quotients violate
one of the axioms of the probability calculus, a Dutch Book can be made against
you.

Suppose then that a < 0. Then —a >0, (1 —a) > 1, and both are positive.
Now reconsider table 3-6 for the bets involving p. Since both the payoffs —a$
and (1 —a)S are positive, the bookie can guarantee himself a net gain by betting
for p at any positive stake S. (For simplicity, we will assume that the stake is
1.) Whether p is true or false, his payoffs are positive. Yours are negative, since
you must bet against p.

On the other hand, if a > 1, then 1 —a < 0 and both — (1 —a) and a are
positive. So the bookie can make a Dutch Book against you by betting against
p. His payoffs, being in the column under “Payoff against p,” are bound to be
positive.

Let us deal with axiom 2 next. Let us suppose that p is certain and
show that if your betting quotient for p is less than 1, a Dutch Book can be
made against you. (We have already established that it cannot be greater than
1.)

Since p is certain, we know that the bottom row of table 3-6 will never
apply. So we need only consider table 3-7. If a < 1, then (1 —a) is positive;

37 p Payoff for p  Payoff against p

T (1—-a) - (1 —a)

clearly the bookie can make a Dutch Book against you by betting for p.

Stepping up in difficulty, let us turn to axiom 3. Here we are concerned
with the probabilities of p, g, and their disjunction “p or g.” Let a be your betting
quotient for p, b the one for g and c that for “p or ¢.” We must now use the
next betting table (table 3-8) with three bets—one for each betting quotient. The
payofts under p and g are determined by referring to the columns under “p” and
“g” to determine whether they are true or false, and then applying our original
table (3-6) for a single statement. The payoffs under “p or ¢ are determined in
the same way, but since it is true in the first threc rows, its payoffs are the same
in those rows. I have set the stakes at 1 throughout table 3-8.
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3-8 4 q porgq

p q For Against For Against For Against

T T 1-a —-(-a) 1-b —(1=b) l-c —(-c¢)

T F 1l—a —(1—a) —-b b 1—c¢ —-(1-0)
F T —a a 1-5b -(1-b) 1-c —(1—20¢)
F F —-a a —-b b —~C c

Axiom 3 states that if p and g are mutually exclusive, P(p or q) =P(p)
+ P(q). Thus we must show that if p and ¢ are mutually exclusive and
¢ # a + b, a Dutch Book can be made against you. Let us assume then that p and
g are mutually exclusive. This means that the first row of betting table 3-8 never
applies and can be ignored. Also assume that ¢ #a+ b. Then either c<a +b
or ¢ > a +b. I will show how to construct a Dutch Book against you for the first
case and leave the second case to you.

Since c<a+b, (a+b)—c is positive. If the bookie bets against p and
against g but for “p or ¢” his total payoffs for the last three rows of the table all
equal (a + b) — c¢. (In the second row he is paid — (1 —a), b, 1 — c; these sum to

—1+a+b+1—c=(a+b)—c.

Check the other rows.) Thus by betting as indicated, the bookie can guarantee
himself a positive net gain no matter what the truth values of p and g turn out to be.

Before we can handle axioms 1b and 4, we must interpret P(p/q) in terms
of betting quotients. This involves the use of conditional bets, such as a bet you
might make that a horse will win given that the track is dry. The bet is off if the
track is not dry and nobody wins or loses. Similarly, we will construe a bet on
“g given p” as on only when p is true, and then as won according to whether g
is true or false. Using odds of a to 1 — a for the conditional bet “g given p,” this
leads to table 3-9—(we use payoffs of 0 to handle cases in which the bet is off).

39 p g For “q given p” Against “q given p”
T T l—a —(1—a)
T F —a a
F T 0 0
F F 0 0
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It is easy to see that if a < 0, the bookie can make a Dutch Book against
you by betting for “q given p.” It is also easy to show that he can make a Dutch
Book against you if a > 1. Thus we know that axiom 1b must hold if we interpret
“P(q/p)” as your betting quotient for “g given p.”

Axiom 4 states that P(p & q) = P(p) X P(q/p). To establish it, assume
your betting quotient for “p & ¢” is ¢, that for p is a, and that for “g given p”
is b. Here is the relevant betting table (3-10). (There are zeros under “g given
p” because it is a conditional bet.)

3-10
p q given p p&gq
P q For Against For Against For Against
T T 1-a —(1—a) 1-b —(1-b) 1—c —(1—c¢)
T F 1-—a —(1—a) -b b —-c c
F T —a a 0 0 —c c
F F —a a 0 0 —c c

We want to prove that if ¢ # ab, a Dutch Book can be made against you.
But no payoff is the product of any of the other payoffs, so our previous strategy
for making Dutch Books does not seem applicable. But remember that the
bookie is free to choose the stake for each bet. Until now we have let this equal
1 for the sake of simplicity. But now let us have the bookie set the stake at b
for the bets on p. That changes the payoffs under p to

(1—a)b —(1—a)b

(1 —-a)b -1 —-a)
—ab ab
—ab ab.

Now suppose ¢ # ab. Then as before ¢ < ab or ¢ >ab. Suppose that the first
case holds. Then ab — ¢ is positive. So if the bookie bets against p, against “g
given p,” and for “p & ¢,” he will be paid ab — ¢ no matter what. (Check this.)
This means that he can make a Dutch Book against you. The case where ¢ > ab
is handled similarly and is left to you as an exercise.

PROBLEMS
1. Return to the Dutch Book argument for axiom 3 and complete the case for
¢ >a+b that I left as an exercise.
2. Construct Dutch Book arguments to show that 0 <a <1, where a is your
betting quotient for “g given p.”
3. Carry out the check I asked you to make in the argument for axiom 4.
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4. Complete the argument for axiom 4 for the case when ¢ > ab.

5. Give a Dutch Book argument to establish directly each of the following:
a. If p is impossible, P(p) =0.
b. P(p)+P(ot p)=1.
c. If p logically implies ¢, P(p) < P(q).

3-3d. Coherence and Conditionalization

DeFinetti called an agent’s betting quotients coherent in case no Dutch Book can
be made against him. We can summarize DeFinetti’s theorem as showing that
if an agent’s subjective probabilities (betting quotients) are coherent, they obey
the probability calculus. Now coherence is a very plausible condition of (ideal-
ized) rationality, since few of us think that it would make sense to place our-
selves in a position where we were bound to suffer a net loss on our bets. If we
accept coherence as a condition of rationality, DeFinetti’s conclusion can be
paraphrased as the laws of probability are necessary conditions for rationality.

Since DeFinetti first proved his theorem others have proved that having
subjective probabilities that obey the probability calculus is also sufficient for co-
herence. In other words, if an agent picks his betting quotients so as to satisfy
the laws of probability, no Dutch Book can be made against him. This is called
the converse Dutch Book theorem. 1 will leave it as additional reading for those
of you who are studying to be bookies. (Note: We proved that if the agent did
not pick his betting quotients thus, a Dutch Book can be made against him.)

Rational people modify their degrees of belief (subjective probabilities) in
the light of new data. Whereas it would be reasonable for me to be quite con-
fident that my spanking new car will not break down before I get it home, 1
would be much less confident about this if someone told me my new car was
actually a “lemon” that had just been returned to the dealer. In view of this we
might ask whether there are any rules for modifying subjective probabilities in
the light of new data. One very popular proposal is that we use the following
rule of conditionalization: Suppose that D is the conjunction of the statements
describing the new data. Then for each statement p, take Py (p) =Po(p/D). In
other words, let the new probabilities be the old probabilities conditional on the
data. Notice that since P(D/D) = 1, this rule has the effect of assigning the prob-
ability of 1 to the data.

If we replace “P(p)” with “P(p/D)” and “P(gq/p)” with “P(q/p & D)” in
every axiom of the probability calculus, the formulas we obtain will be laws of
probability too. This means that if we use the rule of conditionalization to
modify our subjective probabilities, the new ones will obey the laws of probabil-
ity too, and thus by the converse Dutch Book theorem will be coherent. A reason
favoring using conditionalization to change our probabilities, then, is that it
guarantees the coherence of our new probabilities.

There is also a Dutch Book argument supporting conditionalization, but
it depends on our willingness to bridge our old and new probabilities with bets.
To see how it runs, suppose you have revised the probability of D to 1, that of
p to a, and that your old P(p/D) was b. Now if a # b, and if the bookie knows
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this in advance, he can make a Dutch Book against you. Here is how. Before
the truth of D is known, he places two bets that are not to take effect until D
is verified: one for p—if a < b—or against p—if a > b; the other placed oppo-
sitely on “p given D.” He sets the stakes at $1. Then after D is verified, his
payoffs on each bet will be determined according to whether p is true. Thus he
will win one bet and lose the other, but because of his choices and your bad odds
he will have a net gain. For example, if a< b, and p is true, he is paid 1 —a
from the bet for p and — (1 —b) from the bet against “p given D.” His net is
b —a, which is positive. He receives the same net if p is false, since the first
bet pays —a and the second b.

If D does not come true, the bookie neither gains nor loses since none of
his bets are in effect. But he can assure himself of a gain even then by placing
a side bet against D. Suppose that ¢ is your betting quotient for D and d is 1/2
the absolute difference between a and b. Then the bookie sets the stake for the
bet on D at d/(1 —c). If D is false, he is paid c{d/(1 —¢)], which is positive.
If D is true, he is paid — (1 —c)[d/(1 —¢)] (i.e., —d) from the bet on D and
the absolute difference between a and b (i.c., 2d) from his other two bets. Al-
though —d is negative, his net winnings are d and that is positive.

Let me summarize what has been established so far. If an agent’s subjec-
tive probability assignments are rational in the sense of being coherent, then it
follows, by the Dutch Book theorem, that they obey the laws of the probability
calculus. Furthermore, by the converse Dutch Book theorem, obeying the laws
of probability is sufficient for having coherent subjective probabilities. What is
more, using the rule of conditionalization will allow an agent to form new coher-
ent probability assignments as he learns new data and will protect him against
future Dutch Books. Finally, since subjective probabilities are defined in terms
of publicly observable betting behavior, they can be measured and objectively
known.

PROBLEMS

1. Show that we obtain a law of the probability calculus when P(p/D) is sub-
stituted for P(p) in axiom la.

2. Do the same for axiom 2.

3. Do the same for axiom 3.

Have we made much of a case for the subjective approach? Is not coher-
ence such a loose requirement that probability assignments based on it are use-
less for scientists and decision makers? If I am coherent in my betting at a race-
track, even if I bet on all the horses, the track will not be assured of a profit—no
matter what. But I might lose my shirt, all the same. If prior to a match race
between a Kentucky Derby prospect and my old nag, I assign a 90% chance of
winning to the old nag and a 10% chance to the racehorse, then I am coherent.
Yet unless I know something very unusual about the race (such as that the race-
horse has been given a horse-sized dosage of sleeping pills), I would be foolish
to take bets at those odds.
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This example suggests that coherence is not a strong enough requirement
for rationally assigning probabilities. There is a sense in which it would be irra-
tional for me to set those odds on the old nag. (Of course, I might belie my true
beliefs because I did not want to let the old fellow down by showing my lack
of confidence in him. But I am assuming that such considerations do not intrude
here.) The subjectivist has a response to this objection, however. The irrational-
ity we sense in this example will be a genuine case of incoherence when we con-
sider the other information I possess about horses and horseraces and my proba-
bility assignments to other statements. Since I know a fair bit about horses, I
know that healthy young racehorses such as this one, participating in a normal
match race against an old tired horse, are (virtually) certain to win. Given that,
I should assign a probability of (nearly) 1 to the racehorse winning. My current
probability assignment would not cohere with the probabilities I assign to other
statements about horses and horseraces.

But what about those who know nothing about horses? What should they
do at the track? Says the subjectivist: First of all, they should bet coherently.
Then they should try to learn more about the horses and about horses in general.
As they acquire new information, they should modify their probability assign-
ments. If they use conditionalization, they can be assured of preserving coher-
ence. Furthermore, the convergence theorems we mentioned in connection with
Bayes’s theorem may apply. If so, in the long run their odds are likely to be as
good as those of the experts.

More boldly put, the convergence theorems show that in a wide class of
cases, a person can start with completely heretical probability assignments,
modify them by conditionalizing, and be assured in the long run of converging
to the probabilities used by the experts. Subjectivists appeal to this to argue that
subjective probabilities are suitable for scientists and decision makers. Conver-
gence implies that those who derive their probabilities from observed frequen-
cies will tend to agree in the long run with those who initially use hunches—
provided, of course, that the latter use the data furnished by their frequentist
colleagues. Consequently, subjectivists can provide empirically based probabili-
ties whenever anyone can. That should satisfy scientists. But, it can be argued,
subjectivists can do more: They can assign probabilities where frequencies,
propensities, or logically based measures are unavailable or in principle unat-
tainable.

Decision makers ask for nothing more than probabilities furnished by the
“experts,” and, in the long run, subjectivists can give them that. Moreover, and
this can be crucial, they can supply probabilities in cases where frequentists,
logicists, or propensity theorists must stand by with their hands in their pockets.

The capstone of the subjectivist defense consists in noting that subjective
elements intrude in the ascertainment of so-called objective probabilities too.
Undcr the classical view, we must choosc the “equiprobablc” possibilitics to as-
sign to a statement. This choice is based on a personal and subjective judgment
that we have the right set of possibilities and that they are equiprobable, since
the classical view fails to supply any methods for associating a set of equiproba-
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ble possibilities with a given statement. Similarly, when we decide, after see-
ing a coin land heads on 511 of 1,000 tosses, that the long-run relative fre-
quency of heads is 1/2, we are making a personal assessment of the probable
future behavior of the coin. Also we must decide whether a theory is sufficiently
probable given the evidence for it before we can accept the claims it makes about
propensities. In short, the application of objective probabilities is dependent on
subjective ones. Subjective probabilities are thus both fundamental and un-
avoidable.

This is a persuasive argument—one that should make us seriously consider
the merits of the subjective approach—but it is not airtight. Subjectivists are
right, I think, in claiming that in applying the objective theories of probability,
we will often be faced with decisions that are not clear-cut. That in turn could
lead different people to make different probability assignments. But it does not
follow from this that it is never possible to objectively ground probability assign-
ments, and that is what subjectivists must show for their point to stick.

Furthermore, the subjective approach faces some problems of its own that
are not unlike those faced by the previous views. First, subjectivists’ assurances
about long-run convergence may fail to work out in practice. If the initial proba-
bilities are widely divergent and the data either sparse or inconclusive, conver-
gence may not come until long after a decision based on the probabilities in ques-
tion is due. -

Second, there is a plethora of statements for which we can set betting quo-
tients at values that do not comply with the probability calculus without having
to worry about being trapped in a Dutch Book. A bet on whether the heat death
of the universe will ever occur is a case in point. If it does occur, no one will
be around to be paid; if it is not going to occur, we might not know that with
enough certainty to settle the bet. Another example would be a bet on whether
there is life outside the observable portion of the universe. “Can’t we settle those
bets by appealing to science?” subjectivists might respond. Here we cannot.
Science has no definite answers to these questions; it tells us only that each of
the outcomes is possible.

A related problem is that the betting approach presumes that once we make
a bet it will remain clear what winning means until the bet is settled. But that
it not always so. Frequently, we find ourselves in situations where we initially
wonder whether something is true and then find that our very question does not
really make sense or fails to have a definite answer. Suppose, for example, that
you bet that the fellow in the corner drinking gin knows how to play bridge and
I bet that he does not. Next suppose we learn that no one in that corner is drink-
ing gin, although one of the men is drinking vodka—and he does play bridge.
Is our bet still on? You say it is and claim that it was clear that we meant that
fellow—the one over there. I say that it is not and that I meant the gin drinker,
since I would never bet on a vodka drinker’s being able to play bridge. I do not
think that you could hold me to the bet. If we turn to the history of science and
mathematics, we can even find cases where our conception of what counts as
an “answer” to a question changed in the course of finding one.
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This and the previous point show that we can no more count on the subjec-
tive approach to be universally applicable than we could count on the previous
approaches we considered. In addition, subjectivists face a difficult dilemma
concerning the revision of probabilities. As we have seen, coherence is the sole
condition that subjectivists impose on anyone’s initial probability assignments.
Now suppose I, who know nothing of abstract art, have become friendly with
some art critics and start to visit museums of modern art with them. I know what
I like, but I try to guess at what the critics like., At first, I use my best hunches
to assign probabilities to their liking various paintings and other art objects, be-
ing sure, of course, to be coherent. Later, when I learn what the critics have
to say, I see that my probabilities must be modified. How should I do this?

An obvious proposal is to use the rule of conditionalization. But, let us
suppose, I find that that rule yields probabilities that are still far from those I
am now inclined to hold. (One way this could occur is if the conditional proba-
bilities I use are, themselves, “way off”; another is through my initial assign-
ments being wildly at variance with the critics’ judgments.) What should I do?
Stick with the rule and hope that convergence will soon come? Or give up my
initial priors and start with a new set? Some subjectivists would advise me to
stick by the rule no matter what. That opens them to the charge of stubborn te-
nacity. Others would allow me to pick a new set of priors whenever I wish with
coherence being the only requirement I must meet. And that seems flippant. The
challenge for the subjectivist is to propose a middle course, that is, a rational
method for the modification of probabilities that is wedded to neither unwar-
ranted tenacity nor flippancy.

Solutions to this problem have been proposed, but I will not delve into
them here. I will only remark that they have been tied to the abandonment of
a unique prior probability assignment in favor of sets of assignments or intervals
between upper and lower probabilities. This amounts to rejecting the original
subjectivist view —at least in its full particulars.

Our discussion of decisions under ignorance left several important issues
unsettled; that was to be expected since we had reached the philosophical fron-
tiers of the subject. The same has now happened with our discussion of probabil-
ity, and I am forced to conclude it with no decision as to which conception is
best. However, at least you should have a clear idea of the difficulties a success-
ful view must overcome and of the advantages and drawbacks to the major views
that have been proposed so far.

3-4. References

Skyrms 1975 contains a good introduction to probability theory and the interpre-
tations of probability. Chernoff and Moses expound somewhat more advanced
material. Raiffa presents an excellent discussion of the use of Bayes’s theorem
in decision theory as well as an introduction to subjective probability. Carnap
is a classic on the logical and philosophical foundations of probability. The
papers by DeFinetti and Ramsey are reprinted in Kyburg and Smokler. Also see
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Savage and Eells for defenses of the subjective approach. Kyburg presents an
account of probability that fails to obey the entire probability calculus; it also
contains a number of critical papers on the various interpretations of probability
as well as further references. See Levi for another novel approach and further
criticism of standard Bayesianism.
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Chapter 4
DECISIONS UNDER RISK:

UTILITY
Lrrrrnnnnnnn

4-1. Interval Utility Scales

Utilities are just as critical to our account of decisions under risk as probabilities
since the rule of maximizing expected utility operates on them. But what are util-
ities? And what do utility scales measure? In discussing decisions under igno-
rance [ hinted at answers to these questions. But such allusions will not suffice
for a full and proper understanding of decisions under risk. So let us begin with
a more thorough and systematic examination of the concept of utility.

The first point we should observe is that ordinal utility scales do not suffice
for making decisions under risk. Tables 4-1 and 4-2 illustrate why this is so. The

41
6 1

4 Y %
5 2

42 y %

expected utilities of A; and A2 are 9/4 and 11/4, respectively, and so A> would
be picked. But if we transform table 4-1 ordinally to table 4-2 by simply raising

4-2
20 1
A Y% %
5 2
Az Y 3%

the utility number 6 to 20, the expected utilities are now 23/4 and 11/4, which
results in 4; being picked. Thus two scales that are ordinal transformations of
each other might fail to be equivalent with respect to decisions under risk.
This stands to reason anyway. Ordinal scales represent only the relative
standings of the outcomes; they tell us what is ranked first and second, above
and below, but no more. In a decision under risk it is often not enough to know
that you prefer one outcome to another; you might also need to know whether
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you prefer an outcome enough to take the risks involved in obtaining it. This
is reflected in our disposition to require a much greater return on an investment
of $1,000,000 than on one of $10—even when the probabilities of losing the in-
vestment are the same.

Happily, interval scales are all we require for decisions under risk. In ad-
dition to recording an agent’s ranking of outcomes, we need measure only the
relative lengths of the “preference intervals” between them. To understand what
is at stake, suppose I have represented my preferences for cola (C), ice cream
(1), apples (A), and popcorn (P) on the following line.

least preferred most preferred

P A C 1

If I now form a scale by assigning numbers to the line, using an ordinal scale
would require me only to use numbers in ascending order as I go from left to
right. But if I use an interval scale, I must be sure that the relative lengths of
the intervals on the line are reflected as well. Thus I could not assign O to P,
1to A, 2 to C, and 3 to I, for this would falsely equate the interval between,
say P and A with that between C and I. More generally, if items x, y, z, and
w are assigned utility numbers u(x), u(y), u(z), and u(w) on an interval scale,
these numbers must satisfy the following conditions:

a. xPyif and only if u(x) > u(y).
b. xIy if and only if u(x) =u(y).
the preference interval between x and y is greater than or equal to
that between z and w if and only if
lu@) —u)| = lu@) ~umw)|.
More than one assignment of numbers will satisfy these two conditions but every
assignment that does is a positive linear transformation of every other one that
does. To illustrate this point, suppose I assign numbers to my preferences as in-
dicated here.

least preferred most preferred
1 2 7 10
P A C 1

Then I have properly represented both the ordinal and interval information. But
I could have used other numbers, such as the next set.

least preferred most preferred
15 25 75 105
P A C I

These are obtained from the first set by a positive linear transformation. (What
is it?)
Two ordinal scales count as equivalent if and only if they can be obtained
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from each other by means of order-preserving (ordinal) transformations. Two
interval scales will count as equivalent if and only if they can be obtained from
each other by means of positive linear transformations.

Another type of scale with which you are familiar is ratio scales. We use
these for measuring lengths (in yards, feet, meters) or weights (in pounds,
grams, ounces). The scales all share two important features: First, they all have
natural zero points (no length, no speed, no weight), and second, the scales are
used to represent the ratio of a thing measured to some standard unit of measure-
ment. (Something 10 yards long bears the ratio of 10 to 1 to a standard yardstick;
the latter can be laid off ten times against the former.) In converting from one
ratio scale to another we multiply by a positive constant. (Thus, to obtain inches
from feet we multiply by 12.) This turns out to be the equivalence condition for
ratio scales: Two ratio scales are equivalent to each other if and only if they may
be obtained from each other by multiplying by positive constants. This is a spe-
cial case of a positive linear transformation; thus ratio scales are a tighter kind
of interval scale.

One way to appreciate the difference between ratio and interval scales is
to think of changing scales in terms of changing the labels on our measuring in-
struments. If we had a measuring rod 9 feet long, labeled in feet, and relabeled
it in yards, we would need fewer marks on the stick. If we labeled it in inches
we would need more marks. But in either case the zero point would remain the
same. This is not necessarily so with interval scales. If we had a thermometer
marked in degrees Fahrenheit and changed it to degrees Celsius, we would use
fewer marks (between the freezing and boiling points of water there are 100 Cel-
sius units in contrast to 180 Fahrenheit units), and we would also shift the zero
point upward. Because there is no fixed zero point on our temperature scales,
we must be quite careful when we say that something is twice as hot as some-
thing else. Suppose that at noon yesterday, the outdoor temperature was at the
freezing point of water and that today at noon it measured 64 degrees on the
Fahrenheit scale. Was it twice as hot today at noon as it was yesterday? On the
Fahrenheit scale, yes, but not on the Celsius scale. Suppose, for contrast, that
I am driving at 60 miles per hour and you are driving at 30. Now convert our
speeds to kilometers per hour. You will see that I would still be driving twice
as fast as you.

Since we will use interval scales rather than ratio scales to represent
preference intervals, we cannot assume that arithmetic operations that we per-
form freely on speeds, weights, or distances make sense for utilities. I will re-
turn to this point later.

We have already seen that decisions under risk require more than ordinal
scales. Will interval scales suffice? Or must we move on to ratio scales? No, we
need not, for any two scales that are positive linear transformations of each
other will produce the same ranking of acts in a decision table and, thus, will
yield the same decisions. In short, interval scales suffice for decisions under
risk. Let us now prove this.

Let table 4-3 represent any decision table and any two acts in it. I will call
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the acts A; and A4;, and for convenience I will write them next to each other, but
in fact they might have many rows between them or above and below them.

4-3
Aj 1231 U - .. Un

P1 P2 e Pn
Aj Vi V2 . Vn

q1 qz P 4n

The u’s and v’s are utility numbers and the p’s and ¢’s are probabilities. Since
the states may be dependent on the acts, we cannot assume that the p’s and ¢’s
are equal. However, we can assume that the probabilities across for each row
sum to 1. The expected utilities for 4; and A; are given by the formulas

EUA)=uprtuzp>+. . .+ uapn
EU(Aj)=viqi1+Vvag2+. . . +Vaqn.

Now a positive linear transformation of the scale used in table 4-3 would cause
each u and each v to be replaced, respectively, by au + b and av + b (with a > 0).
Thus after the equation the formulas for the expected utilities would be

EUpew(Ai))=(au1+b)pi+(aur+b)pa+. . .+ (aun+b)pn
EUnew(Aj)) =(avi+b)g1+{ava+b)g,+. . .+ (ava+b)gn.

If we multiply through by the p’s and ¢’s and then gather at the end all the terms
that contain no u#’s or v’s we obtain

EUgpew(A)) =laup1+aurpr+. . . +aunpn]+
[bp1+bpr+. . . +bpal

EUgew(dj) =lavigi+avagz2+ . . . tavaga] +
[bg1+bgr+. . . +bgn].

If we now factor out the a’s the expressions remaining in the left-hand brackets
are the old expected utilities. On the other hand, if we factor out the b’s the ex-
pressions remaining in the right-hand brackets are p’s and g’s that sum to 1.
Thus our new utilities are given by this pair of equations:

EUnew(Ai)=aEUA) + b
EUnew(Aj) = aEU(Aj) +b.

Now since a > 0, aEU(A;) is greater than (less than, or equal to) aEU(4;) just
in case EU(A;) stands in the same relation to EU(4;). Furthermore, this relation
is preserved if we add b to aEU(A;) and aEU(A;). In other words, EUnew(A4})
and EU pew(Aj) will stand in the same order as EU(A;) and EU(A;). This means
that using expected utilities to rank the two acts A; and A; will yield the same
results whether we use the original scale or the positive linear transformation
of it. But our reasoning has been entirely general, so the same conclusion holds
for all expected utility rankings of any acts using these two scales. In short, they
are equivalent with respect to decision making under risk.
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PROBLEMS

1. Suppose you can bet on one of two horses— Ace or Jack—in a match race.
If Ace wins you are paid $5; if he loses you must pay $2 to the track. If you
bet on Jack and he loses, you pay the track $10. You judge each horse to
be as likely to win as the other. Assuming you make your decisions on the
basis of expected monetary values, how much would a winning bet on Jack
have to pay before you would be willing to risk $10?

2. Suppose the interval scale ¥ may be transformed into #’ by means of the
transformation

u' =au+b (a>0).

Give the transformation that converts u' back into u.
3. Suppose the u' of the last problem can be transformed into # " by means of
the transformation

u"=cu’ +d (c>0).

Give the transformation for converting u into u”.

4. Suppose s and s ' are equivalent ratio scales. Show that if s (x) = 2s(y), then
s (x)=2s"(y).

5. Suppose you have a table for a decision under risk in which the probabilities
are independent of the acts. Show that if you transform your utility numbers
by adding the number b; to each utility in column i (and assume that the num-
bers used in different columns are not necessarily the same), the new table
will yield the same ordering of the acts.

4-2. Monetary Values vs. Utilities

A popular and often convenient method for determining how strongly a person
prefers something is to find out how much money he or she will pay for it. As
a general rule people pay more for what they want more; so a monetary scale
can be expected to be at least an ordinal scale. But it often works as an interval
scale too—at least over a limited range of items. A rough test of this is the agent’s
being indifferent between the same increase (or reduction) in prices over a range
of prices, since the intervals remain the same though the prices change. Thus
if I sense no difference between $5 increases (e.g., from $100 to $105) for prices
between $100 and $200, it is likely that a monetary scale can adequately function
as an interval scale for my preferences for items in that price range. Within this
range it would make sense for me to make decisions under risk on the basis of
expected monetary values (EMVs).

Since we are so used to valuing things in terms of money — we even price
intangibles, such as our own labor and time or a beautiful sunset, as well as
necessities, such as food and clothing — it is no surprise that EMVs are often used
as a basis for decisions under risk. My earlier insurance and car purchase exam-
ples typify this approach. Perhaps this is the easiest and most appropriate method
for making business decisions, for here the profit motive is paramount.

It is both surprising and disquieting that a large number of nonbusiness de-
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cisions are made on the basis of EMVs. For example, it is not unusual for
government policy analysts to use monetary values to scale nonmonetary out-
comes such as an increase or decrease in highway deaths or pollution-induced
cancers. To make a hypothetical example of a historical case, consider the fed-
eral government’s decision in 1976 to vaccinate the population against an ex-
pected epidemic of swine flu. The actual relevant outcomes might have been
specified in terms of the number of people contracting the disease, the number
of deaths and permanent disabilities, and the cost and inconvenience of giving
or receiving the vaccine, but instead of assigning values to these outcomes, I will
suppose (as is probably the case) that policy analysts turned to their economic
consequences. This meant evaluating alternatives first in terms of lost working
days and then in terms of a reduced gross national product (GNP), and so on
until the cost of administering the vaccine could be compared to the expected
benefit to be derived from it. To illustrate this in a simplified form using made-
up figures, suppose a flu epidemic will remove five million people from the work
force for a period of five days. (Some will be sick, others will care for the sick.
I am also talking about absences over and above those expected in normal
times.) Further, suppose the average worker contributes $200 per five days of
work to the GNP. Finally, suppose the GNP cost of the vaccine program is
$40,000,000, that without it there is a 90% chance of an epidemic and with it
only a 10% chance. Then we can set up decision table 4-4, which values out-

44 Epidemic No Epidemic
Have Vaccine —$1,040 million — $40 million

Program .1 9
No Program —$1,000 million . 0 1

comes in terms of dollar costs to the GNP. The EMV of having the program
is — $140 million and that of not having it is — $900 million; thus, under this
approach at least, the program should be initiated since it minimizes the cost to
the GNP. (This example also illustrates an equivalent approach to decisions un-
der risk: Instead of maximizing expected gains one minimizes expected losses.
See exercises 1-3 in the next Problems section.)

Perhaps the EMV approach to large-scale decisions is the only practical
alternative available to policy analysts. After all, they should make some attempt
to factor risks into an analysis of costs and benefits, and that will require at least
an approximation to an interval scale. Monetary values provide an accessible
and publicly understandable basis for such a scale.

But few people would find EMVs a satisfactory basis for every decision;
they will not even suffice for certain business decisions. Sometimes making
greater (after-tax) profits is not worth the effort. Just as we are rapidly reaching
the point where it is not worth bending over to pick up a single penny, it might
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not be worth a company’s effort to make an extra $20,000. More money would
actually have less utility; so money could not even function as an ordinal scale.
Of course, this completely contravenes the way an EMVer sees things.

Furthermore, some apparently rational businesspeople gladly sacrifice
profits for humanitarian, moral, or aesthetic considerations—even when those
considerations cannot be justified in greater profits in the long run. Many compa-
nies sponsor scholarships for college students, knowing full well that the as-
sociated tax benefits, improvements in corporate image, and recruitment have
but a small probability of producing profits in excess of the costs. These people
cannot base their decisions solely on EMVs.

On a personal level, too, the “true value” of an alternative is often above
or below its EMV. Thus I might pay more for a house in the mountains than
its EMV (calculated, say, by real estate investment counselors) because the
beauty and solitude of its setting make up the extra value to me, or I might con-
tinue to drive the old family car out of sentiment long after it has stopped being
economical to do so. To see the divergence between EMVs and true values in
simple decision problems, consider these examples.

Example I. True value below EMV. After ten years of work you have
saved $15,000 as a down payment on your dream house. You know the house
you want and need only turn over your money to have it. Before you can do that
your stockbroker calls with a “very hot tip.” If you can invest your $15,000 for
one month, he can assure you an 80% chance at a $50,000 return. Unfor-
tunately, if the investment fails, you lose everything. Now the EMV of this in-
vestment is $37,000—well above the $15,000 you now have in hand. Your
broker points out that you can still buy the house a month from now and urges
you to make the investment. But you do not, because you feel you cannot afford
to risk the $15,000. For you, making the investment is worth less than having
$15,000 in hand, and thus it is worth less than its EMV.

Example 2. True value above EMV. Suppose you have been trying to pur-
chase a ticket for a championship basketball game. Tickets are available at $20
but you have only $10 on you. A fellow comes along and offers to match your
$10 on a single roll of the dice. If you roll snake eyes, you get the total pot;
otherwise he takes it. This means that your chances are 1 in 12 of ending up with
the $20 you need and 11 in 12 of losing ali you have. The EMV of this is
~— $7.50 —definitely below the $10 you have in hand. But you take the bet, since
having the $20 is worth the risk to you. Thus the EMV of this bet is below its
true value to you.

In addition to practical problems with EMVs there is an important philo-
sophical difficulty. Even if you are guided solely by the profit motive, there is
no logical connection between the EMV of a risk and its monetary value. Con-
sider this example. You alone have been given a ticket for the one and only lot-
tery your state will have. (Although the lottery is in its very first year, the legis-
lature has already passed a bill repealing it.) The ticket gives you one chance
in a million of winning $1,000,000. Since you lose nothing if you fail to win,
the EMV of the ticket is $1. After the lottery is drawn you win nothing or
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$1,000,000—but never $1. Thus how can we connect this figure with a cash
value for the bet? Why —assuming money is all that counts—would it be rational
for you to sell your ticket for $2? One is tempted to answer in terms of averages
or long runs: If there were many people in your situation, their winnings would
average $1; if this happened to you year after year, your winnings would aver-
age $1. But this will not work for the case at hand, since, by hypothesis, you
alone have a free ticket and there will be only one lottery. With a one-shot deci-
sion there is nothing to average; so we have still failed to connect EMVs with
cash values.

PROBLEMS

Given a utility scale u, we can formulate a disutility scale, d(«), by multiply-
ing each entry on the u-scale by — 1. The expected disutility of an act is cal-
culated in the same way as its expected utility except that every utility is
replaced by its corresponding disutility. Reformulate the rule for maximizing
expected utilities as a rule involving expected disutilities.

Show that the expected disutility of an act is equal to — 1 times its expected
utility.

. Show that using a disutility scale and the rule you formulated in problem 1

yields the same rankings of acts as maximizing expected utilities does.

. The St. Petersburg game is played as follows. There is one player and a

“pank.” The bank tosses a fair coin once. If it comes up heads, the player
is paid $2; otherwise the coin is tossed again with the player being paid $4
if it lands heads. The game continues in this way with the bank continuing
to double the amount set. The game stops when the coin lands heads.

Consider a modified version of this game. The coin will be tossed no
more than two times. If heads comes up on neither toss, the player is paid
nothing. What is the EMV of this game?

Suppose the coin will be tossed no more than n times. What is the
EMYV of the game?

Explain why an EMVer should be willing to pay any amount to play
the unrestricted St. Petersburg game.
Consider the following answer to the one-shot lottery objection to EMVs:
True, there is only one lottery and only one person has a free ticket. But in
a hypothetical case in which there were many such persons or many lotteries,
we would find that the average winnings would be $1. Let us identify the
cash value of the ticket with the average winnings in such hypothetical cases.
It follows immediately that the cash value equals the EMV.

Do you think this approach is an adequate solution to the problem of
relating EMVs to cash values?

4-3. Von Neumann-Morgenstern Utility Theory

John Von Neumann, a mathematician, and Oskar Morgenstern, an economist,
developed an approach to utility that avoids the objections we raised to EMVs.
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Although Ramsey’s approach to utility antedates theirs, today theirs is better
known and more entrenched among social scientists. I present it here because
it separates utility from probability, whereas Ramsey’s approach generates util-
ity and subjective probability functions simultaneously.

Von Neumann and Morgenstern base their theory on the idea of measuring
the strength of a person’s preference for a thing by the risks he or she is willing
to take to receive it. To illustrate that idea, suppose that we know that you prefer
a trip to Washington to one to New York to one to Los Angeles. We still do
not know how much more you prefer going to Washington to going to New
York, but we can measure that by asking you the following question: Suppose
you were offered a choice between a trip to New York and a lottery that will
give you a trip to Washington if you “win” and one to Los Angeles if you “lose.”
How great a chance of winning would you need to have in order to be indifferent
between these two choices? Presumably, if you prefer New York quite a bit
more than Los Angeles, you will demand a high chance at Washington before
giving up a guaranteed trip to New York. On the other hand, if you only slightly
prefer New York to Los Angeles, a small chance will suffice. Let us suppose
that you reply that you would need a 75% chance at Washington—no more and
no less. Then, according to Von Neumann and Morgenstern, we should con-
clude that the New York trip occurs 3/4 of the way between Washington and
Los Angeles on your scale.

Another way of representing this is to think of you as supplying a ranking
not only of the three trips but also of a lottery (or gamble) involving the best
and worst trips. You must be indifferent between this lottery and the middle-
ranked trip. Suppose we let the expression

La, x, y)

stand for the lottery that gives you a chance equal to a at the prize x and a chance
equal to 1 —a at the prize y. Then your ranking can be represented as

Washington
New York, L(3/4, Washington, Los Angeles)
Los Angeles.

We can use this to construct a utility scale for these alternatives by assigning
one number to Los Angeles, a greater one to Washington, and the number 3/4
of the way between them to New York. Using a O to 1 scale, we would assign
3/4 to New York—but any other scale obtained from this by a positive linear
transformation will do as well.

Notice that since the New York trip and the lottery are indifferent they are
ranked together on your scale. Thus the utility of the lottery itself is 3/4 on a
0 to 1 scale. But since on that scale the utilities of its two “prizes” (the trips) are
0 and 1, the expected utility of the lottery is also 3/4. We scem to have forged
a link between utilities and expected utilities. Indeed, Von Neumann and Mor-
genstern showed that if an agent ranks lotteries in the manner of our exampie,
their utilitics will equal their expected utilities. Let us also note that the Von
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Neumann-Morgenstern approach can be applied to any kind of item —whether
or not we can sensibly set a price for it—and that it yields an agent’s personal
utilities rather than monetary values generated by the marketplace. This permits
us to avoid our previous problems with monetary values and EMVs.

(You might have noticed the resemblance between the Von Neumann-
Morgenstern approach and our earlier approach to subjective probability, where
we measured degrees of belief by the amount of a valued quantity the agent was
willing to stake. Ramsey’s trick consisted in using these two insights together
without generating the obvious circle of defining probability in terms of utility
and utility in turn in terms of probability.)

