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SERIES EDITOR’S INTRODUCTION

Invented more than 200 years ago, apparently independently by the German
mathematician Carl Friedrich Gauss and the French mathematician Adrien-
Marie Legendre, the method of least squares occupies a central place in statisti-
cal methods. Linear least squares regression not only is very widely employed
in research but also furnishes a basis for much of applied statistics. Many
statistical models — generalized linear models, linear and generalized linear
mixed-effects models, survival regression models, and linear structural equation
models, to name a few of the more prominent — represent direct generaliza-
tions of linear regression; and computation for statistical models often involves
least squares fitting — for example, the use of iterated weighted least squares
to compute maximum likelihood estimates for generalized linear models. Both
for its direct application and for its many generalizations, a sound background
in linear least squares regression is fundamental to the study of statistics.

In Applied Regression, Colin and Michael Lewis-Beck provide a thorough
primer in linear least squares regression, introducing the method from first prin-
ciples. They attend to practical details of regression analysis; to the statistical
model underlying inference in linear regression and to violations of the assump-
tions of the model; and — most important — to the interpretation of results and
the interplay between statistical modeling and the substance of social research.

There is clearly a need for a brief, accessible, and nontechnical treatment
of regression analysis, and the first edition of this monograph was one of
the most widely read in the QASS series. I expect that this new, expanded,
and extensively revised edition will be similarly well received.

On a personal note, I am particularly pleased to be able to assist in the
publication of this monograph because I have known Michael Lewis-Beck
since we were both graduate students at the University of Michigan many
years ago, and I have subsequently had the pleasure of becoming acquainted
with his son, Colin.

—John Fox
Series Editor

ix



PREFACE

In this second edition of Applied Regression: An Introduction, we maintain
- our firm commitment to the method of ordinary least squares (OLS). We are
* not alone in our defense of OLS. Peter Kennedy (2008), author of a leading
. econometrics text, observed the following: “The central role of the OLS esti-
" mator in the econometrician’s catalog is that of a standard against which all
* other estimators are compared. The reason for this is that the OLS estimator
is extraordinarily popular” (p. 43). This popularity was recently affirmed in a
- methodological content analysis of the articles in the three leading general
_ political science journals, with the finding that “OLS is by far the most popu-
i lar method” (Krueger & Lewis-Beck, 2008, p. 3). This is not surprising, since
. OLS is the analytic tool of the classical linear regression model.

As Jan Kmenta (1997), author of our favorite econometrics book,
- reminds us, “The need for familiarity with the basic principles of statistical
: inference and with the fundamentals of econometrics has-not dimin-
¢ ished. ... Most econometric problems can be characterized as situations in
" which some of the basic assumptions of the classical regression model are
* violated” (pp. v—vi). In our monograph, we pay special attention to these
" basic regression assumptions. Also, in the writing, we are inspired again by
* Kmenta (1997) and his “philosophy of making everything as simple and
- clear as possible” (p. vii). It is our hope that readers agree that we have
. realized this goal. Indeed, if readers are interested in further analyzing or
_ replicating the results presented in this monograph, the datasets are avajl-
. able for download through the SAGE website.
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CHAPTER 1. BIVARIATE REGRESSION:
FITTING A STRAIGHT LINE

Social researchers often inquire about the relationship between two vari-
ables. Numerous examples come to mind. Do men participate more in
politics than women? Is the working class more liberal thau the middle
class? Are Democratic members of Congress bigger spenders of the tax-
payer’s dollar than Republicans? Are changes in the unemployment rate
associated with changes in the president’s popularity at the polls? These are
specific instances of the common query, “What is the relationship between

~ variable x and variable y?” One answer comes from bivariate regression, a

straightforward technique that involves fitting a line to a scatter of points.

Exact Versus Inexact Relationships

- Two variables, x and y, may be related to each other exactly or inexactly. In

the physical sciences, variables frequently have an exact relationship to
each other. The simplest such relationship between an independent variable
(the “cause”), labeled x, and a dependent variable (the “effect”), labeled y,
is a straight line, expressed in the formula

y=b0+b1x

. where the values of the coefficients, b, and b, determine, respectively, the
" precise height and steepness of the line. Thus, the coefficient b, is referred
~ to as the infercept, and the coefficient b, is referred to as the slope. The

hypothetical data in Table 1.1, for example, indicate that y is linearly related
to x by the following equation:

y=542

* This straight line is fitted to these data in Figure 1.1a. we note that for each

observation on x, one and only one y value is possible. When, for instance,

" . xequals 1, y must equal 7. If x increases one unit in value, then y necessar-

ily increases by precisely two units. Hence, knowing the x score, the y score

© can be perfectly predicted. A real-world example with which we are all

familiar is

y=32+9/5x



where temperature in Fahrenheit (y) is-an exact linear function of tempera-
ture in Celsius (x).

In contrast, relationships between variables in the social sciences are
almost always inexact. Practically speaking, this inexactness comes from
different sources, such as faulty measures, missing observations, or improp-
erly stated relationships. The equation for a linear relationship between two
social science variables would be written, more realistically, as

y= bo + blx +e
where e is the error term, or disturbance as it is sometimes called, and rep-
resents this inexact component. A simple linear relationship for social sci-
ence data is pictured in Figure 1.1b. The equation for these data happens to
be the same as that for the data of Table 1.1, except for the addition of the

error term,

y=5+2x+e

Table 1.1 Perfect Linear Relationship Between x and y

y=5+2x
X y
0 5
1 7
2 9
3 1
4 13
5 15

The error term acknowledges that the prediction equation by itself, writ-
ten as follows,

9 =5+2x
does not perfectly predict y. (The )/>, read y-hat, distinguishes the predicted

y from the observed y.) Every y value does not fall exactly on the line.
Thus, with a given x, there may occur more than one y. For example, with

RIS
T

Figure 1.1 (a-b) Exact and Inexact Linear Relationships Between x and y
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x=1 (as in Figure 1.1b), we see there is a y = 7, as predicted, but also there
is a y = 11. In other words, knowing x, we do not always know .

This inexactness is not swprising. If, for instance, x = number of elec-
tions voted in (since the last presidential election), and y = campaign con-
tributions (in dollars), we would not expect everyone who voted in, say,
three elections to contribute exactly the same amount to campaigns. Still,
we would anticipate that someone voting three times would likely contrib-
ute more than someone voting one time and less than someone voting five
times. Put another way, a person’s campaign contribution is likely to be a
linear function of electoral participation, plus some etror, which is the situ-
ation described in Figure 1.1b.

The Least Squares Principle

In postulating relationships among social science variables, we commonly
assume linearity, as described above. For example, in the simple two vari-
able case, we assume the observations follow, or fall along, a straight line,
Of course, this assumption is not always correct. But its adoption, at least
as a starting point, might be justified on several grounds. First, numerous
real relationships have been found empirically to be essentially linear.
Second, the linear specification is generally the most parsimonious. Third,
our theory is often so weak that we are not at all sure what the nonlinear
specification would be. Fourth, inspection of the data themselves may fail
to suggest a clear alternative to the straight-line model. (All too frequently,
in a plot of x versus y, the figure may look like nothing so much as a large
chocolate chip cookie.) Below, we focus on establishing a linear relation-
ship between variables. Nevertheless, we should always be alert to the
possibility that a relationship is actually nonlinear, following a curve of
some sort. (In Chapter 4, we explicitly model the possibility that a relation-
ship is nonlinear.)

Given that we want to relate y to x with a straight line, the question arises
as to which, of all possible straight lines, we should choose. For the data
plotted in Figure 1.2a, we have sketched in freehand the line 1, defined by
this prediction equation:

A

y=Dbo +byx
One observes that the line does not predict perfectly; for example, the
vertical distance from Observation 1 to the line is four units. The predic-

tion error for this Observation 1 (e;), or any other observation, i, can be
calculated as follows:

prediction error = ¢; = observed —predicted = y; — )’)i

Figure 1.2 (a—d) Straight Lines Fit to the Same Scatter of Points

a.

Line 1

Observation 1
o}

+4

g

(Continued)




Figure 1.2 (Continued)

Line 3

Summing the prediction etror for all the observations would yield a total pre-
diction etror (TPE), fotal prediction error = E?=1 (% _94') =(+4-2+2)=4.

. Clearly, line 1 fits the data better than freehand line 2 (see Figure 1.2b),
 represented by the equation

5= bpg +bygx

(TPE for line 2 = 14.5). However, there are a vast number of straight lines
besides line 2 with which line 1 could be compared. Does line 1 reduce
prediction error to the minimum, or is there some other line that could do
better? Obviously, we cannot possibly evaluate all the freehand straight
lines that could be sketched to describe the relationship. Instead, we rely on
calculus to discover the values of by and b, which generate the line with
the lowest prediction error. (Interestingly, calculus was discovered indepen-

: dently by mathematicians Newton and Leibnitz, working at about the same

- time in the 1600s.)

Before presenting this solution, however, it is necessary to modify some-
what our notion of prediction error. Note that line 3 (see Figure 1.2c),

- indicated by the equation,

5= bos +byzx

provides a fit that is clearly less good than line 1. Nevertheless, the
TPE=0 for line 3. This example reveals that TPE is an inadequate measure
of error, because the positive errors cancel out the negative errors (here,
—4 -3+ 7= 0). One way to overcome this problem of opposite signs is to
square each prediction error. (Taking the absolute value of the prediction
errors is another option. However, it fails to account adequately for large
errors and is computationally unwieldy. Furthermore, it makes inference
problematic.) Our goal, then, becomes one of selecting the straight line that
minimizes the sum of the squares of the prediction errors (SSE):

SSE =3 et =i (3~ )

Through the use of calculus, it can be shown that this sum of squares is at a
minimum, or “least,” when the coefficients b and b, are calculated as follows:

bo =7~b1x

b o 2=t = %) (0~ )
| = —
T -%)




These values of b, and by are our “least squares” estimates, | (For a proof
of the least squares solution that does not require the use of calculus, see
the Appendix. The least squares method was initially arrived at by French
mathematician Legendre and German mathematician Gauss, both practic-
ing around 1800.)

Returning to the data used in the freehand examples (Figure 1.2a-c),
we now apply least squares to estimate the best-fitting line, as shown in
Figure 1.2d. A quick visual inspection shows that the least squates line is
closer to the data than our freehand lines. Moreover, we know mathematically
the property of least squares guarantees the prediction error is minimized, No
other line can improve upon the least squares fit. It should also be noted that
the sum of the error terms is 0 for the least squares fitted line. This is a math-
ematical consequence of the least squares criterion: 2. e =0. (The other
restriction implied by least squares is the values of the independent variable,
x, must be uncorrelated with the error terms: 2igex; =0. Using these two
constraints, an interested reader can algebraically derive the same least
squares solutions for the intercept and slope coefficients as shown above.)

At this point, it is appropriate to apply this least squares principle in a
research example. Suppose we are studying income differences among
local government employees in Riverview, a hypothetical medium-size
Midwestern city. Exploratory interviews Suggest a relationship between
income and education. Specifically, those employees with more formal
training appear to receive better pay. In an attempt to verify whether this is
50, we gather relevant data. (Note that the word data is a plural word. Thus,
it is correct to say, for example, “the data are gathered.” It is incorrect to
say that “the data is gathered.”)

The Data

We do not have the time or money to interview the entire population: all 320
employees on the city payroll. Therefore, we decide to interview a simple
random sample of 32, selected from the personnel list that the city clerk
kindly provided.? (The persomnel list totals 320 employees and defines the
population of city employees. Our sample from this population can be repre-
sented by a lowercase “n,” so we can write 71 = 32.) The data obtained on the
cutrent annual income (labeled variable y) and the number of years of formal
education (labeled variable x) of each respondent are given in Table 1.2,

The Scatterplot

From simply reading the numbers in Table 1.2, it is difficult to tell whether
there is a relationship between education (%) and income (y). However, the

picture becomes clearer when the data are arranged. ina ;catterplot. .In
Figure 1.3, education scores are plotted along the x-axis a.nd 111001@3 scosz.
along the y-axis. Every respondent is 1'eprese%1ted by a point, loca‘ted Wli?le
a perpendicular line from his or her x value intersects a perpendmt‘llar‘ ine
from his or her y value. (Recall from high school gGOI'l'letl'}" thz‘lt this is
called a Cartesian coordinate.) For example, the dotted lines in Figure 1.3
fix the position of Respondent 3, who has an income of $47,034 and 10
years of education.

Figure 1.3  Scatterplot of Education and Income
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Visual inspection of this scatterplot suggests tl}g relgtionship‘is essen-
tially linear. That is, the points huddle aroupd a rising line that is easy to
imagine, with more years of education leading to more dollars of income.
Given the actual data, we can write the model as

y‘.=b0 +b1xl-+ei i=1,...,32
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- Table 1.2  Data on Education and Income

Education (jn years)

~ Income (in dollars)

Respondent x
1 Y
5 8 26,430
3 8 37,449
A 10 34,182
5 10 25,479
p 10 47,034
; 12 37,656
g E 50,265
o by 46,488
" 14 32,631
o 14 49,968
13 14 64,926
1 15 37,302
is 16 38,586
6 16 55,878
17 i: 59,499
18 55,782
15 is 63,471
20 60,068
’l 18 54,840
2 18 62,466
’ 19 56,019
24 ' ;3 65,142
05 . 56,343
0% ” 54,672
- i 61,629
o o 82,726
”9 ” 71,202
20 ” 73,542
a1 ” 56,322
1 70,044
24 79,227
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where y = respondent’s annual income (in dollars), x = respondent’s formal
education (in years), by = intercept, by = slope, and e = error.
Fitting this equation by least squares yields

$=11,321+2,651x

which indicates the straight line that best fits this scatter of points (see
Figure 1.4). This prediction equation is commonly referred to as a bivariate
regression equation (or a simple regression). Furthermore, we say depen-
dent (or outcome) varjable y has been “regressed” on independent (or
explanatory) variable x. And we say that this regression equation has been
estimated using ordinary least squares (OLS for short).

The Slope

Interpretation of the estimates is uncomplicated. Let us first consider the
estimate of the slope, b;. The slope estimate indicates the average change
in y associated with a unit change in x. In our Riverview example, the
slope estimate, 2,651, says that a 1-year increase in an employee’s amount
of formal education is associated with an average annual income increase
of $2,651. Put another way, we expect an employee with, say, 15 years of
education to have an income that is $2,651 more than an employee having
only 14 years of education. We can see how the slope dictates the change
in y for a unit change in x by studying Figure 1.4, which locates the
expected values of y, given x = 14 and x = 15, respectively. (It is also
important to recognize that the slope is a fixed value. That is, a I-year
increase in education has the same marginal effect on income for all
values of x.)>
Note that the slope tells us only the average change in y that accompa-
nies a unit change in x. The relationship between social science variables is
inexact; that is, there is always error. For instance, we would not suppose
that an additional year of education for any particular Riverview employee
would be associated with an income rise of exactly $2,651. However, when
we look at a large number of employees who have managed to acquire this
extra year of schooling, the average of their individual income gains would
be about $2,651.
The slope estimate suggests the average change in y caused by a unit
change in x. Of course, this causal language may be inappropriate. The
regression of y on x might support your notion of the causal process, but it
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Figure 1.4 The Regression Line for the Income and Education Data
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cannot establish it. To appreciate this critical point, realize that it would be
a simple matter to apply OLS to the following regression equation:

where now x = the dependent variable, and y = the independent variable.
Obviously, such a computational exercise would not suddenly reverse the
causal order of x and y in the real world. The correct causal ordering of the
variables is determined outside the estimation procedure, In practice, it is
based on theoretical considerations, research design, good judgment, and
past research. With regard to our Riverview example, the actual causal
relationship of these variables does seem to be reflected in our original
model; that is, shifts in education appear likely to cause shifts in income,
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but the view that changes in income cause changes in formal years of edu-
cation is implausible, at least in this instance. Thus, it is only somewhat
adventuresome to conclude that a 1-year increase in formal education
causes an increase in income of $2,651, on average. (If the researcher
favors a more cautious use of language here, he or she might substitute the
phrase leads to for the word causes.)

The Intercept

The intercept, by, is so called because it indicates the point where the
regression line “intercepts” the y-axis. It estimates the average value of y
when x equals zero. Thus, in our Riverview example, the intercept estimate
suggests that the expected income for someone with no formal education
would be $11,321. This particular estimate highlights worthwhile cautions
to observe when interpreting the intercept. First, one should be leery of
making a prediction for y based on an x value beyond the range of the data.
In this example, the lowest level of educational attainment is eight years;
therefore, it is risky to extrapolate to the income of someone with zero
years of education. Quite literally, we would be generalizing beyond the
realm of our experience, and so may be way off the mark. (For instance, the
relationship between education and income could change to a steep down-
ward curve for individuals with less than 8 years of education.) If we are
actually interested in those with no education, then we would do better to
gather data on them.

A second problem may arise if the intercept has a negative value. Then,
when x = 0, the predicted y would necessarily equal the negative value.
Often, however, in the real world it is impossible to have a score on y that
is below zero; for example, a Riverview employee could not receive a
negative income. In such cases, the intercept is “nonsense,” if taken liter-
ally. Its utility would be restricted to ensuring mathematically that a predic-
tion “comes out right.” It is a constant that must always be added on to the
slope component, “byx,” for y to be properly predicted. Drawing on an
analogy from the economics of the firm, the intercept represents a “fixed
cost” that must be included along with the “varying costs” determined by
other factors, in order to calculate “total cost.”

