UNIVERSIDAD DE CHILE

Escuela de Gobierno y Gestión Pública

Primer Semestre 2009

Matemáticas I * PRUEBA GLOBAL

Una solución

- 1. Una empresa decide hacer un estudio de la gente fumadora que hay entre sus empleados. Para ello encuestan a un grupo de 233 personas, de las que 108 son hombres, y 125 mujeres. De las 233 personas, se obtiene que 123 son fumadores y 110 son no fumadores. De los fumadores 65 son hombres, y 58 mujeres.
 - a) Construya y complete la tabla de contingencia, donde las columnas están formadas por las opciones: Hombre / Mujer, y en las filas: Fuma / No fuma

Solución: La tabla debe quedar como:

	Hombres	Mujeres	Total
Fuman	65	58	123
No fuman	43	67	110
Total	108	125	233

b) Indique el cardinal del evento: ser mujer o fumador.

Solución: La cardinalidad del evento está dada por:

 $\sharp(\text{ser mujer}) + \sharp(\text{ser fumador}) - \sharp(\text{ser mujer y fumador}) = 125 + 123 - 58 = 190.$

Calcule el valor de x que verifique la inecuación:

$$\left| \frac{2x+6}{x-3} \right| > 3.$$

Solución: Como |x| > a implica x > a o x < -a, tenemos 2 casos:

i)
$$\frac{2x+6}{x-3} > 3 \to \frac{2x+6}{x-3} - 3 > 0 \to \frac{2x+6-3x+9}{x-3} > 0 \to \frac{15-x}{x-3} > 0$$

cuya solución es $S_1 =]3, 15[$, y

ii)
$$\frac{2x+6}{x-3} < -3 \to \frac{2x+6}{x-3} + 3 < 0 \to \frac{2x+6+3x-9}{x-3} < 0 \to \frac{5x-3}{x-3} < 0$$

cuya solución es $S_2 = \frac{3}{5}, 3$ [.

Por tanto, la solución es $S = S_1 \cup S_2 = \frac{3}{5}, 3[\cup 3, 15[=\frac{3}{5}, 15[-\{3\}.$

Considere las funciones: $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^ g: \mathbb{R}^- \longrightarrow]-\infty, -2[$ $x \mapsto -x^2$

Encuentre:

 $(q \circ f)^{-1}(x)$

Solución: Primero, tenemos $(g \circ f)(x) = g(f(x)) = g(-x^2) = -x^2 - 2$.

Despejando luego x de $y=-x^2-2$, tenemos $x=\sqrt{-y-2}$. Por tanto, $(g \circ f)^{-1}(x)=\sqrt{-x-2}$.

b)
$$(f^{-1} \circ g^{-1})(x)$$
.

Solución: Para empezar, hallamos
$$f^{-1}$$
 y g^{-1} : $y = -x^2 \rightarrow x = \sqrt{-y}$; $y = x - 2 \rightarrow x = y + 2$. Ahora encomtramos la composición: $(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(x+2) = \sqrt{-(x+2)} = \sqrt{-x-2}$.

c) Compare las funciones encontradas. ¿Puede comentar algo?

Solución: A primera vista, las expresiones encontradas coinciden. En realidad, es una propiedad que relaciona composición con inversa: $f^{-1} \circ g^{-1} = (g \circ f)^{-1}$.

4. a) Sea A matriz tal que $A^2 = I$. Se define: $B = \frac{1}{2}(I + A)$. Pruebe usando las propiedades de matrices, que $B^2 = B$.

Solución: Para calcular B^2 tenemos:

$$B^2 = B \cdot B = (\frac{1}{2}(I+A))^2 = \frac{1}{4}(I^2 + I \cdot A + A \cdot I + A^2)$$

$$= \frac{1}{4}(I + A + A + I) = \frac{1}{4}(2I + 2A) = \frac{1}{2}(I + A) = B$$

b) Resuelva el siguiente sistema:

$$x_1 + 2x_2 + x_4 = 8$$

$$x_2 - x_3 = 2$$

$$2x_1 + 2x_2 + x_3 = 11$$

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 11$$

Solución: Hallamos la f. e. r. de la matriz asociada:

$$\begin{pmatrix}
1 & 2 & 0 & 1 & | & 8 \\
0 & 1 & -1 & 0 & | & 2 \\
2 & 2 & 1 & 0 & | & 11 \\
1 & 2 & 3 & 4 & | & 11
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & 1 & | & 8 \\
0 & 1 & -1 & 0 & | & 2 \\
0 & -2 & 1 & -2 & | & -5 \\
0 & 0 & 3 & 3 & | & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & 1 & | & 8 \\
0 & 1 & -1 & 0 & | & 2 \\
0 & 0 & 1 & 1 & | & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 2 & 0 & 1 & | & 8 \\
0 & 1 & -1 & 0 & | & 2 \\
0 & 0 & 1 & 2 & | & 1 \\
0 & 0 & 0 & 1 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & 1 & | & 4 \\
0 & 1 & 0 & 2 & | & 3 \\
0 & 0 & 1 & 2 & | & 1 \\
0 & 0 & 0 & 1 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 2 \\
0 & 1 & 0 & 0 & | & 2 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 0 & 1 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 2 \\
0 & 1 & 0 & 0 & | & 2 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 0 & 1 & | & 0
\end{pmatrix}$$

$$\xrightarrow{x_1 = 2, \\ x_2 = 3, \\ \vdots \\ x_3 = 1, \\ x_4 = 0.$$