The Von Neumann-Morgenstern approach to utility places much stronger
demands on agents’ abilities to fix their preferences than do our previous condi-
tions of rationality. Not only must agents be able to order the outcomes relevant
to their decision problems, they must also be able to order all lotteries involving
these outcomes, all compound lotteries involving those initial lotteries, all lotter-
ies compounded from those lotteries, and so on. Furthermore, this ordering of
lotteries and outcomes (I will start calling these prizes) is subject to constraints
in addition to the ordering condition. Put in brief and rough form, these are:
(1) Agents must evaluate compound lotteries in agreement with the probability
calculus (reduction-of-compound-lotteries condition); (2) given three alterna-
tives A, B, C with B ranked between A and C, agents must be indifferent between
B and some lottery yielding A and C as prizes (continuity condition); (3) given
two other lotteries agents will prefer the one giving the better “first” prize —if
everything else is equal (better-prizes condition); (4) given two otherwise identi-
cal lotteries, agents will prefer the one that gives them the best chance at the
“first” prize (better-chances condition). If agents can satisfy these four conditions
plus the ordering condition of chapter 2, we can construct an interval utility
function u# with the following properties:

Q1) u(x) > u(y) if and only if xPy

(2) u(x)=u(y) if and only if xly

(3) ulL(a, x, Y)] = aux) +(1 —a)u(y)

(4) Any u’ also satisfying (1)-(3) is a positive linear transformation of u.

You should recognize (1) and (2) from our discussion of decisions under igno-
rance (chapter 2). They imply that u is at least an ordinal utility function. But
(3) is new. It states that the utility of a lottery is equal to its expected utility.
We can also express this by saying that u has the expected utility property. The
entire result given by (1)-(4) is known as the expected utility theorem. Let us
now turn to a rigorous proof of it.

First we must specify lotteries more precisely than we have. The agent is
concerned with determining the utilities for some set of outcomes, alternatives,
or prizes. Let us call these basic prizes. Let us also assume that the number of
basic prizes is a finite number greater than 1 and that the agent is not indifferent
between all of them. Since we can assume that the agent has ranked the prizes,
some will be ranked at the top and others at the bottom. For future reference,
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let us select a top-ranked prize and label it “B” (for best). Let us also select a
bottom-ranked prize and label it “W” (for worst).

I will now introduce compound lotteries by the following rule of construc-
tion. (In mathematical logic this is called an inductive definition.)

Rule for Constructing Lotteries:

1. Every basic prize is a lottery.

2. If L; and L, are lotteries, so is L(a, Ly, L3), where 0 <a < 1.

3. Something is a lottery if and only if it can be constructed according
to conditions 1 and 2.

Thus lotteries consist of basic prizes, simple lotteries involving basic prizes, fur-
ther lotteries involving basic prizes or simple lotteries, ad infinitum. This means
that B and W are lotteries, L(1/2, B, W) and L(3/4, W, B) are, and so are L(2/3,
B, L(1/2, B, W)) and L(1, L0, B, W), W)

PROBLEMS

1. Why can we not assume that there is a single best prize?

2. Why have I assumed that there is more than one basic prize? That the agent
is not indifferent between al} the prizes? If these assumptions were not true,
would the expected utility theorem be false?

3. What chance at B does each of the following lotteries give?

a. L(1, B, W)
b. L(1/2, L(1, W, B), L(1/2, B, W))
¢. L(a, B, B)

4. Why should an agent be indifferent between L{a, B, W) and L(1 —a, W, B)?

5. Show how to construct one of our lotteries that is equivalent to the lottery
with three prizes, 4, B, and C, that offers a 50% chance of yielding A and
25% chances of yielding B and C.

Now that we have a precise characterization of lotteries, let us turn to pre-
cise formulations of the “rationality” conditions the agent must satisfy. The first
of these is the familiar ordering condition, applied this time not just to basic
prizes but also to all lotteries. This means that conditions O1-0O8 (discussed in
chapter 2) apply to all lotteries. An immediate consequence of this is that we
can partition the lotteries into ranks so as to rank together lotteries between
which the agent is indifferent while placing each lottery below those the agent
prefers to it.

The next condition is called the continuity condition because one of its con-
sequences is that the ordering of the lotteries is continuous. It is formulated as
follows:

For any lotteries x, y, and z, if xPy and yPz, then there is some real number
asuch that 0<a<1 and y I L(a, x, z).

In less formal terms this says that if the agent ranks y between x and z, there
is some lottery with x and z as prizes that the agent ranks along with y.
The better-prizes condition is next. Intuitively, it says that other things be-
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ing equal, the agent prefers one lottery to another just in case the former involves
better prizes. Put formally:

For any lotteries x, y, and z and any number a (0 < a < 1), xPy if and only
if L(a, z, x) P L(a, z, y) and L(a, x, z) P L(a, y, z).

There is also the better-chances condition, which says roughly that, other
things being equal, the agent prefers one lottery to another just in case the former
gives a better chance at the better prize. Put in precise terms:

For any lotteries x and y and any numbers a and » (both between 0 and
1, inclusively), if xPy, then a > b just in case L(a, x, y) P L(b, x, y).

The final condition is called the reduction-of-compound-lotteries condition
and requires the agent to evaluate compound lotteries in accordance with the
probability calculus. To be exact, it goes:

For any lotteries x and y and any numbers a, b, ¢, d (again between 0 and
1 inclusively), if d =ab + (1 — a)c, then L(a, L(b, x,y), L(c, x, ¥)) I L({d,
X, y).
To get a better grip on this condition, let us introduce the lottery tree notation
(figure 4-1), which is similar to the decision tree notation.

Figure 4-1

This diagram represents the simple lottery that yields the prize x with a chance
of a and the prize y with a chance of 1 —a. Compound lotteries can be repre-
sented by iterating this sort of construction, as figure 4-2 illustrates. This is a
two-stage lottery whose final prizes are x and y. What are the chances of getting
x in this lottery? There is a chance of a at getting into lottery 2 from lottery 1
and a chance of b of getting x. In other words, there is an ab chance of getting
x through lottery 2. Similarly, there is a (1 —a)c chance of getting x through
lottery 3. Since these are the only routes to x and they are mutually exclusive,
the chances for x are ab + (1 —a)c. The same type of reasoning shows that the
chances for yare a(1 —b)+ (1 —a)(1 —c). f we set d=ab+ (1 —a)c, a little
algebra will show that | —d=a (1 —b) + (1 —a)c. The reduction-of-compound-
lotteries condition simply tells us that the agent must be indifferent between the
compound lottery given earlier and the next simple one (figure 4-3). Notice, by
the way, that the condition is improperly named, since the agent is indifferent
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Figure 4-2

Figure 4-3

to both reductions and expansions of lotteries so long as they accord with the
probability calculus.

Let us turn now to the proof of the expected utility theorem. I will divide
the proof into two parts. The first part will establish that, given that the agent
satisfies the ordering, continuity, better-prizes, better-chances, and reduction-
of-compound-lotteries conditions, there is a utility function, u, satisfying the ex-
pected utility property that represents his preferences. This is called the exis-
tence part of the proof, since it proves that there exists a utility function having
the characteristics given in the theorem. The second part of the proof is called
the uniqueness part, because it establishes that the utility function constructed
in the first part is unique up to positive linear transformations; that is, it is an
interval utility function.

Directing ourselves now to the proof of the existence of u, recall that we
have already established that there are at least two basic prizes B and W, where
the agent prefers B to W and regards B as at least as good as any basic prize
and every basic prize as at least as good as W. Since all lotteries ultimately pay
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in basic prizes and are evaluated by the agent in terms of the probability calcu-
lus, there is no lottery ranked above B or below W. (See exercises 4-8 in the
next problems section.) Accordingly, fixing the top of our utility scale at 1 and
the bottom at 0, we stipulate that

u(B)=1 and u(x)=1 for all lotteries x indifferent to B,
u(W) =0 and u(x) =0 for all lotteries x indifferent to W.

Having taken care of the lotteries at the extremes we must now define u for those
in between. So let x be any lottery for which

BPx and xPW

holds. Applying the continuity axiom to this case, we can conclude that there
is a number a, where 0 <a < 1, such that
x1L(a, B, W).

If there is just one such @, we will be justified in stipulating that u(x) =a.
Soletus assume thata ' #aandx/L(a’, x, y) and derive a contradiction. Since
a and a’ are assumed to be distinct, one is less than the other. Suppose a<a’.
Then by the better-chances condition,

L', B, W) P L(a, B, W),

but this contradicts the ordering condition since both lotteries are indifferent to
x. A similiar contradiction follows from the alternative that a’ < a. Having de-
rived a contradiction from either alternative, we may conclude that a=a’.
We are now justified in stipulating that
ux)=a,
where a is the number for which x 7 L (a, B, W). Note that by substituting equals
for equals we obtain
(*) x I L(u(x), B, W);

that is, the agent is indifferent between x and the lottery that gives a u (x) chance
at B and a I —u(x) chance at W.

So far we have simply established the existence of a function « that assigns
a number to each lottery. We must also show that this is an (interval) utility func-
tion that satisfies the expected utility property.

Let us first show that, for all lotteries x and y,

(1) xPy if and only if u(x) > u(y).
By the better chances condition we have

(@ Lwx), B, W) P L(u(y), B, W) if and only if u(x) > u(y).
By (*), above, we have

®) x I L(u(x), B, Wyand y I L(u(y), B, W).

Using the ordering condition, we can easily prove

9%



DECISIONS UNDER RISK: UTILITY

(¢) for all lotteries x, y, z, and w, if x{y and ziw, then
xPz if and only if yPw.

This together with (a) and (b) immediately yields (1).
It is now easy to prove

(2) xIy if and only if u(x)=u(y), for all lotteries x and y.

For if xIy and u(x) > u(y), then, by (1) xPy —a contradiction; so if xIy, then
not u(x) > u(y). Similarly, if xIy, then it is false that u(y) > u (x). Thus if x/y,
u(x) =u(y). On the other hand, if u(x) = u(y), we can have neither xPy nor yPx
without contradicting (1) and the ordering condition. This means that if
u{x)=u(y), then xfy, since the ordering condition implies that either xfy, xPy,
or yPx.

The rest of this part of our proof will be concerned with showing that for
all lotteries x and v,

(3) u(L(a, x, y))=au) + (1 —a)u(y).

To prove this, however, it will be convenient for us to first prove that the follow-
ing condition follows from the others.

Substitution-of-Lotteries Condition: If x I L(a, y, z), then both
@ L(c, x, v) I L(c, L(a, y, 2), V)
(b) L(c, v, x} I L(c, v, L(a, y, 2)).

This condition states that if the agent is indifferent between a prize (lottery) x
and some lottery L(a, y, 7), the agent is also indifferent to substituting the lottery
L(a, y, z) for x as a prize in another lottery.

Turning to the derivation of the substitution condition, let us abbreviate
“La, y, 2)” by “L”. Now assume that xIL.. We want to show that (a) and (b)
hold. I will derive (a) and leave (b) as an exercise. By the ordering condition,
L{c, x, v) is indifferent to L(c, L, v) or one is preferred to the other. If L(c,
x, v) is preferred to L(c, L, v), then by the better-prizes condition, xPL. But
that contradicts xIL. Similarly, if L(b, L, w) is preferred to L(b, x, w), then
LPx —again contradicting xL. So the only alternative left is that the two lotteries
are indifferent. This establishes (a).

With the substitution condition in hand we can now turn to the proof of
(3). Let us use “L” this time to abbreviate “L{a, x, y).” By (%) we have

i) LI Lw(L), B, W)
i) x I L(u(x), B, W)
iy y I L(u(y), B, W).

Thus by substituting L(u(x), B, W) for x and L(u(y), B, W) for y in the lottery
L and applying the substitution condition, we obtain

LIL(a, L(u(x), B, W), L(u(y), B, W)).

We can reduce the compound lottery on the right to a simple lottery, thus ob-
taining
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L(a, L(u(x), B, W), L(u(y), B, W)) I L(d, B, W),

where d = au(x) + (1 —a)u(y). But then by the ordering condition we must have

LIL(d, B, W),

which together with (i) yields

L), B, WyI1L(d, B, W).

Ifu{l)>d or d>u(L), we would contradict the better-chances condition. So
u(L)=d. But this is just an abbreviated form of (3).
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This completes the existence part of the expected utility theorem.

PROBLEMS
Using the existence part of the expected utility theorem show

a. L(l,x,y) Ix
b.LO, x,y) Iy
c. L(a, x,y) IL(1-a,y, x)
d. L{a, x, x) Ix

Derive part (b) of the substitution-of-lotteries condition.
Using just the ordering condition, prove:

If xIy and zlw, then xPz if and only if yPw.

In this and the following exercises do not appeal to the expected utility the-
orem. Instead reason directly from the rationality conditions of the theorem.
a. There is no number a or basic prize x distinct from B for which L(a, x,
B) P L(a, B, B) or L(a, B, x) P L(a, B, B).
b. There is no number a or basic prizes x and y distinct from B for which
L(a, x, y) P L(a, B, B).
Define the degree of a lottery as follows:
All basic prizes are of degree zero.
Let n be the maximum of the degrees of Ly and L, then the degree
of L{a, L, L,) is equal to n + 1.
Suppose no lottery of degree less than r is preferred to B. Show that
There is no number a and lottery L of degree less than n for which L(a,
B, L) P L(a, B, By or L(a, L, B) P L(a, B, B).
There is no number a and no lotteries L; and L, of degree less than
n for which L(a, L, Ly) P L(a, B, B).
It follows from this and the previous exercise that no lottery of degree
greater than O is preferred to L(a, B, B) for any number a.

. Show that for no number a, L(a, B, B) P B. Hint: Apply the conclusion of

exercise 5 to L(a, L(a, B, B), L(a, B, B)).

Show that for no number a, B P L{a, B, B).
Exercises 5-7 establish that no lottery is preferred to B. We can simi-
larly show that no lottery is less preferred than W.

Show that if BPx and xPW, then L(a, x, x) I x for any number a.
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Let us turn now to the uniqueness part of the proof. Now our task is to
show that if # ' is a utility function defined for the same preferences as u that
satisfies

(1) u'(x)>u'(y) if and only if xPy,

2) u'(xy=u'(y) if and only if xly,

B) u'lLla, x, ] =au'(x)+ (1 —a)u’'(y),
then there are numbers ¢ and d with ¢ > 0 such that

u'(x)=cux)+d.

Since the two functions # and u’ give rise to utility scales for the same
preference ordering, we can picture the situation as follows (figure 4-4). (We

O e e 1 The u-scale
-1
W —|— _}f_ —_— __tu __________ B The lotteries
I lu,
a-_Y ¥ c+td  The u’ —scale
Figure 4-4

know that the end points of the u '-scale will be d and ¢ + 4 if our proof is cor-
rect, since

caa(W)+d=c0+d=d,

cu(B)+d=cl+d=c+d.)
The function u assigns utilities on the u-scale, the function # ' assigns them on
the ' -scale, and the function 7 converts assignments on the u-scale into assign-
ments on the u’-scale. Given a number ¢ on the u-scale, the function I first
selects a lottery L for which (L) = e [this is u ~ '(e)], then I applies the function
u' to L to find the number f [=u'(L)]. In short, we have

@ Ie)=u'[u""@]=Ff
Now let k£ and m be any numbers on the u-scale. Note that for any number a,
such that 0 <a < 1, the number ak + (1 —a)m is between k and m or one of
them. So the number ak + (1 — a)m is also on the u-scale. Substituting this num-
ber in (a), we obtain

) Iak+ (1 —a))m=u’'{u '[ak+ (1 —a)m]}.

But u " '[ak+( —a)m] is a lottery whose utility on the wu-scale is
ak + (1 —a)m. Since k and m are also on the u-scale, they are utilities of some
lotteries x and y; that is, u(x) =k and u(y) =m. But then by (3), the expected
utility condition, we have

© ulla, x, Y)]=aux)+ (1 —a)yu(y)=ak+ ({1 —a)m.
From which it follows that
(d) Ifak+ (1 —a)m)=u'{L(a, x, y)].
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Since u' also satisfies the expected utility condition we have

(@ u’'[La, x, ] =au’(x)+ (1 —a)u’'(y),
and since u(x) =k and u(y) =m we must have

() Ik)=u'(x) and I(m) =u’'(y).

Putting these in (e) and (d) we obtain

(g) Ifak+ (1 —a)ym] =al(k)+ (1 —a)l(m).

With (g) in hand (which tells us that / mimicks the expected utility prop-
erty) we can complete the proof. Since each number & on the u-scale is u(x) for
some lottery x, we have

() Ifux)]=u'(x).

But by simple algebra

@) u@x)=u@x)l +[1 —u®x)]0
Thus by (g), (h), and (j)

() u' ) =Iu)] =1{uG)l +[1 —ux)]0}

=u)(1) +[1-ux)0)
=u(x)[{(1) — I(0)] + 1(0).
Thus by setting

(k) c=1(1) — 1(0) and d =I(0)
and substituting in (j), we have

u' (x)=cu(x)+d.

To finish our proof we need only show that ¢ > 0. That is left as an exercise.

PROBLEMS

1. Prove that c as defined in (k) above is greater than zero.

2. Prove that given any number & on the u-scale, there is some lottery x for
which u(x) =k.

3. Show how to transform a 0 to 1 scale into a 1 to 100 scale using a positive
linear transformation. Similarly, show how to transform a —5 to + 5 scale
into a 0 to 1 scale.

4. If we measure an agent’s preferences on a Von Neumann-Morgenstern utility
scale, does it make sense to say that the agent prefers a given prize twice
as much as another?

4-3a. Some Comments and Qualifications on the

Expected Utility Theorem
Now that we have concluded the proof of the expected utility theorem, let us
reflect on what it has accomplished for us. The theorem is a representation the-
orem; that is, it shows that a certain nonnumerical structure can be represented
numerically. Specifically, it tells us that if an agent’s preferences have a suffi-
ciently rich structure, that structure can be represented numerically by means
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of an interval utility function having the expected utility property. We proved
the theorem by assigning numbers to each prize and lottery and then verifying
that the resuiting numerical scale had the desired properties. However, if the
agent’s preferences had failed to satisfy any one of the conditions of the theorem,
then our construction would have failed to have the desired properties. For ex-
ample, without the continuity condition we could not be assured of a numerical
assignment for each lottery or prize, and without the reduction-of-compound-
lotteries condition we could not have established the expected utility property.
In a sense, then, the theorem merely takes information already present in facts
about the agent’s preferences and reformulates it in more convenient numerical
terms. It is essential to keep this in mind when applying the theorem and discuss-
ing its philosophical ramifications.

How might we apply the theorem? Recall that we needed an interval utility
scale for use with the rule of maximizing expected utility. Monetary scales
proved unsatisfactory, because monetary values sometimes part company with
our true preferences and because EMVs cannot ground our one-time decisions.

By contrast, utility scales do assign “true values” in the sense that utilities
march along with an agent’s preferences. Furthermore, each act in a decision un-
der risk is itself a lottery involving one or more of the outcomes of the decision.
Thus we can expect our agent to rank all the acts open to him along with all the
prizes and lotteries. When he applies the rule of maximizing expected utility,
he chooses an act whose expected utility is maximal among his options. But the
utility of that act, since it is a lottery, is equal to its expected utility. Thus the
agent chooses an act whose utility is highest. If there were an act he preferred
to that one, it would have a higher utility. Hence in picking this act, the agent
is simply taking his most preferred option. This is true even in the case of a one-
shot decision. So we now know what justifies the use of expected utilities in
making decisions under risk—in particular one-time decisions. It is this: In
choosing an act whose expected utility is maximal an agent is simply doing what
he wants to do!

Closer reflection on these facts about the theorem may cause you to won-
der how it can have any use at all. For the theorem can be applied only to those
agents with a sufficiently rich preference structure; and if they have such a struc-
ture, they will not need utility theory —because they will already prefer what it
would advise them to prefer.

Still, decision theory can be useful to us mortals. Although the agents of
the theorem are ideal and hypothetical beings, we can use them as guides for
our own decision making. For example, although we may find that (unlike the
ideal agents) we must calculate the expected utility of an act before we can rank
it, this still does not prevent us from ranking one act above another if its ex-
pected utility is higher. We also can try to bring our preferences into conformity
with the conditions of the expected utility theorem. In practice we might con-
struct our personal utility functions by setting utilities for some rcasonably small
number of alternatives and then obtain a tentative utility function from these
points by extrapolation and curve fitting. This tentative function can be modified
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by checking its fit with additional alternatives and a new function can be
projected from the resuits, and so on, until we obtain a function satisfactory for
our current purposes.

Furthermore, utility functions are useful even for ideally rational agents —
for the same reason that arabic numerals are preferable to roman numerals. Util-
ity functions facilitate the manipulation of information concerning preferences—
even if the manipulator is an ideally rational being.

But, whether they are our own or those of ideally rational beings, we must
approach such manipulations with caution. Suppose an agent assigns a utility of
2 to having a dish of ice cream. Can we conclude that the agent will assign a
utility of 4 to having two dishes? No, utility is not an additive quantity; that is,
there is no general way of combining prizes with the result that the utility of the
combination equals the sum of the utilities of the components. As a result, it does
not make sense to add, subtract, multiply, or divide utilities. In particular, we
have no license to conclude that two dishes of ice cream will be worth twice the
utility of one to our agent. If eating the second dish would violate his diet, then
having two dishes might even be worth less to him than having one.

It would also be fallacious to conclude, for example, that something as-
signed a utility of 2 on a given scale is twice as preferable to something assigned
a 1 on the same scale. For suppose that the original scale is a 1 to 10 scale. If
we transform it to a 1 to 91 scale by the permissible transformation of multiply-
ing every number by 10 and then subtracting 9, the item originally assigned 1
will continue to be assigned 1 but the one assigned 2 will be assigned 11. Thus
its being assigned twice the utility on the first scale is simply an artifice of the
scale and not a scale-invariant property of the agent’s preferences.

As a general rule, we must be cautious about projecting properties of util-
ity numbers onto agents preferences. A utility scale is only a numerical rep-
resentation of the latter. Consequently, agents have no preferences because of
the properties of their utility scales; rather their utility scales have some of their
properties because the agents have the preferences they have.

PROBLEMS

1. Suppose that yesterday the highest temperature in New York was 40 degrees
Fahrenheit whereas in Miami it was 80 degrees Fahrenheit. Would it be cor-
rect to say that Miami was twice as hot as New York?

2. To graph utility against money, we represent amounts of money on the x-
axis and utilities for amounts of money on the y-axis and draw utility graphs
in the usual way. One utility graph for an EMVer is the straight line given
by the equation y =x. This graphs the function u(x) = x. All the other utility
functions of the EMVer are positive linear transformations of this one. De-
scribe their graphs.

3. Suppose you have an aversion to monetary risks; that is, you prefer having
an amount of money for certain to having a lottery whose EMYV is that
amount. What does your utility graph for money look like in comparison to
the graph y=x7?
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4. Suppose you welcome monetary risks in the sense that you would rather take
a gamble whose EMV was a certain amount than have that amount for cer-
tain. Now what does your utility graph look like?

5. What could we conclude about the preferences of someone whose utility
function for money was given by

ux)= x*
in the $0 to $100,000 range and by
u(x) = (100,000)*

for amounts greater than or equal to $100,000?

4-4, Criticisms of Utility Theory

A number of thinkers have criticized utility theory and the expected utility the-
orem. I will begin by discussing some criticisms of the better-chances condition,
the reduction-of-compound-lotteries condition, and the continuity condition.
Then I will turn to three paradoxes that have been used to criticize the theory
as a whole.

Some have objected to the better-chances condition as a requirement of ra-
tionality on the grounds that if you prefer life to death, the condition requires
you to prefer any act that does not increase your risk of death to one that does—
no matter how small the increase might be. But such preferences could lead to
total and irrational paralysis. You would not even get out of bed in the morning
for fear of dying. The answer to this criticism is that the better-chances condition
has no such implications. When, for instance, I compare an afternoon in front
of the TV with one hang gliding, I am not comparing one pure life-and-death
lottery with another. I am comparing a safe but dull afternoon with a dangerous
but thrilling one. For the better-chances condition to apply the two lotteries must
involve the same outcomes, and here they plainly do not. I might die during the
afternoon while I watch TV just as I might die while hang gliding. But dying
while watching TV is surely a different and less noble outcome than dying while
hang gliding. (You might think it is irrational to go hang gliding, or, if you pre-
fer, to play Russian roulette, because the chances of dying are so great. Remem-
ber that decision theory concerns itself only with the form of an agent’s prefer-
ences and not with their specifics. Decision theory will not tell you not to prefer
Russian roulette to ordinary roulette, but it will tell you that if you prefer one
to the other, you cannot also be indifferent between them.)

The standard objection to the reduction-of-compound-lotteries condition is
not so easily dismissed. Since utility theory forces an agent to regard compound
lotteries as indifferent to certain simple ones, it (or so the objection goes) ab-
stracts from the pleasures and anxieties associated with gambling. The avid gam-
bler will not be indifferent between a single-stage lottery and a multistage one,
whereas someone who regards gambling as wrong, will want to do it as little
as possible. Utility theory, with its reduction-of-lotteries condition, has no place
for these preferences and aversions.
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To respond to this criticism we must distinguish between those multistage
lotteries that are simply theoretical idealizations introduced for calibrating utility
scales and real-life multistage lotteries that may take weeks or months to be com-
pleted. We can think of theoretical lotteries as being run and paid off in an in-
stant. Given this it would not make sense for an agent to distinguish between
having, say, a $100 ticket to an instantaneous simple lottery ticket paying $100
unconditionally and an instantaneous multistage lottery with the same outcome.
In this case we need not take the objection seriously.

On the other hand, if a multistage lottery takes place over time, we cannot
use this reply. Suppose, for example, that in situation A an agent is faced with
the prospect of a 25% chance of selling her house today and a 75% chance of
never selling it. In situation B, the same agent is faced with a 50% chance of
agreeing today on an option to sell the house within the week and a 50% chance
of never selling it. However, if the option is taken, the agent faces a 50% chance
that the prospective buyer will obtain a loan and buy the house within the week
and a 50% chance that the deal will collapse and the house will never be sold.
Using lottery trees we might represent the two situations as follows (figure 4-5).

Situation A Situation B

Sale

Sale
.25
No Sale

75

No Sale No Sale
Figure 4-5

If the ouicomes are as these trees represent them, the compound lottery in B
reduces to the simple lottery in A in accordance with the reduction-of-com-
pound-lotteries condition. That would constitute a genuine objection to a theory
since an agent who sorely needs to sell her house today would rightly prefer A
to B. But are the outcomes really as the trees represent them? I think not, for
in situation B the sale is not made today but within the week. Someone who
needs his money now or dislikes the suspense of waiting as much as one week
will not view the outcomes in A and B as the same. Thus the compound lottery
in B and the simple one in A do not satisfy the antecedent of the reduction condi-
tion and, accordingly, do not qualify as counterexamples. I would expect that
other “over time” counterexamples could be dissolved similarly.
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The objection to the continuity condition is similar to that to the better-
chances condition. Suppose 1 prefer living another ten years to receiving a gift
of one cent right now to dying immediately. Then the continuity condition re-
quires me to be indifferent between receiving the penny right now and accepting
a lottery that gives me some positive chance of dying on the spot. One might
object that it is irrational for me to risk an additional chance of dying for a mere
penny. But note that the continuity condition requires only that the chance be
positive —not that it constitute a significant increase in my chances of dying. So
all T am required to do is to be indifferent between receiving the penny and posi-
tively increasing my chances of dying by as little as I want. There need be noth-
ing irrational in that at all.

Although most decision theorists do not take the objection to the con-
tinuity axiom seriously, some have developed utility theories that do not use the
continuity condition. These are multidimensional or multiattribute utility the-
ories in which outcomes are evaluated along several dimensions (or with respect
to several attributes). For example, in choosing between having and not having
an operation to relieve chronic back pain, a person could consider several attri-
butes of each of the outcomes, such as the risk of death, the attendant pain, the
length of the recovery period, the costs, and so on. It may well be that this per-
son can order the outcomes in terms of priorities — for example, minimizing dis-
ability might have the highest priority, minimizing long-term pain the next,
minimizing the risk of death the next, and so on. Yet this person might be un-
able or unwilling to make “trade-offs,” for example, to trade more disability for
less pain, and thus unable or unwilling to combine the many dimensions into
one. This would violate the continuity condition since that condition requires all
the outcomes to be ranked on the same numerical scale. But this does not seem
irrational in itself. A properly constructed multidimensional utility theory
should be able to deal with this question. But I will not be able to explore this
matter further here.

4-4a. Allais’s Paradox

I will now turn to three “paradoxes” directed at utility theory as a whole. The
first, proposed by the contemporary French economist Maurice Allais, presents
us with two situations. In situation A we offer an agent a choice between receiv-
ing $1,000,000 for certain and a lottery that furnishes him a .1 chance of win-
ning $5,000,000, a .89 chance of winning $1,000,000 and a .01 chance of
receiving nothing at all. In situation B the choice is between two lotteries. One
offers a .1 chance at $5,000,000 and a .9 chance at nothing, the other offers a
.11 chance of $1,000,000 and a .89 chance of nothing. Figure 4-6 presents the
decision trees for these two situations. The paradox is this. Many presumably
rational and reflective people find that they would prefer a (the bird in the hand)
to b if they were in situation A and would prefer ¢ to d in situation B. But no
matter what your utility for money is, the choices of ¢ in A and ¢ in B, or b
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™
a
5M
1
A
b 89 1M
01
0
5M
1
[
9
B 1™
11
d
89
0
Figure 4-6

in A and d in B contradict utility theory. To see how, let us compute the utilities
for a, b, ¢, and d. They are:

ul@)=u(lM)

ub) = .1lu(5M) + .89u (1M) + .01u (0)
u(c)=.1u(5M) + .9u(0)
u(d)=.11u(IM) + .89 (0).

But it then follows by simple arithmetic that

u@)—u®d)=.11u(IM) — [.1u (5M) + .01u (0)]
uld)—u(c)=.11u(IM) — [.1u (5M) + .01u (0)].

Now if you prefer a to b, then u(a) > u(b), so u(a) —u(b)>0. But then
u(d) > u(c), so you must prefer d to ¢ to conform to utility theory. A similar
argument shows that if you prefer b to a, you ought to prefer ¢ to d. But, of
course, many people balk at these recommendations.

Several resolutions of this paradox have been advanced and each has been
criticized. Two deserve examination here. The first follows the line I used in re-
sponding to the counterexamples to the better-chances and reduction conditions.
It consists in arguing that the formal representation of situations A and B is in-
correct and that, consequently, nobody who chooses a in A and ¢ in B contra-
venes utility theory. The argument turns on the claim that anyone who chooses
b in situation A and ends up with nothing has done so when he could have had
$1,000,000 for certain. No one would be passing up a certain $1,000,000 in sit-
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uation B. Thus we have misrepresented the two situations by using O in both to
stand for the outcome in which the agent receives nothing. The outcome desig-
nated as O in situation A presumably has a lower utility than its correspondent
in B. Once this is acknowledged the rest of the argument breaks down, since
we can no longer count on the truth of u(a) ~u(b) =u(d) —u(c).

Another resolution, proposed by the statistician Leonard Savage, tries
to persuade us that the reasoning that leads people to choose a in A and ¢ in B
is fallacious. Savage asks us to represent the two situations as involving
choices between lotteries with 100 tickets where the payoffs are given according
to table 4-5. (Here is how row b is obtained: the .01 chance of O is con-

4-5 Ticket Number
1 2-11  12-100

a M M M
A

b 0 SM M

c 0 M 0
B

d M M 0

verted to a payoff of O for 1 ticket out of 100 [ticket number 1]; the chance of
.1 at $5,000,000 is converted to a payoff of $5,000,000 for 10 tickets out of
100 [tickets 2-11], and the .89 chance at $1,000,000 is converted to a payoff
of $1,000,000 for 89 tickets of the 100. The rest of table 4-5 is obtained
similarly.)

Now in choosing lotteries in either situation tickets 12-100 can be ignored,
because they give the same prizes in their respective sitvations. Thus the deci-
sions between a and b and between ¢ and d should be based on the first two
columns of the table. However, the first two columns of a and d are identical
and so are those of b and c. Accordingly, it is obviously mistaken to choose a
in A and not d in B or b in A and not ¢ in B.

In short, Savage claims that those who succumb to the Allais paradox have
simply made a mistake in reasoning. This is no different, he urges, than the mis-
takes otherwise intelligent people often make in estimating probabilities or in
carrying out complicated mathematical arguments. In each case all we need do
to correct them is to point out their errors clearly and perspicuously. I will let
you decide whether you find this or the previous resolution of the Allais paradox
convincing.

4-4b. Ellsberg’s Paradox

The Allais paradox derives its force from our tendency to prefer having a good
for certain to having a chance at a greater good. The next paradox, developed
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by Daniel Ellsberg, appeals to our preference for known risks over unknown
ones.

Here is a version of the Ellsberg paradox that is quite similar to Allais’s
paradox. An urn contains ninety uniformly sized balls, which are randomly
distributed. Thirty of the balls are yellow, the remaining sixty are red or blue.
We are not told how many red (blue) balls are in the urn—except that they num-
ber anywhere from zero to sixty. Now consider the following pair of situations.
In each situation a ball will be drawn and we will be offered a bet on its color.
In situation A we will choose between betting that it is yellow or that it is red.
In situation B we will choose between betting that it is red or blue or that it is
yellow or blue. The payoffs are given in table 4-6.

4-6 Yellow Red Blue
30 60

a 100 0 0
A

b 0 100 0

c 0 100 100
B

d 100 0 100

When confronted with this decision people frequently reason as follows.
In situation A, I will pick bet a (yellow), since the chance of the ball’s being red
might be quite small. But in situation B, I will pick bet ¢ (red or blue). That gives
me sixty chances out of ninety at winning, whereas if I took bet d (yellow or
red), I might have only thirty out of ninety chances.

Now suppose that we reasoned this way. Then our choices could not con-
sistently reflect the expected utilities of the bets. For let p be the probability of
getting a blue ball given that the ball is red or blue and let A be the utility of
100 and B the utility of 0. Then the expected utilities are:

EU(a) = (1/3)A + (2/3)pB + (2/3)(1 —p)B = (1/3)A + (2/3)B
EU®b) =(1/3)B + (2/3)pA + (2/3)(1 —p)B=B + 2/3)p(4 — B)
EU(c)=(1/3)B+ 2/3)pA+ 2/3)(1 —p)A= (1/3)B + (2/3)4
EUd) = (1/3)A+ (2/3)pB + (2/3)(1 —p)A=A + (2/3)p(B — A).

Now subtract EU (b) from EU(a) and EU(d) from EU(c). You will find that
EU(a) —EU(b)= —[EU(c) — EU(d)].

This means that our preferences will accord with expected utilities if and only
if our preferences for a and b are the reverse of those for ¢ and 4. So we cannot
pick a in situation A and c in situation B without contravening utility theory.

I will present two responses to the Ellsberg paradox, although, as with the
paradox by Allais, there have been numerous discussions of it. The first re-
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sponse mimics Savage’s resolution of the Allais paradox. Notice that the figures
in the third column for @ and b in table 4-6 are identical and so are those for
¢ and d. Hence, or so Savage would claim, the third column can be ignored in
making our decisions. If we do that, a and d are equivalent and b and c are
equivalent. It follows immediately that we should prefer a to b just in case we
prefer d to c.

Furthermore, there is a mistake in the reasoning that leads people to
choose a and c¢. They say that they will pick a over b because the probability
of getting a red ball might be quite small. In fact, it has to be less than 1/3 for
the choice of @ to be better than that of ». This would mean that the probability
of getting a blue ball would be 1/3 or greater. This is inconsistent with the
reasoning they give for choosing ¢ over d. For that choice makes sense only if
the probability of getting a blue ball is less than 1/3.

The other resolution consists in noting that we do not know the probability
p used in comparing the expected utilities of the four bets. Thus these are deci-
sions under ignorance rather than under risk, so the rule of maximizing expected
utilities does not apply.

If you accept the subjective theory of probability, however, this alternative
is not open to you. For the mere fact that nobody has told us the ratio of red
to blue balls will not prevent us from assigning a subjective probability to the
color of the ball that is drawn. This being so, choosing bets a and ¢ would con-
tradict the combined theories of utility and subjective probability. Perhaps this
speaks against the combined theories, but those who believe the combined ap-
proach is the correct one could make a virtue out of this vice. They could argue
that the combined theories present simultaneous constraints on our assignments
of probabilities and our preference orderings. Obeying them is a difficult and
complex task, so we should expect that from time to time our initial hunches will
need to be corrected by the theory. To take a well-known example from proba-
bility theory, since one spin of a roulette wheel is independent of any other, it
would be wrong for you to conclude after a long losing streak at the roulette ta-
ble that you were almost certain to win on the next spin. Drawing such a conclu-
sion is called the gambler’s fallacy. Having been educated in the ways of proba-
bility, we can appreciate why it is a fallacy, but I am sure that each of us either
has committed it or has been sorely tempted to do so. Someone like Savage
would urge that the Allais and Ellsberg paradoxes play a similar role in our in-
tellectual life. Those of us uneducated in decision theory react as Allais and Ells-
berg tempt us to react. But once we have learned the theory and have correctly
reflected on its morals, the paradoxes join the ranks of old mistakes along with
the gambler’s fallacy.

4-4c. The St. Petersburg Paradox

The next paradox, known as the St. Petersburg paradox, docs not apply to the
version of utility theory presented earlier, because it depends on the assumption
that there is no upper bound to the agent’s utility scale. This happens when for
any basic prize there is always a better one. The purpose of the paradox is to
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show that under this assumption the agent will assign something an infinite
utility —even if he assigns only finite utilities to the basic prizes.

Before passing to the derivation of the paradox let me note that unbounded
utility scales can be constructed along the same lines as we used in constructing
bounded utility scales. Although the construction is mathematically more com-
plicated, it requires no further conditions on the rationality of the agent’s pref-
erences.

The St. Petersburg paradox is based on the St. Petersburg game, which
is played as follows. A fair coin is tossed until it lands heads up. If the first toss
is heads, then the player is given a prize worth 2 on his utility scale (2 utiles,
for short). If it lands heads on the second toss, he is given a prize worth 4 utiles,
and so on, with heads on the nth toss paying 27 utiles. The paradox is simply
that playing the St. Petersburg game has an infinite utility to the agent. Thus he
should be willing to surrender any basic prize as the price of admission to the
game.

To see why, note that the probability of heads on the first toss is 1/2, that
of heads on the second but not the first is 1/4, . . . , that on the nth but not on
the first n — 1 tosses is 1/2". Thus the expected utility of the game is

22+ 14+ ... (A2HRH+ ... =1+1+1+ ...

which is larger than any finite number. And utility theory tells us that the ex-
pected utility of the game is its utility.

One might object that we have not made sense of infinite lotteries in our
development of utility theory and that the St. Petersburg game is essentially an
infinite lottery. True, but many decision theorists would not be moved by this.
For utility theory is easily extended to cover infinite lotteries, and it must be in
order to handle more advanced problems in statistical decision theory. From the
mathematical and logical point of view, the derivation of the St. Peterburg para-
dox is impeccable.