Prediction

Knowing the intercept and the slope, we can predict y for a given x value.
For instance, if we encounter a Riverview ¢ity employee with 10 years of
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schooling, then we would predict his or her income would be $37,831, as
the following calculations show:

$=11,321+2,651x
=11,321+2,651(10)
=11,321+26,510

$=37,831

In our research, we might be primarily interested in prediction, rather than
explanation. That is, we may not be directly concerned with identifying the
variables that cause the dependent variable under study; instead, we may
want to locate the variables that will allow us to make accurate guesses
about the value of the dependent variable. For instance, in studying elec-
tions, we may simply want to predict winning candidates, not caring much
about why they win. Of course, predictive models are not completely dis-
tinct from explanatory models. A good explanatory model may predict
fairly well. Similarly, an accurate predictive model is often based on causal
vatiables, or their surrogates. In developing a regression modél, the
research question dictates whether one emphasizes prediction or explana-
tion. It is safe to conclude that, generally, social scientists stress explanation
rather than prediction.

Assessing Explanatory Power: The R?

We want to know how powerful an explanation (or prediction) our regres-
sion model provides. More technically, how well does the regression equa-
tion account for variation in the dependent variable? A preliminary
judgment comes from visual inspection of the scatterplot. The closer the
regression line to the points, the better the equation “fits” the data. While
such “eyeballing” is an essential first step in determining the “goodness of
fit” of a model, we obviously need a more formal measure, which the coef-
Jicient of determination (R?) gives us.

We begin our discussion by considering the problem of predicting y. If
we only have observations on y, then the best prediction for y is generally
the estimated mean of y. Obviously, guessing this average score for each
case will result in many poor predictions. However, knowing the values of
x, our predictive power can be improved, provided that x is related to y. The
question, then, is how much does this knowledge of x improve our predic-
tion of 37

Figure 1.5 is a scatterplot, with a regression line fitted to the points.
Consider prediction of a specific case, ¥1- Ignoring the x score, the best
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guess for the y score would be the mean, y. There is a good deal of ervor in
this guess, as indicated by the deviation of the actual score ‘ﬁ'om thc_a mearn,
¥, — . However, by using our knowledge of the relationship of X t'o 9, 1'we
can improve this prediction. For the partl(n}\lar va'lue,'xl, the regs ession me_
predicts the dependent variable is equal to ¥y, which is a clear improvement
over the previous guess. Thus, the regression line has managed tg agcougt
for some of the deviation of this observation from the mean; spz.am'ﬁca'lly, it
“explains” the portion, 91 —¥. Nevertheless, (/)\ur regressi'on.pre'dmtlol}‘ is not
perfect but rather is off by the quantity y —»; this de.vujttmn is left “unex-
plained” by the regression equation. In brief, the deviation of y; from the
mean can be grouped into the following components:

(3, — ) = total deviation of y; from themean, y
(ﬁl—i) = explained deviation of y, from y

O —91) =unexplained deviation of y from y

We can calculate these deviations for each observation in our study. If we
first square the deviations, then sum them, we obtain the complete compo-
nents of variation for the dependent variable:

PG ~%)* = totalsum of squared deviations (TSS)

Yy (3\11.~ 7)* = regression (explained) sum of squared deviations (RSS)

Y i — %;)* = error (unexplained) sum of squared deviations (ESS)
Expanding out the total sum of squared deviations term, we can derive

TSS =RSS + ESS

The TSS indicates the total variation in the dependen.t variable that we
would like to explain. This total variation can be divided into two parts: the
part accounted for by the regression equation (RSS) and the part the regres-
sion equation cannot account for, ESS. (We 1‘60?.11 that.tl_le least squares
procedure guarantees that this error componer%t i8 a't minimum.) Clegrly,_
the larger RSS is relative to TSS, the better. This notion forms the basis of

the R measure:

R?=RSS/TSS
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Figure 1.5 Components of Variation in y

The coefficient of determination, R?, indicates the linear explanatory
power of the bivariate regression model. It records the proportion of varia-
tion in the dependent variable “explained” or “accounted for” by the inde-
pendent variable. The possible values of the measure range from “+1” to
“0.” At the one extreme, when R? = 1, the independent variable completely
accounts for variation in the dependent variable. All observations fall on the
regression line, so knowing x enables the prediction of y without error.
Figure 1.6a provides an example where R? = 1. At the other extreme, when
R? = 0, the independent variable accounts for no linear variation in the
dependent variable. The knowledge of x is no help in predicting y, for the
two variables are totally independent of each other. Figure 1.6b gives an
example where R? = 0 (note that the slope of the line also equals zero).
Generally, R? falls between these two extremes. Then, the closer R? s to 1,

Figure 1.6 (a—¢) Examples of the Extreme Values of the R*
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R2=1

R?=0
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the better the fit of the regression line to the points, and the more variation
in y is explained by x. In practice, when evaluating a fitted model, what
constitutes a good R? very much depends on the discipline and type of data
being analyzed. There is no universal threshold for a meaningful R? value.
In the hard sciences, R? values above .90 are common, while in the social
sciences, an R? value of .30 could be of note, especially if the data are from
public opinion surveys. In our Riverview example, R* = .62. Thus, we
could say that education, the independent variable, accounts for an esti-
mated 62% of the variation in income, the dependent variable.

In regression analysis, we are virtually always pleased when the R? is
high, because it indicates we are accounting for a large portion of the
variation in the phenomenon under study. Furthermore, a very high R? (say
about .9) is almost essential if our predictions are to be accurate. (In prac-
tice, it is difficult to attain an R? of this magnitude. Thus, quantitative social
scientists are generally cautious in making predictions.) However, a sizable
R? does not necessarily mean we have a causal explanation for the depen-
dent variable; instead, we may have provided merely a statistical explana-
tion. In the Riverview case, suppose we regressed current income, 3, on
income of the previous year, y,.,. Our revised equation would be as follows:

y=b0+ blyt_1+e

The R? for this new equation could be quite large (above .9), but it would
not really tell us what causes income to vary; rather, it offers merely a track-
ing, a statistical explanation, The original equation, where education was
the independent variable, provides a more convincing causal explanation of
income variation, despite the lower R? of .62.

Even if estimation yields an R? that is rather small (say below 2), disappoint-
ment need not be inevitable, for it can be informative. It may suggest that the
linear assumption of the R? is incorrect. If we tirn to the scatterplot, we might
discover that x and y actually have a close relationship, but it is nonlinear. For
instance, the curve (a parabola) formed by connecting the points in Figure 1.6¢
illustrates a perfect relationship between x and y (e.g., ¥ =x%), but R? = 0.
Suppose, however, that we rule out nonlinearity. Then, a low R? can still reveal
that x does help explain y but contributes a rather small amount to that explana-
tion. Finally, of course, an extremely low R? (near 0) offers very useful
information, for it implies that y has virtually no linear dependency on x.

A final point on the interpretation of R? deserves mention. Suppose we
estimate the same bivariate regression model for two samples from differ-
ent populations, labeled 1 and 2. (For example, we wish to compare the
income-education model from Riverview with the income-education model
from Flatburg.) The R? for Sample 1 could differ from the R2 for Sample 2,

vy
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even though the parameter estimates for each were exactly t}m same. 1t
simply implies that the structural relationship between the variables is the

- same (bg; = bgy; b1y = i), but it is less predictable in Population 2. In other
" words, the same equation provides the best possible fit for botl? samples
: but, in the second instance, is less satisfactory as a total explanation of the

dependent variable. Visually, this is clear. We can see, in comparing Fi@re
1.7a and 1.7b, that the points are clustered more tightly around the regres-
sion line of Figure 1.7a, indicating the model fits those data 1‘)etter. Thu§,
the independent variable, x, appears a more important determinant of y in
Sample 1 than in Sample 2.

. Figure 1.7 (a-b) Tight Fit Versus Loose Fit of a Regression Line

R%>R:
bo1:b02
b11=b1z

Sample 2 (loose fit)

a. Sample 1 (tight fit) b.

R? Versus r

. . . 2 . .
The relationship between the coefficient of determination, R#, and the esti-
mate of the correlation coefficient, 7; is straightforward:

R2=’,2

This equality suggests a possible problem with 7; WhiCl'l i‘s a commonly
used measure of the strength and direction of a linear association, developed
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by Karl Pearson.? That is, » can inflate the importance of the relationship
between x and y. For instance, a correlation of .5 implies to the unwary
reader that one half of y is being explained by x, since a perfect correlation
is 1.0. Actually, though, we know that the r = .5 means that x explains only
25% of the variation in y (because 72 = .25), which leaves fully three fourths
of the variation in y unaccounted for. (The r will equal the R? only at
the extremes, when =+ 1 or 0,) By relying on r rather than R?, the impact
of x on y can be made to seem much greater than it is. Hence, to assess
the strength of the relationship between the independent variable and the
dependent variable, the R? is the preferred measure.

Last, it should be noted there is a connection between  and the slope
coefficient, by, in the bivariate regression setting. We can estimate the
slope from the correlation coefficient between x and ¥ using the alterna-
tive formula

bl =I:\f}’

%
sx
Note that the correlation coefficient is standardized, with a range of
+] (perfect negative, or positive, linear association between x and ¥). Also,
if we first standardize x and y, the correlation coefficient will equal the
slope.® For instance if I'y=—30, we can say a one-unit standard deviation
increase in x will on average be associated with a —30 standard deviation
decrease for y. We are often interested, though, in making interpretations on
the scale of the original data. Multiplying Iy, by the ratio of the standard
deviation of y over the standard deviation of x will return to us the raw
unstandardized coefficient, b,, that we get from OLS.

Notes

i
- . . — c 1 X;
I. X, read x-bar, is an estimate of the sample mean, ¥ = it

n

2. Statistical tests for making inferences from a sample to a population, such as the
significance test, are based on a simple random sample (SRS). In our Riverview
example, we could select a sample of 32 by using a random-number generator
where the probability of selection is the same for all 320 employees. Practically
speaking, we might apply the Systematic Selection Procedure, which simply
means selecting the sample randomly from a list, This generally works well,
barring a random start that taps into a relevant cycle (e.g., every tenth person is
a manager).

3. Recall from high school algebra that slope is also defined as b= Rise(dy)
Run(Ax)

21

4. See especially his seminal papers that came out in the early 1900s, ir} Biometrica
(e.g., Pearson, 1913). One formula for the sample correlation coefficient between
xandyis

Iy =S /sxs),

where
8,y =covariance,, = ;h (% ;«f)l(yi =)
and
s, = standard deviation, = Z—L%;i)z
s, = standard deviation,, = &Llflyi;—y)z

5. A standardized variable (also known as a z-score) is computed by subh’actiflg‘ the
mean from each observation and dividing by the variable’s standard deviation.
-X

*i
For a sample, z; =
x



CHAPTER 2. BIVARIATE REGRESSION:
ASSUMPTIONS AND INFERENCES

Recall that the foregoing regression results from the Riverview study are
based on a sample of the city employees (2 = 32). Since we wish to make
accurate inferences about the actual population values of the intercept and
slope, this bivariate regression model should meet certain assumptions. For
the population, the bivariate regression model is

Yi=Byt Bix;tg;

where the Greek letters indicate it is the population equation, and we
have included the subscript, 7, which refers to the ith observation. With the
sample, we calculate

Yi=byt+byx;te;

To infer accurately the true population values, Bg and B, from these sample
values, by and by, we need to satisfy necessary conditions. Inspired by the
Gauss-Markov theorem, these assumptions affirm what can be called the
“classical linear regression model.” Different texts state these assumptions
in slightly different ways, the differences depending mostly on what the
author takes for granted. (For a useful review of these different statements,
see Larocca [2005].) We rely heavily on the fine econometric work of
Kimenta (1997, chaps. 7-10) for our formulation.

The Regression Assumptions

1. No specification error
a. y; is the dependent variable, x; the independent variable
b. No relevant independent variables have been excluded
c. No irrelevant independent variables have been included '
d. The form of the relationship between y; and x; is linear

2. No measurement error
a. The variables are quantitatively measured

b. The variables x; and y; are accurately measured

23
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3. Awell-behaved error term, &;
a, Zero mean: E(g;) =0
i, For each observation, the expected value of the error term is
zero. (We use the symbol E() for expected value, which, for a
random variable, is simply equal to its mean.)
b. Homoscedasticity: E (812 ) =g?
i. The variance of the error term is constant for all values of x;

¢. No autocorrelation: E(g;g;) = 0 (i #))
i. The error terms are uncorrelated

d. The error term is uncorrelated with the independent variable:
E(gx)=0

e. Normality
i. The error term, g, is normally distributed!

When Assumptions 1 to 3d are met, desirable estimators of the population
parameters, B, and B;, will be obtained; technically, they will be the “best
linear unbiased estimates,” BLUE. (An unbiased estimator correctly esti-
mates the population parameter, on average, i.e., E(b)) = f,.) For instance,
if we repeatedly draw samples from the population, each time recalculating

b, we would expect the average of all these b;’s to equal f;. If the normal-

. ity assumption (3e) also holds, they will still be the “best unbiased esti-
mates,” and we can carry out significance tests on them to determine how
likely it is that the population parameter values differ from zero. Below, we
consider each assumption in more detail.

The first assumption, absence of specification error, is critical. In sum, it
asserts that the theoretical model embodied in the equation is correct. That
is, x actually influences y and not vice versa. Furthermore, the functional
form of the relationship conforms to a straight line. Finally, no “causal”
variables have been improperly excluded or included. Let us examine the
Riverview example for specification error. Visual inspection of the shape of
the scatterplot (see Figure 1.3), along with the R? = 62, indicates that the
relationship is essentially linear. However, it seems likely that relevant
variables have been excluded, for factors besides education undoubtedly
influence income. These other variables should be identified and brought
into the equation, both to provide a more complete explanation and to
assess the impact of education after additional forces are taken into account.
(We take up this task in the next chapter.) The remaining aspect of specifi-
cation error, inclusion of an irrelevant variable, argues that education might

-
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not really be associated with income. One way to evaluate this possibility
is to perform a test for statistical significance. Of course, that would not be
a sufficient test. In certain cases, strong theory may dictate the presence of
the variable, even in the face of a weak test result.

The need for the second assumption, no measurement errog, is self
evident. If our variables are measured inaccurately, then our estimates are
likely to be inaccurate. (This calls to mind the old adage “garbage in, gar-
bage out.”) For instance, with the Riverview case, suppose that in the mea-
surement of the education variable, the respondents tended to report
the number of years of schooling they would like to have had, rather than
the number of years of schooling they actually had. If we were (o use such
a variable to indicate actual years of schooling, it would contain error, and
the resulting regression coefficient would not accurately reflect the impact
of actual education on income. When the analyst cannot safely rule out the
possibility of measurement error, then the magnitude of the estimation
problem depends on the nature and location of the error. If only the depen-
dent variable is measured with error, then the least squares estimates should
remain unbiased, at least if the error is “random.” However, if the indepen-
dent variable is measured with error, then the least squares estimates will be
biased. In this circumstance, we have an “errors-in-variables” model, and
solutions are problematic. The most oft-cited approach is insgumental vari-
ables estimation, but it cannot promise the restoration of unbiased param-
eter estimates (although the property of consistency might be achieved).

The third set of assumptions involves the error term. The initial one, a
zero mean, is of little concern because, regardless, the least squares esti-
mate of the slope is unchanged. It is true that, if this assumption is not met,
the intercept estimate will be biased. Nevertheless, since the intercept esti-
mate is often of secondary interest in social science research, this potential
source of bias is rather unimportant.

Violating the assumption of homoscedasticity is more serious. While the
least squares estimates continue to be unbiased, the significance tests and
confidence intervals will be wrong. Let us examine Figure 1.4 from the
Riverview study. Homoscedasticity would appear to be present, because
the error variance appears more or less constant across the values of x; that
is, the points snuggle in a band of roughly equal width above and below the
regression line. If; instead, the points fanned out from the regression line as
the value of x increased, the assumption would not hold, and a condition of
heteroscedasticity would prevail. One recommended solution for this con-
dition is a weighted least squares procedure, (Diagnosis of heteroscedastic-
ity is discussed further when the analysis of residuals is considered.)

The assumption of no autocorrelation means that the error correspond-
ing to an observation is not correlated with any of the errors for the other
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observations. When autocorrelation is present, the least squares parameter
estimates are still unbiased; however, the significance tests and confidence
intervals are invalid. Commonly, significance tests will be much more
likely to indicate that a coefficient is statistically significant when in fact
it is not. Autocorrelation more frequently appears with time-series vari-
ables (repeated observations on the same unit through time) than with
cross-sectional variables (unique observations on different units at the
same point in time, as with our Riverview study). With time-series data,
the no autocorrelation assumption requires that error for an observation at
an earlier time is not related to errors for observations at a later time. If we
conceive of the error term in the equation as, in part, a summary of those
explanatory variables that have been left out of the regression model, then
no autocorrelation implies that those forces influencing y in, say, Year 1 are
independent of those forces influencing y in Year 2.2 This assumption, it
should be obvious, is often untenable. (The special problems of time-series
analysis have generated an extensive literature; for a good introduction,
see Enders, 2010.)

The next assumption, that the independent variable is uncorrelated with
the error term, can be difficult to meet in nonexperimental research.
Typically, we cannot freely set the values of x like an experimenter in a lab
but rather must merely observe values of x as they present themselves in
society. (That is to say, the x values are “stochastic” rather than “non-
stochastic.”) If this observed nonexperimental x variable is related to the
error term, then the least squares parameter estimates will be biased. The
simplest way to test for this violation is to evaluate the error term as a col-
lection of excluded explanatory variables, each of which might be corre-
lated with x. Thus, in the Riverview case, the error term would include the
determinants of income other than education, such as gender of the respon-~
dent. If the explanatory variable of education is correlated with the explan-
atory variable of gender, but this latter variable is excluded from the
equation, then the slope estimate for the education variable in the bivariate
regression will be biased. For example, suppose men have higher education
on average than women; then b; will be too large because the education
variable is allowed to account for some income variation that is actually the
product of gender differences. The obvious remedy, which we come to
employ, is the incorporation of the missing explanatory variables into the
model. (If, for some reason, an explanatory variable cannot be so incorpo-
rated, then we must trust the assumption that, as part of the error term, it is
uncorrelated with the independent variable actually in the model.)

The last assumption is the normal distribution of the error term. Since we
cannot observe the actual error terms (¢,), we have to inspect their estimates,
known as “residuals” (e;), to check this assumption.® There are graphical as
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well as statistical tests to determine if a variable conforms to a normal bell-
s'haped curve, with 95% of the observations falling within 2 standard devia-
th‘HS, plus or minus, of the mean. A visual inspection of a histogram is a
quick and simple check; however, it can be misleading as the shape is
affected by the scaling of the plot (c.g., changing the bin widths could
change the shape a good deal). A more rigorous graphical test is a normal
probability plot. The idea behind a normal probability plot is to compare the
samPle percentiles of the data (in this case, residuals) with theoretical per-
ce?ntlles from a standard normal distribution. If the data are normally dis-
tributed, the sample percentiles should match the theoretical percentiles—and
a scatte;plot of the two will have points that roughly follow a straight
line. With regard to the Riverview example, we can plot a histogram and
normal probability plot of the residuals side by side (Figure 2.1a-b). In

Figure 2.1 (a-b) Checking Normality of Residuals From Riverview
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Figure 2.1a, the histogram appears roughly normal. In Figure 2.1b, the
more formal probability plot gives a clearer picture. The residuals closely
track the line, so suggesting normality. Experience looking at different
probability plots will make it easier to diagnose violations of the normality
assumption.

For a rigorous statistical test, a common test available in most statistical
software programs is a Shapiro-Wilk test for normality.” The null hypothesis
is that the residuals are normally distributed. Running the test on the residu-
als from the Riverview example, we fail to reject the null hypothesis at the
.05 level since the p-value is quite large (p-value = .35 > .05). (More on
p-values and significance tests is coming up in the next section.) Thus, it
appears that Assumption 3e is satisfied. In practice, a combination of graph-
ical and statistical tests should be employed when testing for normality.

There is some disagreement in the statistical literature over how serious
violations of the regressions assumptions actually are. At one extreme,
some researchers interpret their regression analyses as if the assumptions
hold little practical importance. At the other extreme, some researchers
feel that violations of the assumptions can render the regression results
almost useless. Leamer and Leonard (1983), in a careful essay, remind us
of the fragility of regression estimates. Other analysts believe that the clas-
sical linear regression assumptions can be evaluated along a continuum
from 1 to 10, running from “not met at all” to “perfectly met” (Lewis-
Beck, 2004, p. 938).

In fact, some are more resistant to violation than others. The normality
assumption, for instance, can be ignored when the sample size is large
enougly, for then the Central-Limit Theorem can be invoked. (The Central-
Limit Theorem: indicates that the distribution of a sum of independent vari-
ables, which we can conceive of the error term as representing, approaches
normality as sample size increases, irrespective of the nature of the distribu-
tions in the population.) Other violations affect only the standard errors and
not unbiasedness. As an example, heteroscedasticity and autocorrelation
yield invalid standard errors, but the parameter estimates remain unbiased

(Long & Ervin, 2000). These violations, then, can be viewed as relatively
minor. By way of contrast, the presence of specification error, such as the
exclusion of a relevant variable, creates rather serious estimation problems
that can be relieved only by introduction of the omitted variable. Those who
wish to gain a fuller understanding of these assumption debates should con-
sult, in addition to the efforts just cited, the treatments available in standard
econometrics texts. Listing these books in order of increasing difficulty, we
would recommend Woolridge (2012), Kennedy (2008), and Kmenta (1997).
Furthermore, an outstanding text, by a leading sociologist, is Fox (2008).
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Confidence Intervals and Significance Tests

Because social science data invariably consist of samples, we worry
whether our regression coefficients actually have values of zero in the
population. Specifically, is the slope (or the intercept) estimate significantly
different from zero? (Of course, we could test whether the parameter esti-
mate was significantly different from some number other than zero; how-
ever, we generally do not know enough to propose such a specific value.)
Formally, we face two basic hypotheses: the null and an alternative. The
null hypothesis states that x is not linearly associated with y; therefore, the
slope is zero in the population. An alternative hypothesis states that x is

linearly associated with y; therefore, the slope is n0t zero in the population.
In summary, we have

Hy: B; =0 (null hypothesis)
Hy: By # 0 (alternative hypothesis)

To test these hypotheses, an interval can be constructed around the slope
estimate, b,. How do we know the distributional shape of b; to make a
precise interval? It can be shown that the slope estimate, b 1> can be reex-
pressed as a linear combination of the response variable, y. Because linear
combinations of normal variables are also normal, it follows that b, will
be normally distributed and centered at the true population value, B
(Figure 2.2).6

Relying on the Empirical Rule for normal distributions, we can now
construct a two-sided, 95% confidence interval around our slope estimate,
where z is the standard normal distribution:’

b tzg;sse(l)

If the value of zero does not fall within this interval, we reject the null
hypothesis and accept the alternative hypothesis, with 95% confidence.
Put another way, we could conclude that the slope, By, is significantly
different from zero, at an alpha .05 level. (The level of statistical Sig-
nificance associated with a particular confidence interval can be deter-
mined simply by subtracting the confidence level from unity, for
example, 1 —.95=.05.)

To apply this confidence interval, we must understand the terms of the
formula. These are easy enough. The term s.e.(b;) is an estimate of the
standard deviation of the slope estimate, b 1> and is commonly referred to as
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Figure 2.2 Distribution of the Slope Estimate, b,

f(b,)

Probability Density

the standard error. It is a useful measure of the dispersion of our slope
estimate. The formula for this standard error is

n =307 1 (n-2)
i (% ~% )2

S

se(b)=

e

' -x)

Expressing the formula as above reveals three important factors that deter-
mine the standard deviation of the slope. In the numerator, we have an
estimate of the standard deviation of the error term (s,), which can be seen
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as an average prediction error for the model. (We discuss this further
below.) Being in the numerator, as the prediction error increases, so does
the standard deviation of the slope estimate. In the denominator, we have
the sample size (1) as well as the variability of the independent variable, x.
Therefore, as the size of the denominator increases, the standard error will
decrease. One way to raise the denominator is to increase the sample size—
more observations provide a more precise estimate of the slope. Another
option is to increase the variability of the independent variable. If the x’s
are clustered together, adding an additional measurement will have a Jarger
pull on the slope than if observations are spread out across a range of val-
ues. If possible, when designing an experiment, a researcher should strive
to collect data on many different levels of the independent variable. This
will improve the reliability of the slope estimate.

Because s.e. (b)) is an estimate (we seldom actually know the true stan-
dard deviation of the slope), it is technically incorrect to use the normal
curve to construct a confidence interval for 8. Therefore, we replace the z
distribution with the ¢ distribution. Here we can use the ¢ distribution with
(n—2) degrees of freedom. (The ¢ distribution is quite similar to-the normal
distribution, especially as 1 becomes large, say greater than 30.) Statistical
tables for the ¢ distribution are available in many textbooks, and statistical
computing software will provide exact ¢ values.

The last component in the confidence interval formula is the subscript,
“.975.” This merely indicates that we are employing a 95% confidence interval
but with two sides. A two-sided test means that the hypothesis about the effect
of x on y is nondirectional; for example, the above alternative hypothesis, H 1>
is sustained if by is either significantly negative or significantly positive.

Suppose we now construct a two-sided 95% confidence interval around
the regression coefficients in our Riverview study. We have

$=11,321+2,651x
(6,123) (370)

where the figures in parentheses are the standard errors of the parameter
estimates. Given the sample size is 32,

th-2;975 = 1302,.975 = I30, 975 = 2.04

according to a ¢ table. Therefore, the two-sided 95% confidence interval
for B, is

bl + tn_2;'975 S.€. (bl) = 2,65]. + 2‘04(370) = (2,651 + 755)

Thus, we are 95% confident that the true value of the population slope, B1,
is between $1,896 and $3,406.8 Since the value of zero does not fall within
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the interval, we reject the null hypothesis. We conclude that the slope ) is
significantly different from zero, at the .05 level.

In the same fashion, we can construct a confidence interval for the inter-
cept, By Continuing the Riverview example,

Do £ty 5. 755-e. (bg) = 11,321 £ 2.04(6,123) = (11,321 + 12,491)

In this case, the two-sided 95% confidence band for the intercept does con-
tain zero. We fail to reject the null hypothesis and declare that the intercept,
By, is not significantly different from 0 at the .05 level. Graphically, this
means we fail to reject the possibility that the regression line cuts the origin.
However, as mentioned earlier, since there are no individuals with 0 years
of education, the intercept is not substantively interpretable.

Besides providing significance tests, confidence intervals also allow us to
present our parameter estimates as a range. In a bivariate regression equa-
tion, by is a point estimate; that is, it is a specific value. The confidence
band, in contrast, gives us an interval estimate, indicating that the slope in
the population, f;, lies within a range of values. We may well choose to
stress the interval estimate over the point estimate. For example, in our
Riverview study, the point estimate of f; is $2,651. This is our best guess,
but in reporting the results, we might prefer to say merely that a year
increase in education is associated with an increase of “more or less $2,651”
a year in income. Estimating a confidence interval permits us to formalize
this caution; we could assert, with 95% certainty, that a 1-year increase in
education is associated with an income increase from $1,896 to $3,406.

In the Riverview investigation, we have rejected, with 95% confidence,
the null hypothesis of no relationship between income and education. Still,
we know that there is a 5% chance we are wrong. If, in fact, the null
hypothesis is correct but we reject it, we commit a Zype I error. In an effort
to avoid Type I error, we could employ a 99% confidence interval, which
broadens the acceptance region for the null hypothesis. The formula for a
two-sided 99% confidence interval for 8 is as follows:

by, 9 9955.€ (by)
Applying the formula to the Riverview example,
2,651 £2.75(370) = (2,651 + 1,018)
These results provide some evidence that we have not committed a Type I

error. This broader confidence interval does not contain the value of zero.
We continue to reject the null hypothesis but with greater confidence.
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Furthermore, we can say that the slope estimate, by, is statistically signifi-
cant at the .01 level. (This effort to prevent Type I error involves a trade-off,.
for the risk of Type II error; accepting the null hypothesis when it is false,
is inevitably increased. Type II error is discussed below.)

The One-Sided Test

Thus far, we have concentrated on a two-sided test of the form

Hy: By =0
Hy: By #0

Often, though, our acquaintance with the phenomena under study suggests the
sign of the slope. In such a circumstance, a one-sided test might be more rea-
sonable. Taking the Riverview case, we would not expect the sign of the slope
to be negative, for that would mean additional education actually decreased
income.’ Therefore, a more realistic set of lhiypotheses here might be

Hy By =0
I{]I ﬂl >0

Applying a one-sided 95% confidence interval yields
B1> (b —tyy, g5 s.e.(by)) = 2,651 — 1.70(370) = (2,651 — 629) = 2,022

The lower boundary of the interval is above zero. Therefore, we reject the
null hypothesis and conclude the slope is positive, with 95% confidence.

Once the level of confidence is fixed, it is “easier” to find statistical
significance with a one-sided test, as opposed to a two-sided test. (The two-
sided confidence interval is more likely to capture zero. For instance, the
lower bounds in the Riverview case for the two-sided and one-sided tests,
respectively, are $1,896 and $2,022.) This makes intuitive sense, for it takes
into account the researcher’s prior knowledge, which may rule out one of
the sides from consideration.

Significance Testing: A Rule of Thumb

Recall the formula for the two-tailed 95% confidence interval for B;:

bl + 1'11_2;'975 S.e.(bl)
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If this confidence interval does not contain zero, we conclude that b, is
significant at the .05 level. We see that this confidence interval will not

contain zero if, when b, is positive,

by =ty 975 5.€.(by) > 0
or, when b, is negative,

by + tyy, 975 s.€.(b;) <0

These requirements may be restated as

> 1,2 975, When by is positive,
s.e.(bl )

or

<t,_5. 975, When b, isnegative.

b
se.(by)
In brief, these requirements can be written

bl
s.e.(bl )

> 1y 2975

which says that when the absolute value of the parameter estimate, by,
divided by its standard error, s.e.(b,), surpasses the ¢ distribution value,
t,2. 975, We teject the null hypothesis. Thus, a significance test at the .05
level, two-tailed, can be administered by examining this ratio. The test is
simplified further when one observes that, for almost any sample size, the
value in the ¢ distribution approximates 2. For example, if the sample size
is only 20, then ty) 5. 975 = t15; 975 = 2-10. In contrast, if the sample is of
infinite size, 1, 975 = 1.96, which is the same multiplier from the normal
distribution. This narrow range of values given by the ¢ distribution leads

to the following rule of thumb. If

then the parameter estimate, b,, is significant at the .05 level, two-tailed.
This ¢ ratio, or ¢-test statistic as it is commonly called, is routinely printed

in the regression output of statistical software. In addition, along with the test

statistic, a probability value (p-value) will be provided. A p-value is the
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probability of observing a test statistic at least as extreme as the one
observed, assuming the null hypothesis is true.!? The smaller the p-value, the
less likely the test statistic would be observed under the null. We reject the
null hypothesis if the p-value is less than our level of statistical significance.
For example, if the p-value = .02 and our level of statistical significance =
.05, then we would reject the null. For a given confidence level (e.g., 95%),
the decision to reject or fail to reject the null hypothesis will be the same
if the ¢ ratio is compared with a critical value (t = 1.96) or the p-value is
compared with a .05 alpha level (Figure 2.3).

Rather than simply reporting whether the null hypothesis was rejected,
providing a p-value is useful as it quantifies the probability of seeing the
observed test statistic. It also allows the reader selection of his or her own
level of significance in determining whether to reject the null hypothesis.
The standard significance level is .05—that is, reject the null if the p-value
is less than or equal to .05. However, certain disciplines might require a

Figure 2.3 ¢ Distribution (1 = o) for a Two-Sided Hypothesis Test,
o=.05
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higher level of evidence to reject the null hypothesis (e.g., setting the
significance level to .001). Below is the bivariate regression model from
our Riverview example, with the reported £ ratios and p-values.!!

$=11,321 + 2,651

t-statistic  (1.85)  (7.17)
p-value  (.074) (<.001)

A quick glance at the ¢ statistic reveals it exceeds 2 for the slope, and the
p-value is less than .05; we can immediately conclude that b, is statistically .
significant at the .05 level. The intercept, however, has a p-value > .05.
Thus, we fail to reject the null hypothesis that the population intercept is
zero at a significance level of .05.

Reasons Why a Parameter Estimate May Not Be Significant

There are many reasons why a parameter estimate may be found nof sig-
nificant. Let us assume, to narrow the field somewhat, that our data com-
pose a probability sample and that the variables are correctly measured.
Then, if b, turns out not to be significant, the most obvious reason is that x
is not a canse of y. However, suppose we doubt this straightforward conclu-
sion. The following is a partial list of reasons why we might fail to uncover
statistical significance, even though x is related to y in fact:

(1) Inadequate sample size
(2) Type I error
(3) Specification etror

(4) Restricted variance in x

Below, these four possibilities are evaluated in order. (A fifth possibility is
high multicollinearity, which we will consider in our discussion of multiple
regression.)

As sample size increases, a given coefficient is more likely to be found
significant. For instance, the b, value in the bivariate regression of the
Riverview example would not be significant (.05) if based on only five
cases but is significant with n = 32. This suggests it may be worthwhile for
a reseatcher to gather more observations, for it will be easier to detect a
relationship between x and y in the population, if one is present. In fact,
with a very large sample, statistical significance can be uncovered even if
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by is substantively quite small. (For very large samples, such as public
opinion surveys of several thousand respondents, significance may actually.
be “too easy” to find, since tiny coefficients can be statistically significant,
In this situation, the analyst might prefer to rely primarily on a substantive
judgment of the importance of the coefficient, That is, ask if the coefficient
is “substantively significant.”)

Let us suppose that sample size is fixed and turn to the problem of choos-
ing a significance level, as it relates to Type II error. In principle, we could
set the significance test at any level between 0 and 1. In practice, however,
most social scientists employ the .05 or .01 levels. To avoid the charges of
arbitrariness or bias, we normally select one of these conventional stan-
dards before analysis begins. For instance, suppose prior to our investiga-
tion, we decide to employ the .01 significance level. Upon analysis, we find
by is not significant at this .01 level, but we observe that it is significant at
the less demanding level of .05. We might be loath to accept the null
hypothesis as dictated by the .01 test, especially since theory and prior
research indicate that x does influence y. Technically, we worry that we are
committing a Type II error, accepting the null when it is false. In the end,
we may prefer to accept the results of the .05 test. (In this particular case,
given the strength of theory and previous research, perhaps we should have
initially set the significance test at the less demanding .05 level.)