The only alternative then, short of modifying utility theory, is to question
the assumption on which it is built—that is, that the agent’s utility scale is un-
bounded. Now it must be admitted that this assumption simplifies the mathemati-
cal treatment of many advanced applications of utility theory. Also there is noth-
ing irrational on the face of it in having an unbounded utility scale. So
responding to the paradox by prohibiting such scales is not an attractive option.
My inclination is to see the paradox as simply showing us the music agents must
face if they do not bound their preferences. Although I see nothing irrational in
unbounded preferences per se, the St. Petersburg paradox favors avoiding them.

On the other hand, I see no reason for the St. Petersburg paradox to arise
in practice. No one is insatiable; there can be too much of anything —even life,
money, and power. When the saturation point with respect to a “commodity” is
reached there is a disutility to having more of it. (What would you do with all
the money in the world? What value would it have if you had it all?) If this is
correct, the paradox is bascd on a theoretically possible but unrcalistic assump-
tion. On the other hand, in a theory of ideal rational beings theoretical possibili-
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ties cannot be treated lightly. Some decision theorists have taken the paradox
quite seriously and have proposed modifications of utility theory to avoid it.

PROBLEMS

1. Ellsberg presented another paradox. If we offer people a bet on a fair coin,
most are indifferent between betting on heads and betting on tails. They are
similarly indifferent when offered a bet on biased coins when they are not
told the bias. However, when offered the choice

bet heads on the fair coin vs. bet tails on the biased one
they prefer to bet on the fair coin. Suppose that whichever coin is involved
in a winning bet pays $1, whereas a losing one pays nothing. Show that the
choices most people make contradict the combined theories of utility and
subjective probability.

2. Of course, if you are a fan of utility theory and have reservations about sub-
jective probabilities, the Ellsberg paradox confirms your suspicions. Explain
why.

3. In both the Allais and Ellsberg paradoxes we have appealed to what “most
people” think or to what “many apparently rational and thoughtful people”
think. What bearing, if any, does this have on decision theory, construed as
a theory of ideally rational beings?

4. Utility theory originated in attempts to deal with a version of the St. Peters-
burg game played with monetary prizes. In 1730, Daniel Bernoulli proposed
that monetary values be replaced with their logarithms. If we use logarithms
to the base 10, then the expected value of this version of the St. Petersburg
game is

(1/2)logio(2) + (1/4)logio(4) + (1/8)logie(8) + . . . ,

which converges to a finite sum. Notice, however, that log;o(10) =1,
log10(100) =2, logio(1,000) =3, etc., so that we can reinstate the St. Pe-
tersburg paradox by increasing the payoffs. Give a detailed explanation of
how this can be done.

4-5. The Predictor Paradox

Here is a paradox, introduced by a physicist named Newcomb, which has gener-
ated more controversy than all the others combined.

Suppose a being with miraculous powers of foresight, called the Predictor,
offers you the following choice. There are two shoe boxes on the table between
the two of you. One is red, the other blue. The tops are off the boxes and you
can see that the red box has $1,000 in it and that the blue box is empty. The
Predictor tells you that you are to leave the room and return in five minutes.
When you return you will be offered the choice of having the contents of the
blue box or that of both boxes. The Predictor also tells you that while you are
out of the room he will place $1,000,000 in the blue box if he predicts that you
will take just the blue box, and he will leave it empty if he predicts that you will
take both boxes. You leave the room and return after five minutes. The top is
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still off the red box and the $1,000 is still in it. The blue box is now closed. You
have heard about the Predictor before. You know that almost everyone who has
taken both boxes has received just $1,000 while almost everyone who has taken
just the blue box has received $1,000,000. What is your choice?

Suppose you use decision theory to help with your choice and your utility
for money is equal to its EMV. Then you will have decision table 4-7. The

4-7 Blue Box Empty  Not Empty
Take Blue Box 0 M
.1 9
Take Both Boxes $1,000 IM + $1,000
.9 1

probabilities are determined as follows: You reckon that if you take just the blue
box there is a 90% chance that the Predictor will have predicted that you would
and will have put $1,000,000 in that box. You also think that there is only a 10%
chance that he will have predicted incorrectly and left the box empty. Similarly
you reckon that if you take both boxes, there is a 90% chance that he will have
predicted that and left the blue box empty. It is easy to see that, given this prob-
lem specification, you will maximize expected utility by taking just the blue box.
Recalling all your rich friends who took just the blue box, you are about to reach
for it.

But doubt strikes. You notice that the dominant choice is to take both
boxes. What then should you do? Decision theory’s two most venerable rules
offer you conflicting prescriptions!

Then you remember that the dominance principle is supposed to yield to
the principle of maximizing expected utility when the probabilities of one or
more states are dependent on the choices made. This made good sense in the nu-
clear disarmament example because disarming made an attack by the other side
highly likely. But does it make good sense in this case? You argue to yourself:
The $1,000,000 is already in the blue box or it is not. My choice cannot change
things now. If there is $1,000,000 in the blue box, then taking both will yield
$1,001,000 which is better than taking just the blue box. If the $1,000,000 is
not there, I can get $1,000 by taking both boxes, and that’s better than taking
just the blue box and getting nothing. So in either case I am better off taking
both boxes.

Yet next you remember that your friends who reasoned in this way are still
poor whereas those who took the blue box are rich. But that does not seem to
make sense either. Can the Predictor exercise mind control and influence your
choice, thereby making his prediction come true? But how? He has not even told
you what his prediction is. Or can your choice somehow influence his predic-
tion? But again how? You choose after he predicts.

The dilemma is this. If we usc the dominance principle to decide, we must

110



DECISIONS UNDER RISK: UTILITY

ignore all the empirical data pointing to the folly of choosing both boxes; but
if we follow the data and maximize expected utility, we are at a loss to explain
why the data are relevant. So what is your choice?

If you do not know what to do, take comfort: You are not alone. Many
decision theorists think you should take both boxes but many others think you
should take just the blue one. Moreover, this paradox has shaken decision theory
to its foundations.

Before we consider some of the growing number of responses to the
Predictor paradox, let us bring it down to Earth. (Not that this fanciful example
is not useful, for, even if it might not arise in practice, it points to a conceptual
weakness in decision theory.) Here are two real-life problems closely related to
the Predictor paradox.

The first is derived from the religious views of the sixteenth-century Prot-
estant theologian John Calvin. According to one interpretation of Calvin’s views,
God has already determined who will go to Heaven and nothing we do during
our lifetimes —whether we be saints or sinners —will change this. On the other
hand, although no mortal can know whom God has chosen, Calvinists believe
that there is a high correlation between being chosen and being devout. Now
suppose you are a dyed-in-the-woo! Calvinist and are sorely tempted to commit
some sin. You consider two arguments. According to the first you should pick
the dominant act. Go ahead and sin, since that is not going to affect your going
to Heaven anyway, and an carthly life with pleasure is better than one of Cal-
vinist abstinence. But the other argument tells you that you should restrain your-
self. As a devout Calvinist, you are certain that your sinning would be a clear
sign that you are not among the elect.

Now for a contemporary example. Smoking cigarettes is highly correlated
with heart disease. Smokers are much more likely to have heart troubles than
nonsmokers and heavy smokers are at greater risk than light ones. Heart disease
also seems to run in families and to be associated with ambitious, serious, and
competitive individuals, known as type A personalities. Today most people
researching the causes of heart disease regard smoking, genetic predisposition,
and the type A personality as independent contributing causes of heart disease.
However, suppose the causal story went as follows instead: Type A personality
is inherited (just as breeding has made race-horses high strung and draft horses
calm), and people with type A personalities have a greater need to smoke than
do other people. However, smoking does not cause heart discase, rather the
cause is the same genetic defect that produces the type A personality. Thus the
cause of smoking and heart disease is at bottom one and the same —a genetic de-
fect. Let us suppose that the same story held for the other diseases — for example,
cancer, emphysema—in which smoking has been implicated. If you believed this
story and were trying to decide whether to smoke, you might be in a dilemma
similar to the Predictor paradox. For the high correlation between smoking and
various diseases bestows a higher expected utility on not smoking. But you
would either have a disease-causing genetic defect or not. If you had it, smoking
would not increase your risk of disease, and it would (or so I will suppose) lead
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to a more pleasurable life than would abstaining from smoking. So dominance
considerations would argue for smoking. Once again the rule of maximizing ex-
pected utility and the dominance principle would conflict.

PROBLEMS

1. I formulated the Predictor paradox using .9 as the probability of the cor-
rect predictions, but it need not be that high. Assuming, as indicated in
table 4-7, that P(S1/41) = P(S2/A>), how low can it get subject to the con-
dition that taking the blue box remains the act with greatest expected util-
ity?

2. Set up a decision table for the Calvinist example that will establish it as a
variant of the Predictor paradox.

3. Do the same for the smoking example.

4-6. Causal Decision Theory

The Predictor paradox, the Calvinist example, and our fanciful speculations on
the causes of smoking-related diseases remind us that from time to time there
can be a high correlation between two sorts of phenomena without any causal
relation between them. Almost every time the thermometers go up in my house
it is hot. The same thing happens in every other house I know. So the probability
that it is hot given that the thermometer readings are high is close to 1. Does
that mean that the high thermometer readings cause it to get hot? Obviously not.
Everything we know about temperatures and thermometers tells us that the
causal relation goes oppositely. Because of this it would be silly to try to heat
a room by holding a match under the thermometer on the wall. But would it not
be just as silly for someone who really believed my fantasy about the causes of
heart disease to try to erase its genetic cause by not smoking? Or for my Cal-
vinist to try to get into Heaven by being devout? Of course, the Calvinist does
not know whether he is among the elect and the potential victim of heart disease
might not know whether she has unlucky genes. But that does not matter since,
under the terms of the stories, the woman considering smoking knows that her
doing so will not alter her chances of getting heart disease and the Calvinist
knows that his sin will not consign him to Hell.

These examples show that even though a state is highly probable given an
act, the act itself need not be an effective method for bringing about the state.
Given everything we know about causal relationships, taking just the blue box
is not an effective method for ensuring that there will be $1,000,000 in it. Per-
haps we were mistaken then in using conditional probabilities in setting up the
decision table for the Predictor paradox. Let us try again using the unconditional
probabilities of the states. Since we do not what they are, I will denote them by
“p” and “1 — p.” This yields table 4-8. Then whatever the value of p, taking both
boxcs has the higher expected utility, which agrees with the recommendation of
the dominance principle. Applying the same strategy to the smoking and Cal-
vinist cases yields similar results. This is how causal decision theory solves the
Predictor paradox.
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4-8 Blue Box Empty  Not Empty
Take Blue Box 0 M
p l-p
Take Both Boxes $1,000 1M + $1,000
p l-p

However, there is more to causal decision theory than I have indicated so
far. It does not advocate an unqualified return to unconditional probabilities. If
you believe, as most of us do, that smoking does cause disease, then, despite
smoking’s dominating, causal decision theory recommends that you not smoke.
Given our current beliefs about the causal relationship between smoking and
disease, causal decision theory tells us to calculate expected utilities in the old
way, that is, by using probabilities conditional on the acts of smoking and not
smoking.

To have a more general formulation of causal decision theory, let us define
the conditional causal probability of a state given an act as the propensity for
the act to produce or prevent the state. Notice that if an act has a propensity to
bring about a state, the conditional causal probability of that act will be greater
than the unconditional probability of the state. If, on the other hand, the act has
a propensity to prevent the state, the latter probability will be higher than the
former. Finally, if an act has no propensity to affect the state, the probabilities
will be the same.

Causal decision theory uses causal conditional probabilities in place of un-
qualified conditional probabilities. Warmer rooms do have a propensity to bring
about higher thermometer readings, but the converse is not so. Thus, in applying
causal decision theory, we can use the probability that a thermometer will rise
given that it is located in a room that is becoming hotter. However, we must
replace the converse conditional probability by the absolute probability, because
the thermometer’s rising has no propensity to bring about a rise in the room’s
temperature.

We can now see the rationale for causal decision theory’s solution to the
Predictor paradox. In making decisions we select acts in virtue of their power
to produce the outcomes we desire (and hence the states that foster those out-
comes). In view of this, it would be wrong for us to endow our decision theoretic
framework with indicators of the efficacy of our acts that we know to be mislead-
ing. In the Predictor, Calvinist, and smoking examples, there is, as far as we
can tell, no propensity for the acts to bring about the states. Thus standard deci-
sion theory used the wrong indicators in treating them. No wonder, then, that
it produced an apparently inexplicable contradiction between the principle of
maximizing expected utility and the dominance principle.

Sometimes a decision maker will be quite certain that an act will affect a
state, but be uncertain about its ultimate outcomes because of other states she
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is unable to affect by her choices. A physician, for example, might be certain
that giving an injection of penicillin is an effective way to cure a patient’s in-
fected toenail, but be uncertain whether it will cause a dangerous penicillin
reaction—something over which she has no control. She should use conditional
probabilities for evaluating the consequences of giving penicillin as far as the
infection is concerned and unconditional probabilities for the allergic reaction.
We could put this in the form of decision table 4-9 as follows. (For the sake of
generating probability numbers, I will assume that the patient has a 50% chance
of being allergic, that penicillin is an effective cure 75% of the time, and that
the patient has a 30% of “curing himself” if no penicillin is given. Being cured
of the infection is independent of having a reaction, so I will multiply the proba-
bilities in calculating the probabilities of the various conjunctive states. I will
also omit utilities.)

4-9 Patient Allergic Not Allergic
Infection Infection
Cured Not Cured Cured Not Cured
Give Cure & No Cure & | Cure & No Cure &
Penicillin Reaction Reaction No Reaction | No Reaction
.375 125 375 125
Cure & No Cure & | Cure & No Cure &
Do not No Reaction | No Reaction | No Reaction | No Reaction
.15 .35 .15 .35

Another sort of case is one in which the decision maker is unsure of the
propensity of a given act to bring about a given state. Consider our physician
again. Let us suppose she knows that her patient is not allergic to penicillin, but
this time the patient has a staph infection. Here the physician might vacillate be-
tween thinking that penicillin has only a 50% chance of curing the patient and
thinking that it has a 75% chance, while assigning a probability of 50% to each
hypothesis. Suppose her other choice is to use antibiotic X in place of penicillin
and that she is certain this is 60% effective. Then her decision could be repre-
sented as follows in table 4-10. (Again, I will omit utilities.)

4-10 Pen. 50% Effective Pen. 75% Effective
Infection Infection
Cured Not Cured Cured Not Cured
Give Cure No Cure Cure No Cure
Penicillin .25 .25 .375 125
Give X Cure No Cure Cure No Cure
tve 30 20 30 20
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The general form of these two examiples is this. We first set out a mutually
exclusive and exhaustive list of states that represent those factors relevant to the
decision that will not be affected by the acts. This may include possibilities con-
cerning the propensity of one or more of our acts to affect other states. Then
under each of these states we set up a mutually exclusive and exhaustive list of
relevant states that will be affected by the act, repeating this division under each
state from the first group. Using absolute probabilities for states in the first group
and causal conditional probabilities for those in the second group, we calculate
the probabilities for each square of decision table 4-10 by multiplying the proba-
bilities of the two states that determine it. Expected utilities are then calculated
in the usual way: Multiply each utility in a square by the corresponding probabil-
ity and sum across the rows.

PROBLEMS

1. Suppose in the first penicillin example the physician’s utilities are as follows:
u(cure & no reaction) = 1, u(cure & reaction) =.5, u(no cure & no reac-
tion) = .25, u(no cure & reaction) =0. Should the physician use penicillin?

2. Suppose in the second penicillin example the physician is also uncertain
about the effectiveness of antibiotic X. She thinks there is a 50% chance that
it is 70% effective and a 50% chance that it is 40% effective. Set up a deci-
sion table for this example, supplying probabilities for each square.

4-6a. Objections and Alternatives

Causal decision theory is certainly a reasonable and attractive alternative to the
standard theory of expected utility maximization. But I would be remiss if I did
not point out that it too must deal with philosophical difficulties of its own. The
most prominent of these is its appeal to causal necessities (as opposed to mere
statistical regularities), which have been philosophically suspect ever since
Hume’s critique of causality. Hume’s thesis was a simple one: What pass for
causal necessities are in fact nothing but statistical regularities; for, try as we
may, we will never find evidence for causal necessities but only for statistical
regularities. Since Hume’s claim might seem very implausible to you, let us con-
sider an example where causal necessity seems to be plainly at work. You grab
a handful of snow, pack it into a ball, and throw it at one of your friends. The
snowball hits his back and splatters. On the face of it causes abound here: Your
exerting force on the snow causes it to form a hard ball, your hurling it causes
it to fly through the air, its impacting your friend’s back causes it to splatter, and
so on. Let us focus on your packing the snow, since here you seem to able to
even feel causal powers at work. Now Hume would not deny that whenever you
or anyone you know has packed snow into a ball, shortly thereafter there has
been a snowball in your or his hand. He would simply deny that this gives us
any evidence that you caused the snow to form a ball, in the sense that your ac-
tion necessitated the observed effect. If the cause must necessarily produce the
effect it is inconceivable for the cause to occur without the effect’s occurring.
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But we can easily conceive of cases in which we apply the “cause” to the snow
and no snowball results. For example, as we pack the ball, someone might shine
a heat lamp on the snow, “causing” it to melt. Now you might think that all this
shows is that we can cause the snow to form a ball so long as no interfering
causes prevent it. But given any putative list of interfering causes, it is still easy
to conceive of our packing the snow and the snow’s still failing to form a ball
despite the absence of each of the interfering causes in our list. Besides, we have
helped ourselves freely to the notion of causality in describing the example. If
we take a neutral stance, we should describe ourselves as having observed that
whenever we have had “snowball-packing” sensations we have found a snowball
in our hands. But once we look at the example in this way, Hume’s point be-
comes almost obvious. For we can have snowball-packing sensations without
even having anything in our hands!

If Hume is correct, there are no causal powers or laws—just highly
confirmed regularities —and causal decision theory is without foundation. View-
ing the heart disease example from the Humean point of view, we will find no
basis for distinguishing the high correlation between smoking and heart disease
and between the genetic defect and heart disease. Given that you smoke, it is
highly probable that you will get heart disease. Given that you have the defect,
it is highly probable that you will smoke and have heart disease. But without ap-
pealing to the concept of causality (or something similar) we have no grounds
for claiming that your smoking will affect your chances of having heart disease.
Similarly, we cannot, strictly speaking, say that your taking both boxes will have
no effect on whether there is $1,000,000 in the blue box; for the language of
cause and effects is not available to us. We are left then with nothing but correla-
tions. And given the correlations, we are best advised not to smoke and to take
just the blue box.

There is a practical and epistemological aspect to Hume’s problem too. For
even those who believe in causality have been hard pressed to specify methods
for distinguishing genuine causal relations from mere statistical regularities.
This problem bears on the applicability of causal decision theory, since it re-
quires us to segregate states over which we have causal control from those that
are connected to our acts by mere statistical regularities.

Although these difficulties favor a more Humean approach to decision the-
ory, causal theorists have a biting response. The point of decision theory, they
argue, is to develop methods for choosing acts that yield desirable consequences.
If our acts have no effect on the outcomes, what is the point of choosing? We
might as well just watch whatever happens, happen. Indeed, if there are no
causes, we act, if we can call it that, by being passive observers. How, then,
can we continue to speak of choosing between such acts as, say, replacing the
window myself or hiring someone to do it?

Some Humean theorists, or as they are now called, evidential decision the-
orists, although acknowledging this point, respond that the true role for decision
theory is to help us determine our preferences for news items. Pushed to the
limit, this would mean that when we decide between, say, marrying at cighteen
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or jilting our sweetheart and joining the Foreign Legion, we are determining
whether we would prefer to learn the news that we had married at eighteen or
instead that we had jilted our sweetheart and joined the Foreign Legion. Making
a choice is to pick from among such news items.

As long as one is consistent about this, decision theory retains its point.
Suppose that, in casual terms, I buy a brand-new Mercedes to ensure that people
will think I am rich. The evidential theorist can recast this as my choosing to
learn that I own a new Mercedes on the grounds that (1) I know there is a high
correlation between owning a Mercedes and being thought rich and (2) I desire
to learn that people think I am rich.

In the Predictor case causal decision theory advises us to take both boxes
because doing so cannot affect their contents. Evidential decision theory advises
us to pay attention to the evidence: There can be no evidence of causality since
there is no causality; but there is plenty of evidence that after we pick just the
blue box we are almost certain to learn that we are rich. So we ought to take
just the blue box. And so the debate goes.

Recently, Ellery Eells has indicated a way in which one can arrive at the
same recommendations as causal decision theory without having to base decision
theory on the distinction between those states that are under our causal control
and those that are not. However, unlike the dyed-in-the-wool Humean, Eelis
does assume that it makes sense to speak of causes. Consider the smoking exam-
ple again. Eells describes it in causal terms as we did before: A birth defect is
the common cause of both smoking and heart disease, and that is why there is
a high correlation between smoking and heart disease. However, Eells parts
company with the causal decision theorist at this point, for he does not simply
dismiss the high correlation between smoking and heart disease on the grounds
that we have no control over whether we have the genetic cause of both smoking
and heart disease. Instead he argues that if you are sufficiently rational and intel-
ligent, you will see that the high correlation in no way entails that the probability
that you, in particular, will get heart disease given that you smoke is greater than
the probability that you will get it given that you do not smoke. Eells bases his
reasoning on the assumption that you do not know whether you have the birth
defect and that you believe it is the common cause of both smoking and heart
disease. Given this, you might think that you should assign a high probability
to getting heart disease given that you smoke, since smoking is an indication that
you have the birth defect. But Eells parries this move by introducing another as-
sumption, namely, that you believe the common cause can cause you to decide
to smoke only by causing you to have desires and beliefs that entail that smoking
is an optimal act for you. Given this, you will believe that the variables deter-
mining your choice to smoke or not are fully captured in the particular beliefs
and desires you have when you make the decision. Eells assumes that you know
what your beliefs and desires are, although you do not know whether you have
the defect leading to smoking. But this means that you would believe that any
rational agent who had your beliefs and desires would, regardless of having or
not having the defect, arrive at the same decision. Thus you should assign the
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same probability to your deciding to smoke (and doing so) given that you have
the defect as you would assign to your deciding to smoke (and doing so) given
that you do not have the defect. Once you do that, however, the dominant act
is the rational one for you to choose.

Eells then argues that the same idea applies to the Predictor. Assuming that
as a rational agent you do not believe in backward causation, mind control, or
miracles, Eells concludes that you must believe that some common cause is
responsible for both your choice and the Predictor’s prediction. Perhaps there
is something about our appearance that distinguishes those who will take just the
blue box from those who will take both. Perhaps the Predictor is not even con-
scious of this. But no matter; you do not need to know what the common cause
is or whether you have it. You simply need to believe that the Predictor case
follows the same model as the smoking decision. Then the same reasoning shows
that you should assign the same probability to there being $1,000,000 in the blue
box given that you chose it alone as you would to there being $1,000,000 in it
given that you took both.

Although the Eells solution to the Predictor paradox avoids importing
causality directly into the formal scaffolding of decision theory, it still depends
heavily on causal reasoning in analyzing the problematic decisions. If you do not
believe in causality, then you could hardly accept Eells’s assumptions to the
effect that rational agents in the Predictor situation will believe that there must
be a common cause that links their choice and the Predictor’s prediction. A full
reconciliation between causal and evidential decision theory is thus still not in
the offing.

(A final note: There are variants of causal decision theory that reduce
causal necessities to something else, for example, to natural laws. But Humean
objections apply to these views too. Also I have only stated a response to Hume
that happens to be particularly suited to our concern with decision theory. Phil-
osophers have propounded several subtle and profound responses to Hume. Yet
the debate over the reality of causality rages on, with the advent of causal deci-
sion theory adding fuel to the fire.)

4-6b. Concluding Remarks on the Paradoxes

We have just reviewed a potpourri of paradoxes and have found definitive reso-
lutions to none of them. Does this mean that utility theory is doomed? That its
foundations are rotten and crumbling? How should we respond to the paradoxes?

First, we must determine the type of evidence that is to count as relevant
to utility theory. The fact that most people have an aversion to betting on coins
of unknown bias or prefer the bird in the hand, facts on which the Ellsberg and
Allais paradoxes depend, need not be relevant to abstract decision theory. For
the theory claims to describe the behavior of ideally rational beings rather than
that of ordinary people. On the other hand, we cannot determine what an ideally
rational agent would do by asking one or observing one in a psychological
laboratory. Such beings arc, after all, merely hypothetical extrapolations based
on what we think we would do if we had better memories, longer attention
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spans, quicker brains, sharper mathematical powers, and so forth. Thus our
judgment that a given act is irrational could be entirely relevant to a theory of
an ideally rational agent. In confronting the Ellsberg and Allais paradoxes, then,
one of the chief issues will be whether we should take our aversion to the choices
recommended by utility theory as failures on our part to be less than fully ratio-
nal or as evidence that utility theory has incorrectly characterized rational choice
under risk.

Decision theorists have taken both approaches to those paradoxes. Savage,
you will recall, tried to show us that the Allais paradox is simply a trick that
is easily explained away when seen in a clear light. But others have complicated
and revised decision theory to discount the utility of acts involving systems
whose biases are unknown and to mark up those involving certainties. If we de-
cide to reject Savage’s or similar resolutions, we should take such theories seri-
ously and see whether they harbor their own paradoxes or anomalies. Since
these theories are even more complicated than standard utility theory, I must
forgo that task here.

The St. Petersburg and Predictor paradoxes, by contrast, are intended to
show not that utility theory conflicts with our untutored views of rationality but
rather that it is internally incoherent: that it offers, as in the Predictor paradox,
conflicting recommendations, or that it commits us to something of infinite util-
ity so long as there is no upper bound to our preferences. Again, there are those
who have taken these paradoxes to heart and have offered revised versions of
utility theory. Causal decision theory is an example. And again, there are ex-
perts who believe that these paradoxes dissolve when carefully analyzed. Eells
is a case in point.

There has been an additional and most interesting reaction to the Predic-
tor paradox, however. Some people believe that it reveals that there are two
types of rationality. One type is captured by decision theories that apply the
dominance rule to the Predictor problem; the other is captured by theories that
follow the rule of expected utility maximization. Thus, just as we have had
alternative geometries for over a hundred years and alternative logics and
set theories for the last fifty years, we might now have alternative decision
theories.

In sum, reactions to the paradoxes range from dismissing them as intellec-
tual illusions to proposing revisions of utility theory to entertaining the possibil-
ity of alternative conceptions of rational choice. Plainly, it will be a while before
a consensus on the paradoxes is obtained.

4-7. References

The classic presentation of the version of utility theory expounded in this chapter
is containcd in Von Neumann and Morgenstern. Raiffa is a clcar introductory
account, which focuses more on the relation between monetary values and utility
than I have here. Savage contains a brief history of the concept of utility. For
the Ellsberg and Allais paradoxes see Ellsberg and Allais, respectively. Replies
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may be found in Savage, Raiffa, and Eells. Jeffrey has a discussion of and re-
sponse to the St. Petersburg paradox. Eells is also a good general review of util-
ity theory and causal decision theory. See also Skyrm’s Causal Necessity, Gib-
bard and Harper, and Lewis. Nozick announced the Predictor paradox to the
philosophical world. Eells lists much of the extensive literature on that paradox.
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Chapter 5
GAME THEORY
NERERRINLI L

5-1. The Basic Concepts of Game Theory

Individual decision theory focuses on decisions involving the choices of one
agent and outcomes determined by the agent’s choices and the background en-
vironment. Its paradigms are those of a single person deciding whether to wear
a raincoat, place a bet, invest in a stock, or attend a law school. Some of its ex-
amples, such as the choice between taking a course under Professor Smith rather
than under Professor Jones, involve other individuals, but in analyzing such ex-
amples it treats the additional individuals as part of the environment. Now we
will expand our analytic framework to include cases in which the decisions of
other individuals are represented as playing an active role in determining the out-
comes; these situations are called games. Games include ordinary parlor games,
such as chess, bridge, Monopoly, or Scrabble; they also include serious deci-
sion-making situations as well, such as competitive bidding on oil leases, choos-
ing weapons systems, pricing perfume, selling or holding stocks of grain, or
proposing terms of peace.

To get a firmer grip on the game concept let us look closely at two games,
a diverting one—chess—and a deadly serious one—negotiating a peace treaty.
In chess there are two players; at a peace conference each nation is a player and
there are often more than two. Each chess player aims to win; each nation
negotiating peace seeks terms most favorable to it. Chess is played by one player
making a move, the other responding, and so forth, until one wins or there is
a draw. At the negotiating table players make proposals and counterproposals,
but the outcomes are nowhere as clearly defined as in chess. Peace talks may
drag on for years, with the attendant delays costing one or both sides dearly in
human or economic tolls; or they may quickly conclude in a settlement because
one nation has gained clear military superiority; or they may be broken off and
the war continued. Furthermore, in real peace talks the rules are minimal and
quite vague; there is no limited set of choices open to each negotiator nor are
the outcomes limited to a definite set. In treating peace talks by means of game
theory, however, we must assume that definite sets of choices are open to the
ncgotiators, that the outcomes are limited, and that the “rules” determine which
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outcomes are associated with each series of choices by the players. Unlike chess,
the environment determines outcomes of peace talks too. If the rainy season is
especially severe, the more mobile army can get the upper hand; if there are
storms at sea, supply lines can be cut. In this respect, peace talks are best treated
like gin rummy, bridge, poker, and other games of chance. This is done in game
theory by introducing an additional player, called Chance, who makes choices
using a randomizing device of one kind or another. Rolling dice in Monopoly,
dealing hands of cards in bridge, dealing and drawing cards in gin are treated
as moves by Chance.

Some of the elements of a game are beginning to emerge from our discus-
sion. First, each game has two or more players. If the game is one of chance,
there are at least three players with Chance being one of them. Second, each
game has one or more moves with one or more players being allowed a choice
at each move. Third, the rules of the game determine for each sequence of
moves whether it results in an outcome, and if it does, what the outcome is. A
sequence of moves terminating in an outcome of a game is called a play. Some
games have short plays. The children’s game scissors, paper, and stone is
usually played with both players revealing their choices at the same time. The
outcome is immediate: Scissors beats paper, paper beats stone, stone beats scis-
sors, anything else is a draw. Chess, by contrast, has plays of every finite length,
provided players are allowed to repeat sequences of moves.

Game theory uses two means for representing games formally. The game-
tree method uses structures similar to decision trees to represent games. Each
move is represented by a labeled node of the tree — a circle with a numeral within
it—indicating which player is given a choice at that node. The choices open to
the player are represented by branches emanating from the node. Outcomes are
assigned to the end of each branch and are usually represented by means of one
or more numbers that indicate the utility received by each player for the
outcome.

A game tree for scissors, paper, and stone cannot represent the players as
choosing simultaneously, because only one player is assigned to each node.
Game theory handles this problem by representing the second player as making
a choice without knowing what choice the first player made. (Similarly, the
effect of simultaneous bidding on a contract is often achieved by having potential
contractors submit sealed bids prior to an announced time at which all bids are
to be opened.) Thus after the first player has made a choice, the second player
will not know whether he or she is at the node following the first’s choice of scis-
sors or at the one following the choice of paper or the one following the choice
of stone. These nodes are said to belong to the same information set, and the
second player is said to have imperfect information because he or she is unable
to distinguish between the various nodes within the information set. In the game
tree depicted in figure 5-1, there is a dotted line surrounding all the second
player’s nodes to indicate that they all belong to the same information set. The
outcomes are given as wins, losses, or draws for player 1.
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Scissors, paper, and stone, as represented here, and bridge and Monopoly,
in actual practice, are games of imperfect information: Even players with perfect

Figure 5-1

memories cannot know the entire history of the play preceding their moves.
Thus, although in principle Monopoly players can know the assets and liabilities
of the other players, and where they have landed, they cannot know, at least not
until quite late in the game, what move Chance made initially when arranging
the “chance” and “community chest” cards. Chess and checkers, on the other
hand, are games of perfect information. Games of chance are not necessarily
games of imperfect information; Monopoly without “chance” and “community
chest” cards would be a game of perfect information despite Chance’s making
every other move. Nor are Chance moves required for a game of imperfect in-
formation; the tree version of scissors, paper, and stone has no place for
Chance.

Game theory abstracts from most of the psychological and practical fea-
tures of a game; it counts any two games having the same game tree as the same
game. Chess played with carved ivory pieces is the same game as chess played
with plastic pieces. That is not remarkable. On the other hand, it is interesting
that chess played with a one-second time limit is still regular chess as far as game
theory is concerned. The next example is even more notable. The game of fifteen
has two players who use nine cards, an ace through a nine. These cards are laid
face up on a table in front of the players, who take turns picking up cards. The
object of the game is to achieve a total of 15 with exactly three cards before the
other player does. (An ace counts as a 1.) The game ends in a draw if all the
cards are drawn with no player achieving a 15 with exactly three cards. Now
consider any tick-tack-toe board and think of the squares as numbered according
to the scheme in table 5-1.

The diagonals, the middle column, and the middle row sum to 15; thus
the game of fiftcen has the same game tree as that restricted version of tick-tack-
toe that counts “three in a row” only if they fall on a diagonal or middle row
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or column. If you draw game trees for restricted tick-tack-toe and the game of
fifteen you will see that they are the same. (Do not try unless you have a big

5-1 1 2 3
4 5 6
7 8 9

sheet of paper, time, and patience; the first move has nine branches.)

Just as decision trees can be reduced to decision tables, so too can game
trees be reduced to game matrices or tables by using strategies. Two-person
games can be represented by m-by-n tables, with the m rows and n columns cor-
responding to strategies and the entries in the squares representing the payoffs
or outcomes for each player for the pair of strategies (row, column) determining
the square in question. Here is game table 5-2 for scissors, paper, and stone.

5-2 Col’s Strategies

SC PA ST

sSC | D,D W, L L, w

Row’s

. PA L w D, D W, L
Strategies

ST W, L L w D, D

The first payoff given in each square is for the player using the strategies as-
signed to the rows; the second payoff is for the player using those heading the
columns. For convenience we will call the first player “Row” and the second
“Col.” Thus when Row plays SC (scissors) and Col plays ST (stone), the payoff
to Row is an L (loss) and that to Col is a W (win). Any game involving a series
of moves will have a large number of strategies and, thus, a huge table or ma-
trix. Despite this, many of the theoretical and philosophical features of game
theory can be best understood in terms of games in matrix form. Consequently
we will henceforth restrict ourselves to games in this form.

Chance is no longer represented in the matrix form of a game. Her role
is absorbed in the payoffs. The example of gin will be used to explain how this
happens. Gin is put into matrix form by having both players make just one move
each—they pick a strategy. Their individual strategies will consist in a complete
list of instructions for reacting to any hand they may be dealt, any cards they
may draw, any cards thcir opponent may discard, and so on. Because gin is a
game of chance, a selection of strategies by players alone does not determine
a unique outcome; different distributions of the cards will generally result in
different winners for the same selection of strategies. Yet each selection of
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strategies does determine a lottery among the possible outcomes, with the possi-
ble distributions of cards yielding the probabilities in the lottery. Suppose, for
example, the game is being played by just Row and Col, who have selected two
strategies R and C;. Let us further suppose that for a third of the arrangements
of the cards the pair (R1, C) yields a win for Row, for another third it yields
a win for Col, and for the balance it yields a draw. Then we can associate with
the pair (R, C1) the lottery that yields an equal chance of a draw, Row’s win-
ning, and Col’s winning. This takes Chance’s role as a player and adsorbs it into
the outcomes.

Game theory takes this a step further. Each player is assumed to have a
utility function for outcomes that abides by the expected utility theorem. Thus
the utility of an outcome that happens to be a lottery is equal to its expected util-
ity, and outcomes, whether lotteries or certainties, can be represented by utility
numbers. The net effect is that a game of chance and a game of certainty could
be represented by the same game matrix and would thus be counted as the same
game by the theory. Here is an artificial example to illustrate this. In the game
of even and odd two players choose between two strategies, E and O. F beats
O; otherwise there is a draw. If we use 1 to represent a win, — 1 a loss, and
0 a draw, the table for the game is given on the left (5-3). (Payoffs are given

53 E o 54 E o
E 0 1 E 0 0
0 -1 0 o 0 0

for Row.) Consider now a chancy version of even and odd. Players again choose
between the two strategies, but then a coin is flipped. On heads, the result is the
same as in even and odd; on tails, the result is calculated as if each player had
the opposite strategies. Thus the pairs (E, E) and (O, O) yield the same results
in either game, since each ends in a draw. Yet in the chancy version the payoft
to Row for (£, O) is a coin toss, which yields a win on heads and a loss on tails.
Thus its expected utility is (1/2)1 + (1/2) — 1, namely, 0. Finaily, consider a
two-player game of certainty with two strategies that always ends in a draw. This
will have the same game table as the chancy version of odd and even; namely,
table 5-4.

As we have already seen, game theory assumes that the players have utility
functions producing interval scales for outcomes and lotteries involving out-
comes. The theory also assumes that given a choice of strategies by his oppo-
nents, each player will choose those strategies that maximize his expected util-
ity. On the other hand, the theory does not require the players to prefer winning;
if a parent prefers to throw a game of checkers to boost her child’s spirits, thc
parent’s utility function will assign higher utility to losing. However, game the-
ory will represent this version of checkers by a different table or tree than the
standard version, since high utilities for winning outcomes will be replaced with
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low ones. Despite this, whichever game the parent plays, the theory will assume
that she seeks to maximize her utility.

Game theory also assumes that all players know both the entire game tree
or table, whichever is relevant, and their own and all other players’ utilities for
outcomes. Furthermore, each player is taken to know that every player knows
all this. This means that in thinking about a game all players can assume that
they are playing with perfect opponents, who will always make optimal
responses to every move or strategy choice. The object of game theory is to de-
termine the outcome or possible outcomes of each game, given these assumptions
about the players. To do this for a game is to solve it.

Before proceeding further let us see how game theory solves a simple
game. The game is given in table 5-5. The best strategy for Col is Cz; he re-

5-5 C1 G C;
Ry 0,0 1,2 0,2
R> 1,3 1,4 0,0

ceives 2 or 4, which is at least as good as his payoffs for C, and C3. The same
reasoning shows that the best choice for Row is R;. Thus the game will be
played via the strategy pair (R2, C2); Row will get a payoff of 1, Col one of
4. (Note: Row’s utilities are taken to be fully specified; it would be fallacious
to reason that Row would prefer to see Col get 2, and thus, knowing that C»
will be chosen in any case, will choose R;.)

There are several branches of game theory. The most important division
is between the theory of two-person games and that of games involving more
than two persons. (In this classification Chance does not count as a person.) The
latter is usually called “n-person game theory.” It is much more complicated than
the two-person branch, because players can form coalitions and overwhelm
another player, which makes it useful in analyzing political and economic situa-
tions. Unfortunately, the n-person theory is also in a less satisfactory mathemati-
cal state than the two-person theory. Accordingly, we will restrict our discus-
sion, in the main, to the two-person theory.