Aside from Type II error, b; may not appear significant because the equa-
tion misspecifies the relationship between x and y. Perhaps the raw relation-
ship follows a curve, rather than a straight line, as assumed by the regression
model. First, this curvilinearity should be detectable in the scatterplot,
To establish the statistical significance of the relationship in the face of this
curvilinearity, regression analysis might still be applied, but the variables
would have to be properly transformed. (We pursue an example of such a
transformation at the end of this chapter.)

Finally, a parameter estimate may not be found significant because the
variance in x is restricted. Look again at the formula for the standard error
of by,

=9 (n-2)

(3 —%)*

se(b)=

As mentioned earlier, we see that as the dispersion of x about its mean
decreases, the value of the denominator decreases, thereby increasing the
standard etror of b). Other things being equal, a larger standard error makes
statistical significance more difficult to achieve, as the t-ratio formula

S
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makes clear. The implication is that 5, may not be significant simply
because there is too little variation in x. (The degree of variation in x is eas-
ily checked by evaluating its standard deviation.) In such a circumstance,
the researcher may seek to gather more extreme observations on x before
making any firm conclusions about whether it is significantly related to y.

The Prediction Exror for y

In regression analysis, the difference between the observed and the esti-

mated value of the dependent variable, ¥; — j\)l-, equals the prediction error
for that case. The variation of all these prediction errors around the regres-
sion line can be estimated from a sample as follows:

L9
e n—2

This s, is called the standard error of estimate of y; that is, the estimated
standard deviation of the actual y from the predicted y. This quantity is also
referred to as the Root Mean Squared Error; or RMSE for short. We see that
the formulation provides something close to an average prediction error for
the model.!> When prediction is without error, RMSE = 0. If the research-
er’s goal is merely prediction, the RMSE can be a good metric to compare
the accuracy of various models. However, unlike R%, which is bounded at
both ends (1 = perfect linearity, 0 = no linearity), RMSE has no upper
bound: It is dependent on the units of measurement and the size of the pre-
diction error. Thus, by itself, RMSE is not typically a useful measure of
model fit. .

" The Root Mean Squared Error is also used to make confidence intervals
for y at a fixed x value. The specific x we are interested in making a predic-
tion for is denoted by x* in the equation below. A 95% confidence interval
for y is constructed as follows:

A
YEL, 9. 9755, |

This equation reveals that the width of the prediction interval depends addi-
tionally on the variation in x and the sample size, n. If we predict y at the
mean (x* = X ), the numerator in the last term under the square root becomes
zero. In other words, the width of the confidence interval is minimized at the
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mean. This matches intuition: We would expect our prediction to be more
accurate at the center of the data than at values far away from the mean. We.
can also see that as n increases, the confidence interval narrows. This pro-
vides another way for the researcher to reduce the width of the confidence
interval: Collect more data to increase the sample size.

Let us take an example. In the Riverview study, we would predict some-
one with 10 years of education to have an average income of

$=11,321+2,651(10) =37,831

How accurate is this prediction? For x = 10, we have this 95% confidence
interval (s, = 8,978):

1 (10-16)

37,831 13, 975(8,978) 7" =37,831+5,569 ( l .

590 T

According to this confidence interval, we are 95% confident that a city
employee with 10 years of education has an average annual income
between $32,262 and $43,400. We can see this confidence interval graphi-
cally in Figure 2.4. The fitted regression line is in solid black; the dashed
lines are the upper and lower 95% confidence bands. As mentioned above,
it is clear the width of the confidence interval is most narrow around the
mean (x = 16) and widens in ranges of education with fewer observations.

A last point merits mention. The above confidence interval provides a
confidence interval for the average or expected value of y given x. However,
if we are interested in predicting a new value of y, an additional correction
is required. When constructing a prediction interval for a future 3, the inter-
val will be wider since it must also account for variation in y around its
mean. The formula for constructing a prediction interval is readily available
(see Gujarati & Porter, 2009, pp. 126-129).

Analysis of Residuals

. e . . A
. The prediction etrors from a regression model, ¢; = y; — y;, are, as we know,

tion of certain regression assumptions. Residual§ ¢an be first plotted against
the fitted Valies of the model, - It is also useful to examine scatterplots of
the residuals against independent variables (x;). In a visual inspection of the
residuals, we hope to observe a healthy pattern similar to that in Figure 2.5a;
that is, the points appear scattered randomly about in a steady band above

and below the zero line. (To be clear, this zero line is equivalent to the
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impression receives quantitative confirmation. A simple sign count reveals a
roughly even balance around the line.

The Riverview data are from government workers in a midsized
Midwestern town. Suppose as one last step, we want to test the external valid-
ity of our findings (education has a positive effect on income); therefore,
we collect data on workers in a larger city. Once again, we take a random
sample (n = 32) of workers (from a variety of public employment sectors)
and regress income on education. We get the following model output:

P =-1,552+4,974x
t-statistic  (=0.18) (10.22)
p-value  (0.86) (<.001)
R2=718 n=32  5,=17250

(Original Large City Model)

Figure 2.8 Regression Line for Large City Sample Data
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From looking at Figure 2.8, it appears the relationship between education
and income is still linear. The coefficient on education is higher now
($4,974), but that makes intuitive sense—we would expect returns on
education to be higher in a larger metropolitan area. A closer look at the
scatterplot, however, reveals that as education increases, there is more vari-
ability around the regression line. In a larger city, people with more educa-
tion may have additional job opportunities that come with increasingly
varying salaries. A plot of the residuals highlights this funnel pattern
(Figure 2.9a).

Figure 2.9 (a-b) Heteroscedastic Residuals
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(Continued)
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As discussed earlier, violations of homoscedasticity make statistical
inference problematic. The coefficients are still unbiased, and if the model
is solely for prediction, heteroscedasticity can be ignored. However, if we
want to calculate p-values and test the coefficients for statistical signifi-
cance, Assumption 3b is necessary. The good news: The linear model is
flexible, and numerous transformations are available to stabilize the vari-
ance. A common transformation is the natural-log (In) transformation.!®
The log transformation is useful because it is simple to implement and
gives a nice interpretation of the coefficients in terms of percent change.
Either the independent, dependent, or both variables can be transformed.
Here we will take the log of the dependent variable, income. After fitting
a model to the transformed y, we get the following output:

l

; LWe have school size, measured as the total number of students enrolled at

v
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In(3) = 10.01 + 0.07x

t-statistic (83.84) (10.52)
p-value (<.001) (<.001)
R=79 n=32 5,=023

(Logged Large City Model)

The estimated slope for education is.b; = 0.07. Recall this coefficient was
estimated on the In(y), which changes the interpretation of b;: A one-unit
increase in education increases salary by an average of 7%. As a final check,
we examine the residuals after the transformation (Figure 2.9b), The clear
heteroscedastic fan pattern has disappeared, and the points now appear as
white noise scattered around 2 mean of zero. The homoscedasticity assumption
of the error terms no longer seems violated. Furthermore, comparing the
tratios of the two models, original (f=10.22) versus logged (¢ = 10.52), we see
that the latter value attains a slightly greater magnitude, making the inference
of statistical significance a bit more secure. However, in this case, the gain is
so slight that the analyst might ask whether it is worth returning to the use of
the original unlogged y because of interpretation gains. (This is a typical prac-
tical decision research workers must make.)

The Effect of School Size on Educational
Performance: A Bivariate Regression Example

Itis time to apply what we have learned to some data that address an impor-
tant social issue. A current public policy controversy concerns the impact
of school size on educational outcomes (Leithwood & Jantzi, 2009). Our
specific research question is, “Does school size have an effect on educa-
tional test scores?” To provide an afiswer; we have simulated a data set on
variablesexpecied to be relevant. While the data set itself is constructed, it
does speak to a real problem and in a pedagogical way that we hope leads
to further, applied research. The data consist of a random sample of 50
public high schools (2 = 50) across the country. Each school evaluated its
student body performance using the same measurement procedure. With
respect to the dependent variable, we have a standardized test score (range:
0-100), averaged per high school. With respect to the independent variable,

the beginning of the school year.

Before fitting a regression line, let us first examine a scatterplot of
the data. The relationship appears to be positive and somewhat linear
(Figure 2.10).
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Tigure 2.10  Scatterplot of School Size and Exam Score
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A bivariate regression of test scores, 3, on school size, x, yields the
following:

$ =28.76 + 0.02x

t-statistic  (83.84) (10.52)
p-value (<.001) (<.001)
R*=48 n=50 s5,=16.35

Although the coefficient on school size appears numerically small, it is
statistically significant at an alpha level of .001. Rather than interpreting
the marginal effect of adding one additional student (b; = 0.02), a more
intuitive interpretation is to think of adding 100 students to a high school.
The model predicts the average high school test score will increase by 2
points (1000,) per 100 additional students. It might be unrealistic, though,
to suspect that the relationship between school size and educational test
scores is strictly linear. At some level, a school might reach a saturation
point where the benefits from additional students diminish or become

-
il
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negative. Incorporating a quadratic term into the model is one way to test
this hypothesis. Despite requiring linearity, OLS can incorporate a variety
of nonlinear relationships through transformations of the raw variables,
transformations that effectively linearize the relationship. (We will explore
this further in Chapter 4.) Reestimating the equation, but with an additional
x? term, yields

3 =17.85+0.05x—.000012x*

t-statistic  (2.56) (3.74)  (=2.06)
p-value  (.01) (.001) (.045)
R?= 53 n=50 s,=15.83

Our explanation of the exam scores has improved. The quadratic term is
statistically significant, and the R? has improved to .53. In the earlier equa-
tion, when y is predicted with just school size, the average error is 16.35.
The RMSE is now reduced to 15.83 in our revised model. While the size
coefficient on the squared coefficient is not immediately interpretable, the
negative sign indicates that at some point, as school size increases, the
effect of school size on exam scores begins to diminish.!* From looking at
afitted line for the new model (Figure 2.11), it appears that at around 1,500

Figure 2.11 Quadratic Fit
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students, the effect of school size becomes flat, even slightly negative. Of
course, although school size is an important determinant in predicting
exam scores, it is not the only one, as we will discover in the next chapter.

Notes

L.

2.

10.

Combined with Assumptions 3a and 3b, the normal distribution of the errors is
often written as &; ~ N (0, o?).

One might wonder why omitted explanatory variables are not simply incorpo-
rated into the equation, thus solving for autocorrelation and specification etror
at the same time, Lamentably, this straightforward solution is not possible when
these variables are either unknown or unmeasured.

. Although the error terms and residuals appear interchangeable, they have dif-

ferent properties. The error term captures the difference between the observed
and true (unobserved) response value (i.e., ¥ops)~Ypop(i) = €;), While the resid-
ual is the difference between the sample and prediction estimate (i.e., Yobs(i)~

Vhai) = €

. The term percentile is probably most familiar from standardized exam results.

If an individual scores in the 80th percentile, it means he or she scored higher
than 80% of all test takers.

. There are many different statistical packages available, with varying degrees

of difficulty in terms of user friendliness. We refrain from recommending spe-
cific software as these programs are updated frequently and wax and wane in
popularity. Currently, the most common statistical software packages, in order
of increasing complexity, are as follows: SPSS, Stata, SAS, and R.

. The numerator in the variance of b; (62) denotes the population error variance.

As mentioned earlier, we never see the true errors, so we estimate o2 using the
sample estimator denoted as s2.

. The Empirical Rule states that for normally distributed variables, approxi-

mately 95% of all observations will fall within plus or minus 2 standard devia-
tions of the mean. The exact value is 1.96 standard deviations, which we get
from calculating the value of zg;5 from a normal table.

. Itis possible the true population slope is not in this interval. Confidence inter-

valg are a fieguentist idea based on repeated sampling. For example, if 100 con-
fidence intervals for B, are constructed based on different samples, statistical
theory says approximately 95 will contain the true population slope. We are only
making a confidence interval based on one sample, but we are hoping (confi-
dent) that our interval is one of the 95 that contains the true population slope, B.

. This idea of using a prior belief about a probability event (e.g., assuming the

slope must be positive if it is not zero) is an elementary application of Bayes’
Theorem.

Mathematically, we define the p-value as follows: p =Pmbabili(y(],’l‘ l > Il]),
where £ is our observed f-statistic, and T is a random variable for all possible
1 ratios.

11.

12.

13.

14,
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When reporting output from a regression model, it is convention to give a
measure of stalistical significance for each coefficient; that can be a ¢ ratio, a
standard error, or a p-value. '
Although the formulation looks like an average, we divided by  ~ 2 rather than
the sample size, 1. As the sample size increases, this difference becomes trivial.
We subtract 2 from n because two degrees of fieedon are lost when we estimate
the two model] parameters, B and . The estimation of these two parameters
means that two residuals are not “free” to be independent; rather, they are fixed
by the estimation process. In general, when we estimate a model from a sample,
we must adjust for degrees of freedom. For more on the topic, see Lewis-Beck
(2004, pp. 243-244).

The natural-log transformation is also useful for handling skewed distributions
or turning a multiplicative relationship into a linear one. Another useful loga-
rithmic transformation is the common log, which is to the base 10. Its advan-
tage is that a unit change in this logged x can be interpreted as the expected
change in raw y when raw x changes tenfold.

As seen in Figure 2.11, with the added quadratic term, the slope is no longer
constant. How do we interpret 5,? It is the rate of change (slope) when x = 0.
With the help of calculus, it is straightforward to find the slope at different val-
ues of x (school size). Frequently, researchers are interested in the slope at the
average of the independent variable, X . Here, the slope at the average school
size (1,146 students) is b —2b,X =.05 —.000012(1,146) =0.04.



CHAPTER 3. MULTIPLE REGRESSION: THE BASICS

With multiple regression, we can incorporate more than one independent
* variable info an equation, This is useful in two ways. First, it almost inevi-
tably offers a fuller explanation of the dependent variable, since few phe-
nomena are products of a single cause. Second, the effect of a particular
independent variable is more cettain, for the possibility of distorting influ-
‘ences from the other independent variables is removed. The procedure is a
straightforward extension of bivariate regression. Parameter estimation and
interpretation follow the same principles. Likewise, the significance test
and the R? are parallel. Furthermore, the bivariate regression assumptions
necessary for best linear unbiased estimates (BLUE) are casried over to the
multivariate case. The technique of multiple regression has great range,
and its mastery will enable the researcher to analyze almost any set of
quantitative data.

The General Equation

In the general multiple regression equation, the dependent variable is seen
as a linear function of more than one independent variable,

y= Byt Byxy + Boxg + Byxg to. At Bt e

where the subscripts from 1 to & identify the independent variables. The
elementary thige-vaiiable case, Which we §hall be using below, is written

y=Byt Brxyt Bxyte
and suggests that y is determined by x, and x,, plus an error term.

To estimate the parameters, we again employ the least squares principle,
minimizing the sum of the squares of the prediction errors (SSE):

A2
SSE=X ;=)
For the three-variable model, this estimated least squares equation is

3 =Dy +byx; +byxy

The least squares combination of values for the coefficients (by, by, by)
yields less prediction error than other possible combinations of values.
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Hence, the least squares equation fits the set of observations better than any
other linear equation. However, it can no longer be represented graphicaily
with a simple straight line fitted to a two-dimensional scatterplot. Rather,

we must imagine _flt_tgg a plane to a three-dimensional scatter of f)?)-m—_&

The location of this plane, of courss, is dictated by 7 the values of bg, by, and
b,, which are determined by calculus. For most of us, it is impossible to
visualize the fitting of equations with more than three variables, It might
work, if the fowrth variable were time (i.e., we could imagine a plane in a
three-dimensional hox moving through time). However, for the general
case, with k independent variables, our visual geometry fails. Then, we
must rely on the mathematics of the fitting, which requires conceiving of
adjusting a k-dimensional hyperplane to (k -+ 1)-dimensional scatter.

For purposes of illustration, let us look at a simple three-variable model
from our Riverview study. On the basis of our earlier work, we believe
income is related to education. But we know that education is not the only
factor influencing income, Another factor is undoubtedly seniority. In most
occupations, the longer one is on the job, the more money one makes. This
seems likely to be so in Riverview city government. Therefore, our expla-
nation for income differences should be improved if we move from our
bivariate regression model to this multiple regression model:

y=b0+b1xl+b2x2+e

where y = income (in dollars), x; = education (in years), x, = seniority (in
years), and e = error. The least squares estimates for the parameters are as
follows:

$=6,769+2,252x, +739x,

Graphically, we can see the fitted model in Figure 3.1 with education and
income on the x- and y-axes and seniority on the z-axis. This graph is sim-
ply an extension of our scatterplot from Chapter 1 (Figure 1.4), but with
one additional variable (dimension) added. The dashed plane that cuts
through the data is the least squares fit. No other plane that passes through
this three-dimensional cloud of points achieves a lower SSE.

Interpreting the Parameter Estimates
The interpretation of the intercept, which merely extends the bivariate case,

need not detain us: by= the average value of y when each independent vari-
able equals zero. The interpretation of the slope, however, requires more
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Tigure 3.1 Three-Dimensional Plot of Education, Seniority, and Income
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attention: by, = the average change in y associated with a unit change in x,
when the other independent variables are held constant. By this means of
control, we are able to separate out the effect of x; itself, free of any distort-
ing iiffuences from theé other mdependenL va11ab1es Such a slope is some-
times called a parfial slope, or pariial regression coefficient. In the above
Riverview example, partial slope b, estimates that a 1-year increase in
seniority is associated with an average income rise of $739, assuming the
employee’s amount of education remains constant. In other words, a city
worker can expect this annual salary increment, independent of any per-
sonal effort at educational improvement. Nevertheless, according to by,
acquiring an additional year of schooling would add to an employee’s
income, regardless of the years of seniority accumulated. That is, an extra
year of education will augment income an average of $2,252, beyond the
benefits that come from seniority.

To appreciate fully the interpretation of the partial slope, one must grasp
how multiple regression “holds constant” the other independent variables.
First, it involves statistical control rather than experimental control. For
instance, in our Riverview study, if we were able to exercise experimental
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control, we might hold everyone’s education at a constant value, say 10
years, and then record the effect on income of assigning respondents differ-
ent amounts of seniority. To assess the effect of education on income, a
similar experiment could be carried out. If such manipulation were possi-
ble, we could begin to analyze the effects of seniority and education,
respectively, by running two separate bivariate regressions, one on each
experiment. However, since such experimental control is out of the ques-
tion, we have to rely on the statistical control multiple regression provides.
We can show how this statistical control operates to separate the effect of
one independent variable from the others by examining the formula for a
partial slope. ‘

‘We confine ourselves to the following three-variable model, the results
of which are generalizable:

y=0by+bx)+byx,te

Let us explicate the b; estimation. Assuming 7|, # 0, each independent
variable can be accounted for, at least in part, by the other independent
variables. That is, for example, x; can be written as a linear function of x,,

x1=cl+czx2+u

Supposing x; is not perfectly predicted by x,, there is error, u. Hence, the
observed x| can be expressed as the predicted x,, plus error:

A
X1 =x1+ u
A . . .
where X; = ¢; +cyx,. The error, u, is the portion of x; that the other inde-
pendent variable, x,, cannot explain,
A
u=x—x

This component, u, thus represents a part of x, that is completely separate
Jirom x,,

By the same steps, we can also isolate the portion of y that is linearly
independent of x,:

y=d1 +d2x2 +v
=(d1 +d2x2)+v

A
y=y+v

The error, v, is that portion of y that cannot be accounted for by x,,

A
v=y—y
This component, v, then, is that part of y that is unrelated fo x,.

These two etror components, u and v, are joined in the following formula
for by:

b= () (%) _ ZhCas =30 -5

2 A N\2
e Ui i (i —x)

In words, b, is determined by x, and y values that have been fieed of any
linear influence fiom x,. In this way, the effect of x; is separated from the
effect of x,. The formula, generally applicable for any partial slope, should
be familiar, for we saw a special version of it in the bivariate case, where

() -)

L (%)

A useful graph to visualize the partial effect of an independent variable
on the response is an added-variable plot, which plots u against v as
defined above. Just as a scatterplot of x versus y in simple regression
allows us to visualize the correlation between one independent variable
and the response, an added-variable plot allows us to see the relation
between an independent variable and y while accounting for all additional
explanatory variables in the model. Returning to the Riverview study, we
can make an added-variable plot to see the partial effect of education (x;)
on income.

As exemplified in Figure 3.2, there still appears to be a positive correla-
tion between education and income even after we remove the effect of
senjority. Moreover, if we fit a regression line to this scatterplot, the slope
coefficient is 2,252. This is the same value as b: the coefficient on educa-
tion in the three-variable regression model fit at the beginning of the
chapter, On the other hand, if there was no effect of education on income
after including seniority in the model, the added-variable plot would look
like a random scatter of points. In general, when building a regression
model, added-variable plots are a useful way to determine graphically
whether fo include a new independent variable into the model (hence the
name “added variable”).

While the statistical control of multiple regression is weaker than experi-
mental control, it still has great value. The careful introduction of additional
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Figure 3.2 Added-Variable Plot for Education
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variables into an equation permits greater confidence in our findings. For
instance, the bivariate regression model of the Riverview study suggested
that education is a determinant of income. However, this conclusjon is open
to challenge. That apparent bivariate relationship could be spurious, a prod-
uct of the common influence of another variable on education and income.
For example, an antagonist might argue that the observed bivariate relation-
ship is actually caused by seniority, for those with more years on the job are
those with more education, as well as higher pay. An implication is that if
seniority were “held constant,” education would be exposed as having no
effect on income. Multiple regression permits us to test this hypothesis of
spuriousness. From the above least squares estimates, we discovered that
education still has an apparent effect, even after taking the influence of
seniority into account. Hence, through actually bringing this third variable
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into the equation, we are able to rule out a hypothesis of spuriousness and
thereby strengthen our belief that education affects income.

Confidence Intervals and Significance Tests

The procedure for confidence intervals and significance tests carries over

from the bivariate case. Suppose we wish to know whether the partial slope,

B, from our three-variable equation for the Riverview study is significantly |
different from zero. Again, we confront the null hypothesis, which says
there is no relationship in the population, and the alternative hypothesis,

which says there is a relationship in the population. Let us construct a two-

tailed 95% confidence interval around the partial slope estimate to test

these hypotheses:

by £ b, 3, g755.€. (b)) |

Note that the only difference between this formula and the bivariate for- |
mula is the number of degrees of freedom. Here, we have one less degree
of freedom, (n — 3) instead of (n — 2), because we have one more indepen-
dent variable. In general, the degrees of freedom of the ¢ distribution equal
(n—k— 1), where n = sample size and k= number of independent variables.
Applying the formula,

2,252 % tyg, g5 5.e.(b)) = 2,252 %= 2.045(335) = 2,252 685

We are 95% confident that the value of the partial slope in the population
is between $1,567 and $2,937. Because the value of zero is not captured
within this band, we reject the null hypothesis. We state that the partial
slope estimate, 3, is statistically significant at the .05 level.

A second approach to the significance testing of 8| would be examina-
tion of the ¢ ratio,

by 2,252
=22C=6.72
se(l) 335 !

We observe that the value of this ¢ ratio exceeds the ¢ distribution value,
ty3; 975+ That is,

6.72 > 2.045 \

Therefore, we conclude that f is statistically significant at the .05 level.




62

A useful preliminary means of significance testing is to use the rule of
thumb, which claims statistical significance at the .05 level, two-tailed, for
any coefficient whose ¢ ratio exceeds 2 in absolute value. Below is the
three-variable Riverview equation, with the ¢ statistics in parentheses:

$=6,769 +2,252x, +739x,
t-statistic  (1.26) (6.73) (3.52)

An examination of these # ratios, with this rule of thumb in mind, instantly
reveals that the coefficient estimates of education and seniority (f,, f3,) are
significant at the .05 level.

The R*

To assess the goodness of fit of a multiple regression equation, we employ
the R?, now referred to as the coefficient of multiple determination. Once
again,

R ,_1(y ~5)? _ Tegression (explained) sum of squares

—\2
l.=]( ¥i—7) total sum of squares

The R? for a multiple regression equation indicates the proportion of vari-
ation in y “explained” by all the independent variables. In the above three-
variable Riverview model, R* = .74, indicating that education and seniority
together account for 74% of the variance in income. This multiple regres-
sion model clearly provides a more powerful explanation for income differ-
ences than the bivariate regression model, where R% = .62.

Obviously, it is desirable to have a high R?, for it implies a more com-
plete explanation of the phenomenon under study. Nevertheless, if a higher
R? were the only goal, then one could simply-add independent-variables to
the ‘'equation. That is, an additional independent varlable/cannoblowel the
R¥and is virtually certain to increase it at least somewhalt/ In fact, if inde-
pendent variables are added until their number equals ' — 1, then R2 =1.0.
This “perfect” explanation is of course nonsense and amounts to no more
than a mathematical necessity, which occurs because the degrees of free-
dom have been exhausted. In sum, rather than entering variables primarily
to enhance R?, the analyst must be guided by theoretical considerations in
deciding which variables to include.
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One check against an R? that is inflated simply from the addition of
extraneous independent variables comes from calculation of the adjusted
R?. This statistic, routinely reported in statistical packages, reduces the
magnitude of the R? according to the degrees of freedom it uses up.! Since
the degrees of freedom exhausted is a direct function of the number of
independent variables added, the adjusted R? offers a worthwhile correction
against overfitting a model. Take our Riverview example where we have
used three degrees of freedom. We can report that qu =.72, which is .02
points less than the unadjusted R? of .74. This shows ﬂlal the raw, uncor-
rected R? exaggerates the model fit some. Having said this, the analyst must
be aware that this correction does not represent a cure-all against overfit-
ting. In the case of large samples (e.g., n > 100), it will not reduce this fit
statistic much (because the degrees of freedom spent becomes (rivial com-
pared with the total sample size).

Predicting y

A multiple regression equation can be used for prediction as well as expla-
nation. Let us predict the income of a Riverview city employee who has
10 years of education and has been on the job 15 years:

= 6,769 +2,252x; +739x,
=6,769 +2,252(10) + 739(15)
= 6,769 +33,605

$=40,374

Constructing a confidence interval by hand in the multiple regression set-
ting is more complicated. Most statistical software, however, will provide
a confidence interval after the user specifies values of the covariates for
prediction. For a city employee with 10 years of education and 15 years of
job experience, we get the following 95% confidence interval: [35,396;
45,343]. This confidence interval indicates that we are 95% confident that
a municipal employee with 10 years of education and 15 years of seniority
will earn on average between $35,396 and $45,343. While this prediction
is more accurate than that generated by the bivariate regression equation, it
is still far from precise.

The model is even less useful for forecasting beyond its 1ange of experi-
ence. Certainly, we could plug in any values for x; and x, and produce a
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prediction for y. However, the worth of the forecast diminishes as these x;
and x, values depart from the actual range of variable values in the data.
For instance, it would be risky to predict the income of a city worker with
2 years of education and 35 years of seniority, for no one in the data set
registered such extreme scores. Possibly, at such extreme values, the linear-
ity of the relationships would no longer exist. Then, any prediction based
on our linear model would be quite wide of the mark.

3 Dummy Variables

Regression analysis encourages the use of variables whose amounts can be
measwed with numeric precision, that is, interval variables. A classic

example of such a variable is income. Individuals can be ordered numeri-
cally according to their quantity of income, from the lowest to the highest. |

Thus, we can say that Catherine’s income of $112,000 is larger than Bill’s
income of $56,000; in fact, it is exactly twice as large. Of course, not all
variables are measured at a level that allows such precise comparison.
Nevertheless, these noninterval variables are candidates for incorporation
into a regression framework, through the employment of dummy variables
(also referred to as indicator variables).

Many mnoninterval, or qualitative, variables can be considered
dichotomies—for example, gender (male, female), race (Black, White), or
marital status (single, married). Dichotomous independent variables do not
cause the regression estimates to lose any of their desirable properties.
Because they have two categories, they manage to “irick” least squares,
entering the equation as an interval variable with just two values. (To con-
vince yourself it is not really a “trick,” recall that the average of a variable
scored 0 or 1 will be a proportion, a precise interpretable number.) It is
useful to examine how such “dummy” variables work. Suppose we argue
that a person’s income is predicted by race, as well as education, in this
bivariate regression,

9 = bo + blkl + b2x2

where y = income, x; = education, and x, = race (0 = Black, 1 = White). If
Xy =0, then

$=by+byx +D(0)

J) = bO 4 le1
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is the prediction of the mean income for Blacks. If x = 1, then

= by +byx +by(1) i
A

y=(by+by)+byxy

is the prediction of the mean income for Whites. Grouping the intercept
together with b2 m the above equahon we see the estimate, b,, reports the

~ difference in average income between Blacks and Whites. If the sign of b,

is positive, it tells us Whites have higher incomes on average; if the coef-

ficient is negative, it indicates Whites have lower average incomes than

Blacks. Graphically, we CAn 568 b, a5 a shift up (or down) in the intercept
of the regression line (Figure 3.3). Note also that this shift is constant:
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Figure 3.3 Dummy Variable fo1 Race Added to the Riverview Model

=1 (White): ¥ = (b,+b,)+ b,x,
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Education (x,)
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Regardless of an individual’s level of education, we expect Whites to make
on average b, more dollars than Blacks. As always, the test statistic of by
measures its statistical significance.

Obviously, not all noninterval, or qualitative, variables are dichotomous.

“Noninterval variables with multiple categories are of two basic types: ordi-

nal and nomiml an ordinal variable, cases can be ordered in terms
of amount but not with numeric precision. Attitudinal variables are com-
monly of this kind. For example, in a survey of the electorate, respondents
may be asked to evaluate their political interest, ranking themselves as “not
interested,” “somewhat interested,” or “very interested.” We can say that
Respondent A, who chooses “very interested,” is more interested in politics
than Respondent B, who selects “not interested,” but we cannot say numer-
ically how much more. Ordinal variables, then, only admit of a ranking
from “less to more.” The categories of a nominal variable, in contrast, can-~
not be so ordered. The variable of religious affiliation is a good example.
The categories of Protestant, Catholic, Jewish, or Muslim, for example,
represent personal attributes that yield no meaningful ranking.

Noninterval independent variables with multiple categories, whether
ordinal or nominal, can be incorporated into the multiple regression model
through the dummy variable technique. Let us explore an example.
Stippose the dollars an ndividual contributes to a political campaign are a
finction of the above-mentioned ordinal variable, political interest. Then, a
correct model would be

= b, + byx+ box, + e
Y= 0g T 01X T DoXy

where y = campaign contributions (in dollars); x; = a dummy variable,
scored 1 if “somewhat interested,” 0 if otherwise; x, = a dummy variable,
scored 1 if “very interested,” 0 if otherwise; and e = error.

Observe that there are only fwo dummy variables to represent the tri-
chotomous variable of political interest. If there were three dummy vari-
ables, then the parameters could not be uniquely estimated. That is, a third
dumimy, x; (scored 1 if “not interested,” 0 if othértise), 'would be an exact
linear function of the others, x; and x,. (Consider that when the score of any
respondent on x; and x, is known, it would always be possible to predict
his or her x; score. For example, if a respondent has values of 0 on x; and

210 o0 x,, then he or she is necessarily “not interested” in politics and would
\ score 1 on x,.) This describes a situation of perfect multicollinearity, in
which estimation Cannot proceed (this problem is discussed further in the
next clhiapter)To avo1d Siich a dummy variable trap, which is easy to fall
into, we memorize this rule: When a noninterval variable has G categories,
use G — I dummy variables to represent it.
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f this excluded group, those who_responded “not interested.” Their aver-
age campaign contribution is estimated by the intercept of the equation.

That is, for someone who is “not interested,” the prediction equation
reduces to

) A question now arises as to how to estimate the campaign contributions.
0

y S RUURIC
y= bO +b1x1 +b2x2 T DAt
Y ,
:b() +b1(0)+b2(0) I .
9=bo : pan b

Thus, the intercept estimates the average campaign contribution of some-
one who is “not interested” in politics.

This estimated contribution, by, for the “not interested” category serves as
a base for comparing the effects of the other categories of political interest.

. The prediction equation for someone in the category “somewhat interested”

reduces to
A
y= b0/+ blxl -+ b2x2

=y +0y(1) +by(0)

Hence, the partial slope estimate, b;, indicates the difference in mean cam-
paign contributions between those “somewhat interested” and those “not
interested,” that is, (by + b;) — by = b;.

For the last category, “very interested,” the prediction equation
reduces to

9 = bo + b1x1 +b2X2

= bo + bl(O) + bz(l)
y= bo + bz

Thus, the partial slope estimate, b,, points out the difference in average
campaign contributions between the “very interested” and the “not inter-
ested.” Given the hypothesis that heightened political interest increases
campaign contributions, we would expect that b, > b,.

A data example will increase our appreciation of the utility of dummy
variables. Suppose, with the Riverview study, it occurs to us that the
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income received from working for city government might be determined by
the employee’s political party affiliation (Democrat, Republican, or inde-
pendent) and by gender, as well as by education and seniority. In that case,
the proper specification of the mode] becomes

> L«n\\of

¥ =Dyt byxy + byxy + baxq -+ byxy+ bsxs e

where y = income (in dollars); x; = education (in years); x, = seniority (in
years); x3 = gender of respondent (0 = female, 1 = male); x, = a dummy
variable scored 1 if independent, 0 otherwise; x5 = a dummy variable scored
1 if Republican, 0 otherwise; and e = error.

The vatiable political party has three categories. Thus, applying the
G — 1 rule, we had to formulate 3 — 1 = 2 dummy variables. We chose to
construct one for independents (x,) and one for Republicans (xs), which left
Democrats as the base category. The selection of a base category is entirely
up to the analyst. Here, we selected Democrats as the standard for com-
parison because we guessed they would have the lowest income, with
independents and Republicans having successively higher incomes. -

Least squares yields the following parameter estimates:

$=5,003 +2,153x; +707x, + 8,084x; — 805x, + 2,558x;

fstatistic  (1.07)  (733)  (3.95) (3.13) (=0.27) (0.77)
pvalue  (029) (<.001) (<.001) (.004) (0.79) (0.45)

R*= .84 Adj.R*=81  n=32  5,=6356

First, we note that the parameter estimates from our prior specification
remain almost unchanged. Furthermore, from the p-value, we see that the
average income of independents is not significantly different (.05 level)
from the average income of Democrats, once the effects of education,
seniority, and gender are controlled. (Put another way, b, does not add
significantly to the intercept, by.) Likewise, the average income of
Republicans is found not to differ significantly from that of the Democrats.
We must conclude that, contrary to our expectation, political party affilia-
tion does not influence the income of Riverview municipal employees.
Our four-variable model, which now includes gender, stands as the pre-
ferred specification.