Games are also classified according to whether the players’ interests are
entirely opposed (strictly competitive games) or in partial agreement. Monopoly
and chess count as strictly competitive, but two drivers trying to avoid a head-on
collision are involved in a game that is not strictly competitive. Nonstrictly com-
petitive games are further divided according to whether the players are permitted
to communicate with each other to coordinate stategies. If they can, the game
is called a cooperative game. These games may allow the players to form bind-
ing agreements and cven to redistribute the payoffs. Labor negotiators play
cooperative games that end in binding agrcements. When a play is sold to a
movie company, the playwright’s agent and a movie producer play a cooperative
game which ends with a contract for distributing the profits of the sale. On the
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other hand, two friends who have been separated at a crowded rock concert play
a simple nonstrictly competitive game as they try to find each other.

Parlor games and sports may be the only games that are strictly competitive
in reality. Even in war no nation seeks the total destruction of its opponent; thus
the players have some common interests, and at peace conferences nations not only
communicate but also agree to share certain payoffs. Despite this, game theorists
often find it useful to analyze wars as strictly competitive games, since in the choice
of strategies for battle the noncompetitive aspects of war are usually negligible.

In a strictly competitive game communication and contracts play no role,
even if the rules permit them. For there is no reason to trust one’s opponents;
they can be expected to lie or cheat if doing so promotes their interests. Every
player knows this and thus puts no stock in what the others say, threaten, or
gesture. Game theory reflects this by letting lapse the distinction between games
with and without communication when analyzing strictly competitive games.

PROBLEMS
1. Which of the following are games of perfect information?
a. checkers
b. poker
c. tick-tack-toe
d. bridge

e. Chinese checkers

2. Discuss basketball from the point of view of game theory. How many
players are there? Is an actual basketball game a single big game or a series
of games? Are the games strictly competitive or cooperative? Does commu-
nication play any role?

3. Discuss the process of nominating a candidate for the U.S. presidency in
game theoretic terms. Who are the players? Is the game strictly competitive?
Can the players make agreements to distribute payoffs?

4. Why does prohibiting communication make no difference in the outcome of
a strictly competitive game among perfectly rational players?

5-2. Two-Person Strictly Competitive Games

The most fully developed part of game theory is the theory of two-person strictly
competitive games. Since in many ways it is also the easiest portion of game the-
ory to grasp, we will start our study with it.

In a strictly competitive game the preferences of the two players are in ex-
act opposition. To the extent one gains from an outcome of the game, the other
loses. If we think of the gains and losses in terms of monetary payoffs, the win-
ner receives the winnings in terms of a payoff from the loser. But the very rea-
sons that led us to replace monetary values with utilities in individual decision
theory will again lead us to make the same substitution in game theory. First,
monetary or other concrete payoffs might not reflect the true values of the
players. In a game between two unmitigated altruists, winning in the ordinary
sense is actually the worst outcome for each. Yet their preferences are in com-
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plete opposition: For them the game is strictly competitive—each does his
damnedest to lose —but their preferences are just the opposite of those of ordi-
nary players. For that reason they are playing a different game, and thus
representing it requires us to replace concrete payoffs with the utilities each
player assigns them. A second reason for using utilities is that outcomes fre-
quently are best represented as lotteries. When this is done, explaining why
maximizing expected utilities is the rational approach to these games—even
when played only once or just a few times—drives us to identify the utility of
a gamble with its expected utility. The need for doing this will be even more
pressing later when we introduce mixed strategies.

In any two-person strictly competitive game the utility function of Col is
the negative of that for Row, since Row and Col have strictly opposing prefer-
ences. Let u(A4) be Row’s utility for the outcome A. Then Col’s utility for 4 is
—u(A), and their utilities sum to zero. For this reason two-person strictly com-
petitive games are often known as zero sum games. In a zero sum game table
or tree we need not present the utilities for both players, since one’s can be
deduced from the other’s. From now on payoffs will be given in the form of
Row’s utilities only.

Table 5-6 presents a simple zero sum game. Let us see how the theory
solves it. Remember, Row sceks to maximize the outcome numbers and Col

5-6 G G G Cs
R 0 1 7 7

R 4 1 2 10
Rs 3 1 0 25
Ry 0 0 7 10

tries to keep them down. A quick check will show that none of Row’s strategies
are dominated by the others, and that Col’s C4 is dominated by all his other
strategies. So Col will not play C4 and Row knows this. Knowing this, he also
knows he can now ignore all the entries in the fourth column when picking his
strategy. The game, in effect, reduces from a four-by-four game to a four-by-
three game. But then R3 can be deleted; it is dominated by R» once the 25 at
the end of the row is ignored. Our game now amounts to this one (table 5-7).

5-7 Ci &) Cs
R 0 1 7
R> 4 1 2
R; 0 0 7
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In this game, however, C3 is dominated by both C; and C>; so Col will not play
it. Knowing this, Row will play R, and knowing that in turn, Col will play C,.
So the solution to the games is this: Row and Col play the strategy pair (R2,
C>), and the payoff to Row is 1. The payoff received by Row according to the
game’s solution is called the value of the game.

PROBLEMS
Use dominance reasoning to solve the following games (tables 5-8, 5-9, 5-10).

5-8 7 6 4 59 10| 1 3
3 2 1 4 2 4
5 6 4

5-10 2 2 4 5

5-3. Equilibrium Strategy Pairs

One might think that all zero sum games can be solved by simple considerations
of dominance—if they have a solution at all. But table 5-11 shows that this
plainly is not so. Neither Row nor Col has a dominated strategy; so the process
of elimination used to solve the last game cannot get started. Despite that, the

5-11 C G C;
Ry 8 8 7
R 0 10 4
R3 9 0 1

solution of the game is readily at hand. Consider the strategy pair (Ry, C3). If
Row knew that Col would play Cs, then he, Row, would play R1 because that
is the best he can do against C'3. On the other hand, if Col knew that Row would
play Ry, then he, Col, would play C; since that would bring Row’s payoff down
to the lowest point possible. The strategies (R, C3) are in equilibrium in the
sense that once this pair is chosen neither player will prefer to change unilater-
ally to another strategy. He cannot do better by changing. In general we will
say that a pair of strategies is an equilibrium pair or is in equilibrium just in case
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neither player can do better by unilaterally changing his strategy. The payoff
associated with an equilibrium pair is called an equilibrium value.

Once the players hit on an equilibrium pair, neither has any reason for
changing his strategy choice unless the other player does too. But what reason
is there to expect that they will hit on one? In a zero sum game communication
and bargaining are excluded; the only way they could both decide upon an
equilibrium pair is for each to decide on his own that his half of the pair is the
best strategy for him. How can that happen?

Return to the game presented in table 5-11. Other things being equal, the
best strategy for Row is R ; it gives him a chance at the highest payoff. But other
things are not equal; Row must contend with Col’s strategy choice, and Col
would pick C if he thought Row would pick R,. Row knows this, and he knows
that Col knows that he knows, and so on. On the other hand, Col would most
prefer the payoffs of 0 afforded by C and C, —if Row would only cooperate
and pick R, and R3, respectively. But Col knows that he cannot count on that.
Moreover, Row can see that if he picks R, he can depend on a payoff of at least
7, whereas any other strategy might yield a O, a 1, or a 4. Col also sees that
he can depend on holding Row down to a 7 if he, Col, chooses C'3, but any other
choice might allow Row a gain of 8, 9, or 10. Each sees then that by playing
his half of the equilibrium pair he can guarantee a certain value, his security level
for the game; playing another strategy might lead to a less favorable outcome.
Given that each knows he is playing against a perfect player, neither will risk
taking a strategy that does not yield his security level for the game. By indepen-
dent reasoning, then, each picks his half of the equilibirium pair.

The definition of equilibrium pairs is fit for other branches of game theory.
There is, however, a simpler criterion for equilibrium pairs in zero sum games.
Let us call it the minimax equilibrium test for zero sum games. It reads: In a zero
sum game a necessary and sufficient condition for a pair of strategies to be in
equilibrium is that the payoff determined by them equal the minimal value of its
row and the maximal value of its column. In the game in table 5-12, for example,
the equilibrium test picks out (R», C») as the equilibrium pair. Notice that al-

5-12 ol Cs Cs
R 1 3 6
R 7 5 5
Rs 3 4 10

though the 5 at the intersection of row 2 and column 3 is the minimal value for
row 2, it is not the maximal value for column 3; so the pair (R», C3) is not in
equilibrium.

Some games have several equilibrium pairs. The game in table 5-13 has
two, that in table 5-14 has four. This raises a serious question: If a game has
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more than one equilibrium pair, need the players worry about coordinating their
choices to guarantee that the strategy pair they pick will in fact be in
equilibrium? Since communication, and thus coordination, is pointless in a zero
sum game, the use of equilibrium solutions for zero sum games appears to be
jeopardized. Fortunately there is no need to worry. The answer to our question
is negative. Examine the two games in tables 5-13 and 5-14. In the first, Row

5-13 C1 G (6] 5-14 Ci G G Cs
Ry 0 8 3 R, 1 2 3 1
R 0 1 10 Ry 0 5 0 0
R3 -2 6 5 R; 1 6 4 1

has to worry about coordination; his equilibrium strategies are R and R». But this
is no problem for Row; for both (R1, C1) and (R, C1) are in equilibrium. Either
choice he makes will be fine. The second example is more complicated. Row has
two choices, R and R3, and Col has two also, C1 and C4. Yet no matter which
choice either makes they will achieve equilibrium; (R, Cy), (R1, C4), (R3, C1),
and (R3, C4) are all equilibrium pairs and each has the same value.

These examples are instances of a general theorem, which I will call the
coordination theorem for zero sum games. It reads:

If, in a zero sum game, the pairs (R;, Ci) and (R, Cm) are in equilibrium,
so are the pairs (Ri, Cm) and (R1, C;); furthermore, the values for each
of the pairs are the same.

PROOF. Let vjj, Vim, Vim, and vy; be the values for the pairs (R;, C;), (R,
Cm), (Ri, Cm), and (R;, Cj), respectively. Since the game is assumed to
be zero sum, the equilibrium test applies to it. Thus v;; and v, are mini-
mal values for their rows and maximal values for their columns. Since v;;
and vim occur in the same row and v;j; is an equilibrium value, we know
that

1) vij < Vim.

But since vim and v, are in the same column and the latter is an equilibrium
value, we have

(2) Vim € Vim.

Since vj; and vy are in the same row, we have
(3) Vim < Vij.

Finally, since vj; and v;; are in the same column,
@) vim <vyj.

Putting (1)-(4) together we find that
(5) vij K Vim £ Vim < vij < vij,
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and this happens only if these values are all equal. But if the values are all equal,
the pairs (R, Cj) and (R;, Cm) must be in equilibrium too for, occurring as they
do in the same rows and columns as other equilibrium pairs having their value,
they must be the minimal values for their rows and maximal values for their
columns.

PROBLEMS

1. Prove that if a game has a dominant row and column, that row and column
determine an equilibrium pair for the game.

2. Prove that every strategy pair that passes the equilibrium test is in
equilibrium in the originally defined sense, and conversely.

3. Give an example of a game with an equilibrium pair whose row is
dominated.

4. Suppose in game G row R is strictly dominated by some row S, that is, every
entry in § is greater than its correspondent in R. Can R be half of an
equilibrium pair for G?

5-3a. Mixed Strategies
If every zero sum game had at least one pair of strategies in equilibrium, the
theory of zero sum games would now be complete. Given any game of that kind,
we could apply the maximin test and mechanically solve the game. The bad news
is that some zero sum games fail to succumb to this method; the good news is
that there still is a complete and mathematically rich account of zero sum games.
Consider the following situation. You are playing scissors, paper, and
stone against a perfect player who is aiso a perfect mind reader. Thus whenever
you decide on a strategy she picks one that beats it. If you pick paper, she picks
scissors; if you pick stone, she picks paper; if you pick scissors, she picks stone.
Look at game table 5-15. No pair of strategies is in equilibrium; so you cannot

515 SC PA ST
sc 0 1 ~1
PA -1 0 1
ST 1 -1 0

even guarantee yourself a draw.

There is a way out of this trap and it leads to a general solution for games
of this type. Suppose that instead of picking your strategy directly you choose
it by means of a chance mechanism that can yield any of the three possible strate-
gies. For example, you could roll a die and then play play scissors on 1 or 2,
paper on 3 or 4, and stone on 5 or 6. In effect you have adopted a strategy that
is a mixture of your original stratcgies and that, when played against any
strategy of your opponent’s, yields an equal chance of the outcomes determined
by your original strategies. In particular, when played against stone your strat-
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egy has a probability of 1/3 of yielding — 1, the same probability of yielding
0 and the same probability of yielding 1. Thus its expected utility is 0, which
is an improvement over your previous situation with its expected utility of — 1.
It is also easy to see that this mixed strategy has the same expected utility when
played against your opponent’s strategy of paper or scissors.

By picking a mixed strategy you also defuse your opponent’s power to read
your mind. For once you have decided on a mixed strategy, you can turn the
rest of the game over to a suitably constructed machine. For example, the ma-
chine could consist of a drum spinning inside a box with a window that exposes
only a third of the drum’s surface at any one time—like the slot machines in Las
Vegas. Turning the machine on would give the drum an initial spin. The drum
would eventually stop and, with a probability determined by the fraction of the
drum allocated to each word, display one of the words “scissors,” “paper,” or
“stone.” The word displayed would then be used to compute the outcome of the
game against your opponent’s choice. Since you would have chosen no specific
strategy prior to turning the machine on, and since once the machine is on you
have no further choices to make, it would be impossible for your opponent to
choose a winning counterstrategy by reading your mind.

By the way, this is not a farfetched idea. In war, where the element of sur-
prise can make all the difference, the threat of espionage is ever present. One
way to protect oneself is to develop several strategies and choose to act on one
only at the last possible minute. Letting a chance mechanism make the choice
for you is a refinement of this idea.

So far we appear to have improved your situation, but can we not expect
your opponent to counter with a mixed strategy of her own? Yes, but it makes
no difference in this game. Your mixed strategy has the expected utility of 0
against any strategy she plays, mixed or not. Before trying to show this we must
introduce some terminology and additional symbolism. Let us call the original
strategies pure strategies to distinguish them from mixed ones. Both you and
your opponent have the same pure strategies in this game, namely, SC, PA, ST.
So far we have considered one mixed strategy for you, namely, one that involves
an equal chance of playing SC, PA, or ST. We can write this as

(1/3 SC, 1/3 PA, 1/3 ST).

There are other mixed strategies available to you; for instance, you could play
SC with probability of 1/2 and PA and ST each with a probability of 1/4. We
can represent this by

(172 SC, 1/4 PA, 1/4 ST).
More generally, we can represent any of your mixed strategies by
(x SC, y PA, z ST),

where x, y, and z are real numbers between 0 and 1, inclusively, which sum to
1. These numbers give the probability with which one of the pure strategies will
be played. In the game at hand both players happen to have three strategies, but
in other games they might have a different number of strategies. Suppose the
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pure strategies available to Row in a game are R;, Rz, . . . , Ry. Then his
mixed strategies take the form

(x1 Ry, x2 Ra, .. ., xa Rp);

where each x; is a real number between O and 1 inclusively, and the sum of the
xi’s equals 1. Col’'s mixed strategies are given a similar representation.

Notice that pure strategies are special cases of mixed ones. The pure
strategy ST is equivalent to the mixed strategy

(0 SC, 0 PA, 1 ST),

in which the probability of playing ST is 1.

Now let us return to our example. You are playing the mixed strategy (1/3
SC, 1/3 PA, 1/3 ST); your opponent is going to play some unknown mixed
strategy (x SC, y PA, z ST). (Given what has just been said, this also allows for
her playing any of her pure strategies as well.) Let us calculate your expected
utility for this pair of strategies. Think of your situation as involving a compound
gamble. The larger gamble gives you an equal chance of playing SC, PA or ST.
Having played these you engage in one of three smaller gambles determined by
the mixed strategy used by your opponent. You have a 1/3 chance of playing
SC, and if you play it you have an x chance of having that met by SC, a y chance
of having it met by PA, and a z chance of having it met by S7. Your payoffs
are 0, 1, and — 1, respectively, for those combinations of strategies. Thus the
expected utility of this smaller gamble is Ox + 1y + — 1z. You also have a 1/3
chance of playing PA and ST and your expected utilities for the smaller gambles
resulting from those strategies are — lx+0y+ 1z and 1x+ — 1y + 0z, respec-
tively. Thus your expected utility from the strategy as a whole is

13 Ox+1y+ —1z2) +
173 (—1lx+0y+12)+
1/3 (1x+ — 1y +02).

Since each component has the same factor of 1/3, we can add up all the x compo-
nents, all the y components, and all the z components without explicitly distribut-
ing 1/3 through the entire sum. I have arranged these components in columns
so that you can see at a glance that each sums to 0. Thus your expected utility
for this strategy must be 0 too. This is exactly the same value we observed when
we calculated your expected utility for (1/3 SC, 1/3 PA, 1/3 ST) against your
opponent’s use of the pure strategy S7. (This equals (0 SC, 0 PA, 1 ST); so our
first calculation is but a special case of the general one given just now.)

So long as you play (1/3 SC, 1/3 PA, 1/3 ST) you are guaranteed an ex-
pected utility of 0, and since we are assuming that you have a utility function
satisfying the expected utility condition, this means that the utility of this
strategy to you is 0. We have also found your security level for the game. But
we have not found an equilibrium pair yet. If your opponent plays the pure
strategy of SC, then although you can guarantee yoursclf a utility of 0 by playing
the mixed (1/3 SC, 1/3 PA, 1/3 ST), you can do better against her SC —you can
play ST and win. She cannot do better, of course, but since you can, the strate-
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gies are not in equilibrium. On the other hand, suppose your opponent plays the
same mixed strategy you have been playing. Then she can hold your winnings
to 0. So the pair of mixed strategies are in equilibrium, and for this particular
game they are the only such pair. The game is thus fully solved; we have found
its equilibrium pairs and its value.

Before proceeding further you should try to verify that the pair of mixed
strategies that are in equilibrium in tables 5-16 and 5-17 are (1/2 R, 1/2 R3)
and (1/2 Cy, 1/2 C2). What are the values of the games?

5-16 C: G 5-17 Ci G
R, 1 —1 R, 22 —18
R, -1 1 R, —18 22

All the games we have considered so far have been symmetrical games and
it has been easy to guess their equilibrium pairs. Finding the equilibrium pairs
for the next game (table 5-18) is much harder. If we try the mixed strategy
(1/2 Ry, 1/2 R») against C',, we find that its expected utility is 4 whereas its
expected utility against C» is 7/2. Furthermore, the mixed strategy (1/2 Cy,
1/2 C») for Col has an expected utility of 9/2 against R, and 3 against R.

5-18 G (&)

Ry 6 3

Ry 2 4

The joint expected utility of the two mixed strategies is
(1/2)(172)6 + (1/2)(1/2)3 + (1/2)(1/2)2 + (1/2)(1/2)4 =3 3/4.

Thus they cannot be an equilibrium pair, since Row is better off playing R
when Col plays his half. We can keep testing pairs of strategies to see if they
are in equilibrium, but there are infinitely many to test and no guarantee that our
best guesses will find one that works. Plainly, a systematic approach is re-
quired.

To this end, let p be the probability of playing R; for any given mixed
strategy of Row’s and let g be the probability of playing C; for any given mixed
strategy of Col’s. Then the expected utility for Row of these strategies being
played jointly is given by

EU(p, g)=6pq+3p(1 —q)+2(1 —p)g+4(1 —p)1—q),

since there is a pg chance of ending with a 6, a (1 — p)qg chance of ending with
3, and so on. Applying some algebra we can convert this equation to

EU(p, 9)=5pg —p —2q +4.
Now Row’s object is to choose p so as to maximize this number while Col’s is
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to choose g so as to minimize it. So let us do some fancy factoring to isolate
Row’s and Col’s contributions to this number. We proceed as follows:

EU(p, q)=5(pq—p/5—2q/5 +4/5)
=5(pg—pl5—2q/5 +2/25 +18/25)
=5(pg—p/5—2q/5+2/25) + 18/5
=5[(p —2/5)(q — 1/5)] + 18/5.

If Row picks p as 2/5, his factor equals 0 and the value of EU(p, ¢q) is 18/5
no matter what ¢ is; that is, EU(2/5, ) =18/5 for all ¢q. Similarly, EU(p,
1/5) = 18/5 for all p. Thus although each player might do better with a different
p or g provided the other player played a bad strategy, we have found the secu-
rity strategies for both players and they are in equilibrium. Thus we have ob-
tained at least one equilibrium pair for this game.

Might there be more thar: one equilibrium pair? Suppose p and g also
determine an equilibrium pair; thatis, (p1 R1, (1 —p1) Rz2)and (g1 C1, (1 —gq1)
C>) are also in equilibrium. Then EU(p1, ¢1) < EU(p1, q) for all choices of
q; otherwise Col would want to change when Row played the strategy deter-
mined by p;. Similarly, EU(p, ¢1) < EU(p1, q.1) for all choices of p. But we
already know that

EU(p., 1/5)=18/5=EUQ/S, q1),

and since EU(p 1, ¢q1) is bounded above and below by those two identical quanti-
ties, it must equal them. In other words, if there are two equilibrium pairs, they
give rise to the same security levels. It is also easily shown that if p, and g
determine an equilibrium pair, so do 2/5 and ¢, and p; and 1/5. We thus get
a mixed-strategy version of the coordination theorem for this game.

Every two-person zero sum game has a solution. This follows immediately
from the next theorem.

THE MAXIMIN THEOREM FOR TWO-PERSON ZERO SUM GAMES: For every two-
person zero sum game there is at least one strategy (mixed or pure) for
Row and at least one strategy for Col that form an equilibrium pair. If
there is more than one such pair, their expected utilities are equal.

The expected utility for the equilibrium pair is called the value v of the
game. It is the security level for the game for both Row and Col. In other words,
by playing his half of the equilibrium pair Row can be sure of winning at least
v, and by playing his half Col can be sure of holding Row’s winnings to no more
than v. Row’s equilibrium strategy is called a maximin strategy because it max-
imizes his minimal outcomes; Col’s is called a minimax strategy because it holds
Row’s maximums to a minimum. The maximin theorem is commonly ap-
proached from Col’s more defensive viewpoint and called “the minimax the-
orem” instead. I am using the other name because my exposition has emphasized
Row’s point of view.

There are a number of proofs of the maximin theorem in the literature,
but they all involve mathematical techniques far beyond those presupposed by
this book. However, the method used in the last example can be generalized to
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yield a simple proof of the maximin theorem for two-by-two games. So that will
be our next topic.

PROBLEMS
1. Suppose Col has k pure strategies. What is the general form of his mixed
strategies?
2. Show that in any game with the form shown in table 5-19 the strategies

5-19 a —-b

—b a

(1/2 Ry, 1/2 R3) and (1/2 Cy, 1/2 C3) are in equilibrium.
3. State precisely and prove the mixed-strategy coordination theorem for two-
by-two zero sum games.

5-3b. Proof of the Maximin Theorem for Two-by-Two Games

In order to simplify our proof we will consider only games in a restricted form.
It will be called the standard form (SF) and is represented by table 5-20. Here

5-20 Ci 6}
R1 a b
(SF)
R2 [ d

a, b, ¢, and d must all be positive numbers and
a>c,d>b, and d>c.

Restricting ourselves to games in standard form will not limit the scope of our
theorem, because, as the exercises in the next Problems section show, any two-
by-two game that is not in SF is either solvable by our previous methods or is
equivalent to a game in SF from which its solution is easily obtained.

We can assume, then, that all the games under consideration are in SF.
As we have already observed in dealing with preceding examples, the expected
utility for any pair of strategies

(P R, 1=p) R2); (g C1, (1 -q) C2)

is given by the formula
EU(p, g)=apq+bp(1—q)+c(1 ~p)g+d(1—p)1—gq).
Applying some algebra to this, we obtain

EU(p, q) =apq+bp—bpg+cq—cpg+d—dp—dg+dpg
=@—-c+d—bpg+b-—-dp+(c—d)g+d.

Given that a > ¢ and d > b, the sum (a —c+d —b) must be positive while
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(b —d) and (¢ — d) must both be negative. That means that our original equation
now has the form

EU(p, g)=Apq—Bp—Cq+D,

where A, B, C, and D are all positive. Let us now apply some fancy factoring
to it.

EU(p, q) =Apgq—Bp—Cqg+D
=A[pg— (B/A)p — (C/A)q + D/A]
=A[pg— (B/A)p — (C/A)q + (BC)/(AA) + (DA — BC)/(AA)]
=A[(p — C/A)q — B/A) + (DA — BC)/(AA)]
=A[(p — C/A)(q — B/A)] + (DA~ BC)/A.

It then follows that Col can prevent the outcome of the game from exceeding
(DA — BC)/A by playing the strategy in which g = B/A, and Row can guarantee
himself the same value by playing the strategy in which p = C/4. We have thus
found the value and an equilibrium strategy pair for the game.

To conclude the proof of the two-by-two case of the maximin theorem we
must show that we can dispense with our restriction to games in SF. We will
do this by showing that once we can solve games in SF we can solve all other
two-by-two games. Most of this task will be left to you as exercises.

First let us note that the restriction to game tables with only positive entries
is no impediment, since any table with zero or negative entries can be trans-
formed into an equivalent game by adding a sufficiently large constant to each
entry. The equilibrium strategies for the two games will involve the same proba-
bilities for playing pure strategics and the values of the games can be obtained
from each other by adding or subtracting the same constant. (See exercises 2 and
3 in the next Problems section.)

Restricting ourselves to games with @ > ¢, d > b, and d > ¢ is no impedi-
ment to the generality of the proof either, since a game in which ¢ >a and b > d
can be converted into our restricted form by switching its rows. The two games
will have the same values but the probabilities for their equilibrium strategies
will be reversed. For example, if Row uses (1/3 Ry, 2/3 R») in one, he will use
(2/3 R», 1/3 R1) in the other. Furthermore, if a game cannot be put into the re-
stricted form SF by switching rows, the game must already have one or more
pure equilibrium pairs and is solvable by our previous methods. (See exercises
4 and 5 in the next Problems section.)

PROBLEMS

1. Transform the game in table 5-21 into one whose entries are all positive.
Then solve the two games.

5-21 C 8}
Ry —1 -2
R -2 -1
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2. Let the expected utility for a pair of mixed strategies for a game be given
by the formula

EU(p, @) =apq+bp(1—q)+c(1—p)g+d(1—p)l—gq),
where a, b, ¢, and d are the four entries in the game. Suppose the game is
transformed by adding the same constant & to a, b, ¢, and d. Then let the
new expected utility be EU'(p, q). Show that EU' (p, q) =EU(p, q) + k.
3. Use exercise 2 to show that if game G has zero or negative entries and G»
is an SF game obtained from G, by adding the constant £ to each of G’s
entries, then the probability mixtures for the equilibrium strategies for the
two games are the same and the value of G, is v+ k where v is the value
of G1.
4. Prove that if a game cannot be put into SF, it must have at least one pair
of pure equilibrium strategies.
5. Prove that if G; and G2 can be transformed into each other by means of a
positive linear transformation, then
a. both use the same probabilities in their equilibrium strategies, and
b. The values of the games can be transformed into each other by means
of the same transformation used to transtorm the two games.
6. The game in table 5-22 is not in SF. Find its equivalent in SF. Use the
method of the proof of the maximin theorem to solve that game. Then use
its solution to solve the original game.

5-22 Ci G

Ry -2 -1

R, 6 -3

5-3c. A Shortcut

Now that we know that each two-by-two game has a solution we can use a short-
cut for solving them. This method avoids both the restriction to SF and the fancy
factoring that make solutions by the method of our proof so tedious.

To use the method, first determine whether the game has any pure
equilibrium pairs by using the maximin equilibrium test. If the test proves posi-
tive, the game is solved. So let us assume that our game has no pure equilibrium
pairs. The game has the form given in table 5-23. But here there is no restriction

5-23 C1 G

R1 a b

Rz C d

ona, b, ¢, and d. Our aim is to find values of p and g for which
(PR, (1=p)R2); (g Ci, 1 —q) Cz)
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are an equilibrium pair. Examine the factored formula for Row’s expected utility
when he plays his half of a mixed-strategy pair. You will see that when he plays
his half of an equilibrium strategy, he fixes the value of the game no matter what
strategy Col plays. The same is true for Col. Thus the expected utility for Row’s
equilibrium strategy against Col’s C st be the same as it is against Col’s C».
Similarly, the expected utility to Col for his half of the pair must be the same
whether Row plays Ry or R,. The expected utility for Row against C; is

ap+(1—p)e
and that against C» is
bp+ (1 —pHd.

Since they are equal we have the equation
ap+(1—p)x=bp+{1-—p).
Solving this for p, we obtain
p=({d—c)la+d)—(b+o)l.
Using the same method, we can show that
g=d—b)[(a+d)—b+0)l.
Once we have obtained p and g, we can determine the value of the game
by evaluating any one of the formulas
ap+c(l—p); bp+d(1—-p) ag+b(1—q); cqg+d(1—q),
since they have the same values.

Example. We will apply the shortcut method to solve the game in table 5-
24. We note first that there are no equilibrium points. So we must calculate the

5-24 3 4

p and g for Row’s and Col’s mixed strategies by applying the formulas derived
earlier. This yields
p=1-DNB+DH—-E+7] =—-6/-T=6/7
g=(1-D/NE+1)—-E+7] = —-3/-7=3/7
Thus Row’s equilibrium strategy is (6/7 R1, 1/7 R») and Col’s is (3/7 Cy, 4/7
C»). The value for the game is 3(6/7) +7(1/7) or 3 4/7.

PROBLEMS
1. Solve these games (tables 5-25, 5-26).
5-25 Cy C 5-26 Cy C
Ry 3 1 R, 4 20
R, -7 4 R 5 -3
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2. Show that
g=Wd~b)[(a+d)—(b+c)].

5-3d. On Taking Chances

The use of mixed maximin strategies raises serious questions about the rational-
ity of turning one’s fate over to chance. The following story will serve to illus-
trate these questions.

Commander Smith, of the Brave Forces, has just landed his troops on the
beach of the island of Evo. To his immediate right is Mt. Evo, a rugged but pass-
able series of hills and valleys, which runs along the sea for a 20-mile stretch.
Straight ahead and running around the inland edge of Mt. Evo is a grassy plain.
The Forces of Exactness and the Brave Forces are engaged in a fierce battle at
the far end of Mt. Evo. Smith’s mission is to bring a battalion of reinforcements
to the battle scene. Two routes to the battle are open to him—one around Mt.
Evo via the plain, the other over Mt. Evo. Ordinarily, the plain route would be
preferable since it puts less stress on the troops. However, the Forces of Exact-
ness have dispatched Captain Jones to intercept and delay Commander Smith
and his soldiers. If they meet on the plain Smith will suffer serious losses, since
Jones has heavy armored vehicles and Smith and his men are mainly on foot;
but Smith’s losses will be light if they clash on Mt. Evo, since his forces are
more mobile in rough terrain than Jones’s. Commander Smith consults the game
theorist under his command. After extensive assessments of the utilities in-
volved, the game theorist represents his commander’s dilemma as the following
two-person zero sum game (table 5-27).

5-27 Jones’s Strategies
Mountain Route  Plain Route
Mountain
Smith’s Route -50 100
Strategies Plain
Route 200 -~ 100

The solution to this game is:

Equilibrium pair: (2/3 mountain, 1/3 plain); (4/9 mountain, 5/9 plain).
Value: 33 1/3.
Exercise: Verify this solution.

Having calculated this himself, Major V. Major, Commander Smith’s game the-
orist, recommends that Commander Smith roll a fair die and take the mountain
route on 1, 2, 3, or 4 and the plain route on 5 or 6.

But our story does not end here. Commander Smith proceeds to discuss
his problem with his intelligence officer, who challenges Major V. Major’s
recommendation. He says, “I am firmly convinced that Jones will simply flip a
coin and take the mountain route on heads. He knows some game theory too.
And he knows that no matter what he does, the expected utilities remain constant
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if you play your maximin strategy. So he won’t bother with building a random
device for giving himself a 4/9 chance of taking the mountain route. Now, you
should take advantage of his folly. If he flips a coin, using the pure strategy of
the plain route against him has an expected utility of 50, a considerable improve-
ment over 33 1/3. So forget the die, head for the plain.”

Commander Smith finds himself truly torn by the advice he has received.
He decides that he will roll the die and see which strategy it “picks.” The die
comes up 5, picking the plain. Satisfied that he has followed not only his game
theorist’s advice but also that of his intelligence officer, Smith orders the army
onto the plain. But as luck would have it, he is intercepted by Captain Jones and
his forces.

Due to the failure of Smith’s reinforcements to arrive, the Brave Forces are
badly defeated at Mt. Evo. Smith’s superiors order an investigation, and Smith
is called home to defend his actions. This is what he tells the investigating panel:
“Look, any way you look at it, [ was taking chances. I only followed my game
theorist’s advice in making the theoretically best use of a risky situation. And in
the end that coincided with my intelligence officer’s recommendation too.” Unfor-
tunately for Smith, the panel knows nothing of game theory. Reasoning that no
one should have decided a serious matter on the roll of a die, they recommend
that Smith be relieved of his command.

This story raises several interesting issues about using mixed strategies.
First, note that using a mixed strategy surrenders to chance the choice of the pure
strategy one actually implements. That is what bothered the investigating com-
mittee. Second, although Smith implemented the pure strategy his intelligence
officer recommended, he did so only as the result of following his maximin
strategy. Thus we may ask, Was Smith irrational (or irresponsible) in not follow-
ing his intelligence officer’s advice to bypass the maximin strategy? And was he
irrational (or irresponsible) in deciding on the basis of the roll of a die?

Turning to the first question, let us remember that the maximin theorem
says only that your maximin strategy will guarantee that you receive the value
of the game — it is your security level, but the theorem does not say that it is impos-
sible to do better when playing against someone who is not playing his equi-
librium strategy. It can be rational to play a strategy other than the maximin. If
Commander Smith’s intelligence officer had an accurate report, his advice would
have been excellent, and Smith would have been irresponsible to not follow it.

On the other hand, Smith would not have been justified in departing from
the maximin strategy if he had no idea at all about the strategy Jones would use.
In this case he can have no assurance of raising his expected utility. Instead of
taking a “calculated risk,” he would be trusting his luck.

This brings us to the next question. The outcome of any actual play will
be the same as that achieved by picking a pure strategy at the outset and, in most
cases, will have a utility that is either above or beclow that of one’s maximin
strategy. How, then, can we rationalize the use of a chance mechanism to pick
such a pure strategy? One way to allay these doubts is to remember that the nu-
merical values used in game theory are not direct measures of dollars lost or
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gained or soldiers killed or saved. They are rather ut ities of such outcomes.
Furthermore, utility functions have the expected utility property. So given that
Smith’s maximin strategy has an expected utility of 33 1/3, he prefers to accept
the gamble it involves —even though it is a one-shot gamble — rather than proceed
to a direct engagement with the enemy. (Of course, he prefers avoiding such an
engagement altogether.) Introducing a chance mechanism is simply a way of fur-
nishing a gamble to Smith as an extra option.

Sometimes it is clearly rational to opt for a gamble rather than a certainty.
If you are faced with a dreaded certainty and then offered a gamble that has some
chance of resulting in a better outcome, your lot has improved. For instance,
if an insane murderer offers to execute you on the spot by slowly mutilating your
body or to let you jump off a nearby cliff into the sea, you would be irrational,
or else a consummate masochist, not to take the gamble of jumping off the cliff.

Unfortunately, this way of defending the use of chance devices does not
really address the issue. The murderer gives you a new option with a chance at a
new outcome. Mixed strategies might qualify as new options, but they do not lead
to new outcomes. None of our talk about the expected utility of a gamble equal-
ing its utility can erase the fact that we are still faced with the same outcomes.

In the end, the strongest argument for using a mixed strategy is the secrecy
argument: It makes it impossible for your opponent to know which pure stategy
you are going to use until you actually use it. You can even announce your
mixed strategy to the world.

When there is no question of your opponent discerning your intentions, the
secrecy argument has no bite. Still, we might reconcile ourselves to mixed
strategies by reminding ourselves that we use them only when a game has no
solution via pure strategies. If you are involved in such a game, there is no
reasonable pure strategy for you to pick. Given that you must pick one, it is not
totally irrational to use a chance device to make the selection. The beauty of the
maximin theorem is that once you have made the step to mixed strategies, it can
point you to a rational choice.

Now Smith was in a bad situation. There was no way for him to avoid tak-
ing some risks. He could not fly his troops over the mountain; he could not ob-
tain fully reliable information concerning Jones’s route; he could not start on one
route and then backtrack if he saw Jones advancing toward him. In short,
whether he liked it or not, Smith had to play the game we described. Yet he
could not justify taking any of the pure strategies open to him. Under the circum-
stances he might as well have rolled a die, and given that, abiding by the counsel
of the maximin theorem was the most rational thing for him to do.

PROBLEMS
1. Statisticians often recommend using chance mechanisms to choose the mem-
bers of a sample in order to avoid biases. Do you think that one can support
the use of mixed stratcgies on the grounds that they protect one against irra-
tional biases?
2. If an army commander would be justified in using a mixed strategy (in a
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game without a pure equilibrium pair) to protect against spies, would it not
also follow that he would be justified in using it even when there is no threat
of spies?

3. In real life the people with whom one usually plays “games” are far from
ideally rational agents. Do you think one should always follow the dictates
of game theory when playing these games?

5-4. Two-Person Nonzero Sum Games: Failures of the
Equilibrium Concept

In a zero sum game both parties can arrive at a rational, stable, and, in a sense,
optimal resolution without the benefit of communication. For by simply pursu-
ing their own interests in the most rational manner possible the players will ar-
rive at an equilibrium strategy pair for the game. The resulting outcome is op-
timal in the sense that both players do as well as they can expect given their own
opportunities and the wiles of their opponent. Oddly enough, the strictly com-
petitive nature of these games is responsible for their theoretically satisfying so-
lutions. For if we drop the assumption of strict competition while retaining our
assumption that the players can neither communicate nor form binding agree-
ments, we can find games for which the concepts of individual self-interested
rationality and equilibrium strategies fail to produce satisfactory solutions and,
worse, even produce plainly unsatisfactory ones. This not only raises serious
questions about the nature of rationality in gaming situations but also suggests
interesting connections between rationality and morality.

Because the traditional approach to games fails to solve many nonzero sum
games, mathematical approaches to them are far more tentative than the
mathematics of zero sum games. Accordingly, my account will focus on two
specific games and the failures of the equilibrium approach to solve them.

5-4a. The Clash of Wills

This game traditionally has been known as “the battle of the sexes,” but in the
spirit of the times I am renaming it and altering the story that goes with it.
Mathematically, of course, it is the same game as the one that goes with the older
name and story.

Here is the story. Able and Baker, two fast friends who dwell in different
cities, are planning a weekend together over the telephone. They have heard radio
reports that the telephone service between their locations will be interrupted for
several days and are trying to settle their plans while they can still communicate.
Able wants to go a ski resort in the mountains; Baker wants to go to a music fes-
tival in a distant city. Although both prefer being together to being alone, Able
prefers the ski resort to the festival and Baker has the opposite preference. How-
ever, both prefer going to either location to staying at home alone. At the begin-
ning of their conversation they share this information, and it quickly becomes
clear to both that neither will cheerfully yield to the other’s wishes. Yet before
they can start to work out a compromise the phones go out. What should they do?

Let us represent this situation by means of game table 5-28. Since staying
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at home is a dominated strategy for both players, we can use a two-by-two table
instead of a three-by-three one. The first number in each square is Able’s pay-

5-28 Baker’s Strategies
Go Skiing  Go to the Festival

Go
Able’s Skiing @ b ©. 0
Strategies  Go to the
Festival (=1, =1 a,2)

off, the second is Baker’s. A purely ordinal utility scale will suffice for raising
the difficulties with this game. So let us think of numbers being assigned to
preferences according to the scheme in table 5-29. Notice that because Able and

5-29  Utility Numbers Able’s Preferences Baker’s Preferences

2 Ski with Baker Festival with Able
1 Festival with Baker  Ski with Able
0 Ski alone Festival alone

-1 Festival alone Ski alone

Baker do not have completely opposite preferences, we cannot use the zero sum
representation in this game. It is also important that an ordinal scale be sufficient
for studying this game; otherwise we would have to deal with the very difficult
question of how to compare Able’s and Baker’s scales. In fact, as you can verify
for yourself a few paragraphs hence, exactly the same problems arise when each
player is assigned a different ordinal scale. Thus the question of the interpersonal
comparison of utility scales can be bypassed for the time being. (But we will deal
with it in chapter 6.)

Let us turn now to the analysis of the abstract game itself. Neither player
has a dominant strategy. Although the maximin equilibrium test applies only to
Zero sum games, it is easy to spot two equilibrium pairs. The pairs (Ry, C1)
and (R», C3) are both in equilibrium: Given that one player will be at a given
location, the other player would rather be there too. However, the two
equilibrium pairs have different values for each player; Able does better with
(R1, C1), Baker does better with (R,, C2). The coordination theorem, which
held for zero sum games, fails here.

This means that we are still far from solving this game. If Able and Baker
had been able to continue to talk to cach other, we might have seen a strong clash
of wills. Ideally they would try to find a method for picking one of the
cquilibrium pairs. But in pursuing their own interests they could fail to rcach
an ideal solution. Able, for instance, might threaten to go skiing regardless of
whether Baker joined him. Baker might become so angered by this that he would
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rather not spend the weekend with Able. Given that Baker still prefers the fes-
tival to skiing, the game would change to this one (table 5-30). This does not

5-30 Ci &)

Ry 2, -1 ©, 2)

R (—-L 1 1, 0)

even have equilibrium pairs! (As you might expect, in games in which communi-
cation is possible, threats can play a major role in determining an outcome.)

From the outside we can see a plausible solution to Able and Baker’s prob-
lem. They could flip a coin and go skiing on heads, to the festival on tails. This
does raise questions about their utility scales, however. First, since we would
be confronting them with an even-chance gamble between the pairs of values (2,
1) and (1, 2), we would need to compare the utility of this gamble with the utility
of the two outcomes. The pair of values (3/2, 3/2), for instance, would not make
sense unless we assume that Able and Baker both have utility scales satisfying
the expected utility condition. Second, to the extent that we view the suggested
solution as equitable or fair or just, we are implicitly making an interpersonal
comparison of the two utility scales. Suppose we replace Baker’s 2 with 200 and
his 1 with 100. Then the issue is between the pairs of values (2, 100) and (1,
200). Using a flip of a coin would result in the pair (3/2, 150), but who is to
say that this is an equitable solution? If Baker already gets so much utility from
skiing, by what right can he demand even more?

All this makes no difference to our two players anyway, because choosing
the weekend meeting place by flipping a coin would be possible only if they
could communicate with each other. By hypothesis they cannot. In the coin-
flipping resolution we are, in effect, invoking a jointly coordinated mixed
strategy, whereas the game only allows the players to pick mixed strategies
separately. As a matter of fact the mixed strategies

(12 R1, 1/2 R2); (1/2 C1, 172 C2)

guarantee each player the security level of 1/2, Yet they are not in equilibrium.
By playing his half of this pair, Baker can be sure of getting at least 1/2 but he
cannot hold Able to 1/2; for Able the pure strategy R, has an expected utility
of 1 against Baker’s maximin strategy.

The upshot of this is that considerations of individual rationality, which
we have considered so far, fail to produce a stable or optimal solution for this
game. Both players can easily calculate the various equilibrium pairs and secu-
rity levels available in the game; but, unlike the zero sum case, neither has any
reason to choose one of these strategies as long as he cannot count on his “oppo-
nent” to cooperate. Ironically, the rational thing for them to do was not to play
the game in the first place. In the case of our particular story this mcans that
the rational thing for them to have done was to have made certain that their plans
were firm before the phones went out.
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One might suggest another solution to this game. Each player knows that he
cannot count on his opponent to play the strategy yielding the equilibrium value
he, the first player, prefers; thus each should assume that the other player will
not play that strategy and then pick his best strategy under thar assumption. In
our example this means that Able will go skiing and Baker will go to the festival.

Accepting this proposal, however, forces us to conclude that the pair (R4,
C,) with the value (—~1, — 1) is the solution to the game, which is scarcely the
best possible outcome. Can we endorse canons of rationality that drive individ-
uals to outcomes that are clearly not optimal? Before examining this question let
us consider another game in which the issue arises even more dramatically.

PROBLEMS

1. Show that the clash of wills can be fully represented without using utility
numbers.

2. Explain why, if the two players coordinated their weekend by flipping a fair
coin, it would make sense to assign the value 3/2 to each of them.

3. Show that if Able plays (1/2 R, 1/2 R»), Baker can do better than 3/2 by play-
ing C».

4. In the rural community where I live, falling trees and lightning cause a fair
number of electrical power failures. When these occur someone phones the
electric company to report the outage and it is fixed within a few hours. Every
time I have called the electric company I have been told that someone has al-
ready reported the outage and it will be repaired. Since the call is a long-
distance one, I have felt that I wasted my money. The other night we had an-
other power failure, and as I lay on my bed staring into the darkness, it oc-
curred to me that in deciding whether to phone the company, I was playing
a version of the clash of wills. Assuming that only one other person has been
affected by the power failure, and thus that he is my opponent, represent my
situation as a clash of wills.

5-4b. The Prisoner’s Dilemma

The next game has a single equilibrium point and dominant strategies for each
player. Thus, unlike the clash of wills, its outcome is fully predictable. The
paradox is that although from the point of view of the individual players their
chosen strategies are the only rational alternatives, the resulting outcome is pa-
tently nonoptimal. This suggests that there may be a fundamental conflict be-
tween the notions of individual and group rationality.

The game is named after a story about two prisoners. They have been ar-
rested for vandalism and have been isolated from each other. There is sufficient
evidence to convict them on the charge for which they have been arrested, but
the prosecutor is after bigger game. He thinks that they robbed a bank together
and that he can get them to confess to it. He summons each separately to an inter-
rogation room and speaks to each as follows: “I am going to offer the same deal
to your partner, and I will give you each an hour to think it over before I call
you back. This is it: If one of you confesses to the bank robbery and the other
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does not, I will see to it that the confessor gets a one-year term and that the other
guy gets a twenty-five year term. If you both confess, then it’s ten years apiece.
If neither of you confesses, then I can only get two years apiece on the vandalism
charge; but that’s not going to happen—at least one of you will confess.” Sure
enough, an hour later both confess, and both end up serving ten years. Let us
see why they were forced to that outcome.

The game can be represented by table 5-31. Here I have used the length
of the prisoners’ sentences to assign numerical outcomes. It is easy to see that

5-31 Confess Do Not
Confess (=10, —10) (—1, =25
Do Not (=25, -1 (-2, =2

confessing dominates for both players, and thus the ( — 10, —10) outcome will
be the one that our theory predicts “rational” players will achieve. But clearly
both would be better off if they could achieve the outcome (—~2, —2). But
(—10, —10) and nor (—2, —2) is the equilibrium value, and the strategies
producing it are recommended by one of our first and most fundamental princi-
ples of individual rationality —the dominance principle. The paradox is that fol-
lowing the dictates of individual rationality has put everyone in a worse position
than they would have been if they had been less “rational.”

Let us look at the prisoner’s dilemma from an informal point of view. The
prisoner, either one, knows that if neither confesses, both will be better off than
if both confess. So he might consider not confessing. But he also knows that if
he does not confess, he has placed himself in an extremely vulnerable position;
a “double-crossing” partner could cost him twenty-five years of his life. Each pris-
oner suspects that his partner is thinking in the same way about the matter, and
each sees that each has a strong reason to try for the double-cross. Both conclude
that the only thing to do is to play it safe, but playing it safe means confessing.

As the informal version of the dilemma shows, no numerical reasoning is
necessary to see how the game will go. Thus, we require only purely ordinal
utility functions to represent this game, and need not concern ourselves with in-
terpersonal comparisons of utility.

5-dc. Other Prisoner’s Dilemmas

The situation arising in the prisoner’s dilemma is not restricted to two-person
games. Suppose the members of a cartel, OPEC, for instance, try to limit the
total sales of their product in the hope, of course, of driving up prices and
benefiting individually and as a group. Once prices start to rise, each member
of the cartel will be sorely tempted to accept contracts at the higher prices and
violate the production quotas assigned by the cartel. For, so long as he is the
only one to do this, prices will not drop and nobody will try to repudiate their
contracts with him. On the other hand, if cnough members of the cartel try the
samc double-crossing strategy, there will be a glut on the market, contracts will
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be broken, and prices will tumble. Since this is known to all cartel members,
they will find it nearly impossible to limit production in the first place. This mul-
tiperson prisoner’s dilemma in which multiple double-crosses are possible is not
far from real life.

One might be tempted to argue that criminals will nof confess because each
knows that double-crossers are killed by their fellow criminals. No doubt this is a
factor in many real-life confrontations between criminals and prosecutors. But
when this happens we do not have a true prisoner’s dilemma game. For the out-
come of confessing when one’s partner does not is not just a one-year sentence; it
is one year plus a good chance of being killed. Presumably, this is less preferable
than a simple ten-year sentence. Thus the dominance argument no longer works.

Similarly, the members of a cartel know that they must deal with each other
again and again. Some mutual trust is of the essence; thus there is a premium on not
double-crossing. This can prevent the game from being a true prisoner’s dilemma.

Ironically, one of these games based on an element of trust can develop into
a prisoner’s dilemma if the players know that mutual trust is no longer important
to them as individuals. Suppose, for example, that over the years two competing
stores located on the same block have, through mutual trust, avoided all-out price
wars. Now suppose the entire block is to be demolished for an urban renewal pro-
ject, and they will move to different locations never to compete again. Then trust
is no longer a factor in their dealings. Each has a strong reason to cut prices just
enough to draw away the competitor’s customers. We have a prisoner’s dilemma.
It would be no wonder, then, if both began liquidation sales.

Moreover, if both competitors know the exact date on which they must
close their doors, then no matter how cooperative they have been until now, they
can reason themselves backward to a prisoner’s dilemma right now. For suppose
all occupants of the block must vacate in forty-five days. Then each knows that
on the forty-fifth day it can no longer trust its competitor to maintain its prices.
Trust being out of the question on day forty-five, each figures it might as well
cut its prices on day forty-four to get the jump on the competitor. But since each
knows that, trust is out of the question on day forty-four. Thus each reckons it
must cut its prices by day forty-three. But then trust on day forty-three is out
of the question; so we are back to day forty-two. This reasoning continues until
each store concludes that it should cut prices today!

Such reasoning can even force competing stores to lower their prices to
the point where both operate at a near loss. Suppose that two stores, X and Y,
currently sell a given commodity for $2 and make a $.50 profit. Store X decides
to cut its prices to $1.90 to attract some of Y’s customers, figuring with the added
volume to exceed its previous profits based on a lower volume and a higher per
sale profit. Store X responds by cutting its prices to $1.80; Y responds by going
to $1.70, and if X then sets its prices at $1.60, they will both end up making
the samc number of sales but at only one fifth the profit.

PROBLEMS
1. Show that the prisoner’s dilemma arises when Col’s sentences are as before
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but Row is sentenced to fifteen years if both confess, five years if he does
but Col does not, sixteen years if he does not but Col does, and six years
if neither does.

2. Show that games of the prisoner’s dilemma can be stated in entirely nonnu-
merical terms by referring to the players’ preferences for outcomes.

3. Set up the final store example as a five-by-five two-person game. Assume
that both stores combined sell 100 items (per day), that the one with the
lowest prices gets all the sales, and that they split the sales evenly when both
have the same prices. Use the five possible prices ($2.00, $1.90, $1.80,
$1.70, $1.60) as strategies and the total profits as outcome values. Show that
repeated dominance reasoning leads them to split the lowest total profit.

4. In the game of chicken two players race their automobiles straight at each
other. If neither veers, they will crash and die heroes in the eyes of their
friends. If one veers and the other holds fast, the one who holds fast will be
regarded as a hero and the other will be branded a “chicken.” If both veer,
their reputations will remain unchanged. Assume that each player ranks the
outcomes in this descending order: live hero, no change, dead hero, chicken.
Show that the chicken game is a variant of the prisoner’s dilemma.

5-4d. The Prisoner’s Dilemma and the Predictor

As a number of people have noticed, there is a connection between the prisoner’s
dilemma and the Predictor paradox. Suppose you are one of the prisoners and
you think that the other prisoner thinks very much like you do. By dominance
reasoning you have tentatively decided not to confess. Thus in all probability so
has the other fellow. Does this mean that you should go ahead and confess to
take advantage of the double-cross? No, because the same thought will occur to
the other fellow too. But you can use the information that he is likely to make
the same choice as yours to calculate the expected utility of each choice.
Here is how. First, turn your half of the prisoner’s dilemma into your own
decision under risk. Use table 5-32. The utilities are, as before, just the lengths

5-32 He Confesses He Does Not
- 10 -1

Confess 9 |
—-25 -2

Do Not | 9

of the various prison sentences and the probabilities are those of the states condi-
tional on your acts. Given that you think the other prisoner thinks like you do,
you assign a high probability to his making a choice that matches yours and a
low one to his not doing so. Now calculate the expected utilities. They are —9.1
for confessing and —4.3 for not confessing. So you maximize expected utility
by not confessing.

So here is our old dilemma again. The dominance principle recommends
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that you confess, and the principle of maximizing expected utility tells you not
to confess. Moreover, your choice cannot causally affect his choice; it is merely
evidence of what his choice will be. So once again how you decide will depend
on how you decide the conflict between causal and evidential decision theory.

PROBLEM FOR DISCUSSION
The preceding argument for not confessing is based on an analogy between your
way of thinking and that of the other prisoner. Could one argue that the dispute
between causal and evidential decision theorists shows that analogical reasoning
is illegitimate in this instance?

5-4e. Morals for Rationality and Morality

In both the clash of wills and the prisoner’s dilemma, the principles that game
theory recommends for self-interested rational agents fail to produce the best
outcome for either party. There is a term, named after the Italian economist
Vilfredo Pareto, to characterize this situation—the outcomes are not Pareto op-
timal. Intuitively this means that there are outcomes in which at least one of the
players does better while the other does no worse. Each outcome of a two-person
game has a pair of values, (11, u»), associated with it. This allows us to define
Pareto optimality more formally as follows: An outcome associated with (i1,
uz) is Pareto optimal just in case for no pair of values (vi, v2) associated with
outcomes of the game, do we have either vi >u and v, > us or v, >u» and
vi > u. Game theory fails to guarantee Pareto optimal outcomes for either the
clash of wills or the prisoner’s dilemma. The clash of wills is likely to end in
(0, 0), which is worse for both players than (2, 1) and (1, 2), whereas the prison-
er’s dilemma will result in (— 10, — 10), which is worse for both players than
(=2, =2).

Recall that envy, goodwill, and other attitudes toward the other players’
payoffs are already reflected in the utility one assigns to outcomes. Thus if under
outcome A one player receives the same utility as he does under B while the
other player receives a greater utility under B, the move from A to B costs the
first player nothing—not even psychologically. Thus no player could have
grounds for preferring an outcome that is not Pareto optimal to one that is. It
thus seems eminently reasonable to require that the solution to a game be among
its Pareto optimal outcomes if there are any.

The failure of game theory to yield Pareto optimal solutions for games
such as the prisoner’s dilemma has led some philosophers to search for other
means to optimal solutions. Some have suggested that in situations such as the
prisoner’s dilemma another kind of rationality will become operative. Each pris-
oner will realize that the only way to achieve a decent outcome is to temper his
self-interest by considerations of what is achievable for the group as a whole.
Each will scc that hc must rcgard his preferences as linked to thosce of his fel-
lows; he must, as it were, look at pairs of values instead of just his component
of each pair.

This would solve the prisoner’s dilemma since there is only one Pareto op-
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timal outcome. Taking the point of view of “group rationality,” each would see
that it is only rational for both not to confess and achieve the outcome of ( —~2,
—2). However, the concept of group rationality based on Pareto optimality will
not solve the clash of wills. There are two Pareto optimal outcomes worth (2,
1) and (1, 2), respectively. Unless each player forfeits his individuality entirely,
each will continue to prefer one outcome to the other. Unless the players can
communicate, we have made no advance at all; neither the problem of determin-
ing whose preferences should be given greater weight nor the problem of coor-
dinating their strategies has been resolved.

The best thing to do is to avoid games like the clash of wills and the prison-
er’s dilemma in the first place. People who are confronted with such situations
quickly learn to take steps to avoid them. We have already mentioned the crimi-
nals’ code of silence in connection with the prisoner’s dilemma. Families often
adopt rules for taking turns at tasks (dish washing) or pleasures (using the family
car) to avoid repeated plays of the clash of wills. Since such rules represent a
limited form of morality, we can see the breakdowns in game theory as paving
the way for an argument that it is rational to be moral.

The argument runs like this. We can all see that there are certain games
for which self-interested individual rationality provides no reasonable solution.
If you are trapped in such a game you are lucky if you come out of it without
the worst outcome. Furthermore, such games could easily occur in real life if
we did not adopt ways of behaving to avoid them. Many of our moral principles
are such ways of behaving, and thus even self-interested agents should see that
they should abide by them.

This argument is by no means decisive. People have often replied that at
best it shows that truly self-interested agents would go along with morality so
long as they felt it was in their interests to do so. However, whenever they felt
they could get away with being immoral, it would only be rational for them to
take advantage of the system. In short, morality only provides an environment
for a large-scale prisoner’s dilemma.

A similar quandary for politicians and political philosophy is the free rider
problem. To illustrate it, suppose the citizens of Smallville have a bus system
supported by riders depositing 50 cents in the fare box each time they use a bus.
Fares are collected on the honor system. Unscrupulous Jack, who is about to
board a bus during the rush hour, thinks to himself, Nobody will notice if I don’t
pay the fare, and the bus system can easily support my free ride; so I will take
a free one this time. Obviously if everyone thought and acted like Jack, the bus
system would be bankrupt in short order.

In these situations it is beneficial to all to agree to engage in some form
of cooperative action and yet tempting to each to defect and take advantage of
the others. How then can rational self-interested agents avoid the conclusion that
they ought to cheat whenever they can? Thomas Hobbes, who was the first phi-
losopher to attempt to usc cases like the prisoner’s dilemma to ground morality,
argued that rational sclf-interested agents will see that it is necessary to build
into the cooperative ventures penalties that are sufficiently harsh to make cheat-
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ing irrational. Since he was seeking the very foundations for civil society in his
version of the prisoner’s dilemma, he hypothesized that the parties to his cooper-
ative venture would create a sovereign with the power to detect and punish
cheaters. Like the solution to the prisoner’s dilemma based on ihe code of si-
lence, this resolves the dilemma by changing the players’ utility functions and
thus by changing the game.

Recently David Gauthier has addressed the problem again in the hope of
showing that rational self-interested agents can come to the conclusion that they
should cooperate with their fellows even when there is no sovereign to punish
cheaters. The key to Gauthier’s approach is that he considers the situation of an
agent who knows that in the future he is likely to be confronted with a prisoner’s
dilemma and chooses now between cooperating or cheating. For Gauthier, this
is to choose to develop one of two character traits (or dispositions to behave in
certain ways). To decide to cooperate is to decide to be the sort of person who
will join a cooperative venture and stay with it so long as the prospects are good
that your colleagues will continue to cooperate too. To decide to cheat is to de-
cide to be the sort who will defect from a cooperative venture whenever it is
to your personal advantage to do so.

Suppose you are trying to decide whether to become a cooperator or to
be a cheater. Gauthier makes the usual decision theoretic assumption that you
will make this decision so as to maximize your expected utility. (Thus as of now
you are a cheater.) Now if we were all perfect mind readers, when we met you
we would know whether you were a cooperative type or a cheater. Furthermore,
if we knew that you were a cheater, we would exclude you from our cooperative
ventures. (Of course, we might not if we could be certain that we could prevent
you from cheating. But Gauthier is trying to avoid such Hobbesian solutions.)
You would know that in a prisoner’s dilemma you should avoid being excluded
from the cooperative venture. You would also know that you cannot even seri-
ously consider joining us and cheating afterward. Thus of the options realisti-
cally open to you, you would rather join us and remain faithful. Thus you would
see that it is in your self-interest to become the sort of person who cooperates
in a prisoner’s dilemma.

It follows that each member of a group of rational self-interested agents,
who are also perfect mind readers, will separately decide to become the sort of
person who cooperates in a prisoner’s dilemma. Now we could stipulate that an
ideally rational agent is a perfect mind reader. That would not make any differ-
ence to zero sum game theory since, whether or not your opponent can read your
mind, he knows that if you are rational you will play an equilibrium strategy.
It will make a difference to the theory of nonzero sum games in which no com-
munication is possible; for there will be no such games unless we limit mind
reading — for instance, to face-to-face confrontations. In any case, resolving the
prisoner’s dilemma by introducing perfect mind rcaders has little real-life fall-
out. So Gauthicr introduced a refinement to make his solution more realistic.

Suppose again that you are trying to decide whether to remain a cheater
or to become a cooperative type. Although we will not assume that anyone can
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read minds, we will assume that there is a chance that cheaters will be recog-
nized and thus excluded from cooperative ventures. Hence if you decide to re-
main a cheater, you might find an occasion to negotiate a cooperative venture
with some cooperative types. If you do, you might not be recognized as a
cheater, and if you are not, you will be able to exploit your partners. Of course,
if you are recognized, you will be excluded from the cooperative venture. On
the other hand, if you decide to become a cooperative type, you too might meet
some fellow cooperators. If you do and you recognize each other, you will be
able to benefit from the cooperative venture.

Suppose the utility of not cooperating is u, that of cooperating with other
cooperators is u ', that of exploiting a group of cooperators is 1, and that of be-
ing exploited by a cheater is 0. Also suppose that 0 <u <u’ < 1; that is, it is
best to cheat, next best to cooperate, next best not to cooperate, and worst to
be exploited. Finally, suppose the probability of meeting a cooperative type is
p, that of being able to exploit one is ¢, and that of being able to recognize and
cooperate with a fellow cooperator is r. Then we may represent your decision
by means of the following tree (figure 5-2).

meet a fellow/u
cheater
~"1"p
meet a able to 1
o oo
Remaifl a cheater coop:rat r exploc;t him
not able to
1-q

Become a cooperator

avoid —— u

_ meet i
a cheater eXpIo1|£at»on
1-p q
exploited
meet a fellow q
cooperator
P 0
cooperate J
r
not able to
1-r
u
Figure 5-2
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If you now calculate the expected utilities of your two choices, you will
find that remaining a cheater has an expected utility of

(D u+pq(l—u),
while becoming a cooperator has one of

@) u+pru’ —u)—qg(l —pu.
Before we proceed any further let us try to assign some meaning to these num-
bers. The first term of both (1) and (2), u, is the utility you can expect as things
now stand. If you remain a cheater and manage to exploit a cooperator, you will
gain an additional amount. Instead of receiving the utility # you will get the util-
ity 1. Thus your gain will be (1 — u). However, you cannot be certain of achiev-
ing this gain, so in (1) (1 —u) is weighted by the probability of meeting a cooper-
ator {p) and also being able to exploit him (g). If you become a cooperator, you
might gain some utility too; you might go from u to u'. However, a cheater
might exploit you, leaving you with 0. The second term of (2) contains your
potential gain, (' —u), weighted by the probability of meeting a cooperator (p)
and cooperating with him (r). Your potential loss is —u and the probability of
suffering it is that of meeting and being exploited by a chcater, (1 —p)g. This
yields the third term of (2).

We still do not know whether you will realize more utility by remaining
a cheater or becoming a cooperator. You have a chance for a gain if you cheat,
and you have a chance at a lesser gain and a potential loss if you do not. But
clearly that is not enough information for you to decide. It will depend on the
particular values of u, u', p, q, and r, and this is as far as Gauthier’s solution
in its general form goes.

However, let us look at a special case. Suppose you are certain to meet
only cooperators. Then p =1 and we have

(=u+q(l—u)
QO =u+ru' —u).

Hence you can make your decision by comparing the gains g(l1 —u) and
r(u’ —u). The first is smaller than the second just in case,

glr< ' —u)/(1 —u)

that is, just in case the ratio of the probability of exploiting to that of cooperating
is smaller than the ratio of the gain from cooperating to that of exploiting. Thus
if your chance to cooperate is high, your chance to exploit is low, and the gain
from cooperating is relatively close to that from cheating, you should become
a cooperator. For example, if u=1/8, u’' =3/4, g=1/4 and r=3/4, then
q/r=1/3 and (u’ —u)/(1 —u)=>5/7; so you should become a cooperator. On
the other hand, if your chance to exploit is high in comparison to that to cooper-
atc and the gain from the former is high in comparison to thc latter, you should
remain a cheater. For example, if u = 1/2, u’ =5/8, g=3/4, and r = 1/16, then
g/r=12 and (u' —u)/(1 —u)=1/4; so you should remain a cheater.

It is clear that we cannot prove that it is rational to choose to cooperate
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in every prisoner’s dilemma situation. However, Gauthier’s analysis shows that
when the benefits to be derived from cooperating approach those to be derived
from exploiting and the probability of successfully cooperating exceeds that of
exploiting, it can be rational to cooperate. This opens the way for citizens to
make it rational to cooperate without having to erect a Hobbesian sovereign.

First, citizens who want to discourage defection by potential cheaters
should make the payoffs from cooperating as equitable as possible. Suppose you
own a tractor, but only I know how to drive it. By cooperating we can use it
to farm our lands, and if we do not cooperate, neither of us can grow a crop
worth harvesting. If you manage to get me to take just enough of the crop to
sustain myself while you grab the lion’s share for yourself, I will be sorely
tempted to cheat you whenever I can. Thus if you intend to keep my cooperation,
it makes sense for you to raise my share. But if you raise it too much, we will
simply switch our positions and it will no longer be rational for you to remain
a faithful cooperator. Striking the proper balance leads us to the question of ra-
tional bargains—a topic to be treated in the next section.

Second, citizens can discourage cheaters by developing methods for iden-
tifying potential cheaters and fellow cooperators. Failing that they should enter
prisoner’s dilemma situations only when they are confident that their partners are
true cooperators. Of course, we do that in real life. Governments and certain
corporations run security checks on their employees before trusting them with
important secrets. You and I would not volunteer our house keys or credit cards
to a perfect stranger, and even those close to us must earn our trust before we
expose ourselves to great risks at their hands.

As the tractor example hints, a promising step to take next in trying to de-
rive a basis for morality from game theory is to examine cooperative games, in
particular bargaining games. We will turn to them shortly. We must stress, how-
ever, that despite our talk of cooperative strategies and cooperation, the pris-
oner’s dilemma is not a cooperative game, technically speaking. The players in
a game cooperate when they intentionally coordinate their strategies. In the
cases we have considered so far the players do not coordinate; rather, each de-
cides independently to implement a strategy that eventuates in a so-called
cooperative outcome — their seeming to cooperate is really a coincidence. This
applies even to prisoner’s dilemmas that arise after one has formed a partnership.
Suppose, for example, that Joe and Moe happen to solve a cooperative game
when each deposits $1,000 in a joint bank account. This plunges them into a
noncooperative game for each has a chance to double his investment by cheating
on the other.

If we are to base morality on bargaining games it is thus crucial to show
that it can be rational to stick with one’s bargains —even when more immediate
utility can be gained by breaking them.

This underscores the importance of Gauthier’s reasoning. For, if it is cor-
rect, it establishes that rational agents will sometimes abide by an agreement to
cooperate when they find themselves in a prisoner’s dilemma. It does not show
that no one can gain more utility in those instances by breaking his agreement,
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for then there would be no prisoner’s dilemma. Rather it shows that it is rational
(in the sense of maximizing one’s expected utility) to choose to live by a policy
that requires one to cooperate faithfully when presented with a cooperative ven-
ture in which (1) one may obtain more utility than by continuing on one’s own,
and (2) one has a reasonable expectation that one’s partners will remain faithful
to their commitments too.

PROBLEMS

1. Are the outcomes (—25, —1) and (—1, —25) of the prisoner’s dilemma
Pareto optimal?

2. Can there be Pareto optimal outcomes in a zero sum game?

3. Here is a two-person version of the free rider problem. Hank and Ike own
a mule that they both use for plowing their gardens. They have agreed to
help each other feed the mule every day. The job requires moving a heavy
sack of grain that the two men can handle with ease. Each fellow knows that
the other could move the sack by himself if necessary. Thus each thinks to
himself, It’s not necessary for me to go there every day. Hank [Ike] will be
there if I am not and he can get the job done, and I'd rather do something
else. Suppose both Hank and Ike would prefer that the mule be fed by some-
one to its not being fed at all and that both would prefer that the other do
it to doing it alone or together. Show that this game is a version of the clash
of wills.

4. Here is another version of Hank and Ike's situation. Each would still rather
that the other fellow feed the mule but now each so resents the prospect of
doing it by himself that he prefers that the mule not be fed at all if he has
to do it alone. Furthermore, each prefers that they feed the mule together
to letting it starve. Show that this is a version of the prisoner’s dilemma.

5. Verify that the expected utilities for remaining a cheater and becoming a
cooperator are respectively (1) and (2).

6. Wherep=1/2,g=3/4,r=1/4, u=1/4 and u’ = 3/4, determine whether it
is more rational to remain a cheater or to become a cooperator.

5-5. Cooperative Games

Until now we have assumed that communication between the players in a game
is impossible. Thus although their interests might overlap—that is, the game
might not be zero sum— they have had no opportunity to coordinate their strate-
gies and realize together what neither can obtain on his own. Let us now give
them that opportunity.

To see what a difference this can make, let us return to the clash of wills.
Intuitively the fair solution was for the players to toss a coin and go skiing to-
gether on heads and to the festival on tails. But since they could not coordinate
their strategies, this solution was out of the question. Now it is open to them.
To sec how this works out numerically, consider this game (table 5-33). First,
suppose Col and Row cannot communicate but each decides separately to flip
a coin and play his first strategy on heads and his second on tails.
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5-33 (1, 2) ©, 0)

0, 0) 2,1

Then the utility to Row is that of the pair of mixed strategies
(1/2 Ry, 172 R2); (172 Cy, 172 C2),

i.e., 1/4(1) + 1/4(0) 4 1/4(0) + 1/4(2) = 3/4. This is also the utility to Col of his
half of the pair. Now, let us suppose Row and Col can communicate and that
they agree to flip a coin and play R and C; together on heads and R, and C,
on tails. Then they will have adopted a coordinated strategy. Their particular
coordinated strategy can be represented by

1/2(R1, Cl); I/Z(Rz, Cz)

and yields Row a utility of 1/2(1) + 1/2(2) =3/2. A similar calculation shows

that Col also receives a utility of 3/2 from this pair. Obviously, Row and Col

do better with their coordinated coin toss than they do with their separate ones.
In general if Row and Col play a coordinated strategy pair

X(Ry, C1); (1 —x)(R2, C2),
where 0 < x < 1, their utilities are

x(D+ A —x)2=2—x (for Row)
x2)+ A —x)1=1+x (for Col).

For there is chance of x that they will achieve the outcome (1, 2) and one of
1 —x that they will achieve the outcome worth (2, 1).

Suppose we think of each pair of Row’s and Col’s utilities as determining
a point in the plane whose horizontal axis is Row’s scale and whose vertical axis
is Col’s scale. Then when x =0, their coordinated strategy yields the point (2,
1). When x = 1, it yields the point (1, 2), and when x falls between these values,
it yields a point on the line joining (2, 1) and (1, 2). It can be shown that Row
and Col can achieve no utility points better than the points on this line. Thus each
of these points is Pareto optimal. Yet, of course, those toward the (2, 1) end
of the line are better for Row and those toward the (1, 2) end are better for Col.
The problem for game theory, then, is to determine which point or points on
this line to recommend as the solution for the game.

Putting the problem more generally, in a cooperative game the players can
usually achieve outcomes with coordinated strategies that they cannot achieve
on their own. In the game we have been considering, the outcome (3/2, 3/2) is
a case in point. Furthermore, by playing coordinated strategies the players can
guarantee that they avoid outcomes that are worse for both of them. (They can
avoid the (0, 0) outcomes in our game.) Let us call the set of outcomes they can
achicve by playing either coordinated or individual strategies the achievable set.
We can limit our attention to the Pareto optimal members of the achievable set.
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For if an outcome is not Pareto optimal, there is some other achievable outcome
in which one or both of the players can do better. If only one does better, he
does so at no cost to the other —not even in psychological terms since the utilities
already reflect the psychological aspects of the other player’s doing better. Thus
no player could prefer an outcome that is not Pareto optimal to one that is.

Some game theorists think that all strategies that produce Pareto opti-
mal outcomes in a cooperative game should count as solutions to that game. But
that does not distinguish the apparently “fair” outcome (3/2, 3/2) of our recent
game from the “biased” ones (2, 1) or (1, 2), nor in a cooperative version of
the prisoner’s dilemma would it distinguish (—1, —25) and (—25, —1) from
the “cooperative” outcome ( —2, —2), since all three outcomes are Pareto opti-
mal.

Furthermore, this broad conception of a solution often leaves the players
with many outcomes yielding many different values to each. Unlike the case with
multiple equilibrium pairs in a zero sum game, there is no solution to the coordi-
nation problem this generates. Thus the situation will quickly degenerate into a
competitive game in which the players vie for Pareto optimal outcomes favor-
able to themselves. One way to deal with this is to have the players bargain for
Pareto optimal outcomes. This leads us to bargaining games.

PROBLEMS

1. Plot the achievable set of utility points for the game presented at the begin-
ning of this section. (They will form a triangle.)

2. Plot the achievable set for the prisoner’s dilemma. (Start by plotting the four
points achieved by playing pure strategies, connect these to form a polygon,
and fill in the region.) Describe the game’s Pareto optimal points in geometri-
cal terms.

3. The points of the achievable set for a two-person game always form the
boundary and interior of a polygon. (Can you explain why?) Prove that the
set of Pareto optimal points constitute the northeastern boundary of the

polygon.

5-5a. Bargaining Games

A natural suggestion for resolving the problem posed by cooperative games with
several achievable Pareto optimal outcomes is that the players select a single out-
come by bargaining with each other. Since it is certainly more rational to end
disputes by negotiation than to leave them festering or to resolve them by force,
bargaining games merit the attention not only of pure-game theorists but also of
those interested in a rational basis for morality.

A bargaining game is specified in terms of the achievable set of a cooper-
ative game. Using the graphing approach introduced earlier, the set of achiev-
able outcomes will be called the bargaining region of the gamc. We will assume
that the region contains at least two Pareto optimal points for otherwise there
would be nothing to contest. We will also assume that the region contains a non-
Pareto optimal point, called the failure point of the game, which marks the
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payoffs to the players in case they fail to cooperate. In the prisoner’s dilemma
the failure point is the point ( — 10, — 10), in the game given in the last section
it is (0, 0). The problem for the game theorist is to specify a point within the
bargaining region that would be selected by rational bargainers. Let us call such
a point the negotiation point of the game. We will examine first a solution pro-
posed by John Nash.

Let us designate the failure point of a bargaining game by (f1, f2), where
f1 is the utility received by Row and f> that achieved by Col. Now suppose we
have been given a cooperative game that generates a bargaining region R and
a failure point (f1, f>). By assumption there are some Pareto optimal points in
R. Let (u1, u>) be one of them. Consider the numbers u — f; and 2 — f>. These
represent the amount of utility to be gained, respectively, by Row and Col in
case they agree on the point (1, uz). Clearly, rational bargainers will agree on
a Pareto optimal point if they agree on any point at all. But there is more than
one Pareto optimal point in the bargaining region. Row will prefer some and Col
will prefer others.

Nash proposed taking the negotiation point as that point of the bargaining
region R for which the product

(uy = fi)u2—f2)
is the largest. For future reference we will call this the Nash point.

Why should we count this point as a solution? First, the Nash point is cer-
tain to be Pareto optimal. For if a point is not Pareto optimal, one or both of
the utility gains associated with it will be smaller than those associated with some
other point and none of the gains will be larger than those associated with any
other point. Thus its associated product will not be maximal and it cannot be a
Nash point.

Second, there will be only one Nash point. For suppose there are two
Pareto optimal points, (u(, u2) and (u’(, u'>), whose products (ui —f1)
(uz—f2)and (u'1 —f1)(u'2—f>) are equal. Let “g;” abbreviate “u; —fi,” and
let “g2,” “g’1,” and “g",” abbreviate the other factors of the two products. Since
the points are distinct Pareto optimal points, there is one in which the gain for
Row is greater and that for Col is less. Let us suppose that this happens in the
first point. Then g > g’ while g2 < g’». However, from this it follows that

g1>(gi+g'1)2>g"
g2<(g2tg'2)2<g’ 2.

But then
8182<81(g2+8"2)/2.

But since the product on the left equals g’1¢'2, we have
g'18'2<g1(g2+g"2)/2.

From which it follows that

g 18 2<(g1+8" 1)/2 X (g2+g"2)/2.
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However, the product (g1 + g’ 1)/2 X (g2 + g'2)/2 corresponds to another Pareto
optimal point in the bargaining region. This is the point halfway between the
points (i1, u2) and (u'y, u’2). (See exercise 4 in the following Problems sec-
tion.) This contradicts our assumption that these two points are Pareto optimal
points with maximal Nash products.

More can be said for Nash's proposal than just that it selects a unique
Pareto optimal point from the bargaining region. There are four plausible condi-
tions for any solution to the bargaining problems to satisfy, and it turns out that
Nash’s is the only solution to the bargaining problem that satisfies all four. After
I state the conditions and show that Nash’s proposal meets them, I will discuss
their appropriateness. The four conditions are as follows:

(1) Pareto optimality: The negotiation point must always be a unique
Pareto optimal point.

(2) Invariance under utility transformations: If two bargaining games can
be obtained from each other by positive linear transformations of the
players’ utility scales, their negotiation points can be obtained from
each other by the same transformations.