Through use of the dummy variable technique, the inclusion into our
multiple regression equation of the noninterval variable, political paity,
_ poses no problem. Some researchers would argue that this variable could
be inserted into our regression equation directly, bypassing the dummy
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variable route. The argument is that an ordinal variable is a candidate for
regression, even though the distances between the categories are Aot
exactly equal. This is a controversial point of view. In brief, the advocate’s
primary defense is that, in practice, the conclusions are usually equivalent
to those generated by more correct techniques (i.e., the application of
dumimy variable regression or ordinal-level statistics). A secondary argu-
ment is that multiple regression analysis is so powerful, compared with
ordinal-level techniques, that the risk of error is acceptable. We cannot
resolve this debate here. However, we can provide a practical test by
incorporating political party into the Riverview equation as an ordinal
variable.

At first blush, political party affiliation may appear as strictly nominal.
Nevertheless, political scientists commonly treat it as ordinal. We can say,
for example, that an independent is “more Republican” than a Democrat,
who is “least Republican” of all. Hence, we can order the categories in
terms of their “distance” from Republicans. This order is indicated in the
following numeric code (Democrat = 0, independent = 1, Republican = 2),
which ranks the categories along this dimension of “Republicanism.” This
code provides each respondent a score on a political party variable, x,,
which we now enter into the Riverview equation. Least squares yields the
following estimates:

$=3,951+2,163x + 686x, + 9,034x, + 1,176,

tstatistic  (0.88) (7.42) (3.89) (3.94)  (0.71)
p-value (039) (<.001) (<001) (<.001) (0.48)

R?= 84 Adj. R? = .81 n=32 5,= 6,316

where y = income; x; = education; x, = seniority; x5 = gender; x, = political
party affiliation, scored 0 = Democrat, 1 = independent, or 2 = Republican;
and the statistics are defined as above.

The estimates for the coefficients of our original variables are little
changed. Also, political party affiliation is shown to have no statistically

“significant impact on employee’s income (p > .05). Thus, in this particular

case, regression analysis with an ordinal variable arrives at the same con-
clusion as the more proper regression analysis with dummy variables.

The Possibility of Interaction Effects

Thus far, we have assumed that effects are additive. That is, y is deter-
mined, in part, by x; plus x,, not x| times x,. This additivity assumption



70

dominates applied regression analysis and is frequently justified. However,
it is not a necessary assumption. Let us explore an example.

In the previous example, we used the variable of gender of respondent as
a candidate for inclusion in the Riverview income equation. The question is,
should the gender variable enter additively or as an interaction? It might be
argued that gender is involved interactively with education. In general, an
interaction effect exists when the impact of one independent variable depends
on the value of another independent variable. Specifically, pethaps the effect
of education is dependent on the gender of the employee, with education
yielding a greater financial return for men. We can see this hypothesized
relationship graphically in Figure 3.4. Besides the different intercept, as edu-
cation increases, the slope for men is steeper than for women.

Figure 3.4 Hypothesized Interaction Model for Gender and Education

x,=1 (male): § = (by+ b,)+ (by+byx,

Income (V)

x,=0 (female): y = by+b,x,

Education (x,)
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Formally, this particular interaction model is as follows (we ignore the
other variables for the moment):

y= bo -+ blxl + b2x2 + b3(x1x2) +e

where y = income (in dollars), x; = education (in years), x, = gender of respon-
dent (0 = female, 1 =male), x,x, = an interaction variable created by multiply-
ing x; times x,, and e = error. The least squares estimates for this model are

$=8,330+2,574x, +9,295x, +23(xx; )
pstatistic  (L11)  (5.58) (0.87)  (0.04)
p-value (0.27) (<.001) (0.38) 0.97)

R*=74  Adj.R*=.72 n=32 s,=757

These results indicate that the income returns from education are not sig-
nificantly different for men and women. The p-value on the interaction
coefficient is 0.97, which is much larger than an alpha level of .05. Thus,
we fail to reject the null hypothesis that the coefficient of the interaction
term is zero. Note also that the dummy variable for gender alone is no
longer statistically significant, even though it was in the previous model,
which included political party affiliation. This appears a consequence of
multicollinearity, a problem not uncommon with interaction models. (In
this case, we have gender entered twice in the interaction model: once by
itself and again multiplicatively with education.?)

Now that we have rejected the hypothesis of an interaction effect, let’s fit
the alternative strictly additive model, where the variables are defined as
before. Fstimating this model yields

$=8,141+2,586x +9,667x,
t-statistic  (1.54) (8.22) (3.55)
p-value (0.13) (<.001) (.001)

Ri=74 Ad.R*=.72 n=32 s5,=7,622

These estimates suggest that education and gender have significant, inde-
pendent effects on income. Holding education fixed, we would expect males
to have an average salary that is $9,667 greater than females. It seems that
the data are more congruent with the additive model, which is more in keep-
ing with a “discrimination” theory of income determination; that is, other
things being equal, society pays women less solely because they are women.
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A Four-Variable Model: Overcoming Specification Error

Incorporating the gender variable additively into our model, along with
education and seniority, leads to the following equation for income differ-
ences in Riverview:

y=Dbg+ Dbyx;+ byxy + byxs +e

where y = income (in dollars), x, = education (in years), x, = seniority (in
years), x; = gender of respondent (0 = female, 1 = male), and e = error.
Theoretically, this four-variable model is much more complete than the
initial two-variable model. It asserts that income is a linear additive func-
tion of three factors: education, seniority, and gender. Estimating this mul-
tiple regression model with least squares yields

= 4,309 + 2,230 + 670x, + 8,775x;

t-statistic ~ (0.97) (8.14)  (3.87) (3.90)
p-value (034) (<.001) (<.001) (<.001)

R*=83  Adj.R*=.81 n=32 s5,=6261

These estimates tell us a good deal about what affects income in Riverview
city government. The pay of a municipal employee is significantly influ-
enced by years of education, amount of seniority, and gender. (Each of the
independent variables has a -test statistic greater than 2, indicating statisti-
cal significance at the .05 level) These three factors largely determine
income differences within this population. In fact, more than three quarters
of the variation in income is explained by these variables (Rad_] =.81). The
differences caused are not inconsequential. For each year of education,
$2,230 is added to income, on average. An extra year of seniority contrib-
utes another $670. Male workers can expect $8,775 more than female
workers, even if the women have the same education and seniority. The

* cumulative impact of these variables can create sizable income disparities.

For example, a male with a college education and 10 years of seniority
would expect to make $55,464; in contrast, a female with a high school
degree and just starting work could expect to earn only $31,069.

Inclusion of relevant variables, that is, seniority and gender, beyond the

~ education variable, has markedly diminished specification error, helping

ensure that our estimates are BLUE. (To refresh yourself on the meaning of
specification error, review the discussion of assumptions in Chapter 2.)
In particular, the estimate of the education coefficient, which equaled 2,651
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in the bivariate model, has been reduced. The comparable estimate in this
four-variable model, by = 2,230, indicates that the true impact of an addi-
tional year of education is approximately $400 less than estimated in the
original bivariate equation.

For certain models, it is fairly easy to detect the direction of bias result-
ing from the exclusion of a relevant variable. Suppose the real world is
congruent with the following model:

y=1Dby+ byx; + byx, + e (correct model)
but we mistakenly estimate

y =Dy + byx; +e" (incorrect model)

where ¢" = (b,x, + €). By excluding x, from our estimation, we have com-
mitted specification error. Assuming that x; and x, are correlated, as they
almost always are, the slope estimate, b;, will be biased. This bias is inevi-
table, for the independent variable, x;, and the error term, &", are correlated,
thus violating an assumption necessary for regression to yield desirable
estimators. (We see that Te® # 0, because r, . # 0, and x, is a component
of ¢".) The direction of the bias of b; in the estimated model is determined
by (1) the sign of b, and (2) the sign of the correlation, ry,. If b, and r, have
the same sign, then the bias of b; is positive; if not, then the bias is negative.

It happens that the direction of bias in the somewhat more complicated
Riverview case accords with these rules. As noted, the bias of b in the
bivariate equation of the Riverview study is positive, accepting the specifi-
cation and estimation of the four-variable model. The presence of this
positive bias follows the above guidelines: (1) The sign of b, (and b5) is
positive, and (2) the sign of |5 (and r4) is positive; therefore, the bivariate
estimate of b; must be biased upward. Part of the variance in y that x; is
accounting for should be explained by x, and x5, but these variables are not
in the equation. Thus, some of the impact of x, and x; on y is erroneously
assigned to x;.

The formulation of rules for the detection of bias implies that it is pos-
gible to predict the consequences of a given specification error. For
instance, the analyst is able to foresee the direction of bias coming from the
exclusion of a certain variable. With simpler models, such as those treated
here, such insight might be attainable. However, for models that include
several variables and face several candidates for inclusion, the direction of
bias is not readily foreseeable. In this more complex situation, the analyst
is better served by immediate attention to proper specification of the model.
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Notes

1. We can see how the adjusted R? “penalizes” for adding extraneous variables to
the model by looking at the following relationship between adjusted R? and R?:

2 k
Ry=R*~(1-R )m_—1

2. For a discussion of preferred measures of association, when the level of
measurement varies, see Lewis-Beck (1995, chap. 4).

3. Including the variable gender by itself, and as an interaction term, is important
as it preserves the principal of marginality. It is good practice for models with
interaction terms to include all variables that make up the interaction term as
individual covariates. Including interaction terms alone can lead to spurious con-
clusions about the coefficients.

CHAPTER 4. MULTIPLE REGRESSION:
SPECIAL TOPICS

In this final chapter, we consider selected topics in multiple regression
analysis that merit special consideration: the multicollinearity problem, the
relative importance of independent variables, nonlinearity, and the proper
presentation of research findings. As a parting note, we offer other topics
that might be pursued, after the reader has absorbed the material of this
monograph.

The Multicollinearity Problem

For multiple regression to produce the “best linear unbiased estimates,” it
must meet the bivariate regression assumptions, plus one additional
assumption: the absence of perfect multicollinearity. That is, none of the
independent variables is perfectly correlated with another independent vari-
able or linear combination of other independent variables. For example,
with the following multiple regression model,

y= bo + blxl + b2x2+ e
perfect multicollinearity would exist if
Xq=Cy +c 1*1

for x; is a perfect linear function of x; (i.e., R? = 1.0). When perfect multi-
collinearity exists, it is impossible to arrive at a unique solution for the least
squares parameter estimates. Any effort to calculate the partial regression
coefficients, numerically or analytically, will fail. Thus, the presence of
perfect multicollinearity is immediately detectable. Furthermore, in prac-
tice, it is obviously quite unlikely to occur. However, high multicollinearity .
commonly perplexes the users of multiple regression. '
M@emal‘somal_scmme data, the mdependent variables are
vmually always intercorrelated, that is, 1nu111colln1ear ‘When this condition
“becomes extreme, serious esimation problems often arise. The general dif-
ficulty is that parameter estimates become unreliable. The magnitude of the
partial slope estimate in the present sample may differ considerably from
its magnitude in the next sample. Hence, we have little confidence that
a particular slope estimate accurately reflects the impact of x on y in the
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population. Obviously, because of such imprecision, this partial slope esti-
mate cannot be usefully compared with other partial slope estimates in the
equation to arrive at a judgment of the relative effects of the independent
variables. Finally, an estimated regression coefficient may be so unstable
that it fails to achieve statistical significance, even though x is actually
associated with y in the population.

Venn diagrams can help illustrate high multicollinearity and the arising
estimation difficulties.! Figure 4.1a-b represents regressing y on two vari-
ables, x; and x,. Each circle represents a variable’s variation. The red and
blue sections are the portion of y uniquely explained by x; and x,, respec-
tively. The orange region is the part of y unexplained by x; and x,. When
estimating the coefficients b; and b,, only fhe information in regions red
and blue are used. The black section is discarded: It represents variation in
y explained by both x; and x,; however, because x; and x, overlap (i.e., are
correlated), it is impossible to disentangle completely their shared variance
that contributes to the explanation of .2 As mentioned, rarely will two
independent variables be completely independent and have no overlap,
especially in the social sciences. There will likely be some correlation illus-
trated by the black section in Figure 4.1a. With mild multicollinearity, there
is still enough unique variation in the red and blue sections to get a precise
estimate of by and b,.

However, as we see in Figure 4.1b, when there is high multicollinearity,
the area of the red and blue sections shrinks—that is, the unique variation
of y explained by x; and x, is reduced. The slope estimates will still be
unbiased. But because we have little information to estimate b, and b,, the
slope coefficients will be unstable. In the extreme case of perfect multicol-
linearity, the two circles, x; and x,, would exactly overlap, leaving zero
information to estimate unique coefficients.

High multicollinearity creates these estimation problems because it pro-
duces large variances for the slope estimates and, consequently, large stan-
dard errors. Recalling the formula for a confidence interval (95%,
two-sided),

bji tn-k—l;.975 S.e.(bj) j = 1,..., k

we recognize that a larger standard error, s.e.(b;), will widen the range of
values that b; might take on. Reviewing the formula for the #-statistic,
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Figure 4.1 (a-b) Venn Diagrams of Mild and High Multicollinearity

Orange

Orange
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we observe that a larger s.e.(bj) makes it more difficult to achieve statistical
significance (e.g., more difficult to exceed the value of 2, which indicates
statistical significance at the .05 level, two-tailed).

We can see how large variances occur with high multicollinearity by
examining this variance formula,

52

varianceb; =s7 =—2
J i n o2
i=Vi,j

where s,% is the variance of the error term in the multiple regression model,
and v;f is the squared residual from the regression of the jth independent

variable, x;, on the rest of the independent variables in the model. Hence,

_ A
V=N T

If these other independent variables are highly predictive of x;, then x; and
% ; will be very close in value, and so V; will be small. Therefore, the

denominator in the above variance formula will be small, yielding a large
variance estimate for ;.

Of course, when analysts find that a partial regression coefficient is sta-
tistically insignificant, they cannot simply dismiss the result on grounds of
high multicollinearity. Before such a claim can be made, high multicol-
linearity must be demonstrated. Let us first look at common symptoms of
lhigh multicollinearity, which may alert the researcher to the problem. Then,
we will proceed to techniques of diagnosis. One rather sure symptom of
high multicollinearity is a substantial R? for the equation but a lack of sta-
tistically significant coefficients. A second, weaker, signal is regression
coefficients that change greatly in value when independent variables are
dropped or added to the equation. A third, still less sure, set of symptoms
involves suspicion about the magnitudes of the coefficients. A coefficient
may be regarded as unexpectedly large (small), either in itself or relative to
another coefficient in the equation. It may even be so large (or small) as to
be rejected as nonsensical. A. fourth alert is a coefficient with the “wrong”
sign. Obviously, this last symptom is feeble, for knowledge of the “right”
sign is often lacking.

The above symptoms might provide the watchful analyst hints of a mul-
ticollinearity problem. However, by themselves, they cannot establish that
the problem exists. For diagnosis, we must look directly at the intercorrela-
tion of the independent variables. A frequent practice is to examine the
bivariate correlations among the independent variables, looking for coeffi-
cients of about .8 or larger. Then, if none is found, one goes on to conclude
that multicollinearity is not a problem. While suggestive, this approach is
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unsatisfactory, for it fails to take into account the relationship of an inde-
pendent variable with all the other independent variables. It is possible, for
instance, to find no large bivariate correlations, although one of the inde-
pendent variables is a nearly perfect linear combination of the remaining
independent variables, This possibility points to the preferred method of
assessing multicollinearity: Regress each of the k independent variables on
all the other independent variables. When any of the Rjz- from these equa-
tions is near 1.0, there is high multicollinearity. In fact, the largest of these
auxiliary RJZ-, as they are called, serves as an indicator of the amount of
multicollinearity that exists. Standard statistical software can run all pos-
sible auxiliary regressions of the independent variables and report a statistic
called the variance inflation factor (VIF). It measures how much the vari-
ance of the regression coefficients is inflated compared with the noninflated
baseline of linearly independent predictors. For each of the j predictor
variables, the VIF is calculated as follows:

1
2
1-R;

VIF; =

where Rjz- is the coefficient of determination from regressing x; on all the

other predictor variables. The “best-case” scenario is if the VIF is 1, then %
is linearly independent of the other covariates. A good rule of thumb is if
VIF;>10, then multicollinearity may be a problem. (From the formula for
VIF, we can see that it will increase as the number of independent variables
increases. This is another way of saying that the coefficient estimates will
tend to become more unstable. A message here, for practicing researchers,
is to keep the mode] specification as parsimonious as possible.)

Let us apply what we have learned about multicollinearity to the four-
variable Riverview model:

y=b0+b1x1 +b2x2+ b3:C3 +e

where y = income (in dollars), x; = education (in years), x, = seniority (in
years), x3 = gender of respondent (0 = female, 1 = male), and e = error. The
estimates for this model, which we have already examined, reveal no symyp-
toms of a multicollinearity problem. That is, the coefficients are all signifi-
cant, and their signs and magnitudes are reasonable. Therefore, we would
anticipate that the above multicollinearity test would procuce an RJ% far

from unity. Regressing each independent variable on all the others yields

8 =12.79+021x,+0.17%  R*=.11
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5=572+0535+133%  R*=12
%=0.28+0.002x; +0.007x, R*=.01

These RJZ- show that these independent variables are intercorrelated in the

Riverview sample, as we would expect with data of this type. But we
observe that the largest coefficient of multiple determination, R? = .12, lies
a good distance from 1.0. We could also confirm these results by looking at
the VIFs for each coefficient:

Education  Seniority =~ Gender
VIE 1.13 1.14 1.01

We see that none of the VIFs are anywhere close to 10. Our conclusion is
that multicollinearity is not a problem for the partial slope estimates in the
Riverview multiple regression model.