(3) Symmetry: If a bargaining game is symmetrical in the sense that (a) a
point (#, v) belongs to the bargaining region if and only if (v, # ) does, and
(b) f1 =f>, the negotiation point assigns the same value to each player.

(4) Irrelevant expansion/contraction: If (a) the bargain region of one game
is contained within that of another and (b) the two games have the same
failure points, then if the negotiation point for the game with the larger
region happens to fall within the smaller region, the two games must
have the same negotiation point.

We have already shown that Nash’s proposal meets the Parcto optimality
condition. I will let you establish that it meets conditions (2) and (3). (See exer-
cises 5 and 6.) So let us now show that it meets condition (4).

Suppose that G and G’ are bargaining games with the same failure points,
that the G region contains the G’ region, and that the negotiation point for G
falls within the G’ region. Since, according to Nash’s proposal, the negotiation
point is the Nash point, we must show that the Nash point for G is also the Nash
point for G’ . By definition, the Nash point for G is the point of the bargaining
region of G whose associated product is maximal. Since G and G’ have the same
failure points, the product associated with any point in the bargaining region of
G’ will be identical to that associated with the point under G. Since the Nash
point, N, for G falls within the bargaining region of G’ and every G’ point is
also a G point, the point N will also yield the product that is maximal for the
points of G'. Thus N will be the negotiation point of G'.

Having established that Nash’s proposal meets conditions (1)-(4), we must
also show that it is the only solution that does so. Let us suppose then that we
have a method M for solving bargaining games that satisfies (1)-(4) and prove
that M must always yield all and only Nash points. Then M will coincide with
Nash’s proposal.
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To do this, let us assume we are given an arbitrary bargaining game with
the failure point (fy, f2) whose Nash point is (21, n2). We must show that this
is M’s solution to the game as well. We first create a second game by applying
the positive linear transformations

w' =ur/(ny—=fi) = fillnr = fi)

w' =ux/(na—fo) = fal(na = f2)
to Row’s and Col’s utility scales, respectively. As a result the failure point is
transformed to (0, 0), and the Nash point is transformed to (1, 1). (See exercise
7.) Next we create a third game by cutting the bargaining region for this second
game back to a symmetrical region whose axis of symmetry is the line y=ux.
Of all the Pareto optimal points of this third game the point (1, 1) is the only
one that satisfies the symmetry condition. So it must be M’s solution of the third
game. However, by the expansion/contraction condition it must be the solution
to the second game as well. Finally, by the invariance-under-utility-transforma-
tions condition, the Nash point of the first game must be its solution by M too.
Furthermore, M cannot produce more than one negotiation point for the first
game, since the third game had just one negotiation point.

PROBLEMS

1. In some games one player may stand to gain more at every Pareto optimal
point; that is, the number u; — f1 for Row, say, will be greater than u; —f>
for every Pareto optimal point. Propose a way for defining “favorable” that
is independent of the absolute amount gained by the players and according
to which some Pareto optimal points will favor Row and others Col.

2. Show that in every bargaining game there must be at least one outcome with
respect to which Row and Col have opposite preferences.

3. Find the Nash solution to the bargaining games corresponding to the prison-
er’s dilemma and the clash of wills.

4. Show that the point generating the product

(g1+8" 1)2X(g2+g'2)2

lies between (uy, u2) and (u'y, u'2).

5. Suppose G’ is a bargaining game that can be obtained from the game G by
replacing every point (u;, uz) of G’s bargaining region with (au;+b,
cuz +d) where both a and ¢ are positive. Show that if (n1, n2) is the Nash
point of G, (an; + b, cnz +d) is the Nash point of G'.

6. Suppose G is a symmetrical bargaining game. Prove that if u; <u2, the
product of the gains associated with (11, u2) is less than that associated with
(uz, uz).

7. Verify that the positive linear transformations used in the proof of the
uniqueness of the Nash solution do transform the failure point to (0, 0) and
the Nash point to (1, 1).

Now that we have seen that Nash’s solution is the only one to satisfy condi-
tions (1)-(4), we should cxamine the conditions themselves. For their reason-
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ableness is the main case to be made for Nash’s proposal —other than its mathe-
matical elegance.

There is little to dispute in the Pareto optimality and utility transformation
conditions. Qur previous examination of cooperative games pointed to the
desirability of having a method for selecting a single Pareto optimal point as the
solution to a cooperative game, and condition (1) does no more than codify that.
Furthermore, solutions to games should be invariant under positive linear utility
transformations, since utility scales themselves are fixed only up to positive lin-
ear transformations. A method for solving games that permitted solutions to
change when utilities are varied by those transformations would respond to more
information than utility scales represent.

The symmetry condition is both an informational condition and a fairness
condition. If the players in a bargaining game occupy completely symmetrical
positions, it seems only fair that the solution should allocate the same amount
of utility to both. It is difficult to imagine rational negotiators not insisting on
that. On the other hand, since the players’ positions are entirely symmetrical,
there is no information— other than the players’ names—on which to base a non-
symmetrical solution. Since favoring one player over the other would mean ar-
bitrarily choosing one, the symmetrical solution has the strongest claim to ra-
tionality. (I am ignoring considerations of justice or rights and the players’
histories.)

The controversy begins when we turn to the expansion/contraction condi-
tion. We encountered a condition much like it when discussing decisions under
ignorance. You will recall that there we considered several conditions decision
theorists have proposed for the purpose of identifying the most rational rule to
use for making decisions under risk. One condition that turned out to be quite
controversial was the condition that the ranking of two acts should remain un-
changed when a new act is introduced, so long as the new act is ranked below
the original acts. We may give condition (4) a parallel formulation: When the
bargaining region is expanded, the negotiation point should remain the same--so
long as none of the new points is taken as the negotiation point and the failure
point remains the same. Given this parallel, we should not be surprised that there
is controversy concerning condition (4).

One might argue in favor of the condition that an expansion of a bargain-
ing situation that introduces only new prospects that are not possible negotiation
points and leaves the failure point fixed does not really change the situation. The
new points are merely distractions, which smart negotiators will cast aside in
order to focus on the heart of the matter at hand.

Unfortunately, this argument is based on a misinterpretation of condition
(4). Condition (4) does not say that the new prospects are not possible negotia-
tion points. It simply says that if none of the new prospects is chosen, their pres-
encc should not change the point chosen from among thc old prospects. We can
make a better case for the condition by considering contractions rather than ex-
pansions. For the condition may also be paraphrased as stating that if we con-
tract a bargaining region while retaining both the failure and ncgotiation points,
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the latter should be the negotiation point for the new game. For if the point was
an acceptable point of agreement when there were more points to choose from,
it should remain acceptable when there are fewer and the consequences of failing
to reach an agreement are the same.

This argument for condition (4) neglects the role of additional points in
determining the aspiration levels of the players. Consider this somewhat fanciful
example. The pilots’ union and High Flyer Airlines had been negotiating a new
wage contract. The union began the negotiations by demanding a 15% raise for
the pilots, knowing full well that they would be forced to settle for 10% or less,
since 15% would bankrupt High Flyer. The airline and union were about to set-
tle on 8.5%, when the president announced a wage hike ceiling of 10%. This
caused the airline to demand that the union accept 7%, the union protested that
the airline had been negotiating in bad faith, the negotiations collapsed, and a
general sympathy strike by all airline pilots ensued. Since this happened in the
midst of the Christmas travel season, the public and press angrily blamed the
president for his untimely announcement. The president called a press confer-
ence to explain his position. “You see,” he said, “I had no reason to expect such
irrational behavior from the airline or union. My announcement didn’t change
anything, since they never expected to settle for a raise above 10% anyway.”
If you find the president’s explanation plausible, you sympathize with condition
(4). If not—if you think his restrictions changed the bargaining context enough
to make one or both parties see that a lower raise was now in order—you can
see why some game theorists doubt the condition.

Let us approach the matter more abstractly and consider a game with a
bargaining region bounded by the points (0, 0) (the failure point), (0, 5), (5, 5)
and (10, 0). The bargaining region is a trapezoid with the line from (5, 5) to
(10, 0) marking the Pareto optimal points. (See exercise 1 in the next Problems
section.) This line has the equation

y=10—x.

The Nash point for the game is (5, 5). (See exercise 2.) Now consider a game
with the bargaining region that is the triangle bounded by (0, 0) (again the failure
point), (0, 10), and (10, 0). This game is an expansion of the first. Its Pareto
optimal points are again on the same line, except that it now extends to (0, 10).
The Nash point is once again (5, 5), which accords with condition (4) and the
symmetry of the game. Yet one can surely argue that the new game has strength-
ened Col’s bargaining position and that the solution should reflect this. Or one
could argue that the solution to the first game is unfair to Row in picking a sym-
metrical negotiation point when the shape of the bargaining region gives an ad-
vantage to Row. From the point of view of Nash’s solution, however, there is
no essential difference between the two games.

In view of the objections to condition (4) and Nash’s solution it is worth
looking at somc other proposals. Notice that in the first (trapezoid) game the
point (5, 5) yiclds Col 100% of the maximal utility available to him in the game
whereas it yields Row only 50% of the maximum available to him. In the second
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(triangle) game, however, both players are allocated the same percentage of
their maximums. We can also view this in terms of concessions: In the first game
Row is forced to concede 50% of what he would want under ideal circumstances
whereas Col makes no concession. Thus it might be worth approaching bargain-
ing games through the concepts of proportional gain and proportional con-
cession.

Putting matters more formaily, let us call the ideal point of the game that
point (i1, i2) in which i{ (i,) equals the maximum utility afforded to Row (Col)
at any point of the bargaining region. Ordinarily the ideal point will not be in
the bargaining region or identifiable with a possible outcome of the game. In the
trapezoid game it is (5, 10) and in the triangle game it is (10, 10). The potential
gain for a player is the difference between his value at the ideal point and his
value at the failure point. In the trapezoid game Row has a potential gain of 5
while Col has one of 10. The same formula defines a player’s potential conces-
sion, since in each case we are concerned with the amount of utility between the
failure point (where the player “concedes” everything) and the ideal point (where
he gains everything). The proportional gain for a player at a point may now be
defined as the ratio of the player’s actual gain at the point to his potential gain.
For any point (#1, u2) in a game the proportional gain for Row is given by the
formula

G =/ =S
(By interchanging the subscripts we get a similar expression for Col’s propor-
tional gain.)

We will also define a player’s concession at a point as the difference be-
tween his value at the ideal point and that at the point in question. His propor-
tional concession at a point is then defined as the ratio of his concession at that
point to his potential concession. For the point (i1, u>), Row’s proportional con-
cession is given by the formula

(G —u)/r=f1).

As one might suspect, there is a simple relationship between proportional
gains and concessions. The proportional gain and concession at a point for a
player must sum to 1. (See exercise 5.) Letting “PG” and “PC” stand for propor-
tional gain and proportional concession, respectively, and suppressing the
phrases “for a player” and “at a point,” this yields:

PG=1-PC
PC=1-PG.

Notice that as a player gains more (proportionally) he concedes less (proportion-
ally), and conversely. Thus in defining solutions for bargaining games we may
use either of these concepts and dispense with the other.

A simple approach to bargaining solutions using proportional gains (con-
cessions) is to specify the negotiation point as the point at which the proportional
gains are identical for each player and as large as possible. Let us call this the
equitable distribution point. This picks (5, 5) in the triangle game since each
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player obtains a proportional gain of 1/2. However, it prevents (5, 5) from
being the negotiation point in the trapezoidal game, since Col obtains a pro-
portional gain of 1 whereas Row’s is only 1/2. Instead it picks the midway
Pareto optimal point (20/3, 10/3) in which each player has a proportional gain
of 2/3.

We can also describe this solution in terms of concessions. For the point
at which the proportional gains are maximal and equal is also the point at which
the proportional concessions are minimal and equal. Thus the equitable dis-
tribution point is the same whether we think of the solution as distributing gains
or concessions. In either case we can see the appeal of the proposal: Each player
knows that the other is bearing the same burden (or has been given the same
advantage) and that this has been reduced (or maximized) as much as possible
compatible with its being distributed equitably. Furthermore, in a symmetrical
game the equitable distribution point and the Nash point are the same. (See exer-
cise 6.)

This solution also satisfies the invariance-under-utility-transformation
condition (exercise 7) and the Pareto optimality condition (exercises 8-10). We
have already seen that it does not satisfy the expansion/contraction condition.
Instead it meets the following monotonicity condition: If one bargaining region
contains another and they have the same failure and ideal points, the negotiation
point in the larger region affords each player at least as much as he receives from
the negotiation point of the smaller region. It can be proved that conditions
(1)-(3) plus this new condition uniquely characterize the equitable distribution
solution. We will omit that proof here.

Unfortunately, when we apply the solution in terms of equitable dis-
tribution points to bargaining games with three or more players we obtain un-
satisfactory results. Consider the three-person game with a triangular bargain-
ing region determined by the points (0, 0, 0) (the failure point), (0, 1, 1), and
(1, 0, 1). The Pareto optimal points for this region lic on the line connecting
0, 1, 1) and (1, O, 1). But the third player receives a proportional gain of 1 at
every point on this line, Thus there is no point on the line at which all three re-
ceive the same proportional gain. Thus the equitable distribution point cannot
be a Pareto optimal point. Worse, the only point in this region at which the
players’ proportional gains are the same is the failure point (0, 0, 0). Hence in
this game the equitable distribution solution declares the failure point as the
negotiation point.

David Gauthier has proposed an alternative solution for dealing with cases
of this sort. Instead of requiring that the proportional gains be identical, he pro-
poses that we require that the minimum gains be maximized and pick the point
allocating the most to each player consistent with this requirement. This sets the
negotiation point for the last game at (1/2, 1/2, 1)—the midpoint on the Pareto
optimal line. It can be shown that Gauthier’s maximin proportional gains solu-
tion satisfies the Pareto optimality, invariance-under-utility-transformations, and
symmetry conditions. Furthermore, in the two-person case it is equivalent to the
cquitable distribution solution. (See exercise 11.)
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PROBLEMS

Draw the bargaining region bounded by (0, 0), (0, 25), (5, 25), and (10,
0). Do the same for the region bounded by (0, 0), (0, 50), and (10, 0).
There are several methods for verifying that the Nash point of the trapezoi-
dal game is (5, 5). One is to plot the gain products for Pareto optimal points
and use the graph to locate the greatest of these. Since the products have
the form xy with y=10 —x, this is the same as plotting the graph of the
function f(x) = 10x —x?. Plot this for the values of x between 0 and 10,
inclusively. (If you know how to calculate derivatives, you can calculate
the critical point for f(x) by solving f'(x) =0. You will find that x must
equal 5.)

What are the ideal points for the prisoner’s dilemma and the clash of wills?
Show that in any bargaining game Row’s percentages of potential gain and
concession range between 0 and 1.

Show that PC+PG=1.

Prove that in a symmetrical game the Nash point and the equitable distribu-
tion point coincide.

Prove that if two bargaining games can be obtained from each other by ap-
plying positive linear transformations to the player’s utility scales, the
equitable distribution points of the games can be obtained from each other
by applying the same transformations.

Prove that if Row’s utility at a point (x, y) in the bargaining region is
greater than it is at the point (x ', ¥’), Row’s proportional gain (or conces-
sion) is greater (less) at the first point than at the second.

Prove that if (x, y) is a Pareto optimal point and (x’, y ') is not, at least
one player has a greater proportional gain at (x, y) than at (x’, y ") and nei-
ther player has less.

Since the players have a finite number of pure strategies, the set of Pareto
optimal points in the bargaining region forms a broken line running from
the point where Col’s proportional gain is 1 and Row’s is 0 to one where
Row’s is 1 and Col’s 0. It follows that there is exactly one point on this line
at which their proportional gains are identical. Show that this is the equita-
ble distribution point for the game.

Show that in a two-person bargaining region Gauthier’s maximin propor-
tional gains point is the equitable distribution point.

Games with Three or More Players

In this section I will present a briet and incomplete discussion of n-person game
theory. The theory itself suffers from many loose ends, and there is little agree-
ment among game theorists about the proper way to define the concept of a solu-
tion to an n-person game. Perhaps this will excuse my cursory treatment of the
subject.

To begin, we should note that some two-person games have analogs with

three or more players. The oil cartel case is a generalized instance of the prison-
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er's dilemma, as we have already mentioned. As should be obvious, the free
rider problem also comes in many-person versions. The clash of wills does too.
Suppose Alice, Mary, and Sally are three friends who always prefer being a
threesome to being a couple and that in turn to being alone. Then suppose they
might go to any one of three places A, B, or C. Alice prefers A to B to C, Mary
Cto Ato B, and Sally B to C to A. Then we have all the ingredients for a three-
person clash of wills. (If you want to try working this out, note that there are
27 possible pure strategy combinations, ranging from A4AA4, AAB, AAC, to ABA,
ABB, ABC, and on to CCA, CCB and CCC.) There are also n-person versions
of bargaining games. For instance, in negotiating a real estate sale, a broker
might offer to reduce her commission for the sake of concluding the deal. Then
what is ordinarily a two-person bargaining game would become a three-person
one. In the three-person case, however, the bargaining region is usually not a
polygon in a plane but rather a solid in three-dimensional space. In the general
case it is a hypersolid in n-dimensional space.

There are even n-person versions of zero sum games. They are the con-
stant sum games, so-called because the total amount of utility available under
each outcome always sums to the same number. By appropriately transforming
the players’ utility scales this number can be made to equal zero. Consider, for
example, a game with four players in which each outcome results in placing each
player as first, second, third, or fourth, with ties being excluded. Suppose each
player assigns a first the utility of 4; a second, 3; a third, 2; and a fourth, 1.
Then the utilities always sum to 10. But by subtracting 5/2 from every utility
number, we can convert the game to a zero sum game.

Unfortunately, the maximin theorem does not extend to n-person constant
sum games. If we allow mixed strategies, there will be equilibrium points for
each game. However, as in the clash of wills, there may be several equilibrium
points, each yielding different values to the players. Thus we have little reason
to hope for elegant, simple, and compelling solutions in n-person game theory.

The bulk of the theory is not concerned with the n-person analogs of two-
person games, which we have just reviewed. Rather the theory focuses on coali-
tions formed by some of the players to take advantage of the others or “the sys-
tem.” Coalitions are familiar from everyday life. Soldiers or students will gang
up to put down the barracks or locker room bully. Political parties band together
to form parliamentary majorities. State governors form coalitions to put pressure
on the federal government or Congress. Citizens organize to combat drug abuse
or drunk drivers or whatever. Thus n-person game theory promises to yield
analyses of a variety of complex everyday phenomena. (Although coalitions are
impossible in two-person games, some multiperson games can be reduced to
two-person games between coalitions.)

Many questions can be raised about coalitions. Who will join with whom
to form one? (Will the moderates join the liberals or the conservatives?) Does
a given coalition have sufficient strength to secure a given outcome? (Can the
coalition against drunk drivers get the drinking age raised?) How much utility
will accrue to it? How much utility can a player expect from joining a coalition?
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Is a given coalition stable, that is, are its members unlikely to defect and seek
new alliances with other players? It is no wonder then that there are many differ-
ent approaches to n-person games.

I will not attempt to show you how game theorists have tried to answer
all these questions about coalitions. However, I can give you some flavor for
how game theory handles some of them by working through one example. So
let us turn to that now.

Hank, Ike, and Ned farm wheat, and Fred buys wheat for resale abroad.
Fred has a rush order for at least 10,001 but no more than 16,000 bushels of
wheat. Hank’s crop comes to 10,000 bushels, Ike’s to 7,500, and Ned’s to 5,000.
Thus no farmer can fill the order by himself. So Fred makes the following pro-
posal: “I will pay each of you or any group of you $1 per bushel for any sales
totaling 10,000 bushels or less. I will pay $2 per bushel for any sale totaling
more than 10,000 bushels but no more than 16,000 bushels. And 1 will pay
$1.25 per bushel for the excess over 16,000.” Will the farmers deal with Fred
directly by themselves? Or will some of them form a coalition? If so, who will
join with whom and how will they split the proceeds? By addressing these ques-
tions formally we can cover some of the more fundamental ideas of n-person
game theory.

First, let us make the simplifying assumption that dollar amounts indicate
the utility received by the farmers. In other words, they are EMVers. Now let
us look at the proceeds accruing to all the possible coalitions our three players
can form. These are presented in table 5-34. Game theory allows for one-player

5-34  Coalition Value (Proceeds)
(Hank) 10,000
(Ike) 7,500
(Ned) 5,000
(Hank, Ike) 33,875
(Hank, Ned) 30,000
(Ike, Ned) 25,000
(Hank, Ike, Ned) 40,125

or unit coalitions, so these are included in the table. Their values are computed
on the basis of sales at $1 per bushel. The (Hank, Ned) and (Ike, Ned) coalitions
arc paid at the rate of $2 per bushel, since their sales fall between 10,000 and
16,000 bushels. The other coalitions have more bushels to scll, so they are paid
$2 per bushel for the first 16,000 bushels and $1.25 for the excess.
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In mathematical terms, table 5-34 presents a function whose arguments are
coalitions and whose values are utilities accruing to coalitions as wholes. Each
is called the value of the coalition for the game, and the function itself is called
the characteristic function of the game. (In conforming to the abstractive spirit
of mathematics, most game theorists have tried to answer the questions we posed
earlier about coalitions by using just the information contained in the charac-
teristic function while disregarding the particular rules and circumstances of the
game. Thus from the game theoretic point of view our particular example is just
one of infinitely many equivalent three-person games, all of which have the same
characteristic function. Furthermore, as one might expect, game theory will
even allow us to perform certain positive linear transformations on the values
for the coalitions and still count the results as equivalent to the original game.)

With the concept of the value of a coalition and the characteristic function
of a game in hand, let us return to our example. Will two or more farmers form
a coalition? It certainly seems likely that they will, since each coalition of two
or more farmers has a higher value than any coalition consisting of just one
farmer. Thus it would seem rational for some of them to combine and make a
bargain to divide the profits they obtain by doing so. For example, by combin-
ing, Hank and Ned can make 30,000. If we subtract from that what each can
make alone (10,000 + 7,500), there is a balance of 12,500 for them to share.
Similar calculations indicate that each of the other coalitions containing two or
more farmers provides potential individual profits.

At first sight it seems likely that all three farmers will form a coalition
since that would produce more proceeds to split than any other. Suppose for the
moment that they do this and have 40,125 to divide. How should they divide
it? One suggestion is that they divide according to the amount of wheat each has
contributed. Since Hank has contributed roughly 44 %, Tke roughly 33%, and
Ned roughly 22 %, this would yield a distribution of 17,655 to Hank, 13,241 to
Ike, and 8,827 to Ned. Everyone would have reason to be dissatisfied with this.
For if Hank and Ned were to form a coalition and divide the proceeds according
to their contributions (2 to 1), Hank would receive 20,000 and Ned 10,000. Of
course, in that case lke would get only the 7,500 that he can obtain by selling
to Fred on his own. Similarly, if Ike and Ned were to form a coalition and divide
the proceeds according to their contributions (again 2 to 1), Ike would receive
15,000 and Ned 10,000. This time Hank would receive only 10,000.

In game theory distributions of utility to the players such as we have been
considering are called imputations and are represented as ordered n-tuple (or
vectors) of utility numbers. The theory has a few fundamental postulates con-
cerning characteristic function and imputations that it is appropriate to mention
now. The first is called the superadditivity condition and may be phrased as fol-
lows: If a coalition is formed by combining the players from two completely sep-
arate coalitions, the value of the new coalition is at least as great as the sum
of the values of the two earlier ones. The rcasoning behind this is that if two
disjoint sets of players would actually do worse in combination than alone, it is
pointless for them to unite. This implies as a special case that each coalition of
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several players must have a value greater than or equal to the sum of the utilities
each of its members can achieve on his own. (See exercise 4.) As you can easily
verify, the characteristic function for our wheat farmers game satisfies the super-
additivity condition. (See exercise 1.)

The next condition—the condition of individual rationality—is stated in
terms of imputations. It stipulates that no imputation may result in a player
receiving less utility than he can obtain by acting on his own. This excludes
(9,000, 20,000, 6,000), since Hank (who receives the 9,000) can always get
10,000 on his own. Again, none of the distributions we have mentioned so far
violate this requirement. Although the condition of individual rationality does
not mention coalitions explicitly, it clearly restricts the options for distributing
the proceeds of a coalition to its members. By the way, an imputation is a distri-
bution to all the players and not just to those within a coalition. However, since
the members of a coalition cannot give the proceeds to players who are not mem-
bers, given the characteristic function and an imputation we can often deduce
what coalition has formed and how the proceeds are distributed among its mem-
bers. (See exercise 5.)

Another condition proposed for restricting imputations is that an imputa-
tion be Pareto optimal in the sense that there is no other distribution under which
each player does just as well and some do better. Despite the importance Pareto
optimality plays in two-person game theory, there are grounds not to endorse
it here. We have already seen that there is little reason to expect Hank, Ike, and
Ned to unite in one big coalition, since the Hank and Ned and Ike and Ned coali-
tions are prima facie more desirable from an individual point of view. Yet re-
quiring that imputations be Pareto optimal would exclude all but three-mem-
bered coalitions in our farmers game. For given any imputation associated with
a coalition of two, there is a Pareto optimal imputation associated with the coali-
tion of all three in which each player does better.

To see this, suppose two of the farmers, 4 and B, have formed the coali-
tion (4, B) whose value is v. Further suppose that the third farmer, C, receives
¢ while 4 and B receive a and b, respectively. Then a + b = v and the total value
of the imputation equals a + b +¢. Now if C joins A and B, the new coalition,
(4, B, C) will receive the value, v', greater than v+c. That means that
a+b+c<v’'. Now let d=v' —(a+b+c). This is positive and so is d/3.
Thus the imputation yielding a+d/3 to A, b+d/3 to B, and ¢ +d/3 to C can
be associated with the coalition (4, B, C). Not only does everyone do better,
but the imputation is Pareto optimal. And yet we have seen that there are other
Pareto optimal imputations (e.g., 17,655, 13,241, 8,827), which each of the
players desires to abandon in favor of a coalition that is not Pareto optimal.

Let us introduce a new term to describe the situation we have just de-
scribed. We will say that an imputation X dominates an imputation Y with respect
to the coalition S just in case (1) every member of S does better under X than
under Y, and (2) the value of § is at least as great as the sum of the utilities its
members receive under X. The first clause of this definition simply says that
whatever coalitions the members of § may belong to under the imputation Y,
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they —at least—are better off belonging to S. The second condition says that S
receives enough value to make the payoffs to its members required to better
those they would receive under Y. In brief, the first condition says that S can
make an attractive offer to its potential members, the second that it can pay off.
According to our definition, E=(20,000, 7,500, 10,000) dominates
F=(17,655, 13,241, 8,275) with respect to the coalition formed by Hank and
Ned. On the other hand, that imputation is itself dominated by G = (21,000,
8,500, 10,625) with respect to the coalition of all three farmers.

Let us say that an imputation X dominates an imputation Y just in case there
is some coalition with respect to which X dominates Y. Despite its similarity to
our earlier concept of domination, this new notion must be carefully distin-
guished from the old one. If one act dominates another, the latter does not domi-
nate the former. Not so for imputations: We have just seen two imputations that
dominate each other. Furthermore, if one imputation dominates a second and the
second a third, it need not be the case that the first dominates the third. The im-
putation G given earlier dominates F and F dominates E, but G does not domi-
nate E. In fact, E and G are both Pareto optimal imputations associated with the
coalition of all three farmers. No imputation of this sort dominates any other of
the same kind. (See exercise 6.)

We can now turn to the Von Neumann-Morgenstern treatment of the
farmers game. They impose the requirement, which we have questioned, that
an imputation must be Pareto optimal. In the case of the farmers game this im-
plies that the only coalition that can form is the one containing all three farmers.

Von Neumann and Morgenstern do not identify a single imputation as the
solution to our game. Instead, they define a solution to be any class of Pareto
optimal imputations with the property that (1) no member of the class dominates
any other member of the class, and (2) every imputation outside the class is
dominated by some member within it. Their solution to the farmers game is the
class of all Pareto optimal imputations associated with the three-farmer coali-
tion. Unfortunately, there are an enormous number of ways for Hank, Ike, and
Ned to divide 40,125 while still ensuring that each receives more than he can
on his own. Thus this solution tells us very little about the way “rational” or
“just” farmers would distribute their proceeds. The situation is even worse for
other games. Some games have infinitely many solution classes, and others have
none at all.

These drawbacks have prompted game theorists to try other approaches.
I will sketch one proposed by R. J. Aumann and Michael Maschler. They focus
on distributions of values within coalitions and ask whether the members are
likely to remain satisfied or to try to better their payoffs by forming other coali-
tions. To illustrate their ideas, suppose that Hank, Ike, and Ned have tentatively
agreed to form a coalition and distribute their proceeds according to the imputa-
tion G = (21,000, 8,500, 10,625). Then Ike approaches Hank and says, “Look,
I want 9,500. You give up 1,000. If you don’t, T'll form a coalition with Ned,
offer him 15,000 and keep 10,000 for myself.” Hank might reply, “Try that, and
I'll go to Ned and top your offer. I'll give him 16,000 and keep 14,000 for my-
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self.” But, of course, Hank would lose in the process. Aumann and Maschler
say that Ike has a valid objection to his payoff with respect to Hank’s. More
generally, one member in a coalition can validly object to his payoff with respect
to another member’s if he can form a coalition with other players that will pay
him and the others more, but the player to whom he is objecting cannot do the
same. Aumann and Maschler propose that a solution should consist of out-
comes—coalitions and distributions within them—to which no member has a
valid objection. Like the Von Neumann-Morgenstern approach this permits a
game to have infinitely many outcomes.

We have just seen that not every Pareto optimal imputation need be part
of an Aumann-Maschler solution. What about imputations that are not Pareto
optimal? Consider the imputation (20,000, 7,500, 10,000), which arises when
Hank and Ned form a coalition. Hank can ask for more and threaten to form
a coalition with Ike in which he tops Ike’s current 7,500 and takes more than
20,000 for himself. But Ned can do this too. Thus neither Hank nor Ned has
a valid objection against each other, so their coalition and distribution count as
part of an Aumann-Maschler solution. This shows that these solutions need not
be Pareto optimal.

What should we make of this? Certainly, there are few morals to draw for
morality or rationality from theories as tentative and controversial as the various
coalition theories for n-person games. Yet the various concepts that have been
proposed may provide useful frameworks for describing and discussing inter-
actions between a number of rational agents. Political scientists, economists, and
other social scientists have found this to be so, but—with the exception of
Gauthier — philosophers apparently have not. Moreover, even Gauthier has not
treated coalitions and has concentrated on the n-person prisoner’s dilemma and
bargain games instead.

Besides this, current coalition theories employ a highly questionable as-
sumption about the “transferability” of utility. Most of our discussion about
Hank, Tke, and Ned makes sense only if they can divide the values accruing to
their multiperson coalitions. Since they are EMVers and the values accruing to
their coalitions have been defined in terms of the money accruing to them, the
case posed no pressing problem. But serious problems do arise when we turn
to games in which the players are not EMVers or in which the value of a coali-
tion is determined by some intangible or indivisible gain. If, for example, Fred
paid the farmers with pieces of farm equipment, the problem of distributing the
value acquired by a coalition to its members would be much more complicated,
although perhaps solvable by awarding the farmers shares of ownership. Matters
become all the more difficult when we consider how to distribute the value of
a coalition formed to pass a constitutional amendment to ban abortion. Almost
certainly there would be no tangible good to distribute after the amendment
passed —you cannot distribute feclings of satisfaction. However, in a legislative
game it makes morc sense to measure the value of a coalition in terms of its
power to gct things done. This in turn is determined in part by the numbers of
its members and in part by their power and influence. Insofar as one can quantify
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power and influence, there is hope for making sense of distributing the power
of a coalition among its members.

Still, the assumption that the value of a coalition can be distributed in vari-
ous combinations among its members is not one that we should accept lightly.
The numbers assigned to individual players are utilities—not dollars, shares of
ownership, or bits of power. We have seen that interpreting numbers in game
tables as utilities is essential to making sense of two-person game theory. And
the same reasoning applies to the n-person theory as well, for it too uses mixed
strategies. (If Hank, Ike, and Ned were involved in bidding for a contract to pro-
vide Fred with grain, it would not be utterly fantastic for each to consider joining
coalitions that would implement coordinated mixed strategies calling for various
bids.) Thus we are really dealing with an assumption to the effect that usility can
be distributed among players more or less at will. This raises a very serious issue
when we remember that utility scales simply reflect agents’ preferences for vari-
ous outcomes. Thus when we speak of three players moving from a utility distri-
bution of, say, (1/3, 1/2, 3/5) to another, say, (1/4, 3/5, 1), we must remember
that the players are not exchanging some commodity called utility, but rather are
passing from a prospect having a ranking at the 1/3 spot on the first player’s util-
ity scale, at the 1/2 spot on the second’s, and at the 3/5 spot on the third’s to
another prospect ranking at the 1/4, 3/5, and 1 spots on the scales of the first,
second, and third player, respectively. It is not clear that in a typical application
the prospects required are always on hand. Witness the case of coalitions to ban
abortions.

(Note: The transferability of utility does not entail its interpersonal com-
parability, that is, that we can draw conclusions from the utilities about how
much more one player prefers a given prospect than another does. However, we
would make interpersonal utility comparisons if we argued that certain distribu-
tions are unfair or unjust because they satisfy the preferences of one player more
than those of another.)

PROBLEMS

1. Verity that the characteristic function for the Hank, Ike, and Ned game sat-
isfies the superadditivity condition.

2. Suppose Fred refuses to buy wheat from any single farmer, but that other-
wise the Hank, Ike, and Ned game remains the same. Give its new charac-
teristic function.

3. Verify that the new game satisfies the superadditivity condition.

4. Taking the superadditivity condition as given, prove that each coalition § of
several players must have a value greater than or equal to the sum of the
values of the one-member “coalitions” formed from each member of S.

5. Show that given an imputation for the game of exercise 2, we can easily de-
termine which coalition has formed and how its value has been distributed
among its members.

6. Prove that in the original farmers game no Pareto optimal imputation
dominates any other Pareto optimal imputation.
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7. The Aumann-Maschler solution allowing the coalition of Hank and Ned does
not take into account that Ned can actually make a larger offer to Ike without
cutting into his current payoff. Explain how Ned can do this. Explain how
this demonstrates how a “weaker” player could be at a bargaining advantage
with respect to a “stronger” one.

8. The following is a well-known n-person game taken from The Calculus of
Consent by James Buchanan and Gordon Tullock. In a certain rural county
in a certain state there are 100 farms, each with a county-maintained road
running to it. There are no official standards for deciding whether a road
should be repaired; rather each farmer applies his personal standard and a
road is repaired when and only when a majority of the farmers of the county
vote to repair it. Buchanan and Tullock consider four possibilities:

(1) Everyone votes on principle: Each farmer votes to repair a road when
and only when it meets his standard for repair.
(2) Everyone votes selfishly: Each farmer votes to repair his and only his
road.
(3) A majority vote on principle, the rest selfishly.
(4) Farmers form coalitions and vote to repair all and only members’ roads.
(a) Prove that if (1) obtains, a road is repaired when and only when it
meets the standard of more than half the farmers.
(b) Prove that if (2) obtains, no road is repaired.
(c) Prove that if (3) obtains, the quality of the unselfish farmers’ roads
will be lowered whereas those of the selfish farmers will be raised.
(d) Suppose (4) obtains. Let 0 be the value to a coalition whose members
do not have their roads paved. Let 1 be the value to a coalition whose
members do have their roads paved. Explain why the only coalitions
that will form will be those containing at least fifty-one farmers.
(e) Suppose the situation in (d) obtains except that the value of a coalition
is the number of its members whose roads are paved. Supposing the
costs of paving a road do not matter, what coalition(s) will form? (This
a question for discussion. I doubt that it has a single “correct” answer.)

9. Consider an n-person game involving voters who have various preferences
on legalized abortion and who may or may not form coalitions to pass or de-
feat constitutional amendments banning abortion. How, if at all, could we
make sense of the transferability of utility in this context? (Suggestion: in a
real-life context, no outcome will consist of the unadorned passage or defeat
of an amendment but will be accompanied by other background events —such
as certain members of the coalition becoming politically influential figures.
Perhaps the prospects required to underwrite the transferability of utility can
be constructed by enlisting possible background events.)

5-7. References

Game theory began with Von Neumann and Morgenstern, but I have based my
account on Luce and Raiffa. Davis is rich with examples and contains an exposi-
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tion of the Aumann-Maschler approach. Luce and Raiffa also contains an exposi-
tion of Nash’s approach to bargaining games, but the reader should consult
Gauthier for a more detailed exploration of the relevance of games to morals.
Although Buchanan and Tullock is well known to political scientists, I have not
treated that work here. I recommend it to readers who are interested in learning
more about multiperson interactions. Finally, the connection between the
Predictor and prisoner’s dilemma is noted in Gibbard and Harper and elaborated
on in Lewis.
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Chapter 6
SOCIAL CHOICES
ITrrrrnnnnni

6-1. The Problem of Social Choice

Groups of individuals—such as clubs, nations, or professional societies —that
aim to function as cohesive units cannot depend on the choices made by their
members on an individual basis to lead to a collective outcome that furthers the
group’s interests. A university, for example, that did not fix a schedule of classes
and vacation breaks could hardly promote an orderly learning process, because
everyone— professors and students alike —has different ideas about the best way
to schedule classes. But how should a class schedule be developed? What weight
should be assigned to the opinions of the various constituencies affected? Should
it be a matter of faculty decision alone? Or should the students be given a voice?
And should the higher administration hold the trump card? Is class scheduling
a matter of developing a rational plan or a fair plan? More generally, in the so-
cial sphere what are the relationships between the demands of rationality and
those of justice or fairness? These are some of the problems connected with so-
cial choices.

At a more abstract level the problem of social choice may be characterized
as follows: A group of individuals has two or more alternative group actions or
policies open to adoption. The members of the group (henceforth, calied
citizens) have their own preferences concerning the group choice. The problem
is to develop a group choice from these. Social choice theory studies the proper-
ties of various methods that have been proposed for solving this problem.

The problem is often specified more fully by using a deeper analysis of
the context of social choice. For example, one would expect that were any citi-
zen to make the choice for her society on her own, she would temper her prefer-
ences for outcomes by her assessments of the probabilities of the relevant back-
ground states. Thus one might approach the problem of social choice as the
twofold task of (1) combining the preferences of the citizenry to obtain a social
preference ordering and (2) of combining their probability assessments to obtain
a group probability function. In fact, very little social choice theory concerns
(2); the preponderance of the work in this ficld has been directed toward the
problem of deriving a social ordering from the orderings of the citizenry. And
this is as it probably should be; for it is not clear that the notion of a group proba-
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bility function makes sense—even for the subjectivist. Certainly, a society of
objectivists would develop probabilities for group use by methods that are
independent of the personal assessments of its citizens. (However, the citi-
zens of any type of society might choose the method to be employed in as-
sessing probabilities for use in social choices.) Moreover, since subjectivists
identify probabilities with the assessments of particular individuals, it is difficult
to understand how they could endorse a probability that belonged to no in-
dividual in particular —even if it were derived somehow from individual proba-
bilities.

In view of this we will restrict the problem of social choice to that of ob-
taining a group choice as an aggregation of the choices of its members. More
specifically, we will assume that each citizen has already established a personal
preference ranking that satisfies at least the ordering conditions O1-O8 (see
chapter 2) used to generate an ordinal utility scale. A set of such individual
orderings—one for each citizen—is called a group preference profile. For exam-
ple, consider a society of three citizens—Jackson, Quimby, and Short. Assume
that they have four dinners under consideration: beef, chicken, fish, and
macaroni. Jackson prefers the dinners in the order given, Quimby has the oppo-
site preferences, and Short is indifferent between chicken and fish but prefers
them both to beef and prefers that in turn to macaroni. This describes one prefer-
ence profile for that society and that set of alternatives. We can represent it using
the obvious abbreviations as follows in table 6-1. This is only one of the many

6-1 J Q S
b m ¢, f
c f b
f c m
m b

preference profiles that are possible in this case; another in which all three
citizens have the same ordering is shown in table 6-2.

6-2 ] Q S
C C c
f f f
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A collective choice rule is a method that operates on preference profiles
and yields a social ranking of the alternatives. We will always assume that both
the number of alternatives and the number of citizens are finite and will concen-
trate on a special type of collective choice rules known as social welfare func-
tions (SWFs). Social welfare functions operate on all the preference profiles pos-
sible for a given set of alternatives and citizens, and they yield social orderings
that satisfy conditions O1-O8. Many collective choice rules fail to do this. Two-
thirds majority rule yields no social orderings for profiles in which no alternative
is preferred to another by two thirds of the citizens. Moreover, simple majority
rule can yield cyclical social orderings, as table 6-3 illustrates. Since a majority

6-3 1 2 3
a b ¢
b c a
c a b

prefer a to b and a majority prefer b to ¢ and a majority also prefer ¢ to a, the
social preferences generated by simple majority rule would form a circle, violat-
ing the condition that requires not aPc if cPa. This very simple anomaly is
known as the voting paradox, and it is just a sample of the problems to come.

The voting paradox shows that even so revered a principle of collective
choice as majority rule is not a social welfare function. May we not have set
our sights too high? No, let us not abandon social welfare functions yet; the high
standards set for them are worth aiming for in both theory and practice. For we
do not want a method of collective choice that breaks down here and there; and
because we cannot count on always getting our first choice, many situations of
group choice require preference rankings that satisfy O1-08.

We will abstract from the mechanisms that are used by social welfare func-
tions to produce social orderings: If two mechanisms of social choice associate
the same social orderings with the same preference profiles, they will count as
the same social welfare function. For example, let us suppose that Jackson,
Quimby, and Short devise the following method for determining a social order-
ing: First they list all the possible preference profiles; then starting with the first
listed they draw straws and take the social ordering for that profile as identical
with the preference ordering of the citizen winning the draw on that round; they
proceed in this manner until a social ordering is determined for each profile.
This defines an SWF, but of course the method might produce any number of
other SWFs instead since the drawings could have resulted in different winners.
Now Ict us supposc that Short just happens to win each drawing, and thus, the
social ordering always equals his. From our point of view the same SWF would
have been generated by stipulating ar the outser that Short’s ordering was to be
the social ordering. We arc purposely abstracting from the very different spirits
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reflected in the two methods used as examples and focusing only on the fact that
they produce the same outputs for the same inputs.

Our concept of social welfare functions even allows for SWFs that no for-
mal rules of collective choice implement. This includes group preferences gener-
ated through the action of the marketplace. There our aggregated individual
choices, as expressed by the prices we pay for goods and services, determine the
options open to society as a whole. Thus if few people buy soyburgers, our eco-
nomic “votes” will see to it that the local soyburger stand is short lived.

A social welfare function is defined for a specific society and a specific set
of alternatives. The requirement that it produces a social ordering for every
preference profile (derived from those alternatives and those citizens) is called
the unrestricted domain condition (condition U). There are a number of other
conditions that social choice theorists think a reasonable SWF should satisfy be-
sides condition U. One of them is that an SWF not be dictatorial (condition D).
An SWF is dictatorial when it always identifies the social ordering with that of
one of the citizens —the same citizen being used each time. Thus the SWF in our
last example was dictatorial because its social ordering was always the same as
Short’s. We will discuss later other conditions on SWFs that seem to be just as
reasonable as conditions U and D. Once a number of such conditions had been
proposed it was only natural for social choice theorists to seek SWFs that satisfy
them. We have already seen that majority rule does not satisfy condition U. But,
as is to be expected, it satisfies condition D. In 1951 an economist, Kenneth Ar-
row, proved a theorem that subsequently shaped much social choice theory. Un-
fortunately, Arrow’s theorem is a negative result: It shows that no SWF can
satisfy five quite reasonable conditions—two of which happen to be conditions
U and D. Because Arrow’s theorem is so central to social choice theory the next
section will be devoted to formulating and proving it. Subsequent sections will
present other approaches to social choice that circumvent his theorem by relax-
ing one or more of its conditions.

PROBLEMS

1. Does a collective choice rule, which merely selects one alternative from a
set of alternatives and declares it to be the first choice, count as an SWE?
2. Suppose there are six citizens and three alternatives and the collective choice
rule in use is the following: To decide how to rank a pair of alternatives in
the social ordering, roll a die and take the ranking of the citizen whose num-
ber comes up as the social ranking of that pair.
a. Will this method necessarily implement an SWEF?
b. Could this method yield a dictatorial SWF?

6-2. Arrow’s Theorem

6-2a. Arrow’s Conditions

The first step toward developing Arrow’s theorem is to formulate the conditions
on SWFs that are treated by the thcorem. We have alrecady mentioned conditions
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U and D. However, these scarcely narrow the field of social welfare functions
to a reasonable class. For example, there are SWFs that associate the same social
ordering with every preference profile on which they operate. These constant
SWFs, as one might call them, satisfy both conditions U and D. They satisfy
condition U by determining at least one social ordering for each preference
profile. It is the same ordering for each profile, of course, but that does not
disqualify a constant SWF from being an SWF. Because they do not agree with
one and the same citizen on each profile, constant SWFs also satisfy condition
D. But this hardly qualifies them as satisfactory means of collective choice be-
cause no matter how the citizens happen to feel about the alternatives, constant
SWFs impose the same social ordering. Constant SWFs illustrate the important
distinction between social welfare functions that impose an ordering and those
that are dictatorial. Dictatorial SWFs identify the social ordering with that of
one member of society —they make a dictator of that citizen. By contrast, im-
posed orderings may fail to reflect the preferences of any citizen, although they
may reflect the preferences of someone who is not a member of the society in
question.

There may be a place for imposed social orderings in human affairs. Under
certain circumstances it is quite proper for an adult to impose a preference order-
ing on the options available to a group of young children. And in some religious
societies divine revelation imposes the social ordering. For the most part, how-
ever, imposed social orderings are unrealistic and unfair. For this reason Arrow
considered a condition on SWFs that is designed to exclude them. This is called
the citizens’ sovereignty condition (condition CS) and requires that for each pair
of distinct alternatives x and y there is at least one preference profile for which
the SWF yields a social ordering that ranks x above y. This rules out constant
SWFs because they put two alternatives in the same order no matter what their
status in a preference profile may be. For example, an SWF that always ranked
beef above macaroni in the Jackson, Quimby, and Short example would violate
condition CS, because CS requires that there be at least one preference profile
for which the SWF ranks macaroni above beef. With an SWF satisfying CS,
Jackson, Quimby, and Short could guarantee either social ranking of macaroni
and chicken by seeing to it that their personal rankings conformed to the ap-
propriate profile. Thus the social ordering could not be imposed on them in a
way entirely independent of their own preferences.

Yet with just CS there could be a perverse relationship between the
citizens’ preferences and the social ordering. An SWF that ranked alternatives
oppositely to that of the majority of the citizens would satisfy both conditions
D and CS! To exclude this we need another condition called the condition of
positive association between individual and social values (condition PA). This
condition states that if an SWF ranks an alternative x above an alternative y for
a given profile, it must also rank x above y in any profile that is exactly like the
original one except that one or more citizens have moved x up in their own rank-
ings. Consider, for example, the profiles for Jackson, Quimby, and Short
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presented in tables 6-4 and 6-5. The only difference between these two profiles
is that in going from profile 1 to profile 2, Jackson changes his preference for

6-4 ] Q S

b o, f ¢ fim

c b b
Profile 1
m m
f
6-5 J Q S
b, c co.f ¢ fim
Profile 2 m b b

beef to chicken into an indifference between them. Thus any SWF that satisfied
PA and socially ordered chicken above beef for profile 1 would do the same for
profile 2.

Today many discussions of Arrow’s work replace conditions PA and CS
with another one named after the Italian economist, Vilfredo Pareto. The Pareto
condition (condition P) states that the SWF must rank x above y for a given
profile if every citizen ranks x above y in that profile. It could also be called the
condition of unanimity rule.

The Pareto condition implies the citizens’ sovereignty condition. For if it
is in force, profiles in which all citizens rank x above y are profiles in which x
is above y in the social ordering. Thus there will be profiles for which x is so-
cially ranked above y (meeting condition CS). However, condition P does not
imply condition PA. For consider a society with just three citizens, Able, Baker,
and Charles, and two prospects to rank, x and y. Let F be an SWF that takes
Able’s ranking as the social ranking whenever Baker and Charles have the same
preference orderings, and when they do not, let F take Baker’s ordering as the
social ordering. Thus in all cases the social ordering for x and y will equal either
Baker’s or Able’s. When all three citizens prefer one alternative to the other, so
will society. Thus F meets the Pareto condition. Next consider the two pro-
files presented in tables 6-6 and 6-7. In the first profile F ranks x above y, and
in going from the first to the second the only change is in Charles’s preferences.
He has moved x up. Yet F no longer places x above y; so it does not mect condi-
tion PA.
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6-6 6-7
Able Baker Charles Society Able Baker Charles Society
x X,y Xy x x X,y x X,y
y y y Y

In the presence of another condition, still to be introduced, conditions PA
and CS together imply condition P. This important fact is crucial to the proof
of Arrow’s theorem and it is one of the reasons many social choice theorists have
bypassed those two conditions in favor of the Pareto one. (Another reason is that
the latter is much easier to formulate and explain.) We will prove that implica-
tion later, but before we can we must introduce Arrow’s last condition.

This is known as the independence-of-irrelevant-alternatives condition
(condition I). In rough terms, condition I requires social welfare functions to ob-
tain social orderings by comparing alternatives two at a time taken in isolation
from the other alternatives. For example, if Jones’s and Smith’s preferences for
beverages are as given in table 6-8, an SWF satisfying condition I would not re-
spond to the fact that Jones puts tea at the bottom of his list whereas Smith puts

6-8 Jones Smith
coffee tea
milk coffee
water cola
cola water
tea milk

coffee in second place. In determining the social ranking of coffee and tea, con-
dition I prevents the SWF from taking into account the information that Jones
ranks several alternatives between them. Only the fact that Jones and Smith have
opposite preferences for the beverages may be registered. Since the social order
is to be constructed by means of pairwise comparisons, the other alternatives
have become “irrelevant.”

By the same token, an SWF meeting condition I cannot respond to infor-
mation used in constructing Von Neumann-Morgenstern utility scales since this
depends on comparing alternatives with lotteries involving them. Condition I
also excludes the popular rank-ordering methods that assign points to alterna-
tives according to their places in citizen rankings and totals these to obtain social
rankings; these methods employ entire rankings in obtaining scores.
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So far we have described condition I in terms of the types of social choice
mechanisms it excludes. However, Arrow’s theorem (and social choice theory
in general) abstracts from the mechanisms used in deriving social orderings and
does not distinguish between SWFs that yield the same outputs for each possible
input. Hence we must formulate condition I in terms that do not refer to the
mechanisms used to implement SWFs. The following formal statement of condi-
tion I meets this desideratum.

Condition I: If each citizen ranks the alternatives x and y in the same order
in the preference profiles Py and P2, x and y must be in the same order
with respect to each other in the social orderings that the SWF yields for
P and P».

The following example illustrates how condition I excludes rank-order
methods. Jackson, Quimby, and Short rank alternatives a, b, and c as indicated in
table 6-9. They use a rank-order method to obtain social orderings: Alternatives
are assigned one point for a first place, two for a second place, and three for a
third place; the social ordering is then generated by favoring alternatives with the
lowest number of total points. Here each alternative receives six points so they

6-9 J Q S Society
1 a b c a, b, c
2 b c a
3 c a b

are ranked as socially indifferent. However, when their method is applied to the
profile in table 6-10, society prefers a to b. Yet notice that a and b stand in the

6-10 J Q S Society
1 a b a a
2 b a b b
3 c c c c

same respective order in both profiles; if ¢ were deleted from both profiles, the
profiles would look exactly alike. Condition I requires the SWF to rank a and b
alike in both social rankings; thus the rank-order method used to generate these
two tables (and any other SWF giving rise to them) fails to satisfy condition I.

Since condition I excludes the rank-order method and Von Neumann-Mor-
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genstern utility functions, one might wonder why anyone would think it a
reasonable condition to place on SWFs. Yet there are major conceptual and
practical obstacles to using additional alternatives when ranking a single pair—
whether the extra ones are deemed relevant or not. Take, for instance, the
method of counting the number of alternatives located between two alternatives
as a means of measuring preference intensities, which in turn could be used to
decide whose preferences to favor. Can we conclude from table 6-8 that Jones’s
preference for coffee over tea is more intense than Smith’s for tea over coffee?
Jones ranks many beverages between coffee and tea, but perhaps steps down his
ranking indicate only slight changes in preference whereas steps down Smith’s
indicate great changes. In that case Smith might prefer tea to coffee much more
than Jones prefers coffee to tea. But how are we to tell? And if we could tell,
would it be just or fair to take such preference intensities into account? What
if the introduction of “really” irrelevant alternatives such as preferences for
clothes, movies, or books put their preferences for coffee and tea in a new light?
And what is really irrelevant anyway? Such questions raise difficult issues that
must be faced by anyone using many of the methods that do not satisfy condition
I. This is not to say that it is impossible to deal with them satisfactorily. How-
ever, they show that, other things being equal, an SWF satisfying condition I
is preferable. Thus it was reasonable for Arrow to include it on his list of con-
ditions.

We can now prove the implication that we set aside until the discussion
of condition I had been completed. This is done in the following lemma.

THE PARETO LEMMA. Any SWF that satisfies conditions PA, CS, and I also
satisfies condition P.

PROOF. Assume that the SWF satisfies conditions PA, CS, and I. Next as-
sume that P; is a profile in which every citizen ranks alternative x above
another, y. To establish that condition P is met we must show that the
SWF yields a social ordering for P; in which x is ranked above y. Since
condition I is in force we can restrict our attention to just the alternatives
x and y. Any social ordering of x and y determined by considering just
their respective places in a profile cut down to just these two alternatives
must hold for all larger profiles containing it. We will suppose for P, the
SWF does not socially rank x above y and derive a contradiction. Then
there must be some profile P, different from P, for which the SWF so-
cially ranks x above y, because CS is in force. Furthermore, P and P
must differ in their placement of x and y. Thus some citizens in P do not
prefer x to y. Yet the placement of x and y in P can be obtained from
that of P, by moving x up in the ranking of one or more citizens. Hence
by PA, the social ordering for it must rank x above y. But then by condi-
tion I, the social ordering for P; must also rank x above y. And that con-
tradicts the assumption that the SWF failed to socially order x above y
for P,.
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PROBLEMS

Prove that every dictatorial SWF must satisfy condition P.

Explain why we cannot prove the Pareto lemma by applying condition PA

directly to P, and dispensing, thereby, with the use of condition L.

3. Suppose that in Heaven God keeps a book that lists for each person and for
each possible alternative God’s assessment of the value of that alternative to
that person—on a scale of — 1,000 to + 1,000. Now consider an SWF that
works as follows: To decide how to rank two alternatives x and y, we first
use God’s book to find their values for the citizens of the particular society
at hand. Then we sum the values for x and y, rank x above y if its sum is
greater, y above x if its sum is greater, and rank them as indifferent other-
wise. Would this SWF necessarily violate condition I? Condition D? Condi-
tion CS?

4. Prove that the following condition implies condition I: If P, and P> are
two profiles and S is any subset of the set of alternatives, then if the citizens’
relative rankings of the members of § are the same for P; and P>, the
SWF places the members of S in the same relative positions in both P and
Ps.

5. Prove that condition I implies the condition of exercise 4. (Hint: Prove [a]
that condition I implies it for § with 0, 1, or 2 members and [b] that if condi-
tion I implies it for § with n members (n > 1), it implies it for § with n + 1
members.)

Do

6-2b. Arrow’s Theorem and Its Proof
We are at last in a position to state Arrow’s theorem.

THEOREM. Where three or more alternatives and two or more citizens are
involved, there is no SWF that meets all five conditions CS, D, I, PA, and U.

(The restrictions on the number of citizens and alternatives open to them
are necessary for the truth of the theorem. If there is just one citizen or just one
alternative, there is no social choice to be made. On the other hand, if there are
just two alternatives and two or more citizens, all five of Arrow’s conditions are
met by simple majority rule [with the added stipulation that alternatives count
as socially indifferent provided that no majority favors either]. We will tacitly
assume in subsequent discussions of the theorem that there are three or more al-
ternatives and at least two citizens. This will save us from repeating that con-
dition.)

The Pareto lemma established that conditions CS, PA, and I imply the
Pareto condition. Hence if no SWF meets conditions D, I, U, and P, neither can
any SWF meet conditions CS, D, I, PA, and U. For if it satisfied the latter, it
would automatically satisfy the former, given the Pareto lemma. Consequently,
we can prove Arrow’s theorem by proving its Pareto version, namely, that no
SWF simultancously meets D, I, U, and P. Our strategy will be to prove the
Pareto version by proving the following theorem that is logically equivalent to
it: If an SWF satisfies conditions U, P, and I, it must be dictatorial.
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Before we begin the proof it will be helpful to introduce several defini-
tions. These now follow:

1. A set of citizens is decisive for x over y just in case x is socially pre-
ferred to y whenever each member of the set prefers x to y.

2. A citizen is a dictator for x over y just in case the set consisting of him
alone is decisive for x over y.

3. A citizen is a dicrator if and only if he is decisive for every pair of dis-
tinct alternatives.

4. An SWF is dictatorial just in case some citizen is a dictator under it.

We will need another battery of definitions in addition to these, but let us
pause for an easy lemma.

LEMMA 1. For any set of citizens and any pair of distinct alternatives there
is at least one decisive set.

proOF. The set of all citizens is decisive for every pair of alternatives.
For if every citizen prefers an alternative x to another one y, then, by con-
dition P, society prefers x to y. So there is at least one set that is decisive
for x over y.

Now for the other definitions:

5. A set of citizens is almost decisive for x over y just in case the social
ordering ranks x above y when (a) all members of the set do and (b)
all members outside prefer y to x.

6. A citizen is almost decisive for x over y if and only if the set consisting
of him alone is almost decisive for x over y.

Notice that every decisive set is also almost decisive for the same pair of
alternatives. For if the members of the set can determine the social ordering of
x over y with or without the aid of their fellow citizens, they can do so when
they are opposed. That is a matter of pure logic. However, not every almost
decisive set is also a decisive set, unless both conditions I and PA are in force.

(We could use the equivalence of decisiveness and almost decisiveness—
given conditions PA and I—if we were proving the full version of Arrow’s the-
orem directly. However, since we are proving the Pareto version instead, we can
establish the additional fact that it implies Arrow’s theorem by avoiding the use
of condition PA in its proof and keeping the two types of decisiveness separate.)

There is another logical point about decisive sets that must be understood
to appreciate the details of the proofs to follow. A set that is decisive for x over
y need not be decisive for y over x. For example, under most circumstances each
of us is decisive for continuing to live over dying on the spot, in the sense that
if we want to continue to live society will not prevent us from so doing. On the
other hand, we arc not ordinarily decisive on our own for dying on the spot over
continuing to live. Society usually intervencs if someone tries to kill himself.
The same point applies to almost decisive sets: A set that is almost decisive for
x over y need not be almost decisive for y over x.
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The proof of Arrow’s theorem can now be reduced to two more lemmas.

Here is the first.

188

LEMMA 2. There is a citizen who is almost decisive for some pair of alter-
natives.

PROOF. By lemma 1 there are decisive sets for each pair of alternatives.
Thus there must be sets that are almost decisive for each alternative as
well. Since the number of citizens and alternatives is finite, there must be
at least one nonempty set that is almost decisive for some pair of alterna-
tives but that has no nonempty subsets that are almost decisive for any al-
ternatives. We can find such a set by starting with society as a whole,
which we already know to be almost decisive for every pair, and proceed
to check all sets obtained from it by deleting one member, and so on, until
we find one with the desired property. Let M be such a minimal almost-
decisive set and let it be almost decisive for x over y. Since M is nonempty,
at least one citizen belongs to it. Let J be such a citizen. We will prove
that only J belongs to M. That will show that J is almost decisive for x
over y.

Let us assume that more than one citizen belongs to M and derive
a contradiction. Let z be any alternative besides x or y and consider the
profile in table 6-11. Here M-J is the set of citizens other than J who are

6-11 J M-J Remainder

z X y
x v Z
¥ Z X

in M, and the Remainder is the set of the remaining citizens in society.
There might be no remaining citizens, of course, but the proof can be mod-
ified to take care of that case. Since M is almost decisive for x over y,
society prefers x to y. Since condition U holds, the social ranking meets
the ordering conditions O1-08 (see chapter 2), and society is either in-
different between x and z or prefers one to the other. If it prefers x to z,
it must do so in all other profiles in which x and z are similarly arranged
because condition I is in force. But then M-J, whose members favor x over
z while everyone else favors z over x, is almost decisive for x over z, con-
tradicting the minimality of M. If society is indifferent between x and z,
then by the ordering condition society prefers z to y (since society already
prefers x to y). But J prefers z to y while everyone else prefers y to z, and
since condition 7 is in force, this holds for all other profiles in which y and
z are similarly arranged; hence J is almost decisive for z over y. This again
contradicts the minimality of M. Thus the only alternative left is that of
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society preferring z to x, and that again leads to the contradictory conclu-
sion that J is almost decisive for z over y. (See exercise 3.) Thus we have
derived a contradiction from our assumption that M did not consist of J
alone.

PROBLEMS

1. Verify that simple majority rule (supplemented as in the preceding text) does
satisfy all of Arrow’s conditions when there are just two alternatives. What
can happen when there are three alternatives and three citizens?

2. Establish that when conditions PA and I are not in force, some almost-
decisive sets are not decisive.

3. Establish the step missing at the end of the proof of lemma 2, namely, that
the assumption that society prefers z to x leads to the conclusion that J is al-
most decisive for z over y.

4. Carry out the proof of lemma 2 for the case when there are no citizens in
the Remainder. (Hint: In that case the last column of the profile can be
deleted.)

One of the puzzling features of Arrow’s proof is its inference from the so-
cial ordering obtaining for a particular profile to general conclusions concerning
the behavior of the social welfare function. (We have just seen it at work in the
proof of lemma 2, where we have concluded that J is almost decisive for x over
v on the basis of one profile containing x and y.) This seems to go against the
standard mathematical and logical injunctions against drawing general conclu-
sions from specific instances. Condition I is what makes this possible in Arrow’s
proof. It tells us that the social ranking of two alternatives is the same for every
profile in which each citizen places the alternatives in question in the same rela-
tive positions. Thus one can look at a particular profile and at the social ranking
of two alternatives for that profile in order to determine how those alternatives
will be ranked in other profiles. Arrow’s genius consisted in combining this fact
about condition I with a selection of profiles from which he could infer the
general conclusions requisite to his theorem.

A citizen who is almost decisive for a pair of alternatives x and y would
seem to be a far cry from a dictator, since according to our definitions, the citi-
zen in question determines the social choice for x and y only when he prefers
x to y and no one else does. We cannot say how society will rank x and y when
he fails to have that preference—much less how it will rank other alternatives.
Our final lemma will show that there is much more here than meets the eye.

LEMMA 3. Any citizen who is almost decisive for a single pair of alterna-
tives is decisive for every pair of alternatives.

PROOF. Assume that J is a citizen who is almost decisive for x over y. We
will show that he is decisive for all pairs of distinct alternatives. These
pairs may be divided into seven cases: x over y, y over x, X over d, a over
X, yover a, aover y, and a over b, where a and b are alternatives distinct
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from each other and from x and y. Our proof will take the somewhat tedi-
ous course of demonstrating, one pair at a time, that J is decisive for that
pair. Fortunately, the treatment of several of the cases is the same, and
this will permit us to abbreviate the proof.

Case: x over a. Assume that a is an alternative distinct from x and
y and consider the profile in table 6-12.

6-12 J Remainder

X y
y x|a

a

Notice that here I have written “x | a” rather than “x,a.” This is to indicate
that no information is given about the relative ordering of x and a in the
rankings of the remaining members of society. Also “x |a” has been written
in the column below “y” to indicate that y ranks above both x and a. In short,
each citizen but J ranks y above both x and ¢, but each might place the latter
two in any order independently of his fellow citizens. J ranks x above y and
y in turn above a.

Since J is almost decisive for x over y and he ranks x over y while
the others rank y over x, society must rank x above y. But since everyone—J
included —ranks y over a and condition P holds, society ranks y over a. But
because the ordering condition holds, society must also rank x over a. Now
consider how society dealt with x and a for this profile: J ranks x over a,
the remainder rank them in any way possible; yet society ranks x over a.
What holds for this profile holds for all others in which x and a are similarly
arranged, since condition I is in force. Thus whenever J prefers x to a, soci-
ety does. In short, J is decisive for x over any alternative a that is distinct
from both x and y.

Case: a over y. Consider the profile in table 6-13. Since every citizen

6-13 J Remainder

a a(y

y

ranks a over x, society does (by condition P). Society must also rank x over
y, because J is almost decisive for x over y. Then by the ordering condition
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it follows that society ranks a over y. Next we apply condition I to this
profile to conclude that whenever J prefers a to y, so does society. In other
words, J is decisive for a over y.

Case: y over a. Consider this profile (table 6-14). By condition P

6-14 J Remainder

y aly
X X

a

society prefers y to x. Since we have already established that J is decisive
for x over a, we can conclude that society prefers x to a. But then by the
ordering condition, it must prefer y to a. Condition I then lets us conclude
that J is decisive for y over a.

Case: a over x. Take the first of the three previous profiles and inter-
change a and x in J’s column alone. The a-over-y case permits us to infer
that society prefers a to y; condition P results in its preferring y to x. The
argument then proceeds as in the previous cases to conclude that J is deci-
sive for a over x.

Case: x over y. Let a be any alternative distinct from x and y and
consider any profile in which J prefers x to @ and a to y. By the x-over-a
case, society prefers x to a. By the a-over-y case, society prefers a to y.
We then proceed as usual to infer that J is decisive for x over y.

Case: y over x. Interchange “x” and “y” in the last proof.

Case: a over b. We know that J is decisive for a over x where a is
any alternative distinct from x and y; we also know that he is decisive for
x over b where b is any alternative distinct from x and y. Thus we may
consider a profile in which J prefers a to x and x to b and argue as in the
x-over-y case to establish that J is decisive for a over b.

We have now established that J is decisive for any pair of alterna-
tives. Since the ordering conditions are in force, the social ordering is fully
determined once the order of each pair of alternatives is fixed. Thus J de-
termines the entire social ordering and must be a dictator.

PROBLEMS

1. Write the complete proof for the y-over-x case.
2. Do the same for the a-over-b case.

6-3. Majority Rule
Arrow’s thcorem is discouraging only to the extent that one is attached to his
conditions. By relaxing some of them we may be able to show that reasonable
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social choice rules are possible. In this section we will show that we can do bet-
ter than that by proving an important theorem about majority rule. This theorem
tells us that by dropping condition U and strengthening Arrow’s other condi-
tions, we arrive at a set of conditions satisfied by majority rule alone. This gives
us reason to be more optimistic about the problem of social choice than we were
when confronted with Arrow’s result alone. For we have a trade-off of condi-
tions —relaxing one, tightening the others—that, arguably, leads to conditions
just as reasonable as Arrow’s.

Before we proceed any further we should specify precisely what majority
rule is to mean in the discussion to follow. Thus we define it as follows:

An SWF is a case of majority rule if and only if it socially ranks x above
¥ just in case more citizens prefer x to y than prefer y to x, and it ranks
x and y as socially indifferent just in case as many citizens prefer x to y
as prefer y to x.

Majority rule, as we mentioned before, does satisfy Arrow’s conditions
when there are only two alternatives. It continues to satisfy all of Arrow’s condi-
tions except condition U when more than two alternatives are under considera-
tion. Here is a quick proof of this. By definition it ranks pairs of alternatives
by examining citizen preferences for them alone, so it satisfies condition 1. An
option x is socially preferred by it to y only if a majority of citizens prefer x to
v, and a majority will still prefer x to y if one or more citizens move x up in
their orderings; thus it satisfies condition PA. Citizens can force society to prefer
x to y by arranging for a majority to prefer x to y; so it satisfies condition CS.
Finally, a majority will overrule the preferences of any single citizen; so it satis-
fies condition D too.

On the other hand, majority rule does not satisfy condition U; we cannot
depend on it to yield a social ordering satisfying conditions O1-O8 (chapter 2)
when applied to all preference profiles. The voting paradox showed that. Yet
even this difficulty can be obviated if we place restrictions on the forms prefer-
ence profiles can take. Suppose all the citizens classify the alternatives along the
same “objective” continuum and base their personal preferences on determining
how close an alternative comes to a certain point on the continuum (the point may
vary from citizen to citizen). For example, suppose all citizens classify candi-
dates for a public office on the same liberal, moderate, conservative continuum,
and also identify themselves with certain locations along that continuum, the
liberal citizens identifying with the liberal end, the moderates with the middle,
and so forth. Then liberals will rank highest the candidates whom everyone con-
siders liberal, moderates will rank moderate candidates at the top and will put
both extreme conservatives and extreme liberals at the bottom, and so on. If we
were to graph the preferences of any single citizen using the liberal-conservative
continuum as the x-axis and ordinal utilities as the y-axis, the graph would take
the form of either a straight line or a broken line with only one change of direc-
tion. In figure 6-1 the graph for liberals is represented by a solid line, that for
moderates by a dashed line, and that for conservatives by a dotted line.
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Preference orderings such as these are called single-peaked. It can be
proved that if majority rule is restricted to preference profiles in which all the

Utility

liberal moderate conservative

Figure 6-1

preferences are single-peaked, it not only satisfies conditions SC, D, I, and PA
but also produces social orderings that meet conditions O1-O8. There are
several other results like this but we will not prove them here.

Instead let us turn to an easier and possibly more interesting theorem by
K. O. May, which shows that majority rule is the only SWF that satisfies certain
strengthened versions of Arrow’s conditions. The first of these conditions is the
anonymity condition (condition A). It states that the SWF produces the same so-
cial ordering for two profiles P and P, if one can be obtained from the other
by exchanging the preference orderings among the citizens. For example, sup-
pose that in profile 1 a citizen, Smith, prefers eggs to grits whereas in the same
profile another citizen, Brown, is indifferent between them. Next suppose profile
2 is exactly like profile 1 except that now Smith is indifferent between eggs and
grits and Brown prefers eggs to grits. Then any SWF that satisfies condition A
will assign the same social ordering to both profiles. This means that the SWF
cannot favor any citizen (since it can respond only to their orderings, not to their
identities), and thereby rules out dictators. Condition A is thus a stronger ver-
sion of condition D.

The next condition is called the neutrality condition (condition N) and re-
quires the SWF to disregard the nature of the alternatives under consideration.
An SWF that always favored conservative alternatives over liberal ones, while
disregarding the identities of those who voted for them, would satisfy condition
A while violating condition N. We need the following more formal statement
of condition N for our theorem: Let P; and P; be two profiles (not necessarily
distinct ones) and suppose that x and y occupy the same relative positions in P
as zand w occupy in P». (That is, for each citizen i, i prefers x to y, is indifferent
between them, or prefers y to x in P if and only if he prefers z to w, is indifferent
between them, or prefers w to z in P .) Then x and y must occupy the same rela-
tive positions in the social ordering for Py as z and w do for P;. For example,
consider a society with three citizens, A, B, and C, and five alternatives, u, w,
x, y, and z. Let P; and P> be the two profiles given in tables 6-15 and 6-16.
Then condition N will require an SWF to rank x and y in the same order for
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profile 1 as it ranks z and w for profile 2. This implies, for instance, that if all
citizens prefer x to y and society ranks x above y, it must also rank z above w
if every citizen prefers z to w. An SWF that satisfies condition N ranks x above

6-15 Profile 1 6-16 Profile 2
A B C A B c
X X,y u z zZ, w u
u, w z X, Z, W u,y X X, 2, ¥
¥, Z u, w y w, X u,y w

¥ (x indifferent to y, y above x) for profile 1 if and only if it ranks z above w
(z indifferent to w, w above z) for profile 2.

The political systems of most countries do not satisfy this strong form of
neutrality. Suppose, for example, that a majority of 51% of the U.S. Senate and
a majority of 51% of the U.S. House of Representatives vote to pass (rather than
defeat) a new bill. Then the bill will pass. But now suppose that Congress con-
siders a bill the president has vetoed and that everyone who voted in favor of
the first bill votes for the second and everyone who voted against the first bill
votes against the second. Then the bill will be defeated.

If we replace “z” with “x” and “w” with “y” in the preceding statement of
condition N, we get: If x and y occupy the same relative positions in Py and P>,
they must also occupy the same relative positions in the social orderings for P,
and P3. This is condition I. Thus condition N implies condition 1.

The last condition we need is a stronger form of condition PA. It is called
the positive responsiveness condition (condition PR) and reads as follows: If so-
ciety regards x as at least as good as y for P and the only difference in the rank-
ings of x and y between P and P> is that some citizens have moved x up in their
orderings, then society must prefer x to y for P». Thus if x and y are socially
indifferent under P; and some citizens switch in favor of x and that is the only
change made in going to P;, then society must favor x over y under P,. Notice
that if society already favors x over y, it must continue to do so under such
changes. Accordingly, condition PR implies condition PA.

We are now ready for the theorem relating majority rule and the preceding
conditions,

THEOREM. The only SWF that satisfies conditions A, N, and PR is majority
rule.

PROOF. The reader may check that majority rule does indeed satisfy the
conditions in question. Given this, our proof will be complete if we estab-
lish that any SWF that satisfies the conditions is a case of majority rule.
So let us assumc that F is an SWF that satisfics conditions A, N, and PR.
Since it satisfies N it must also satisfy condition I, and thus the social rank-
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ing it determines for two alternatives x and y will depend on the citizens’
rankings for these alternatives alone. Moreover, since it satisfies condition
A its ranking cannot depend on the rankings of any particular citizen or
citizens. Therefore, in ranking any pair of alternatives x and y, F must de-
pend on only those features of a profile that are invariant under all rear-
rangements of the columns and that involve no other alternatives. But this
means that F can only consider the number of citizens who are indifferent
between x and y or prefer one to another. Now suppose that exactly as
many citizens regard x as at least as good as y as do conversely. Then F
must rank x and y as indifferent, because it satisfies condition N. More-
over, if we move from a profile of this sort to one in which a majority of
the citizens prefer, say, x to y, then condition PR requires F to socially
rank x above y. In sum, F operates by counting the number of those who
prefer one of two alternatives. If the numbers are equal, the alternatives
are ranked as socially indifferent. Otherwise the one with the greater num-
ber of citizens in favor of it is socially preferred. Thus F is a case of
majority rule.

What, then, should we make of majority rule? The last theorem says much
in its favor, but it still fails to meet condition U. This might pose no practical
problems. Many social choices are made in contexts that do not require a well-
behaved ranking of the social options. They demand only that we specify a first
choice or a first choice among any pair of options, and one can count on majority
rule to do the latter —at least. But practical difficulties lurk in the voting paradox,
and that casts a further cloud over majority rule. Consider the voting paradox
again (table 6-17). If a and b are compared, a is preferred; if b and ¢ are com-

6-17 1 2 3
a b c
b ¢ a
¢ a b

pared, b is preferred; and if ¢ and ¢ are compared, c¢ is preferred. This creates
a cycle; no alternative can be first choice. Worse than that, suppose the prefer-
ences are as given in table 6-17, but the first choice is to be obtained by pitting
one alternative against another and the winner against the remainder. Then if a
and b are compared first, ¢ will win in the second round; if a and ¢ go first, b
will win; and if b and ¢ go first, a will win. Thus citizen #1, for instance, can
get his first choice by having his fellow citizens agree to pit b against ¢ first.
The social choice will not be made herc by the citizens’ preferences but rather
by a fluke of parliamentary procedures. But, of course, no skilled politician
would be surprised by an outcome like this.
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PROBLEMS

1. Prove that condition A implies condition D.
2. Describe a social choice method that satisfies condition I but fails to meet
condition N.

6-4. Utilitarianism

A view with considerable appeal is that social choices should attempt to max-
imize the well-being of the citizenry. Stated thus none but misanthropes can fail
to accept it. But that is due as much to the many interpretations our formulation
permits as to its forthright appeal. There is too little content to the present doc-
trine to make it worthy of debate. In the last century Jeremy Bentham and John
Stuart Mill attempted to remedy that defect by identifying well-being with happi-
ness, itself characterized in terms of pleasurable feelings. They coined the name
“utilitarianism” for their view.

The doctrine of Bentham and Mill yielded a method for ordering social op-
tions: Place at the top those that produced the greatest amount of pleasure for
the citizenry as a whole; continue on downward, putting options yielding lesser
amounts of total pleasure below those yielding greater amounts. Of course, this
still is not as precise as we might wish. For it is not clear how we are to measure
the amount of pleasure available under each social option. Are we to pass a
pleasure meter over society as a whole—if only hypothetically —much as an ap-
plause meter measures an audience’s enthusiasm for a contestant at an amateur
hour? Or should we measure the pleasure obtained by each citizen and sum
pleasures? Or calculate averages? Nobody has ever taken the first alternative
seriously, but adherents of the latter two have generated two versions of util-
itarianism — sum utilitarianism and average utilitarianism. The former ranks op-
tions in terms of the sums of individual pleasures they produce, the latter ranks
them in terms of average amounts. If the number of citizens is kept fixed, there
is no difference between the social policies the two versions favor. However,
if the number of citizens is allowed to vary, sum utilitarianism will favor options
that increase the population (the more to be merrier)—provided natural re-
sources permit the citizenry to enjoy minimal amounts of pleasure. For little
amounts of pleasure enjoyed by many people can sum to a larger total than that
produced by a smaller number of citizens, each one enjoying a large amount
of pleasure. Because modern social choice theory has tended to view the prob-
lem of social choice as one in which the number of citizens remains fixed, the
distinction between sum and average utilitarianism has not been of much mo-
ment to it.