The results do not always turn out so well. What can we do if high multlcol—
linearity is detected? Unfortunately, none of the possible solutions is wholly
satisfactory. In general, we must make the best of a bad situation. The standard
prescription is to increase our information by enl&fging the sample. As noted
in an earlier chapter, the bigger the sample size, the greater the chance of find-
ing statistical significance, other things being equal. Realistically, however,
the researcher is usually unable to increase the sample. Also, multicollinearity
may be severe enough that even a large n will not provide much relief,

Assuming the sample size is fixed, other strategies have to be imple-
mented. One is to combine those independent variables that are highly
intercorrelated into a single indicator. If this approach makes conceptual
sense, then it can work well. Suppose, for example, a model that explains
political participation (y) as a function of income (x,), race (x,), Internet use
(), television watching (x,), and newspaper reading (xs). On one hand, it
seems sensible to combine the highly intercorrelated variables (x3, x4, xs)
into an index of media involvement. On the other hand, it is not-sensible to
combine the income and race variables, even if they are highly related.

Suppose our variables are “apples and oranges,” making it impractical to
combine them. In the face of high multicollinearity, we cannot reliably sepa-
rate the effects of the involved variables. Still, the equation may have value
if its use is restricted to prediction. That is, it might be employed to predict y
for a given set of values on all the x’s (e.g., when x; =2, x, =4,...x,=3), but
not to interpret the independent effect on y of a change in the value of a single
x. Usually, this prediction strategy is uninteresting, for the goal is generally
explanation, in which we talk about the impact of a particular x on y.

81

Alast technique for combatting multicollinearity is to discard the offend-
ing variable(s). Let us explore an example. Suppose we specify the follow-
ing elementary multiple regression model:

¥y =g+ byxy + byx, + e (Model I)

Lamentably, however, we find that x; and x, are so highly related (r}, =.9)
that the least squares estimates are unable reliably to assess the effect of
either. An alternative is to drop one of the variables, say x,, from the equa-
tion, and simply estimate this model:

y=Dbg+ byx; + e (Model II)

A major problem with this procedure, of course, is its willful commission
of specification error. Assuming Model I is the correct explanatory model,
we know the estimate for b; in Model II will be biased. A revision that
makes this technique somewhat more acceptable is to estimate yet another
equation, now discarding the other offending variable (x;),

y = b+ byxy +e" (Model IIT)

If the Model II and Model III estimates are evaluated, along with those of
Model I, then the damage done by the specification error can be more fully
assessed.

High Multicollinearity: An Example

To grasp more completely the influences of high multicollinearity, it is
helpful to explore another example. Let us expand on our school policy
example from the previous chapter. But now we will examine the findings
with an eye to the multicollinearity issue. After collecting more potential
explanatory variables on educational outcomes, we formulate a multiple
regression model, arriving at the following estimates:

$=7542+0.045x, —.000011x} + 3.68x, - .786x; —.000345x,
pstatistic (2.70) (6.68)  (—410)  (1.62) (-3.75) (~1.06)
pvalue  (0.01) (<001) (<001)  (0.11) (<001) (0.32)

R?= 89 Adj. R? = .88 n=50 5o=17.62
where y = average high school test score, x; = school size (total number of

students), x¥ = school size squared » X, = an indicator if a school is in a rural
area (1 = rural, 0 = not rural), x; = poverty measure (percentage of students
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receiving subsidized lunch), and x, = average household income (averaged
over the school district).

These results suggest that school size has a positive effect on test scores
but becomes negative once a certain size is reached. Test scores at first
appear higher in rural areas, but the difference is not statistically significant.
Both poverty and income have a negative sign, The more students on subsi-
dized school lunch, the lower average test scores appear; however, income
also has an inverse relationship—higher levels of family income are associ-
ated with lower educational performance. Such a conclusion becomes much
less certain when we inspect the multicollinearity in the data. Let us diagnose
the level of multicollinearity by calculating the VIF for each coefficient.

School Size School Size Squared Rural Poverty Income
VIF 16.86 16.80 1.07  22.62 22.84

Obviously, extreme multicollinearity is present. The purpose of the model
is not prediction, so we cannot ignore the problem. How might it be cor-
rected? Let us first examine the school size variable. Multicollinearity is a
problem with the school size variable because we have the same variable in

the model twice, once as x; and again as xl2 . A strategy to deal with poly-

nomial terms is to center them—that is, subtract the mean from the predic-
tor and use the deviations, and squared deviations, as new variables in the
model.3 This transformation is useful as it eliminates high correlation
between the two variables. It also, however, slightly changes the interpreta-
tion of the coefficients.* As for the poverty and income variable, it makes
sense they would be highly correlated: They are both measuring in some
way the wealth of the district. One possibility would be to combine them
into an average measure of economic well-being. Another would be to
discard one of the offending variables. Suppose we are more interested in
the school district level of wealth since local property taxes fund the
schools. We decide to remove poverty from the equation and add the cen-
tered school size variable. After reestimating, we get the following:

$=7.92+.0189x —.0000098x7 +5.14x, +.00089x,

fstatistic  (26.05) (9.75)  (-3.16)  (2.03)  (10.58)
p-value (0.14) (<001)  (002)  (.048) (<.001)

R%=386 Adj. R*=.85 n=50 5, =8.63

where definitions are the same as above.
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According to these new estimates, all the variables have a statistically
significant impact. The sign on income has also changed from negative to
positive, which makes intuitive sense: The more wealthy the school dis-
trict, the higher the average test scores. How reliable are these new esti-
mates? One check is to recalculate the level of multicollinearity.
Calculating the VIF for the coefficients in the new equation, we get the
following:

Centered School  Centered School
Size Size Squared  Rural Income

VIF 1.08 1.04 1.05 1.08

We observe that all of these VIFs are quite close to 1, indicating that mul-
ticollinearity has ceased to be problematic. The revised parameter estimates
would appear much more reliable than the contrary ones generated with the
offending variables. Hopefully, this rather dramatic example brings home
the perils of high multicollinearity.

The Relative Importance of the Independent Variables

We sometimes want to evaluate the relative importance of the independent
variables in determining y. An obvious procedure is to compare the magni-
tudes of the partial slopes. However, this effort is often thwarted by the
different measurement units and variances of the variables. Suppose, for
example, the following multiple regression equation predicting annual dol-
lars contributed to political campaigns as a function of an individual’s age
and income,

$ = 78+12x; +.020x,

where y = campaign contributions (in dollars), x; = age (in years), and Xy
= income (in dollars). The relative influence of income and age on cam-
paign contributions is difficult to assess, for the measurement units are not
comparable, that is, dollars versus years. One solution is to standardize
the variables, reestimate, and evaluate the new coefficients. (Some statis-
tical software automatically provides the standardized coefficients along
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with the unstandardized coefficients.) Any variable is standardized by
converting its scores into standard deviation units from the mean. For the
above variables, then,

Y=YV o« x-X * Xy —X
y = 5 s x1= ls 1’ xZ:——z 2
¥ “ )
where the asterisk, *, indicates the variable is standardized.

Reformulating the model with these variables yields
P =t +byx

(Note that standardization forces the intercept to zero.) The standardized
partial slope, or standardized regression coefficient, is sometimes desig-
nated with “p™,5

The standardized regression coefficient corrects the unstandardized
regression cocfficient by the ratio of the standard deviation of the indepen-
dent variable to the standard deviation of the dependent variable:

A\
* X,
by =b -
pd

As we saw at the end of Chapter 1, in the case of the bivariate regression
model, the standardized regression coefficient equals the simple correlation
between the two variables. That is, assuming the model,

y=by+bx+e

then,

However, this equality does not hold for a multiple regression model. (Only
in the unique circumstance of no multicollinearity would b* = r with a
multiple regression model.)

The standardized partial slope estimate, or standardized regression coef-
ficient, indicates the average standard deviation change in y associated
with a standard deviation change in x when the other independent variables
are held constant. Suppose the standardized partial slopes for the above
campaign contribution equation are as follows:

$7 =.15% +.45x,
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For example, b; =45 says that a 1 standard deviation change in income is
associated with a .45 standard deviation change in campaign contributions,
on the average, with age held constant. Let us consider the meaning of this
interpretation more fully. Assuming x, is normally distributed, then a 1
standard deviation income rise for persons at, say, the mean income would
move them into a higher income bracket, above which only about 16% of
the population resided (recall the Empirical Rule for normally distributed
variables). We see that this strong manipulation of x, does not result in an
equally strong response in y, for b;_ is far from unity. Still, campaign con-
tributions do tend to climb by almost one half of a standard deviation. In
confrast, a considerable advance in age (a full 1 standard deviation increase)
elicits a very modest increment in contributions (only .15 of a standard
deviation). We conclude that the impact of income, as measured in standard
deviation units, is greater than the impact of age, likewise measured.
Indeed, it seems that the effect of income on campaign contributions is
three times that of age (.45/15=3).

The ability of standardization to ensure the comparability of measure-
ment units guarantees its appeal when the analyst is interested in the rela-
tive effects of the independent variables. However, difficulties can arise if
one wishes to make comparisons across samples. This is because, in esti-
mating the same equation across samples, the value of the standardized
slope, unlike the value of the unstandardized slope, can change merely
because the variance of x changes. In fact, the larger (smaller) the variance
in x, the larger (smaller) the standardized regression coefficient, other
things being equal. (To understand this, consider again the standardized
regression coefficient formula,

* X5
J J sy

We see that as S5 the numerator of the fraction, increases, the magnitude
* . .
of b; must necessarily increase.)

As an example, suppose that the above campaign contributions model
was developed from a U.S. sample, and we wished to test it for another
Western democracy, say Sweden. Our standardized regression coefficients
from this hypothetical sample of the Swedish electorate might be

$7=18x +.22x,
where the variables are defined as above. Comparing b; (United States) =

A5 with b; (Sweden) = .22, we are tempted to conclude that the effect of
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income in Sweden is about one half its effect in the United States. However,
this inference may well be wrong, given that the standard deviation of
income in the United States is greater than the standard deviation of income
in Sweden. That is, the wider spread of incomes in the United States may
be masking the more equal effect a unit income change actually has in both
countries, that is, b, (United States) = b, (Sweden) . To test for this possi-
bility, we must of course examine the unstandardized regression coeffi-
cients, which we suppose to be the following:

$=83410.5x, +.018x,

When these unstandardized Swedish results are compared with the
unstandardized U.S. results, they suggest that, in reality, the effect of
income (always measured in dollars) on campaign conftributions is essen-
tially the same in both countries (.02 =.018). In general, when the variance
inx diverges from one sample to the next, it is preferable to base any cross-
sample comparisons of effect on the unstandardized partial slopes.

Extending the Regression Model: Nonlinearity

Regarding the dependent variable, the assumption thus far has been that it
is a linear function of the independent variables. This assumption has utility
for different reasons. First, the great body of social science research that has
accumulated generally conforms to this linear assumption, Second, when it
has been tried, it is hard to do better than the linear model, Of course, the
anafyst should be alert to the possibility that a relationship under study may
be nonlinear and model it as such. We saw a glimpse of this at the end of
Chapter 2 with the educational test score model.

To the novice reader, the class of linear models implies the relationship
between x and y must be a straight line. This is an unnecessary and overly
restrictive assumption. For OLS, the only requirement is the model param-
eters enter linearly into the model.® There are no restrictions on the actual
data. The predictors and dependent variable can be transformed to model
complex relationships that take on a variety of shapes. If the observed
(raw) relationship between x and y appears nonlinear, then the variable(s)
may be transformed to achieve linearity. Once the transformation is made,
OLS can be run without violating Assumption 1d. Let us look at a few
theoretical examples.

In the first chapter, we examined the form of the relationship between
education (x)) and income (), assuming it was linear. Given that linearity,
a one-unit change in x; would yield a fixed change in y, irrespective of
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where the x; score falls, But, it may be possible that the relationship takes
a nonlinear form, at least in another sample. In Figure 4.2, we draw three
nonlinear relationships beside the simple straight-line relationship (Figure
4.2a). It may be that y is a logarithmic function of x;, like the curve Figure
4.2b. If so, a unit change in x; affects y but less and less as the score on x,
increases. For instance, a rise in education from 20 to 21 years would have
apositive effect on salary but not as great as the change from 10 to 11 years.
There are other examples where the impact of x; is not constant. It may be
that y is a iyperbolic function of x;, like in Figure 4.2¢c. Given that scenario,
x; keeps a positive impact, but that damps down soon, as it moves toward
zero. Going back to the education and income example, a unit change in
education from 29 to 30 years would barely have an effect. A parabolic
model for y is another type, such as sketched in Figure 4.2d. In this case, as
X goes up, y goes up to a point, after which more gains in x; lead to declines
in y. We saw this relationship with the school size variable: Once a school
gets too crowded, adding extra students seems to lower average test scores.

These four types of relationships can be expressed mathematically in the
equations below:

Linear: y=by+Dbx

Logarithmic: y = by +byln(x;)

Hyperbolic:  y=0y-0 [i]

!

Parabolic:  y =5y +bx = b2x12
The first model illustrates a linear relationship between raw (observed) x,
and y (see Figure 4.2a). The subsequent models conform to the curves in
Figure 4.2b—d, due to the transformation of x;. (In turn, we have a natural
log, a reciprocal, and a square transformation of x;.) Assuming that correct
curvilinear specification between raw x; and y, the transformation will
make for a linear relationship. For instance, supposing the observed rela-
tionship between raw x; and y to be hyperbolic, then the observed relation-
ship between the reciprocal transformation of x, (i.e., i) and y is linear.
!

OLS, then, even given its linearity assumption, can be properly used on the
transformed equation.

In deciding whether to model a relationship as linear or nonlinear, theory
should be heavily relied upon. Unfortunately, though, the signals from
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Figure 4.2 (a-d) Different Forms of the Relationship Between x; and y

a. Linear b. Logarithmic
> >
X, X,
C. Hyperbolic d. Parabolic
> EN
X, X,

theory are sometimes contradictory. For example, you might believe a rela-
tionship is nonlinear, while a critic argues strongly that it is linear.
Comparing different models in terms of R:dj or RMSE is one way o help
select the best model. Also, examining the test statistics on the transformed
xs will aid in determining if a nonlinear specification is preferred. Finally,

and most important, the model specification itself should be made secure,
as discussed in the previous chapter.

Determihants of Presidential .
Popularity: A Multiple Regression Example

Let us now turn to a new applied example, from the field of political
science. A common question for political scientists is the following: Does
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the economy have an effect on presidential popularity? (See the literature
reviews in Bellucci & Lewis-Beck, 2011; Lewis-Beck & Stegmaier, 2013.)
Since President Truman, the Gallup Poll has collected mouthly public opin-
ion data on presidential approval. For our model, we averaged the data to
make it quarterly, focusing on the time period from 1981 through 2013.
(This use of quarterly data reduces the noise from measurement error.) A
time series of the data is presenied below with percentage of approval on
the y-axis and quarter of the year on the x-axis (Figure 4.3).

The time series fluctuates but appears to be reasonably stable across
time: The variance does not explode, and the mean seems to be centered
around a 55% approval rating. (Substantively, this is interesting, as it sug-
gests that the public, on average, supports the president.) We want to know
the effect of changes in unemployment and inflation, as well as the incum-
bency effect—that is, are presidents more or less popular during their sec-
ond term? Prior research indicates it takes two quarters for changes in
unemployment to affect voter attitudes, so unemployment will be lagged

Figure 4.3 Presidential Approval Time Series
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two quarters (this is denoted with the subscript, £ —2; in general, time-series
data are subscripted to indicate the time period). To capture inflation, per-
cent change in the consumer price index (CPI) will be added as an indepen-
dent variable. All economic data came from the St. Louis Federal Reserve’s
FRED Database. OLS is applied to the following specification:

Yi=bo+byxy o+ byxy  + byxsy e

where y, = presidential approval (percent approving), x; ., = unemploy-
ment rate (lagged two quarters), ;= percent change in CPI, x; , = second
term dummy variable (0 = first term, 1 = second term), and e, = error (all
variables are measured quarterly). We get the following model output:

P, =72.25-2.51x ;. —0.72x, , ~7.20y,

t-statistic (15.89) (-4.25) (—42) (-3.53)
p-value (<.001) (=001)  (0.67) (<.001)
Rr=15 Adji.R*=.13  n=132 5,=10.30 -

It appears that higher unemployment and being a second-term president
have a statistically significant negative effect on presidential popularity.
Higher inflation also appears associated with a lower approval rating,
but the p-value is .67, so failing a conventional .05 statistical signifi-
cance test. ‘

Before interpreting the estimates, we need to check the assumptions.
Recall Assumption 3c, which states that the error terms must be uncorre-
lated. Observations are typically independent when working with cross-
sectional data. With time-series data, however, correlation between data
points is common. Intuitively, this makes sense; for example, presidential
popularity in one quarter is likely closely linked to popularity the next
quarter. There are graphical as well as statistical tests to check for this auto-
correlation. The first method is to make an index plot of the residuals
(Figure 4.4a). If no autocorrelation is present, the residuals will appear
as random noise across the time index. In this case, there are a few subtle
patterns—long runs of residuals above or below zero. A second plot to
detect autocorrelation is examining the residuals over successive time
points (e, vs. e,,). If the residuals are uncorrelated, the plot should look like
random noise centered at zero. In Figure 4.4b, we see this is not the case.
There seems to be a strong positive correlation between successive residu-
als. A final more formal statistical test comes from calculation of the
Breusch-Godfrey statistic.
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Figure 4.4 (a-b) Residual Plots for Time-Series Data
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The Breusch-Godfiey (BG) test is a general statistical test that checks for
autocorrelation between the error terms. The intuition behind the test is
straightforward. We regress the observed residuals from the model (e,) on
the independent variables, as well as successive lagged residuals (e,_j, e,
ete.). If the R? from this model is large enough, there exists correlation
between the error terms.” The null hypothesis of the BG test is no autocor-
relation. Therefore, if we reject the null, it suggests autocorrelation is a
problem. Most statistical packages offer a Breusch-Godfrey test. When we
test the residuals from the current model, we get a p-value < .001. Hence,
we reject the null hypothesis of no autocorrelation. This matches the con-
clusion from the graphical tests in Figure 4.4 (a-b).