One may design all sorts of pleasure meters in fantasy, but that is what
they are likely to remain—pure fantasy. Modern utility theory, however, may
be just what is needed to make utilitarianism reputable. For the well-being en-
joyed by a citizen under a given social option can be identified with his or her
utility for the option, and the total or average amount of utility can be identified
with the total or average obtained using the individual utility numbers.
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We are treading on dangerous ground here and must not be hasty. As we
have noted several times, utility numbers in modern utility theory represent rela-
tive positions in individual preference orderings; in no sense do they represent
commodities or measurable quantities that can be combined, transferred, added,
or averaged. So the simpleminded sum and average approaches of the last para-
graph are based on a misconception about the nature of utility.

Despite these misgivings, there is a remarkable theorem of Harsanyi’s that
can be used to underwrite social orderings specified in terms of the total utility
available per option. Harsanyi avoids the fallacy of treating separate person’s
utilities as additive by identifying total social utility with the utility of a single
individual, whom I will call the Planner. Very roughly, his theorem states that
the Planner’s preferences for social options can be so represented numerically
that they appear as if they were obtained by ordering options according to the
total amount of citizen utility they yield.

Another important feature of Harsanyi’s theorem is that it is based primar-
ily on assumptions about the rationality of the citizens and the Planner, and its
additional ethical assumptions are quite minimal. Thus one could plausibly use
Harsanyi’s theorem to argue that utilitarianism is simply the result of approach-
ing the problem of social choice rationally.

6-4a. Harsanyi’s Theorem

Let us take a closer look at this important theorem. It is concerned with a finite
number of citizens and a finite number of social options. There is also the Plan-
ner, who may or may not be one of the citizens. If the Planner is a citizen, he
is required to have two (but not necessarily different) preference orderings — his
personal ordering and his moral ordering. The latter is subject to more con-
straints than his ordering qua citizen (if he is one). Henceforth, when we speak
of the Planner’s ordering, we will mean his moral ordering.

The citizens” and the Planner’s preference orderings must satisfy certain
conditions of rationality: Each must rank not only the social options but also all
lotteries involving social options. (For the remainder of our discussion of Har-
sanyi’s theorem we will use the term “option” to include these lotteries as well
as the original social options.) Furthermore, these rankings must meet all the as-
sumptions of the expected utility theorem. Following Harsanyi, let us call these
requirements on the citizens’ and the Planner’s preferences the conditions of in-
dividual and social rationality. From these conditions it follows immediately
that each citizen’s preference ordering can be represented by means of a Von
Neumann-Morgenstern utility function. Let Ui(x) be the utility the ith citizen
assigns to the option x. Similarly, the Planner has a utility function, and we will
let W(x) be the utility he assigns to x. For convenience we will assume that all
citizens use 0 to 1 utility scales and that O marks the lowest point on the Planner’s
scale. (His highcst point might cxceed 1.)

Now for the ethical conditions. First, we will need a principle, which we
will call the strong Pareto principle since it implies condition P of Arrow’s the-
orem. This reads: (1) If each citizen is indifferent between two options, so is the
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Planner; (2) if no citizen prefers x to y and at least one prefers y to x, the Planner
prefers y to x too. The only other ethical condition needed is the anonymity con-
dition from the theorem on majority rule; this will guarantee that the Planner
assigns the same weight to each citizen in ordering social options.

Harsanyi's theorem can now be stated as follows: If the citizens and the
Planner satisfy the conditions of individual and social rationality and the Planner
meets the anonymity and strong Pareto condition, then for each prospect x,

Wx)y=U;x)+U(x)+ ... +Unx).

To start our proof of this theorem, let us note that we can represent each
option by means of the vector (i.e., finite sequence) of utility numbers the
citizens assign to the option. This is because each citizen assigns utility numbers
to every option and uses the same number for all options that are indifferent to
him or her. For example, suppose a society consists of four citizens. The first
assigns the option x a utility of 0, the second assigns it 1/2, the third 1, and the
fourth 3/4. Then the option x can be represented by the vector

0, 172, 1, 3/4).

If each citizen is indifferent between x and some other option y, then the same
vector will be used to represent y as well.

The Planner’s utility function assigns numbers to options as well. The fol-
lowing lemma states how these numbers are related to the citizens’ vectors.

LEMMA 1. One and only one of the Planner’s utility numbers corresponds
to each citizens’ vector.

PROOF. Given the way in which the citizens’ vectors are obtained, each
corresponds to an option. Because utility numbers for the Planner are as-
signed to each option as well, at least one Planner number corresponds to
each citizens’ vector. Suppose that # and v are two Planner numbers cor-
responding to the citizens’ vector A. Then, since several options may be
represented by the same vector, i and v may be assigned by the Planner’s
utility function to different options. However, each citizen must regard the
options as indifferent; otherwise they would have been represented by
different vectors. Then by the strong Pareto principle, the Planner must
be indifferent between the two options, and thus u and v must be the same
utility number.

Lemma 1 allows us to represent the Planner’s utility function as a function
of the citizens’ utilities. This justifies the following equation:

)y Wx)=flUi1(x), Ux(x), . .., Ua(x)].
Here W(x) is the Planner’s utility function, U,(x), Uz(x), . . ., Up(x) are the
utility functions of the citizens (who number n), and f is the as yet unknown
functional relationship between W(x) and the U;(x). We will eventually prove
that f'is the summation function. Since for cach alternative x, U;(x) and W(x)
are particular numbers, we can deal with utility numbers directly and write (1) as
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(2) sz(ula u2, LS} uﬂ))
where w is the value of W(x) and each u; is the value of U;(x). In view of this,
to prove Harsanyi’s theorem it suffices to prove

w=ui+uz+ ... +un.

Consider any option represented by the vector (0, 0, . . ., 0). It must be
ranked lowest by all citizens, and by the Pareto principle must be so ranked by
the Planner too. But O is the lowest number on his utility scale, hence

(3) W@, 0, ..., 0=0.

On the other hand, since the Planner’s ranking meets the anonymity condition
he must assign the same utility to all prospects represented by the unit vectors,
(1,0,0,...,0),(0,1,0,...,0,0,0,1,...,0),...,0,0,...,0,1).
Let us stipulate that this utility number is 1, thus we have

(4) W(A) =1, for each unit vector A4 listed above.
Next we turn to another major lemma.
LEMMA 2. The function f of equations (1) and (2) satisfies
(5) af(uy, uz, . . ., un)=f(au, aus, . . ., aun),
where a is any real number with 0 <a < 1.

prOOF. To simplify our notation we will prove this for the case of two
citizens. The general proof uses completely parallel reasoning. Let u; and
u> be given and let a be any real number such that 0 <a <.

Let L be a lottery that yields the social option (1, u2) with a chance
of a and yields the option (0, 0) with a chance of 1 —a. The two citizens
and the Planner assign L utilities in accordance with the expected utility
theorem, thus

6) Ur(Ly=aU:(ur, uz)+(1—a)Ui(0, 0)
(7 Uz(L)y=aUz(ur, uz) +(1—a)U»(0, 0)
@) WlLy=aW(u,, u)+ (1 —a)W(, 0).

But the first citizen values (11, u2) as u, the second values it as u», and
both value (0, 0) as 0. By equation (3) we have

9) U1(0, 0)=U2(0, 0)=W(0, 0)=0.
Using this with (6), (7), and (8) we obtain

(10) W(L)=aW(u,, uz)
(1) U(L) =au,
(12) U (L) =au-,

and then by (1) we get
(13) aW(uy, uz)=f(au., aus),
from which the lemma follows by an application of (2) to the left side of

(13).
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With lemma 2 at hand we can now prove the Harsanyi theorem.
THEOREM. W(uy, uz, . . ., Un)=u; + uz+...+us.

PROOF. Again for convenience we will restrict our attention to two
citizens. Let 1 and u» be given, and consider the lottery L', which yields
an equal chance at (1, 0) and (0, u2). Using the expected utility theorem
we obtain

14y W(L")=12W(u, 0) +172W(0, u>)
(A5) U(L")y=12U(u1, 0) + 172U, us)=1/2u,
(16) U2(L")=12U,(u1, 0)+1/2U2(0, uz) = 1/2u,,

where the last parts of (15) and (16) are due to the fact that the first citizen
values (uy, 0) as uy, (0, uz) as 0, whereas the second values the former
as 0 and the latter as u,. From (15), (16), and (2) we obtain

(A7) W(L"y=f(112u., 12u>),
and then by (5)

(8) W(L'")=1/2f(u,, u2).
But by (2), (4), and (5),

(19) Wy, 0)=uW(, 0)=u;
(20) W(O, uz)=uW(0, 1)=u,.

Then substituting in (14), we obtain
QD 1/2f(u1, uzy=1/2u+ 12u>.
Then algebra and (2) yield our theorem.

This theorem is important for decision theory as a whole. For as the proof
shows, it bridges individual decision making and group decision making. The
key link consists in embodying the group decision in an impartial (via the
anonymity condition) and “benevolent” (via the strong Pareto principle) planner.
This scheme seems to exclude citizen participation in favor of imposed deci-
sions, but a little reflection should allay that fear. First, the citizens’ preferences
determine the social ordering, since the Planner’s utility function is a function
of citizen utilities. Second, the Planner’s utility function satisfies the citizens’
sovereignty condition. Finally, any citizen in the Planner’s shoes would produce
the same ranking.

PROBLEMS

Prove that the strong Pareto principle implies condition P.

Is the social choice rule yielded by Harsanyi’s theorem an SWF?
Does Harsanyi’s version of utilitarianism violate condition I?
Show that it does not violate conditions CS, PA, and D.

W N =

6-4b. Critique of Harsanyi’s Theorem
The preceding proof is a shortened version of Harsanyi’s own proof. This has
been accomplished by restricting the citizen utility scales to 0 to 1 scales and
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the Planner’s to a nonnegative scale. Despite this, both Harsanyi’s original proof
and the one given here employ an implicit assumption that casts doubt on the
applicability of the theorem to many important contexts of social choice. I want
to turn to that matter now.

If you reread the proof carefully, you will observe that at crucial junctures
in the proof of both lemma 2 and the main theorem, lotteries among certain so-
cial options were introduced. Such lotteries exist only if the options to which
they lead exist. The options were represented via vectors of utility numbers, so
their existence amounts to the existence of options in which the utility distribu-
tions match those of the vectors in question. Reviewing the proof for the two-
citizen case we find the following vectors used in the lotteries L and L':

0, 0, 0, 1), (1, 0), (u1, 0), (0, u2), (u1, uz).

The last vector was introduced entirely hypothetically as a representative of an
arbitrary option whose social utility was to be shown to be the sum of the
citizen’s utilities. The others, however, are assumed to exist categorically or at
least conditionally on the existence of (u1, uz). Yet none of Harsanyi'’s assump-
tions guarantee the existence of these options. Indeed, in many instances their
existence is not even logically possible. For example, suppose in a two-citizen
case the “social” options consist in giving a scholarship to one citizen but not to
the other. Suppose further that each citizen is concerned about himself alone.
Then (1, 0) corresponds to the first citizen getting the scholarship, (0, 1) cor-
responds to the second getting it. But what of (0, 0)? It is not among the original
options, nor is it equivalent to a lottery involving them. Thus given the original
description of this situation of social choice, an option corresponding to (0, 0)
is not even logically possible. Of course, an option corresponding to (0, 0) seems
easy enough to introduce in this case; it is simply the option of awarding the
scholarship to neither citizen. But that changes the situation of social choice, and
it does not obviate the need for an existence assumption to support the construc-
tions used in Harsanyi’s proof.

The general problem is this: The proof given earlier and Harsanyi’s origi-
nal proof both depend on the introduction of social options that yield utility dis-
tributions conforming to certain patterns; yet the assumptions of the theorem fail
to guarantee the existence of such options. We can remedy this defect by adding
additional assumptions to the theorem, but then this will restrict the application
of the theorem to cases where those conditions obtain.

One assumption that is more than adequate to the task of repairing the
proof of the theorem is the following:

For every vector of numbers (i1, u2, . . ., #y) with 0 <u; <1, there is
at least one social option for which the distribution of citizens’ utilities
equals that of the vector in question.

I will call this the distributable goods assumption, because the only social situa-
tions in which it is certain to hold arc ones in which each citizen’s utility is deter-
mined solely by the amount of a distributable good or goods that he or she
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receives under an option. Here a distributable good is one, such as income, food,
health, education, talent, friendship, for which all distributions throughout a so-
ciety are at least logically possible. For example, if, in a two-citizen case, the
good in question is food, the vector (0, 0) could correspond to the prospect in
which neither citizen receives sufficient food, (1, 0) could correspond to that in
which the first was adequately fed but the second was not, and so forth. For
many situations of social choice the distributable goods assumption is easily met,
and, perhaps, from the economist’s viewpoint those are the only situations of in-
terest. On the other hand, philosophers also look to social choice theory for help
in resolving problems in which interests conflict—situations, for example, in
which citizens gain only at the expense of others, or ones in which the citizens
envy each other, or prefer to sacrifice for each other. These are situations in
which we cannot count on the distributable goods assumption to hold. These are
more matters of ethics and justice than of economics. Thus it would appear that
the philosophical applications of Harsanyi’s theorem are limited.

(The distributable goods assumption is equivalent to coalition theory’s as-
sumption that utility is transferable from player to player. Thus it is not surpris-
ing that the objections raised against the former in the context of game theory
also threaten the use of the latter in the context of social choice theory.)

The story is not complete yet. Because Harsanyi assumes that in addition
to the basic social options the citizens rank all lotteries constructed from them,
many utility vectors have options answering to them in the form of lotteries. For
example, starting from the options (0, 0) and (1, 0) and using lotteries that yield
the latter with a chance of u;, we obtain all options corresponding to (i1, 0),
but they take the form of lotteries.

By extending this line of reasoning it can be shown that all the options re-
quired for the two-person case of Harsanyi’s theorem can be obtained as lotteries
constructed from options corresponding to (0, 0),(1, 0), and (0, 1). Using O to
I utility scales, (0, 0) would represent the worst prospect for both citizens, (1,
0) a prospect best for the first and worst for the second, and (0, 1) one best for
the second and worst for the first. In many applications such prospects may be
exceedingly hard to find. The fate of the two citizens may be so closely linked
that it 1s impossible for one to achieve his best possible outcome while the other
suffers the worst. Obviously, matters are even worse when we consider real-life
examples involving hundreds, thousands, or even millions of people.

We can alleviate this problem by using the fact that utility scales are
unique only up to positive linear transformations. This will allow us to use utility
scales in which O and 1 need not represent the worst and best prospects. Then
we can derive the theorem from the following special prospects assumption
(stated here for the two-person case alone): There are three social options a, b,
and ¢, such that (1) the first citizen prefers b to a and is indifferent between a
and c¢; and (2) the second citizen prefers ¢ to a and is indifferent between a and
b. Then a can be represented as (0, 0), b as (1, 0), and ¢ as (0, 1). Furthermore,
the three special prospects, a, b, and ¢, can be very similar or “close” to cach
other, so that the first citizen’s preference for b over a is just a slight onec—as
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is the second’s for ¢ over a. Where there are n citizens, the special prospects
assumption postulates the existence of n + 1 prospects related to each other as
a, b, and ¢ are. I will skip the proof that the special prospects assumption pro-
vides a sufficient repair for Harsanyi’s theorem.

(It is also possible to prove a weakened version of Harsanyi’s theorem that
requires as its only additional assumption that there is one prospect to which all
the citizens are indifferent. This prospect will then play the role of (0, 0, . . .,
0). In this weakened version, which happens to be the version Harsanyi first
stated,

Wx)=a Ui(x)+aU2(x)+. . . +asUn(x),

where a; is the weight assigned to the ith citizen. Unfortunately, this allows the
Planner to satisfy Harsanyi’s conditions of rationality and morality and still as-
sign a negative weight to each citizen. The resulting SWF would be just the op-
posite of utilitarianism as ordinarily understood. For this reason I will continue
to focus on the strong version of Harsanyi’s theorem.)

From the purely mathematical point of view, the special prospects assump-
tion is much weaker than the distributable goods assumption. Not only does the
latter logically imply the former but the former postulates a finite number of op-
tions whereas the latter postulates infinitely many. Thus it seems likely that the
special prospects assumption imposes only a minor restriction on the Harsanyi
theorem and in no real way limits its applications to ethical situations. Returning
to the scholarship case, just as an example, we see that two of the three options
required for the assumption to hold are already present; clearly, in any real-life
situation there will be social options that both citizens find worse than the
scholarship being given to the other. It seems quite likely that similar factors will
also be at work in other applications of the theorem to real-life cases.

Before evaluating this defense of the application of Harsanyi’s theorem to
ethics, a necessary condition for any adequate defense should be noted. Through-
out the proof of Harsanyi’s theorem we deal with a preference profile that is held
fixed. Thus we cannot defend the theorem by introducing the possibility that one
or more citizens have changed their preferences, for that would change the
profile. For example, in the scholarship example we cannot stipulate that the first
citizen prefers for the second to have the scholarship and then argue that award-
ing the scholarship to the first corresponds to (0, 0). Thus one must defend the
theorem by arguing either that a “true” representation of the citizens’ preferences
will give rise to the appropriate vectors or that there is a set of “background”
options sufficiently rich to support the same vectors, or that certain profiles, such
as those in which considerations of envy or altruism are operative, should not
be considered.

Given this understanding of the logic of the defense of the theorem, it
seems to me that the applicability of the theorem must be decided on a case-by-
case basis. For although the prospects required by the special prospects assump-
tion appear quite minimal, I see no way of constructing a general argument for
the universal applicability of the theorem unless strong assumptions about hu-
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man nature and the human condition are introduced. Even in the scholarship ex-
ample we cannot be sure that there will be a background prospect corresponding
to (0, 0). Perhaps one citizen is a masochist; anything that horrifies his fellows
he enjoys, even if it happens to him too.

Establishing the special prospects assumption on a case-by-case basis al-
lows us to use facts concerning the circumstances of the case, such as the person-
alities of the citizens and their stations in society. In trying to prove that the as-
sumption always holds, we must abstract from such particulars and make use
of general premises. But the sort of general premises for such a proof that come
to mind seem quite implausible. Thus we would probably need to assume that
the citizens’ preferences for social options were based on an indifference to the
fate of others. For how else can we cover cases like the scholarship example?
And we would need to assume that the various distributions of goods are eco-
nomically, physically, and biologically, as well as logically independent. Other-
wise we could not be certain of the existence of options, say, to which each citi-
zen but one assigns the utility 0 while the one remaining citizen assigns it 1. Such
independence assumptions may be objectionable even when the incremental
differences between the distributions in the various options are quite small. In
any case, their legitimacy must be examined before we can rest assured that the
conditions for the application of Harsanyi’s theorem hold in general.

Even if this problem is resolved, there is also the question of the relevance
of the “background” options introduced to underwrite Harsanyi’s proof. Sup-
pose, for instance, a social planner is attempting to develop a social policy for
a group of citizens whose interests seriously conflict, and suppose there is no
option under consideration that every citizen regards as minimal. To be more
specific, suppose the planner must rank prospects involving government support
of in vitro human fertilization, and that the citizens have the usual spectrum of
moral attitudes concerning methods of conception and fertilization. Would it be
moral or rational for the planner to reach a ranking by introducing the option
of abolishing human fertilization in all forms, hoping thereby to have a prospect
minimal for all? I suspect that in many cases involving deep moral issues a social
planner would be forced to such devices in order to apply Harsanyi’s theorem.

(Actually, the special prospects assumption does not require that there be
a prospect that is minimal in the set of all prospects but only one that is minimal
with respect to others that can play the role required by the assumption. Despite
this, social planners are unlikely to find the requisite prospects already on hand.)

These considerations are not decisive against Harsanyi’s approach to
utilitarianism, because they are too indefinite. But they do detract from the pu-
rity of his approach. The theorem promised to furnish a substantial logical
underpinning for utilitarianism by avoiding such poorly defined notions as hap-
piness and pleasure and by eliminating questionable moral and empirical as-
sumptions about preferences. On the first count it appears reasonably successful.
However, the need for special prospects and the problems encountered in estab-
lishing their existence show that on the second count the theorem is not much
of an advance over the carlicr versions of utilitarianism.
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PROBLEMS

1. Explain how, given a prospect, P, valued by two citizens as (0, 0) and one,
@, valued as (1, 0), we can construct prospects valued as (u, 0), for every
u between 0 and 1.

2. Harsanyi’s proof introduces (0, 0) in equation (3) and (0, 1) and (1, 0) in
equation (4). The former was grounded on the fact that (0, 0) represented
the worst prospect for each citizen, the latter on the anonymity condition.
How can we ground (3) and (4) if we use the special prospects assumption
to prove Harsanyi’s theorem?

3. Prove that the distributable goods assumption implies the special prospects
assumption.

4. Explain how the distributable goods assumption postulates infinitely many
options.

5. Suppose that the social planner in the fertilization example could introduce
new prospects by promising to give the citizens small amounts of money.
Could he construct the special prospects by (1) selecting one of the original
prospects, A, tobe (0, 0, . . ., 0) and (2) introducing a new prospect, B, that
is just like A except that the first citizen receives enough money in B to prefer
itto A, introducing a prospect, C, that is just like 4 except that now the second
citizen receives enough money to ensure that she prefers Cto 4, and so on?
What empirical assumptions would have to be true for this to work?

6-4c. Interpersonal Comparisons of Utility

Although utilitarianism has had and continues to have many adherents among
economists and philosophers, there are several major problems with the view
that must be considered by anyone seriously concerned with the problem of so-
cial choice. The one I will address here —the problem of interpersonal compari-
sons of utility —is closely tied to our previous discussion of utility. Although this
difficulty arises most acutely with respect to utilitarianism, it affects several
other approaches to social choice as well.

Mary and Sam are trying to choose a joint vacation. They have been con-
sidering going to the seashore, camping in the local mountains or visiting the
museums in a nearby city. It turns out that these all cost about the same, so
monetary considerations are not relevant. Mary prefers going to the seashore to
going to the museums and that in turn to camping. Sam’s preferences are the ex-
act opposite. However, going to the seashore is the only alternative that Mary
finds bearable, although she feels more negative about going to the mountains
than to the museums. Each choice is fine with Sam, although he would much
prefer going to the mountains. Mary and Sam know all this. Were they an ordi-
nary couple with a modicum of mutual respect and goodwill, one of them would
suggest going to the seashore, since the gain in happiness for Mary would more
than offset Sam’s slight disappointment. If Sam resisted this suggestion, Mary
would rightly resent his selfishness.

But this Mary and Sam are not an ordinary couple for they have been to
business school and have learned about utilitics. They note that although it ap-
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pears that Mary has stronger preferences concerning the three options under
consideration than Sam does, it does not follow that more fotal utility will be
achieved by opting for her first choice. So Mary and Sam decide to develop util-
ity scales to measure their preferences more accurately. Instead of restricting
themselves to just the three options under consideration they rank a very wide
range of alternatives, so that they can see how their preferences for the three
particular items fit into the general scheme of their likes and dislikes. For ease
in computation they both use 0 to 100 scales. The amounts of utility scored by
each option under this system are shown in table 6-18. Upon seeing this Sam

6-18 Mary Sam  Total
Seashore 20 86 106
Museums 10 93 103
Mountains 9 100 109

insists on having his first choice —camping in the mountains. This turn of events
causes Mary to become quite irked. Sam is a songwriter who spends much of
his time in activities he finds enjoyable. She works in the complaints office of
a large department store; her customers are aggressive and nasty. This is her
annual vacation, and for her the difference between the seashore and the moun-
tains crosses the threshold between the bearable and the intolerable. She feels
that her “right” to an emotionally recuperative vacation will be violated by fol-
lowing this utilitarian scheme.

Mary believes she knows Sam well. Despite the fact that he spends most
of his time in activities he enjoys, he never enjoys anything very much. Nor for
that matter does he dislike anything much. His moods are so constant that Mary
sometimes wonders if he is really human. Fortunately for her, he is open to rea-
son, and she reasons with him as follows: “Look, Sam. We shouldn’t have used
the same units on our utility scales. My preferences are so intense in comparison
with yours that my scale should range between 0 and 1,000, if yours ranges be-
tween 0 and 100. If that change is made, the total utilities become seashore 286,
museums 193, and mountains 190, and it is clear that we should go to the
seashore.”

Sam responds in a quiet but unrelenting tone: “Your reasoning, Mary, is
correct but it is based on a false premise. You think that my preferences are
rather weak, but the fact is I feel things quite deeply. I have been brought up
in a culture very different from yours and have been trained to avoid emotional
outbursts. In my family it was considered unseemly to jump with joy or to
scream with anger or to weep when sad. But I have strong feelings all the same.
And even if I did not, I do not think that extra weight should be given in a
utilitarian calculation to those who are capable of more intense prefercnces. Af-
ter all, each person is due as much consideration as any other.”
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Unable to resolve their dispute, Mary and Sam visit their business school
professor, a man of great wisdom and wealth. He ponders their problem for a
while and tells them that they need to talk with a philosopher. Mary and Sam
leave him in utter despair and later agree to make their choice as most other cou-
ples would. They go to the seashore.

This parable illustrates most of the difficulties raised by interpersonal com-
parisons of utilities. These include epistemological, metaphysical, and ethical is-
sues. For instance, are such comparisons based on an objective reality? Is
Mary’s preference for the seashore really stronger than Sam’s for the mountains?
Or is she just a more vocal person, as Sam suggests? If some people’s prefer-
ences are in fact stronger than others’, how could we know this? Does it make
any more sense to compare Sam’s preferences with Mary’s than it does to com-
pare a dog’s preference for steak bones with a horse’s preference for oats? Fi-
nally, even if we answer all these questions affirmatively, is it morally proper
to respond to such information in making social choices?

Some utilitarians have argued that such problems will dissolve once psy-
chology develops an adequate theory of the emotions. In particular, if as recent
neurophysiology suggests, our emotional life can be explained in terms of brain
processes, there is an underlying reality at which interpersonal comparisons hint
and eventually it will be known. Furthermore, the argument continues, there can
be no question that we do make such interpersonal comparisons in our daily
lives. Anyone who bases a decision on the varying preference intensities of the
people affected implicitly makes such comparisons by his or her very choice.
Thus we should not raise artificial philosophical quibbles against a practice that
is so well entrenched in human affairs.

But this does not end the matter. Let us grant that a neurophysiological
account of the emotions is possible and that we do react to preference “intensi-
ties” in making certain choices. This still does not advance the cause of utilitari-
anism. For compare the neurophysiological account of perception with the
hoped-for account of the emotions. Neurophysiology tells us quite a bit about
perception: how the eye works, what parts of the brain are concerned with sight,
what one can or cannot see under certain conditions, and so on. However, in
discussing perception, this science speaks entirely in terms of neurological
phenomena or observable human behavior. When neurophysiologists tell us that
under certain conditons people suffer from double vision, their criterion for dou-
ble vision is given in terms of patients’ responses to questions and tests, and, pos-
sibly, measurements of the behavior of the patients’ brains. But no one who
thinks there is more to perceiving than responding to external stimulations in
certain ways or having certain brain waves will take the neurophysiologists’ ac-
count as the complete account of perceiving. Similarly, a neurophysiological ac-
count of the emotions will tell us about laughing, crying, fighting, or kissing,
and, perhaps, brain patterns associated with them; but it will have nothing more
to add for those who believe that joy, sadness, anger, and love are not totally
reducible to our behavioral displays and bodily states. And that will leave us
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right in the midst of Mary and Sam’s debate over whether there is more to emo-
tions than our displays of them.

The second part of the utilitarian argument focused on our choices made
in response to preference “intensities.” Consider the case of an employer who
must choose between two equally qualified employees to promote. Let us assume
that everything about their contributions to the firm, their length of service, per-
sonal financial needs, and so forth, is the same, and that the employer favors
neither one on purely personal grounds. He summons both employees to his
office for separate conversations. The first is an impassive type who allows that
he would be pleased to be promoted. The second, on the other hand, effusively
tells the employer how long he has hoped for the promotion, how he and his fam-
ily have discussed it many times. The employer promotes the second employee
and later explains to a friend that he did so because “it meant so much more”
to the second.

Next consider the case of a politician who must decide whether to demol-
ish a block of old houses to make room for a new library. The residents of the
houses are old and feeble, and the sponsors of the library are young and quite
vocal. The politician studies the matter and finds that the case for either side is
equally compelling. Then delegates from both sides visit him. The old are so
weak that it is all they can do to speak, but the young forcefully plead their case
and indicate how grateful they will be if he decides in their favor. The politician
finds it politically expedient to favor the young.

Those who believe in the interpersonal comparison of utilities will grant
that the two cases have been correctly described: The employer weighed the util-
ities of his two employees; the politician simply responded to political pressure.
But to those who are skeptical about interpersonal comparisons of utility, the
difference between the two cases will appear chimerical. In both cases, they will
argue, the decision maker is simply behaving in accordance with cultural condi-
tioning to respond in certain ways to the actions of others; the second employee’s
effusiveness is just as much a form of pressure as the political activists’. Both
forms of behavior are intended to manipulate the persons at whom they are
directed. Thus the claim that we make interpersonal comparisons of utility in
making our everyday social choices has no substance for we merely respond to
pressures in making these choices.

Let us turn from this general philosophical debate, which is likely to re-
main unresolved for some time, to examine the more technical aspects of inter-
personal comparisons of utility. It will be useful for us to distinguish interper-
sonal comparisons of utility levels from interpersonal comparisons of utility
increments. Mary’s resentment of the utilitarian choice that favored Sam’s pref-
erences was based on her current utility level being lower than Sam’s. Despite
the greater overall utility gains to be obtained from going to the mountains, she
felt raising her utility level should be given priority. Social planners influenced
by Rawls would also want to compare the utility levels of various citizens in or-
der to identify the worst off. On the other hand, those concerned with how much
additional utility one prospect affords in comparison with another are concerned
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with utility increments. Sam’s case for going to the mountains was based on com-
paring the incremental utility it gave him with that yielded by the other alterna-
tives. So long as we rank alternatives by simply asking which one yields more
utility, we are concerned with utility increments rather than utility levels.

The utilitarian SWF produced by Harsanyi’s theorem—call it H —deals
with incremental utilities and ignores utility levels. To see this, recall that H
ranks a prospect x above another y just in case the sum of the citizens’ utilities
for x is greater than that for y. That numerical relationship will be preserved if
we add the same number to x and y. Indeed, it will be preserved if we add differ-
ent numbers to the individual citizens’ utilities for x and y, so long as we add
the same numbers to their utilities for both x and y. Adding these numbers is
tantamount to changing the zero points or origins of the citizens’ utility scales.
These are the reference points by which utility levels can be measured. Conse-
quently, adding different numbers to the scales of different citizens is to shift
their origins independently and, hence, to shift independently the basis for mea-
suring their utility levels. But shifts of origins, whether in concert or indepen-
dently, do not register with H at all. Thus it neither responds to individual utility
levels nor presupposes interpersonal comparisons of them.

On the other hand, H does respond to changes in the units used to measure
individual utility increments. Mary hoped to use this to turn the tables on Sam.
She tried to force him to use a 0 to 100 scale (with 100 units) while she used
a 0 to 1,000 scale. In effect, she wanted to multiply her original scale by one
number (10) while multiplying Sam’s by another (1). Since this would place a
different item at the 1 spot on her scale, it would change the item that marks
the unit of her scale.

We fix the origin of a utility scale when we fix its O point; we fix its unit
when we fix its 1 point. As we have just seen, we change the origin of a scale
when we add the same number to every value on the scale, and we change its
unit when we multiply each value by the same positive number. It follows that
an arbitrary positive linear transformation may shift both the origin and unit of
a scale. A social choice method that responded to any (nonidentical) positive lin-
ear transformation of a citizen’s utility scale would thus respond to both utility
levels and utility increments. The following SWF, G, is an illustrative example.
G ranks x above y if and only if (1) the utility level of the best-off person in x
is greater than that of the best-off person in y, or (2) (in case x and y tie according
to (1)) the total utility afforded by x exceeds that afforded by y. In case x and
y tie on both counts, G ranks them as socially indifferent.

All the social choice methods we have discussed so far respond only to
changes in utility scales that alter the positions of the citizens with respect to one
another —either by moving the origin of one with respect to that of another or
by changing the ratio of the number of units of one to that of another. None of
thesc social choice methods responds to uniform changes affecting cvery
citizen’s scale in the same way. Thus we need not worry about whether we have
found the “real” origins or the “real” units for our citizens’ utility scales, so long
as we have properly calibrated their scales with respect to one another.
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Moreover, when using a social choice method that responds only to utility
levels, we need concern ourselves only with whether the origins of our citizens’
scales are properly aligned, that is, with the interpersonal comparison of utility
origins. On the other hand, when using a social choice device, such as Har-
sanyi’s H, which responds to utility increments, we must concentrate instead on
the proper alignment of the scale units, that is, on the interpersonal comparison
of utility units. Summing up, some social choice methods respond only to
changes in utility origins, these presuppose the interpersonal comparability of
utility origins. Other social choice methods respond to changes in utility units
and presuppose interpersonal comparisons of utility units. Finally, some respond
to both sorts of changes and, accordingly, presuppose both sorts of comparisons.

Returning to Mary and Sam, we now know that the problem of comparing
their utilities may be reduced in their case to the problem of comparing their
units. Mary believes she has a greater preference interval separating the sea-
shore and the mountains than Sam has. Thus she objects to their both being as-
signed O to 100 scales, which represents her interval as eleven units long when
Sam’s is represented as fourteen units long.

Mary bases her complaint on the following interpersonal comparison of
preferences:

Mary’s preference for the seashore over the mountains is stronger than
Sam’s for the mountains over the seashore.

This has the general form
A’s preference for x over y is greater than B’s for z over w.

Now if we can make a case for such comparisons, we can solve the problem
of the interpersonal comparison of utility units. For we can stipulate that

A’s preference for x over y is exactly as great as B’s for z over w

is to hold just in case neither one’s preference is greater than the other’s. Then
we can select the distance between two items on some citizen’s scale as our stan-
dard unit. Having done this we can rescale his utilities so that the item he most
prefers of the two selected marks his 1 point and the other his O point. Then we
can recalibrate everyone else’s scales by picking items that are separated by the
same preference interval and use them to mark their 0’s and 1's. Two items x
and y are separated on A’s scale by the same preference interval as z and w are
on B’s scale just in case A’s preference for x over y is exactly as great as B’s
for z over w.

However, now everything turns on our ability to compare one person’s
preference for one item over another with another person’s preference for one
item over another. In trying to come to grips with this, it is useful to turn to the
problem of comparing one and the same person’s preference for an item x over
y with his preference for z over w. It turns out that Von Neumann-Morgenstern
utility theory already provides a basis for such comparisons. For a pcrson marks
a greater prefercnce interval between x and y than he does between z and w just
in case u(x)—u(y)>u(z) —u(w). But that in turn holds if and only if
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u(x)+u(w)>u(z)+u(y). That holds—~as you can show in exercise 4 —if and
only if the person prefers the lottery L to L', where

L =L(1/72, L(u(x), B, W), L(u(w), B, W))
L' =L(1/2, L(u(z), B, W), Lw(y), B, W)).

We now have placed the problem of the intrapersonal comparison of
preference strengths on as firm a basis as that of utility theory. Unfortunately,
there seems to be little hope for doing this for interpersonal comparisons. We
cannot extend our lottery trick to the interpersonal case, because it presupposes
that one and the same agent is choosing between lotteries. What is more, we can
draw the interpersonal comparisons however we wish without affecting the in-
trapersonal ones. That is because no matter which positive linear transformation
we use to draw interpersonal comparisons and convert one person’s u-scale into
his new u ' -scale, u(x) — u(y) >u(z) —u(w) holds if and only if u’ (x) —u ' (y)
>u’'(z)—u'(w) does.

Thus we must take “A’s preference for x over y is greater than B’s for z
over w” as a primitive notion that cannot be explicated in terms of our single-
person utility theory. As we have indicated, we can use it to make enough inter-
personal comparisons of preference to allow us to compare the utility units of
different agents. Having compared their units, we can derive new interpersonal
comparisons of preferences and check these for consistency with our initial judg-
ments. To see how this works, suppose Mary and Sam have ranked a, b, c, d,
e, and f and all lotteries constructed from them on 0 to 100 scales.

0 10 11 15 20 30 35 88 100
Mary a b ¢ d e f
Sam f d b c e

Now suppose we take Sam’s preference for b over d as our standard unit. Also
suppose we decide that Mary’s preference for the lottery L(1/2, ¢, b) over b is
exactly as great as Sam’s for b over d. That means that, according to the scales
given above, 5 units of Sam’s is actually the same as half a unit of Mary’s. Sup-
pose that to reflect this we transform Mary’s scale by multiplying it by 10. Having
done this, the distance on her scale between e and f is now 650 standard units
whereas the distance between b and ¢ on Sam’s scale remains 85 standard units.
An immediate consequence of this is that Mary’s preference for fover e is greater
than Sam’s for e over b. If this consequence agrees with our independent compar-
isons of their preferences, our rescaling is confirmed. On the other hand, if it
fails to agree with our comparisons, the comparison by which we standardized
the two scales is inconsistent with our new one. In this case we must try to bring
our comparisons in line with each other. If doing so happens to be very difficult
or impossible, we should conclude that we do not know enough about Sam and
Mary to compare their preference intensities and give up our attempt.
Although our procedure prevents us from using totally blind and irrespon-
sible interpersonal comparisons of utility units, it makes sense only if it makes
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sense to compare the preference intensities of different persons in the first place.
If you are skeptical about that, nothing we have done will be of much assurance.
One might try to respond to you by proposing links between interpersonal com-
parisons of preference intensities and overt behavior just as we forged a link be-
tween intrapersonal comparisons and choices between lotteries. However, as
our parable illustrated, behavior is not always a reliable indicator of preference
intensities. Thus the problem of the interpersonal comparison of utilities remains
unresolved, and that is how we will leave it here.

PROBLEMS

1. Prove that if x yields more total utility than y, it continues to do so if we add
different numbers to the individual citizens’ utilities for x and y, so long as
we add the same numbers to both x and y.

2. Show that the SWF G responds to both changes of origins and changes of
units.

3. Explain why when we are concerned only with comparing the utility units
of different persons, we can select any two items on any citizen’s scale to
serve as our standard unit and any other two separated by the same prefer-
ence interval on each other citizen’s scale to serve as his unit.

4. Calculate the expected utilities for L and L’ and show that L is preferred to
L’ if and only if u(x)—u(y)>u(z) —u(w).

5. Take Mary’s preference for ¢ over b as the standard unit, assume that her
preference for ¢ over b is exactly as great as Sam’s for e over ¢, and trans-
form his utility scale to bring it in line with Mary’s.

6-5. References

An excellent treatment of most of the matters touched on in this chapter is to
be found in Sen. Arrow is also valuable and contains the first proof of Arrow’s
theorem. Luce and Raiffa also cover most of the material of this chapter. Smart
and Williams is a fine introduction to utilitarianism and its non-decision theoretic
problems. For Harsanyi’s theorem see Fishburn, Harsanyi, and Resnik. Har-
sanyi, Sen, and Weirich are good sources for material on the interpersonal com-
parison of utility.
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