There are many remedial measures for dealing with autocorrelation. If
testing the significance of the coefficients is of no interest, we could
ignore the problem—the estimates will still be unbiased even if the stan-
dard errors are incorrect. If we want to make substantive conclusions
about the significance of the independent variable coefficients, however, a
correction is required. One method is to add a lagged dependent variable
to the right-hand side of the model. From a theory perspective, this malkes
sense: Presidential approval is not completely random from quarler to
quarter, which may be because attitudes about the president tend to rein-
force themselves over time. Also, there are likely many unobserved factors
from one quarter that help shape public opinion of the president in the next
quarter—in addition to the observed variables we have in the model.




92

Therefore, we incorporate the one quarter lagged approval dependent vari-
able into the model as follows:

Y= bo+ DXy o+ byxy o+ baxs  + byyy + e

Let us now estimate the presidential approval model following this new
specification. We get the following output:

5 =17.47-0.78x,_5 ~1.90x, , ~2.65x3 , +0.81y,.4

t-statistic (4.14) (-2.22) (-1.96) (-2.24) (16.40)
p-value (<.001) (0.02) (0.05)  (0.02) (<0.001)
R*=.73 Adj. R*= .72 n=132 5,=5.82

Unemployment and inflation still have a negative effect on the president’s
popularity. Unemployment is statistically significant at the .05 level. A one-
unit positive change (i.e., a 1 percentage point increase) in unemployment
two quarters ago reduces the current approval rating by approximately 0.8
percentage points. Inflation is still negative but now also statistically sig-
nificant, with a 1 percentage point increase in inflation yielding an almost
2 percentage point decrease in popularity. The incumbent variable is also
still negative and statistically significant. We can interpret this as the popu-
latity cost of governing for a second term, which is estimated at nearly 3
percentage points. The new variable, lagged approval, is positive, by =0.81,
and the #-statistic is greater than 2. Thus, it appears that there is significant
association in approval from one quarter to the next. Last, the RZdJ is now
.72. Our model is explaining a much greater proportion of the variation in
presidential approval, As a final check, let us look at the residuals to make
sure the autocorrelation is no longer present.

The index plot (Figure 4.5a) looks like random scatter around zero.® We
can see in Figure.4.5b that the strong linear pattern present in Figure 4.4b
is gone. It appears the autocorrelation has been corrected. To confirm, we
run a BG test on the residuals one more time: The statistical test reports a
p-value of .85. We fail to reject the null hypothesis of no autocorrelation.’
Assumption 3c is satisfied.

There are many other solutions to handling the unique problems
encountered when modeling time-series data (e.g., generalized least
squares). Hopeflully, this example shows some of the complications and
violations of OLS assumptions that come when working with repeated
measures data.
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Figure 4.5 (a-b) Residuals Plots for Final Presidential Approval Model
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Presentation of Regression Results in a Research Paper

Throughout this monograph, we have presented equations horizontally,
running from left to right, as is traditionally done in statistics and econo-
metrics textbooks. This format works well for teaching purposes. However,
it is not necessarily the most efficient or readable way to present them in a
research paper, where often the author will have several specifications of a
mode] with the same dependent variable. In such cases, a common format
is vertical, running from top to bottom (usually beginning with a dependent
variable header, then going through the slope estimates, and ending with fit
statistics and the sample size). In this way, equations are lined up, one after
the other. In Table 4.1, we see an example, which draws on the presidential
popularity data analysis just carried out. We see the two equations that were
analyzed, with their supporting statistics. (Parentheses below the coeffi-
cients contain the standard errors.) Here two equations are sufficient, but it
can be readily seen that three, four, or even five model specifications could
be incorporated, in sequence.

‘What Next?

The workhorse of nonexperimental social science research remains the
classical linear regression model, estimated with ordinary least squares
(Krueger & Lewis-Beck, 2008). Comprehension of the material in this
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Table 4.1 Presidential Popularity Models, Quarterly Data, Years

19812013
1 2

Unemployment Rate (+-2) ~D2.5]%* -0.78*
(0.592) (0.351)

Percent Change in CPI -0.72 -1.90
(1.718) (0.974)
Second Term Dummy —7.20%* —2.65%
(2.038) (1.185)
Presidential Popularity (¢1) 0.81%*
(0.049)
Constant 72.25%* 17.47%*
(4.546) (4.216)

R-Squared 0.15 0.73
Adj. R-Squared 0.13 0.72 -

Root MSE 103 5.82

Observations 132 132

SOURCE: Gallup Polling Data and St. Louis Federal Reserve’s FRED Database. Both time-
series are quarterly (averaged from monthly measures).

NOTE: Models 1 and 2 estimated with OLS.
*p <05, ¥*p <.01.

monograph should permit the reader to use regression analysis widely and
easily. Once the regression assumptions, which we have spelled out, are
met, the analyst can have considerable confidence in making inferences
from OLS about how the real world works. But ordinary least squares,
versatile as it is, has limits, and these limits have much to do with measure-
ment issues. Two such issues are worth mentioning here. The first concerns
the precision of the dependent variable; the second concerns the exogenous
status of the independent variables,

Let us take the first concern. As explained, when the independent variables
have less than interval precision, such as ordinal and nominal variables, they
can be “dummied up” and desirable estimation properties of OLS saved.
However, the picture shows less bright when the dependent variable has
categories, especially multiple categories. If it is a simple dichotomy (i.e.,
with two categories), then OLS can provide unbiased, but less efficient,
estimates. That loss of efficiency means that, rather than least squares,
maximum likelihood techniques (MLE), such as binary logit or probit, are
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generally preferred. If the dependent variable has several ordered catego-
ries, then an ordinal logistic regression should be considered. When the
dependent variable has multiple, unordered categories, then a multinomial
logistic regression is called for.

Let us turn to the second concern, that of questionable exogeneity of one
or more independent variables. Outside of a scientific laboratory, truly ran-
domized controlled experiments are difficult, if not impossible, to conduct.
For instance, it would be unethical to randomly assign one group of indi-
viduals to smoke and compare them with a random cohort of nonsmokers.
Social scientists usually have to rely on observational data where the
explanatory variables are not exogenous (e.g., randomly assigned). This
makes causal inference difficult as there may be many confounding factors
correlated with the independent variables, as well as the dependent variable.
If x is not truly exogenous, then the OLS slope estimates will be biased. A
common strategy for overcoming this exogeneity problem is instrumental
variables. The leading technique here is called two-stage least squares
(2SLS) and involves rendering the offending x variables effectively exog-
enous, through the use of available “instruments.” Instrumental variables
(IV) are covariates that are correlated with the offending explanatory vari-
ables but uncorrelated with the error term. In the smoking example, ciga-
rette price could be an instrumental variable if the dependent variable was
lung cancer. (Cigarette price is correlated with smoking but would likely not
have an effect on health outcomes.) Happily, a firm grasp of classical
regression analysis, as explicated here, will speed the student’s mastery of
this technique, as well as the MLE single-equation techniques just outlined.

Notes

1. Venn diagrams applied to regression analysis are called a Ballentine; they
were invented by Cohen and Cohen (1975). For a more detailed description, see
Kennedy (2008, pp. 45-47).

2. There are automated atheoretical techniques, such as stepwise regression, which
attempt to partition variance. Such techniques virtually guaranice biased param-
eter estimates and should be avoided.

3. A variable is centered as follows: z; =x; —X. In this case, after the variable

school size is centered, both z; and z7 are entered into the model as covariates.

4. Rather than interpreting the intercept as the average test score when school size
equals 0, we now interpret it as the average test score for the average school size
of ¥=1,146, as in this example. The slope coefficient on school size is intet-
preted at the mean, too, A one-person increase in school size (for the average
school with 1,146 students) will result in a b, increase in average test score. Cen-
tering is helpful from a substantive perspective as well since the interpretation of
the slope atx; = 0 has no real meaning—no actual school has zero students.



. The standardized regression coefficient has sometimes been called a befa weight
and represented with the Greek symbol for beta, 8. However, this makes for
confusion, as f routinely is used to designate the population slope.

. An example of a model that is linear in the parameters is y = B + x| + BoXy
+ &. In other words, each parameter is raised to the first power. An example of a

model that is nonlinear in parameters is y = f3, + ﬁlxlpz +e.

. Recall from Chapter 2 that by design, the independent variables x will be uncor-
related with the error term, as estimated by the residuals. This is a mathematical
property of OLS. Therefore, if the R? from the BG model is high, the explanatory
power must be coming from the successive residuals.

. The curious reader may notice three large positive outlier residuals in Figure 4.5a.
These correspond to major shocks, or “rally around the flag” events, to the coun-
try: The first corresponds to the first Gulf War, the second to the attacks of 9-11,
and the third the election of Barack Obama.

. Another, common, autocorrelation test is the Durbin-Watson (DW) test. How-
ever, it is not appropriate when there is a lagged dependent variable on the right-
hand side of the equation, as is the case here. Fortunately, the BG test is a more
general test than DW and is appropriate hete.

APPENDIX

A derivation of the least squares estimates without the use of calculus:
Recall, a quadratic function with one variable has the form

f(x)¥M2+bx+c

where a, b, and ¢ are constants, and we assume a > 0.
Using basic algebra, we can rewrite this equation as

f(x)=a(x+2b—aj2 +{c—%]

To minimize this function in terms of x, we can focus on the first term since
x does not appear in the second. Because this is a squared term, it is never
negative and will be minimized when set to zero. Thus, to minimize the
whole equation, we simply need to solve

x+i=0
2a

- or

—b
x=—
2a

Graphically, we can think of this solution as the vertex of an upward-facing
parabola.

Returning to the least squares equation, we can apply the same technique
to the following minimization problem:

2
SSE = T (i~ 51)
Plugging in the equation for 9, we can rewrite this as

SSE =33 (7 —bo) — )
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Using the distributive law, we can expand this to

SSE=7 (yi—bo )2" 2b 3 % (v =Dy )+ b Y x7

=07 Ty xF +2boby Doy +nbg —2by T %, —2by Ty v+ PR

We can now see that the SSE is simply a quadratic function in terms of
either by or by. We can find the lowest point of each of these parabolas by
combining like terms and finding the vertex as derived above.

S (bo)=nbg + (@b L%~ 251 30)by + (b TiLy 37 =20y Tty 5,37+ Sy v

J(b) = (Sigxf )b +(2by i3 =2Z 3300 + (b =20y S, 31+ Sily 77)

C . -b .. .
Using the general minimization solution (x =-—) each of these quadratic
equations is minimized at 2a

n
Z?:]J’i - bl DX
n

bo':

n n ..
b = 2ieri Y —bo i
| =

n 2
i=1%;

With two equations and two unknown variables, we can use substitution

(and the trick »x = Z?:l x; ) to rewrite these in the same form as shown in
the text.

bo =y—b1x

(i —¥) (=)

L% -x)

=
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equation, 11
example, 49-52
explanatory power (goodness of fit),
14-19. See also Coefficient of
determination
fitting a straight line, 4-11
for population, 23
interpretation of parameters, 11-13
prediction, 13-14
Breusch-Godfrey (BG) test, 90-91

Categorical variables, 66, 94-95
Causal ordering of variables, 12
Classical linear regression model, 23
Coefficient of determination (R?),
14-19
adjusted R?, 63
correlation coefficient (1) and,
19-20

multicollinearity problem, 78-80

multiple regression, 62-63
Confidence intervals, 29-33

autocorrelation and, 26

multiple regression, 61, 63

Root Mean Squared Error (RMSE),
38-39
sample size and, 39
Cook’s distance, 42
Correlation coefficient (), 1920

Degrees of freedom, 61
Dependent variables, 1
categorical, 94-95
Dichotomous variables, 64-66
Dummy variables, 64—69

Error sum of squared deviations
(ESS), 15
Error term, 2
multiple regression, 55
regression assumptions,
24,25-27, 90
Exogeneity problem, 95
Explanatory power, 14-19
Extrapolation, 13

Gauss-Makov theorem, 23

Goodness of fit assessment, 14—19,
62-63. See also Coefficient
of determination

Heteroscedasticity, 25, 28, 44
approaches for dealing with,
48-49
Homoscedasticity assumption, 24, 25,
44, 48-49
Hyperbolic relationships, 87

Independent variables, 1
error term correlation, 26
exogeneity issues, 95
multicollinearity problem, 75-83
multiple regression, 55
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noninterval variables and dummy
variables, 64—69

R%and, 62

relative importance of, 83-86
Indicator variables, 64
Instrumental variables estimation,

25,95

Interaction effects, 69-71
Intercept, 1, 13

bias in estimate, 25

confidence interval and, 32

multiple regression, 56
Interval estimate, 32
Interval variables, 64

Least squares estimation, 7-8
instrumental variables, 95
multicollinearity problem, 75
multiple regression, 55-56
non-calculus-based derivation, 95
weighted least square, 25

Linearity assumption, 4, 18, 86

Linear relationships, 1-4, 87

Logarithmic relationships, 87

Logistic regression, 95

Log transformation, 48-49

Maximum likelihood estimation
(MLE), 94-95
Measurement error assumptions,
23,25
Multicollinearity, 66, 71, 75-83
example, 81-83
possible solutions, 80-81
symptoms and diagnosis, 78-80
Multinomial logistic regression, 95
Multiple regression, 55
assumptions, 55
confidence intervals, 61
general equation, 55-56
goodness of fit assessment (R?),
6263
interpretation of parameters, 56-61
minimizing specification error,
7273
noninterval variables and dummy
variables, 64-69

nonlinearity and, 86-88

predicting y, 63—64

presidential popularity example,
88-93

relative importance of independent
variables, 83-86

significance tests, 61-62

statistical control, 57-60

Natural-log (In) transformation,
48-49
Nominal variables, 66
Nonlinear relationships, 4, 18
approaches for dealing with, 44, 51
multiple regression extension,
86-88
Normal distribution assumptions,
24,26-28
sample size and, 28
Normal probability plot, 27-28
Null hypothesis, 29, 61
Type I and Type II errors, 3233

One-sided confidence interval, 33
Ordinal variables, 66, 69, 95
Ordinary least squares (OLS), 11
categorical dependent variable and,
94-95
nonlinearity and, 86-88
Outliers, 40-44

Parabolic relationships, 87
Partial slope (partial regression
coefficient), 56-61
comparing relative importance
of variables, 83
multicollinearity problem, 75-76
standardized regression coefficient,
83-86
Point estimate, 32
Population, bivariate regression model
for, 23
Prediction, 63
assessing explanatory power,
14-19
bivariate regression, 13-14
multiple regression, 63-64
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‘Prediction error, 4, 7
minimizing using least squares,
8, 55-56
Root Mean Squared Error, 38-39
Presentation of regression results, 93
Presidential popularity example, 88-93
p-value, 34-36

Qualitative variables, 64—66

Regression sum of squared deviations
(RSS), 15
Residuals analysis, 39-49
testing for autocorrelation, 90-91
testing for normality, 2628
Robust regression, 44
Root Mean Squared Error (RMSE),
38-39
R-squared (R?). See Coefficient of
determination

Sample size
confidence interval and, 39
normality assumption and, 28
standard error and, 31
statistical significance and, 36-37
Scatterplots, 9-11
residuals analysis, 39-40
School size and educational output
example, 49-52, 8183
Shapiro-Wilk test for normality, 28
Significance testing, 33-36
autocorrelation and, 26
multiple regression, 6162
prediction ervor, 38-39
p-values, 34-36
residuals analysis, 39-49
rule of thumb, 34-35, 62
See also Statistical significance
Simple regression, 11
Slope, 1, 11-13
confidence interval and, 29-32
correlation coefficient (#) and, 20
multiple regression, 56-61. See also
Partial slope
outlier effects, 42
standard error, 30-31
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Specification error
multicollinearity problem and, 81
multiple regression and, 7273
predicting consequences of, 73
regression assumptions,
23,24-25,28
residuals analysis, 44
statistical significance and, 37
Standard error, 30-31
multicollinearity problem, 76, 78
of y estimate (Root Mean Square
Error), 38-39
statistical significance and, 37-38
Standardized variables or coefficients,
83-86
Statistical control, 57-60
Statistical significance

reasons for nonsignificant estimates,

36-38
standard error and, 78
See also Significance testing
Sum of squares of prediction error
(SSE), 7, 55

¢ distribution, 31

degrees of freedom, 61

significance testing rule of

thumb, 34
Time-series analysis, 26, 89-92
Total prediction error (TPE), 7
Total sum of squared
deviations (TSS), 15

¢ ratio (f-test statistic), 34, 61-62

multicollinearity problem, 76
Two-sided confidence interval, 31
Two-stage least squares (2SLS), 95
Type I error, 32
Type II error, 33

statistical significance and, 37

Unbiased estimator, 24

Variance inflation factor (VIF),
79-80

Venn diagrams, 76, 77/

Weighted least squares estimate, 25





